RECEIVED By dehloptoxic at 7:59 am, Mar 08, 2007

6601 Koll Center Parkway Suite 140 Pleasanton, California 94566 Phone (925) 426-0080 FAX (925) 426-0707 www.scsengineers.com

SCS ENGINEERS

Environmental Consultants

March 7, 2007 Project Number: 01203087.02

Mr. Jerry Wickham Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502 Phone (510) 567-6791 Fax (510) 337-9335

Subject: Submittal of Additional Site Investigation Report Freisman Ranch Property 1600 Freisman Road Livermore, California

Dear Mr. Wickham:

On behalf of our client, Children's Hospital Medical Foundation (Children's Hospital), attached is the *Additional Site Investigation Report* prepared by SCS Engineers (SCS) for the Freisman Ranch Property located at 1600 Freisman Road, Livermore, California..

"I declare, under penalty of perjury, that the information and recommendations contained in the attached report are true and correct to the best of my knowledge."

Please contact Steve Clements at (925) 240-5152 if you have any questions or comments regarding this submittal.

Sincerely,

Steve Clements, PG, REA Project Manager SCS Engineers

cc: Emily De Falla – Children's Hospital Tom Terrill – The Terrill Company

ADDITIONAL SITE INVESTIGATION REPORT FREISMAN RANCH PROPERTY 1600 FREISMAN ROAD LIVERMORE, CALIFORNIA

Prepared for:

Children's Hospital and Research Center Foundation 5225 Dover Street Oakland, California 94609-1809

Prepared by:

SCS Engineers 6601 Koll Center Parkway, Suite 140 Pleasanton, California 94566

> March 7, 2007 File No. 01203087.02

TABLE OF CONTENTS

INTRODUCTION	.1
Objectives and Scope of Work	. 1
Site History	. 1
ADDITIONAL SITE INVESTIGATION	. 2
Regulatory Thresholds	. 2
Field Preparation Activities	
Task 1: Groundwater Monitoring	. 2
Materials and Methods	. 2
Analytical Results	. 3
Task 2: Soil Vapor Survey	. 5
Materials and Methods	. 5
Analytical Results	. 6
Task 3: Soil Borings/Temporary Wells	
Materials and Methods - Soil	
Materials and Methods – Groundwater	. 7
Analytical Results – Soil	. 8
Analytical Results - Groundwater	. 8
Task 4: Surface Soil Investigation (Former Incinerator Area)	. 8
Materials and Methods	. 9
Analytical Results	. 9
Discussion of Groundwater Monitoring Conducted By H2OGEOL	10
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	11
Task 1: Groundwater Monitoring	11
Task 2: Soil Vapor Survey	
Task 3: Soil Borings/Temporary Borings	
Task 4: Surface Soil (Former Incinerator Area)	
REFERENCES	

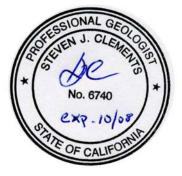
List of Figures

S
Area)

List of Tables

Table 1	Summary of Groundwater Elevation Data
Table 2	Summary of Groundwater Field Parameters
Table 3	Summary of Groundwater Analytical Results
Table 4	Summary of Surface Soil Sample Analytical Results (Incinerator Area)
Table 5	Summary of Soil Vapor Survey Analytical Results.
Table 6	Summary of Temporary Well Analytical Results (Soil Samples)
Table 7	Summary of Temporary Well Analytical Results (Groundwater Samples)

List of Appendixes


Appendix A	H ₂ OGEOL Report, dated February 6, 2006
Appendix B	Zone 7 Water Agency – Drilling Permit #26218
Appendix C	Laboratory Analytical Report and Chain-of-Custody Documentation; Groundwater Well Samples
Appendix D	Laboratory Analytical Report; Soil Vapor Samples
Appendix E	Boring Logs (SCS-1 through SCS-3)
Appendix F	Laboratory Analytical Report and Chain-of-Custody Documentation; Soil Borings/Temporary Wells (Soil and Groundwater Samples)
Appendix G	Laboratory Analytical Reports and Chain-of-Custody Documentation; Surface Soil Samples (Former Incinerator Area)

This Additional Site Investigation Report for the Freisman Ranch Property, Livermore, California, dated March 7, 2007 has been prepared and reviewed by the following:

Ted Sison

Staff Scientist

Steve Clements P.G., R.E.A. Project Manager SCS Engineers

ADDITIONAL SITE INVESTIGATION REPORT FREISMAN RANCH PROPERTY 1660 FREISMAN ROAD LIVERMORE, CALIFORNIA

INTRODUCTION

OBJECTIVES AND SCOPE OF WORK

Children's Hospital of Oakland California retained SCS Engineers (SCS) to perform an Additional Site Investigation at the Freisman Ranch property located at 1600 Freisman Road in Livermore, California (the "Property"). Figure 1 is a Site Location Map and Figure 2 is a Site Plan.

The Additional Site Investigation was conducted in accordance with the *Revised Response to Comment/Workplan* (SCS, October 19, 2006) as approved by Alameda County Environmental Health (ACEH) on October 30, 2006. The additional Site Investigation included the following tasks: 1) Monitoring of all existing onsite groundwater monitoring wells and the onsite water supply well, 2) Soil vapor survey, 4) Drilling and sampling of three soil borings/temporary wells, and 5) Collection of shallow soil samples in the vicinity and downwind of the former onsite incinerator. All investigation tasks were conducted by SCS personnel between January 8 and 11, 2007.

SITE HISTORY

The Property was first developed in approximately 1910 with houses, barns and outbuildings associated with the former onsite dairy. Dairy operations ceased in 1971, and since that time the Property has been used for residential housing, miscellaneous storage, and animal boarding/grazing (horses, cattle, etc.). During a Phase I Environmental Site Assessment conducted in 1997, petroleum hydrocarbons were detected in soil samples collected from the vicinity of the two boilers and in soil and groundwater samples collected in the driveway between the boilers and a metal shed, which historically housed a fuel oil above ground storage tank (AST) (Kleinfelder, 1997a).

The apparent source of petroleum hydrocarbon contamination at the Property was the former heating oil AST used to fuel the two boilers (Kleinfelder, 1997b). Heating oil is typically composed of diesel range and gasoline range hydrocarbons (Bruya, 1993). In order to remove remaining secondary sources of petroleum hydrocarbon contamination at the Property SCS removed the two boilers, the metal shed which historically housed the former heating oil AST, associated underground fuel piping, and impacted soil in August and September 2003.

Six groundwater monitoring wells (*KMW-1* through *KMW-6*) were installed at the Property in 1997, at which time a quarterly groundwater sampling plan was initiated. Two additional wells (*KMW-8* and *KMW-9*) were installed at the Property in 1999. Regular groundwater monitoring had been conducted at the Property until the end of 2003. The wells were again sampled in January 2006 by H₂OGEOL of Livermore, California and in January/February 2006 by Consolidated Engineering of San Ramon, California. Results of the H₂OGEOL monitoring event, which had not previously been submitted to ACEH, are provided in Appendix A.

ADDITIONAL SITE INVESTIGATION

REGULATORY THRESHOLDS

In an effort to evaluate the relative significance of chemical concentrations detected during this investigation SCS Engineers has compared analytical data to the residential Environmental Screening Levels (ESLs) established by the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). ESLs were developed to address the environmental protection goals established the San Francisco Bay Basin Water Quality Control Plan and are protective of human health, drinking water resources, and aquatic and terrestrial ecosystems. Future property is undetermined, as such residential ESLs are appropriate for the site. Chemical detected at concentrations below ESLs are generally assumed to not pose a significant threat to human health or the environment

FIELD PREPARATION ACTIVITIES

Underground Service Alert (USA) of Northern California was notified a minimum of 48 hours prior to beginning subsurface sampling activities to evaluate the investigation areas for underground utilities. In addition SCS contracted with California Utility Locators of San Ramon, California to conduct a utility survey at the investigation areas on January 9, 2007 as an additional check for underground utilities.

Prior to drilling activities, a drilling permit was obtained from Zone 7 Water Agency, authorizing drilling for the purpose of collecting soil vapor, soil, and groundwater samples as part of this investigation. Permit documentation is included as Appendix B.

TASK 1: GROUNDWATER MONITORING

Groundwater monitoring activities were performed by SCS on January 8 and 9, 2007. The locations of onsite groundwater monitoring wells (*KMW-1* through *KMW-8*) are shown on Figure 2. A description of the sampling procedures and summary of analytical results are provided below:

Materials and Methods

Prior to measuring water levels all monitoring wells were opened and ventilated for a minimum of 0.5 hour. The depth to water was then measured to the nearest 0.01-foot using an electronic water-level meter. Dissolved oxygen (DO) concentrations were then measured using a YSI-55 down-hole DO meter.

Well *KMW-2* contained densely packed roots at the waterline. A stainless steel grappling hook attached to bailer cord was used to grab the roots and pull them out of the well. The hook and cord were decontaminated prior to and after use as described below. This process was continued until several large clumps of roots were removed and access to the well was unobstructed.

Groundwater level information is shown on Table 1. Figure 3 shows the potentiometric surface contours for shallow groundwater beneath the site. As shown in Figure 3, the approximate groundwater flow direction beneath the site on January 8, 2007 was northwesterly to westerly with a gradient of approximately 0.008 feet/foot.

All site monitoring wells were purged and sampled using a peristaltic pump and low flow methodology. Dedicated 21-foot long sections of 0.25-inch inner diameter polyethylene tubing were installed in each well. The tubing sections were used for purging and sampling, and then left in each well as dedicated tubes for future sampling. Each well was initially purged until one system volume was removed from each well. Purging then continued at an approximate rate of 200 milliliters per minute (ml/min) while field parameters were continuously measured and allowed to stabilize. The depth to water was also measured during purging to ensure that well drawdown was less than four inches. Measured field parameters included pH, temperature, electrical conductivity (EC), and turbidity, and notations were made as to the odor and color of the water being purged. Field parameter measurements are summarized in Table 2.

Following purging groundwater samples were collected using the peristaltic pump. Groundwater samples were placed in appropriate pre-cleaned laboratory supplied sample containers. Samples were labeled, logged, and placed into a chilled cooler for later transport to the McCampbell Analytical laboratory (McCampbell) located in Pittsburg, California for analysis. McCampbell is certified by the California Department of Health Services (DHS) Environmental Laboratory Accreditation Program (ELAP) for the specific analyses performed.

A groundwater sample was also collected for analysis from onsite water supply well No. 3S/1E 2P3. The water supply well uses a dedicated submersible pump, which pumps water into a pressure tank before exiting through a spigot. Sampling procedures consisted of allowing 5 gallons to run out of the spigot prior to collecting one set of field parameters followed by the collection of the groundwater sample. The groundwater sample from well No. 3S/1E 2P3 was handled as described above for samples from the monitoring wells.

All non-dedicated groundwater monitoring equipment, (i.e., water level meters, DO meter, measuring cup, etc.) was decontaminated prior to measuring, purging, and sampling and between wells using a biodegradable detergent (Liquinox) and three stage distilled water wash and rinse. All decontamination water and purge water was sealed in one 5-gallon bucket, labeled, and left on-site pending characterization for off-site disposal.

Analytical Results

Groundwater well samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-g), TPH as diesel fuel (TPH-d) with silica gel cleanup, and TPH as stoddard solvent (TPH-ss) using EPA Method 8015C. All groundwater well samples were also analyzed for volatile organic compounds (VOCs) including benzene, ethylbenzene, toluene, and xylenes (BTEX), MTBE, 1,2-dichloroethane, and ethylene dibromide (EDB) using EPA Method 8260B, and for dissolved lead using Method E200.8. Analytical results are summarized below and in Table 3. The analytical report and chain-of-custody documentation are provided in Appendix C.

• **TPH-g** was detected in groundwater samples collected from wells *KMW-6* and *KMW-7* at concentrations of 180 micrograms per liter (ug/L) and 330 ug/L, respectively. These concentrations exceed the 100 ug/L ESL established for TPH-g in groundwater that is a current or potential source of drinking water. TPH-g was not detected in groundwater samples collected from the remaining site wells.

- **TPH-d** was detected in groundwater samples collected from wells *KMW-6* and *KMW-7* at concentrations of 53 ug/L and 84 ug/L, respectively. These concentrations are below the 100 ug/L ESL established for TPH-d in groundwater that is a current or potential source of drinking water. TPH-d was not detected in groundwater samples collected from the remaining site wells.
- **TPH-ss** was detected in groundwater samples collected from wells *KMW-6* and *KMW-7* at concentrations of 70 ug/L and 110 ug/L, respectively. The concentration detected in well KMW-7 exceeds the 100 ug/L ESL established for TPH-ss in groundwater that is a current or potential source of drinking water. TPH-ss was not detected in groundwater samples collected from the remaining site wells.
- **Benzene** was detected in the groundwater sample collected from well *KMW-6* at a concentration of 3.1 ug/L. This concentration exceeds the 1 ug/L ESL established for benzene in groundwater that is a current or potential source of drinking water. Benzene was not detected in groundwater samples collected from the remaining site wells.
- **Ethylbenzene** was detected in groundwater samples collected from wells *KMW-6* and KMW-7 at concentrations of 1.9 ug/L and 0.57 ug/L, respectively. These concentrations are below the 30 ug/L ESL established for ethylbenzene in groundwater that is a current or potential source of drinking water. Ethylbenzene was not detected in groundwater samples collected from the remaining site wells.
- **Xylenes** were detected in groundwater samples collected from wells *KMW-6* and *KMW-7* at concentrations of 0.65 ug/L, and 3.2 ug/L, respectively. These concentrations are below the 20 ug/L ESL established for xylenes in groundwater that is a current or potential source of drinking water. Xylenes were not detected in groundwater samples collected from the remaining site wells.
- **Naphthalene** was detected in groundwater samples collected from wells *KMW-6* and *KMW-7* at concentrations of 3.2 ug/L and 0.72 ug/L, respectively. These concentrations are below the 17 ug/L ESL established for naphthalene in groundwater that is a current or potential source of drinking water. Naphthalene was not detected in groundwater samples collected from the remaining site wells.
- **1,2-dichloroethane (1,2-DCA)** was detected in the groundwater sample collected from well *KMW-6* at a concentration of 0.72 ug/L. This concentration exceed the 0.5 ug/L ESL established for 1,2-DCA in groundwater that is a current or potential source of drinking water. 1,2-DCA was not detected in groundwater samples collected from the remaining site wells.
- **1,2,4-Trimethylbenzene** was detected in the groundwater sample collected from well *KMW-7* at a concentration of 1.3 ug/L. ESLs have not been established for 1,2,4-trimethylenzene. 1,2,4-Trimethylbenzene was not detected in groundwater samples collected from the remaining site wells.

- In addition, low concentrations (<2 ug/L each) of the VOCs **n-butyl benzene**, **isopropylbenzene**, and **n-propyl benzene** were detected in the groundwater sample collected from well *KMW-6*. ESLs have not been established for these VOCs. These VOCs were not detected in groundwater samples collected from the remaining site wells.
- **MTBE** and the remaining EPA Method 8260B VOCs were not detected in groundwater samples collected from any of the site wells.
- **Dissolved lead** was not detected in groundwater samples collected from any of the site wells.

In summary, constituents of concern were only detected in groundwater samples collected from monitoring wells *KMW-6* and *KMW-7*. This is consistent with past monitoring conducted by SCS. TPH-g, TPH-ss, benzene, and 1,2-DCA were the only compounds detected in the groundwater samples at concentrations exceeding ESLs. Based on this data and previous data collected by SCS, the extent of impacted groundwater at the Property appears to be limited to the area near wells *KMW-6* and *KMW-7*. Constituents of concern were not detected by SCS in perimeter monitoring wells *KMW-4*, *KMW-5*, and *KMW-8*.

TASK 2: SOIL VAPOR SURVEY

Transglobal Environmental Geochemistry (TEG) of Rancho Cordova, California, conducted soil vapor sampling and analysis activities at the Property on January 10 and 11, 2007 under the direction of SCS personnel. The survey consisted of the collection of 22 soil vapor samples (*SV-1* through *SV-22*) in the following three areas: 1) Former above-ground heating oil tank and vicinity including areas above the known plume of impacted groundwater, 2) Former paint and thinner storage areas in and around Barn No. 1, and 3) Vicinity of the former above-ground fuel storage tanks near Barn No. 4. Soil vapor sample locations are shown on Figure 4. All soil vapor sampling and analysis was done using Department of Toxic Substance Control (DTSC) protocols.

Materials and Methods

Prior to sampling where concrete existed, an approximately 2-inch diameter hole was cored through the concrete using an electric rotary hammer. Soil vapor samples were collected at depths of approximately 5 feet below ground surface (bgs). A state-certified, onsite mobile laboratory provided by TEG was used to analyze the soil vapor samples immediately in the field.

Soil vapor sampling equipment consisted of hollow steel drive rods, which were pushed directly into subsurface soils using an electric rotary hammer or TEG's Strataprobe truck mounted hydraulically powered direct push sampling rig. An expendable drive tip is placed on the drive rod before it is pushed into the ground. Soil vapor samples were recovered by slightly retracting the probe and exposing sampling ports on the drive point. Bentonite was then added to the gap between the drive rod and the cored hole and hydrated to prevent surface air entry into the probe. After hydration TEG let the bentonite set for twenty minutes prior to sampling. Vapor samples were

extracted with a syringe via a Nylaflow tube attached to the drive tip. Prior to sampling, the tubing was purged to remove ambient air from the sampling system and to ensure that the collected soil vapor sample represented conditions in the soil. Clean Nylaflow tubing was utilized for each sample.

During sampling a can containing compressed 1,1-diflouroethane (Dust Off) was expelled over the sampling system. Analysis for 1,1-diflouroethane was conducted as a check for a compromise in the sampling system. 1,1-diflouroethane was not detected in any of the samples. Duplicate samples, calibration standards, and sample blanks were used to provide Quality Assurance/Quality Control (QA/QC). Following analysis all drive rods were removed and each borehole was sealed with Portland cement grout.

Analytical Results

Soil vapor samples were analyzed on-site using TEG's state-certified mobile laboratory and were analyzed for VOCs using EPA Method 8260B including analysis for benzene using a reporting limit (RL) of 0.08 μ g/L. Soil vapor data is summarized on Table 4 and TEG's analytical report is supplied in Appendix D.

- **Toluene** was detected in 5 of the 22 soil vapor samples at concentrations ranging from 0.2 to 0.52 ug/L of vapor. These concentration are below the 63 ug/L residential ESL established for toluene in soil vapor.
- **Xylenes** were detected in 9 of the 22 soil vapor samples at concentrations ranging from 0.21 ug/L of vapor to 0.58 ug/L of vapor. These concentration are below the 150 ug/L residential ESL established for xylenes in soil vapor.
- **Remaining EPA Method 8260B VOCs**, including benzene, were not detected in soil vapor samples.

In summary, VOCs were not detected in soil vapor samples at concentrations exceeding residential ESLs.

TASK 3: SOIL BORINGS/TEMPORARY WELLS

TEG conducted soil sampling activities on January 11, 2007 under the direction of SCS personnel. Three borings (*SCS-1* through *SCS-3*) were drilled using TEG's *Strataprobe* direct-push sampling rig. Soil samples were collected approximately 5 foot depth intervals to the total depth of each boring. Groundwater samples were also collected from each boring. Sampling locations are shown on Figure 4. Boring logs are provided in Appendix E.

Materials and Methods - Soil

Continuous soil cores were obtained by hydraulically hammering 2.25-inch diameter, four-foot long hollow steel drive rods containing acetate sample sleeves to the depth of first encountered groundwater (16 to 28 feet bgs). Upon retrieval, the acetate sleeve containing the soil core was removed from the hollow drive rod and an approximately one foot long portion of the sleeve was cut from the desired sample depth. Immediately following soil sample collection, both ends of the cut acetate sleeve were covered with Teflon sheets, capped with plastic end caps, and taped with polyethylene tape. A label noting the date of collection, sample number, depth, and project number was affixed to each collected sample.

The remainder of the acetate sleeve was used for soil logging purposes using the Unified Soil Classification System and for VOC head space analysis. For the head space analysis, Ziploc plastic bags were partially filled with soil from each sample location. The sealed plastic bags were allowed to sit approximately 30 minutes to allow for volatilization before field measurements were collected using a MiniRAE 2000 Photo-Ionization Detector (PID) calibrated to 100 parts per million Isobutylene. Field measurements are recorded on the boring logs.

Soil samples were placed in a chilled cooler for later transport to McCampbell. Soil samples were tracked from the point of collection through the laboratory using proper chain-of-custody protocol.

Materials and Methods – Groundwater

After soil borings reached their desired depth as described above a temporary well screen and casing was installed with in each boring. Well casings consisted of a 0.5 inch diameter by four foot long section of Schedule 40 PVC screen with 0.020 inch factory cut slots attached to blank PVC casing extending to ground surface. A slip end cap was attached to the bottom of each screen. After casing placement each well was left for 10 to 15 minutes to allow groundwater to infiltrate the casing for sampling. Samples were collected using a "shaker tube" consisting of a stainless steel tip containing a ball check valve attached to the end of dedicated 3/8 polyethylene tubing. Water flow was achieved by inserting the tube though the well casing to the bottom and shaking the tube up and down in a continuous motion. Before collecting the first groundwater sample and between samples the stainless steel tip was decontaminated using standard decontamination procedures described above.

Groundwater samples were collected in 40 ml glass bottles (VOAs), 500 milliliter plastic bottles, and 1 liter amber bottles supplied by McCampbell. New Nitrile gloves were worn for each sample.

All non-dedicated sampling equipment, (i.e., drive rods, etc.) were decontaminated initially and between each boring using a biodegradable detergent (Liquinox) and standard three stage distilled water wash and rinse.

Analytical Results – Soil

Selected samples were analyzed for TPH-g, TPH-d, and TPH-ss using EPA Method 8015C and for VOCs using EPA Method 8260B. Analytical results for the soil samples are summarized on Table 5. The laboratory report and chain-of-custody documentation for these samples is provided in Appendix F.

- TPH-g, TPH-d, and TPH-ss were not detected in any of the analyzed soil samples.
- **EPA Method 8260B VOCs** including **benzene** were not detected in any of the analyzed soil samples.

In summary, VOCs were not detected in soil samples collected from borings/temporary wells *SCS-1*, *SCS-2*, and *SCS-3* at concentrations exceeding residential ESLs.

Analytical Results - Groundwater

Groundwater samples were analyzed for TPH-g, TPH-d, and TPH-ss using EPA Method 8015C, for VOCs using EPA Method 8260B, and for dissolved lead using Method E200.8. Analytical results for boring/temporary well groundwater samples are summarized in Table 6. The laboratory report and chain-of-custody documentation for these samples is provided in Appendix F.

- **TPH-g**, **TPH-d**, and **TPH-ss** were not detected in groundwater samples collected from the borings/temporary wells.
- **Bromomethane** was the only EPA Method 8260B VOC detected in groundwater samples collected from the borings/temporary wells. Bromomethane was detected at a concentration of 1.1 ug/L in the groundwater samples collected from boring/temporary well *SCS-1*. This concentration is below the 9.8 ug/L ESL established for Bromomethane in groundwater that is a current or potential source of drinking water.
- **Dissolved Lead** was not detected in groundwater samples collected from the temporary wells.

In summary, VOCs and total lead were not detected in groundwater samples collected from borings/temporary wells *SCS-1*, *SCS-2*, or *SCS-3* at concentrations exceeding ESLs established for groundwater that is a current or potential source of drinking water.

TASK 4: SURFACE SOIL INVESTIGATION (FORMER INCINERATOR AREA)

Surface soil samples *SS-1* through *SS-14* were collected in the vicinity of the former onsite incinerator by SCS personnel on January 9 and 10, 2007. The purpose of these samples was to more fully evaluate surface soil conditions in the vicinity and downwind of the former onsite incinerator. In October 2003 the incinerator was dismantled and nearby impacted soil was excavated and transported off-site to the Vasco Road Landfill in Livermore, California for disposal.

Surface soil sample locations included the area immediately outside the former incinerator excavation area and the area to the east directly across the creek from the incinerator (downwind direction). Sample locations are shown on Figure 5 and the analytical results are summarized on Table 7. The laboratory analytical report and chain-of-custody documentation are provided in Appendix G.

Materials and Methods

At each sample location the top one to two inches of soil was first scraped away using a clean trowel. A pre-cleaned, laboratory supplied sample jar was then used to scoop and collect each sample. The soils were sandy and loose allowing for easy sample collection. Between samples the hand trowel was decontaminated using a biodegradable detergent (Liquinox) and three stage distilled water wash and rinse. All decontamination water was sealed in a 5-gallon bucket, labeled, and left on-site pending characterization. Following collection each sample was labeled, logged, and placed into a chilled cooler for later transport to McCampbell. All samples were handled using standard chain-of-custody procedures.

Analytical Results

All shallow soil samples were analyzed for the metals arsenic, cadmium, chromium, lead, mercury, nickel, and zinc using EPA Method 6020A.

- Arsenic was detected in all 14 surface soil samples. In 11 of the 14 samples concentrations ranged from 2.5 milligrams per kilogram (mg/kg) to 4.6 mg/kg. Arsenic was detected in samples *SS-11*, *SS-13*, and *SS-14* at concentrations of 9.6 mg/kg, 5.7 mg/kg, and 10 mg/kg, Respectively. These concentrations exceed the 5.5 mg/kg residential ESL established for arsenic in shallow soils. However, the detected arsenic concentrations are within the background range reported for northern California soils (City of Oakland, July 2000).
- **Cadmium** was detected in surface soil samples *SS-11*, *SS-12*, and *SS-14* at concentrations of 0.30 mg/kg, 0.38 mg/kg, and 0.73 mg/kg respectively. These concentrations are below the 1.7 mg/kg residential ESL established for cadmium in shallow soils.
- **Chromium** was detected in all 14 surface soil samples at concentrations ranging from 25 mg/kg to 79 mg/kg. These concentrations are below the 750 mg/kg residential ESL established for trivalent chromium in shallow soils.
- Lead was detected in all 14 surface soil samples. In 13 of the 14 samples concentrations ranged from 7.3 mg/kg to 65 mg/kg. Lead was detected in sample *SS-14* at a concentration of 760 mg/kg, which exceeds the 150 mg/kg residential ESL established for lead in shallow soils.
- **Mercury** was detected in 8 of the 14 surface soil samples at concentrations ranging from 0.053 mg/kg to 0.082 mg/kg. These concentrations are below the 3.7 mg/kg residential ESL established for mercury in shallow soils.

- **Nickel** was detected in all 14 surface soil samples at concentrations ranging from 28 mg/kg to 86 mg/kg. These concentrations are below the 150 mg/kg residential ESL established for nickel in shallow soils.
- Zinc was detected in all 14 surface soil samples at concentrations ranging from 37 mg/kg to 510 mg/kg. These concentrations are below the 600 mg/kg residential ESL established for zinc in shallow soils.

In summary, arsenic was detected in surface soil samples *SS-11*, *SS-13*, and *SS-14* at concentrations slightly exceeding residential ESLs. However, the detected arsenic concentrations are within the background range reported for northern California soils (City of Oakland, July 2000). Lead was detected in surface soil sample *SS-14* at a concentration of 760 mg/kg, which exceeds the 150 mg/kg residential ESL established for lead. Metals were not detected in the remaining surface soil samples at concentrations exceeding residential ESLs.

DISCUSSION OF GROUNDWATER MONITORING CONDUCTED BY H₂OGEOL

As previously discussed, groundwater monitoring was conducted at the Property in January 2006 by H₂OGEOL of Livermore, California and in January/February 2006 by Consolidated Engineering of San Ramon, California. Results of the Consolidated Engineering monitoring event were previously transmitted to ACEH as part of the *Revised Response to Comment/Workplan* (SCS, October 19, 2006). Results of the H₂OGEOL monitoring event, which had not previously been submitted to ACEH, are provided in Appendix A. Results for both the H₂OGEOL and Consolidated Engineering monitoring events are included on Table 3.

Results of the Consolidated Engineering monitoring event are generally consistent with current and historic groundwater data from the Property. However, results of the H₂OGEOL monitoring event do not correlate well with current or historic groundwater data from the Property. These inconsistencies include the detection of constituents of concern in wells *KMW-2*, *KMW-5*, and *KMW-8* during the H₂OGEOL monitoring event – constituents of concern had not previously been detected in these wells and were not detected in these wells during the recent monitoring event performed by SCS. These inconsistencies and possible explanations are discussed below.

- Methyl tert Butyl Ether (MTBE) was detected in the groundwater sample collected from well *KMW-2* by H₂OGEOL at a concentration of 1.6 ug/L. However, MTBE has never been detected onsite in the past and the history of the Property suggests that possible sources of hydrocarbons in groundwater pre-date the widespread use of MTBE. In addition, the H₂OGEOL report does not describe decontamination procedures as part of their sampling protocol.
- H₂OGEOL purged the site wells using the standard three well volume method. SCS uses low-flow sampling methods for this project, as approved by ACEH.

Accordingly, the MTBE detection in well KMW-2 may be due to cross-contamination of sampling equipment. The possible cross-contamination and/or the different purging methods used may explain the inconsistencies between the H_2OGEOL data and current and historic site data.

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This report describes Additional Environmental Investigation activities conducted at the Freisman Ranch Property in Livermore, California from January 8 through January 11, 2007. The work was conducted by SCS and included 1) Monitoring of all existing onsite groundwater monitoring wells and the onsite water supply well, 2) Soil vapor survey, 4) Drilling and sampling of three soil borings/temporary wells, and 5) Collection of shallow soil samples in the vicinity and downwind of the former onsite incinerator. The following summarizes the results and presents our recommendations for future environmental work at the Property:

TASK 1: GROUNDWATER MONITORING

Monitoring of all site wells (*KMW-1* through *KMW-8* and the water supply well) was performed by SCS on January 8 and 9, 2007. Constituents of concern were only detected in groundwater samples collected from monitoring wells *KMW-6* and *KMW-7*. This is consistent with past monitoring conducted by SCS. TPH-g, TPH-ss, benzene, and 1,2-DCA were the only compounds detected in the groundwater samples at concentrations exceeding ESLs. This data and previous data collected by SCS, suggests that the hydrocarbon plume has a relatively limited extent (vicinity of wells *KMW-6* and *KMW-7*) with generally decreasing concentrations.

However, as described above, there are inconsistencies between the January 2006 H₂OGEOL data and current and historic site data. These inconsistencies may be due to possible cross-contamination and/or the different purging methods used. In an effort to more fully evaluate these inconsistencies SCS proposes to conduct another round of well sampling (2nd quarter 2007). During this round all site wells will be purged and sampled using low flow protocols immediately followed by purging/sampling of wells *KMW-2*, *KMW-5*, and *KMW-6* though *KMW-8* using standard three purge volume protocols. All samples will be analyzed as described above for Task 1. The two sets of data will be compared with historic site data to more fully evaluate these inconsistencies.

As shown on Figure 3, the approximate groundwater flow direction beneath the site on January 8, 2007 was northwesterly to westerly with a gradient of approximately 0.008 feet/foot. This is generally consistent with past monitoring at the Property.

TASK 2: SOIL VAPOR SURVEY

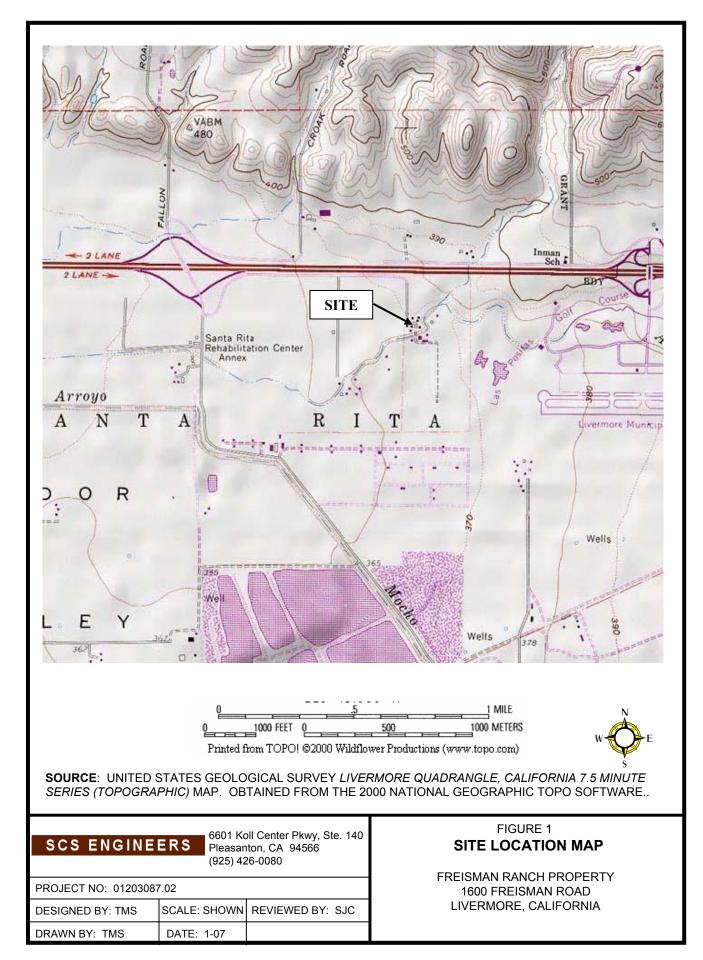
The soil vapor survey was conducted by TEG on January 10 and 11, 2007 under the direction SCS. The survey consisted of the collection of 22 soil vapor samples (*SV-1* through *SV-22*) from depths of approximately 5 feet bgs at various locations across the Property. VOCs were not detected in soil vapor samples at concentrations exceeding residential ESLs. Based on this data, the potential for volatilization of VOCs from impacted groundwater to indoor air at the Property at concentrations of concern appears unlikely.

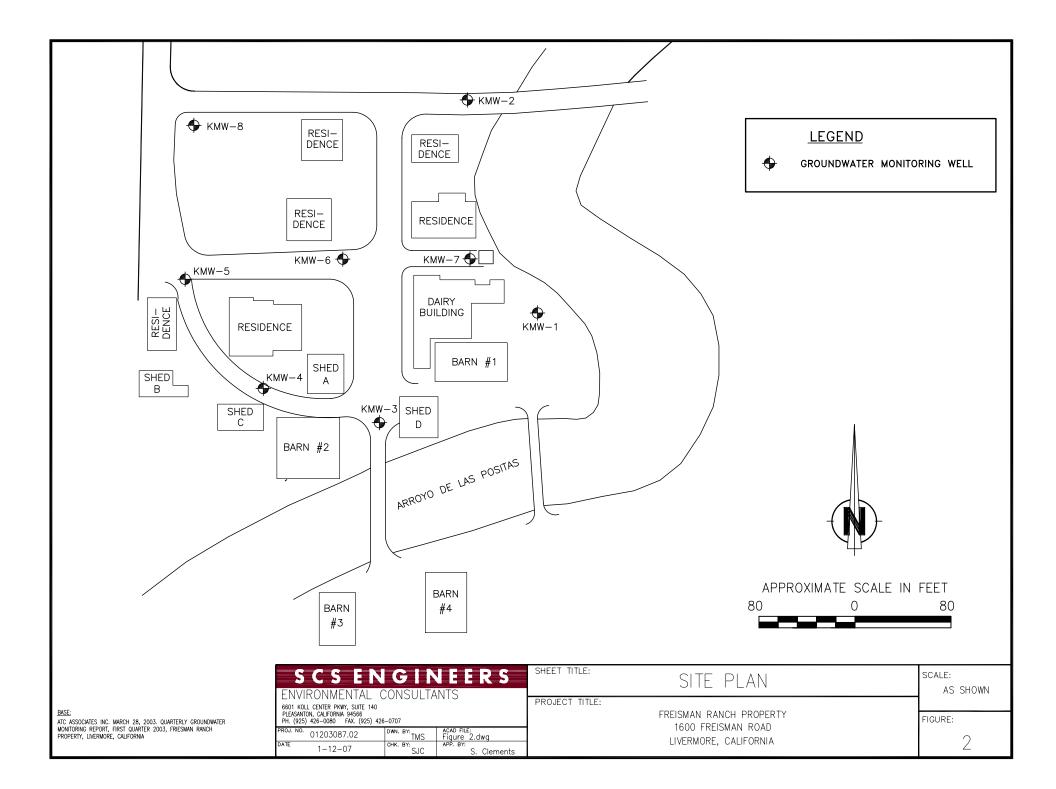
TASK 3: SOIL BORINGS/TEMPORARY BORINGS

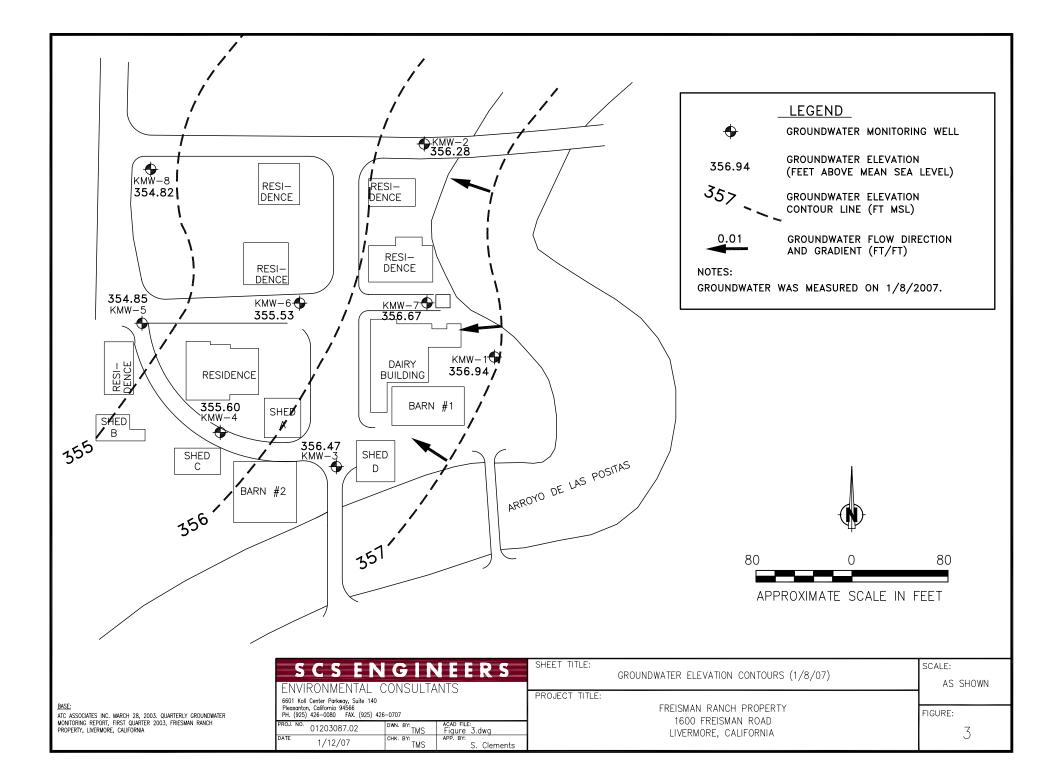
Soil borings/temporary wells *SCS-1* through *SCS-3* were drilled and sampled on January 11, 2007 under the direction of SCS personnel. VOCs were not detected in soil samples collected from the borings/temporary wells at concentrations exceeding residential ESLs. VOCs and total lead were not detected in groundwater samples collected from borings/temporary wells at concentrations exceeding ESLs established for groundwater that is a current or potential source of drinking water.

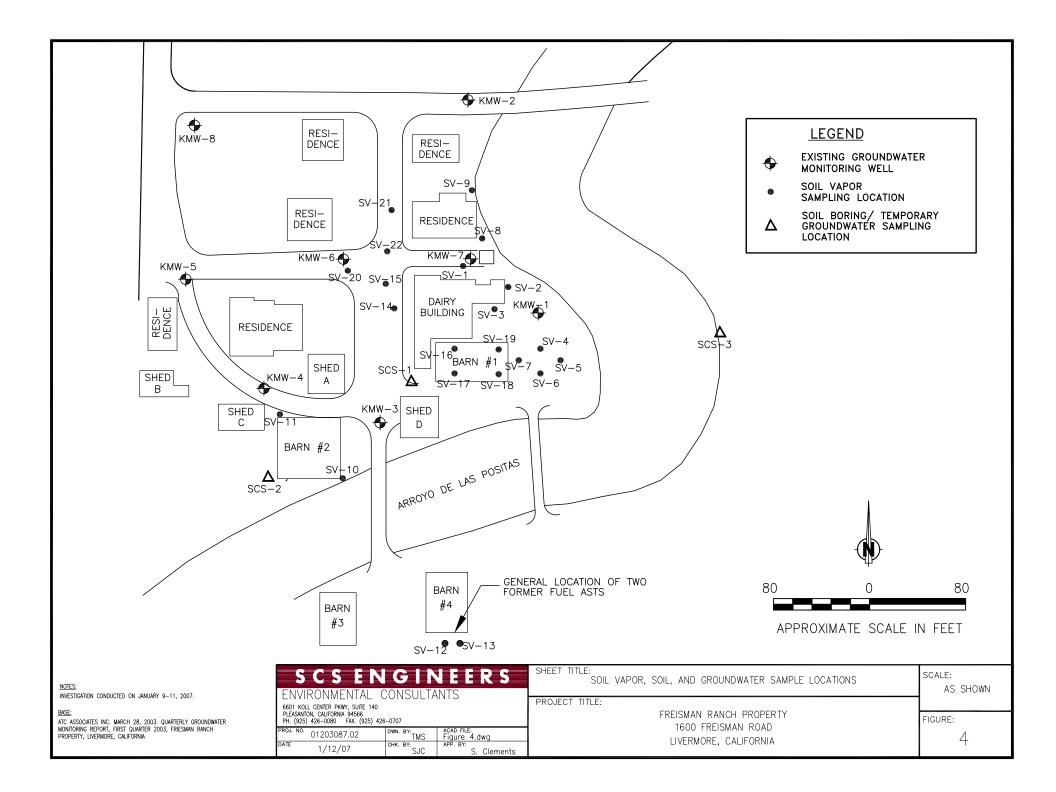
TASK 4: SURFACE SOIL (FORMER INCINERATOR AREA)

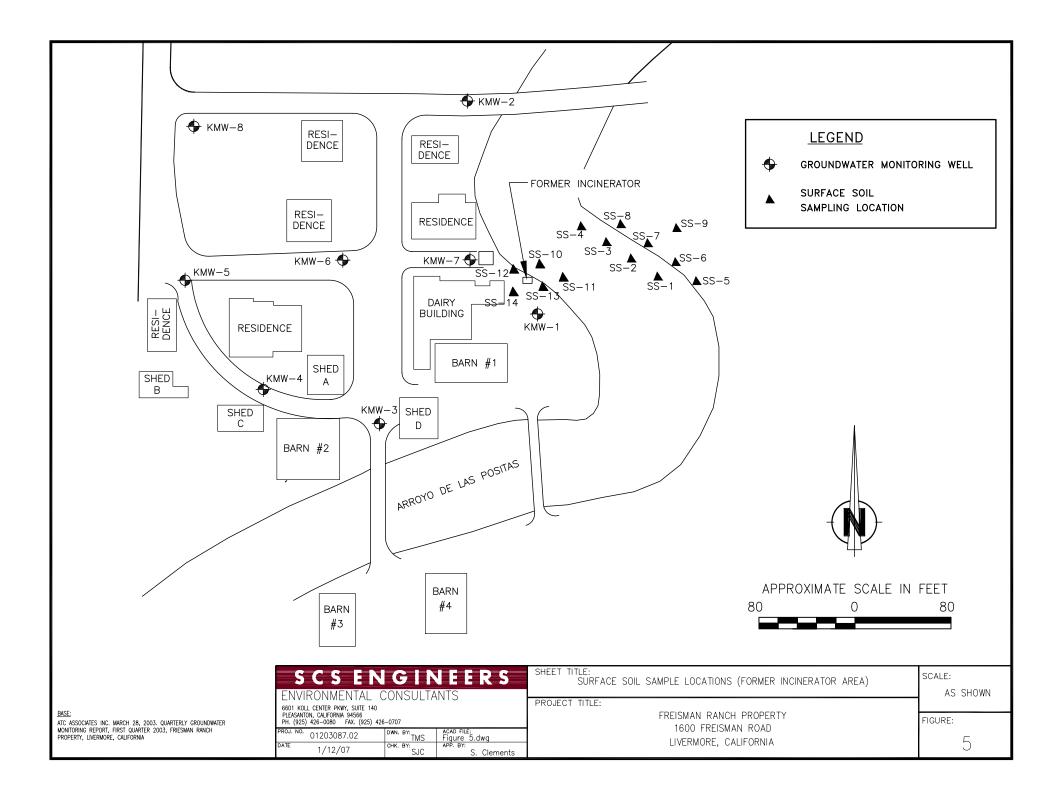
Surface soil samples *SS-1* through *SS-14* were collected in the vicinity of the former onsite incinerator by SCS personnel on January 9 and 10, 2007. The purpose of these samples was to more fully evaluate surface soil conditions in the vicinity and downwind of the former onsite incinerator.


Arsenic was detected in surface soil samples *SS-11*, *SS-13*, and *SS-14* at concentrations slightly exceeding residential ESLs. However, the detected arsenic concentrations are within the background range reported for northern California soils (City of Oakland, July 2000). Lead was detected in surface soil sample *SS-14* at a concentration of 760 mg/kg, which exceeds the 150 mg/kg residential ESL established for lead.


SCS recommends additional excavation and proper off-site disposal of the lead-impacted soil in the vicinity of soil sample SS-14. During the additional excavation confirmatory soil samples should be collected and analyzed to confirm removal of soil impacted with elevated concentrations of lead.


REFERENCES


- ATC Associates, Inc., April 22, 2003(a). Quarterly Groundwater Monitoring Report, First Quarter 2003, Freisman Ranch Property, Livermore, California.
- ATC Associates, Inc., April 22, 2003(b). Workplan for Soil Vapor Survey, Freisman Ranch Property, Livermore, California.
- Bruya, James E., April 8, 1993. *Petroleum Hydrocarbons: What Are They? How Much Is Present? Where Do They Go?* Workshop Material Prepared For: Hazmacon '93, San Jose, CA.
- California Regional Water Quality Control Board, San Francisco Bay Region (SFBRWQCB), February 2005. Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, Volume 1: Summary Tier 1 Lookup Tables.
- Consolidated Engineering, March 2, 2005. Limited Sampling Report.
- Consolidated Engineering, March 2, 2006. Sampling Results for Limited Sampling Assessment letter.
- H₂OGEOL, February 6, 2006. January 2006 Groundwater Monitoring Report and Summary of Possible Remedial Activities.
- Kleinfelder, Inc., July 8, 1997(a). Phase I Environmental Site Assessment and Limited Soil and Groundwater Sampling Report, Freisman Road Property, Livermore California.
- Kleinfelder, Inc., October 17, 1997(b). Remedial Investigation, RBCA Tier 2 Evaluation and Remedial Action Plan.
- Kleinfelder, Inc., February 17, 1999. Well Installation and Quarterly Groundwater Monitoring Report, Freisman Ranch Property, Livermore, California.
- Oakland Public Works Agency, January 1, 2000. Oakland Urban Land Redevelopment Program: Guidance Document. (City of Oakland, Survey of Background Metal Concentrations)
- SCS Engineers, December 17, 2003. Quarterly Groundwater Monitoring Report for the Fourth Quarter 2003.
- SCS Engineers, May 24, 2004. General Site Cleanup and Above-Ground Storage Tank Removal report.
- SCS Engineers, October 19, 2006. Revised Response to Comments/Workplan, Freisman Ranch Property, 1600 Freisman Road, Livermore, California.


FIGURES

TABLES

TABLE 1SUMMARY OF GROUNDWATER ELEVATION DATAFREISMAN RANCH PROPERTYLIVERMORE, CALIFORNIA

WELL NUMBER	SAMPLING DATE	WATER LEVEL FROM T.O.C.	T.O.C. ELEVATION USGS Datum	GROUNDWATER ELEVATIONS USGS Datum
		(feet)	(Ft. above MSL)	(Ft. above MSL)
	9/8/1997	12.82		357.30
	12/28/1998	12.72		357.40
	1/12/1999	12.97		357.15
	3/25/1999	11.99		358.13
	6/21/1999	NM		NC
	9/16/1999	NM		NC
KMW-1	10/16/2002	14.27	370.12	355.85
	1/17/2003	11.67	570.12	358.45
	4/15/2003	11.08		359.04
	7/21/2003	13.23		356.89
	10/30/2003	13.85		356.27
	1/12/2006	11.47		358.65
	1/21/2006	11.67		358.45
	1/9/2007	13.18		356.94
	9/8/1997	14.28		356.44
	12/28/1998	14.08		356.64
	1/12/1999	14.32		356.40
	3/25/1999	13.19		357.53
	6/21/1999	NM		NC
	9/16/1999	NM		NC
KMW-2	10/16/2002	*	370.72	*
111111-2	1/17/2003	12.77	570.72	357.95
	4/15/2003	12.73		357.99
	7/21/2003	13.64		357.08
	10/30/2003	Dry		Dry
	1/12/2006	12.72		358.00
	1/21/2006	12.80		357.92
	1/9/2007	14.44		356.28
	9/8/1997	12.34		356.76
	12/28/1998	12.39		356.71
	1/12/1999	15.13		353.97
	3/25/1999	11.59		357.51
	6/21/1999	NM		NC
	9/16/1999	NM		NC
KMW-3	10/16/2002	13.69	369.10	355.41
	1/17/2003	10.85		345.20
	4/15/2003	10.16		358.94
	7/21/2003	12.59		356.51
	10/30/2003	13.19		355.91
	1/12/2006	10.44		358.66
	1/9/2007	12.63		356.47

TABLE 1SUMMARY OF GROUNDWATER ELEVATION DATAFREISMAN RANCH PROPERTYLIVERMORE, CALIFORNIA

WELL NUMBER	SAMPLING DATE	WATER LEVEL FROM T.O.C.	T.O.C. ELEVATION USGS Datum	GROUNDWATER ELEVATIONS USGS Datum
		(feet)	(Ft. above MSL)	(Ft. above MSL)
	9/8/1997	13.76		356.04
	12/28/1998	13.76		356.04
	1/12/1999	14.40		355.40
	3/25/1999	12.89		356.91
	6/21/1999	NM		NC
	9/16/1999	NM		NC
KMW-4	10/16/2002	15.92	369.80	353.88
	1/17/2003	12.17		357.63
	4/15/2003	11.90		357.90
	7/21/2003	14.55		355.25
	10/30/2003	15.40		354.40
	1/12/2006	11.80		358.00
	1/9/2007	14.20		355.60
	9/8/1997	14.24		355.28
	12/28/1998	14.17		355.35
	1/12/1999	15.32		354.20
	3/25/1999	13.27		356.25
	6/21/1999	NM		NC
	9/16/1999	NM		NC
KMW-5	10/16/2002	16.45	369.52	353.07
	1/17/2003	12.60		356.92
	4/15/2003	12.76		356.76
	7/21/2003	15.08		354.44
	10/30/2003	16.02		353.50
	1/12/2006	12.30		357.22
	1/9/2007	14.67		354.85
	9/8/1997	14.28		355.80
	12/28/1998	14.16		355.92
	1/12/1999	14.47		355.61
	3/25/1999	13.22		356.86
	6/21/1999	14.56		355.52
	9/16/1999	14.29		355.79
KMW-6	10/16/2002	16.27	370.08	353.81
K.WI VV-0	1/17/2003	12.54	570.08	357.54
	4/15/2003	12.56		357.52
	7/21/2003	14.82		355.26
	10/30/2003	15.85		354.23
-	1/12/2006	12.41		357.67
	1/21/2006	12.90		357.18
	1/9/2007	14.55		355.53

TABLE 1SUMMARY OF GROUNDWATER ELEVATION DATAFREISMAN RANCH PROPERTYLIVERMORE, CALIFORNIA

WELL NUMBER	SAMPLING DATE	WATER LEVEL FROM T.O.C.	T.O.C. ELEVATION USGS Datum	GROUNDWATER ELEVATIONS USGS Datum		
		(feet)	(Ft. above MSL)	(Ft. above MSL)		
	12/28/1998	12.91		357.13		
	1/12/1999	13.15		356.89		
	3/25/1999	12.12		357.92		
	6/21/1999	12.86		357.18		
	9/16/1999	13.00		357.04		
	10/16/2002	14.63		355.41		
KMW-7	1/17/2003	11.77	370.04	358.27		
	4/15/2003	11.31		358.73		
	7/21/2003	13.59		356.45		
	10/30/2003	14.19		355.85		
	1/12/2006	11.58		358.46		
	1/21/2006	11.75		358.29		
	1/9/2007	13.37		356.67		
	12/28/1998	13.37		355.24		
	1/12/1999	13.70		354.91		
	3/25/1999	12.48		356.13		
	6/21/1999	13.30		355.31		
	9/16/1999	13.57		355.04		
	10/16/2002	15.85		352.76		
KMW-8	1/17/2003	11.87	368.61	356.74		
	4/15/2003	12.25		356.36		
	7/21/2003	14.31		354.30		
	10/30/2003	15.23		353.38		
	1/12/2006	11.55		357.06		
	1/21/2006	11.85		356.76		
	1/9/2007	13.79		354.82		

Notes:

MSL = Mean Sea Level

NC = Not Calculable

T.O.C. = Top of casing. All measurements in feet relative to top of casing.

USGS = United States Geological Survey

All wells have 4" ID casing

Wells KMW-7 and KMW-8 installed on December 23, 1998

* Well obstructed, no water level measurement taken

TABLE 2SUMMARY OF GROUNDWATER FIELD PARAMETERSSAMPLES COLLECTED JANUARY 9, 2007FREISMAN RANCH PROPERTYLIVERMORE, CALIFORNIA

	Well												
Analyte	KMW-1	KMW-2	KMW-3	KMW-4	KMW-5	KMW-6	KMW-7	KMW-8	3S/1E2P3				
		Field Measurements											
pН	7.19	7.34	7.36	7.36	7.33	7.04	7.15	6.93	7.46				
EC (mS/cm)	1.6	1.5	1.6	1.6	1.6	2.0	1.6	1.8	0.9				
Temperature (°C)	16.7	16	16.4	17.8	17.9	18.6	16	15	17.5				
Turbidity (NTUs)	29	32	20	11	20	48	37	120	4				
DO (mg/L)	0.4	0.3	0.4	0.5	1.3	0.3	0.5	0.6	NM				

Notes:

EC = Electrical Conductivity

mS/cm = millisiemens per centimeter

DO = Dissolved Oxygen (measured before purging wells (1/8/07) using down hole sensor).

NTU = Nephelometric Turbidity Units

NM = Not Measured

mg/L = milligrams per liter

TABLE 3 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS FREISMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

	SAMPLE	TPH-D	TPH-G	TPH-SS	Benzene	Toluene	Ethyl	Total	MTBE	n-butyl	Isopropyl	1,2-	Naphthalene	n-Propyl	1,2,4-	LEAD
WELL	DATE	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Benzene (µg/L)	Xylenes (µg/L)	(µg/L)	Benzene (µg/L)	Benzene (µg/L)	DCA (µg/L)	Naphthalene (µg/L)	Benzene (µg/L)	Trimethyl Benzene (µg/L)	(µg/L)
	9/8/1997	<50	<50	NA	< 0.5	< 0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	12/28/1998	<50	<50	NA	< 0.5	< 0.5	< 0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	7.8
	12/28/1998 dup	<50	<50	NA	< 0.5	< 0.5	< 0.5	<0.5	< 5.0	NA	NA	NA	NA	NA	NA	5.9
	3/25/1999	<50	<50	NA	< 0.5	<0.5	< 0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	6/21/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	9/16/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
KMW-1	10/16/2002	<50	<50	NA	< 0.5	< 0.5	< 0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
KIVI W-1	1/17/2003	<50	<50	NA	< 0.5	<0.5	< 0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	4/15/2003	<50	<50	NA	<0.5	<0.5	< 0.5	< 0.5	< 5.0	NA	NA	NA	NA	NA	NA	NA
	7/21/2003	<50	<50	NA	< 0.5	<0.5	< 0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	10/30/2003	<50	<50	NA	<0.5	<0.5	< 0.5	<0.5	< 5.0	NA	NA	NA	NA	NA	NA	NA
	1/12/2006 h2o	<50	<50	NA	< 0.5	<0.5	< 0.5	<1.0	< 0.5	NA	NA	NA	NA	NA	NA	NA
	1/21/2006 cs	<50	<50	NA	<0.5	<0.5	< 0.5	<0.5	< 5.0	NA	NA	NA	NA	NA	NA	0.99
	1/9/2007	<50	<50	<50	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
	9/8/1997	<50	<50	NA	< 0.5	<0.5	< 0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	12/28/1998	<50	<50	NA	<0.5	<0.5	< 0.5	<0.5	< 5.0	NA	NA	NA	NA	NA	NA	<5.0
	3/25/1999	<50	<50	NA	< 0.5	<0.5	< 0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	6/21/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	9/16/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	10/16/2002	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
KMW-2	1/17/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	4/15/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	7/21/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	10/30/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	1/12/2006 h2o	55	65	NA	<0.5	1.2	< 0.5	<1.0	1.6	NA	NA	NA	NA	NA	NA	NA
	1/21/2006 cs	<50	<50	NA	<0.5	<0.5	< 0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	5
	1/9/2007	<50	<50	<50	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5
	9/8/1997	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	12/28/1998	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	<5.0
	3/25/1999	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	6/21/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	9/16/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
KMW-3	10/16/2002	<50	<50	NA	<0.5	< 0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
111111	1/17/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	4/15/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	7/21/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	10/30/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	1/12/2006 h2o	<50	<50	NA	<0.5	<0.5	<0.5	<1.0	< 0.5	NA	NA	NA	NA	NA	NA	NA
	1/9/2007	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5

TABLE 3 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS FREISMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

WELL	SAMPLE DATE	TPH-D (µg/L)	TPH-G (μg/L)	TPH-SS (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl Benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	n-butyl Benzene (µg/L)	Isopropyl Benzene (µg/L)	1,2- DCA (μg/L)	Naphthalene (µg/L)	n-Propyl Benzene (µg/L)	1,2,4- Trimethyl Benzene (μg/L)	LEAD (µg/L)
	9/8/1997	<50	<50	NA	<0.5	< 0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	12/28/1998	<50	<50	NA	<0.5	< 0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	7.5
	3/25/1999	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	6/21/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	9/16/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
KMW-4	10/16/2002	<50	<50	NA	<0.5	< 0.5	< 0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
1111111	1/17/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	4/15/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	7/21/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	10/30/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	1/12/2006 h2o	<50	<50	NA	<0.5	< 0.5	<0.5	<1.0	< 0.5	NA	NA	NA	NA	NA	NA	NA
	1/9/2007	<50	<50	<50	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5
	9/8/1997	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	9/8/1997 dup	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	12/28/1998	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	8.5
	3/25/1999	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	6/21/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
W) (1) -	9/16/1999	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
KMW-5	10/16/2002	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	1/17/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	4/15/2003	NS	NS	NA	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	7/21/2003	NS NS	NS NS	NA NA	NS NS	NS NS	NS NS	NS NS	NS	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NS NS
	10/30/2003	<50	NS 89	NA	<0.5	<0.5	2	<1.0	NS <0.5	NA	NA		NA	NA NA	NA	NS NA
	1/12/2006 h2o 1/9/2007	<50	<50	- NA <50	< 0.5	<0.5	<0.5	<0.5	<0.5	NA <0.5	NA <0.5	NA <0.5	NA <0.5	<0.5	<0.5	NA <0.5
	9/8/1997	3.200. d	13.000. a	NA	250	14	<0.3 560	<u>490</u>	<0.3	NA	NA	NA	<0.3 140	NA	NA	NA
	12/28/1998	3,200, d	13,000, a 3,200, a	NA	230 86	3.6	140	490	<50	NA	NA	NA	140	NA	NA	NA 15
	3/26/1999	1,800, u 1,700, d,b	7.000, a	NA	160	5.0	270	200	<100	NA	NA	NA	100	NA	NA	<5.0
	3/26/1999 dup	1,700, d,b	6,700, a	NA	100	6.5	270	200	<100	NA	NA	NA	100	NA	NA	NA
	6/21/1999 dup	1,700, d,b	0,700, a 3,800, a	NA	170	< 0.5	260	160	<100	NA	NA	NA	200	NA	NA	<5.0
	9/16/1999	1,500, u,b 1,900, d	5,000, a 7.100, a	NA	230	9.8	300	210	<120	NA	NA	NA	NA	NA	NA	<5.0
	10/16/2002	1,500, d	4.600. a	NA	100	8.4	190	110	<50	NA	NA	NA	NA	NA	NA	NA
	10/16/2002 dup	1,000, d	5,100, a	NA	110	10	210	110	<50	NA	NA	NA	NA	NA	NA	NA
	1/17/2003	2,100, d	5,700, a	NA	87	4.3	170	100	<25	NA	NA	NA	NA	NA	NA	NA
KMW-6	1/17/2003 dup	1,900, d	5,800, a	NA	89	6.4	180	100	<25	NA	NA	NA	NA	NA	NA	NA
	4/15/2003	1,900, u 110, d	390, a	NA	7.4	0.58	8.5	6.1	<5.0	NA	NA	NA	NA	NA	NA	NA
	4/15/2003 dup	100, d	270, a	NA	4.2	0.51	5.6	3.0	<5.0	NA	NA	NA	NA	NA	NA	NA
	7/21/2003	1,600, d	4,300, a	NA	89	3.0	130	70	<17	NA	NA	NA	NA	NA	NA	NA
	7/21/2003 dup	1,500, d	4,600, a	NA	83	5.2	130	72	<25	NA	NA	NA	NA	NA	NA	NA
	10/30/2003	310, d	700, a	NA	23	1.1	8.0	8.3	<5.0	NA	NA	NA	NA	NA	NA	NA
	10/30/2003 dup	350, d	750, a	NA	24	1.3	8.5	8.8	<5.0	NA	NA	NA	NA	NA	NA	NA
	1/12/2006 h2o	630	2,200	NA	21	33	<2.0	18	<2.0	NA	NA	NA	NA	NA	NA	NA
	1/21/2006 cs	1500, d	4000, a	NA	38	<5.0	77	43	<50	NA	NA	NA	77	NA	NA	2.0
	1/9/2007	53, d	180, a	70	3.1	<0.5	1.9	0.65	<0.5	0.6	1.1	0.72	3.2	1.8	1.8	<0.5

TABLE 3 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS FREISMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

WELL	SAMPLE DATE	TPH-D (µg/L)	TPH-G (µg/L)	TPH-SS (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl Benzene (μg/L)	Total Xylenes (μg/L)	MTBE (µg/L)	n-butyl Benzene (µg/L)	Isopropyl Benzene (µg/L)	1,2- DCA (μg/L)	Naphthalene (µg/L)	n-Propyl Benzene (µg/L)	1,2,4- Trimethyl Benzene (µg/L)	LEAD (µg/L)
	12/28/1998	1,000, d,h	9,100, a,h	NA	23	17	190	700	<70	NA	NA	NA	110	NA	NA	38
	3/25/1999	1,200 d,b	4,300, a,h	NA	19	16	56	270	<70	NA	NA	NA	23	NA	NA	22
	6/21/1999	1,300, d,b	1,300, a	NA	6.5	< 0.5	21	62	<5.0	NA	NA	NA	27	NA	NA	<5.0
	6/21/1999 dup	1,200, d	2,000, a	NA	6.4	6.7	24	76	<5.0	NA	NA	NA	17	NA	NA	NA
	9/16/1999	1,100, d	950, a	NA	3.3	2	19	33	<10	NA	NA	NA	NA	NA	NA	<10
	10/16/2002	480, d	270, a	NA	1.3	< 0.5	4	15	<5.0	NA	NA	NA	NA	NA	NA	NA
KMW-7	1/17/2003	610, d	1,100, a	NA	7.8	1.3	24	84	<10	NA	NA	NA	NA	NA	NA	NA
	4/15/2003	350, d	880, a	NA	7.1	0.69	4.4	52	< 5.0	NA	NA	NA	NA	NA	NA	NA
	7/21/2003	830, n	1,500, e/g, a	NA	2.8	< 0.5	8.3	28	< 5.0	NA	NA	NA	NA	NA	NA	NA
-	10/30/2003	100, d	150, a	NA	0.54	< 0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	1/12/2006 h2o	61	230	NA	0.51	< 0.5	<0.5	2.8	<5.0	NA	NA	NA	NA	NA	NA	NA
	1/21/2006 cs	320#	530	NA	2.5	< 0.5	8.1	26	< 0.5	NA	NA	NA	6.1	NA	NA	2.9
	1/9/2007	84, d	330, a	110	<0.5	< 0.5	0.57	3.2	< 0.5	< 0.5	<0.5	<0.5	0.72	<0.5	1.3	< 0.5
-	12/28/1998	<50	<50	NA	<0.5	< 0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	12
	3/25/1999	<50	<50	NA	<0.5	< 0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	6/21/1999	<50	<50	NA	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA
	9/16/2002	<50	<50	NA	<0.5	< 0.5	<0.5	<0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA
-	10/16/2002	<50	<50	NA	< 0.5	< 0.5	< 0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
KMW-8	1/17/2003	<50	<50	NA	<0.5	< 0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
111111 0	4/15/2003	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	7/21/2003	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
-	10/30/2003	<50	<50	NA	<0.5	< 0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
	1/12/2006 h2o	52	58	NA	<0.5	<0.5	0.71	<1.0	<0.5	NA	NA	NA	NA	NA	NA	NA
	1/21/2006 cs	<50	<50	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	6.1
	1/9/2007	<50	<50	<50	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5
TAP Sample	4/15/2003	NA	<50	NA	< 0.5	< 0.5	<0.5	<0.5	<5.0	NA	NA	NA	NA	NA	NA	NA
1S/1E/2P3 (well)	1/9/2007	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
ES	SL	100	100	100	1.0	40	30	20	5	NE	NE	0.5	17	NE	NE	2.5

Notes:

TPH-D Total Petroleum Hydrocarbons as Diesel

TPH-G Total Petroleum Hydrocarbons as Gasoline

TPH-SS Total Petroleum Hydrocarbons as Stoddard Solvent

MTBE Methyl Tertiary-Butyl Ether

μg/L Micrograms per Liter (approx. equal to parts per billion)

- <0.5 Not detected at or above the laboratory method reporting limit
- a Unmodified or weakly modified gasoline is significant
- b Diesel range compounds are significant; no recognizable pattern TAP Sample was collected from the water supply well on-site.
- h2o Sampling conducted by H2OGEOL
- ND Not Detected

1,2-DCA 1,2-Dichloroethane

- d Gasoline range compounds are significant
- e TPH pattern that does not appear to be derived from gasoline
- # Kerosene and jet fuel range compounds
 - (possibly stoddard solvent/mineral spirit)
- g strongly aged gasoline or diesel range compounds are significant
- h Lighter than water immiscible sheen is present
- n stoddard solvent/mineral spirit
- NA Not analyzed
- NS Not Sampled
- cs Sampling conducted by Consolidated Engineering
- NE Not Established

ESL = Environmental Screening Level for groundwater that is a current or potential source of drinking water - San Francisco Bay Regional Water Quality Control Board, Interim Final - February 2005.

Consolidated Engineering also analyzed groundwater samples for semivolatile organic compounds by EPA Method 8270D. See their report for details.

TABLE 4 SUMMARY OF SOIL VAPOR SURVEY ANALYTICAL FREISMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

		Analyte									
Sample	Benzene	Toluene	Xylenes (total)								
	VOCs by EPA Method 8260B										
	ug/L										
SV-1	< 0.08										
SV-2	< 0.08	<0.2	<0.2								
SV-3	< 0.08	0.52	0.58								
SV-4	< 0.08	<0.2	<0.2								
SV-5	< 0.08	0.2	0.25								
SV-6	< 0.08	<0.2	0.24								
SV-7	< 0.08	<0.2	<0.2								
SV-8	< 0.08	<0.2	0.21								
SV-9	< 0.08	0.25	0.28								
SV-10	< 0.08	<0.2	0.25								
SV-11	< 0.08	0.23	0.27								
SV-12	< 0.08	0.22	0.22								
SV-13	< 0.08	<0.2	0.21								
SV-14	< 0.08	<0.2	<0.2								
SV-15	< 0.08	<0.2	< 0.2								
SV-16	< 0.08	<0.2	<0.2								
SV-17	< 0.08	<0.2	<0.2								
SV-18	< 0.08	<0.2	<0.2								
SV-19	< 0.08	<0.2	<0.2								
SV-20	< 0.08	<0.2	<0.2								
SV-21	< 0.08	< 0.2	<0.2								
SV-22	< 0.08	<0.2	<0.2								
ESL	0.085	63	150								

Notes:

soil vapor survey conducted on January 10 and 11, 2007

ug/L = micrograms per liter of vapor

VOCs = Volatile Organic Compounds. EPA Method 8260B analytes not listed were not detected (see analytical report)

ESL = Environmental Screening Level for shallow soil vapor in residential areas. San Francisco Bay Regional Water Quality Control Board, Interim Final - February 2005.

TABLE 5

SUMMARY OF SOIL BORING ANALYTICAL RESULTS (SOIL SAMPLES) FREISMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

Sample Number	Sample Depth (feet)	Benzene	VOCs	TPH-d	TPH-g	TPH-ss		
		EPA Metho	od 8260B	Method SW8015Cm				
		mg/kg						
SCS-1	2.5	< 0.005	ND	<50	<50	<50		
	5	< 0.005	ND	<50	<50	<50		
	15	< 0.005	ND	<50	<50	<50		
SCS-2	6.5	< 0.005	ND	<50	<50	<50		
	10.5	< 0.005	ND	<50	<50	<50		
	15	< 0.005	ND	<50	<50	<50		
SCS-3	2.5	< 0.005	ND	<50	<50	<50		
	6.5	< 0.005	ND	<50	<50	<50		
	10	< 0.005	ND	<50	<50	<50		
	15	< 0.005	ND	<50	<50	<50		

Notes:

All soil samples collected on January 11, 2007

VOCs = Volatile Organic Compounds. EPA Method 8260B analytes not listed were not detected (see analytical report)

TPH-d = Total Petroleum Hydrocarbons as diesel (Analyzed with Silica Gel Clean-up)

TPH-g = Total Petroleum Hydrocarbons as gasoline

TPH-ss = Total Petroleum Hydrocarbons as stoddard solvent

mg/kg = milligrams per kilogram (or parts per million (ppm))

TABLE 6 SUMMARY OF TEMPORARY WELL ANALYTICAL RESULTS (GROUNDWATER SAMPLES) FREISMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

Sample	Well Depth (feet)	Benzene	Bromo- methane	Remaining VOCs	TPH-d	TPH-g	TPH-ss	Dissolved Lead
Number		EPA Method 8260B			Ν	1ethod 8015	Method E200.8	
		ug/L						
SCS-1 GW	28	<0.5	1.1	ND	<50	<50	<50	<0.5
SCS-2 GW	16	<0.5	<0.5	ND	<50	<50	<50	<0.5
SCS-3 GW	18	<0.5	<0.5	ND	<50	<50	<50	<0.5

Notes:

All groundwater samples collected on January 11, 2007

VOCs = Volatile Organic Compounds. (See analytical report for detection limits)

TPH-d = Total Petroleum Hydrocarbons as diesel (Analyzed with Silica Gel Clean-up)

TPH-g = Total Petroleum Hydrocarbons as gasoline

TPH-ss = Total Petroleum Hydrocarbons as stoddard solvent

ug/L = micrograms per liter (or parts per billion (ppb))

ND = Analytes not detected above specified reporting limits (see laboratory report)

TABLE 7 SUMMARY OF SURFACE SOIL SAMPLE ANALYTICAL RESULTS (INCINERATOR AREA) FREISMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

Sample Number	Sample Date	Arsenic	Cadmium	Chromium	Lead	Mercury	Nickel	Zinc
		EPA Method 6020A						
					mg/kg			
SS-1	1/9/2007	2.6	<0.25	41	7.6	< 0.05	41	53
SS-2	1/9/2007	2.6	<0.25	26	7.5	0.053	30	51
SS-3	1/9/2007	2.5	<0.25	29	7.7	< 0.05	30	58
SS-4	1/9/2007	2.5	<0.25	26	9.2	0.074	30	51
SS-5	1/9/2007	2.7	<0.25	25	7	< 0.05	28	37
SS-6	1/9/2007	3.4	<0.25	32	7.3	< 0.05	33	44
SS-7	1/9/2007	3	<0.25	35	12	0.053	35	51
SS-8	1/9/2007	3.1	<0.25	31	14	0.054	32	48
SS-9	1/9/2007	3.6	<0.25	34	8.2	0.082	35	48
SS-10	1/10/2007	2.5	<0.25	28	8.2	< 0.05	30	54
SS-11	1/10/2007	9.6	0.3	51	49.7	< 0.05	62	120
SS-12	1/10/2007	4.6	0.38	63	65	0.062	57	190
SS-13	1/10/2007	5.7	<0.25	59	15	0.06	86	83
SS-14	1/10/2007	10	0.73	79	760	0.072	41	510
Residential ESL		5.5	1.7	750	150	3.7	150	600
Commercial ESL		5.5	7.4	750	750	10	150	600

Notes:

mg/kg = milligrams per kilogram

The chromium ESL listed is for trivalent chromium

ESL = Environmental Screening Level for shallow soil where groundwater is a current or potential source of drinking water San Francisco Bay Regional Water Quality Control Board, Interim Final - February 2005.

APPENDIX A

H₂OGEOL REPORT, DATED FEBRUARY 6, 2006

February 06, 2006

Mr. Dave Nielsen Building Project Manager CrossWinds Church 6444 Sierra Court Dublin, California 94568

RE: January 2006 Groundwater Monitoring Report and Summary of Possible Remedial Activities - Former Friesman Ranch Property, 1600 Friesman Road, Livermore, CA.

Dear Mr. Nielsen;

This January 2006 Groundwater Monitoring Report, though not the official First Quarter, 2006 report, was prepared by H_2OGEOL under our verbal agreement of January 10, 2006 to sample the eight monitoring wells at the Former Friesman Ranch Property located at 1600 Friesman Road in Livermore and provide a summary report of the analytical results with recommendations for further remedial action or site closure. The site location is shown on Figure 1. The eight monitoring wells were sampled on January 12, 2006.

1.0 POTENTIOMETRIC SURFACE

The depth to water and total well depth of seven of the monitoring wells were measured on January 12, 2006 between 09:11 and 09:33 hours. Monitoring wells MW-2 and MW-5 were found to have total depths similar to that reported by SCS Engineers on October 30, 2003. The shallow depths of MW-2 and MW-5 were found to be caused by dense invasive root mats that were removed later in the day. Monitoring well MW-8 was not visible on the ground as you observed on January 10, 2006. MW-8 well was located and unburied by the afternoon and the depth to water was measured at 15:15. These findings are summarized in the notes on Table 1.

Depths to water were measured to +/- 0.01 feet using a Solinst Model water level meter. The depths to water were converted to potentiometric surface elevation by subtracting the measured depths to water from the casing top elevations listed in the aforementioned SCS Engineers report dated December 17, 2003. The depth to water, casing top elevations, and potentiometric surface elevations are presented in Table 1.

Table 2 lists the slope (gradient) and direction of gradient of the potentiometric surface for the triangles with a well at each apex for these water level measurements.

Figure 2 is a map showing the approximate potentiometric surface for the monitoring wells on January 12, 2006. The configuration of the potentiometric surface was similar to that shown in the SCS Engineers report. The previous water level measurements listed in that report were not evaluated as a part of this investigation. Arroyo de las Positas has persistently been shown as an influent stream.

Mr. Dave Nielsen February 06, 2006 Page 2

2.0 MONITORING WELL PURGING AND SAMPLING

Monitoring well purging and sampling occurred on January 12, 2006. The monitoring wells were purged with a 12-volt battery operated submersible pump and sampled with a discharge rate of less than 1 L/minute. Field measured water quality parameters were measured using a Cambridge Scientific Industries HydacTM Conductivity Temperature pH Tester, and dissolved oxygen (DO) using a Hanna Instruments HI9142 DO meter with the DO probe in a flow through cell. The appropriate information was logged onto the field sampling forms. Well purging activities and the field measured water quality parameters are documented on the forms included in Attachment A.

Groundwater samples from each well were collected into four 40-mL glass vials with TeflonTM septum lids and into a one liter amber glass jar. Following sample collection, each sample bottle was labeled with the sample designation, date and time, and the initials of the sampler. The sample bottles were then placed into an ice chest maintained at the temperature available from its also containing a bed of crushed ice, and its melt water, placed there at the start of the sampling day. The ice was not allowed to completely melt before it was replaced.

The sample number, date, and time were entered onto a chain-of-custody form that included the request for analysis of Total Extractable Petroleum Hydrocarbons in the diesel range (TEPH-d) by U.S. E.P.A. Method 8015M and for Total Petroleum Hydrocarbons in the gasoline range (TPH-g); the volatile aromatic hydrocarbon compounds (benzene, toluene, ethylbenzene, and total xylene isomers); the fuel oxygenates: tertiary-Butyl alcohol (TBA); Methyl tertiary-butyl ether (MtBE); Di-isopropyl Ether (DIPE); Ethyl tertiary-butyl ether (EtBE); and tertiary-Amyl methyl ether (TAME) by U.S. E.P.A. Method 8260B for all wells.

Groundwater samples and the chain-of-custody documentation were then delivered to STL San Francisco (CA DHA ELAP# 2496) of Pleasanton, California on the January 13, 2006. Copies of the monitoring well groundwater sample laboratory reports and the chain-of-custody forms are included in Attachment B.

3.0 GROUNDWATER ANALYTICAL RESULTS

Groundwater samples were submitted to STL San Francisco for analysis as specified above. Copies of the laboratory report and chain-of-custody documentation are contained in Attachment B. The analytical results are summarized in Table 3. The concentrations of TEPH-diesel, TPHgasoline, and benzene are also summarized in Figure 3.

TEPH-diesel was reported in groundwater from four of the monitoring wells: presumed source area well MW-7, 61 μ g/L; down and cross gradient well MW-6, 630 μ g/L; and downgradient wells MW-2, 55 μ g/L; and MW-8, 52 μ g/L. TEPH-diesel was not detected in the two upgradient wells, MW-1 and MW-3, and in cross gradient well MW-4.

Mr. Dave Nielsen February 06, 2006 Page 3

TPH-gasoline was reported in groundwater from five of the monitoring wells: presumed source area well MW-7, 230 μ g/L; down and cross gradient well MW-6, 2200 μ g/L; and downgradient wells MW-2, 65 μ g/L and MW-8, 58 μ g/L. and in cross gradient well MW-4, 89 μ g/L. TPH-gasoline was not detected in the two upgradient wells, MW-1 and MW-3.

Benzene was reported in groundwater from two of the monitoring wells: presumed source area well MW-7, 0.51 μ g/L and in down and cross gradient well MW-6, 21 μ g/L

MtBE was reported in groundwater from one of the monitoring wells: downgradient well MW-2 at a concentration of 1.6 μ g/L. The lowest reporting limit in earlier analytical results summarized in the SCS Engineers report was 5.0 μ g/L.

4.0 HISTORIC ANALYTICAL RESULTS AND CONCLUSIONS

The available earlier analytical results are summarized in a table the SCS Engineers report. With the exception of monitoring wells MW-6 and MW-7, TEPH-diesel, TPH-gasoline, and benzene were reported as below reporting limits from September 1997 through October 2003. The Fourth Quarter 1998 concentrations are summarized herein in Figure 3 along with the current, First Quarter 2006, results. The detection of TEPH-diesel and/or TPH-gasoline in downgradient monitoring wells MW-2, MW-5, and MW-8 suggests that the plume is migrating or diffusing downgradient.

Because of its location alongside the former shed that contained the above ground fuel oil tank and the underground pipeline routes to the former boiler room, monitoring well MW-7 has been referred to as being in the presumed source area. Monitoring well MW-6 is generally downgradient from this presumed source area. The available concentrations of TEPH-diesel, TPH-gasoline, and benzene over time, since installation of MW-7, in this widely spaced data from groundwater samples from MW-6 and MW-7 are summarized in Figure 4. Since December 1998, benzene has been reported at a higher concentration in MW-7 than in downgradient well MW-6 only once (07/21/03). On only two occasions (2 of 10) was TPH-gasoline at a higher concentration in MW-7 than at MW-6; at the time of the first reported sampling of MW-7 and again on July 21, 2003. TEPH-diesel was reported at a higher concentration in groundwater from MW-7 from two of the ten sampling events: on June 21, 1999 and on July 21, 2003. Note that on this latter date, July 21, 2003, when all three mentioned analytes were reported as higher in MW-7 that MW-6, was contemporaneous with the removal of the boilers and fuel lines.

Overall, these three fuel constituents (TEPH-diesel, TPH-gasoline, and benzene) have been reported as being present at higher concentrations in downgradient monitoring well MW-6 than in presumed source area well MW-7. Overall, the three fuel constituents have shown a slow decline in concentration since 1998. The data shown in the graphs in Figure 4 does not indicate that the fuel constituent plume has migrated from a source area near MW-7 toward downgradient

Mr. Dave Nielsen February 06, 2006 Page 4

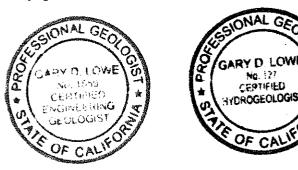
well MW-6 during the preceding eight years. Monitoring well MW-7 appears not to be located in, or immediately downgradient of, a source area.

The downgradient and cross gradient monitoring wells, (counterclockwise on Figures 2 and 3: MW-4, MW-5, MW-8, and MW-2) are reasonably distant from the high concentration well, MW-6 (MW-4, 125 feet; MW-5, 131 feet; MW-8, 165 feet; and MW-2, 166 feet) compared to the distance from MW-6 to MW-7 (106 feet) but would only be expected to find a plum of greater length. Furthermore, these downgradient and cross gradient monitoring wells are very widely spaced: MW-5 is 110 feet from MW-4; MW-8 is 127 feet from MW-5; and MW-2 is 227 feet from MW-8. A narrow plume could readily pass completely undetected in these gaps. There is no conclusive data to support that a stable plume is present. Indeed, over the eight irregular years of monitoring, the fuel constituent plume is evidenced by only two data points, MW-6 and MW-7 and the present data set may be interpreted to suggest an expanding plume. Consequently, the lateral extent of the fuel hydrocarbon plume has not been completed. Furthermore, the vertical extent of the groundwater plume has not been characterized.

The data to date from the eight monitoring wells is insufficient to request case closure. Benzene exceeds the drinking water standard in MW-6.

The location of the source area (the above ground gasoline tank) has yet to be determined.

Additional site characterization is necessary to determine hydrocarbon plume dimensions, both laterally and vertically. Shallow wells are needed in the downgradient direction between MW-6 and the existing monitoring wells. Shallow wells are needed in the vicinity of the undiscovered source area. Monitoring wells are needed to investigate deeper groundwater.


Remedial action of the shallow groundwater plume would follow from a completion of the characterization of the shallow plume. As an estimate 300 feet of interceptor trench could be laid out to remove residual soil contamination and collect groundwater for treatment and onsite land disposal.

Please do not hesitate to email <u>h2ogeol@comcast.net</u> or call the undersigned at 925-373-9211 and/or telefax at 925-373-9222 should you have any questions.

Sincerely,

Sangt

Gary D. Lowe, P.G. (3768), C.E.G. (1559) C.HG. (127) Principal, Hydrogeologist H₂OGEOL A GroundWater Consultancy

 $\rm H_2OGEOL~~a~ground_{WATER}~consultancy$

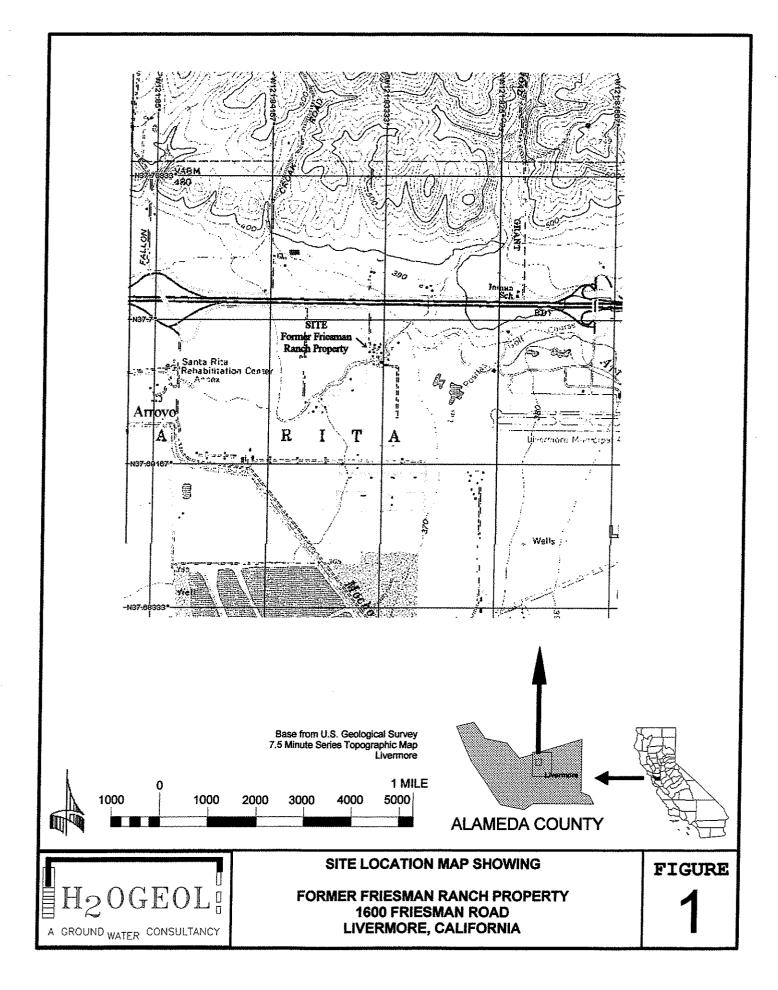
TABLE 1 WATER LEVEL MEASUREMENTS FIRST QUARTER 2006 FORMER FRIESMAN RANCH PROPERTY 1600 FRIESMAN ROAD LIVERMORE, CALIFORNIA

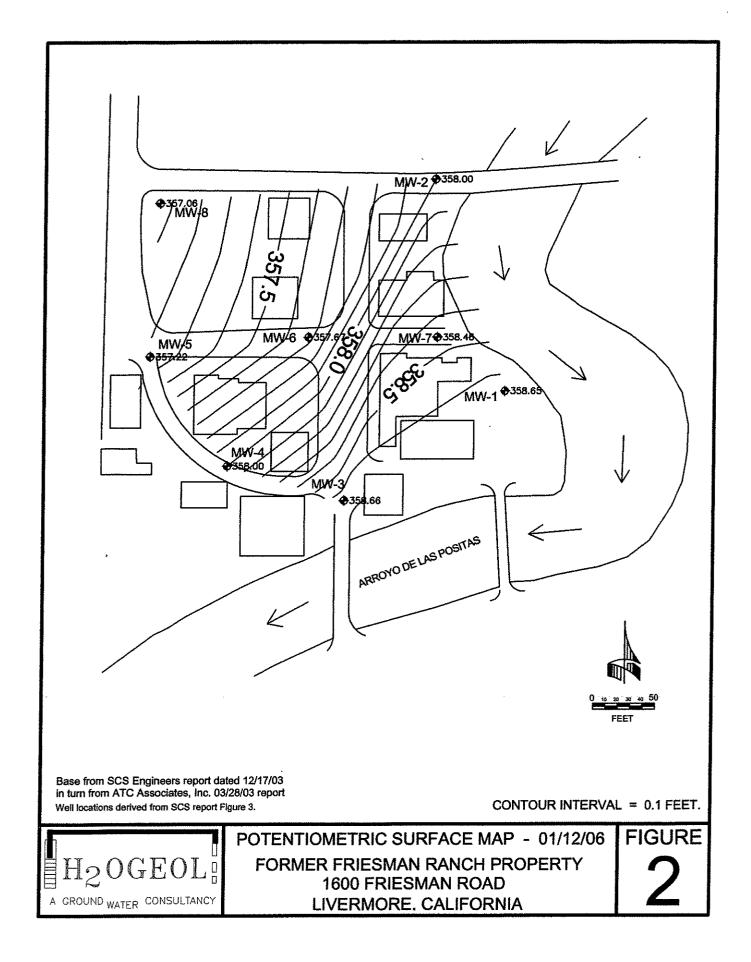
WELL	TOTAL WELL DEPTH t below casing	TIME	DEPTH TO WATER feet below casing top	CASING ELEVATION feet above mean sea level	GROUNDWATER ELEVATION feet above mean sea level
January 12	, 2006				
MW-1	23.90	9:16	11.47	370.12	358.65
MW-2*	24.01	9:11	12.72	370.72	358.00
MW-3	24.05	9:19	10.44	369.10	358.66
MW-4	23.90	9:23	11.80	369.80	358.00
MW-5**	24.05	9:26	12.30	369.52	357.22
MW-6	23.80	9:30	12.41	370.08	357.67
MW-7	23.60	9:33	11.58	370.04	358.46
MW-8***	23.86	15:15	11.55	368.61	357.06

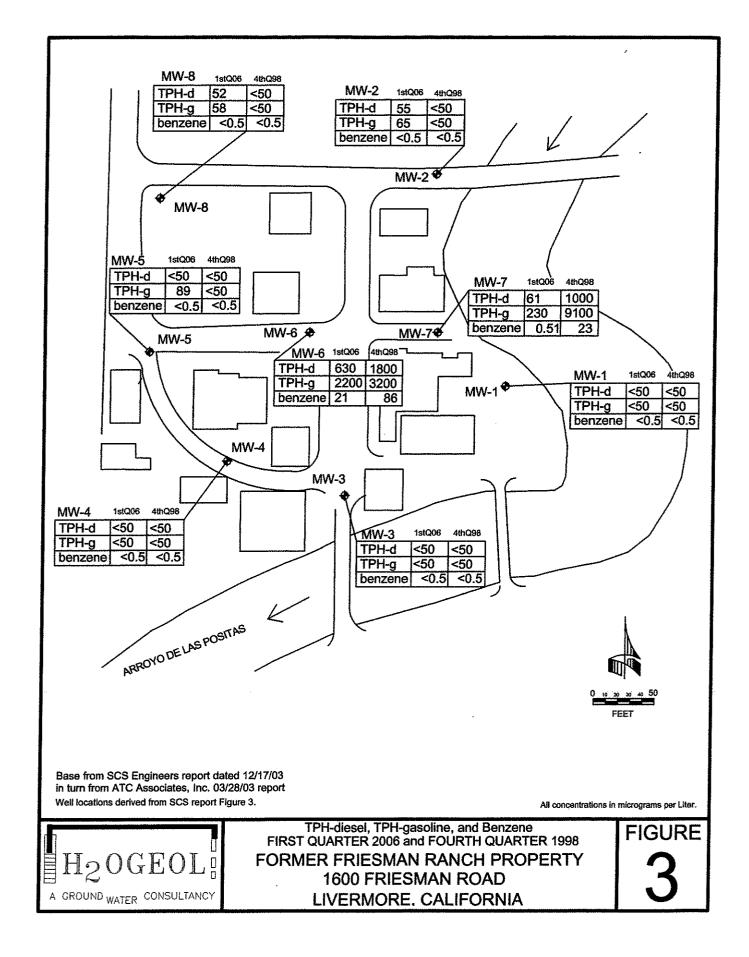
 * Well MW-2 was measured with a total depth of 13.84 feet on October 30, 2003 and was measured at 11.29 feet in total depth at 09:12 this date.
 An 18-inch root plug was removed from the well and the total depth remeasured.

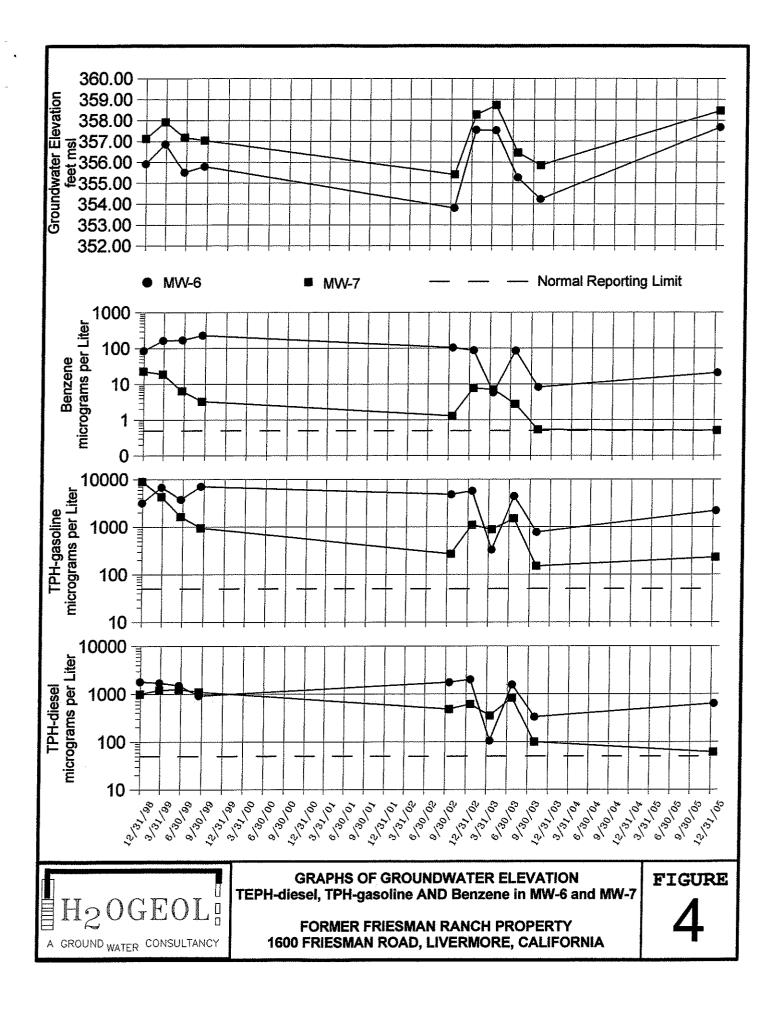
** Well MW-5 was measured with a total depth of 16.17 feet on October 30, 2003 and was measured at 15.35 feet in total depth at 09:27 this date.
 A 10-inch root plug was removed from the well and the total depth remeasured.

*** The well was burried prior to 15:00 hours. The protective box was stripped of its surmounting cast iron rim , smashed, and packed with soil through field ploughing. The well was located and dug out by 15:00 hours. There was no damage to the well.


TABLE 2 POTENTIOMETRIC SURFACE GRADIENT AND DIRECTION FIRST QUARTER 2006 FORMER FRIESMAN RANCH PROPERTY 1600 FRIESMAN ROAD LIVERMORE, CALIFORNIA


	Well Trai	ngle	Gradient Ft./Ft.	Bearing °N = 90 °E = 0		Direction	
01/12/06							
MW-1	MW-2	MW-7	0.0036	99.76	Ν	9.76	٥W
MW-1	MW-3	MW-7	0.0028	123.35	N	33.35	٥W
MW-2	MW-3	MW-7	0.0050	135.76	Ν	45.76	٥W
MW-2	MW-3	MW-6	0.0110	152.10	Ν	62.10	٩W
MW-3	MW-4	MW-6	0.0080	128.79	N	38.79	٩W
MW-4	MW-5	MW-6	0.0070	126.15	Ν	36.15	٩W
MW-5	MW-6	MW-8	0.0039	158.02	Ν	68.02	٩W
MW-2	MW-6	MW-8	0.0043	169.13	Ν	79.13	٥W
		AVERAGE	0.0061	127.95	N	37.95	٩W


TABLE 3 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS FIRST QUARTER 2006 FORMER FRIESMAN RANCH PROPERTY 1600 FRIESMAN ROAD LIVERMORE, CALIFORNIA (groundwater analyte concentrations in micrograms per liter)


	TEPH-diesel	TPH-gasoline	Benzene	Toluene	Ethylbenzene	Total Xylene isomers	Methyl tert-butyl ether (MtBE)	tert-Butyl alcohol (TBA)	Di-isopropyl Ether (DIPE)	Ethyl tert-butyl ether (EtBE)	tert-Amyl methyl ether (TAME)	1,2-Dichloroethane	Ethylendibromide
MW-1 01/12/06	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 5.0	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5
MW-2 01/12/06	55	65	< 0.5	< 0.5	1.2	< 1.0	1.6	< 5.0	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5
MW-3 01/12/06	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 5.0	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5
MW-4 01/12/06	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 5.0	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5
MW-5 01/12/06	< 50	89	< 0.5	< 0.5	2.0	< 1.0	< 0.5	< 5.0	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5
MW-6 01/12/06	630	2200	21	33	< 2.0	18	< 2.0	< 20	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0
MW-7 01/12/06	61	230	0.51	< 0.5	< 0.5	2.8	< 0.5	< 5.0	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5
MW-8 01/12/06	52	58	< 0.5	< 0.5	0.71	< 1.0	< 0.5	< 5.0	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5

x

A GROUND WATER CONSULTANCY

P.O.Box 2165 • Livermore California 94551 • 510-373-9211

ATTACHMENT A

FIELD DATA SHEET LOG OF WELL SAMPLING ACTIVITIES

		LO	g of v	VELL S	AMPLIN	G /	ACTIVIT	FIE	S	
				Form	er Friesman I	Rar	ich proper	y		
Well Ider	tification;	MW- P	oject Nam		Friesman Ro more, Califon					te: 01/12/06
Sampled	by: FE	L GDL JAL	-	Weat	her Condition	15:				
Well Loca	ation:	www.u_r	·····	Weil	Casing Diam	etei	<u>× 4</u>	n. n.	Depth of Well Ca	using; <u>23,97</u>
Measurin	g Point To	p of PVC Casing	Initial	Depth to 1	Water. <u>/ -</u>	17		hall	Depth to Water:	Not measured
Casing V	olume (1 v	rol./ 3 voi): 📑 🕯	3/23	49			Well Bon	eho	le Volume:	
Purging #	Method:	Centrifugal Purr Grundfos Subm Centrifugal Purr ES-40/-60 Subn PVC Bailer	ersible Pu p/ES-60 S	mp Submersib		Sa	umpling Me	ithc	d: Peristaltic Pu Grundfos Sut PVC Bailer ES Sub. Pum	mersibie Pump
Purging F	Rate; <u>Se</u>	e below	Total Dis	charge:			Ca	sin	g Volumes Purger	1:
Commen	ts:						<u> </u>			
Waste W	ater Dispo	sal: <u>To drum</u>	·							
Starting T	îme:						D0 =		0.4	
Тіте Рил	np on: <u>0</u> 9	.56					ORP =			
Date	Time	Gal Purged	рН	T deg. F	Diluted S.C.		Dil. Factor		S.C. (µS/cm)	Color
01/12/06	:					x		±		
	10:25	22.5	6.99	62.(×		92	742	
	(D:26	23,0	6.99	62.4		x		50	753	
	(0:2}	23.5	6.93	62.5	ļ	x		=	754	
	10:28	24.0	6.91	63,1		x		=	768	
	:			ļ		x		=		
	:					x				
ļ.,	:					x		=		
	:					x		=		
L		••••••				×		7		
	;				L	x		=		

Sample Identification: 61/FR/MW-/ Sample Time: 10130

		LO	g of W	Form	AMPLING er Friesman F Friesman Ro	₹an			S	
Well Iden	ification:	MW-2_ Pr	oject Nam						Dal	e: 01/12/06
Sampled I	by: <u>FE</u>	L GDL JAL	-	Weat	ther Condition	s;				
Well Loca	tion:			Weli	Casing Diame	eter	<u>X4</u>	թ. n.	Depth of Well Ca	ising: <u>24,0</u>
Measuring	; Point <u>To</u> ;	o of PVC Casing	Initial I	Depth to 1	Water: 12,	72	- Fir	1 B	Depth to Water:	Not measured
Casing Vo	olume (1 v	ol./ 3 vol): 7.	17/2	<u>1.</u> 51			Well Bord	ho	le Volume;	
Punging M		Centrifugal Pum Grundfos Subm Centrifugal Pum ES-40/-60 Subn PVC Bailer	ersible Pur p/ES-60 S	np lubmersit	_	Sa	mpling Me	itho	d: Peristaltic Pu Grundfos Sub PVC Baller ES Sub, Pum	mersible Pum
Purging R	ate: <u>Se</u>	e below	Total Disc	charge;			Ca	sin	g Volumes Purgeo	J:
Comment	s:			·····						
Waste Wa	ater Dispo	sak <u>To drum</u>								
Starting T	ime: (Ø	120					D0 ==			
Time Pum	ip on: H	5:20					ORP =			
Date	Time	Gal. Purged	рH	T deg. F	Diluted S.C.		Dil. Facto		S.C. (µS/cm)	Color
01/12/06	:					x		12		
	16:55	20,5	6.89			×		*		
	16:52	21.0	6.91	60.5		×		#	\$762	
	16:56	22.0				x		# 1	698	
	:					x	·	4		
	;					x				
	;					x		#		
	;					x		1		
	: [[]		1	: 1		1	1 1	
	÷				<u> </u>	x x		#		

Sample Identification: 61/FR/MW. 2 Sample Time: 17:00

-

		LOG	GOF W	ELL S/	AMPLING	A	CTIVITI	ES	6	
				Forme	r Friesman R	апс	h property			
					⁻ riesman Roa					
Well Identi	ification:	MW- 3 Pro	ject Name	: <u>Livern</u>	ore, Californi	a			Date	: <u>01/12/06</u>
		. GDL JAL			er Conditions	•	··			
Weli Loca	tion:			Weil C	asing Diame	ter:	<u> </u>	I	Depth of Well Ca	sing: 24.05
Measuring	Point Top	of PVC Casing	Initial I	Depth to V	Vater: 10.4	14	Fina	D	epth to Water; 👖	lot measured
Casing Vo	olume (1 vi	ol./ 3 vol): 8,	4/25.9	2			Well Boreh	ale	Volume:	
Purging M	-	Centrifugal Pum Grundfos Subme Centrifugal Pum ES-40/-60 Subm PVC Bailer	ersible Put p/ES-80 S	np ubmersib	le	Sa	mpling Meti	100	E Peristaltic Pur Grundfos Sub PVC Bailer ES Sub. Pum	mersible Pump
Purging R	ale; <u>Se</u>	e below	Total Disc	charge:			Cas	ing	Volumes Purged	:
Comment	s:									
Waste Wa	ater Dispo:	sał: <u>To drum.</u>								
Starting T	ime:						DO ==		2,4	
Time Pun	np on: 🙎	Le 10:45				:	ORP =			
Date	Time	Gal. Purged	рH	'T deg. F	Diluted S.C.		Dil. Factor		S.C. (uS/cm)	Color
01/12/06	:					×		-		
	11:11	24.5	6.72	61.4		x		=	664	
	urn	25.0	6.72	61.7		×		-	668	
	11:13	25.5	6.72	61.8		x		-	670	
	11:14	26.0	6-71	62.0		×		_	671	
	:					x		_		
	:					x		-		
	:					x		_		
	:					T _x		"		
			1			1x		_		
	:			·		k		=		
	(******	<u> </u>		i	<u> </u>	<u> </u>	7		

Sample Identification: 61/FR/MW-3 Sample Time: 11:16

.

		LOC	G OF W	ELL S	AMPLING	S A	CTIVIT	ΊĒ	s	
				Forme	ar Friesman F	tan:	ch property	y		
				1600	Friesman Ro	ad				
Well Iden	ification:	MW-4 Pr	oject Nam	e: <u>Liven</u>	nore, Californ	ia.			Da	te: 01/12/06
Sampled	by: <u>FE</u>	l GDL JAL		Weat	her Condition	\$:			· · · · · · · · · · · · · · · · · · ·	
Well Loca	ilion:			. Well (Casing Diame	eter	<u>X 4-ii</u> <u>2-li</u>	ņ. ņ.	Depth of Well C	asing: 27,90
Measurin	9 Point <u>To</u>	p of PVC Casing	Initial	Depth to \	Water: 1	D	Fin	al I	Depth to Water;	Not measured
Casing V	olume (1 v	ol./ 3 vol): 7.6	8/2	3.05			Well Bore	hol	e Volume:	
Purging N	lethod:	Centrifugal Pum Grundfos Subm Centrifugat Pum ES-40/-50 Subn PVC Baller	ersible Pu p/ES-60 S	mp Submersib	le	Sa	mpling Me	tho	PVC Bailer	bmersible Pump
Comment	s:	e below								d:
Waste W	ater Dispo	sal: <u>To drum</u>								
Starting T	îme:						DO =		<u>1.3</u>	
Time Pun	проп: 🔟	1:34				I	ORP =			
Date	Time	Gal, Purged	рH	T dea. F	Diluted S.C.	ŀ	Dil. Factor	r İ	S.C. (µS/cm)	Color
01/12/06						×		_		
	11:59	22.0	6.71	143		x		=	807	
	12:00		672	<u> </u>		T _x		=	816	
	12:01	23.0	173	65,1		x		-		
	2.:01	2).5	6.74	45.3	[Ī		*	825	
	-					x				
	;					×		=		
				[×		=		
						1.		<u> </u>		

. ،

Sample Identification: 61/FR/MW-4 Sample Time: 12:04

:

:

•

×

|x|

					CONT POINTS	ACTIVI	1664	9	
				Forme	er Friesman R	lanch proper	ty		
		-			Friesman Roa				
Well Iden	lification:	MW5 Pr	oject Nami	a: Liver	nore, Californ	la		Dat	le: 01/12/06
Sampled	by: <u>FE</u> l	GDL JAL	-	Weat	her Conditions	s:			
Weli Loca	tion:	····		Well (Casing Diame	ter: <u>X4-</u>	in. In.	Depth of Well Ca	asing: 24.05
			-		Water: 12,	<u>30</u> Fi	nal C	epth to Water.	Not measured
Casing Vo	olume (1 vi	ol./ 3 vol): 7.	46/22			Well Bon	ehol	a Volume:	. <u></u> ,
Purging N		Centrifugal Pum Grundfos Subm Centrifugal Pur ES-40/-60 Subn PVC Bailer	ersible Pur	np ubmersib		Sampling M	etho	PVC Bailer	mp omersible Pump p @ <11./min.
Puraina R	ate: Se	a below	Total Die	hame.		Ca	scing	Volumor Burno	d;
		S DEION	1010101010	a. 10. 90.			201012	a annua a mille	
		<u></u>						y volumes rulle	
Comment	s:							y voluites Laiffe	
Comment Waste Wi	s; ater Dîspo:							**************************************	
Comment Waste Wi Starting T	s; ater Dispo ime:	sal: <u>To drum</u>						0, 0	
Comment Waste Wi	s; ater Dîspo:	sal: <u>To drum</u> [24		····		DO = ORP =		0.0	Coler
Comment Vaste Wi Itarting T Time Purr Date	s; ater Dispon ime: ip on; Time	sal: <u>To drum</u> [24		····		DO = ORP = Dil. Facto		**************************************	
Comment Vaste Wi Itarting T Time Purr Date	s; ater Dispos ime: sp on; Time F	sel: <u>To drum</u> S24 Gal. Purged	рН	T deg. F	Diluted S.C.	DO = ORP = Dil, Facto		O, O S.C. (µS/cm)	
Comment Vaste Wi Itarting T Time Purr Date	s; ater Dispon ime: ip on; Time IS: 45	sal: <u>To drum</u> 5:24 Gal. Purged 21 - 2	рн 6.89	T deg. F	Diluted S.C.	DO = ORP = Dil, Facto x x	<u> </u>	0.0 S.C. (uS/cm) 794	
Comment Waste Wi Starting T Cime Pun Date	s; ater Dispos ime: sp on; Time F	sal: <u>To drum</u> 5:24 Gal. Purged 21 - 2	рн 6.89 6.89	T deg. F 63,6 63,8	Diluted S.C.	DO = ORP = Dil, Facto x x x x	I I	0.0 S.C. (uS/cm) 794 792	
Comment Vaste W Starting T Time Pun	s:	Sal: <u>To drum</u> 5:24 Gal. Purged 21-0 21-5	рн 6.89 6.89 6.87	T deg. F 63.6 63.8 63.9	Diluted S.C.	DO = ORP = Dil, Facto X X X X		0.0 S.C. (uS/cm) 794 792 794	
Comment Waste Wi Starting T Cime Pun Date	s:	Sal: <u>To drum</u> 5:24 Gal. Purged 2.1.5 22.0	рн 6.89 6.89	T deg. F 63,6 63,8 67,9	Diluted S.C.	DO = ORP = Dif. Facto X X X X X		0.0 S.C. (uS/cm) 794 792	
Comment Vaste W Starting T Time Pun	s:	Sal: <u>To drum</u> 5:24 Gal. Purged 2.1.5 22.0	рн 6.89 6.89 6.87	T deg. F 63.6 63.8 63.9	Diluted S.C.	D0 = ORP = Dil, Facto x x x x x x x x		0.0 S.C. (uS/cm) 794 792 794	
Comment Waste W Starting T Fime Pun Date	s: ater Dispon ine: pon: Time F: 15: 45 15: 45 15: 45 15: 48 : _ : : : :	Sal: <u>To drum</u> 5:24 Gal. Purged 2.1.5 22.0	рн 6.89 6.89 6.87	T deg. F 63.6 63.8 63.9	Diluted S.C.	D0 = ORP = Dif, Facto x x x x x x x x x x		0.0 S.C. (uS/cm) 794 792 794	
Comment Waste W Starting T Fime Pun Date	s: ater Dispon ine: pon: Time F: 15: 45 15: 45 15: 45 15: 48 : _ : : : :	Sal: <u>To drum</u> 5:24 Gal. Purged 2.1.5 22.0	рн 6.89 6.89 6.87	T deg. F 63.6 63.8 63.9	Diluted S.C.	D0 = ORP = Dil, Facto x x x x x x x x		0.0 S.C. (uS/cm) 794 792 794	
Comment Waste Wi Starting T Time Pun	s: ater Dispon ine: pon: Time F: 15: 45 15: 45 15: 45 15: 48 : _ : : : :	Sal: <u>To drum</u> 5:24 Gal. Purged 2.1.5 22.0	рн 6.89 6.89 6.87	T deg. F 63.6 63.8 63.9	Diluted S.C.	D0 = ORP = Dii, Facto x x x x x x x x x x x x		0.0 S.C. (uS/cm) 794 792 794	

Sample Identification:	61/FR/MW- 5	Sam
------------------------	-------------	-----

.

		LO	gofv	VELL S	AMPLINC	G/	ACTIVIT	1E	S	
				Form	er Friesman f	Ran	ch propert	у		
•					Friesman Ro					
Well Iden	tification:	MW-6 Pr	oject Nam	ie: <u>Liven</u>	nore, Californ	<u>ia</u>			Da	te: 01/12/06
Sampled	by: <u>F</u> Ë	L GDL JAL	-	Weat	her Condition	1\$;				
Well Loca	ation:			Well	Casing Diame	eter	<u>X 4-i</u> 2-i	n. n.	Depth of Well C	asing: 23.90
Measurin	g Point <u>To</u>	p of PVC Casing	Initial	Depth to V	Water: <u>/?</u>	<u>ب</u>	/ Fic	nal I	Depth to Water:	Not measured
Casing V	olume (1 v	ol./ 3 vol): 7, 7	23/2	<u> . 7</u> 0			Well Bore	ha	le Volume:	
Purging N	lethod:	Centrifugal Pum Grundfos Subm Centrifugal Pum ES-40/-50 Subn PVC Bailer	ersible Pu p/ES-60 S	mp Submersib	de	Sa	mpling Me	tho	PVC Bailer	bmersible Pump
Purging F	Rate: <u>Se</u>	e below	Total Dis	charge:			Ca	sin	g Volumes Purge	d:
Commen	ls:	····								
Waste W	ater Disno	sal: To drum		•••						
Starting T		<u></u>			,		DO ==		Ø.0	
-	np on:	U:nU								
1 me Pun	np on: <u> </u>						ORP =			
Date	Time	Gal. Purged	pН	T deg. F	Diluted S.C.	Γ	Dil. Factor		S.C. (µS/cm)	Color
01/12/06						x		÷		
	14:32		6.49	· · · · · · · · · · · · · · · · · · ·		x		ш	796	
	14:33	21.0	644			×		-	797	
	14:34	21.5	6.44			×		Ħ	800	
	11:35	22.0	6:13	68.2		×		=	820	
	:			L		x		=		
	:					×		-		
		~~~~~~				×		=		
	:					×		#		
	:					×		-		
	:				, I	x		-		

 $\mathcal{H}$ 

.

Sample Identification: 51/FR/MW-Sample Time: 14:37

		10	GOFF	REFF 3	MORT FRAK	3 F	CTIVIT	1E	S	
				Form	er Friesman F	Ran	ch propert	у		
Well Iden	tification:	MW-7 PO	roject Nam		Friesman Ro more, Californ				Dat	e: 01/12/06
Sampled	by: <u>FE</u>	L GDL JAL	-	Weat	her Condition	<b>s</b> :				
Weil Loca	ation:			. Well	Casing Diame	ater	×4-i 2-i	ח, מ.	Depth of Well Ca	sing: 27. LC
		p of PVC Casing	,		Water: 11.5	58	Fir	ai I	Depth to Water:	Not measured
Casing V	olume (1 v	rol./ 3 vol): 4.6	3/22	0			Well Bare	hol	e Volume:	
Purging N	Aethod:	Centrifugal Pur Grundfos Subm Centrifugal Pur ES-40/-60 Subr PVC Bailer	iersible Pu p/ES-60 S	mp Submersib	_	Sa	mpling Me	lho	PVC Bailer	mersible Pump
Purging F	Rate: Se	e below	Total Dis	charge;			Ca	sin	g Volumes Purger	t:
Commeni	ts:									
Waste W	aler Dispo	sal: <u>To drum</u>							Ø, D	
Waste Wi Starting T	aler Dispo	sal: <u>To drum</u>					D0 = ORP =		<u>ð</u> , D	
Waste Wi	aler Dispo îme:	sal: <u>To drum</u>			Diluted S.C.				8.C. (µS/cm)	Color
Vaste Wi itarting T Time Pun Date	ater Dispo îme: np on: _17	sal: <u>To drum</u> 133 Gal. Purged					ORP =	<b></b>		Color
Vaste Wi itarting T îme Pun Date	ater Dispo îme: np on: _17 	sal: <u>To drum</u> 1.3-3 Gal. Purged 2.1.5		T deg. F		L.,	ORP =			Colar
Vaste Wi itarting T îme Pun Date	aler Dispo îme: np on: _17 Time 	sal: <u>To drum</u> 2:33 Gal. Purged 21.5 22.0	pH	T deg. F 63,9		×	ORP =	н	S.C. (µS/cm)	Colar
Vaste Wi itarting T Time Pun Date	ater Dispo îme: np on: _17  Time  13 : 17	sal: <u>To drum</u> 2:33 Gal. Purged 21.5 22.0 22.5	PH J-22H	T deg. F		x	ORP =	4 R	S.C. (µS/cm) 816	Color
Vaste Wi itarting T îme Pun Date	ater Dispo Time: np on:17 Time : : : : : : : : : : : : : : : : : : :	sal: <u>To drum</u> 2:33 Gal. Purged 21.5 22.0	<u>}'रेन</u>	T deg. F 63.9 63.8 6410		x x x	ORP =	H   U   H	S.C. (µS/cm) 816 807	Color
Vaste Wi itarting T îme Pun Date	aler Dispo ime:	sal: <u>To drum</u> 2:33 Gal. Purged 21.5 22.0 22.5	ા કાર્ય કાર્ટ્ય કાર્ટ્ય કાર્ટ્ય	T deg. F 63.9 63.8 6410		× × ×	ORP =	14 H A H	S.C. (µS/cm) 816 807 . 807	Color
Vaste Wi itarting T îme Pun Date	aler Dispo ime:	sal: <u>To drum</u> 2:33 Gal. Purged 21.5 22.0 22.5	ા કાર્ય કાર્ટ્ય કાર્ટ્ય કાર્ટ્ય	T deg. F 63.9 63.8 6410		× × ×	ORP =	4 4 F 4 4	S.C. (µS/cm) 816 807 . 807	Color
Vaste Wi itarting T îme Pun Date	aler Dispo ime:	sal: <u>To drum</u> 2:33 Gal. Purged 21.5 22.0 22.5	ા કાર્ય કાર્ટ્ય કાર્ટ્ય કાર્ટ્ય	T deg. F 63.9 63.8 6410		× × × × ×	ORP =	11 41 44 14 14 14 14 14 14 14 14 14 14 1	S.C. (µS/cm) 816 807 . 807	Color
Waste Wi Starting T Fime Pun Date	aler Dispo ime:	sal: <u>To drum</u> 2:33 Gal. Purged 21.5 22.0 22.5	ા કાર્ય કાર્ટ્ય કાર્ટ્ય કાર્ટ્ય	T deg. F 63.9 63.8 6410		× × × × × ×	ORP =	<u>с и а</u> в в а в	S.C. (µS/cm) 816 807 . 807	Color
Waste Wi Starting T Fime Pun	aler Dispo ime:	sal: <u>To drum</u> 2:33 Gal. Purged 21.5 22.0 22.5	ા કાર્ય કાર્ટ્ય કાર્ટ્ય કાર્ટ્ય	T deg. F 63.9 63.8 6410		× × × × × × ×	ORP =	u u u u u u u	S.C. (µS/cm) 816 807 . 807	Color

.

.

.

				Form	er Friesman R	anch	property		
Well Iden	tification:	<u>MW-8</u> P	roject Nama		Friesman Roa nore, Californi				ate: 01/12/06
Sampled	by: FE	L GDL JAL	-	West	her Conditions	:			1
Well Loca	ition:		······	Well	Casing Diamel	ər:	<u>X 4-in.</u> 2-in.	Depth of Well C	asing: 23
		p of PVC Casing				5	Final	Depth to Water:	Not measu
Casing Ve	olume (1 v	ol./ 3 vol): 7,	82/	13.45		w	eil Boreh	ole Votume:	
Purging N	•	Centrifugal Purr Grundfos Subm Centrifugal Purr ES-40/-60 Subr PVC Bailer	ersible Pur p/ES-60 S	np ubmersib	-	Samp	oling Meth	od: Peristaltic Pr Grundfos Su PVC Bailer ES Sub. Pur	bmersible P
Purging R	late: Se	e below	Total Disc	harge;			Casi	ng Volumes Purge	ed:
Comment	s:								
		sal: <u>To drum</u>			<del></del>				·····
Waste Waste Wa	ater Dispoi	sal: <u>To drum</u>					D0 =	_0,2	
Waste Waste Wa	ater Dispo	sal: <u>To drum</u>					D0 = 2P =		·····
Waste Waste Wa	ater Dispoi	sal: <u>To drum</u>			Diluted S.C.	01	- +	<mark>0, 2_</mark>  S.C. (µS/cm)	Color
Waste Wa Starting Time Purr	ater Dispo: ime: np on; Time	sal: <u>To drum</u> <b>}: レぐ</b> Gal, Purged		T deg. F	Diluted S.C.	01	₹₽ =	S.C. (µS/cm)	Color
Waste Waste Waste Waste Starting T Time Purr Date	ater Dispo: ime: np on; Time	sal: <u>To drum</u> }: <b>∟</b> K			Diluted S.C.	Oł	RP =	S.C. (µS/cm)	Color
Waste Waste Waste Waste Starting T Time Purr Date	ater Dispo: ime: np on; Time	sal: <u>To drum</u> <b>]: LC</b> Gal, Purged 2.2.0 2.2.5	рн 7.25	T deg. F	Diluted S.C.		RP =	S.C. (µS/cm) 8 11 8 21	Color
Waste Waste Waste Waste Starting T Time Purr Date	ater Dispos ime: np on; 1 Time : 17: So	sal: <u>To drum</u> <b>}: ∟⊄</b> Gal. Purged 2.7.0 2.7.5 2.3.0	рн 7.25	T deg. F 5°4.4	Diluted S.C.		RP =	S.C. (μS/cm) 8 11 8 21 8 25	Color
Waste Waste Waste Waste Starting T Time Purr Date	ater Dispo: ime: 	sal: <u>To drum</u> <b>]: LC</b> Gal, Purged 2.2.0 2.2.5	рн 7.25 7.15	T deg. F 54.4 60, 6	Diluted S.C.		RP =	S.C. (µS/cm) 8 11 8 21 8 25	Color
Waste Waste Waste Waste Starting T Time Purr Date	ater Dispor ime:	sal: <u>To drum</u> <b>}: ∟⊄</b> Gal. Purged 2.7.0 2.7.5 2.3.0	्रम 7.15 7.11	T deg. F 54.4 60.6 61.0	Diluted S.C.		RP =	S.C. (µS/cm) 811 421 625 824	Color
Waste Waste Waste Waste Starting T Time Purr Date	ater Dispo: ime:	sal: <u>To drum</u> <b>}: ∟⊄</b> Gal. Purged 2.7.0 2.7.5 2.3.0	्रम 7.15 7.11	T deg. F 54.4 60.6 61.0	Diluted S.C.		RP =	S.C. (µS/cm) 811 421 525 824	Color
Waste Waste Waste Waste Starting T Time Purr Date	ater Dispos ime:	sal: <u>To drum</u> <b>}: ∟⊄</b> Gal. Purged 2.7.0 2.7.5 2.3.0	्रम 7.15 7.11	T deg. F 54.4 60.6 61.0	Diluted S.C.		RP =	<u>S.C. (µS/am)</u> <u>8 11</u> <u>8 21</u> <u>8 25</u> <u>8 24</u>	Color
Waste Waste Waste Waste Starting T Time Purr Date	ater Dispos ime:	sal: <u>To drum</u> <b>}: ∟⊄</b> Gal. Purged 2.7.0 2.7.5 2.3.0	्रम 7.15 7.11	T deg. F 54.4 60.6 61.0	Diluted S.C.		P =	S.C. (µS/am) 811 421 525 824	Color
Waste Waste Waste Waste Starting T Time Purr Date	ater Dispos ime:	sal: <u>To drum</u> <b>}: ∟⊄</b> Gal. Purged 2.7.0 2.7.5 2.3.0	्रम 7.15 7.11	T deg. F 54.4 60.6 61.0	Diluted S.C.		2P =	<u>S.C. (µS/am)</u> <u>811</u> <u>42(</u> <u>525</u> <u>824</u>	Color

.

.

UbE UL

A GROUND WATER CONSULTANCY

P.O.Box 2165 • Livermore, California 94551 • 510-373-9211

# ATTACHMENT B

# LABORATORY ANALYTICAL REPORT SAMPLE CHAIN OF CUSTODY

#### METHOD SUMMARY

Client: H2OGeol

Job Number: 720-1437-1

#### **ANALYTICAL REPORT**

.

Job Number: 720-1437-1

Job Description: Friesman Ranch Property

For:

H2OGeol PO BOX 2165 Livermore, CA 94550-2165

Attention: Gary Lowe

Description	Lab Location	Method	1	Preparati	on Method
Matrix: Water	······				
Volatile Organic Compounds by GC/MS Purge-and-Trap	STL-SF STL-SF	SW846	82608	SW846	50308
Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)	STL-SF	SW846	80158		
Separatory Funnel Liquid-Liquid Extraction	STL-SF			SW846	3510C

#### LAB REFERENCES:

STL-SF = STL-San Francisco

#### METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And its Updates.

Sharma

Dimple Sharma Project Manager I dsharma@stl-inc.com 01/30/2006

Severn Trent Laboratories, Inc. STL San Francisco 1220 Quarry Lane, Pleasanton, CA 94566 Tel 925-484-1919 Fax 925-484-1096 www.stl-inc.com Page 1 of 34

STL San Francisco

Page 2 of 34

#### SAMPLE SUMMARY

Client: H2OGeol

Job Number: 720-1437-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-1437-1	61/FR/MW-1	Water	01/12/2006 1030	01/13/2006 1046
720-1437-2	61/FR/MW-2	Water	01/12/2006 1700	01/13/2006 1046
720-1437-3	61/FR/MW-3	Water	01/12/2006 1110	01/13/2006 1046
720-1437-4	61/FR/MW-4	Water	01/12/2006 1204	01/13/2006 1046
720-1437-5	61/FR/MW-5	Water	01/12/2006 1550	01/13/2006 1046
720-1437-6	61/FR/MW-6	Water	01/12/2006 1437	01/13/2005 1046
720-1437-7	61/FR/MW-7	Water	01/12/2006 1322	01/13/2006 1046
720-1437-В	61/FR/MW-8	Water	01/12/2006 1755	01/13/2006 1046

Client: H2OGe	:0		Job Number: 720-1437
Client Sample 10	): 61/FR/MW-1		,
Lab Sample ID: Client Matrix;	720-1437-1 Water		Date Sampled: 01/12/2006 1030 Date Received: 01/13/2006 1046
	8260B Vo	platile Organic Compounds by G(	C/MS
Method: Preparation; Dilution: Date Analyzed: Date Prepared:	82608 50308 1.0 01/24/2006 1822 01/24/2006 1822	Analysis Batch: 720-4765	instrument ID: Satum 3900B Lab File ID: c:\saturnws\data\200601\01 Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL
Analyte	· · · · · · · · · · · · · · · · · · ·	Result (ug/L) G	aualifier RL
1,2-Dichloroethan	e	ND	0.50
Benzene		ND	0.50
Ethylbenzene		ND	0.50
MTBE		ND	0.50
TAME		ND	0.50
Foluene Kulonoo Total		ND	0.50
(ylenes, Total fBA		ND ND	1.0
DIPE		ND	5.0
EDB		ND	1.0
	rganics (GRO)-C5-C12	ND	0.50 50
Ethyl tert-butyl eth	er	ND	0.50
Surrogate		%Rec	Acceptance Limits
Toluene-d8		91	77 - 121
1,2-Dichloroethan	e-d4	97	73 - 130

Analytical Data

STL San Francisco

STL San Francisco

Page 4 of 34

Client: H2OGeol Job Number: 720-1437-1 Client Sample ID: 61/FR/MW-2 Lab Sample ID: 720-1437-2 Date Sampled: 01/12/2006 1700 Client Matrix: Water Date Received: 01/13/2006 1046 8260B Volatile Organic Compounds by GC/MS Method: 8260B Analysis Batch: 720-4765 Instrument ID: Saturn 3900B Preparation: 5030B Lab File ID: c:\saturnws\data\200601\01 Dilution: 1.0 Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL 
 Date Analyzed:
 01/24/2006
 1848

 Date Prepared:
 01/24/2006
 1848
 Analyte Result (ug/L) Qualifier RL 1 2-Dichloroethane ND 0.50 1,2-Dichloroet Benzene Ethylbenzene MTBE ND 1.2 1.6 ND ND ND ND ND 05 ND 0.50 0.50 0.50 0.50 0.50 1.0 5.0 TAME Toluene Xylenes, Total TBA DIPE 1.0 0.50 Gasoline Range Organics (GRO)-C5-C12 Ethyl tert-bulyl ether 50 0.50 Surrogate Toluene-d8 %Rec Acceptance Limits . . . . 92 77 - 121 73 - 130 1,2-Dichloroethane-d4

97

Client: H2OGe	01		Job Number: 720-1437
Client Sample ID	: 61/FR/MW-3		
Lab Sample ID; Client Matrix:	720-1437-3 Water		Date Sampled: 01/12/2006 1110 Date Received: 01/13/2006 1046
	8260B V	platile Organic Compounds by G	C/MS
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 01/25/2006 0417 01/25/2006 0417	Analysis Batch: 720-4766	Instrument ID: Satum 3900B Lab File ID: c:tsatumwstratat200601tc Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL
Analyte		Result (ug/L) C	Qualifier RL
1,2-Dichloroethand	3	ND	0,50
Benzene		ND	0.50
Ethylbenzene		ND	0.50
MTBE		ND	0.50
TAME		ND	0.50
Toluene		ND	0.50
Xylenes, Totai TBA		ND	1.0
DIPE		ND	5.0
EDB		ND ND	1.0
	rganics (GRO)-C5-C12	ND	0.50
Ethyl tert-butyl eth	8/ B/	ND	50 0.50
Surrogate	······································	**	Acceptance Limits
Тојџеле-d8		88	77 - 121
1,2-Dichloroethane	n. d.4	100	73 - 130

Analytical Data

STL San Francisco

Page 6 of 34

73 - 130

Client: H2OGepl Job Number: 720-1437-1 Client Sample ID: 61/FR/MW-4 Lab Sample ID; 720-1437-4 Date Sampled: 01/12/2006 1204 Client Matrix: Water Date Received: 01/13/2006 1046 8260B Volatile Organic Compounds by GC/MS Method: 8260B Analysis Batch: 720-4766 Instrument ID: Saturn 3900B Preparation: 5030B Lab File ID: c:\saturnws\data\200601\01 Dilution: 1.0 Initial Weight/Volume: 10 mL 01/25/2006 0442 01/25/2006 0442 Date Analyzed: Final Weight/Volume: 10 mL Date Prepared: Analyte Result (ug/L) Qualifier RL 1.2-Dichloroethane ND 0.50 1,2-Dichloroet Benzene Ethylbenzene MTBE 0.50 0.50 0.50 TAME 0.50 Toluene 0.50 Totuene Xylenes, Total TBA 1.0 5.0 1.0 DIPE EDB 0.50 Gasoline Range Organics (GRO)-C5-C12 Ethyl tert-butyl ether ND ND 50 0.50 Surrogate Toluene-d8 %Rec Acceptance Limits 90 98 * ..... 77 - 121

Client: H2OGe	eol		Job Number: 720-1437-1
Client Sample IC	): 61/FR/MW-6		
Lab Sample ID: Client Matrix:	720-1437-5 Water		Date Sampled: 01/12/2006 1550 Date Received: 01/13/2006 1046
	8260B V	platile Organic Compounds by	/ GC/MS
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	82608 50308 1.0 01/25/2006 0508 01/25/2006 0508	Analysis Batch; 720-4766	Instrument ID: Satum 3900B Lab File ID: c:tsaturnws\data\200601\01 Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL
Analyte		Result (ug/L)	Qualifier RL
1,2-Dichloroethan	0	ND	0.50
Benzene		ND	0.50
Ethy/benzene		2.0	0.50
NTBE FAME		ND	0.50
Toluene		ND	0.50
(yienes, Total		ND	0.50
rea		ND ND	1,0
DIPE		ND	5.0
EDB		ND	1.0
Gasoline Range C	Organics (GRO)-C5-C12	89	0.50 50
Ethyl tert-butyl eth	er	ND	0.50
Surrogate		%Rec	Acceptance Limits
Toluene-d8		91	77 - 121
1,2-Dichloroethan	e-d4	101	73 - 130

.

Analytical Data

STL San Francisco

1.2-Dichloroethane-d4

.

.

Page 8 of 34

Client: H2OGeol Job Number: 720-1437-1 Client Sample ID: 61/FR/MW-6 Lab Sample ID; 720-1437-6 Date Sampled: 01/12/2006 1437 Client Matrix: Water Date Received: 01/13/2006 1046 82608 Volatile Organic Compounds by GC/MS Method: 8260B Analysis Batch: 720-4835 Instrument ID: Varian 3900A Preparation: 5030B Lab File ID: c:\saturnws\data\012506\72 Dilution: 4.0 Initial Weight/Volume: 10 mL Date Analyzed: 01/26/2005 0121 Final Weight/Volume: 10 mL Date Prepared: 01/26/2006 0121 Analyte Result (ug/L) Qualifier RI, 1,2-Dichloroethane -----ND 2.0 Eihylbenzene MTBE 21 2.0 2.0 2.0 2.0 2.0 2.0 33 ND ND ND 18 ND ND ND TAME Toluene Xylenes, Total 2.0 4.0 20 4.0 2.0 200 TBA DIPE ED8 Gasoline Range Organics (GRO)-C5-C12 Ethyl tert-butyl ether 2200 ND 2.0 Surrogate %Rec Acceptance Limits Toluene-d8 87 77 - 121 73 - 130 1,2-Dichloroethane-d4

97

			· ···aiy tou. out
Client: H2OGe	101		Job Number: 720-1437-
Client Sample ID	): 61/FR/MW-7		
Lab Sample ID:	720-1437-7		Date Sampled: 01/12/2006 1322
Client Matrix:	Water		Date Received: 01/13/2006 1046
	8260B V	platile Organic Compounds by	GC/MS
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	82608 50308 1.0 01/26/2006 0037 01/26/2006 0037	Analysis Batch: 720-4835	Instrument ID: Varian 3900A Lab File ID: c:tsaturnwst2ata\012506\72 Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL
Analyte		Result (ug/L)	Qualifier RL
1,2-Dichloroethan	0	NÐ	0.50
Benzene		0.51	0.50
Ethylbenzene		ND	0.50
ATBE		ND	0.50
AME oluene		ND	0.50
(ylenes, Total		ND	0.50
BA		2.8 ND	1.0
NPE		ND	5.0
DB		ND	1.0
Jasoline Range C	rganics (GRO)-C5-C12	230	0.50
Ethyl tert-butyl eth	er	ND	50 0.50
Surrogate		%Rec	Acceptance Limits
Toluene-d8		93	77 - 121
1,2-Dichloroethan	e-d4	92	73 - 130

STL San Francisco

STL San Francisco

Page 10 of 34

Analytical Data

Job Number: 720-1437-1 Client Sample ID: 61/FR/MW-8 Lab Sample ID; 720-1437-8 Date Sampled; 01/12/2006 1755 Client Matrix Water Date Received: 01/13/2006 1046 8260B Volatile Organic Compounds by GC/MS Melhod: 8260B Analysis Batch: 720-4835 Instrument ID: Varian 3900A Preparation: 5030B Lab File ID: c:\saturnws\data\012506\72 Dilution: 1.0 Initial Weight/Volume: 10 mL Date Analyzed: 01/26/2006 0016 Final Weight/Volume: 10 mL Date Prepared: 01/26/2006 0016 Anaivte Result (ug/L) Qualifier RL . . 1 2-Dichloroethane ND 0.50 Benzene ND Benzene Ethylbenzene MTBE TAME 0.50 0.50 0.50 0.50 0.50 0.50 1.0 0.71 ND ND ND ND ND ND ND ND ND S8 ND Toluene Xylenes, Total TBA 5.0 DIPE 1.0 0.50 Gasoline Range Organics (GRO)-C5-C12 50 0,50 Ethyl terl-butyl ether Surrogate %Rec Acceptance Limits Toluene-d8 1,2-Dichloroethane-d4 - - ----90 93 77 - 121 73 - 130

Client: H2OGe	lol		Job Number: 720-1437-1
Client Sample ID	: 61/FR/MW-1		
Lab Sample ID: Client Matrix:	720-1437-1 Water		Date Sampled: 01/12/2006 1030 Date Received: 01/13/2006 1046
81	)15B Nonhalogenated (	Organics using GC/FID -Modifier	d (Diesel Range Organics)
Method: Preparation: Dilution: Date Analyzed: Date Prepared;	80158 3510C 1.0 01/17/2006 1114 01/16/2006 1258	Analysis Batch: 720-4463 Prep Batch: 720-4344	Instrument ID: HP DRO3 Lab File ID: N/A Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL injection Volume: Column ID: PRIMARY
Analyte		Result (ug/L)	Qualifier RL
Diesel Range Org	anics [C10-C28]	ND	So So
Surrogate		%Rec	Acceptance Limits
o-Terphenyl		73	60 - 130

Analytical Data

STL San Francisco

Client: H2OGeol

Page 12 of 34

Client: H2OGe	ol		Job Number: 720-1437-1
Client Sample ID	: 61/FR/MW-2		
Lab Sample ID: Client Matrix:	720-1437-2 Water		Date Sampled: 01/12/2006 1700 Date Received: 01/13/2006 1046
80	15B Nonhalogenated (	Organics using GC/FID -Modified	d (Dieset Range Organics)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6015B 3510C 1.0 01/17/2006 1142 D1/16/2006 1258	Analysis Batch: 720-4463 Prep Batch: 720-4344	Instrument ID: HP DRO3 Lab File ID: N/A Initiat Weight/Volume: 250 mL Finat Weight/Volume: 1 mL trijection Volume: Column ID: PRIMARY
Analyte		Result (ug/L)	Qualifier RL
Diesel Range Orga	anics [010-028]	55	50
Surrogate		%Rec	Acceptance Limits
o-Terphenyl		75	60 - 130

Client: H2OGeo	1		Job Number: 720-1437-
Client Sample ID:	61/FR/MW-3		
Lab Sample ID: Client Matrix:	720-1437-3 Water		Date Sampled: 01/12/2006 1110 Date Received: 01/13/2006 1046
801	5B Nonhalogenated	Organics using GC/FID -Modified	I (Dieset Range Organics)
Preparation: Dilution: Date Analyzed:	80158 3510C 1.0 01/17/2006 1209 01/16/2006 1258	Analysis Batch: 720-4463 Prep Batch: 720-4344	Instrument ID: HP DR03 Lab File ID: N/A Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL Injection Volume: Column ID: PRIMARY
Analyte		Result (ug/i_)	Qualifier RL
Diesel Range Orgar	nics [C10-C28]	ND	50
Surrogate o-Terphenyl		%Rec 70	Acceptance Limits 60 - 130

STL San Francisco

.

Page 14 of 34

Analytical Data

			Analyticas Data
Client: H2OGeo	ł		Job Number: 720-1437-1
Client Sample ID:	61/FR/MW-4		
Lab Sample ID: Client Matrix;	720-1437-4 Water		Date Sampled: 01/12/2006 1204 Date Received: 01/13/2006 1046
801	5B Nonhalogenated (	Organics using GC/FID -Modifie	d (Diesel Range Organica)
- · · ·	80158 3510C 1.0 01/17/2006 1237 01/16/2006 1258	Analysis Bałch: 720-4463 Prep Batch: 720-4344	Instrument ID: HP DRO3 Lab File ID: N/A Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL Injection Volume: Column ID: PRIMARY
Analyte	· · · · · · · · · · · · · · · · · · ·	Result (ug/L)	Qualifier RL
Diesel Range Orgai	nics [C10-C28]	ND	50
Surrogate o-Terphenyl		%Rec 69	Acceptance Limits 60 - 130

Client: H2OGe	01		Job Number: 720-1437-1
Client Sample ID	: 61/FR/MW-5		
Lab Sample ID: Client Matrix:	720-1437-5 Water		Date Sampled: 01/12/2006 1550 Date Received: 01/13/2006 1046
80	15B Nonhalogenated (	Organics using GC/FID -Modifier	d (Diesel Range Organics)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	80158 3510C 1.0 01/17/2006 1305 01/16/2006 1258	Analysis Batch: 720-4463 Prep Batch: 720-4344	Instrument ID: HP DRO3 Lab File ID: N/A Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL Injection Volume: Column ID: PRIMARY
Analyte	· · · · · · · · · · · · · · · · · · ·	Result (ug/L)	Qualifier RL
Diesel Range Orga	anics [C10-C28]	ND	50
Surrogate o-Terphenyl	·	%Rec 71	Acceptance Limits 60 - 130

Analytical Data

.

STL San Francisco

STL San Francisco

Page 16 of 34

Client: H2OGe	ol		Job Number: 720-1437-1
Client Sample ID	: 61/FR/MW-6		
Lab Sample ID: Client Matrix:	720-1437-6 Water		Date Sampled: 01/12/2006 1437 Date Received: 01/13/2006 1046
80	15B Nonhalogenated (	Organics using GC/FID -Modified	I (Diesel Range Organics)
Method: Preparation: Dilution: Date Analyzed; Date Prepared:	8015B 3510C 1.0 01/17/2006 1333 01/16/2006 1258	Analysis Batch: 720-4453 Prep Batch: 720-4344	Instrument ID: HP DRO3 Lab File ID: N/A Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL Injection Volume: Column ID: PRIMARY
Analyte Diesel Range Org	apies IC10-C281	Result (ug/L) 630	Qualifier RL
Surrogate o-Terphenyl		%Rec 60	50 Acceptance Limits 50 - 130

Client: H2OGe	ol		Job Number: 720-1437-1
Client Sample ID	: 61/FR/MW-7		
Lab Sample ID; Client Matrix:	720-1437-7 Water		Date Sampled: 01/12/2006 1322 Date Received: 01/13/2006 1046
8(	15B Nonhalogenated (	Organics using GC/FID -Modifie	d (Diesel Range Organics)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8015B 3510C 1.0 01/19/2006 1211 01/16/2006 1249	Analysis Batch: 720-4607 Prep Batch: 720-4448	Instrument ID: HP DRO3 Lab File iD: N/A Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL Injection Volume: Column ID: PRIMARY
Analyte		Result (vg/L)	Qualifier RL
Diesel Range Org	anics [C10-C28]	61	50
Surrogate o-Terphenyi	· · · · · · · · · · · · · · · · · · ·	%Rec 68	Acceptance Limits 60 - 130

STL San Francisco

STL San Francisco

Page 18 of 34

Analytical Data

.

.

Client: H2OGe	ol		Job Number: 720-1437
Client Sample IC	: 61/FR/MW-8		
Lab Sample ID:	720-1437-8		Date Sampled: 01/12/2006 1755
Client Matrix:	Water		Date Received: 01/13/2006 1046
8	015B Nonhalogenated (	Organics using GC/FID -Modifier	d (Diesel Range Organics)
Method:	80158	Analysis Batch: 720-4607	Instrument ID: HP DRO3
Preparation:	3510C	Prep Batch: 720-4448	Lab File ID: N/A
Dilution:	1.0	•	Initial Weight/Volume: 250 mL
Date Analyzed:	01/19/2006 1238		
Date Prepared:	01/18/2006 1249		Final Weight/Volume: 1 ml. Injection Volume:
			Column ID: PRIMARY
Analyte		Result (ug/L)	Qualifier RI
Diesel Range Org	anics [C10-C28]	52	Qualitier RL 50
Surrogate		%Pac	
o-Terphenyl	1. State 1.	%Rec 72	Acceptance Limits
		12	60 - 130

#### DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

STL San Francisco

Client: H2OGeol

Job Number: 720-1437-1

Client: H2OGeol

QC Association Summary

# Quality Control Results

Job Number: 720-1437-1

#### QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC/MS VOA				
Analysis Batch:720-4	765			· · · · ·
LCS 720-4765/16	Lab Control Spike	Water	8260B	
LCSD 720-4765/15	Lab Control Spike Duplicate	Water	8260B	
VIB 720-4765/17	Method Blank	Water	8260B	
720-1437-1	61/FR/MW-1	Water	8260B	
720-1437-2	61/FR/MW-2	Water	82608	
/20-1478-A-1 MS	Matrix Spike	Water	82608	
720-1478-A-1 MSD	Matrix Spike Duplicate	Water	8260B	
		* C1C1	02000	
Analysis Batch:720-41				
CS 720-4766/17	Lab Control Spike	Water	8260B	
VB 720-4766/18	Method Blank	Water	8260B	
20-1434-C-3 MS	Matrix Spike	Water	8260B	
720-1434-C-3 MSD	Matrix Spike Duplicate	Water	82608	
/20-1437-3	61/FR/MW-3	Water	8260B	
20-1437-4	61/FR/MW-4	Water	8260B	
/20-1437-5	61/FR/MW-5	Water	82605	
Analysis Batch:720-48	335		02000	
CS 720-4835/6	Lab Control Spike			
CSD 720-4835/5	Lab Control Spike Duplicate	Water	82608	
AB 720-4835/7	Method Blank	Water	8260B	
20-1437-6	61/FR/MW-6	Water	8260B	
20-1437-7	61/FR/MW-7	Water	8260B	
20-1437-8	61/FR/MW-8	Water	82608	
20-1644-A-2 MS	Matrix Spike	Water	8260B	
20-1644-A-2 MSD	Matrix Spike Duplicate	Water	8260B	

Lab Sample ID	Client Sample ID	Cilent Matrix	Method	Prep Batch
GC Semi VOA				
Prep Batch: 720-4344	and the second			
LCS 720-4344/2-A	Lab Control Spike	Water	3510C	
LCSD 720-4344/3-A	Lab Control Spike Duplicate	Water	3510C	
MB 720-4344/1-A	Method Blank	Water	3510C	
720-1437-1	51/FR/MW-1	Water	3510C	
720-1437-2	61/FR/MW-2	Water	3510C	
720-1437-3	61/FR/MW-3	Water	3510C	
720-1437-4	61/FR/MW-4	Water	3510C	
720-1437-5	61/FR/MW-5	Water	3510C	
720-1437-6	61/FR/MW-6	Water	3510C	
		++0(G)	00100	
Prep Batch: 720-4448				
LCS 720-4448/2-A	Lab Control Spike	Water	3510C	
LCSD 720-4448/3-A	Lab Control Spike Duplicate	Water	3510C	
MB 720-4448/1-A	Method Blank	Water	3510C	
720-1437-7	61/FR/MW-7	Water	3510C	
720-1437-8	61/FR/MW-8	Water	3510C	
Analysis Batch:720-4	463			
LCS 720-4344/2-A	Lab Control Spike	Water	8015B	720-4344
LCSD 720-4344/3-A	Lab Control Spike Duplicate	Water	8015B	720-4344
MB 720-4344/1-A	Method Blank	Water	80158	720-4344
720-1437-1	61/FR/MW-1	Water	8015B	720-4344
720-1437-2	61/FR/MW-2	Water	8015B	720-4344
720-1437-3	61/FR/MW-3	Water	8015B	720-4344
720-1437-4	61/FR/MW-4	Water	8015B	720-4344
720-1437-5	61/FR/MW-5	Water	8015B	720-4344
720-1437-6	61/FR/MW-6	Water	8015B	720-4344
Analysis Batch:720-46	07			
CS 720-4448/2-A				
CSD 720-4448/3-A	Lab Control Spike	Water	8015B	720-4448
VIB 720-4448/1-A	Lab Control Spike Duplicate Method Blank	Water	8015B	720-4448
20-1437-7		Water	80158	720-4448
720-1437-8	61/FR/MW-7	Water	8015B	720-4448
40-1437-0	61/FR/MW-8	Water	8015B	720-4448

STL San Francisco

Page 21 of 34

STL San Francisco

Page 22 of 34

Client: H2OGeol				wanty control Results
		Job Number: 720-1437-1	Client: H2OGeol	Job Number: 720-1437-1
Method Blank - Batch: 720-4765		Method: 8260B Preparation: 5030B	Laboratory Control/ Laboratory Control Duplicate Recovery Report - Batch: 720-4765	Method: 8260B Preparation: 5030B
Lab Sample ID: MB 720-4765/17 Client Matrix: Water Dikution: 1.0 Date Analyzed: 01/24/2006 1025 Date Prepared: 01/24/2006 1025	Analysis Batch: 720-4765 Prep Batch: N/A Units: ug/L	Instrument (D: Saturn 3900B Lab File ID: c:saturnwsk/ata\200601\0* Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL	LCS Lab Sample ID: LCS 720-4765/16 Analysis Batch: 720-4765 Client Matrix: Water Prep Batch: N/A Dilution: 1.0 Units: ug/L Date Analyzed: 01/24/2006 0933 Date Prepared: 01/24/2006 0933	Instrument ID; Satum 3900B Lab File ID: c:saturmvs/data/200601/0 Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL
Analyte 1,2-Dichloroethane Benzene Ethylbenzene MTBE TAME Tokuene	ND ND ND ND ND ND ND	ua) RL 0.50 0.50 0.50 0.50 0.50 0.50 0.50	LCSD Lab Sample ID: LCSD 720-4765/15 Analysis Batch: 720-4765 Client Matrix: Water Prep Batch: N/A Dilution: 1.0 Units: ug/L Date Analyzed: 01/24/2006 0959 Date Prepared: 01/24/2006 0959	Instrument ID; Saturn 3900B Lab File ID: c:\saturnws\data\200501\012 Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL
Xylenes, Total TBA DIPE EDB	ND ND ND ND	1.0 6.0 1.0 0.50	<u>% Rec.</u> Analyte         LCS         LCSD         Limit           Benzene         109         109         69 - 129	RPD RPD Limit LCS Qual LCSD Qual
Gasoline Range Organics (GRO)-C5-C12 Ethyl tert-butyl ether	ND ND	50 0.50	MTBE 109 69 129 MTBE 114 114 65 165 Toluene 106 108 70 130	0 25 0 25 2 26
Surrogate	% Rec	Acceptance Limits	0	
Toluene-d8 1,2-Dichloroethane-d4	90 86	77 - 121 73 - 130	Surrogate         LCS % Rec         LCSD % F           Toluena-d8         91         91           1,2-Dichloroethane-d4         81         82	tec Acceptance Limits 77 - 121 73 - 130

Calculations are performed before rounding to avoid round-off errors in calculated results,

STL San Francisco

Page 23 of 34

Calculations are performed before rounding to avoid round-off errors in calculated results.

STL San Francisco

Page 24 of 34

Client: H2OGeol

Surrogate

Toluene-d8

1,2-Dichloroethane-d4

STL San Francisco

Method Blank - Batch: 720-4766

Client: H2OGeol							Jot	D Number;	720-1437-1
Matrix Spike/ Matrix Spike Dupli	icate Recovery Re	port - Ba	tch: 720-4	1765			ethod: 8260 reparation: {		
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	720-1478-A-1 MS Water 1.0 01/24/2006 1127 01/24/2006 1127		ysis Batch: Batch: N/A	720-4765		La Ini		lume: 10 j	data\200601\\ nL
MSD Lab Sample ID: Client Matrix: Dilution: Dale Analyzed: Date Prepared:	720-1478-A-1 MSD Water 1.0 01/24/2006 1153 01/24/2006 1153		ysis Batch: Batch: N/A	720-4765	•	La Inj	strument ID: S b File ID: c liat Weight/Vol nal Weight/Vol	:\saturnws\da lume: 10 m	nta/200601/07 L
Anaiyte		<u>%</u> мs	Rec. MSD	Limit		RPD	RPD Limit	MS Qual	MSD Qual
Benzene	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	104	105	69 - 12	à	2	20		MOD Qual
MTBE		109	113	65 - 16	-	3	20		
Toluene		101	102	70 - 13	-	1	20		
Surrogate			MS % Rei	с M	ASD %	Rec	Acce	ptance Limit	e
Toluene-d8			92		11 - 11 - 11 - 11 - 11 - 11 - 11 - 11				•
1,2-Dichloroethane-d4	1		88		9			7 - 121 3 - 130	

			r.10}	alanon: 2020D	
Lab Sample ID: MB 720-4766/18 Client Matrix: Water Dilution: 1.0 Date Analyzed: 01/24/2006 2056 Date Prepared: 01/24/2006 2056	Analysis Batch; Prep Batch: N/A Units: ug/L		Lab i Initia	iment ID: Saturn 390 File ID: c;\saturnw Weight/Volume; 10 Weight/Volume; 10	s\data\200601\0 ml.
Analyte	Resu	h	Qual		RL
1,2-Dichloroethane	ND				
Benzene	ND				0.50
Elhylbenzene	ND				0.50
MTBE	ND				0.50
TAME	ND				0.50 0.50
Toluene	ND				0.50 0.50
Xylenes, Total	ND				1.0
TBA	ND				5.0
DIPE	ND				1.0
EDB	ND				).50
Gasoline Range Organics (GRO)-C5-C12	ND				50
Ethyl tert-bulyl ether	ND			(	0.50
Surrogate	% R	ec	Acc	eptance Limits	
Toluene-d8	94			77 - 121	
1.2-Dichloroethane-d4	88			73 - 130	
Laboratory Control Sample - Batch:	720-4766			od: 8260B aration: 5030B	
Lab Sample ID: LCS 720-4766/17 Client Matrix: Water Ditution: 1.0 Date Analyzed: 01/24/2006 2031 Date Prepared: 01/24/2006 2031	Analysis Batch: Prep Batch: N/A Units: ug/L		Instru Lab F Initial	ment ID: Saturn 390	
Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Benzene	25.0	23	93	69 - 129	
MTBE	25.0	26	103	65 - 165	
Toluene	25.0	24	94	70 - 130	
		2.	<b>U</b> - <del>1</del>	10+ (30	

Calculations are performed before rounding to avoid round-off errors in calculated results.

STL San Francisco

Page 25 of 34

Calculations are performed before rounding to avoid round-off errors in calculated results.

Page 26 of 34

% Rec

92

86

Job Number: 720-1437-1

Quality Control Results

# Method: 8260B Preparation: 5030B

Acceptance Limits

77 - 121

73 - 130

Client: H2OGeol		Job Number: 720-1437-1	Client: H2OGeol			Job Number: 720-1437-1
Matrix Spike/ Matrix Spike Duplicate Reco	overy Report - Batch: 720-4766	Method: 8260B Preparation: 5030B	Method Blank - Batch: 720-4835			Method: 8260B Preparation: 5030B
MS Lab Sample ID: 720-1434-0 Client Matrix: Water Dilution: 1.0 Date Analyzed: 01/24/2006 Date Prepared: 01/24/2006	Prep Batch: N/A 6 2122	Instrument ID: Saturn 3900B Lab File ID: ctsaturnws/data/200601\ Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL	Lab Sample ID: MB 720-4835/7 Client Matrix: Water Dilution: 1.0 Date Analyzed: 01/25/2006 2026 Date Prepared: 01/25/2006 2026	Analysis Batch: 720-4835 Prep Batch: N/A Units: ug/L		Instrument ID: Varian 3900A Lab File ID: c:\saturnws\data\012506\m Initial WeightVolume: 10 mL Final Weight/Volume: 10 mL
MSD Lab Sample ID: 720-1434. Client Matrix: Water Dilution: 1.0 Date Analyzed: 01/24/2006 Date Prepared: 01/24/2006	Prep Batch: N/A 6 2148 6 2148	Instrument ID: Satum 3900B Lab File ID: c:\saturmws\data\200601\0 Inilial Weight/Volume: 10 mL Final Weight/Volume: 10 mL	Analyte 1,2-Dichloroethane Benzene Ethylbenzene MTBE TAME Tokuene	Result ND ND ND ND ND ND ND	Quai	RL 0.50 0.50 0.50 0.50 0.50 0.50
Benzene MTBE Toluene	% Rec.           MS         MSD         Limit           91         91         69 - 129           95         93         65 - 165           93         92         70 - 130	RPD RPD Limit MS Qual MSD Qual 1 20 2 20 1 20	Xylenes, Total TBA DIPE EDB Gasoline Range Organics (GRO)-C5-C12 Ethyl tert-butyl ether	ND ND ND ND ND ND		0.50 1.0 5.0 1.0 0.50 50 0.50
Surrogate Toluene-d8 1,2-Dichloroethane-d4	MS % Rec MSD 94 95 84 86	% Rec Acceptance Limits 77 - 121 73 - 130	Surrogate Toluene-d8 1,2-Dichloroethane-d4	% Rec 89 89		Acceptance Limits 77 - 121 73 - 130

Calculations are performed before rounding to avoid round-off errors in calculated results.

STL San Francisco

Page 27 of 34

Calculations are performed before rounding to avoid round-off errors in calculated results.

STL San Francisco

Page 28 of 34

Client: H2OGeol	Job Number: 720-1437-1	Client: H2OGeol	Job Number: 720-1437-1
Laboratory Control/ Laboratory Control Duplicate Recover	Method: 8260B y Report - Batch: 720-4835 Preparation: 5030B	Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 720-4835	Method: 8260B Preparation: 5030B
LCS Lab Sample ID: LCS 720-4835/6 Client Matrix: Water Dikution: 1,0 Date Analyzed: 01/25/2006 1943 Date Prepared: 01/25/2006 1943	Analysis Batch: 720-4835 Instrument ID; Varian 3900A Frep Batch: N/A Lab File ID: c.\saturnws\data\012506\s Units: ug/L Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL	MS Lab Sample ID; 720-1644-A-2 MS Analysis Batch; 720-48 Client Matrix: Waler Prep Batch: N/A Dilution; 1.0 Date Analyzed; 01/26/2006 0248 Date Prepared; 01/26/2006 0248	35 Instrument ID: Varian 3900A Lab File ID: c:\saturnws\data\012506\ Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL
LCSD Lab Sample ID: LCSD 720-4835/5 Client Matrix: Water Dilution: 1,0 Date Analyzed: 01/25/2006 2004 Date Prepared: 01/25/2006 2004	Analysis Batch: 720-4835 Instrument ID: Varian 3900A Prep Batch: N/A Lab File ID: c:\satumws\data\012506\d-v Units:ug/L Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL	MSD Lab Sample ID: 720-1644-A-2 MSD Analysis Batch: 720-48 Client Matrix: Water Prep Batch: N/A Dijution: 1.0 Date Analyzed: 01/26/2006 0310 Date Prepared: 01/26/2006 0310	35 Instrument ID: Varian 3900A Lab File ID: c:\saturms\/data\012506\7; Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL
Analyle	% Rec. LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual	Analyle MS MSD Lim	it RPD RPD Limit MS Qual MSD Qual
Benzene MTBE Toluene	101         104         69 - 129         3         25           107         106         66 - 165         1         25           113         113         70 - 130         0         25	MTBE 102 111 65	129 9 20 165 9 20 130 7 20
Surrogate Toluene-d8 1,2-Dichloroethane-d4	LCS % Rec LCSD % Rec Acceptance Limits 88 92 77 - 121 87 86 73 - 130	Surrogate MS % Rec Toluene-d8 91 1.2-Dichloroethane-d4 85	MSD % Rec Acceptance Limits 92 77 - 121 86 73 - 130

Calculations are performed before rounding to avoid round-off errors in calculated results.

STL San Francisco

Page 29 of 34

Calculations are performed before rounding to avoid round-off errors in calculated results.

STL San Francisco

Page 30 of 34

Cleff: H2OGel     Deb Number: 720-4347.     Cleff: H2OGel     Deb Number: 720-4367.       Method Bink- Saich: 720-4340     Method: 80158 Preparation: 3510C     Method: 80158 Preparation: 3510C     Method: 80168.			•			Quality Control Results
Propuration: 3900     Product 1018       Lub Sample ID. MB 720-444/1-A Client Mark: Water     Analysis Back: 720-443 Propulation: 200 mL     Analysis Back: 720-443 Propulation: 200 mL     Analysis Back: 720-443 Propulation: 100     Markowski     Instrument ID: HP DRO3 Lab Find Volume: 100     Lab Sample ID: MB 720-4448/1-A Client Mark: Volume: 100     Analysis Back: 720-443 Propulation: 100     Markowski     Instrument ID: HP DRO3 Lab Find Volume: 100     Lab Sample ID: MB 720-4448/1-A Propulation: 100     Analysis Back: 720-443     Markowski     Instrument ID: HP DRO3 Lab Find Volume: 100     Lab Sample ID: MB 720-4448/1-A Propulation: 100     Analysis Back: 720-443     Markowski     Instrument ID: HP DRO3 Lab Find Volume: 100     Lab Sample ID: MB 720-4448/1-A Propulation: 100     Markowski     Instrument ID: HP DRO3 Lab Find Volume: 100     Instrument ID: HP DRO3     Lab Sample ID: MP DRO3     Markowski	Client: H2OGeol		Job Number: 720-1437-1	Client: H2OGeol		Job Number: 720-1437-1
Chen Matrix         Water         Prop. Battle:         ZOL4344         Matrix         Date Analyzate:         Officiation Science         Analyse Battle:         ZOL4344         Instrument (D. HP DRO3           Date Analyzate:         01/16/2006 1526	Method Blank - Batch: 720-4344			Method Blank - Batch: 720-4448		
Dissel Range Organics [C10-C28]         NO         Court         NO         Result         Qualt         RL           Surrogale         % Rev         Acceptance Limits         50         Dissel Range Organics [C10-C28]         ND         So	Client Matrix: Water Dilution: 1.0 Date Analyzed: 01/15/2006 1626	Prep Batch; 720-4344 Lat Units: ug/L Init Fin Inje	ab File ID: N/A Itial Weight/Volume: 250 mL nal Weight/Volume: 1 mL jection Volume:	Client Matrix: Water Dilution: 1.0 Date Analyzed: 01/19/2006 1048	Prep Batch: 720-4448	Lab File ID; N/A Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL Injection Volume:
Disel Range Organics (C10-C28)         ND         Sum of the main sector of the main s			RL.	Analyte	Result Oust	91
Surrogate         % Re_ oTerphenyl         Acceptance Limits         Surrogate         % Re_ oTerphenyl         Acceptance Limits         Acceptance Limits         Surrogate	Diesel Range Organics [C10-C28]	NÐ	50	Diesel Range Organics (C10-C28)		
Laboratory Control/ Laboratory Control Laboratory Control Laboratory Contro	· .	and the second	<ul> <li>Experimental and a second s</li></ul>	Surrogate	% Rec	Acceptance Limits
Client Matrix:       Water       Prep Batch:       720-4344       Instrument ID:       HP DRO3         Dilution:       1.0       Lbs File ID:       N/A       Instrument ID:       HP DRO3       Lbs File ID:       N/A         Date Analyzed:       01/16/2006 1258       10/16/2006 1258       Instrument ID:       HP DRO3       Lbs File ID:       N/A       Initial Weight/Volume:       1 mL       Diate Analyzed:       01/16/2006 115       Diate Analyzed:       01/16/2006 115       Diate Analyzed:       01/16/2006 1249       Instrument ID:       HP DRO3         LCSD Lab Sample ID: LCSD 720-4344/3-A       Analysis Batch:       720-463       Instrument ID:       HP DRO3       Instrument ID:       HP DRO3         Client Matrix:       Water       Valer       Diate Analyzed:       01/16/2006 1249       Analysis Batch:       720-4667       Instrument ID:       HP DRO3         LCSD Lab Sample ID: LCSD 720-4344/3-A       Analysis Batch:       720-4663       Instrument ID:       HP DRO3       Lab File ID:       NA         Dilution:       1.0       Units: ug/L       Instrument ID:       HP DRO3       Lab File ID:       NA       Initial Weight/Volume:       1 mL       File ID:       NA         Dilution:       1.0       Units: ug/L       Instrument ID:       HP DRO3					y Report - Batch: 720-4448	Method: 8015B
Client Matrix:       Water       Prep Batch:       720-4344       Lab File (D: NA       NA       Client Matrix:       Water       Prep Batch:       720-4344       Lab File (D: NA         Dilution:       1.0       Units: ug/L       Initial Weight/Volume:       250 mL       Prep Batch:       720-4448/3A       Analysis Batch:       720-4448/3A       Lab File (D: NA         Diate Analyzed:       01/16/2006 1721       Initial Weight/Volume:       1 mL       Initial Weight/Volume:       250 mL       File (D: NA       Initial Weight/Volume:       1.0       Units: ug/L       Initial Weight/Volume:       250 mL       File (D: NA       Initial Weight/Volume:       1.0       Units: ug/L       Initial Weight/Volume:       250 mL       File (D: NA       Initial Weight/Volume:       1.0       Units: ug/L       Initial Weight/Volume:       250 mL       File (D: NA       File (D: NA       File (D: NA       Initial Weight/Volume:       250 mL       File (D: NA       File (D: NA       File (D: NA       Diate Analyzed:       01/19/2006 1249       Units: ug/L       Initial Weight/Volume:       250 mL       File (D: NA       File	Client Malrix: Water Dilution: 1.0 Date Analyzed: 01/16/2006 1653 Date Prepared: 01/16/2006 1258	Prep Batch: 720-4344 Lab I Units: ug/L Initia Final Injec	File ID: N/A al Weight/Volume: 250 mL al Weight/Volume: 1 mL ction Volume: 1 mL umn ID: PRIMARY	Client Matrix: Water Dilution: 1.0 Date Analyzed: 01/19/2006 1115	Prep Batch: 720-4448	Lab File ID: N/A Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL Injection Volume:
Analyte     LCS     LC	Client Matrix: Water Dilution: 1.0 Date Analyzed: 01/16/2006 1721	Prep Batch: 720-4344 Lab F Units:ug/L Initia Finat Injec Colum	File ID: N/A al Weight/Volume: 250 mL al Weight/Volume: 1 mL ction Volume:	Client Matrix: Water Dilution; 1.0 Date Analyzed: 01/19/2006 1143	Prep Batch: 720-4448	Lab File ID: N/A Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL Injection Volume:
Diesel Range Organics [C10-C28]         71         70         60 - 130         2         30           Surrogate         LCS % Rec         LCSD % Rec         Acceptance Limits         Surrogate         LCS % Rec         LCSD % Rec         Acceptance Limits         Surrogate         LCS % Rec         LCSD % Rec         Acceptance Limits         Surrogate         LCS % Rec         LCSD % Rec         Acceptance Limits	Analyte		RPD Limit LCS Qual LCSD Qual	Analyte		
Surrogate         LCS % Rec         LCS 0% Rec         Acceptance Limits         Surrogate         LCS % Rec         LCS % Rec         Acceptance Limits           o-Terphenyl         79         77         60-130         30         Comparison         Compar	Diesel Range Organics [C10-C28]					
o-Terphenyl 79 77 60-130 cTrephenyl CUS % Rec LUS % Rec Acceptance Limits		LCS % Rec LCSD % Rec				30
			the first second s	· · · · · · · · · · · · · · · · · · ·	<ul> <li>A set of the set of</li></ul>	<ul> <li>A first second seco</li></ul>

# Calculations are performed before rounding to avoid round-off errors in calculated results.

STL San Francisco

Page 31 of 34

Calculations are performed before rounding to avoid round-off errors in calculated results.

STL San Francisco

Page 32 of 34

	301	169		720	) - (	Ľ	137	7					
H.OCEOL		/					C	HAIN	OF (	CUS	TO	ΠV	
1. Soutar	A 6720	1CADE	TER CI	ワンドレイエ	IACI			E: 01/13/					
P.O. BOX 21							Sample	Source		Clat	<u> </u>		
LIVERMORE	E, CALIFOI	RNIA 945	51-2165				Former	Friesma	in Ra	nch n	nan ilu Minai	nto No	үдн.
		Λ					1600 F	riesman	Road		.oper		
SAMPLER(S)	GDL, FEL	· /			-			ore, Calif					
SAMPLER'S SIGN	ATORIC	my	12	7				ANALY	TE	pa i	a ji		
SEND PAPER	COPY OF RE	PORTS TO	ABOVE AND	то				1		Ţ	Γ	ļ	Γ
N_OUTEOL		DIFA TER	CONSUL	TANO	18					ĺ			ß
P O BOX 2165 LIVERMORE, (	5 CALIFORNIA	94551-21	65		Gas/BTEX/Fuel Oxygenates, DCA	EUG DY EPA Method 8260FAB	Method 8015M TEPH-diesel					file	OF CONTAINERS
	5-E	ау ТАТ			lei Oxy	weinoo	M TEP			ĺ		GeoTracker EDF zip file	R OF 0
Report via *.PD	F file of CoC	and lab rec	orts to:		15 8	₹ I	015	Í		ļ		5	NUMBER
Honde EDF op	THE LOT.				10 5	u .	8			1		CK6	ŝ
eMail: h2ogeol					Sas/B'		Aethoc					eoTra	z
SAMPLE ID.	DATE	TIME	MATRIX	LAB ID.	1~ "	"	<b>A</b> .;					No	
61/FR/MW-1	01/12/06	10:30	WATER		X	1	X	1	1			140	5
61/FR/MW-2	01/12/06	17:00	WATER	1	X	-	X	†		f	┟──┤		5
61/FR/MW-3	01/12/06	(1:16	WATER		×		X						5
61/FR/MW-4	01/12/06	1-:04	WATER		X	1	X	t	+				5
61/FR/MW-5	01/12/06	15:50	WATER		X	-	X	<b></b>	-		if		5
61/FR/MW-6	01/12/06	14.77	WATER		X	-	X	†			$ \rightarrow $		5
61/FR/MW-7	01/12/06	(3.22	WATER	1	X	-	X						5
61/FR/MW-8	01/12/06	1755	WATER		x	1	X	<u> </u>	1				
	łł												
				h		╇			<u> </u>				
						+		h	+				
				1		1					+		
				[]		╈			+	+	+		-
			······	[		╈							
						۳ŕ					+		
	Anne	alle	>	SIGNATURE-	11	1	<i>a</i> .	ZC	100	<u> </u>	£		
···· ··· ··· ··· ··· ··· ··· ··· ··· ·	Som	101	TIME	SIGNA (UNE"	100	Y	may	ĽŞ	m				
UNTED NAME	Gary D. Lov		09:30 DATE	PRINTED NAM	IE My	ma				20	пме 0.19	16	
OMPANY	H ₂ OGEOI		01/13/06	COMPANY			$R_{q}(\theta, E)$	<i></i>			DATE		1
CEIVED BY	And	$\sim$	A	RECEIVED BY	148094	un	ÊΥ		_	01/	13/08		_
CNATURE	Mypre	E A	Sec. (1) 1	SIGNATURE	-JA	31	But	1/2	-	,	04	6	
RINTED NAME	Myma R. Lo		9.50 DATE	PRINTED NAM	e -	ī.	Bu	iloce		Ŧ	'IME		
мранч	R _e nse			COMPANY S	STL Sar	٦Fi	rancisco				ATE 01/13/	ine	

TEMP. Z'C

#### LOGIN SAMPLE RECEIPT CHECK LIST

#### Client: H2OGeol

Job Number: 720-1437-1

Login Number: 1437

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with		
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded,	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC,	True	
Samples are received within Holding Time,	True	
Sample containers have legible labels,	True	<i>i</i>
Containers are not broken or leaking,	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

Page 33 of 34

STL San Francisco

Page 34 of 34

# **APPENDIX B**

# ZONE 7 WATER AGENCY-DRILLING PERMIT #26218



### ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

100 NORTH CANYONS PARKWAY, LIVERMORE, CA 94551

PHONE (925) 454-5000

0

December 18, 2006

Mr. Steve Clements SCS Engineers 6601 Koll Center Parkway, Suite 140 Pleasanton, CA 94566

Dear Mr. Clements:

Enclosed is drilling permit 26218 for a contamination investigation at 1600 Freisman Road in Livermore for Children's Hospital. Also enclosed is a current drilling permit application for your files. Drilling permit applications for future projects can also be downloaded from our web site at www.zone7water.com.

Please note that permit conditions A-2 and G requires that a report be submitted after completion of the work. The report should include drilling and completion logs, location sketch, permit number and any analysis of the soil and water samples. Please submit the original of your completion report. We will forward your submittal to the California Department of Water Resources.

If you have any questions, please contact me at extension 5056 or Matt Katen at extension 5071.

Sincerely,

Maman

Wyman Hong // Water Resources Specialist

Enc.

RECEIVED DEC 2 0 2006 SCS ENGINEERS



# ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 454-5728

# DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE

FOR OFFICE USE

Wyman Hon

LOCATION OF PROJECT 1600 Freisman Road.	PERMIT NUMBER 26218
Livermore, CA	WELL NUMBER
	APN 904-0001-001-10
California Coordinates Sourceft. Accuracy•ft.     ft. Accuracy•ft.       CCNft. CCEft.     ft. CCEft.	PERMIT CONDITIONS
	(Circled Permit Requirements Apply)
CLIENT Children's (Attn: Steve Clements P.G) Address 5:225 Dover St Phone (5'0) 423-3360 City Dakland, CA Zip 94609 APPLICANT Name Scs Engineers (Attn: Steve Clements P.G) Fax(925) 240-5629	<ul> <li>A. GENERAL</li> <li>1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date.</li> <li>2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well</li> </ul>
Fax (925) 240-5629 Address 6601 K.1/ Center Pxy, 31.140 Phone (925) 240-5152 City Placenten, CA Zip 94566	<ul> <li>Drillers Report or equivalent for well projects or drilling logs and location sketch for geotechnical projects.</li> <li>Permit is void if project not begun within 90 days of approval date.</li> </ul>
TYPE OF PROJECT	B. WATER SUPPLY WELLS
Well Construction Geotechnical Investigation Cathodic Protection •• General	<ol> <li>Minimum surface seal thickness is two inches of cement grout placed by tremie.</li> </ol>
Water Supply ·· Contamination Monitoring ·· Well Destruction	<ol> <li>Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved.</li> </ol>
PROPOSED WELL USE New Domestic • Irrigation • Municipal • Remediation • •	<ol> <li>An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements.</li> <li>A sample port is required on the discharge pipe near the</li> </ol>
Industrial •• Groundwater Monitoring •• Dewatering ••••••••••••••••••••••••••••••••••••	wellhead. C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS
DRILLING METHOD:	<ol> <li>Minimum surface seal thickness is two inches of cement grout placed by tremie.</li> </ol>
Mud Rotary       •• Air Rotary       Hollow Stem Auger         Cable Tool       •• Direct Push       Other	<ol> <li>Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet.</li> </ol>
DRILLING COMPANY TEG DRILLER'S LICENSE NO. 700568	D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In
WELL PROJECTS Drill Hole Diameterin. Maximum Casing Diameterin. Depthft. Surface Seal Depthft. Number	<ul> <li>areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.</li> <li>E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.</li> <li>WELL DESTRUCTION. See attached.</li> <li>G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after the</li> </ul>
SOIL BORINGS Number of Borings <u>33</u> Maximum Hole Diameter <u>A-in to 3-in</u> in. Depth <u>as</u> ft.	completion of permitted work the well installation report including all soil and water laboratory analysis results.
ESTIMATED STARTING DATE 1/10/37	
ESTIMATED COMPLETION DATE 112 07	the time
	Approved MMILA HOLD Date 12/15/06

I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.

APPLICANT'S Steve Clements P.6. No. 6740 SIGNATURE

ATTACH SITE PLAN OR SKETCH

Revised: April 27, 2005

# **APPENDIX C**

# LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION; GROUNDWATER WELL SAMPLES



"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

SCS Engineers	Client Project ID: #01203087.02; Freisman	Date Sampled: 01/09/07
6601 Koll Center Pkwy, Ste 140	Ranch	Date Received: 01/09/07
Pleasanton, CA 94566	Client Contact: Steve Clements	Date Reported: 01/16/07
	Client P.O.:	Date Completed: 01/16/07

### WorkOrder: 0701173

January 16, 2007

### Dear Steve:

Enclosed are:

- 1). the results of **9** analyzed samples from your **#01203087.02; Freisman Ranch project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

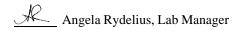
If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

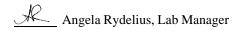
Angela Rydelius, Lab Manager

<u>McCampbell</u>	Analytical	, Inc.				Pittsburg, CA 94565-17 E-mail: main@mccampl					
"When the	Duality Counts"					62 Fax: 925-252-9269					
SCS Engineers	Clie	ent Proje	ect ID:	#01203087.02;	Date S	ampled: 01/09/0	07				
6		isman R		,	-						
6601 Koll Center Pkwy, Ste 14	0				Date Received: 01/09/07						
•	Clie	ent Con	tact: St	eve Clements	Date E	xtracted: 01/10/0	07				
Pleasanton, CA 94566	Clie	ent P.O.:		Date Analyzed 01/10/07							
	Valatila Oracan	ing has D	ое <b>т</b>	CCMC Desis Terres	4 T :~4)*						
	volatile Organ	•		d GC/MS (Basic Targe	t List)*						
Extraction Method: SW5030B	T	Analy	tical Meth	nod: SW8260B		Work	Order: 0'	701173			
Lab ID				0701173-001B							
Client ID		3S/1E 2P3									
Matrix		Water									
Compound	Concentration *	DF	Reporting Limit	Compound		Concentration *	DF	Reportin			
								Limit			
Acetone	ND	1.0	10	Acrolein (Propenal) tert-Amyl methyl ether (TAME)		ND	1.0	5.0			
Acrylonitrile	ND	1.0	2.0 0.5	Bromobenzene	IAME)	ND ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromodichloromethane		ND		0.5			
Bromochloromethane	ND					ND	1.0	0.5			
Bromoform		ND 1.0 0.5 Bromomethane									
2-Butanone (MEK)	ND	1.0	2.0 0.5	t-Butyl alcohol (TBA)		ND	1.0	5.0			
n-Butyl benzene	ND			sec-Butyl benzene		ND	1.0	0.5			
tert-Butyl benzene Carbon Tetrachloride	ND	1.0	0.5	Carbon Disulfide Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND				~ #	ND		0.5			
Chloroform	ND	1.0	0.5	2-Chloroethyl Vinyl Eth Chloromethane	er	ND ND	1.0	1.0			
	ND ND	1.0	0.5			ND		0.5			
2-Chlorotoluene Dibromochloromethane	ND 1.0 0.5			4-Chlorotoluene		ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND	1.0	0.5	1,2-Dibromo-3-chloropr Dibromomethane	opane	ND	1.0	0.5			
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5				
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane		ND	1.0	0.5			
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-		ND	1.0	0.5			
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	DCA)	ND	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5			
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE	)	ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (E	,	ND	1.0	0.5			
Freon 113	ND	1.0	10	Hexachlorobutadiene	IDE)	ND	1.0	0.5			
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5			
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroetha	1e	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene		ND	1.0	0.5			
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5			
				ecoveries (%)							
0/ 881.	9		gate Ke			0.1					
%SS1:	%SS2:		91								


	Analytical, Inc. ality Counts"	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
SCS Engineers	Client Project ID:	#01203087.02;	Date Sampled: 01/09/07					
(CO1 Kell Canter Dimer Sta 140	Freisman Ranch		Date Re	ceived: 01/09/0	7			
6601 Koll Center Pkwy, Ste 140	Client Contact: St	Client Contact: Steve Clements		tracted: 01/10/0	7			
Pleasanton, CA 94566	Client P.O.:		Date An	alyzed 01/10/0	7			
	Volatile Organics by P&T and	l GC/MS (Basic Target	List)*					
Extraction Method: SW5030B	Analytical Meth	Analytical Method: SW8260B Work Ord						
Lab ID		0701173-001B						
Client ID		3S/1E 2P3						
Matrix		Water						
Compound	Concentration * DF Reporting Limit	Compound		Concentration *	DF	Reporting Limit		
Comments:								
* water and vapor samples are reported extracts are reported in mg/L, wipe sa		in mg/kg, product/oil/non-a	queous liqu	aid samples and all	TCLP (	& SPLP		
ND means not detected above the rep	orting limit; N/A means analyte no	t applicable to this analysis	s.					
# surrogate diluted out of range or coo	elutes with another peak; &) low su	rrogate due to matrix interf	erence.					
h) lighter than water immiscible sheer high organic content/matrix interferer		•		•· •				

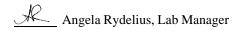
<u>McCampbell</u>	l Analytical	, Inc.				Pittsburg, CA 94565-17 E-mail: main@mccampl			
"When o	Ouality Counts"					62 Fax: 925-252-9269			
SCS Engineers				#01203087.02;	Date S	ampled: 01/09/0	07		
6601 Koll Conton Dirry Sto 14		eisman R	anch		Date Received: 01/09/07				
6601 Koll Center Pkwy, Ste 14	Cli	ent Con	tact: St	eve Clements	Date E	xtracted: 01/11/0	07		
Pleasanton, CA 94566		ent P.O.:				nalyzed 01/11/0	-		
		ciit I .O			Date F		1		
	Volatile Orgar	nics by P	&T and	d GC/MS (Basic Targe	t List)*				
Extraction Method: SW5030B		Analy	tical Meth	nod: SW8260B		Work	Order: 07	701173	
Lab ID				0701173-002B					
Client ID		KMW-1							
Matrix		Water							
		DE	Reporting				DE	Reportir	
Compound	Concentration *	DF	Limit	Compound		Concentration *	DF	Limit	
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether	(TAME)	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane		ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)		ND 1.0 2.0 t-Butyl alcohol (TBA)			ND	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5			ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Eth	er	ND	1.0	1.0	
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5	
2-Chlorotoluene	ND			4-Chlorotoluene		ND	1.0	0.5	
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chlorop	opane	ND	1.0	0.5	
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5	
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethan		ND	1.0	0.5	
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2	-DCA)	ND	1.0	0.5	
1,1-Dichloroethene trans-1,2-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene 1,2-Dichloropropane		ND	1.0	0.5	
1,3-Dichloropropane	ND	1.0	0.5			ND ND	1.0	0.5	
	ND ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5	
1,1-Dichloropropene				cis-1,3-Dichloropropene					
trans-1,3-Dichloropropene Ethylbenzene	ND ND	1.0	0.5	Diisopropyl ether (DIPE Ethyl tert-butyl ether (E		ND ND	1.0 1.0	0.5	
Freon 113	ND	1.0	10	Hexachlorobutadiene	IBE)	ND	1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5	
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5	
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroetha	ne	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5	
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.5	
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene		ND	1.0	0.5	
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5		
				ecoveries (%)					
%SS1:	0	8	Butt M	%SS2:		90			
%SS3:		0		/0002.		90			

	Analytical, Inc. ality Counts"	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
SCS Engineers	-	roject ID: #01203087.02; Date Sampled: 01/0			09/07				
6601 Voll Conton Diverse Sto 140	Freisman Ranch	Freisman Ranch		Received: 01/09/0	7				
6601 Koll Center Pkwy, Ste 140	Client Contact: S	Client Contact: Steve Clements			17				
Pleasanton, CA 94566	Client P.O.:		Date A	analyzed 01/11/0	7				
Extraction Method: SW5030B	Volatile Organics by P&T an Analytical Met	d GC/MS (Basic Targe	t List)*	Work	Order: 0	0701173			
Lab ID		0701173-002B							
Client ID		KMW-1							
Matrix		Water							
Compound	Concentration * DF Reporting	Compound		Concentration *	DF	Reporting Limit			
Comments:									
* water and vapor samples are reporte extracts are reported in mg/L, wipe sa		s in mg/kg, product/oil/non-	aqueous li	quid samples and all	TCLP	& SPLP			
ND means not detected above the rep	oorting limit; N/A means analyte no	ot applicable to this analys	s.						
# surrogate diluted out of range or co	elutes with another peak; &) low s	urrogate due to matrix inter	ference.						
h) lighter than water immiscible sheet high organic content/matrix interfere	1 1 7 1 1	e		57 1					


<u>McCampbell</u>	l Analytica	al, Inc.				Pittsburg, CA 94565-17 E-mail: main@mccampl				
"When o	Ouality Counts"				1	62 Fax: 925-252-9269				
SCS Engineers	С	lient Proie	ct ID:	#01203087.02;	Date S	ampled: 01/09/0	07			
		reisman R		,						
6601 Koll Center Pkwy, Ste 14	0				Date Received: 01/09/07					
···· · · · · · · · · · · · · · · · · ·	C	lient Con	tact: St	eve Clements	Date E	xtracted: 01/11/0	07			
Pleasanton, CA 94566	C	lient P.O.:		Date Analyzed 01/11/07						
	Volatile Orga	anics by P	&T and	d GC/MS (Basic Targe	et List)*					
Extraction Method: SW5030B		Analy	tical Meth	nod: SW8260B		Work	Order: 07	701173		
Lab ID				0701173-003E	3					
Client ID				KMW-2	-					
Matrix		Water								
			Reporting			a		Reportin		
Compound	Concentration	* DF	Limit	Compound		Concentration *	DF	Limit		
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether	(TAME)	ND	1.0	0.5		
Benzene	ND	ND 1.0 0.5 Bromobenzene		ND	1.0	0.5				
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane		ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0		
n-Butyl benzene	ND	ND 1.0 0.5		sec-Butyl benzene			1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Eth	ner	ND	1.0	1.0		
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chlorop	ropane	ND	1.0	0.5		
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5		
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5		
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethan	e	ND	1.0	0.5		
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2	-DCA)	ND	1.0	0.5		
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene		ND	1.0	0.5		
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5		
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5		
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	e	ND	1.0	0.5		
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPI	E)	ND	1.0	0.5		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (H	ETBE)	ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5		
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroetha	ne	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene		ND	1.0	0.5		
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5		
		Surro	ogate Re	coveries (%)						
%SS1:		99		%SS2:		89				
%SS3:		90								

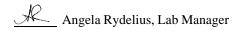
McCampbell	Analytical, Duality Counts"	Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
SCS Engineers			Project ID: #01203087.02; Date Sampled: 01/09			9/07			
((01 Kall Cantan Dimme Sta 14)		sman Ranch		Date R	eceived: 01/09/0	)7			
6601 Koll Center Pkwy, Ste 14	Clier	Client Contact: Steve Clements			xtracted: 01/11/0	)7			
Pleasanton, CA 94566	Clien	nt P.O.:		Date A	nalyzed 01/11/0	)7			
	Volatile Organic	es by P&T and	d GC/MS (Basic Target	: List)*					
Extraction Method: SW5030B		Analytical Method: SW8260B Work Order: 07011							
Lab ID		0701173-003B							
Client ID			KMW-2						
Matrix			Water						
Compound	Concentration *	DF Reporting Limit	Compound		Concentration *	DF	Reporting Limit		
Comments:									
* water and vapor samples are reported in mg/L, wipe		ge/solid samples	in mg/kg, product/oil/non-a	queous li	quid samples and all	TCLP	& SPLP		
ND means not detected above the re-	eporting limit; N/A m	neans analyte no	ot applicable to this analysi	8.					
# surrogate diluted out of range or c	coelutes with another	peak; &) low su	arrogate due to matrix inter	ference.					
h) lighter than water immiscible she			e		· 5/ 1				
high organic content/matrix interfer	rence; k) reporting lir	mit near, but not	t identical to our standard r	eporting l	imit due to variable	Encore	sample		




<u>McCampbell</u>	<u>McCampbell Analytical, Inc.</u>					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com						
"When the	Duality Counts"			1		62 Fax: 925-252-9269						
SCS Engineers	Clie	nt Proie	ect ID:	#01203087.02;	Date S	ampled: 01/09/0	07					
		isman R		,								
6601 Koll Center Pkwy, Ste 14	0				Date Received: 01/09/07							
	Clie	ent Con	tact: St	eve Clements	Date E	xtracted: 01/11/0	07					
Pleasanton, CA 94566	Clie	ent P.O.:			Date A	nalyzed 01/11/0	07					
						5						
	Volatile Organi	ics by P	'&T and	d GC/MS (Basic Targe	t List)*							
Extraction Method: SW5030B		Analy	ytical Meth	nod: SW8260B		Work	Order: 07	701173				
Lab ID				0701173-004B								
Client ID				KMW-3								
Matrix		Water										
Compound	Concentration *	DF	Reporting	Compound		Concentration *	DF	Reportin				
			Limit					Limit				
Acetone	ND	1.0	10	Acrolein (Propenal)	TANE>	ND	1.0	5.0				
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (	IAME)	ND	1.0	0.5				
Benzene		ND 1.0 0.5 Bromobenzene		ND	1.0	0.5						
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane		ND	1.0	0.5				
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5				
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0				
n-Butyl benzene	ND			sec-Butyl benzene		ND	1.0	0.5				
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5				
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5				
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ethe	er	ND	1.0	1.0				
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5				
2-Chlorotoluene	ND 1.0		0.5	4-Chlorotoluene		ND	1.0	0.5				
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropr	opane	ND	1.0	0.5				
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5					
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5				
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane		ND	1.0	0.5				
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-	DCA)	ND	1.0	0.5				
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene		ND	1.0	0.5				
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5				
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5				
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5				
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE	-	ND	1.0	0.5				
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (E	FBE)	ND	1.0	0.5				
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5				
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5				
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5				
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5				
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5				
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5				
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethan Tetrachloroethene	le	ND	1.0	0.5				
1,1,2,2-Tetrachloroethane Toluene	ND ND	1.0	0.5			ND ND	1.0	0.5				
	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5				
1,2,4-Trichlorobenzene 1,1,2-Trichloroethane	ND ND	1.0	0.5	1,1,1-Trichloroethane Trichloroethene		ND ND	1.0	0.5				
Trichlorofluoromethane	ND ND	1.0	0.5			ND ND	1.0	0.5				
	ND ND	1.0	0.5	1,2,3-Trichloropropane 1,3,5-Trimethylbenzene		ND ND	1.0					
1,2,4-Trimethylbenzene	ND ND	1.0 1.0	0.5			ND	1.0 1.0	0.5				
Vinvl Chloride	ND			Xvlenes		ND	1.0	0.5				
			ogate Re	coveries (%)		1						
%SS1:	99	)		%SS2:		89						

	Analytical, Inc.	Web: www.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
SCS Engineers	5	ID: #01203087.02;	Date S	ampled: 01/09/0	)7				
((01 Kall Cantar Dimm. Sta 140		Freisman Ranch		Received: 01/09/0	)7				
6601 Koll Center Pkwy, Ste 140	Client Contact	t: Steve Clements	Date E	Extracted: 01/11/0	)7				
Pleasanton, CA 94566	Client P.O.:		Date A	Analyzed 01/11/0	)7				
Extraction Method: SW5030B	Volatile Organics by P&7	<b>Γ and GC/MS (Basic T</b> al Method: SW8260B	arget List)*	Work	Order: 0	0701173			
Lab ID		0701173-004B							
Client ID		KMW	-3						
Matrix		Wate	r						
Compound		Limit Compou	nd	Concentration *	DF	Reporting Limit			
Comments:									
* water and vapor samples are reported extracts are reported in mg/L, wipe sa		nples in mg/kg, product/oi	/non-aqueous li	quid samples and all	TCLP	& SPLP			
ND means not detected above the re	porting limit; N/A means analy	te not applicable to this a	nalysis.						
# surrogate diluted out of range or co	pelutes with another peak; &) le	ow surrogate due to matrix	interference.						
h) lighter than water immiscible shee high organic content/matrix interfere				• •					




<u>McCampbell</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com									
"When C	Duality Counts"			Telephone:	877-252-92	62 Fax: 925-252-9269	)				
SCS Engineers	Clie	ent Proje	ect ID:	#01203087.02;	Date S	ampled: 01/09/0	07				
6		isman R		,							
6601 Koll Center Pkwy, Ste 140	0 0				Date Received: 01/09/07						
	Clie	ent Con	tact: St	eve Clements	Date E	xtracted: 01/11/0	17				
Pleasanton, CA 94566	Clie	ent P.O.:		Date Analyzed 01/11/07							
	Volatile Organ	ics by P	&T and	d GC/MS (Basic Targe	t List)*						
Extraction Method: SW5030B	volatile Organ	•		nod: SW8260B	( List)	Work	Order: 07	01172			
		Allary	lical Meti			WOIK	oluel. 07	01173			
Lab ID				0701173-005B							
Client ID		KMW-4									
Matrix			Depenting	Water		1		Donosti			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reportir Limit				
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0			
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether	(TAME)	ND	1.0	0.5			
Benzene	ND	ND 1.0 0.5 Bromobenzene		ND	1.0	0.5					
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane		ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0			
n-Butyl benzene	ND	ND 1.0 0.5 sec-Butyl benzene		ND	1.0	0.5					
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Eth	er	ND	1.0	1.0			
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5			
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropr	opane	ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5			
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5			
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	e	ND	1.0	0.5			
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-	DCA)	ND	1.0	0.5			
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene		ND	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5			
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE	)	ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (E	TBE)	ND	1.0	0.5			
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5			
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5			
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroetha	ne	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5				
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5			
	1	Surro	ogate Re	coveries (%)		1					
%SS1:	99	)		%SS2:		89					

When	<b>l Analytic</b> Ouality Counts"	al, Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
SCS Engineers	(	Client Project II	D: #0120	3087.02;	Date Sampled: 01/09/07				
((01 Kall Cantan Diama Sta 1)		Freisman Ranch			Date R	Received: 01/09/0	)7		
6601 Koll Center Pkwy, Ste 14	•0	Client Contact: Steve Clements		Date E	xtracted: 01/11/0	)7			
Pleasanton, CA 94566	Pleasanton, CA 94566 Client P.O.:				Date A	nalyzed 01/11/0	)7		
	Volatile Org	anics by P&T	and GC	MS (Basic Targe	t List)*				
Extraction Method: SW5030B		Analytical Method: SW8260B Work Order: 0							
Lab ID		0701173-005B							
Client ID				KMW-4					
Matrix				Water					
Compound	Concentration		orting mit	Compound		Concentration *	DF	Reporting Limit	
Comments:									
* water and vapor samples are reported in mg/L, wipe	10	0	ples in mg	kg, product/oil/non-a	aqueous li	quid samples and all	TCLP	& SPLP	
ND means not detected above the	reporting limit; N	A means analyt	e not appl	cable to this analysi	s.				
# surrogate diluted out of range or	coelutes with and	other peak; &) lov	w surrogat	e due to matrix inter	ference.				
h) lighter than water immiscible sh	een/product is pro	esent; i) liquid sa	mple that	contains greater than	~1 vol. %	5 sediment; j) sampl	e dilute	d due to	
high organic content/matrix interfe	erence; k) reportin	ng limit near, but	t not ident	cal to our standard r	eporting l	imit due to variable	Encore	e sample	

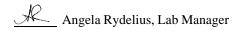


<u>McCampbell</u>	Analytical	, Inc.				Pittsburg, CA 94565-17 E-mail: main@mccampl		
"When the	Duality Counts"			1		62 Fax: 925-252-9269		
SCS Engineers	Clie	ent Proje	ect ID:	#01203087.02;	Date S	ampled: 01/09/07		
		isman R		,		-		
6601 Koll Center Pkwy, Ste 14	0				Date R	leceived: 01/09/0	//	
<b>2</b> 2	Clie	ent Con	tact: St	eve Clements	xtracted: 01/11/0	07		
Pleasanton, CA 94566	Clie	ent P.O.:		Date Analyzed 01/11/07				
	Valatila Oscard	· 1 T	о <b>т</b>		T			
	Volatile Organ	ics by P	& T and	d GC/MS (Basic Target	: List)*			
Extraction Method: SW5030B		Analy	tical Meth	nod: SW8260B		Work	Order: 07	701173
Lab ID				0701173-006B				
Client ID				KMW-5				
Matrix				Water				
Compound	Concentration *	DF	Reporting	Compound		Concentration *	DF	Reporti
		1	Limit					Limi
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (	TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane		ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.:
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.:
Carbon Tetrachloride	ND	1.0			ND	1.0	0.:	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ethe	er	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.:
2-Chlorotoluene	ND			4-Chlorotoluene		ND	1.0	0.:
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropro	opane	ND	1.0	0.:
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.:
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.:
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	D.G.L.	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-	DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene		ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.:
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)		ND	1.0	0.:
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (E	IBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.
Nitrobenzene	ND	1.0	10	n-Propyl benzene	-	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethan Tetrachloroethene	e	ND	1.0	0.
1,1,2,2-Tetrachloroethane Toluene	ND ND	1.0	0.5			ND ND	1.0	0.5
1.2.4-Trichlorobenzene	ND ND	1.0	0.5	1,2,3-Trichlorobenzene 1,1,1-Trichloroethane		ND ND	1.0 1.0	0.1
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,2,5-Trimethylbenzene		ND	1.0	0.
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.
						ND	1.0	0.
			ogate Re	ecoveries (%)				
%SS1:	98	3		%SS2:		89		

	Analytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
SCS Engineers	5	D: #01203087.02; Date Sampled: 0			7	
((01 Kall Conton Dimm. Sta 140	Freisman Ranch	l	Date F	Received: 01/09/0	7	
6601 Koll Center Pkwy, Ste 140	Client Contact:	Steve Clements	Date E	Extracted: 01/11/0	07	
Pleasanton, CA 94566	Client P.O.:		Date A	Analyzed 01/11/0	7	
Extraction Method: SW5030B	Volatile Organics by P&T a	and GC/MS (Basic Targe Method: SW8260B	et List)*	Work	Order: ()	0701173
Lab ID		0701173-006E				
Client ID		KMW-5				
Matrix		Water				
Compound	Concentration * DF Report			Concentration *	DF	Reporting Limit
Comments:						
* water and vapor samples are reported extracts are reported in mg/L, wipe sates are reported in mg/L.		les in mg/kg, product/oil/non-	aqueous li	quid samples and all	TCLP	& SPLP
ND means not detected above the re	porting limit; N/A means analyte	e not applicable to this analys	is.			
# surrogate diluted out of range or co	pelutes with another peak; &) low	v surrogate due to matrix inte	rference.			
h) lighter than water immiscible shee high organic content/matrix interfere				•· •		



<u>McCampbell</u>	l Analytica	al, Inc.				Pittsburg, CA 94565-17 E-mail: main@mccamp		
"When o	Ouality Counts"			Telephone:	877-252-92	62 Fax: 925-252-926	)	
SCS Engineers	(	Client Proje	ect ID:	#01203087.02;	Date S	Sampled: 01/09/07		
C		Freisman F		,		Received: 01/09/0	07	
6601 Koll Center Pkwy, Ste 14				C1				
	(	Client Con	tact: St	eve Clements	xtracted: 01/11/0	)7		
Pleasanton, CA 94566	0	Client P.O.		Date Analyzed 01/11/07				
	Volatile Org	anics by H	&T an	d GC/MS (Basic Targe	t List)*			
Extraction Method: SW5030B	, on the org	•		nod: SW8260B		Work	Order: 07	701173
		7 1141	y tiear wiet			WOIK	oldel. 01	01175
Lab ID				0701173-007B				
Client ID				KMW-6				
Matrix			Reporting	Water				Reportir
Compound	Concentration	ı∗ DF	Limit					Limit
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (	(TAME)	ND	1.0	0.5
Benzene	3.1	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5					0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0
n-Butyl benzene	0.60	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether		ND	1.0	1.0
Chloroform	ND	1.0	0.5 Chloromethane		ND	1.0	0.5	
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropr	opane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	;	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-	DCA)	0.72	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene		ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE	)	ND	1.0	0.5
Ethylbenzene	1.9	1.0	0.5	Ethyl tert-butyl ether (E	TBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5
Isopropylbenzene	1.1	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		3.2	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene		1.8	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethan	ne	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene		ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes		0.65	1.0	0.5
		Surr	ogate Re	coveries (%)				
%SS1:		94		%SS2:		87		
%SS3:		87						


	Analytical, Inc. ality Counts"	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
SCS Engineers	Client Project ID:	#01203087.02;	Date S	ampled: 01/09/0	17	
6601 Voll Conton Diverse Sta 140	Freisman Ranch		Date R	Received: 01/09/0	7	
6601 Koll Center Pkwy, Ste 140	Client Contact: S	Steve Clements	Date E	xtracted: 01/11/0	07	
Pleasanton, CA 94566	Client P.O.:		Date A	analyzed 01/11/0	7	
Extraction Method: SW5030B	Volatile Organics by P&T an Analytical Me	nd GC/MS (Basic Targe ethod: SW8260B	t List)*	Work	Order: 0	0701173
Lab ID		0701173-007B				
Client ID		KMW-6				
Matrix		Water				
Compound	Concentration * DF Reportin			Concentration *	DF	Reporting Limit
Comments:						
* water and vapor samples are reported extracts are reported in mg/L, wipe sa		es in mg/kg, product/oil/non-	aqueous li	quid samples and all	TCLP	& SPLP
ND means not detected above the rep	orting limit; N/A means analyte 1	not applicable to this analysi	s.			
# surrogate diluted out of range or coo	elutes with another peak; &) low	surrogate due to matrix inter	ference.			
h) lighter than water immiscible sheer high organic content/matrix interferer		Ũ		. 57 1		

<u>McCampbell</u>	Analytical	, Inc.				Pittsburg, CA 94565-17 E-mail: main@mccampl		
"When C	Duality Counts"			1		62 Fax: 925-252-9269		
SCS Engineers	Clie	ent Proie	ect ID:	#01203087.02;	Date S	ampled: 01/09/07		
		isman R		,		-		
6601 Koll Center Pkwy, Ste 14	0				Date R	leceived: 01/09/0	)/	
<u>,</u>	Clie	ent Con	tact: St	eve Clements	xtracted: 01/11/0	07		
Pleasanton, CA 94566	Clie	ent P.O.:			Date A	nalyzed 01/11/0	07	
							-	
	Volatile Organ	ics by P	P&T and	d GC/MS (Basic Target	: List)*			
Extraction Method: SW5030B		Analy	ytical Meth	nod: SW8260B		Work	Order: 07	701173
Lab ID				0701173-008B				
Client ID				KMW-7				
Matrix				Water				
Compound	Concentration *	DF	Reporting	Compound		Concentration *	DF	Reportin
			Limit					Limit
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (	TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane		ND 1.0 0.5		2-Chloroethyl Vinyl Ethe	er	ND	1.0	1.0
Chloroform		ND 1.0 0.5		Chloromethane		ND	1.0	0.5
2-Chlorotoluene	ND			4-Chlorotoluene		ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropro	opane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane		ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-	DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene		ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)		ND	1.0	0.5
Ethylbenzene	0.57	1.0	0.5	Ethyl tert-butyl ether (ET	FBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		0.72	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethan	e	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.5
1,2,4-Trimethylbenzene	1.3	1.0	0.5	1,3,5-Trimethylbenzene		ND 2.2	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes		3.2	1.0	0.5
		Surre	ogate Re	ecoveries (%)				
%SS1:	9	6		%SS2:			ŧ	

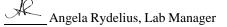
	Analytical, Inc.	Web: www.mcc	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
SCS Engineers	5	D: #01203087.02;	D: #01203087.02; Date Sampled: 01/0				
((01 Kall Conton Dimme Sta 140	Freisman Ranc	ch	Date F	Received: 01/09/0	)7		
6601 Koll Center Pkwy, Ste 140		: Steve Clements	Date E	Extracted: 01/11/0	)7		
Pleasanton, CA 94566		Date A	Analyzed 01/11/0	)7			
Extraction Method: SW5030B	Volatile Organics by P&T Analytical	T and GC/MS (Basic Tar Method: SW8260B	get List)*	Work	Order: (	)701173	
Lab ID	· · · · ·	0701173-008	B				
Client ID		KMW-7					
Matrix		Water					
Compound		orting imit Compound		Concentration *	DF	Reporting Limit	
Comments:							
* water and vapor samples are report extracts are reported in mg/L, wipe s	amples in µg/wipe.			iquid samples and all	TCLP	& SPLP	
ND means not detected above the re	porting limit; N/A means analy	te not applicable to this anal	ysis.				
# surrogate diluted out of range or co	pelutes with another peak; &) lo	ow surrogate due to matrix in	terference.				
h) lighter than water immiscible shee high organic content/matrix interfere	1 1 1 1	1 0		57 1			

<u>McCampbell</u>	Analytical	, Inc.				Pittsburg, CA 94565-17 E-mail: main@mccampl		
"When	Duality Counts"				1	62 Fax: 925-252-9269		
SCS Engineers	Clie	ent Proje	ect ID:	#01203087.02;	Date S	ampled: 01/09/07		
		isman R		,		-		
6601 Koll Center Pkwy, Ste 14	0					Received: 01/09/0		
•	Clie	ent Con	tact: St	eve Clements	xtracted: 01/11/0	07		
Pleasanton, CA 94566	Clie	ent P.O.:		Date Analyzed 01/11/07				
	Valatila Orecor	ing has D	9. Т. а. т.	LCC/MC (Desta Tana	4 T :~4)*			
	volatile Organ	-		d GC/MS (Basic Targe	et List)*			
Extraction Method: SW5030B	T	Analy	tical Meth	nod: SW8260B		Work	Order: 07	701173
Lab ID				0701173-009B				
Client ID				KMW-8				
Matrix				Water				
Compound	Concentration *							Reportin
			Limit					Limit
Acetone	ND	1.0	10	Acrolein (Propenal)		ND ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0 0.5	tert-Amyl methyl ether Bromobenzene	(IAME)	ND ND	1.0 1.0	0.5
Benzene	ND	1.0	0.5	Bromodichloromethane	ND		0.5	
Bromochloromethane	ND	1.0	0.5		ND	1.0 1.0	0.5	
Bromoform	ND			Bromomethane				-
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene Carbon Disulfide		ND	1.0	0.5
tert-Butyl benzene Carbon Tetrachloride	ND	1.0	0.5	Carbon Disulfide Chlorobenzene		ND	1.0 1.0	0.5
Chloroethane		ND         1.0         0.5           ND         1.0         0.5				ND		0.5
Chloroform	ND	1.0		2-Chloroethyl Vinyl Eth Chloromethane	er	ND ND	1.0 1.0	1.0
	ND	1.0	0.5	4-Chlorotoluene		ND		-
2-Chlorotoluene Dibromochloromethane	ND	ND 1.0 0.5 1,2-Dibromo-3-chloropro			ND	1.0 1.0	0.5	
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	opane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethan	2	ND	1.0	0.5
1	ND	1.0	0.5	1,2-Dichloroethane (1,2		ND	1.0	0.5
1,1-Dichloroethane		1.0			-DCA)		1.0	
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene 1,2-Dichloropropane		ND	1.0	0.5
trans-1,2-Dichloroethene	ND		0.5	2,2-Dichloropropane		ND		0.5
1,3-Dichloropropane	ND	1.0	0.5			ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0 1.0	0.5	Diisopropyl ether (DIPE	<i>,</i>	ND ND	1.0 1.0	0.5
Ethylbenzene Freon 113	ND ND	1.0	0.5	Ethyl tert-butyl ether (E	IBE)	ND	1.0	0.5
Hexachloroethane	ND			Hexachlorobutadiene		ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	2-Hexanone			1.0	0.5
Methyl-t-butyl ether (MTBE)		1.0		4-Isopropyl toluene Methylene chloride		ND ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5
	ND	1.0		n-Propyl benzene			1.0	0.5
Nitrobenzene Styrene	ND ND	1.0	10 0.5	1,1,1,2-Tetrachloroetha	ne	ND ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	110	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene		ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5
				coveries (%)			1.0	
0/ 001			igate Ke			- ~		
%SS1:	9	8		%SS2:		90		

	Analytical, Inc	2.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
SCS Engineers		•	#01203087.02;	Date Sampled: 01/09/07				
6601 Koll Contor Dirury Sta 140	Freisman	Ranch		Date F	Received: 01/09/0	)7		
6601 Koll Center Pkwy, Ste 140		ontact: St	eve Clements	Date E	xtracted: 01/11/0	)7		
Pleasanton, CA 94566	asanton, CA 94566 Client P.O.:				Analyzed 01/11/0	)7		
	e .		d GC/MS (Basic Targe	t List)*	XX 1		201122	
Extraction Method: SW5030B	An	alytical Meth	nod: SW8260B		Work	Order: (	0701173	
Lab ID			0701173-009B					
Client ID			KMW-8					
Matrix			Water					
Compound	Concentration * DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit	
Comments:								
* water and vapor samples are report extracts are reported in mg/L, wipe s		id samples	in mg/kg, product/oil/non-a	aqueous li	quid samples and all	TCLP	& SPLP	
ND means not detected above the re	porting limit; N/A means	analyte no	ot applicable to this analysi	s.				
# surrogate diluted out of range or co	belutes with another peak	; &) low su	prrogate due to matrix inter	ference.				
h) lighter than water immiscible shee high organic content/matrix interfere	1 1		e		. 57 1			



<u> </u>	"When Ouality Counts"	cal,	Inc.	Web: www.mcc	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
SCS Engineers			nt Project ID: sman Ranch	#01203087.02;	Date Sampled: 01/	/09/07				
6601 Koll Center Pk	wy, Ste 140	FIEls	sman Kanch		Date Received: 01/	/09/07				
Pleasanton, CA 945	66	Clie	nt Contact:	Steve Clements	/10/07-01/	12/07				
		Clier	nt P.O.:		Date Analyzed 01/	/10/07-01/	12/07			
Gasoline Range( Extraction method SW5030		olvent	-	C12) Volatile Hydrocar thods SW8015Cm	bons as Gasoline & Stode	lard Solve Work Order				
Lab ID	Client ID		Matrix	TPH(g)	TPH(ss)	DF	% SS			
0701173-001A	3S/1E 2P3		W	ND	ND	1	97			
0701173-002A	KMW-1		w	ND	ND	1	114			
0701173-003A	KMW-2		w	ND	ND	1	100			
0701173-004A	KMW-3		w	ND	ND	1	108			
0701173-005A	KMW-4		w	ND	ND	1	98			
0701173-006A	KMW-5		w	ND	ND	1	101			
0701173-007A	KMW-6		w	180,a	70	1	122			
0701173-008A	KMW-7		w	330,a	110	1	113			
0701173-009A	KMW-8		W	ND	ND	1	98			


Reporting Limit for DF $=1$ ;	W	50	50	μg/L
ND means not detected at or	S	NA	NA	mg/Kg
above the reporting limit	3	INA	NA	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised

DHS ELAP Certification Nº 1644



<u>McC</u>	ampbell Analyti	cal, Inc.	Web: w	ww.mccamp	bell.com E-mail: main	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
SCS Engineers 6601 Koll Center F		Client Project ID: Freisman Ranch	•	02; Date Sampled: 01/09/07 Date Received: 01/09/07							
Pleasanton, CA 94	-	Client Contact: St Client P.O.:	eve Clements		Date Extracted: Date Analyzed		6/07				
Extraction method E200.	8	Lead by Analytical m	ICP-MS* ethods E200.8		<u> </u>	Work Ore	ler: 070	)1173			
Lab ID	Client ID	Matrix	Extraction		Lead		DF	% SS			
0701173-001C	3S/1E 2P3	W	DISS.		ND		1	N/A			
0701173-002C	KMW-1	W	DISS.		ND		1	N/A			
0701173-003C	KMW-2	W	DISS.		ND		1	N/A			
0701173-004C	KMW-3	W	DISS.		ND		1	N/A			
0701173-005C	KMW-4	W	DISS.		ND		1	N/A			
0701173-006C	KMW-5	W	DISS.		ND		1	N/A			
0701173-007C	KMW-6	W	DISS.		ND		1	N/A			
0701173-008C	KMW-7	W	DISS.		ND		1	N/A			
0701173-009C	KMW-8	w	DISS.		ND		1	N/A			

Reporting Limit for $DF = 1$ ;	W	DISS.	0.5	μg/L
ND means not detected at or above the reporting limit	S	TTLC	NA	mg/Kg

*water samples are reported in  $\mu g/L$ , product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/wipe$ , filter samples in  $\mu g/filter$ .

# means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than  $\sim 1$  vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.



<u> </u>	ampbell Analyti "When Ouality Counts"	cal, Inc.	Web: www.mccamp	Pass Road, Pittsburg, CA 94565 obell.com E-mail: main@mcca 877-252-9262 Fax: 925-252-9	mpbell.com	
SCS Engineers 6601 Koll Center F	Pkwy, Ste 140	Client Project ID: Freisman Ranch	#01203087.02;	Date Sampled:01/0Date Received:01/0		
Pleasanton, CA 94	566	Client Contact: Client P.O.:	Steve Clements	Date Extracted: 01/09 Date Analyzed 01/10		1/07
Extraction method SW35			Hydrocarbons with Silica	-	ork Order:	070117
Lab ID	Client ID	Matrix	TPH(d)	)	DF	% SS
0701173-001A	3S/1E 2P3	W	ND		1	96
0701173-002A	KMW-1	w	ND		1	82
0701173-003A	KMW-2	w	ND		1	88
0701173-004A	KMW-3	W	ND	1	94	
0701173-005A	KMW-4	W	ND			
0701173-006A	KMW-5	W	ND		1	93
0701173-007A	KMW-6	W	53,d		1	87
0701173-008A	KMW-7	W	84,d		1	87
0701173-009A	KMW-8	W	ND		1	93

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples are reported in  $\mu$ g/L, wipe samples in  $\mu$ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu$ g/L.

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.





"When Ouality Counts"

# QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

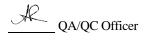
QC Matrix: Water

WorkOrder 0701173

EPA Method SW8260B	E	xtraction	SW503	0B		BatchI	D: 25634	S	Spiked Sample ID: 0701175-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria ('	%)
, individ	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND	10	94.4	95.2	0.839	90	90.7	0.827	70 - 130	30	70 - 130	30
Benzene	ND	10	119	119	0	125	124	0.467	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	111	113	1.97	111	119	7.17	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	102	103	0.485	101	98.3	2.78	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	102	107	5.37	103	103	0	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	114	115	0.285	109	108	0.812	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	90.4	90.1	0.353	96	97	1.07	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	107	109	1.33	106	107	0.921	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	100	101	0.915	95.9	97.4	1.54	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	106	105	0.980	97.8	98.7	0.901	70 - 130	30	70 - 130	30
Toluene	ND	10	98.7	103	4.05	102	97.4	4.53	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	77.6	78.1	0.557	77.8	77	1.03	70 - 130	30	70 - 130	30
%SS1:	98	10	109	112	1.96	107	107	0	70 - 130	30	70 - 130	30
%SS2:	90	10	92	96	4.90	89	87	1.86	70 - 130	30	70 - 130	30
%SS3:	89	10	100	101	1.39	102	101	1.19	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONE

#### BATCH 25634 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701173-001	1/09/07	1/10/07	1/10/07 11:27 PM	0701173-002	1/09/07	1/11/07	1/11/07 12:12 AM
0701173-003	1/09/07	1/11/07	1/11/07 6:38 PM	0701173-004	1/09/07	1/11/07	1/11/07 1:43 AM
0701173-005	1/09/07	1/11/07	1/11/07 2:28 AM	0701173-006	1/09/07	1/11/07	1/11/07 3:13 AM
0701173-007	1/09/07	1/11/07	1/11/07 7:23 PM	0701173-008	1/09/07	1/11/07	1/11/07 8:08 PM
0701173-009	1/09/07	1/11/07	1/11/07 5:25 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.





"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8021B/8015Cm

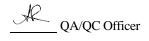
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0701173

Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	105	106	0.854	97.1	97.5	0.492	70 - 130	30	70 - 130	30
MTBE	ND	10	120	127	5.50	90	90.2	0.317	70 - 130	30	70 - 130	30
Benzene	ND	10	107	101	5.59	93.3	95.3	2.19	70 - 130	30	70 - 130	30
Toluene	ND	10	96.7	90.4	6.75	85.6	86.6	1.16	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	105	100	4.90	91.5	89	2.84	70 - 130	30	70 - 130	30
Xylenes	0.9	30	97	92.7	4.43	90.7	91	0.367	70 - 130	30	70 - 130	30
%SS:	102	10	105	102	3.13	98	97	0.269	70 - 130	30	70 - 130	30

#### BATCH 25630 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701173-001	1/09/07	1/10/07	1/10/07 8:37 PM	0701173-002	1/09/07	1/10/07	1/10/07 9:07 PM
0701173-003	1/09/07	1/10/07	1/10/07 10:06 PM	0701173-004	1/09/07	1/12/07	1/12/07 8:55 AM
0701173-005	1/09/07	1/10/07	1/10/07 11:05 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 $\pounds$  TPH(btex) = sum of BTEX areas from the FID.





"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8021B/8015Cm

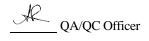
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0701173

Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	97.1	82.7	16.0	99.7	82	19.5	70 - 130	30	70 - 130	30
MTBE	ND	10	81.2	106	26.6	84.5	99.8	16.5	70 - 130	30	70 - 130	30
Benzene	ND	10	94.2	116	21.1	99.4	83.8	17.0	70 - 130	30	70 - 130	30
Toluene	ND	10	87.4	101	14.6	90.5	76.6	16.6	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	93.7	98.8	5.23	99.1	85.9	14.4	70 - 130	30	70 - 130	30
Xylenes	ND	30	91.3	90	1.47	95.7	81.7	15.8	70 - 130	30	70 - 130	30
%SS:	98	10	98	117	18.3	102	90	12.5	70 - 130	30	70 - 130	30

#### BATCH 25635 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701173-006	1/09/07	1/10/07	1/10/07 11:34 PM	0701173-007	1/09/07	1/10/07	1/10/07 4:39 PM
0701173-008	1/09/07	1/11/07	1/11/07 2:01 AM	0701173-009	1/09/07	1/11/07	/11/07 12:03 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 $\pounds$  TPH(btex) = sum of BTEX areas from the FID.





"When Quality Counts"

### **QC SUMMARY REPORT FOR E200.8**

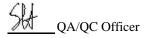
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0701173

EPA Method: E200.8	E	BatchID: 25640				Spiked Sample ID: 0701176-002A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS	LCS	S LCSD	LCS-LCSD	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Lead	11	10	101	99.5	0.571	97.6	97	0.606	75 - 125	20	85 - 115	20
%SS:	105	750	105	105	0	102	101	0.223	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 25640 SUMMARY											
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed				
0701173-009C	1/09/07	1/09/07	1/16/07 3:54 PM								


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.





"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

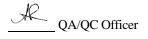
QC Matrix: Water

WorkOrder 0701173

EPA Method SW8015C	SW8015C Extraction SW3510C/3630C							BatchID: 25625 Spiked S				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria ('	%)
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	113	109	3.90	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	94	100	6.52	N/A	N/A	70 - 130	30
						-					10 150	50

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 25625 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701173-001	1/09/07	1/09/07	1/10/07 7:18 PM	0701173-002	1/09/07	1/09/07	1/10/07 8:25 PM
0701173-003	1/09/07	1/09/07	1/10/07 9:33 PM	0701173-004	1/09/07	1/09/07	1/10/07 10:40 PM
0701173-005	1/09/07	1/09/07	1/10/07 11:46 PM	0701173-006	1/09/07	1/09/07	1/11/07 3:06 AM
0701173-007	1/09/07	1/09/07	1/11/07 4:12 AM	0701173-008	1/09/07	1/09/07	1/11/07 5:18 AM
0701173-009	1/09/07	1/09/07	1/11/07 6:24 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.



ece E	NGINEERS Er	vironm	ental Cons	ultants	TOTAL NUMBER	OF SAMPLES:	9		,	ANALY	'SES R	EQUES	TED		LAB USE ONLY
363 E				antanto	PAGE /	OF	1	J							
6601 K	oll Center Parkway	92	25 426-0080	7	TURNAROUND T	ME REQUIRED:	1.000								
Pleasan	ton, CA 94566	wy	ww.scsengineers	.com	TURNAROUND T	DayImmedia	iteOther	8							
	JMBER: 01203087				PROJECT MANAG	And the second		SS		ead					
	AME: Freisman				W.O. / S.O. #:			- j	0	19					
PROJECT LO	DCATION: 1600 F	reisman	Poad Live	rmore,	CA			- 6	FULL 8260	P					
SAMPLER N	OCATION: 1600 F	: Ted	Sison	Rofi				- 1 - ±	10 8	dussolved					
I.D. NUMBER	SAMPLE DESIGNATION	SAMPLE MATRIX	DATE/TIME COLLECTED	CONTAINER SIZE/TYPE	SAMPLE PRESERVATIVE	SPECIAL INSTRUC	TIONS/COMMENTS	d t	F	dus					
	35/1E 2P3	420	1-9-07	Various	4 UDAW/ ItCP				$\geq$	$\leq$					
	12mw-1	1	1					-	$\triangleright$	K	-				
	Kmw-2							1		<					
	Kmw-3							K	5	K					
	Kmw-4							K	5	K					
	Kmw-5							X	K						
	Kmw-b							-		2					
								-		$\geq$					
	KMW-7							K	$\square$	$\triangleright$				+	
	KmW-8	~	~		$\checkmark$			-			<u> </u>				
					1							_			
					4.8	00									
					GOOD CONDITION HEAD SPACE ABSE	APPRO	OPRIATE								
								-							
					PRESERVATION_										
NOTES:											SAI	MPLE CO	NDITION	UPON	RECEIPT
	e USE silica	Gel CL	ean up to	r TPH	, Please	lab filt	er for l	ud	-						
ivell	KMW-2 had	a lot	OF roots	in w	IDATE: CASING	RELINQUISHED BY:	DAT			RECE	VED BY:			DATE	:
	551 1-	-9-07	Sheli l	inderma	1/9/07		ТІМ			COMP	ANY			TIME:	
COMPANY:	TIME	4:07	COMPANY:	Ι	IIME:	COMPANY:		har 4							
1. A															

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-926						WorkOrder: 0701173 ClientID					lientID: SCS	SD				
				EDF		F	ax		🖌 Emai	I	HardCop	ру	Thir	dParty		
Report to:							Bill to:					Re	equested	I TAT:	Ę	5 days
Steve Clements		Email: so	clements@s	cseng.com			Ace	counts	Payable	Э						
SCS Engineers		TEL: (9	925) 426-008	BO FAX: (925)	426-07	707	SC	S Engi	neers							
6601 Koll Center	Pkwy, Ste 140	ProjectNo: #(	01203087.02	2; Freisman Rancł	n		660	01 Koll	Center	Pkwy, S	Ste 140	$D_{i}$	ate Rece	vived:	01/09	0/2007
Pleasanton, CA	94566	PO:					Ple	asanto	n, CA 9	4566		D	ate Prin	ted:	01/09	0/2007
									Re	quested	Tests (See le	gend b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6 7	8	9	10	11	12
0701173-001	3S/1E 2P3		Water	1/9/07		В	Α	С	С							
0701173-002	KMW-1		Water	1/9/07		В	Α	С	С							
0701173-003	KMW-2		Water	1/9/07		В	А	С	С							
0701173-004	KMW-3		Water	1/9/07		В	А	С	С							
0701173-005	KMW-4		Water	1/9/07		В	Α	С	С					-	-	
0701173-006	KMW-5		Water	1/9/07		В	Α	С	С					-	-	
0701173-007	KMW-6		Water	1/9/07		В	Α	С	С							
0701173-008	KMW-7		Water	1/9/07		В	Α	С	С							
0701173-009	KMW-8		Water	1/9/07		В	Α	С	С							

### Test Legend:

1	8260B_W	2
6		7
11		12

G-MBTEX_W	

3	PBMS_DISS
8	

4	PRDISSOLVED
9	

5	
10	

The following SampIDs: 0701173-001A, 0701173-002A, 0701173-003A, 0701173-004A, 0701173-005A, 0701173-006A, 0701173-007A, 0701173-008A, 0701173-009A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Prepared by: Melissa Valles

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

# **APPENDIX D**

# LABORATORY ANALYTICAL REPORT; SOIL VAPOR SAMPLES



2 February 2007

Mr. Steve Clements SCS Engineers 6601 Koll Center Parkway, Suite 140 Pleasanton, CA 94566

### SUBJECT: DATA REPORT - SCS Engineers Project # 01203087.02 Freisman Ranch, Livermore, California

### TEG Project # 70110D

Mr. Clements:

Please find enclosed a data report for the samples analyzed from the above referenced project for SCS Engineers. The samples were analyzed on site in TEG's mobile laboratory. TEG conducted a total of 24 analyses on 24 soil vapor samples.

-- 24 analyses on soil vapors for selected volatile organic hydrocarbons by EPA method 8260B.

The results of the analyses are summarized in the enclosed tables. Applicable detection limits and calibration data are included in the tables.

1,1 difluoroethane was used as a leak check compound around the probe rods during the soil vapor sampling. No 1,1 difluoroethane was detected in any of the vapor samples reported at or above the DTSC recommended leak check compound reporting limit of 10  $\mu$ g/L of vapor.

TEG appreciates the opportunity to have provided analytical services to SCS Engineers on this project. If you have any further questions relating to these data or report, please do not hesitate to contact us.

Sincerely,

Mark Jerpbak Director, TEG-Northern California

RECEIVED

FEB 0 8 2007 SCS ENGINEERS

Mobile and Laboratory Analytical Services Environmental Subconsulting

Geochemical R&D

SoilVaporSurveys AirMonitoring



SCS Project # 01203087.02 Freisman Ranch, Livermore, California

### TEG Project #70110D

### EPA Method 8260B VOC Analyses of SOIL VAPOR in ug/L of Vapor

SAMPLE NUMBER:		Probe Blank	Probe Blank	SV-1	SV-2	SV-3	SV-4	SV-5
SAMPLE DEPTH (feet):				5.0	5.0	5.0	5.0	5.0
PURGE VOLUME:				3	3	3	3	з
COLLECTION DATE:		01/10/07	01/11/07	01/10/07	01/10/07	01/10/07	01/10/07	01/10/07
COLLECTION TIME:		08:25	09:05	09:00	09:15	09:35	09:50	10:15
DILUTION FACTOR (VOCs):	RL	1	1	1	1	1	1	1
Dichlorodifluoromethane	0.10	nd	nd	nd	nd	nd	nd	nd
Vinyl Chloride	0.10	nd	nd	nd	nd	nd	nd	nd
Chloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.10	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
1,1,2-Trichloro-trifluoroethane	0.10	nd	nd	nd	nd	nd	nd	nd
Methylene Chloride	0.10	nd	nd	nd	nd	nd	nd	nd
rans-1,2-Dichloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
Nethyl-t-butyl-ether (MTBE)	0.10	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
Chloroform	0.10	nd	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	0.10	nd	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
Benzene	0.080	nd	nd	nd	nd	nd	nd	nd
Trichloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
Toluene	0.20	nd	nd	nd	nd	0.35	nd	0.20
1,1,2-Trichloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane	0.10	nd	nd	nd	nd	nd	nd	nd
Tetrachloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.10	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
m,p-Xylene	0.20	nd	nd	nd	nd	0.44	nd	0.25
o-Xylene	0.10	nd	nd	nd	nd	0.14	nd	nd
1,1,2,2-Tetrachloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
1,1 Diflouroethane (leak check)	10	nd	nd	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (1,2-DCA-d4) Surrogate Recovery (Toluene-d8)		101% 100% 98%	102% 102% 98%	103% 106% 100%	104% 108% 102%	102% 102% 101%	104% 105% 97%	103% 108% 100%

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. John Henkelman

page 1

Phone: (916) 853-8010 Fax: (916) 853-8020



SCS Project # 01203087.02 Freisman Ranch, Livermore, California

### TEG Project #70110D

### EPA Method 8260B VOC Analyses of SOIL VAPOR in ug/L of Vapor

SAMPLE NUMBER:		SV-5	SV-6	SV-7	SV-8	SV-9	SV-10	SV-11
		dup	5.0	5.0	0.0	5.0	5.0	
SAMPLE DEPTH (feet):		5.0	5.0	5.0	3.0	5.0	5.0	3.0
PURGE VOLUME:		3	3	3	3	3	3	3
COLLECTION DATE:		01/10/07	01/10/07	01/10/07	01/10/07	01/10/07	01/10/07	01/10/0
COLLECTION TIME:		10:50	10:30	12:00	11:40	12:20	12:40	13:00
DILUTION FACTOR (VOCs):	RL	1	1	1	1	1	1	1
Dichlorodifluoromethane	0.10	nd	nd	nd	nd	nd	nd	nd
Vinyl Chloride	0.10	nd	nd	nd	nd	nd	nd	nd
Chloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.10	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
1,1,2-Trichloro-trifluoroethane	0.10	nd	nd	nd	nd	nd	nd	nd
Nethylene Chloride	0.10	nd	nd	nd	nd	nd	nd	nd
rans-1,2-Dichloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
Nethyl-t-butyl-ether (MTBE)	0.10	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
Chloroform	0.10	nd	nd	nd	nd	nd	nd	nď
1,1,1-Trichloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	0.10	nd	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
Benzene	0.080	nd	nd	nd	nd	nd	nd	nd
Trichloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
Toluene	0.20	nd	nd	nd	nd	0.25	nd	0.23
1,1,2-Trichloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane	0.10	nd	nd	nd	nd	nd	nd	nd
Tetrachloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.10	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
n,p-Xylene	0.20	0.26	0.24	nd	0.21	0.28	0.25	0.27
o-Xylene	0.10	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
1,1 Diflouroethane (leak check)	10	nd	nd	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (1,2-DCA-d4) Surrogate Recovery (Toluene-d8)		104% 110% 99%	105% 107% 99%	104% 111% 98%	107% 112% 99%	107% 119% 102%	106% 110% 101%	105% 113% 98%

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. John Henkelman

page 2

Phone: (916) 853-8010 Fax: (916) 853-8020



SCS Project # 01203087.02 Freisman Ranch, Livermore, California

#### TEG Project #70110D

EPA Method 8260B VOC Ar	alyses of S	OIL VAPOR	in ug/L of V	/apor		and the second	• • • • • • • • • • • • • • • • • • •	
SAMPLE NUMBER:		SV-12	SV-13	SV-14	SV-15	SV-16	SV-17	SV-18
SAMPLE DEPTH (feet):		5.0	4.0	5.0	5.0	4.0	5.0	5.0
PURGE VOLUME:		3	3	3	3	3	3	3
COLLECTION DATE:		01/10/07	01/10/07	01/10/07	01/10/07	01/11/07	01/11/07	01/11/0
COLLECTION TIME:		13:25	13:55	14:45	15:00	09:25	09:45	10:10
DILUTION FACTOR (VOCs):	RL	1	1	1	1	1	1	1
Dichlorodifluoromethane	0.10	nd	nd	nd	nd	nd	nd	nd
/inyl Chloride	0.10	nd	nd	nd	nd	nd	nd	nd
Chloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
Frichlorofluoromethane	0.10	nd	nd	nd	nd	nd	nd	nd
,1-Dichloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
,1,2-Trichloro-trifluoroethane	0.10	nd	nd	nd	nd	nd	nd	nd
Nethylene Chloride	0.10	nd	nd	nd	nd	nd	nd	nd
rans-1,2-Dichloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
/lethyl-t-butyl-ether (MTBE)	0.10	nd	nd	nd	nd	nd	nd	nd
,1-Dichloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
is-1,2-Dichloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
Chloroform	0.10	nd	nd	nd	nd	nd	nd	nď
1,1,1-Trichloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	0.10	nd	nd	nd	nd	nd	nd	nd
,2-Dichloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
Benzene	0.080	nd	nd	nd	nd	nd	nd	nd
Frichloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
Toluene	0.20	0.22	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
,2-Dibromoethane	0.10	nd	nd	nd	nd	nd	nd	nd
Fetrachloroethene	0.10	nd	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.10	nd	nd	nd	nd	nd	nd	nd
,1,1,2-Tetrachloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
n,p-Xylene	0.20	0.22	0.21	nd	nd	nd	nd	nd
o-Xylene	0.10	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.10	nd	nd	nd	nd	nd	nd	nd
,1 Diflouroethane (leak check)	10	nd	nd	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (1,2-DCA-d4) Surrogate Recovery (Toluene-d8)		103% 108% 101%	105% 109% 101%	108% 111% 101%	106% 111% 103%	101% 105% 100%	102% 106% 102%	113% 122% 98%

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. John Henkelman

page 3

Fax: (916) 853-8020 Phone: (916) 853-8010



SCS Project # 01203087.02 Freisman Ranch, Livermore, California

### TEG Project #70110D

## EPA Method 8260B VOC Analyses of SOIL VAPOR in ug/L of Vapor

SAMPLE NUMBER		SV-19	SV-20	SV-21	SV-22	SV-22	
SAMPLE DEPTH (feet).		5.0	4.0	5.0	4.0	dup 4.0	
PURGE VOLUME		3	4.0 3	3	3	4.0 3	
COLLECTION DATE:		01/11/07	01/11/07	01/11/07	01/11/07	01/11/07	
COLLECTION TIME.		10:30	10:55	11:50	11:30	12:05	
DILUTION FACTOR (VOCs):		1	1	1	1	12.05	
	RL	*					
Dichlorodifluoromethane	0.10	nd	nd	nd	nd	nd	
Vinyl Chloride	0.10	nd	nd	nd	nd	nd	
Chloroethane	0.10	nd	nd	nd	nd	nd	
Trichlorofluoromethane	0.10	nd	nd	nd	nd	nd	
1,1-Dichloroethene	0.10	nd	nd	nd	nd	nd	
1,1,2-Trichloro-trifluoroethane	0.10	nd	nď	nd	nd	nd	
Methylene Chloride	0.10	nd	nd	nd	nd	nd	
trans-1,2-Dichloroethene	0.10	nd	nd	nd	nd	nd	
Methyl-t-butyl-ether (MTBE)	0.10	nd	nd	nd	nd	nd	
1,1-Dichloroethane	0.10	nd	nd	nd	nd	nd	
cis-1,2-Dichloroethene	0.10	nd	nd	nd	nd	nd	
Chloroform	0.10	nd	nd	nd	nd	nd	
1,1,1-Trichloroethane	0.10	nd	nd	nd	nd	nd	
Carbon Tetrachloride	0.10	nd	nd	nd	nd	nd	
1,2-Dichloroethane	0.10	nd	nd	nd	nd	nd	
Benzene	0.080	nd	nd	nd	nd	nd	
Trichloroethene	0.10	nd	nd	nd	nd	nd	
Foluene	0.20	nd	nd	nd	nd	nd	
1,1,2-Trichloroethane	0.10	nd	nd	nd	nd	nd	
1,2-Dibromoethane	0.10	nd	nd	nd	nd	nd	
Tetrachloroethene	0.10	nd	nd	nd	nd	nd	
Ethylbenzene	0.10	nd	nd	nd	nd	nd	
1,1,1,2-Tetrachloroethane	0.10	nd	nd	nd	nd	nd	
m,p-Xylene	0.20	nd	nd	nd	nd	nd	
o-Xylene	0.10	nd	nd	nd	nd	nd	
1,1,2,2-Tetrachloroethane	0.10	nd	nd	nd	nd	nd	
1,1 Diflouroethane (leak check)	10	nd	nd	nd	nd	nd	
Surrogate Recovery (DBFM) Surrogate Recovery (1,2-DCA-d4) Surrogate Recovery (Toluene-d8)		104% 110% 102%	104% 106% 99%	104% 106% 104%	107% 107% 98%	104% 112% 99%	

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. John Henkelman

page 4

Phone: (916) 853-8010 Fax: (916) 853-8020



SCS Project # 01203087.02 Freisman Ranch, Livermore, California

### TEG Project #70110D

### CALIBRATION STANDARDS - Initial Calibration / LCS

	INITIAL CA	LIBRATION	L	CS
COMPOUND	RF	%RSD	RF	%DIFF
Dichlorodifluoromethane*	0.306	3.3%	0.309	1.0%
Vinyl Chloride*	0.481	11.7%	0.497	3.3%
Chloroethane*	0.262	24.1%	0.311	18.7%
Trichlorofluoromethane*	0.862	12.3%	0.813	5.7%
1,1-Dichloroethene	0.354	10.5%	0.316	10.7%
1,1,2-Trichloro-trifluoroethane*	0.560	12.1%	0.536	4.3%
Methylene Chloride	0.445	10.7%	0.412	7.4%
trans-1,2-Dichloroethene	0.425	13.2%	0.458	7.8%
1,1-Dichloroethane	0.450	7.5%	0.443	1.6%
cis-1,2-Dichloroethene	0.326	16.5%	0.322	1.2%
Chloroform	0.490	12.6%	0.471	3.9%
1,1,1-Trichloroethane	0.457	11.7%	0.472	3.3%
Carbon Tetrachloride	0.385	11.7%	0.413	7.3%
1,2-Dichloroethane	0.330	14.7%	0.313	5.2%
Benzene	1.228	15.1%	1.184	3.6%
Trichloroethene	0.324	11.4%	0.316	2.5%
Toluene	0.942	14.7%	0.899	4.6%
1,1,2-Trichloroethane	0.146	16.2%	0.142	2.7%
Tetrachloroethene	0.427	12.9%	0.377	11.7%
Ethylbenzene	0.687	19.0%	0.598	13.0%
1,1,1,2-Tetrachloroethane	0.420	19.1%	0.376	10.5%
m,p-Xylene	0.709	17.4%	0.794	12.0%
o-Xylene	0.652	14.4%	0.675	3.5%
1,1,2,2-Tetrachloroethane	0.283	13.9%	0.304	7.4%

### ACCEPTABLE LIMITS:

20.0%

15.0%

**' INDICATES RSD NOT TO EXCEED 30% & LCS NOT TO EXCEED 25%

## **APPENDIX E**

BORING LOGS (SCS-1 THROUGH SCS-3)

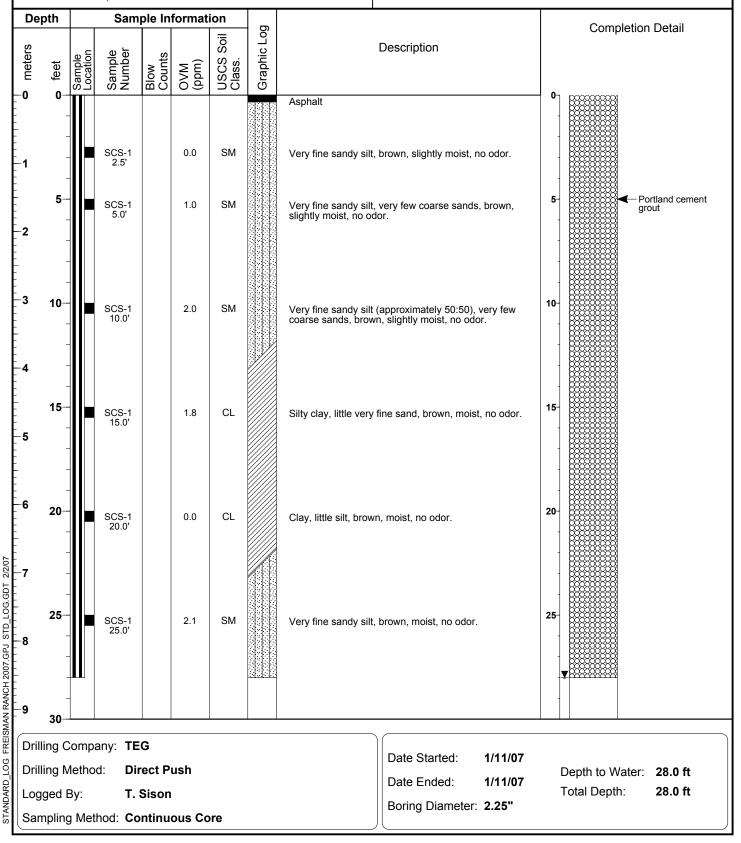
# SCS ENGINEERS

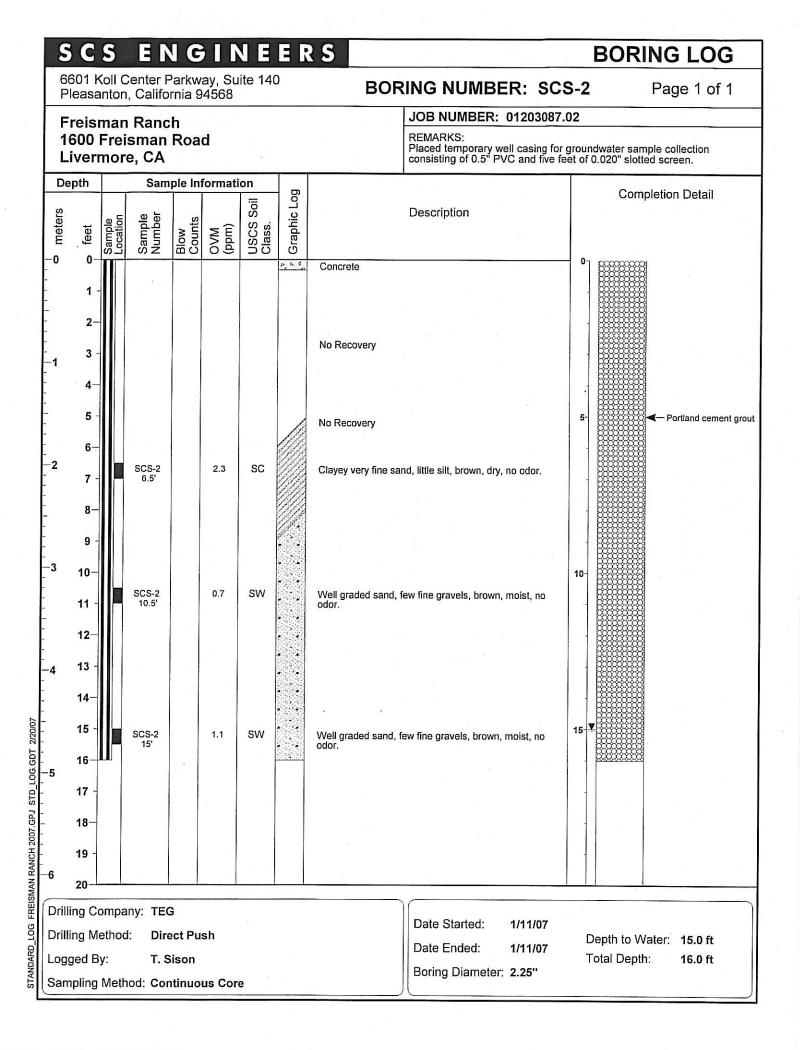
# **BORING LOG**

6601 Koll Center Parkway, Suite 140 Pleasanton, California 94568

Freisman Ranch 1600 Freisman Road

Livermore, CA


## BORING NUMBER: SCS-1


Page 1 of 1

JOB NUMBER: 01203087.02

REMARKS:

Placed temporary well casing for groundwater sample collection consisting of 0.5" PVC and five feet of 0.020" slotted screen.





# SCS ENGINEERS

# **BORING LOG**

6601 Koll Center Parkway, Suite 140 Pleasanton, California 94568

## BORING NUMBER: SCS-3

Page 1 of 1

### JOB NUMBER: 01203087.02

Freisman Ranch 1600 Freisman Road Livermore, CA

REMARKS: Placed temporary well casing for groundwater sample collection consisting of 0.5" PVC and five feet of 0.020" slotted screen.

Dej	pth	_	Sam	ple In	formati	ion	_		Completion Detail
• meters	<b>o</b> feet	Sample Location	Sample Number	Blow Counts	(mdd)	USCS Soil Class.	Graphic Log	Description	Completion Detail
-v -1 -2	0 1 - 2 3 - 4 5 - 6 7 - 8		SCS-3 2.5' SCS-3 6.5'		1.0	CL		Very fine sandy clay, very few coarse sands, dark brown, moist, no odor. No Recovery Very fine sandy clay, very few coarse sands, dark brown, moist, no odor.	■ 0 - - - - - - - - - - - - -
3	8 9 - 10 11 - 12		SCS-3 10'		2.7	SW		Well graded fine to medium sand, few coarse sands, brown, very moist, no odor.	10-
-4	13 - 14 15 - 16 17 - 18		SCS-3 15'		2.6	SW		Well graded sand, little clay, brown, wet, no odor.	15-
Drill Log	ing M ged E	lethoo 3y:		ect P Sison				Date Started: 1/11/07 Date Ended: 1/11/07 Boring Diameter: 2.25"	Depth to Water: 14.0 ft Total Depth: 18.0 ft

## **APPENDIX F**

## LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION; SOIL BORINGS/TEMPORARY WELLS (SOIL AND GROUNDWATER SAMPLES)



"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

SCS Engineers	Client Project ID: #01203087.02	Date Sampled: 01/11/07
6601 Koll Center Pkwy, Ste 140		Date Received: 01/11/07
Pleasanton, CA 94566	Client Contact: Steve Clements	Date Reported: 01/18/07
	Client P.O.:	Date Completed: 01/18/07

### WorkOrder: 0701229

January 18, 2007

### Dear Steve:

Enclosed are:

- 1). the results of 12 analyzed samples from your #01203087.02 project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

<u>McCampbell A</u>		<u>c.</u>		Web: www.mccampbe	ss Road, Pittsburg, CA ell.com E-mail: mair	n@mccampbell.com			
"When Oualit	v Counts"		•	Telephone: 87	7-252-9262 Fax: 92	5-252-9269			
SCS Engineers	Client Pro	oject II	<b>D</b> : #012	03087.02	Date Sampled:	d: 01/11/07			
					Date Received:	01/11/07			
6601 Koll Center Pkwy, Ste 140	Client Co	ontact:	Steve (	Clements	Date Extracted:	01/11/07			
Pleasanton, CA 94566	Client P.	Date Analyzed							
					•	01/13/07			
	Volatile Organi	cs by F	P&T and	l GC/MS (Basic Tar	rget List)*				
Extraction Method: SW5030B	Ar	nalytical	Method:	SW8260B		Work Order: 07012	29		
Lab ID				0701229-0	001A				
Client ID				SCS-1, 2	2.5'				
Matrix				Soil					
Compound	Concentration *	DF	Reporting	Compound	1	Concentration *	DF	Report	
			Limit		1		1	Lim	
Acetone	ND ND	1.0 1.0	0.05	Acrolein (Propenal)	or (TAME)	ND ND	1.0	0.00	
Acrylonitrile Benzene	ND	1.0	0.02	tert-Amyl methyl eth Bromobenzene	ci (TAME)	ND ND	1.0 1.0	0.00	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometha	ne	ND	1.0	0.00	
Bromoform	ND	1.0	0.005	Bromomethane	lic	ND	1.0	0.00	
2-Butanone (MEK)	ND	1.0	0.003	t-Butyl alcohol (TBA	)	ND	1.0	0.0	
n-Butyl benzene	ND	1.0	0.02	sec-Butyl benzene	)	ND	1.0	0.0	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.00	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.00	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl I	Ethor	ND	1.0	0.0	
Chloroform	ND	1.0	0.005	Chloromethane	Ether	ND	1.0	0.0	
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.00	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloro	opropana	ND	1.0	0.00	
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	opropane	ND	1.0	0.00	
1.2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene		ND	1.0	0.00	
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluorometh	200	ND	1.0	0.00	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1		ND	1.0	0.00	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethen		ND	1.0	0.00	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane		ND	1.0	0.00	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane		ND	1.0	0.00	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloroprope	ene	ND	1.0	0.00	
trans-1.3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DI		ND	1.0	0.00	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether		ND	1.0	0.00	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	(LIDL)	ND	1.0	0.00	
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.00	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.00	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.0	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.0	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.00	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroet	thane	ND	1.0	0.00	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.0	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenze	ne	ND	1.0	0.0	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethan		ND	1.0	0.0	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.0	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropa	ne	ND	1.0	0.0	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenze	ene	ND	1.0	0.0	
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.0	
		Surr	ogate Re	coveries (%)					
%SS1:	99			%SS2:		99			
%SS3:	89								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

<u>McCampbell A</u>		<u>c.</u>		Web: www.mccam	Pass Road, Pittsburg, CA pbell.com E-mail: main	n@mccampbell.com		
"When Oualit					877-252-9262 Fax: 92	5-252-9269		
SCS Engineers	Client Pro	oject II	<b>)</b> : #012	03087.02	Date Sampled:	01/11/07		
					Date Received:	01/11/07		
6601 Koll Center Pkwy, Ste 140	Client Co	ontact:	Steve (	Clements	Date Extracted:	01/11/07		
Pleasanton, CA 94566	Client P.				Date Analyzed			
y					·	01/13/07		
	Volatile Organi	cs by P	°&T and	d GC/MS (Basic T	arget List)*			
Extraction Method: SW5030B	Aı	nalytical l	Method:	SW8260B		Work Order: 07012	29	
Lab ID				070122	9-002A			
Client ID				SCS-	1, 5.0'			
Matrix				Se	oil			
Compound	Concentration *	DF	Reporting Limit	Compou	nd	Concentration *	DF	Reporti
Acetone	ND	1.0	0.05	Acrolein (Propenal		ND	1.0	Limit 0.05
Acrylonitrile	ND	1.0	0.05	tert-Amyl methyl e		ND	1.0	0.00
Benzene	ND	1.0	0.02	Bromobenzene		ND	1.0	0.00
Bromochloromethane	ND	1.0	0.005	Bromodichloromet	hane	ND	1.0	0.00
Bromoform	ND	1.0	0.005	Bromomethane	liane	ND	1.0	0.00
2-Butanone (MEK)	ND	1.0	0.003	t-Butyl alcohol (TE	84)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.00
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.00
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.00
Chloroethane	ND	1.0	0.005	2-Chloroethyl Viny	l Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	1 Ether	ND	1.0	0.00
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.00
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chl	oropropane	ND	1.0	0.00
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	oropropune	ND	1.0	0.00
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzer	ne	ND	1.0	0.00
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluorome		ND	1.0	0.00
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane	(1,2-DCA)	ND	1.0	0.00
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroeth		ND	1.0	0.00
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropa	ne	ND	1.0	0.00
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropa	ne	ND	1.0	0.00
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropro	opene	ND	1.0	0.00
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (	DIPE)	ND	1.0	0.00
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl eth	er (ETBE)	ND	1.0	0.00
Freon 113	ND	1.0	0.1	Hexachlorobutadier	ne	ND	1.0	0.00
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.00
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	e	ND	1.0	0.00
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.00
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.00
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.00
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachlor	oethane	ND	1.0	0.00
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.00
Toluene	ND	1.0	0.005	1,2,3-Trichloroben		ND	1.0	0.00
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroeth	ane	ND	1.0	0.00
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.00
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropro		ND	1.0	0.00
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylber	izene	ND	1.0	0.00
Vinvl Chloride	ND	1.0	0.005			ND	1.0	0.00
	-	Surre	ogate Re	coveries (%)				
%SS1:	100			%SS2:		100	)	
%SS3:	88							

#### Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.



McCampbell A		<u>c.</u>		Web: www.mccamp	Pass Road, Pittsburg, CA	n@mccampbell.com			
"When Oualit					877-252-9262 Fax: 92	25-252-9269			
SCS Engineers	Client Pro	oject II	<b>)</b> : #012	03087.02	Date Sampled:	01/11/07			
					Date Received: 01/11/07				
6601 Koll Center Pkwy, Ste 140	Client C	ontact	Steve (	lements	Date Extracted:	01/11/07			
Pleasanton, CA 94566									
Treasanton, CA 94500	Client P.	J.:			Date Analyzed	01/13/07			
	Volatile Organi	cs by P	P&T and	d GC/MS (Basic T	arget List)*				
Extraction Method: SW5030B	Ar	nalytical l	Method:	SW8260B		Work Order: 070122	29		
Lab ID				0701229	9-004A				
Client ID				SCS-1					
Matrix				Sco-1	/				
		DE	Reporting			G	DE	Report	
Compound	Concentration *	DF	Limit	Compou	nd	Concentration *	DF	Limi	
Acetone	ND	1.0	0.05	Acrolein (Propenal		ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl e	ther (TAME)	ND	1.0	0.00	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.00	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	nane	ND	1.0	0.00	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.00	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB	(A)	ND	1.0	0.0	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.00	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.00	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.00	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Viny	l Ether	ND	1.0	0.0	
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.00	
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.00	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chl	oropropane	ND	1.0	0.00	
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane		ND	1.0	0.00	
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzen	e	ND	1.0	0.00	
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluorome	thane	ND	1.0	0.00	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane		ND	1.0	0.00	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroeth		ND	1.0	0.00	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropar		ND	1.0	0.00	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropar		ND	1.0	0.00	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropro		ND	1.0	0.00	
trans-1.3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (	•	ND	1.0	0.00	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl eth		ND	1.0	0.00	
Freon 113	ND	1.0	0.005	Hexachlorobutadien		ND	1.0	0.00	
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.00	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	•	ND	1.0	0.00	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.00	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.00	
Nitrobenzene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.00	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	athana	ND	1.0	0.00	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	Jethane	ND	1.0	0.00	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	7909	ND ND	1.0	0.00	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha		ND	1.0	0.00	
1.1.2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.00	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	2020	ND ND	1.0	0.00	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylben	zene	ND	1.0	0.00	
Vinvl Chloride	ND	1.0	0.005			ND	1.0	0.00	
			ogate Re	coveries (%)					
%SS1:	100			%SS2:		98			
%SS3:	89			1					

#### Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell A		<u>c.</u>		Web: www.mccam	Pass Road, Pittsburg, CA pbell.com E-mail: main	n@mccampbell.com			
"When Ouali					877-252-9262 Fax: 92	5-252-9269			
SCS Engineers	Client Pro	oject II	<b>D</b> : #012	03087.02	Date Sampled:	01/11/07			
					Date Received: 01/11/07				
6601 Koll Center Pkwy, Ste 140	Client C	ontact.	Steve (	lements	Date Extracted:	01/11/07			
Pleasanton, CA 94566									
Ticasanton, CT 94500	Client P.	J.:			Date Analyzed	01/13/07			
	Volatile Organi	cs by F	P&T and	l GC/MS (Basic T	arget List)*				
Extraction Method: SW5030B	Ai	nalytical	Method:	SW8260B		Work Order: 070122	29		
Lab ID				070122	9-007A				
Client ID				SCS-1					
Matrix				Seb 1	/				
		DE	Reporting				DE	Repor	
Compound	Concentration *	DF	Limit	Compou	nd	Concentration *	DF	Lin	
Acetone	ND	1.0	0.05	Acrolein (Propenal		ND	1.0	0.0	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl e	ther (TAME)	ND	1.0	0.0	
Benzene	ND	1.0	0.005	Bromobenzene	1	ND	1.0	0.0	
Bromochloromethane	ND	1.0	0.005	Bromodichloromet	hane	ND	1.0	0.0	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.0	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB	SA)	ND	1.0	0.0	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.0	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.0	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.0	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Viny	l Ether	ND	1.0	0.0	
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.0	
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.0	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chl	oropropane	ND	1.0	0.0	
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane		ND	1.0	0.0	
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzer	ie	ND	1.0	0.0	
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluorome	ethane	ND	1.0	0.0	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane	(1,2-DCA)	ND	1.0	0.0	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroeth	ene	ND	1.0	0.0	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropar	ne	ND	1.0	0.0	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropar	ne	ND	1.0	0.0	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropro	opene	ND	1.0	0.0	
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (		ND	1.0	0.0	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl eth		ND	1.0	0.0	
Freon 113	ND	1.0	0.1	Hexachlorobutadier		ND	1.0	0.0	
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.0	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.0	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.0	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.0	
Nitrobenzene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.0	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	oethane	ND	1.0	0.0	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	Johnuno	ND	1.0	0.0	
Toluene	ND	1.0	0.005	1,2,3-Trichloroben	zene	ND	1.0	0.0	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha		ND	1.0	0.0	
1.1.2-Trichloroethane	ND	1.0	0.005	Trichloroethene	****	ND	1.0	0.0	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropro	nane	ND	1.0	0.0	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylben		ND	1.0	0.0	
Vinvl Chloride	ND ND	1.0	0.005			ND	1.0	0.0	
				coveries (%)			1.0	0.0	
N 991		Surr	ogate Ke						
%SS1:	96			%SS2:		100			
%SS3:	90								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

<u>McCampbell A</u>		<u>c.</u>		Web: www.mccam	Pass Road, Pittsburg, CA pbell.com E-mail: maii	n@mccampbell.com			
"When Oualit					877-252-9262 Fax: 92	25-252-9269			
SCS Engineers	Client Pro	oject II	<b>D</b> : #012	03087.02	Date Sampled:	01/11/07			
					Date Received: 01/11/07				
6601 Koll Center Pkwy, Ste 140	Client Co	ontact	Steve (	lements	Date Extracted:	01/11/07			
Pleasanton, CA 94566			Bieve						
Ticasanton, CA 94500	Client P.0	J.:			Date Analyzed	01/13/07			
	Volatile Organi	cs by P	P&T and	l GC/MS (Basic T	'arget List)*				
Extraction Method: SW5030B	Aı	nalytical l	Method:	SW8260B		Work Order: 070122	29		
Lab ID				070122	9-008A				
Client ID				SCS-2					
Matrix					oil				
		DE	Reporting			G	DE	Reportir	
Compound	Concentration *	DF	Limit	Compou	nd	Concentration *	DF	Limit	
Acetone	ND	1.0	0.05	Acrolein (Propenal		ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl e	ether (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.00	
Bromochloromethane	ND	1.0	0.005	Bromodichloromet	hane	ND	1.0	0.00	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.00	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TE	BA)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.00	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.00	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	1.0.4	ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Viny	l Ether	ND	1.0	0.01	
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.005	
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.005	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chl	oropropane	ND	1.0	0.005	
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ND ND	1.0 1.0	0.005	Dibromomethane 1,3-Dichlorobenzer		ND ND	1.0 1.0	0.005	
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluorom		ND	1.0	0.00	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane		ND	1.0	0.00	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroeth		ND	1.0	0.005	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropa		ND	1.0	0.005	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropa		ND	1.0	0.005	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropro		ND	1.0	0.005	
trans-1.3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (	•	ND	1.0	0.005	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl eth		ND	1.0	0.005	
Freon 113	ND	1.0	0.1	Hexachlorobutadier		ND	1.0	0.005	
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	9	ND	1.0	0.005	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.00	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.00	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachlor	oethane	ND	1.0	0.00	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.00	
Toluene	ND	1.0	0.005	1,2,3-Trichloroben		ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroeth	ane	ND	1.0	0.00	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.00	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropro		ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylber	izene	ND	1.0	0.00	
Vinvl Chloride	ND	1.0	0.005			ND	1.0	0.00	
	1	Surre	ogate Re	coveries (%)		1			
%SS1:	96			%SS2:		100			
%SS3:	87								

#### Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell A		<u>c.</u>		Web: www.mccan	Pass Road, Pittsburg, CA	n@mccampbell.com			
"When Ouali					: 877-252-9262 Fax: 92	25-252-9269			
SCS Engineers	Client Pro	Client Project ID: #01203087.02 Date Sampled:					01/11/07		
					Date Received: 01/11/07				
6601 Koll Center Pkwy, Ste 140	Client Co	ontact	Steve (	lements	Date Extracted:	01/11/07			
Pleasanton, CA 94566									
r leasanton, CA 94300	Client P.0	0.:			Date Analyzed	01/13/07			
	Volatile Organi	cs by P	&T and	d GC/MS (Basic 7	[arget List)*				
Extraction Method: SW5030B	Aı	nalytical l	Method:	SW8260B		Work Order: 07012	29		
Lab ID		-		070122	29-009A				
Client ID					-2, 15'				
Matrix					oil				
			Reporting					Report	
Compound	Concentration *	DF	Limit	Compor	und	Concentration *	DF	Lim	
Acetone	ND	1.0	0.05	Acrolein (Propena	<i>,</i>	ND	1.0	0.0	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl	ether (TAME)	ND	1.0	0.0	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.0	
Bromochloromethane	ND	1.0	0.005	Bromodichloromet	thane	ND	1.0	0.0	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.0	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (T	BA)	ND	1.0	0.0	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.0	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.0	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	1.5.1	ND	1.0	0.0	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vin	yl Ether	ND	1.0	0.0	
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.0	
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	1	ND	1.0	0.0	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-ch	loropropane	ND	1.0	0.0	
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane		ND	1.0	0.0	
1,2-Dichlorobenzene	ND	1.0 1.0	0.005	1,3-Dichlorobenze		ND	1.0	0.0	
1,4-Dichlorobenzene 1,1-Dichloroethane	ND	1.0	0.005	Dichlorodifluorom		ND	1.0		
1,1-Dichloroethene	ND ND	1.0	0.005	cis-1,2-Dichloroet		ND ND	1.0	0.0	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropa		ND	1.0	0.0	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropa		ND	1.0	0.0	
1.1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropr		ND	1.0	0.0	
trans-1.3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether		ND	1.0	0.0	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl et	· · · · ·	ND	1.0	0.0	
Freon 113	ND	1.0	0.005	Hexachlorobutadie		ND	1.0	0.0	
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.0	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluen	e	ND	1.0	0.0	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.0	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.0	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.0	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachlor	oethane	ND	1.0	0.0	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.0	
Toluene	ND	1.0	0.005	1,2,3-Trichlorober	izene	ND	1.0	0.0	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroeth	ane	ND	1.0	0.0	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.0	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropro		ND	1.0	0.0	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbe	nzene	ND	1.0	0.0	
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.0	
		Surre	ogate Re	coveries (%)		•			
%SS1:	97			%SS2:		97			
%SS3:	90								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.



<u>McCampbell A</u>		<u>c.</u>		Web: www.mccamp	Pass Road, Pittsburg, CA bell.com E-mail: mair	n@mccampbell.com		
"When Oua					77-252-9262 Fax: 92	5-252-9269		
SCS Engineers	Client Pr	oject II	D: #012	03087.02	Date Sampled:	01/11/07		
					Date Received:	01/11/07		
6601 Koll Center Pkwy, Ste 140	Client C	ontact:	Steve (		Date Extracted:	01/11/07		
Pleasanton, CA 94566								
	Client P.	0.:			Date Analyzed	01/15/07		
	Volatile Organi	cs by F	P&T and	d GC/MS (Basic Ta	arget List)*			
Extraction Method: SW5030B	A	nalytical	Method:	SW8260B		Work Order: 07012	29	
Lab ID				0701229	-010A			
Client ID				SCS-2				
Matrix				Sol	,			
	Concentration *	DE	Reporting			Companyation *	DE	Report
Compound	Concentration *	DF	Limit	Compour	10	Concentration *	DF	Lim
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.0
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	ther (TAME)	ND	1.0	0.00
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.00
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.0
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.0
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB.	A)	ND	1.0	0.0
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.0
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.0
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.00
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.0
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.00
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.00
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chlo	ropropane	ND	1.0	0.00
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane		ND	1.0	0.00
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzen	e	ND	1.0	0.00
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluorome	thane	ND	1.0	0.00
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane	(1,2-DCA)	ND	1.0	0.00
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethe	ene	ND	1.0	0.00
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropan	e	ND	1.0	0.00
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropan	e	ND	1.0	0.00
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropro	pene	ND	1.0	0.00
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (I	DIPE)	ND	1.0	0.00
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.00
Freon 113	ND	1.0	0.1	Hexachlorobutadien	e	ND	1.0	0.00
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.00
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.00
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.00
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.0
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.0
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.0
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.0
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.0
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.0
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.0
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	ane	ND	1.0	0.0
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylben	zene	ND	1.0	0.0
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.0
		Surr	ogate Re	coveries (%)				
%SS1:	97	-		%SS2:		98		
%SS3:	83			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		70		
Comments:				1				

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

<b>McCampbell A</b>		<u>c.</u>		Web: www.mccam	Pass Road, Pittsburg, CA pbell.com E-mail: main	n@mccampbell.com				
"When Ouali					877-252-9262 Fax: 92 Date Sampled:	25-252-9269				
SCS Engineers	Client Pro	oject II	<b>)</b> : #012	01/11/07						
					Date Received: 01/11/07					
6601 Koll Center Pkwy, Ste 140	Client Co	ontact	Steve (	Tlements	Date Extracted:	01/11/07				
Pleasanton, CA 94566			Bieve	ciements	-					
	Client P.0				Date Analyzed	01/15/07				
	Volatile Organi	cs by P	P&T and	d GC/MS (Basic T	`arget List)*					
Extraction Method: SW5030B	Ar	nalytical l	Method:	SW8260B		Work Order: 07012	29			
Lab ID				070122	9-011A					
Client ID				SCS-	3, 6,5'					
Matrix		SCS-3, 6.5' Soil								
Compound	Concentration *	DF	Reporting	Compou		Concentration *	DF	Report		
		1	Limit					Limi		
Acetone	ND ND	1.0	0.05	Acrolein (Propenal		ND	1.0	0.00		
Acrylonitrile Benzene	ND         1.0         0.02         tert-Amyl methyl ether (TAME)           ND         1.0         0.005         Bromobenzene		emer (TAME)	ND ND	1.0 1.0	0.00				
Bromochloromethane	ND	1.0	0.005	Bromodichloromet	hana	ND	1.0	0.00		
Bromoform	ND	1.0	0.005	Bromomethane	nane	ND	1.0	0.00		
2-Butanone (MEK)	ND	1.0	0.003	t-Butyl alcohol (TH	2 4 )	ND	1.0	0.0		
n-Butvl benzene	ND	1.0	0.02	sec-Butyl benzene	ND	1.0	0.00			
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.00		
Carbon Tetrachloride	ND	1.0	0.005	Carbon Distillide Chlorobenzene		ND	1.0	0.00		
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether		ND	1.0	0.0		
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.00		
2-Chlorotoluene	ND	1.0	0.005			ND	1.0	0.00		
Dibromochloromethane	ND	1.0	0.005			ND	1.0	0.00		
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane		ND	1.0	0.00		
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzer	ne	ND	1.0	0.00		
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluorom		ND	1.0	0.00		
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane		ND	1.0	0.00		
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroeth		ND	1.0	0.00		
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropa	ne	ND	1.0	0.00		
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropa		ND	1.0	0.00		
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropr	opene	ND	1.0	0.00		
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (	DIPE)	ND	1.0	0.00		
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl eth	ner (ETBE)	ND	1.0	0.00		
Freon 113	ND	1.0	0.1	Hexachlorobutadie	ne	ND	1.0	0.00		
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.00		
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluen	e	ND	1.0	0.00		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.00		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.00		
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.00		
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachlor		ND	1.0	0.00		
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.00		
Toluene	ND	1.0	0.005	1,2,3-Trichloroben		ND	1.0	0.00		
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroeth	ane	ND	1.0	0.00		
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.00		
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropro		ND	1.0	0.00		
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylber	nzene	ND	1.0	0.00		
Vinvl Chloride	ND	1.0	0.005			ND	1.0	0.00		
		Surre	ogate Re	coveries (%)						
%SS1:	96			%SS2:		99				
%SS3:	89									

#### Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell A		<u>c.</u>		Web: www.mccamp	ass Road, Pittsburg, CA bell.com E-mail: mair	n@mccampbell.com			
"When Ouali	tv Counts"			Telephone: 8	77-252-9262 Fax: 92	5-252-9269			
SCS Engineers	Client Pr	oject II	<b>D</b> : #012	03087.02	Date Sampled:	01/11/07			
					Date Received: 01/11/07				
6601 Koll Center Pkwy, Ste 140	Client C	ontact:	Steve (	Clements	Date Extracted:	01/11/07			
Pleasanton, CA 94566	Client P.		51010		Date Analyzed				
					•	01/13/07			
	Volatile Organi	cs by F	P&T and	d GC/MS (Basic Ta	rget List)*				
Extraction Method: SW5030B	Aı	nalytical	Method:	SW8260B		Work Order: 07012	29		
Lab ID				0701229	-013A				
Client ID				SCS-3	. 15'				
Matrix		Soil							
	Concentration *	DF	Reporting			Concentration *	DF	Report	
Compound		1	Limit	Compour	iu	Concentration *	1	Lim	
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.0	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.00	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.0	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.0	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.0	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB)	4)	ND	1.0	0.0	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.0	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.0	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.00	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether		ND	1.0	0.0	
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.00	
2-Chlorotoluene	ND	1.0	0.005			ND	1.0	0.00	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane		ND	1.0	0.00	
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane		ND	1.0	0.00	
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	e	ND	1.0	0.00	
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromet	hane	ND	1.0	0.00	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane	(1,2-DCA)	ND	1.0	0.00	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethe	ene	ND	1.0	0.00	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropan	e	ND	1.0	0.00	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropan	9	ND	1.0	0.00	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloroprop	oene	ND	1.0	0.00	
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (I		ND	1.0	0.00	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe		ND	1.0	0.00	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.00	
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.00	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.00	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.00	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.00	
Nitrobenzene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.00	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	athana	ND	1.0	0.00	
		1.0	0.005	Tetrachloroethene	ethane	ND		0.00	
1,1,2,2-Tetrachloroethane Toluene	ND ND	1.0	0.005	1,2,3-Trichlorobenz	ana	ND ND	1.0 1.0	0.00	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha		ND	1.0	0.00	
1.1.2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.0	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	200	ND	1.0	0.00	
1,2,4-Trimethylbenzene Vinvl Chloride	ND ND	1.0 1.0	0.005	1,3,5-Trimethylbenz Xvlenes	ene	ND ND	1.0 1.0	0.0	
	ND					ND	1.0	0.00	
	94		ogate Re	coveries (%)					
%SS1:		%SS2:		99					
%SS3:	87								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell A		<u>c.</u>		Web: www.mccan	Pass Road, Pittsburg, CA	n@mccampbell.com				
"When Oual					: 877-252-9262 Fax: 92					
SCS Engineers	Client Pr	oject II	D: #012	#01203087.02 Date Sampled: 01/11/07						
((01 K))) (0.000 D) (0.0140)					Date Received:	Date Received: 01/11/07				
6601 Koll Center Pkwy, Ste 140	Client C	ontact:	Steve (	Clements	Date Extracted:	01/14/07				
Pleasanton, CA 94566	Client P.				Date Analyzed					
,					-	01/14/07				
	Volatile Organi	cs by F	P&T and	d GC/MS (Basic T	[arget List)*					
Extraction Method: SW5030B	Aı	nalytical	Method:	SW8260B		Work Order: 070122	29			
Lab ID				070122	29-014B					
Client ID				SCS-	1 GW					
Matrix				W	ater					
Compound	Concentration *	DF	Reporting	Compou	ınd	Concentration *	DF	Report		
		1	Limit					Limi		
Acetone Acrylonitrile	ND ND	1.0 1.0	10	Acrolein (Propenal tert-Amyl methyl	<i>,</i>	ND ND	1.0 1.0	<u>5.0</u> 0.5		
Benzene	ND	1.0	0.5	Bromobenzene	enier (TAME)	ND ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		1.6	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TI	<b>B</b> (A)	ND	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	DA)	ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5		Carbon Disulfide		1.0	0.4		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene			1.0	0.5		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether		ND ND	1.0	1.0		
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane		ND	1.0	0.5		
1.2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5		
1.2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenze	ne	ND	1.0	0.5		
1.4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorom		ND	1.0	0.5		
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethan		ND	1.0	0.5		
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroet	hene	ND	1.0	0.5		
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa	ne	ND	1.0	0.5		
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa	ne	ND	1.0	0.5		
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropr	opene	ND	1.0	0.5		
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether	(DIPE)	ND	1.0	0.5		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl eth	her (ETBE)	ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadie	ne	ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluen	e	ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	e	ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5		
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor		ND	1.0	0.4		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorober		ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroeth	ane	ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro		ND	1.0	0.1		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylber	nzene	ND	1.0	0.5		
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5		
			ogate Re	coveries (%)						
%SS1:	102			%SS2:		94				
%SS3:	91									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

McCampbell A		<u>c.</u>		Web: www.mccar	w Pass Road, Pittsburg, CA mpbell.com E-mail: main	n@mccampbell.com					
"When Ouali					e: 877-252-9262 Fax: 92	25-252-9269					
SCS Engineers	Client Pro	oject II	<b>D</b> : #012	03087.02	Date Sampled: 01/11/07						
					Date Received:	Date Received: 01/11/07					
6601 Koll Center Pkwy, Ste 140	Client Co	ontact:	Steve (	Clements	Date Extracted:	01/16/07					
Pleasanton, CA 94566	Client P.				Date Analyzed						
						01/10/07					
	Volatile Organi	cs by F	P&T and	d GC/MS (Basic '	Target List)*						
Extraction Method: SW5030B	Ar	nalytical	Method:	SW8260B		Work Order: 070122	29				
Lab ID				07012	29-015B						
Client ID				SCS	-2 GW						
Matrix		Water									
Compound	Concentration *	DF	Reporting	Compo	und	Concentration *	DF	Report			
			Limit 10					Lim			
Acetone Acrylonitrile	ND ND	1.0 1.0	10	Acrolein (Propena tert-Amyl methyl		ND ND	1.0	5.0			
Benzene	ND	1.0	0.5	Bromobenzene	ether (TAWE)	ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichlorome	thane	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane	tilane	1.1	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (T	'BA)	ND	1.0	5.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl alconol (IBA)		ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.4			
Carbon Tetrachloride	ND	1.0	0.5	Carbon Distillide Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether		ND	1.0	1.0			
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5			
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane		ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5			
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenze	ene	ND	1.0	0.5			
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoron	nethane	ND	1.0	0.5			
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethan		ND	1.0	0.5			
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroet		ND	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropa	ane	ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropa	ane	ND	1.0	0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichlorop	ropene	ND	1.0	0.5			
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether	(DIPE)	ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl et	ther (ETBE)	ND	1.0	0.5			
Freon 113	ND	1.0	10	Hexachlorobutadie	ene	ND	1.0	0.5			
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5			
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluer	ne	ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chlorid	e	ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlo		ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethen		ND	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichlorobe		ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroet	hane	ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropr		ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbe	enzene	ND	1.0	0.5			
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5			
			ogate Re	coveries (%)							
%SS1:	103			%SS2:		97					
%SS3:	103										

#### Comments: i

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

<u> McCampbell A</u>		<u>c.</u>		Web: www.mccamp	Pass Road, Pittsburg, CA	n@mccampbell.com				
"When Oualit					877-252-9262 Fax: 92	25-252-9269				
SCS Engineers	Client Pro	oject II	D: #012	03087.02	Date Sampled: 01/11/07					
					Date Received: 01/11/07					
6601 Koll Center Pkwy, Ste 140	Client Co	ontact:	Steve (	Clements	Date Extracted:	01/14/07				
Pleasanton, CA 94566	Client P.0				Date Analyzed					
	Chefit F.C	J			Date Analyzeu	01/14/07				
	Volatile Organi	cs by F	P&T and	d GC/MS (Basic Ta	arget List)*					
Extraction Method: SW5030B	Ar	nalytical	Method:	SW8260B		Work Order: 070122	29			
Lab ID				0701229	9-016B					
Client ID				SCS-3	GW					
Matrix				Wa						
Compound	Concentration *	DF	Reporting	Compour	nd	Concentration *	DF	Report		
			Limit					Lim		
Acetone Acrylonitrile	ND ND	1.0	10	Acrolein (Propenal) tert-Amyl methyl e		ND ND	1.0	5.0		
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	nane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether		ND	1.0	1.0		
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane		ND	1.0	0.5		
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5		
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzen	e	ND	1.0	0.5		
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorome	thane	ND	1.0	0.5		
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane		ND	1.0	0.5		
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroeth		ND	1.0	0.5		
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropan		ND	1.0	0.5		
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropan		ND	1.0	0.5		
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropro		ND	1.0	0.5		
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (	•	ND	1.0	0.5		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl eth		ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadien	e	ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5		
Isopropylbenzene Mathyl t hytyl athar (MTDE)	ND ND	1.0 1.0	0.5	4-Isopropyl toluene Methylene chloride		ND ND	1.0 1.0	0.:		
Methyl-t-butyl ether (MTBE) 4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.		
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5		
1.1.2.2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	letinane	ND	1.0	0.		
Toluene	ND	1.0	0.5	1.2.3-Trichlorobenz	zene	ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha		ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.4		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroprop	oane	ND	1.0	0.4		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylben		ND	1.0	0.1		
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5		
		Surr	ogate Re	ecoveries (%)						
%SS1:	104			%SS2:		95				
%SS1: 104 %SS3: 91				/0002.		75				

#### Comments: i

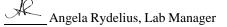
* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

WcCampbell Analyt	ical, Inc.		Web: www.mco	ow Pass Road, Pittsburg, CA 945 campbell.com E-mail: main@mc ne: 877-252-9262 Fax: 925-252	campbell.con	1			
SCS Engineers	Client Project	ct ID:	#01203087.02	Date Sampled: 01/	/11/07				
6601 Koll Center Pkwy, Ste 140				Date Received: 01/	/11/07				
Pleasanton, CA 94566	Client Cont	act: St	teve Clements Date Extracted: 01/11/07-01						
,	Client P.O.:		Date Analyzed 01/12/07-01/16/07						
Gasoline Range (C6-C12) & Stoddard S Extraction method SW5030B	-		<b>12) Volatile Hydroca</b> ods SW8015Cm	rbons as Gasoline & Stod	dard Solv Work Order				
Lab ID Client ID	Matrix		TPH(g)	TPH(ss)	DF	% SS			
0701229-001A SCS-1, 2.5'	S		ND	ND	1	92			
0701229-002A SCS-1, 5.0'	S		ND	ND	1	93			
0701229-004A SCS-1, 15.0'	S		ND	ND	1	99			
0701229-007A SCS-1, 6.5"	S		ND	ND	1	92			
0701229-008A SCS-2, 10.5'	S		ND	ND	1	93			
0701229-009A SCS-2, 15'	S		ND	ND	1	85			
0701229-010A SCS-2,2.5'	S		ND	ND	1	100			
0701229-011A SCS-3, 6.5'	S		ND	ND	1	97			
0701229-013A SCS-3, 15'	S		ND	ND	1	88			
0701229-014A SCS-1 GW	W		ND,i	ND	1	109			
0701229-015A SCS-2 GW	W		ND,i	ND	1	110			
0701229-016A SCS-3 GW	W		ND,i	ND	1	108			
		_							
		_							


Reporting Limit for $DF = 1$ ;	W	50	50	μg/L
ND means not detected at or	c	1.0	1.0	ma/Ka
above the reporting limit	3	1.0	1.0	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised

DHS ELAP Certification Nº 1644



	CCampbell Analyti "When Ouality Counts"	cal, Inc.		Web: w	ww.mccamp	Pass Road, Pittsburg, CA 94565 bell.com E-mail: main@mccar 877-252-9262 Fax: 925-252-92	npbell.com				
SCS Engineer	rs	Client Project	ID: #	01203087.02		Date Sampled: 01/11	/07				
6601 Koll Cer	nter Pkwy, Ste 140		Date Received: 01/11/								
Pleasanton, C	4 94566	Client Contac	et: Ste	eve Clements	/07						
T Reasonation, C		Client P.O.:		Date Analyzed 01/12/07							
			-	CP-MS*							
Extraction method	E200.8	Analy	ytical m	ethods E200.8		Work C	Order: 070	01229			
Lab ID	Client ID	Ma	atrix	Extraction		Lead	DF	% SS			
0701229-014C	SCS-1 GW		W	DISS.		ND,i	1	N/A			
0701229-015C	SCS-2 GW		W	DISS.		ND,i	1	N/A			
0701229-016C	SCS-3 GW		w	DISS.		ND,i	1	N/A			

Reporting Limit for $DF = 1$ ;	W	DISS.	0.5	μg/L
ND means not detected at or above the reporting limit	S	TTLC	NA	mg/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

# means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than  $\sim 1$  vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.



	<b>Campbell Analyti</b> "When Ouality Counts"	cal, Inc.	Web: www.mccamp	Pass Road, Pittsburg, CA 94565- obell.com E-mail: main@mccam 877-252-9262 Fax: 925-252-92	pbell.com		
SCS Engineers	when Ouanty Counts	Client Project ID:	•	Date Sampled: 01/11/			
6601 Koll Center I	Plana Sto 140	5		Date Received: 01/11/			
0001 Koli Cellei I	rkwy, Ste 140	Client Contact:	Steve Clements	Date Extracted: 01/11/07			
Pleasanton, CA 94	4566	Client P.O.:	Steve Clements	Date Analyzed 01/13			
	Diesel Range (C10-		Hydrocarbons with Silica				
Extraction method SW3	510C/3630C/SW3550C/3630C		l methods SW8015C	Work Or	der: 07	01229	
Lab ID	Client ID	Matrix	TPH(d	)	DF	% SS	
0701229-001A	SCS-1, 2.5'	S	ND		1	106	
0701229-002A	SCS-1, 5.0'	S	ND		1	100	
0701229-004A	SCS-1, 15.0'	S	ND				
0701229-007A	SCS-1, 6.5"	S	ND				
0701229-008A	SCS-2, 10.5'	S	ND				
0701229-009A	SCS-2, 15'	S					
0701229-010A	SCS-2,2.5'	S	ND ND				
0701229-011A	SCS-3, 6.5'	S	ND		1	99	
0701229-013A	SCS-3, 15'	S	ND		1	99	
0701229-014A	SCS-1 GW	W	ND,i		1	108	
0701229-015A	SCS-2 GW	W	ND,i		1	108	
0701229-016A	SCS-3 GW	W	ND,i		1	105	
		<u> </u>			I	L	

Reporting Limit for DF =1;	W	50	µg/L	
ND means not detected at or above the reporting limit	S	1.0	mg/Kg	

* water samples are reported in  $\mu$ g/L, wipe samples in  $\mu$ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu$ g/L.

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; r) results are reported on a dry weight basis

DHS ELAP Certification Nº 1644



"When Ouality Counts"

## QC SUMMARY REPORT FOR SW8260B

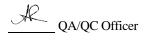
W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0701229

EPA Method SW8260B	E	Extraction	SW503	0B		Batchl	D: 25683	S	piked San	nple ID	: 0701231-0	001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (º	%)
, analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND	0.050	110	103	6.09	92.4	93.7	1.37	70 - 130	30	70 - 130	30
Benzene	ND	0.050	126	128	1.91	119	120	0.910	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	107	112	4.77	104	99.8	3.96	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	114	109	4.65	96.3	98	1.82	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	120	121	1.11	106	110	3.58	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	128	121	4.99	108	110	2.08	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	98.5	80.7	19.8	85.7	89.8	4.67	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	124	121	2.48	104	109	4.02	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	116	113	3.09	99.3	101	2.14	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	122	117	4.21	101	105	3.25	70 - 130	30	70 - 130	30
Toluene	ND	0.050	105	116	10.1	101	106	4.66	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	86.3	82.6	4.43	76	77.7	2.21	70 - 130	30	70 - 130	30
%SS1:	95	0.050	107	109	1.38	113	110	2.27	70 - 130	30	70 - 130	30
%SS2:	90	0.050	82	95	14.6	92	95	3.30	70 - 130	30	70 - 130	30
%SS3:	85	0.050	91	106	14.6	104	105	0.274	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONE


#### BATCH 25683 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701229-001	1/11/07	1/11/07	1/13/07 1:53 AM	0701229-002	1/11/07	1/11/07	1/13/07 2:37 AM
0701229-004	1/11/07	1/11/07	1/13/07 3:21 AM	0701229-007	1/11/07	1/11/07	1/13/07 4:04 AM
0701229-008	1/11/07	1/11/07	1/13/07 4:48 AM	0701229-009	1/11/07	1/11/07	1/13/07 5:32 AM
0701229-010	1/11/07	1/11/07	1/13/07 6:15 AM	0701229-011	1/11/07	1/11/07	1/13/07 6:59 AM
0701229-013	1/11/07	1/11/07	1/13/07 7:42 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.





"When Ouality Counts"

## QC SUMMARY REPORT FOR SW8260B

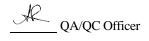
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0701229

EPA Method SW8260B	E	xtraction	SW503	0B	BatchID: 25671 Spiked Sample ID: 0701229					: 0701229-0	016B	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (	%)
, indivio	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND	10	90.5	93.4	3.16	94.3	94.4	0.0988	70 - 130	30	70 - 130	30
Benzene	ND	10	119	121	1.37	125	121	3.28	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	101	110	9.27	96.1	104	8.12	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	103	102	1.46	107	104	3.39	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	99.8	103	3.43	112	108	3.16	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	111	114	2.57	115	114	0.695	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	81.1	82.6	1.83	93.7	82.9	12.3	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	105	107	1.50	109	108	0.770	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	96.9	101	4.23	103	101	1.55	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	98.5	102	3.11	105	106	0.142	70 - 130	30	70 - 130	30
Toluene	ND	10	98.9	100	1.18	111	106	4.46	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	76.3	76.2	0.0808	83.1	78.9	5.18	70 - 130	30	70 - 130	30
%SS1:	104	10	109	111	1.49	111	109	2.12	70 - 130	30	70 - 130	30
%SS2:	95	10	93	94	0.839	99	97	1.49	70 - 130	30	70 - 130	30
%SS3:	91	10	99	101	1.63	102	100	1.10	70 - 130	30	70 - 130	30

NONE


### BATCH 25671 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701229-014	1/11/07	1/14/07	1/14/07 12:59 PM	0701229-015	1/11/07	1/16/07	1/16/07 1:02 PM
0701229-016	1/11/07	1/14/07	1/14/07 11:31 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.





"When Ouality Counts"

## QC SUMMARY REPORT FOR SW8021B/8015Cm

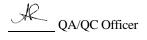
W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0701229

Analyte	Sample	le Spiked MS MSD			MS-MSD	LCS LCSD		LCS-LCSD	Acceptance Criteria (%)			
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	0.60	105	104	0.597	105	106	1.36	70 - 130	30	70 - 130	30
MTBE	ND	0.10	85.1	91.3	7.03	87.6	83.2	5.23	70 - 130	30	70 - 130	30
Benzene	ND	0.10	101	96.3	4.41	93	89.7	3.56	70 - 130	30	70 - 130	30
Toluene	ND	0.10	91	87.1	4.37	83.2	80.7	3.08	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	99.2	93.7	5.66	83.3	89.7	7.35	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	95	91	4.30	90.7	86.3	4.90	70 - 130	30	70 - 130	30
%SS:	83	0.10	96	85	12.2	82	80	2.47	70 - 130	30	70 - 130	30

#### BATCH 25690 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701229-001	1/11/07	1/11/07	1/12/07 3:39 PM	0701229-002	1/11/07	1/11/07	1/12/07 4:08 PM
0701229-004	1/11/07	1/11/07	1/12/07 4:38 PM	0701229-007	1/11/07	1/11/07	1/16/07 2:29 PM
0701229-008	1/11/07	1/11/07	1/12/07 6:20 PM	0701229-009	1/11/07	1/11/07	1/12/07 7:09 PM
0701229-010	1/11/07	1/11/07	1/12/07 7:38 PM	0701229-011	1/11/07	1/11/07	1/12/07 8:07 PM
0701229-013	1/11/07	1/11/07	1/12/07 8:36 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 $\pounds$  TPH(btex) = sum of BTEX areas from the FID.





"When Ouality Counts"

## QC SUMMARY REPORT FOR SW8021B/8015Cm

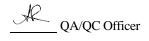
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0701229

	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	٨	conton	ce Criteria (	0()
Analyte	Sample	Spikeu	1010	IVIGD	1013-1013D	103	LCOD	103-1030	A	ceptan	ce ciliena (	/0)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	86.1	86.8	0.508	98.8	100	1.25	70 - 130	30	70 - 130	30
MTBE	ND	10	82.8	86.8	4.74	82.1	83.5	1.62	70 - 130	30	70 - 130	30
Benzene	ND	10	90.4	94	3.90	92.8	93.2	0.378	70 - 130	30	70 - 130	30
Toluene	ND	10	95.9	98.7	2.91	92.1	92.5	0.430	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	92.2	93.4	1.38	95.4	95.9	0.484	70 - 130	30	70 - 130	30
Xylenes	ND	30	99.7	100	0.334	107	107	0	70 - 130	30	70 - 130	30
%SS:	99	10	98	98	0	94	95	0.466	70 - 130	30	70 - 130	30

#### BATCH 25682 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701229-014	1/11/07	1/12/07	1/12/07 9:24 AM	0701229-015	1/11/07	1/12/07	1/12/07 9:53 AM
0701229-016	1/11/07	1/12/07	1/12/07 10:51 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 $\pounds$  TPH(btex) = sum of BTEX areas from the FID.





"When Ouality Counts"

## **QC SUMMARY REPORT FOR E200.8**

W.O. Sample Matrix: Water

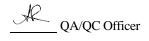
QC Matrix: Water

WorkOrder 0701229

EPA Method E200.8	E	Extraction	E200.8		BatchID: 25685				Spiked Sample ID: 0701239-007A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (º	%)
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Lead	ND	10	96.6	92.9	3.97	96.7	96.1	0.591	75 - 125	20	85 - 115	20
%SS:	109	750	108	104	3.80	103	102	0.0525	70 - 130	20	70 - 130	20
All target compounds in the Met	hod Blank o	f this axtra	etion bat	oh wara N	D less the	n the met	hod PI w	ith the follo	wing avcan	ions		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 25685 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701229-014	1/11/07	1/11/07	1/12/07 2:55 AM	0701229-015	1/11/07	1/11/07	1/12/07 3:00 AM
0701229-016	1/11/07	1/11/07	1/12/07 3:05 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.





"When Ouality Counts"

## QC SUMMARY REPORT FOR SW8015C

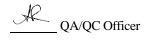
W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0701229

EPA Method SW8015C	E	Extraction	SW355	0C/36300	;	BatchID: 25619 S			Spiked Sample ID: 0701152-031A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria ('	%)
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	1.1	20	120	121	0.714	101	100	1.11	70 - 130	30	70 - 130	30
%SS:	95	50	100	101	0.735	98	98	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


#### BATCH 25619 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701229-001	1/11/07	1/11/07	1/13/07 4:22 AM	0701229-002	1/11/07	1/11/07	1/13/07 1:04 AM
0701229-004	1/11/07	1/11/07	1/13/07 2:10 AM	0701229-007	1/11/07	1/11/07	1/13/07 3:16 AM
0701229-008	1/11/07	1/11/07	1/13/07 4:22 AM	0701229-009	1/11/07	1/11/07	1/13/07 7:40 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.





"When Ouality Counts"

## QC SUMMARY REPORT FOR SW8015C

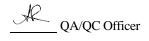
W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0701229

EPA Method SW8015C	E	Extraction	SW355	0C/36300	<b>;</b>	BatchID: 25698			Spiked Sample ID: 0701277-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria ('	%)
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	ND	20	96.5	97.8	1.33	96.9	101	3.71	70 - 130	30	70 - 130	30
%SS:	94	50	96	99	0.823	96	101	4.84	70 - 130	30	70 - 130	30
All target compounds in the Mo	thed Diantra	f this outre	ation hat	ah wana N	ID less the	n tha mati	had DI w	with the fello	wine eveen	iona		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


#### BATCH 25698 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701229-010	1/11/07	1/11/07	1/13/07 3:16 AM	0701229-011	1/11/07	1/11/07	1/13/07 8:47 AM
0701229-013	1/11/07	1/11/07	1/13/07 9:53 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.





"When Ouality Counts"

## QC SUMMARY REPORT FOR SW8015C

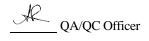
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0701229

EPA Method SW8015C	<b>)</b>	BatchID: 25625 Spiked Sample ID: N/A										
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	ce Criteria (%)		
, maly to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	113	109	3.90	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	94	100	6.52	N/A	N/A	70 - 130	30
All target compounds in the Me	All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:											

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


#### BATCH 25625 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701229-014	1/11/07	1/11/07	1/13/07 7:40 AM	0701229-015	1/11/07	1/11/07	1/13/07 8:47 AM
0701229-016	1/11/07	1/11/07	1/13/07 9:53 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.



Suite 14 Pleasant	ton, CA 94566	WY	X 925 426-0702 ww.scsengineers.	com	5-Day3-	ME REQUIRED: Wormal DayimmediateOther GER: S. Clements	-d-55	1 200	221				
JECT NL	JMBER: 012030	87.02				SER. S. CUMEMS	- 6-	60		N			
UECT NA	AME: Freisman	n Ranc	ch		W.O. / S.O. #:		HOL	82		rchue			
JECT LO	DCATION: 1600 F	reisman	Ra, LIV	ermore,	<u>ç.4</u>			Full	20 20 00 00 00	3			
IPLER N.	AME AND SIGNATURE:	TED	DATE/TIME	CONTAINER	SAMPLE	SPECIAL INSTRUCTIONS/COMMENTS	POISC	12 i	8	A			
NUMBER	SAMPLE DESIGNATION	SAMPLE	COLLECTED	SIZE/TYPE	PRESERVATIVE		N N	V	+				
	565-1,2,51	soil	1-11-07	Actide	na		A	A			-++		-
	5(5-1,5:01	1					X	X				-	-
	515-1, 10,01									X			
							X			X			
	5(5-1, 15.0'						T			X			
	565-1, 20.0'						+		1	Ń			
	565-1,25.0'						+		+				
	565-2, 6,5'						-X						-
	515-2, 10.5'						X	X					_
	565-2, 15'						X	X		X			
							X			X			
	565-3, 2.5'				+ +		K	/V		X			
	565-3,615						-+^	44	-	V			
àrasa.	565-3, 10'						-			1/1	++-		
	515-3, 15'				1		_17	44			┟╌┽─		
	SCS-1 GW	420		Various	4 voas u/ HCO		2	< X	X				
	565-2 GW	1 V					)	$\langle   \chi  $	X				
	25-2900			2	1 / 1					SAMPLE C	ONDITION	UPON RECEIP	T:
Please	se lab filter ise use, sili	- samp	des for	dissolve	d metal	Junit							
1	co use sil	ca ge	1 cleanu	p when	never ap	propriate						ID ATE:	

	HANNEEDO EN	vironme	ntal Consu	Itants	TOTAL NUMBER O		-	-	TI	111		
SCS EI	NGINEERS En	VITOLIIII	intar oonio		PAGE Z	OF 2	1	-				
6601 Ko	ll Center Parkway	925 FAX	426-0080 925 426-0707		TURNAROUND TIM	NE REQUIRED: Normal	55-		1000			
Suite 14	on, CA 94566	ww	w.scsengineers.	com	5-Day3-1	DayImmediateOther	10	0	41	11		
		97 02			PROJECT MANAG	ERS, Lloneuts	-0	0	R			
OJECT NL	IMBER: 012030	2	L		W.O. / S.O. #:		HOL	826	Sil			
OJECT NA	AME: Freisma	n kanc	n luar	and ch	9		14	~	F		11	
OJECT LC	DCATION: 1600 FY	eisman	Erail Since	Prof			12	Full	sino			
MPLER N	AME AND SIGNATURE	SAMPLE	DATE/TIME	CONTAINER	SAMPLE	SPECIAL INSTRUCTIONSCOMMENTS	Poisc	F	8			
. NUMBER	SAMPLE DESIGNATION	MATRIX	COLLECTED	SIZE/TYPE	PRESERVATIVE		X	X	X			
	565-3 GW	H20	1-11-07	various	4 vons w/		1	1				
							1	T				
							T					-
												+
					-					+++	++	+
		-					+	+	++	+++	++	
			1				+	+	++	+++	++	1
							+	+	++	+++	++	1
							+	+	++	+++	++	-
							+	+	++	+++	11	
							-	+	++			
							-	+	++	111		
		-					1	T	11			
NOTES:							_	-		SAMPLE CO	NDITION U	PON RECEIPT
										ED BY		DATE.
		ATE:	RECEIVED BY	1 ka h	TZ 1911/07	REUNQUISHED BY:	DATE:		RECEN			TIME
RELINQUISHE	61/1	(-11-0)	COMPANY:	1 STECH	TIME 7:02	COMPANY:	TIME		COMPA	NY:		
COMPANY	Ses	5:02										

	A	W
1		C)
1	1	
	्ष	

1534 Willow Pass Rd

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, 0 (925) 252-	CA 94565-1701 9262		EDF		WorkOrder: 0701229					ClientID: SCSI			Third	Part			
Report to:							Bill t						Rec	quested	TAT:	5 (	days
Steve Clement	s er Pkwy, Ste 140	TEL: (	sclements@s (925) 426-008 #01203087.03	B FAX: (925)	426-0	70	S0 66	counts CS Engi 01 Koll easantc	neers Center	Pkwy,	Ste 140	)	Dat	te Reco te Prin	eived	01/11/	2007
									Req	uested	Tests	(See leg	jend be	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0701229-001	SCS-1, 2.5'		Soil	1/11/2007		А		А						<u> </u>		<u> </u>	
0701229-002	SCS-1, 5.0'		Soil	1/11/2007		А		А									
0701229-004	SCS-1, 15.0'		Soil	1/11/2007		А		Α									
0701229-007	SCS-1, 6.5"		Soil	1/11/2007		Α		Α									
0701229-008	SCS-2, 10.5'		Soil	1/11/2007		А		А									
0701229-009	SCS-2, 15'		Soil	1/11/2007		Α		Α									
0701229-010	SCS-2,2.5'		Soil	1/11/2007		А		А									
0701229-011	SCS-3, 6.5'		Soil	1/11/2007		Α		А									
0701229-013	SCS-3, 15'		Soil	1/11/2007		А		Α									
0701229-014	SCS-1 GW		Water	1/11/2007			В		А	С	С						
0701229-015	SCS-2 GW		Water	1/11/2007			В		А	С	С						
0701229-016	SCS-3 GW		Water	1/11/2007			В		А	С	С						

#### Test Legend:

1	8260B_S	2 8260B_W	]	3 G-MBTEX_S	4	G-MBTEX_W	5	PBMS_DISS
6	PRDISSOLVED	7	]	8	9		10	
11		12	1					

The following SampIDs: 0701229-001A, 0701229-002A, 0701229-004A, 0701229-007A, 0701229-008A, 0701229-009A, 0701229-010A, 0701229-011A, 0701229-013A, 0701229-014A, 0701229-015A, 0701229-016A contain testgroup. Please make sure all relevant

Prepared by: Sheli Cryderman

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

## **APPENDIX G**

## LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION; SURFACE SOIL SAMPLES (FORMER INCINERATOR AREA)



"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

SCS Engineers	Client Project ID: #01203087.02; Freisman	Date Sampled: 01/09/07
6601 Koll Center Pkwy, Ste 140	Ranch	Date Received: 01/09/07
Pleasanton, CA 94566	Client Contact: Steve Clements	Date Reported: 01/12/07
	Client P.O.:	Date Completed: 01/12/07

#### WorkOrder: 0701171

January 12, 2007

#### Dear Steve:

Enclosed are:

- 1). the results of **9** analyzed samples from your **#01203087.02; Freisman Ranch project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

McCampbell An "When Ouality O		<u>c.</u>	Web: www.mccamp	Pass Road, Pittsburg, CA bell.com E-mail: mair 377-252-9262 Fax: 92	@mccampbell.c	om	
SCS Engineers		oject ID: #01203	3087.02;	Date Sampled:	01/09/07		
6601 Koll Center Pkwy, Ste 140	Freisman	n Ranch		Date Received: 01/09/07			
0001 Koli Centel I Kwy, Ste 140	Client Co	ontact: Steve Cl	ements	Date Extracted:	01/09/07		
Pleasanton, CA 94566	Client P.0	D.:		Date Analyzed	01/11/07		
		Metals*					
Extraction Method: SW3050B	Anal	ytical Method: 6020A			Work Order:	0701171	
Lab ID	0701171-001A	0701171-002A	0701171-003A	0701171-004A			
Client ID	SS-1	SS-2	SS-3	SS-4	Reporting		
Matrix	Soil	Soil	Soil	Soil	DF =1		
DF	1	1	1	1			
Extraction Type	TTLC	TTLC	TTLC	TTLC	S	W	
Compound		Conc	entration		mg/Kg	μg/L	
Arsenic	2.6	2.6	2.5	2.5	0.5	NA	
Cadmium	ND	ND	ND	ND	0.25	NA	
Chromium	41	26	29	26	0.5	NA	
Lead	7.6	7.5	7.7	9.2	0.5	NA	
Mercury	ND	0.053	ND	0.074	0.05	NA	
Nickel	41	30	30	30	0.5	NA	
Zinc	53	51	58	51	5.0	NA	
	Sur	rogate Recover	ies (%)				
%SS:	99	96	93	91			
Comments					ĺ		

*water samples are reported in  $\mu g/L$ , product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/wipe$ , filter samples in  $\mu g/filter$ .

# means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

J) analyte detected between reporting limits (RLs) and method detection limits (MDLs).

McCampbell An "When Ouality O		<u>c.</u>	Web: www.mccamp	Pass Road, Pittsburg, CA bell.com E-mail: mair 377-252-9262 Fax: 92	@mccampbell.c	om	
SCS Engineers		oject ID: #01203	3087.02;	Date Sampled:	01/09/07		
6601 Koll Center Pkwy, Ste 140	Freisman	n Ranch		Date Received:	01/09/07		
0001 Kon Center I Kwy, Sie 140	Client Co	ontact: Steve Cl	Date Extracted:	01/09/07			
Pleasanton, CA 94566	Client P.0	O.:		Date Analyzed	01/11/07		
		Metals*					
Extraction Method: SW3050B	Anal	ytical Method: 6020A	L		Work Order:	0701171	
Lab ID	0701171-005A	0701171-006A	0701171-007A	0701171-008A			
Client ID	SS-5	SS-6	SS-7	SS-8	Reporting		
Matrix	Soil	Soil	Soil	Soil	DF =1		
DF	1	1	1	1			
Extraction Type	TTLC	TTLC	TTLC	TTLC	S	W	
Compound		Conc	entration		mg/Kg	μg/L	
Arsenic	2.7	3.4	3.0	3.1	0.5	NA	
Cadmium	ND	ND	ND	ND	0.25	NA	
Chromium	25	32	35	31	0.5	NA	
Lead	7.0	7.3	12	14	0.5	NA	
Mercury	ND	ND	0.053	0.054	0.05	NA	
Nickel	28	33	35	32	0.5	NA	
Zinc	37	44	51	48	5.0	NA	
	Sur	rogate Recover	ies (%)				
%SS:	93	95	95	93			
Comments							

*water samples are reported in  $\mu g/L$ , product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/wipe$ , filter samples in  $\mu g/filter$ .

# means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

J) analyte detected between reporting limits (RLs) and method detection limits (MDLs).

When Ouality		<u>c.</u>		Web: www.mcca	w Pass Road, Pittsburg, CA ampbell.com E-mail: mair e: 877-252-9262 Fax: 92		om		
SCS Engineers		oject ID:	#01203	087.02;	Date Sampled:	01/09/07			
6601 Koll Center Pkwy, Ste 140	Freismar	Freisman Ranch			Date Received:	Date Received: 01/09/07			
0001 Kon Center I Kwy, Sie 140	Client Co	ontact: St	eve Cle	ments	Date Extracted:	01/09/07			
Pleasanton, CA 94566	Client P.	0.:			Date Analyzed	01/11/07			
		Met	als*						
Extraction Method: SW3050B	Anal	ytical Method	1: 6020A			Work Order:	0701171		
Lab ID	0701171-009A								
Client ID	SS-9					Reporting			
Matrix	Soil					DF	=1		
DF	1								
Extraction Type	TTLC				S	W			
Compound		Conce	ntration		mg/Kg	μg/L			
Arsenic	3.6					0.5	NA		
Cadmium	ND					0.25	NA		
Chromium	34					0.5	NA		
Lead	8.2					0.5	NA		
Mercury	0.082					0.05	NA		
Nickel	35					0.5	NA		
Zinc	48					5.0	NA		
T	Sur	rogate R	ecoveri	es (%)					
%SS:	91								
Comments									

# means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

J) analyte detected between reporting limits (RLs) and method detection limits (MDLs).

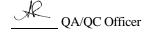


"When Ouality Counts"

# QC SUMMARY REPORT FOR 6020A

EPA Method	6020A			Extracti	on SW305	0B	В	atchID: 2	5623	Spiked Sa	mple	ID 0701152-	-043A
Analyte Sample S			MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Arsenic	11	50	101	102	0.440	10	100	100	0	75 - 125	20	80 - 120	20
Cadmium	0.36	50	102	101	0.804	10	98.1	99.8	1.66	75 - 125	20	80 - 120	20
Chromium	72	50	89	88	0.431	10	97.1	102	4.55	75 - 125	20	80 - 120	20
Lead	27	50	103	102	0.751	10	99.7	101	1.19	75 - 125	20	80 - 120	20
Mercury	0.090	2.5	104	103	0.299	0.50	101	101	0	75 - 125	20	80 - 120	20
Nickel	83	50	94.1	95.1	0.383	10	97.5	101	3.89	75 - 125	20	80 - 120	20
Zinc	120	500	99.8	98.3	1.23	100	98.7	98.9	0.233	75 - 125	20	80 - 120	20
%SS:	104	250	103	101	2.00	250	97	99	2.45	70 - 130	20	70 - 130	20

	BATCH 25623 SUMMARY												
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed						
0701171-001A	1/09/0	7 1/09/07	1/11/07 5:15 AM	0701171-002A	1/09/07	1/09/07	1/11/07 5:23 AM						
0701171-003A	1/09/0	7 1/09/07	1/11/07 5:32 AM	0701171-004A	1/09/07	1/09/07	1/11/07 5:40 AM						
0701171-005A	1/09/0	7 1/09/07	1/11/07 5:48 AM	0701171-006A	1/09/07	1/09/07	1/11/07 5:56 AM						
0701171-007A	1/09/0	7 1/09/07	1/11/07 6:05 AM	0701171-008A	1/09/07	1/09/07	1/11/07 6:13 AM						
0701171-009A	1/09/0	7 1/09/07	1/11/07 6:46 AM										


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to bioh matrix or analyte



SUSE	NGINEERS E	nvironm	ental Cons	ultants	TOTAL NUMBER	OF SAMPLES:	9		Ĩ	ANALY	'SES RE	QUEST	ED		LAB US ONLY
6601 K	oll Center Parkway	92	25 426-0080 X 925 426-070 ww.scsengineers	7	PAGE / TURNAROUND T 5-Day3	OF IME REQUIRED: -DayImmedia	Normal teOther	Cad min n,	mikel . Zinc.	rowy					
PROJECT N	UMBER: 0120308	37.02			PROJECT MANA	GER: S.Clem	ents	2 a	wc)	me r					
and and the second s	AME: Freisman				W.O. / S.O. #:			lead,							
	DCATION: 1600 Fre		Livermore	, CA				Le -	chromium	1					
	AME AND SIGNATURE			205		-		5	un	U as					
I.D. NUMBER	SAMPLE DESIGNATION	SAMPLE MATRIX	DATE/TIME COLLECTED	CONTAINER SIZE/TYPE	SAMPLE PRESERVATIVE	SPECIAL INSTRUCT	TIONS/COMMENTS	totel	Chi	ar					
	55-1	soil	1-9-07	902 JAR	n/a				$\geq$	$\leq$					
	55-2	(		1		¢		$\square$	$\succ$	$\leq$					
	55-3							$\square$	$\geq$						
	55-4							$\triangleright$		K					
	55-5							5	$\succ$		-				
	55-6								$\left \right $						,
	55-7							1	$\succ$						
	55-8								$\succ$		s				
	55-9							K	$\succ$	RÌ					
							·····								
					ICE/1°-4.2	° 2									
					GOOD CONL HEAD SPACE	ABSENT (	CONTAINERS	4							
					PRESERVAT	VOAS   O&G	PRESERVED IN L. METALS OTHER								
					PAGAERVAT										
NOTES:					1						SAMP	LE CONI		JPON RI	ECEIPT
RELINQUISHED B	(:) DAT	E: 0	RECEIVED BY:	Λ	DATE:	RELINQUISHED BY:	DAT	:		RECEN	ED BY:			DATE:	
COMPANY.	TIME	-9-07	COMPANY:	dumar	<u>19/0°</u> ТІМЕ:	COMPANY:	TIME	:		COMPA	NY:			TIME:	
20	>	4:07							in the second second						

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-926						Work	Order	0701	171	С	lientID	: SCSD					
				EDF		F	ax		🖌 Emai	I	ΠH	ardCopy	[	Third	Party		
Report to:							Bill to:						Req	uested	TAT:	5	days
Steve Clements		Email: s	sclements@s	cseng.com			Ac	counts	Payable	e							
SCS Engineers		TEL: (	(925) 426-008	30 FAX: (925)	426-07	707	SC	S Engi	neers								
6601 Koll Center	-	ProjectNo: #	#01203087.02	2; Freisman Rancl	n					Pkwy, S	Ste 140		Dat	e Recei	ived:	01/09	/2007
Pleasanton, CA	94566	PO:					Ple	asanto	n, CA 9	4566			Dat	e Print	ed:	01/09	/2007
									Re	quested	Tests (	See leger	nd bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0701171-001	SS-1		Soil	1/9/07		Α											
0701171-002	SS-2		Soil	1/9/07		А											
0701171-003	SS-3		Soil	1/9/07		Α											
0701171-004	SS-4		Soil	1/9/07		Α											
0701171-005	SS-5		Soil	1/9/07		Α											
0701171-006	SS-6		Soil	1/9/07		Α	-									-	
0701171-007	SS-7		Soil	1/9/07		Α	-									-	
0701171-008	SS-8		Soil	1/9/07		А											
0701171-009	SS-9		Soil	1/9/07		Α											

#### Test Legend:

1	METALSMS_S	2	3		5
6		7	8	9	10
11		12			

Prepared by: Melissa Valles

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.



"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

SCS Engineers	Client Project ID: #01203087.02; Freisman	Date Sampled: 01/10/07
6601 Koll Center Pkwy, Ste 140	Ranch	Date Received: 01/10/07
Pleasanton, CA 94566	Client Contact: Steve Clements	Date Reported: 01/16/07
	Client P.O.:	Date Completed: 01/16/07

#### WorkOrder: 0701211

January 16, 2007

#### Dear Steve:

Enclosed are:

- 1). the results of **5** analyzed samples from your **#01203087.02; Freisman Ranch project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

McCampbell An "When Ouality O		<u>c.</u>		Web: www.mccamp	ass Road, Pittsburg, CA bell.com E-mail: mair 77-252-9262 Fax: 92		om		
SCS Engineers		oject ID:	#01203	087.02;	Date Sampled:	01/10/07			
6601 Koll Conton Diguy, Sto 140	Freismar	Freisman Ranch				Date Received: 01/10/07			
6601 Koll Center Pkwy, Ste 140	Client C	ontact: Ste	eve Cle	Date Extracted:	01/10/07				
Pleasanton, CA 94566	Client P.	D.:			Date Analyzed	01/12/07-0	1/13/07		
		Met	als*						
Extraction Method: SW3050B	Anal	ytical Method	: 6020A			Work Order:	0701211		
Lab ID	0701211-001A	0701211-	002A	0701211-003A	0701211-004A				
Client ID	SS-10	SS-1	1	SS-12	SS-13	Reporting Limit fo DF =1			
Matrix	Soil	Soil		Soil	Soil				
DF	1	1		1	1				
Extraction Type	TTLC	TTL	С	TTLC	TTLC	S	W		
Compound			Conce	entration		mg/Kg	μg/L		
Arsenic	2.5	9.6		4.6	5.7	0.5	NA		
Cadmium	ND 0.3		)	0.38	ND	0.25	NA		
Chromium	28	51		63	59	0.5	NA		
Lead	8.2	49.7	,	65	15	0.5	NA		
Mercury	ND	ND		0.062	0.060	0.05	NA		
Nickel	30	62		57	86	0.5	NA		
Zinc	54	120		190	83	5.0	NA		
	Sur	rogate Re	coveri	es (%)					
%SS:	107	101		96	98				
Comments									

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

# means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

J) analyte detected between reporting limits (RLs) and method detection limits (MDLs).

McCampbell An		cal, Inc.	<u>-</u>		Web: www.mccamp	Pass Road, Pittsburg, CA	@mccampbell.c	com
"When Ouality	Counts	Client Proj	act ID:	#01203		B77-252-9262         Fax: 92:           Date Sampled:	01/10/07	
Ses Engineers		Freisman H		#01205	087.02,	Date Received:		
6601 Koll Center Pkwy, Ste 140	-							
	F			eve Cle	ments	Date Extracted:		
Pleasanton, CA 94566		Client P.O.	:			Date Analyzed	01/12/07-0	1/13/07
			Met	als*				
Extraction Method: SW3050B	1		ical Method	l: 6020A			Work Order:	0701211
Lab ID		1-005A						
Client ID	SS	-14					Reporting	
Matrix	S	oil					DF	=1
DF		1						
Extraction Type	TT	TLC					S	W
Compound	nd						mg/Kg	μg/L
Arsenic	1	0					0.5	NA
Cadmium	0.	73					0.25	NA
Chromium	7	79					0.5	NA
Lead	7	60					0.5	NA
Mercury	0.0	072					0.05	NA
Nickel	4	1					0.5	NA
Zinc	5	10					5.0	NA
	1	Surro	ogate Re	ecoveri	es (%)	I	T	
%SS:	9	99						
Comments								
*water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg,		-				DISTLC / SPLP extr	acts are repo	rted in

# means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

J) analyte detected between reporting limits (RLs) and method detection limits (MDLs).



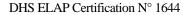
"When Ouality Counts"

### QC SUMMARY REPORT FOR 6020A

W.O. Sample N			QC Ma	atrix: Soi					WorkOrder: 0701211						
EPA Method		Extracti	raction SW3050B BatchID: 25				5663	Spiked Sample ID 0701199-023A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acce	eptanc	e Criteria (%	)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
Arsenic	7	50	106	99.5	5.77	10	106	107	0.748	75 - 125	20	80 - 120	20		
Cadmium	ND	50	103	97.2	6.24	10	110	110	0	75 - 125	20	80 - 120	20		
Chromium	41	50	102	97.5	2.48	10	107	110	2.21	75 - 125	20	80 - 120	20		
Lead	23	50	109	103	3.87	10	107	109	1.57	75 - 125	20	80 - 120	20		
Mercury	0.12	2.5	124	118	5.10	0.50	96	97	1.08	75 - 125	20	80 - 120	20		
Nickel	35	50	102	98.1	2.35	10	101	103	2.06	75 - 125	20	80 - 120	20		
Zinc	39	500	101	95	5.63	100	106	107	1.32	75 - 125	20	80 - 120	20		
%SS:	107	250	112	114	1.60	250	112	113	1.49	70 - 130	20	70 - 130	20		
All target compo NONE	ounds in the M	lethod Bla	ank of this	s extractio	on batch wer	e ND less	than the r	nethod RL	with the fol	lowing exce	ptions:				

#### BATCH 25663 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701211-001A	1/10/0	7 1/10/07	1/12/07 3:17 AM	0701211-002A	1/10/0	7 1/10/07	1/12/07 3:25 AM
0701211-003A	1/10/0	7 1/10/07	1/12/07 3:34 AM	0701211-004A	1/10/0	7 1/10/07	1/12/07 4:07 AM
0701211-005A	1/10/0	7 1/10/07	1/12/07 4:15 AM	0701211-005A	1/10/0	7 1/10/07	1/13/07 1:34 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte



QA/QC Officer

				untunto		OF OAMI LLO.	2	1	AN	ALYS	ES REG	UESTE	)	ONLY
Suite 1	Coll Center Parkway 40 nton, CA 94566	FA	25 426-0080 AX 925 426-070 ww.scsengineers		PAGE /	OF TIME REQUIRED:	Normal	, E	nickel, zinc					UNLT
					5-Day3	21	S	L'a						
					The second s	GER: S. clema	uts	Cadmium,	nic	mercury				
	OCATION: 1100 To	eanch	1		W.O. / S.O. #:			-	~ `					
	OCATION: 1600 Fre	isman Rd	· Livermore	2, 04				lead,	in	2				
I.D. NUMBER	SAMPLE DESIGNATION	SAMPLE	DATE/TIME	CONTAINER	SAMPLE	005000		totel	Chromium,	arsene				
	55-10	Soil	COLLECTED	SIZE/TYPE	PRESERVATIVE	SPECIAL INSTRUCT	TIONS/COMMENTS	4	C	3	$\left  \right $			
		sice	-10-0/	902 JAR	n/a			$\square$	$\triangleleft$					
	55-11							$\triangleright$	$\prec$	1				
	55-12									-				
	55-13								$\blacksquare$	>				
	55-14							$ \blacksquare $	$\Rightarrow$	+				
									$\rightarrow$	-		_		
				5										
	2 2.													
												++		
														idadadaa ahaa ahaa ahaa ahaa ahaa ahaa a
DTES:	Al													
1125:										s	AMPLE	ONDITIO	N UPON F	ECEIPT:
	,				Λ.									
LINQUISHED BY:	DATE:	10 0 7 17	ECEIVED BY:	22	ATE: 1 TATE	RELINQUISHED BY:	DATE:		IPEOR	IVED B	1.			
MPANY:	TIME	10-07	COMPANY:		TIME: 1, 1001	Environ OMPANY:	teeh 1-1	0.00	0				DATE:	
<u>S</u> ç	-> 19	XXII	V	Y	16.23	tothe Mare	Mrg 18	,76	СОМ	PANY:			TIME:	
	1	(	15:21 -	/		10	D.		1					

SS-13

SS-14

Soil

Soil

1/10/07

1/10/07

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-926					WorkOrder: 0701211			С	lientID	: SCSI	D						
						Fa	ax		🖌 Email		ПН	ardCopy	[	Third	IParty		
Report to:	Bill to:									Req	uested	TAT:	5 days				
Steve Clements SCS Engineers 6601 Koll Center Pleasanton, CA	cseng.com 0 FAX: (925) 2; Freisman Rancł		0707 SCS En 6601 Kc			ccounts Payable CS Engineers 601 Koll Center Pkwy, Ste 140 leasanton, CA 94566					Date Received: Date Printed:			)/2007 )/2007			
					[				Re	quested	Tests (	See leg	Date Printed: 01/1 e legend below)				
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0701211-001	SS-10		Soil	1/10/07		А											
0701211-002	SS-11		Soil	1/10/07		Α											
0701211-003	SS-12		Soil	1/10/07		А											

А

А

 $\square$ 

#### Test Legend:

0701211-004

0701211-005

1	METALSMS_S	2	3	4	5	
6		7	8	9	10	
11		12				

#### **Prepared by: Lisa Cavalier**

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.