RECEIVED

5:48 pm, Mar 21, 2012

Alameda County Environmental Health

March 20, 2012

Mr. Jerry Wickham Senior Hazardous Materials Specialist Alameda County Environmental Health Services Environmental Protection, Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Letter of Transmittal for Soil Vapor and Subsurface Investigation Report O'Reilly Auto Pasts (Former Grand Auto #43) 4240 International Boulevard (East 14th Street) Oakland, California 94601 ACEH Fuel Leak Case No. RO0002483 GeoTracker Global ID No. T06019705075

Dear Mr. Wickham:

As required in your letters of May 16 and August 4, 2011 regarding the abovereferenced subject site, we submit this transmittal letter and accompanying *Soil Vapor and Subsurface Investigation* report. This report contains the results of the subsurface investigation performed on January 4 and 5, 2012 to evaluate the potential for soil vapor intrusion from the former sump, and for soil and groundwater impact from the former underground storage tanks.

I declare under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

PACCAR, Inc.

Vicki ZumBrunnen, REM Environmental Project Supervisor

, ,

AllWest Environmental, Inc.

Specialists in Physical Due Diligence and Remedial Services

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391.2510 Fax 415.391.2008

SOIL VAPOR AND SUBSURFACE INVESTIGATION

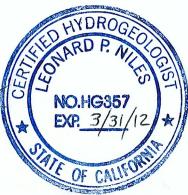
O'Reilly Auto Parts (Former Grand Auto #43) 4240 International Boulevard (East 14th Street) Oakland, California 94601

ACHCS Case # RO0002483 Geotracker Global ID # T06019705075

PREPARED FOR:

PACCAR, Inc. Corporate Environmental Department P.O. Box 1518 Bellevue, WA 98009

ALLWEST PROJECT 11134.23 March 16, 2012


PREPARED BY:

Honard

Leonard P. Niles, PG, CHG Senior Project Manager

REVIEWEDB 1an unkhen

Marc D. Curnningham REA President

TABLE OF CONTENTS

I.	EXECUTIVE SUMMARY	Page 1
II.	PROJECT BACKGROUND	
	A. Site Location and Description	-
	B. Site Geology and Hydrogeology	-
	C. Previous Investigations and Remedial Actions	
III.	PURPOSE AND SCOPE OF WORKPage 12	
IV.	INVESTIGATIVE ACTIVITIES	Page 15
	A. Permitting	Page 15
	B. Health and Safety Plan	
	C. Underground Utility Inspection and Conduit Survey	Page 15
	D. Geoprobe [®] DPT Soil Vapor Probe Installation	
	E. Geoprobe [®] DPT Boring Advancement	Page 16
	F. Soil Vapor Sampling	
	G. Soil Sampling	
	H. Groundwater Sampling	
	I. Borehole Backfilling	-
	J. Sample Preservation, Handling and Chain-of-Custody Program	
	K. Investigative Derived Waste Containment and Disposal	
V.	ASSESSMENT FINDINGS	Page 20
	A. Subsurface Conditions	-
	B. Laboratory Analyses and Sampling Data	-
	C. Laboratory Quality Assurance and Quality Control	
VI.	DISCUSSION	
	A. Site Hydrogeology	-
	B. Environmental Screening Levels	Page 25
	C. Contaminant Distribution and Exposure Pathways	
VII.	CONCLUSIONS	Page 29
	A. Conclusions	Page 29
	B. Recommendations	-
VIII.	REPORT LIMITATIONS Page 29	
IX.	REFERENCES	

FIGURES

- Figure 1: Site Location Map
- Figure 2: Site Map with Boring and Well Locations
- Figure 3: Groundwater Elevation Map, December 20, 2011
- Figure 4: Soil Vapor Analytical Summary, January 4, 2012
- Figure 5: Groundwater Analytical Summary, December 20, 2011 and January 4, 2012

TABLES

- Table 1: Summary of Groundwater Analytical Data
- Table 2: Summary of Soil Vapor Sample Analytical Data
- Table 3:
 Summary of Soil Sample Analytical Data

APPENDIX

Appendix A:	Table A-1 - Historical Soil Analytical Data
Appendix B:	Drilling Permits
Appendix C:	Standard Geoprobe [®] Soil Vapor, Soil and Groundwater
	Sampling Procedures
Appendix D:	Soil Vapor Sampling Field Logs
Appendix E:	Boring Logs
Annondiv E.	I aboratory Analytical Panarts and Chain of Custody Documon

Appendix F: Laboratory Analytical Reports and Chain of Custody Documents

AllWest Environmental, Inc.

Specialists in Physical Due Diligence and Remedial Services

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391.2510 Fax 415.391.2008

SOIL VAPOR AND SUBSURFACE INVESTIGATION

O'Reilly Auto Parts (Former Grand Auto #43) 4240 International Boulevard (East 14th Street) Oakland, California 94601

ACHCS Case # RO0002483 Geotracker Global ID # T06019705075

I. EXECUTIVE SUMMARY

AllWest Environmental, Inc. (AllWest) conducted a subsurface investigation on January 4 and 5, 2012 to characterize potential soil vapor intrusion, soil and groundwater conditions in the vicinity of the former Grand Auto # 43 facility (the subject site) referenced above. The work was performed in response to a request by the Alameda County Health Care Services Agency, Environmental Health Services (ACHCS/ACEH) in their letters of December 10, 2010 and May 16, 2011 to address outstanding issues prior to considering case closure. The proposed scope of work was described in the *Soil Vapor Investigation and Groundwater Monitoring Work Plan* submitted by AllWest on April 15, 2011 and the *Soil and Groundwater Investigation Work Plan Addendum* submitted by AllWest on July15, 2011.

The purpose of the subsurface investigation was to evaluate potential soil vapor intrusion impact of volatile organic compounds (VOCs) to indoor air quality at the subject site in the vicinity of the former car wash sump. Additionally, the purpose was to evaluate potential impact to soil and groundwater by petroleum hydrocarbons at the subject site in the presumed vicinity of the former underground storage tanks (USTs) removed in 1986. The work was performed on January 4 and 5, 2012 with approval and oversight of the ACHCS.

Six soil borings were advanced on January 4, 2012 using Geoprobe[®] Direct Push Technology (DPT) and hand-driven methods. Temporary soil vapor probes SVP-1 through SVP-6 were installed to a depth of 5 feet below ground surface (bgs) inside and

outside of the building in the vicinity of the former car wash sump (Figure 2). The soil vapor probes SVP-1, SVP-2 and SVP-3 were located in the building interior adjacent to the former sump. Probes SVP-4, SVP-5 and SVP-6 were located in the outdoor parking areas adjacent to the former sump. AllWest collected soil vapor samples from SVP-1 through and SVP-6 in SUMMA canisters in general accordance with the State of California Department of Toxic Substances Control (DTSC) *Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance)*, October 2011 (DTSC, 2011).

Soil vapor samples were analyzed for VOCs by EPA Method TO-15. Tetrachloroethene (PCE) was detected in soil vapor samples collected from temporary soil vapor probes SVP-1, SVP-2, SVP-3, SVP-4, SVP-5 and SVP-6, at respective concentrations of 270 micrograms per cubic meter (μ g/m³), 460 μ g/m³, 8,100 μ g/m³, 550 μ g/m³, 4,600 μ g/m³ and 670 μ g/m³. The PCE breakdown product trichloroethene (TCE) was detected in soil vapor samples collected from SVP-2, SVP-3, SVP-5 and SVP-6, at respective concentrations of 25 μ g/m³, 210 μ g/m³, 51 μ g/m³ and 26 μ g/m³.

Low concentrations of other VOCs including benzene, toluene, ethylbenzene and total xylenes (BTEX), acetone, 1,3-butadiene, chloroform, dichlorodifluoromethane (Freon 12), ethanol, ethyl acetate, 4-ethyltoluene, isopropyl alcohol (IPA), 4-methyl-2-pentanone (MIBK), naphthalene, propene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene were also detected. Soil vapor analytical results are summarized in Table 1.

PCE concentrations in probes SVP-3 and SVP-5 exceeded the corresponding California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) Environmental Screening Level (ESL) of 1,400 µg/m³ for commercial/industrial land use (RWQCB, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table E*, Interim Final November 2007, revised May 2008), and exceeded the State of California Environmental Protection Agency (CalEPA) California Human Health Screening Level (CHHSL) of 600 µg/m³ for soil vapor at commercial/industrial sites constructed without engineered fill (*Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties, Table 3*, January 2005, revised September 23, 2010). The PCE concentration in probe SVP-6 exceeded its applicable commercial/industrial CHHSL. None of the other VOCs detected in soil vapor samples exceeded their applicable ESLs or CHHSLs.

Only one (SVP-3) of the three soil vapor samples collected from beneath the building interior floor slab contained VOCs at concentrations exceeding ESLs and CHHSLs. PCE and TCE concentrations in SVP-3 exceeded their respective applicable ESLs and CHHSLs by less than one order of magnitude. A second soil vapor sample (SVP-5) contained PCE at a concentration exceeding the applicable ESL and CHHSL, and a third sample (SVP-6) contained PCE at a concentration exceeding the CHHSL; however, both were located in the outside parking area where vapor intrusion is not a likely exposure pathway.

Two soil borings, GP-1 and GP-2, were advanced to total respective depths of 35 and 20 feet bgs using Geoprobe[®] DPT methods on January 5, 2012 in the vicinity of the former USTs in the driveway and parking areas (Figure 2). Soil and groundwater samples were collected from each boring. The groundwater sample from boring GP-2 was collected from a shallow perched saturated zone at approximately 10 to 12 feet bgs within backfill material near the bottom of the former UST excavation. Boring GP-2 was not advanced deeper than 20 feet bgs to prevent possible cross-contamination between the shallow perched saturated zone and the true groundwater-bearing zone first encountered at approximately 35 feet bgs in GP-1.

AllWest concludes the highest VOC concentrations detected in soil vapor samples were from the vicinity of the former sump. Soil vapor intrusion into the building interior is likely not a significant exposure pathway to building occupants, since only one of the three soil vapor samples collected from beneath the building interior floor slab contained PCE at concentrations exceeding the applicable ESL, by less than one order of magnitude.

Two soil samples each were collected from borings GP-1 and GP-2 at depths ranging from 9.5 to 20 feet bgs. Groundwater samples were collected through temporary PVC well screen and casing from boring GP-1 at the total boring depth of 35 feet bgs, and from GP-2 at 15 feet bgs and the total boring depth of 20 feet bgs. All soil and groundwater samples were analyzed for VOCs and total petroleum hydrocarbons as gasoline, diesel, and motor oil (TPH-g, TPH-d and TPH-mo) by EPA Methods 8260B and 8015B with silica gel cleanup, and for LUFT 5 metals by EPA Methods 6010B (soil) and 200.8 (water). Soil and groundwater analytical results are summarized in Tables 2 and 3.

The only VOCs detected in soil samples were PCE at 0.0067 milligrams per kilogram (mg/kg) and naphthalene at 0.0056 mg/kg in boring GP-2 at a depth of 10 to 10.5 feet bgs. TPH-d was detected in all four soil samples at a maximum concentration of 15 mg/kg in GP-2 at a depth of 10 to 10.5 feet bgs. TPH-mo was detected only in boring GP-2 at 72 mg/kg at a depth of 10 to 10.5 feet bgs. TPH-g was not detected in any soil samples analyzed. The metals chromium, nickel and zinc were detected in all four soil samples at maximum concentrations of 120 mg/kg, 160 mg/kg and 100 mg/kg. Lead was detected in two soil samples at a maximum concentration of 6.5 mg/kg. Soil analytical results are summarized in Table 2.

None of the petroleum hydrocarbons or VOCs detected exceeded their applicable ESLs for commercial/industrial land use in shallow or deep soils where groundwater is a potential drinking water resource (RWQCB *Tables A and C*, 2008). The nickel concentration of 160 mg/kg detected in boring GP-1 at 9.0 to 9.5 feet bgs slightly exceeded the ESL of 150 mg/kg for commercial/industrial land use in shallow soils where groundwater is a potential drinking water resource (RWQCB *Table A*, 2008), but was within naturally occurring background levels for the area.

PCE and carbon disulfide were detected in the shallow perched zone water sample collected from boring GP-2 at respective concentrations of 0.64 micrograms per liter (μ g/L) and 0.62 μ g/L. The PCE breakdown product cis-1,2-dichlorethene (cis-1,2-DCE) was detected in groundwater samples collected from both borings GP-1 and GP-2, at respective concentrations of 0.73 μ g/L and 0.72 μ g/L. Toluene and methyl tertiary butyl ether (MTBE) were detected in the groundwater sample from GP-1 at respective concentrations of 0.63 μ g/L and 0.96 μ g/L. No other VOCs were detected in groundwater samples from either boring.

TPH-g was not detected in groundwater samples from either boring GP-1 or GP-2. TPH-d and TPH-mo were detected only in the shallow perched zone water sample from boring GP-2 at respective concentrations of 200 μ g/L and 1,000 μ g/L. Nickel and zinc were detected in both groundwater samples at maximum respective concentrations of 14 μ g/L and 34 μ g/L. Groundwater analytical results are summarized in Table 3.

All VOCs detected in groundwater samples from GP-1 and GP-2 were at concentrations below groundwater ESLs for commercial/industrial land use where groundwater is a potential drinking water resource. TPH-d and TPH-mo concentrations, detected in the shallow perched water sample from GP-2, exceeded the respective drinking water ESLs of 100 μ g/L for each; however, that sample from within the former UST excavation is not representative of true groundwater at the subject site. Nickel, detected at 34 μ g/L in the groundwater sample from boring GP-1, exceeded the drinking water ESL of 8.2 μ g/L.

VOC concentrations exceeding applicable ESLs were detected in groundwater samples collected on December 20, 2011 from onsite monitoring wells MW-1, MW-2, MW-3A and MW-4, located downgradient from the former USTs. The origin of the VOC concentrations in onsite groundwater is uncertain, but does not appear to originate from the former onsite USTs due to the very low VOC concentrations detected in groundwater samples from borings GP-1 and GP-2 in the former UST vicinity.

TPH-g concentrations reported in groundwater samples by the analytical laboratories during the December 2011 and previous historical events in the early 1990s are actually representative of chlorinated VOCs (mostly PCE) within the TPH-g range and do not originate from the former onsite USTs. Although groundwater in the area is designated as potential municipal use by the RWQCB, it is not currently used as drinking water and unlikely to be used as such in the future due to the numerous LUST and industrial solvent leak sites in the area.

AllWest concludes the former fuel USTs have not significantly impacted soil or groundwater at the subject property, since none of the VOCs or petroleum hydrocarbons detected in true first encountered groundwater samples collected from boring GP-1 exceeded their respective ESLs. The source of the VOCs in groundwater at the subject property has not been determined, but they do not originate from the former onsite USTs. TPH-g concentrations reported in laboratory analytical results for groundwater samples

collected during the December 2012 event, and previous historical events during the 1990s, are probably representative of chlorinated VOCs, mostly PCE.

AllWest recommends a meeting be arranged with the ACHCS to discuss further steps toward obtaining case closure for the subject site.

II. PROJECT BACKGROUND

A. Site Location and Description

The approximately 1.2 acre former Grand Auto retail facility is located at the northwest corner of High Street and International Boulevard (formerly 14th Street) in Oakland, California. The site currently is used as a Kragen Auto Supply store.

The site was used as a dance hall in 1903. Site use between 1903 and 1946 is unknown. Circa 1946, an L-shaped building was constructed on the site. This building was used as office space and for auto repair and painting. The date of demolition of this building is not known. In 1960 or 1961, the present building was constructed for use as a Safeway grocery store.

Grand Auto occupied the building in 1971, installed gasoline pump islands and three 10,000-gallon gasoline underground storage tanks (USTs) for retail gasoline sales, and a car wash with an associated drainage sump. The gasoline service station and car wash operated from circa 1972 to 1986. The USTs were removed in August 1986. The car wash drainage sump was removed in August 1992. In October 1993, the remaining fuel conveyance piping associated with the former USTs was excavated and removed from the site.

Between 1992 and 2008, site environmental conditions were characterized via soil borings and groundwater monitoring wells. A site location map and site plan are presented as Figures 1 and 2, respectively.

B. Site Geology and Hydrogeology

The property is located on the East Bay Plain along the eastern slopes of the San Francisco Bay and immediately west of the East Bay Hills. The subject site is located at an elevation of approximately 30 feet above mean sea level (msl). The topographic gradient in the site vicinity is to the south-southwest toward San Francisco Bay.

According to the *Preliminary Engineering Geologic Information Map, Oakland and Vicinity* (1967), the site surface soils are mapped as Qu (Undifferentiated Quaternary deposits) which may include the Qtc (Temescal Formation, dark alluvium) and Qts (alluvial materials derived from the Qsu and Qsl (upper and lower members of the San Antonia Formation, clay, silt sand and gravel mixtures)). In general, these Quaternary alluvial deposits consist of unconsolidated clay, silt, sand, and gravel. Bedrock underlying the alluvium in the area consists primarily of the Mesozoic Franciscan Formation. The depth to bedrock in the site area is unknown but presumed to be over 100 feet below the ground surface.

Data from previous site borings indicate the property is underlain by an irregularly layered sequence of clayey to silty gravelly sand and sandy gravel lenses separated by clayey to sandy silt and silty to sandy clay layers to a depth of approximately 35 feet bgs. As much as 20 feet of imported fill material has been reported at some areas of the site. However, the site is not in an area mapped as Qf (artificial fill) like those areas by the Oakland Coliseum located approximately 2 miles south of the subject property.

Below the silt and clay layers, a fairly uniform layer of silty to gravelly sand was encountered in all borings at approximately 31 to 37 feet bgs, and extended to the total explored depth of approximately 46 feet bgs in most borings, except for a lower clay layer encountered from approximately 44 to 46 feet bgs in borings MW-3 and MW-4. Unconfined groundwater was first encountered within this sand layer at approximately 35 to 37 feet bgs in borings B-5, B-7 (MW-1), MW-2, MW-3 and MW-4. Although first encountered groundwater within this sand layer was unconfined when these borings were drilled near the end of a prolonged drought period in the early 1990s, increased precipitation has since resulted in static water levels rising to approximately 23 to 24 feet bgs; therefore groundwater within this sand layer is now confined.

Shallow perched water-bearing zones were encountered at 14.5 feet bgs and 9.5 feet bgs in borings B-1 and B-2, respectively. Very moist to wet zones were encountered during the drilling of borings B-4 at approximately 11.5 to 20 feet bgs, B-5 at approximately 11.5 to 15.5 feet bgs, and B-7 (MW-1) at approximately 9.5 to 10.5 feet bgs, although free water was nor encountered. These perched water-bearing and moist to wet zones indicate a possible discontinuous zone of perched groundwater. No other wet or perched zones were noted in other borings drilled at the subject property Hart Crowser, *Preliminary Site Investigation Report*, November 20, 1992 (Hart Crowser, 1992b) and *Supplemental Site Investigation* June 18, 1993 (Hart Crowser, 1993).

The groundwater gradient in the site area is very flat, thus the determination of the groundwater flow direction is difficult to assess. Regionally, groundwater is typically reported to flow from the east to the west from the Oakland Hills towards the San Francisco Bay. Groundwater flow in the vicinity of the site has historically fluctuated, but was generally calculated to be to the east, at a very flat gradient. The depth to groundwater during the last monitoring event in December 2011 ranged between 22.11 feet below ground surface (bgs) and 23.74 feet bgs.

The local groundwater flow direction measured during the 2008 monitoring event was generally towards the west at a gradient of approximately 0.001 feet/foot. The regional groundwater flow direction is to the southwest towards San Francisco Bay, concurrent with the topography. Prior to the 2008 measurement, local gradients were generally to the east. The historical fluctuations in gradient direction are not considered significant due to very small differences in groundwater elevations measured.

C. Previous Investigations and Remedial Actions

Underground Tank Removal

According to documents reviewed by AllWest at the City of Oakland Fire Department Fire Prevention Bureau (OFD) in March 2011, a pressure test was conducted in July 1986 on the three 10,000-gallon gasoline fuel underground storage tanks (USTs) at the site. At least one of the USTs failed the pressure test, with a maximum measured leakage rate of 0.1913 gallons per hour.

All three USTs were removed in August 1986, according to documents reviewed at OFD. AllWest was unable to locate any agency or consultant UST removal reports, or laboratory analytical data of any confirmatory soil or water samples, although other documentation including a permit application to remove the tanks, contractor terms and conditions and a billing invoice indicated that the USTs had been removed at that time. According to site plans and sketches in the OFD and City of Oakland Building Services Division (OBSD) files, the three USTs were located northeast of the fuel dispenser islands, not southwest of the islands as depicted in historical subsurface investigation and monitoring reports.

In July 1992, Hart Crowser, Inc. (Hart Crowser) performed a site investigation as outlined in *Sampling and Analysis Plan, Grand Auto/Super Tire Facilities*, July 5, 1992. The investigation included drilling two borings (B-4 and B-5) southwest of the dispenser islands in the assumed vicinity of the former location of the USTs (Figure 2). Analyses of soil samples from these borings did not indicate significant petroleum hydrocarbon concentrations, as summarized in the *Preliminary Site Investigation Report* (Hart Crowser, 1992b). Historical soil analytical data is summarized in Appendix A, Table A-1.

Drainage Sump Removal and Installation of MW-1

The car wash drainage sump and surrounding soil were removed on August 7, 1992. Hart Crowser collected a soil sample "S2C" from beneath the sump at the bottom of the excavation at 8.5 feet bgs. Analyses of the sample collected from the soil beneath the sump indicated the presence of TPH-g and TPH-d at

310 mg/Kg and 120 mg/Kg, respectively. Low concentrations of toluene, ethylbenzene, xylenes, and PCE were also detected (Appendix A, Table A-1).

A groundwater monitoring well, MW-1 (boring B-7), was installed approximately 10 feet southwest of the sump, in a down to cross gradient direction. The results of this phase of the investigation were summarized in the *Preliminary Site Investigation Report* (Hart Crowser, 1992b).

Groundwater Well Installations of MW-2 through MW-4 and HC-1

During April 1993, Hart Crowser drilled five soil borings (B-8 through B-12) and converted three of them to underground monitoring wells, MW-2 (B-10), MW-3 (B-11) and MW-4 (B-12) at the Grand Auto Store. A groundwater monitoring well, HC-1, was also installed at this time at the adjacent, former Super Tire Facility. Two of the soil borings (B-8 and B-9) were completed in the area of the former car wash sump. Soil samples from these two borings indicated that the total petroleum hydrocarbons (TPH) and PCE detected immediately below the sump in sample "S2C" were neither laterally nor vertically widespread (Appendix A, Table A-1). The wells were developed and sampled in April 1993. The results of this phase of the assessment were summarized in a report, *Supplemental Site Investigation* (Hart Crowser, 1993).

Conveyance Piping Removal

In October 1993, fuel conveyance piping associated with the former underground fuel storage tanks was excavated and removed from the site, as summarized in the *Quarterly Status Report*, (Hart Crowser, January 14, 1994). Verification soil samples were collected at a depth of 2.5 feet bgs from the base of the excavation at four locations, PGA-1, PGA-2, PGA-3 and PGA-4 (Figure 2). Each sample was analyzed for TPH-g and benzene, toluene, ethylbenzene, and xylenes (BTEX). TPH-g and BTEX were not detected in any of the samples analyzed (Appendix A, Table A-1).

Groundwater Monitoring

Between August 1993 and May 1996, Hart Crowser sampled the five groundwater monitoring wells eight more times. Although TPH-g range hydrocarbons were reported by the analytical laboratory, the chromatograms were not typical of a gasoline pattern and were interpreted by Hart Crowser to represent analytical overlap from halogenated VOCs detected in samples and not TPH-g. Hart Crowser discontinued TPH-g analysis after the June 1994 event (Hart Crowser, *Quarterly Status Report*, November 9, 1994). The groundwater analytical results from these sampling events are presented in Table 3.

Facility Closure Letter for Super Tire

When environmental activities were initiated at the subject property, the former Super Tire store at 4256 East 14th Street (currently All Mufflers Discounted) located southeast of the subject property was included as part of the Grand Auto site. Subsequently, the former Super Tire store was considered by both PACCAR and ACHCS as a separate site. In its letter to PACCAR dated December 27, 1993, ACHCS indicated that no further action was required for soil-related issues at the former Super Tire store. In a second letter dated November 20, 2000, ACHCS approved the destruction of the single groundwater well, HC-1, located on the former Super Tire facility.

Facility Closure Report for Grand Auto

Hart Crowser submitted a *Facility Closure Report* on February 16, 1996 requesting site closure (Hart Crowser, 1996a). The request was based on the following:

- Potential onsite sources related to Grand Auto operations (USTs, pump islands, associated piping, and car wash sump) have been investigated and/or successfully remediated, thus are no longer considered to be sources;
- Investigations of these potential onsite sources did not indicate evidence of a source of halogenated VOCs (chlorinated solvents) to the groundwater; and
- Several potential offsite sources of halogenated VOCs (chlorinated solvents) exist.

Hart Crowser recommended case closure for the site since the environmental issues associated with potential onsite sources of chemicals had been addressed. Halogenated VOCs remained in site groundwater, but these were 1) unrelated to the onsite sources that have been addressed; and 2) likely to be the result of releases at one or more of the numerous offsite potential sources located in the immediate vicinity of the site. Hart Crowser recommended abandonment of the remaining groundwater monitoring wells after closure certification approval by ACHCS and RWQCB (Hart Crowser, 1996a).

Hart Crowser 1996 Risk Assessment

In order to obtain site closure for the soil portion of the site, Hart Crowser completed an ASTM, Tier 1, RBCA assessment for the subject property (*Risk Assessment*, October 8, 1996). The risk assessment was prepared to meet the closure requirements of the ACHCS and the RWQCB. No on-site concentrations were noted above the calculated Risk-Based Screening Levels (RBSLs) in subsurface soil or from vapors in soil from groundwater under either the

residential or industrial exposure scenario. Therefore, Hart Crowser (1996b) concluded that the residual presence of chemicals in subsurface soils does not pose an unacceptable risk to human health under current or potential future use scenarios, and the site satisfies the conditions for regulatory site closure from a human health risk perspective.

ACHCS 1996 Closure Letter for Site Soils

Based on the Hart Crowser risk assessment (1996b), ACHCS concluded in December 30, 1996 letter to PACCAR that the soils on-site do not pose a threat to public health.

AllWest 2000 Site Closure and Groundwater Monitoring Report

In 1999 and 2000 AllWest completed the following tasks at the subject property:

- The redevelopment and sampling of the five on-site groundwater wells during the week of November 1, 1999 to demonstrate that the residual contamination in the groundwater is natural attenuating and likely from off-site source(s),
- An update of the previously completed ASTM Tier 1 risk assessment by discounting the groundwater ingestion pathway by the completion of a 1/2 mile radius well survey; and
- The comparison of the maximum on-site groundwater contamination concentrations to recently developed, Oakland specific, Tier 1 risk based screening levels (RBSLs) to document that this is a low risk case and candidate for "No Further Action" status by the ACHCS, the lead oversight agency, as per regulations and guidelines of the RWQCB, the lead State agency in charge of protecting the groundwater quality of the Greater Oakland Area.
- The destruction of monitoring well MW-3 on May 25, 2000 due to motor oil leakage into the vault box from parked automobiles, and the drilling and installation of replacement monitoring well MW-3A outside of the parking area. The damaged vault box of monitoring well MW-4 was also replaced on this date.

Based on the lack of reportable concentrations of benzene, toluene, ethylbenzene, and total xylenes (BTEX) compounds or methyl tert-butyl ether (MTBE), and only low levels of total petroleum hydrocarbon as gasoline (TPH-g), petroleum hydrocarbons were not considered an unacceptable risk to human health or the environment. The chlorinated solvent concentrations were noted to generally decrease from the November 1999 sampling as compared to the previous sampling period event conducted in 1996. AllWest concluded that the likely

source of the bulk of the chlorinated solvents is the existing or former dry cleaners located southeast of the subject property. Historical groundwater analytical data is summarized in Table 3.

As part of the 1999/2000 investigation activities, AllWest reviewed and updated the previously completed ASTM, Tier 1 RBCA assessment prepared by Hart Crowser (September 27, 1996) for the subject property. The focus of the update was two-fold. Firstly, the update was performed to document that the groundwater ingestion pathway is incomplete by conducting a well survey of the area. Secondly, the existing site data was compared to published risk based action levels, the recently compiled, City of Oakland specific, Tier 1 RBSLs, to document that the residual site contaminants are not an unacceptable risk to human health or the environment. No groundwater supply wells for industrial, agricultural, municipal or residential uses were identified within 1/2 mile of the subject property. Maximum VOC concentrations reported from the site groundwater were at least one order of magnitude lower than their respective Oakland Tier 1 RBSLs.

AllWest concluded in their *Site Closure and Groundwater Monitoring* Report, dated August 15, 2000 that the results of the November 1999 groundwater sampling event indicated that the shallow groundwater of the subject property is impacted with chlorinated solvents. The spatial distribution of the chlorinated solvents did not indicate a clear source area due to similar contaminant concentrations and the flat hydraulic gradient of the area. However, based on the ratio of PCE to TCE and cis-1,2-DCE, the likely source of the bulk of the chlorinated solvents is the existing or former dry cleaners located southeast of the subject property. Based on site specific results and current health risk based action levels, AllWest concluded that it is unlikely that the residual contamination in the site groundwater poses as an unacceptable risk to human health or the environment. AllWest recommended that ACHCS grant "no further action status" for the residual chlorinated solvents in the groundwater of the subject property and requested approval to abandon the existing five on-site groundwater wells.

ACHCS November 2000 No Further Remediation Letter

ACHCS reviewed AllWest's August 2000 report and noted that they and the RWQCB do not grant closure for sites with groundwater impacted above MCLs. However, ACHCS did state that active remediation for the residual chlorinated solvents in the soil or groundwater is not required and requested the annual sampling of wells MW-1 through MW-4. ACHCS also added that groundwater well, HC-1, located on the former Super Tire facility may be decommissioned at this time.

Super Tire 2001 Well Destruction

As per ACHCS approval in a second letter dated November 20, 2000,, the groundwater monitoring well, HC-1, located at the adjacent former Super Tire facility, was abandoned following State and local regulations on June 18, 2001 as described in the AllWest *Annual Groundwater Monitoring and Well Destruction Report*, August 27, 2001.

Groundwater Monitoring 2000 to 2011

AllWest conducted annual groundwater monitoring from 2001 to 2004. The ACHCS in their letter of November 7, 2005 directed groundwater monitoring be conducted on a biennial basis (every two years). AllWest conducted biennial groundwater monitoring during 2006 and 2008. The most recent groundwater monitoring event is described in the AllWest *2011 Biennial Groundwater Monitoring Report*, dated February 22, 2011. Historical groundwater analytical data is presented in Table 3.

Chlorinated solvents continued to be detected in all wells at the property. The highest concentrations of PCE have historically been detected in MW-1. Slightly lower levels have been detected in MW-3A and MW-4. Significantly lower concentrations of PCE have been detected in MW-2. The PCE breakdown products, trichloroethene (TCE), and cis-1,2-dichloroethene (cis-1,2-DCE) also follow this trend. Based on the spatial distribution of the chemicals detected in site monitoring wells, a single, well defined source for the chemicals does not likely exist.

Concentrations of PCE and TCE and their breakdown products during the most recent monitoring event in June 2008 were generally stable or decreased since previous sampling events and were at or near historically low levels indicating a stable or shrinking plume. It is reasonable to presume the concentrations will continue to decrease due to the processes of natural in situ degradation which include biodegradation, volatilization and dispersion. Chlorinated solvent concentrations detected in the four wells during the December 2011 monitoring event exceeded ESLs as described in *Table F-1a Groundwater Screening Levels (groundwater is a current or potential drinking water resource)* in the *Screening For Environmental Concerns At Sites With Contaminated Soil and Groundwater* (RWQCB, 2008).

Although groundwater in the area is designated as potential municipal use by the RWQCB, it is not currently used as drinking water and unlikely to be used as such in the future due to the numerous LUST and industrial solvent leak sites in the area. Chlorinated solvent concentrations detected in the four wells during the December 2011 monitoring event did not exceeded ESLs as described in *Table F-1b Groundwater Screening Levels (groundwater is* NOT *a current or*

potential drinking water resource) in the Screening For Environmental Concerns At Sites With Contaminated Soil and Groundwater (RWQCB, 2008).

Only VOC analysis was performed from the 2001 through 2008 events; TPH-g analysis has not been performed between the 1999 and 2011 events, and was detected only in a single sample during the 1999 event. TPH-g range compounds were detected in groundwater samples collected from MW-1, MW-3A and MW-4 during the December 2011 sampling event. Since the laboratory chromatograms of the December 2011 (and most of the historical 1993 to 1994) TPH-g detections do not match typical gasoline standards, the detected constituents were probably chlorinated VOCs (mostly PCE) within the TPH-g range.

AllWest requested case closure in the 2008 Biennial Groundwater Monitoring Report, July 28, 2008. The ACHCS responded to the closure request in their letter dated April 15, 2010, stating that closure was being evaluated for commercial use only, and that during the period that the case is under review, groundwater monitoring may be suspended. In their letter of December 10, 2010 the ACHCS requesting that additional investigation be conducted prior to considering case closure. The ACHCS requested that a workplan be prepared to address potential soil vapor intrusion concerns in the area of the former car wash sump, that additional information regarding the UST removals in 1986 and conveyance piping removals in 1993 be provided, and that a request to extend groundwater monitoring frequency to a 5-year interval was denied.

AllWest submitted a *Soil Vapor Investigation and Groundwater Monitoring Work Plan* to ACHCS on April 15, 2011 to address issues in their letter of December 10, 2010. The ACHCS responded in their letter of May 16, 2011, requesting that a Work Plan Addendum be submitted to characterize soil and groundwater in the presumed former UST locations north of the former dispensers, if additional agency file review failed to verify the previously assumed UST locations south of the dispensers. AllWest submitted a *Soil and Groundwater Investigation Workplan Addendum* to ACHCS on July 15, 2011. The ACHCS approved the AllWest *Soil and Groundwater Investigation Workplan Addendum* in their letter dated August 4, 2011.

III. PURPOSE AND SCOPE OF WORK

The purpose of this investigation was to evaluate the potential soil vapor intrusion impact by VOCs to indoor air quality at the subject site in the vicinity of the former car wash sump. Additionally, the purpose was to evaluate potential impact of petroleum hydrocarbons to the soil and groundwater at the subject site in the vicinity of the former USTs removed in 1986. The investigation was performed by collecting soil vapor samples inside and outside of the subject site building in the vicinity of the former sump area, and by collecting soil and groundwater samples in the presumed vicinity of the former USTs north of the former fuel dispensers. The scope of work consisted of the following tasks:

- 1) Obtained a drilling permit from the Alameda County Publics Work Agency (ACPWA);
- 2) Prepared a site-specific health and safety plan;
- 3) Engaged the service of Underground Service Alert (USA) and a private underground utility locator to locate and clear underground utilities within the proposed investigation area so that the potential of accidental damage to underground utilities will be reduced during proposed subsurface investigation. The private utility locator also attempted to conduct a survey of the suspected sewer line connected to the former sump. Notified the ACHCS, ACPWA and site tenants, property owners and facility maintenance prior to the start of field work;
- 4) Retained the service of a C-57 licensed drilling contractor for the advancement by truck-mounted Geoprobe[®] DPT methods, or limited access hand operated slide-hammer methods, of six borings to a depth of 5 feet bgs and the installation of temporary soil vapor sampling probes in the vicinity of the former sump and sewer line. Three probes were located inside the site building and three in the parking area outside. Collected soil vapor samples using SUMMA canisters in general accordance with the DTSC *Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance)*, October 2011 (DTSC, 2011). Retained one soil vapor sample from each vapor probe for analytical testing;
- 5) Retained the service of a C-57 licensed drilling contractor for the advancement by truck mounted Geoprobe[®] DPT methods of two continuously cored soil borings to a maximum depth of approximately 35 feet bgs in the vicinity of the presumed former UST locations northwest of the former fuel dispensers. Collected soil samples. Installed temporary PVC well casings and collected groundwater samples. Retained three to four soil samples and one groundwater sample from each boring for analytical testing;
- 6) At the completion of drilling and sampling activities, removed temporary soil vapor probes and PVC well casing, and backfilled each boring with a "neat" cement grout slurry and restored the interior floor slabs by backfilling with a concrete slurry;
- 7) Maintained soil vapor samples under chain-of-custody and transported the samples to a Department of Health Services (DHS) certified analytical laboratory (McCampbell Analytical of Pittsburg, California) for chemical analyses. Analyzed six soil vapor samples for VOCs using EPA Method TO-15 (mid detection level, full scan);

- 8) Maintained soil vapor, soil and groundwater samples under chain-of-custody and transported the samples to a DHS certified analytical laboratory (McCampbell Analytical of Pittsburg, California) for chemical analyses. Analyzed four soil samples (two collected from each boring) and two groundwater samples (one from each boring) for TPH-g and VOCs (full scan including fuel oxygenates) per EPA Method 8260B, TPH-d and TPH-mo per EPA Method 8015M with silica gel cleanup, and LUFT 5 metals (cadmium, chromium, nickel, lead and zinc) per EPA Method 6010. Archived additional shallow soil samples for possible analysis based on headspace screening and previous analytical results; and
- 9) Prepared a written report describing the field activities, summarizing the laboratory data, presenting investigation findings, and providing conclusions and recommendations. Upload the report and associated data files to the ACHCS FTP website and the GeoTracker database.

IV. INVESTIGATIVE ACTIVITIES

A. Permitting

AllWest obtained a property access agreement from the current owners of the subject property and the O'Reilly Auto Parts store. AllWest then prepared and submitted a drilling permit application to ACPWA for review and approval. Upon permit approval, AllWest notified ACPWA, ACHCS, and the site tenant and property owner of the drilling schedule a minimum of 72 working hours in advance to allow scheduling of drilling and grouting inspection. A copy of the ACPWA drilling permit is included in Appendix B.

B. Health and Safety Plan

AllWest prepared a site specific health and safety plan prior to mobilizing to the site. A tailgate safety meeting was given prior to commencing work. All site personnel were required to review the health and safety plan.

C. Underground Utility Inspection and Conduit Survey

To avoid damage to underground utility installations during the course of the subsurface investigation, AllWest contacted Underground Service Alert (USA), an organization for public utility information, on the pending subsurface investigation. USA then notified public and private entities that maintained underground utilities within the site vicinity to locate and mark their installations for field identification.

A private underground utility locator, Subtronic Corporation (Subtronic) of Concord, California, was also be employed by AllWest to conduct a magnetometer and ground penetrating radar (GPR) sweep investigation to locate marked and unmarked underground utilities in the vicinity of the proposed boring locations. Subtronic also attempted to trace the location of the suspected sewer line in the vicinity of the former sump by inserting a probe though the floor drain in the building interior. However, this was unsuccessful since the drain was blocked. Subtronic did partially trace the position of what was suspected to be the sewer line in the outside parking area using GPR.

D. Geoprobe[®] DPT Soil Vapor Probe Installation

On January 4, 2012, a State of California C-57 licensed drilling contractor, Vironex, Inc., of Concord, California, advanced six borings at three locations inside the subject site building (SVP-1, SVP-2 and SVP-3) and three outside locations (SVP-4, SVP-5 and SVP-6) in the parking areas adjacent to the former sump location (Figure 2).

After coring through the 6-inch thick concrete floor slab locations inside the building, the borings SVP-1 through SVP-3 were advanced to approximately 5 feet bgs with hand-operated limited access equipment using slide hammerdriven 1-inch outside diameter (OD) rods and probes with expendable steel tips. Borings SVP-4 through SVP-6 were advanced through the 3-inch thick asphalt pavement of the outside parking areas to a depth approximately of 5 feet bgs using a truck-mounted Geoprobe[®] DPT rig driving 1-inch OD rods and probes with expendable steel tips. No soil cores were recovered from the probes. After the probes were advanced to the specified depth, the probes and drive rods were removed, leaving the borehole open with the expendable probe tip at the bottom. Standard Geoprobe[®] operating procedures are included in Appendix C.

Plastic soil vapor probes, ¹/₂-inch diameter by 2-inches long and tipped with porous plastic membranes, were inserted to the bottom of the 1-inch diameter boreholes at 5 feet bgs. The probe tips were attached to 7-foot lengths of 0.25-inch OD Teflon[™] tubing extending to the top of the floor slab. A fine sand filter pack was placed in the borehole annulus around the probe. Hydrated bentonite chips were then used to fill the annular space above the filter pack to the top of the floor slab. The bentonite was allowed to hydrate and borehole conditions to equalize for 30 minutes prior to sampling activities, per DTSC vapor sampling guidelines. Standard soil vapor probe installation procedures are included in Appendix C.

E. Geoprobe[®] DPT Soil Boring Advancement

On January 5, 2012, Vironex, Inc. advanced two soil borings (GP-1 and GP-2) within the presumed former UST excavation northwest of the former dispensers.

The boring locations are shown in Figure 2. Following coring of the asphalt pavement and hand-augering to 5 feet bgs to clear potential underground utilities, the borings were advanced by truck-mounted equipment using Geoprobe[®] DPT continuous coring methods.

Boring GP-1 was advanced to approximately 35 feet bgs to intersect the first encountered groundwater-bearing zone, based on previous site lithologic data. Boring GP-2 was advanced to approximately 20 feet bgs and terminated after encountering a shallow perched water bearing zone at approximately 10 to 12 feet bgs in fill material within the former UST excavation. Boring GP-2 was not advanced deeper in order to avoid cross-contamination with the true groundwater-bearing zone first encountered in GP-1 at approximately 35 feet bgs.

Continuous core soil samples were collected for lithologic characterization and laboratory analysis using a nominal 5-foot long, 2-inch outside diameter (OD) stainless steel core barrel drive probe and extension rods. The drive probe interior was lined with nominal 1-1/2 inch inside diameter (ID) clear PETG plastic tubes for soil sample recovery. Following advancement of borings GP-1 and GP-2 to the total designated depths, the drive rods and core barrel were withdrawn and temporary PVC well casings with 5-foot screened intervals were inserted into the boreholes. Geoprobe[®] DPT boring advancement and soil sampling procedures are included in Appendix B. Boring logs and temporary well construction diagrams are included in Appendix E.

F. Soil Vapor Sampling

AllWest collected soil vapor samples from the six temporary soil vapor probes SVP-1 through SVP-6 on January 4, 2012, following a minimum 30-minute period after hydration of the bentonite surface seals. Soil vapor sampling was performed in general accordance with the DTSC *Vapor Intrusion Guidance* (DTSC, 2011). Standard soil vapor sampling procedures are included in Appendix C.

AllWest collected one soil vapor sample from each probe in laboratory prepared 1-liter (L) capacity SUMMA canisters. Prior to vapor purging and sample collection, a vacuum leak test of the flow-controller/gauge manifold assembly was performed for a minimum of 3 minutes and a maximum of 9 minutes. The manifold assembly used for SVP-6 failed the vacuum leak test and was replaced, passing the second test. All other sample manifolds passed the vacuum leak test. Prior to sample collection, approximately 500 milliliters (ml) of soil vapor (a minimum of 3 sample system volumes) was purged at a nominal flow rate of approximately 150 milliliters per minute (ml/min) from each sub-slab vapor probe using a dedicated 6-liter capacity SUMMA purge canister.

While sampling, a leak detection test was conducted using helium as a leak tracer inside an airtight plastic shroud. The helium concentration inside the leak detection shroud was monitored using a helium gas detector. Average helium concentrations within the shroud ranged from approximately 17.9% to 20.7%. No ambient air samples were collected to verify measured helium concentrations since no extra ambient leak detection gas SUMMA canister was supplied by the analytical laboratory for the January 3, 2012 event.

A nominal flow rate of approximately 150 ml/min was used to fill the sample canisters; actual measured flow rates ranged from approximately 137 ml/min to 201 ml/min. The canisters were filled to approximate 80% of capacity (approximately -5 inches of mercury vacuum remaining). All pertinent field observations, pressure, times and readings were recorded. After filling and closing the sample valve, all SUMMA canisters were removed from the manifold, labeled with sampling information, including initial and final vacuum pressures, placed in a dark container and transported under chain-of-custody to the analytical laboratory, McCampbell Analytical, Inc., of Pittsburg, California. Soil vapor sampling and SUMMA field logs are included in Appendix D.

G. Soil Sampling

An AllWest environmental professional oversaw field work and drilling activities. The recovered soil samples were inspected after each drive interval, with lithologic and relevant drilling observations recorded. Soil samples were screened for organic vapors, using a photo-ionizer detector (PID), by taking readings of headspace vapor concentrations of the soil inside a zip-lock plastic bag. PID readings, soil staining and other relevant observations were recorded on the boring logs. Boring logs are included in Appendix E.

Four soil samples from boring GP-1 and three soil samples from GP-2 were collected for laboratory analysis. Samples from boring GP-1 were collected from the 5.0 to 5.5 feet bgs, 9.0 to 9.5 feet bgs, 19.5 to 20.0 feet bgs and 34.5 to 35.0 feet bgs depth intervals. Samples from boring GP-2 were collected from the 5.0 to 5.5 feet bgs, 10.0 to 10.5 feet bgs and 17.0 to 17.5 feet bgs depth intervals. Selected soil sample intervals for analytical testing were cut in 6-inch lengths from the PETG tubing following removal from the Geoprobe[®] DPT core barrel. The ends of sample tubes for possible analytical testing were sealed using Teflon[®] squares and plastic end caps. Geoprobe[®] DPT soil sampling procedures are included in Appendix C.

To prevent the loss of constituents of interest, all soil samples were preserved by storing in an ice chest cooled to 4°C with crushed ice immediately after their collection and during transportation to the laboratory. Samples were stored within the cooler in separate zip-lock plastic bags to avoid cross-contamination.

H. Groundwater Sampling

Groundwater samples were collected from borings GP-1 and GP-2 on January 5, 2012. Prior to collecting samples, depth to water was measured in the temporary PVC casings using an electronic water level probe. Static water levels were 20.6 feet bgs in GP-1 and 10.4 feet bgs in GP-2. Groundwater samples were collected from the temporary PVC well casing in boring GP-1 using a peristaltic pump fitted with disposable Teflon[™] sample tubing. Groundwater samples were collected from the temporary PVC well casing in boring GP-2 using a small-diameter disposable polyethylene bailer.

Samples were decanted into three 40-milliliter (ml) glass volatile organic analysis (VOA) vials preserved with hydrochloric acid (HCl) for TPH-g and VOC analysis, one 1-liter (L) amber glass bottle preserved with HCl for TPH-d and TPH-mo analysis, and one unpreserved 250 ml polyethylene bottle for LUFT 5 metals analysis. The sample for metals analysis was unfiltered. Because of borehole caving and limited groundwater recovery in boring GP-2 following collection of samples in the VOAs at a boring depth of 15 feet bgs, the PVC casing was removed, the boring advanced to a total depth of 20 feet bgs to clear out slough and improve recovery, and the PVC casing re-installed prior to collection of samples in the 1 L and 250 ml bottles. Sample bottles were labeled and immediately placed in a cooler on ice to preserve the chemical characteristics of its content. Standard Geoprobe[®] groundwater sampling procedures are included in Appendix C.

To help prevent cross contamination, all groundwater sampling equipment that came in contact with the groundwater was decontaminated prior to sampling. To minimize the possibility of cross contamination, a new disposable bailer or sample tubing was be used to collect each groundwater sample. To prevent the loss of constituents of interest, all groundwater samples were preserved by storing in an ice chest cooled to 4°C with crushed ice immediately after their collection and during transportation to the laboratory. Samples were stored within the cooler in separate zip-lock plastic bags to avoid cross-contamination. Sampling, sample handling, storage, and transport procedures described in Appendix C were employed.

I. Borehole Backfilling

At the completion of drilling and sampling activities and removal of all drive rods, sample probes and temporary PVC casing, the borings were backfilled with a "neat" Portland Type I or II cement grout slurry tremied into the borehole through a PVC pipe. The level of grout was checked to ascertain if any settling had occurred and was be "topped off" if required. The ACPWA was notified 72 hours in advance of the anticipated grouting time in order to schedule inspection.

J. Sample Preservation, Storage, Handling and Chain-Of-Custody Program

To prevent the loss of constituents of interest, all SUMMA canisters were removed from the manifold, labeled with sampling information, including initial and final vacuum pressures, placed in a dark container and transported under chain-of-custody to the analytical laboratory, McCampbell Analytical, Inc., of Pittsburg, California. To prevent the loss of constituents of interest, all soil and groundwater samples were preserved by storing in an ice chest cooled to 4°C with crushed ice immediately after their collection and during transportation to the laboratory, McCampbell Analytical, Inc., of Pittsburg, California. Samples were stored within the cooler in separate zip-lock plastic bags to avoid crosscontamination.

All samples collected for this project were transported under chain-of-custody protocol. The chain-of-custody program allows for the tracing of possession and handling of individual samples from the time of field collection through laboratory analysis. The document includes the signature of the collector, date and time of collection, sample number, number and type of sample containers including preservatives, parameters requested for analysis, signatures of persons and inclusive dates involved in the chain of possession. Upon delivery to the laboratory the document also includes the name of the person receiving the samples, and date and time samples were received. Chain of custody documents are included in Appendix F.

K. Investigative Derived Waste Containment and Disposal

Investigative derived waste including soil cores or cuttings, purged groundwater and decontamination rinseate was contained onsite in 55-gallon drums pending analytical results, profiling and transport to an appropriate disposal facility. An additional soil sample composited from those collected from borings GP-1 and GP-2 was analyzed for STLC chromium as required by the disposal facility. The waste soil and water was transported by Integrated Waste Management of San Jose, California to appropriate offsite disposal facilities.

V. ASSESSMENT FINDINGS

A. Subsurface Conditions

Soil cores for lithologic characterization were not recovered from the soil borings for the soil vapor probes SVP-1 through SVP-6, and no boring logs were recorded. Soil cores for lithologic characterization were recovered and boring logs recorded for borings GP-1 and GP-2.

Beneath the 3 inch thick asphalt pavement, soils encountered in boring GP-1 consisted of sandy clay to approximately 4 feet bgs, underlain by clayey gravel to approximately 12 to 13 feet bgs where it graded to clayey sand. The clayey gravel had a disturbed structure and appeared to possibly be fill material, but it is unclear whether this represented the UST excavation backfill. Clayey sand was encountered from approximately 13 to 15 feet bgs, and then graded to sandy clay, which in turn graded to very moist but not saturated clayey gravel at approximately 16.5 feet bgs. Damp silty clay was encountered from approximately 23.5 feet bgs to approximately 33 feet bgs, where it graded to sandy clay with increasing moisture. Very moist, but not saturated, clayey sand was encountered from approximately 34.5 feet bgs to the total explored depth of approximately 35 feet bgs.

Beneath the asphalt pavement, soils encountered in boring GP-2 consisted of loose gravelly sand fill material to approximately 6.5 feet bgs, where there was an interval of no recovery to approximately 10 feet bgs, where clayey gravel was encountered, which also appeared likely to be fill material. The clayey gravel became saturated at a depth of 10.4 feet bgs, and extended to a depth of approximately 12 feet bgs where moist but unsaturated native sandy clay was encountered. The gravelly sand and clayey gravel appeared to be backfill material for the former UST excavation extending to approximately 12 feet bgs. The native sandy clay extended from approximately 12 to 15.5 feet bgs, with moist but unsaturated clayey gravel at approximately 15.5 to 16.3 feet bgs, underlain by moist but unsaturated clayey sand grading to sandy clay at approximately 17.5 feet bgs. No soil core was recovered from 17.5 feet bgs to the total boring depth of 20 feet bgs. No hydrocarbon staining, odors or elevated PID readings were noted in soil recovered from either boring GP-1 or GP-2.

Groundwater was apparently first encountered in GP-1 at or near the total depth of the boring at approximately 35 feet bgs, since groundwater was not previously observed and soil recovered from the total depth appeared moist but not saturated. This is consistent with the first encountered groundwater depths in previous investigations at the subject site. Groundwater immediately rose in the borehole to a static depth of 20.6 feet bgs, which is approximately 3 to 4 feet higher than depth to water measured in the onsite groundwater monitoring wells during the December 20, 2011 monitoring event.

Depth to water in the shallow perched saturated zone encountered in GP-2 was approximately 10.4 feet bgs. The water level did not rise from the first encountered depth. This perched saturated zone is not representative of true groundwater, but is a localized perched water-bearing zone caused by surface water infiltration within the permeable former UST excavation sand and gravel backfill material, contained below the base of the former excavation at approximately 12 feet bgs by the low permeability native clay. This shallow perched saturated zone was not encountered in nearby boring GP-1, which was apparently located just outside the former UST excavation.

B. Laboratory Analysis and Sampling Data

Soil Vapor

Six soil vapor samples (SVP-1 through SVP-6) were analyzed by a State of California certified independent analytical laboratory, McCampbell Analytical, Inc., (McCampbell) of Pittsburg, California. Sample analysis was performed on 5-day turnaround time. The soil vapor samples collected during this investigation were analyzed for VOCs using EPA Method TO-15 (mid-detection levels, full scan). Due to a miscommunication, the samples were not analyzed for the leak detection gas helium per ASTM D-1946.

Tetrachloroethene (PCE) was detected in soil vapor samples collected from temporary soil vapor probes SVP-1, SVP-2, SVP-3, SVP-4, SVP-5 and SVP-6, at respective concentrations of 270 micrograms per cubic meter (μ g/m³), 460 μ g/m³, 8,100 μ g/m³, 550 μ g/m³, 4,600 μ g/m³ and 670 μ g/m³. The PCE breakdown product trichloroethene (TCE) was detected in soil vapor samples collected from SVP-2, SVP-3, SVP-5 and SVP-6, at respective concentrations of 25 μ g/m³, 210 μ g/m³, 51 μ g/m³ and 26 μ g/m³. Benzene, toluene, ethylbenzene and total xylenes (BTEX) were detected in soil vapor samples at maximum concentrations of 16 μ g/m³, 81 μ g/m³, 63 μ g/m³, and 370 μ g/m³, respectively.

Low concentrations of other VOCs including acetone, 1,3-butadiene, chloroform, dichlorodifluoromethane (Freon 12), ethanol, ethyl acetate, 4-ethyltoluene, isopropyl alcohol (IPA), 4-methyl-2-pentanone (MIBK), naphthalene, propene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene were also detected at maximum respective concentrations of 320 μ g/m³, 76 μ g/m³, 97 μ g/m³, 370 μ g/m³, 1,900 μ g/m³, 250 μ g/m³, 32 μ g/m³, 91 μ g/m³, 47 μ g/m³, 11 μ g/m³, 770 μ g/m³, 66 μ g/m³ and 23 μ g/m³. Although IPA was described as a leak detection gas in the laboratory analytical report, this compound was not used by AllWest during this sampling event, and therefore is probably a laboratory contaminant. Soil vapor analytical results are summarized in Table 1. Laboratory analytical reports are included in Appendix F.

Although analysis for the leak detection gas helium was not performed on soil vapor samples collected from the subject site, that analysis was performed on soil vapor samples collected by AllWest the previous day, January 3, 2012, at another site under similar conditions using the same driller and identical equipment, sample containers, sampling methods, analytical methods and analytical laboratory. The leak detection gas helium was analyzed per ASTM D-1946, and was detected in seven of eight soil vapor samples at concentrations ranging from 0.0036% to 0.032%, compared to ambient shroud concentrations of

approximately 18.3% to 22.8%, indicating that dilution with atmospheric air from system vacuum leaks was relatively insignificant. Therefore, it is reasonable to presume that leak detection results would be similar for the soil vapor sampling at the subject site on January 4, 2012.

<u>Soil</u>

Seven soil samples were submitted to McCampbell, of which four were selected for analysis and the remaining three archived for potential analysis. Samples collected from boring GP-1 at 9.0 to 9.5 feet bgs and 19.5 to 20.0 feet bgs, and from boring GP-2 at 10.0 to 10.5 feet bgs and 17.0 to 1.5 feet bgs, were selected for analysis by EPA Method 8260B for VOCs and TPH-g, EPA Method 8015B with silica gel cleanup for TPH-d and TPH-mo, and EPA Method 6010B for LUFT 5 metals.

The only VOCs detected in soil samples were PCE at 0.0067 milligrams per kilogram (mg/kg) and naphthalene at 0.0056 mg/kg in boring GP-2 at a depth of 10 to 10.5 feet bgs. TPH-g was not detected in any soil samples analyzed. TPH-d was detected in all four soil samples at a maximum concentration of 15 mg/kg in GP-2 at a depth of 10 to 10.5 feet bgs. TPH-mo was detected only in boring GP-2 at 72 mg/kg at a depth of 10 to 10.5 feet bgs.

The metals chromium, nickel and zinc were detected in all four soil samples at maximum concentrations of 120 mg/kg, 160 mg/kg and 100 mg/kg. Lead was detected in two soil samples at a maximum concentration of 6.5 mg/kg. Soil analytical results are summarized in Table 2. Laboratory analytical reports are included in Appendix F.

<u>Groundwater</u>

Three groundwater samples were submitted for laboratory analysis. One sample was collected from boring GP-1 within the first encountered true groundwater bearing zone at a total boring depth of 35 feet bgs. Two samples were collected from boring GP-2 within a shallow perched water bearing zone at boring depths of 15 and 20 feet bgs; although these were labeled as separate samples they were both collected from the same water bearing zone and thus essentially the same sample.

The groundwater samples collected from GP-1 and from a boring depth of 15 feet in GP-2 were analyzed for VOCs and TPH-g by EPA Method 8260B. The groundwater samples collected from GP-1 and from a boring depth of 20 feet in GP-2 were analyzed for TPH-d and TPH-mo by EPA Method 8015B with silica gel cleanup, and for LUFT 5 metals by EPA Method 200.8. PCE and carbon disulfide were detected in the shallow perched zone water sample collected from boring GP-2 at respective concentrations of 0.64 micrograms per kilogram (μ g/L) and 0.62 μ g/L. The PCE breakdown product cis-1,2-dichlorethene (cis-1,2-DCE) was detected in groundwater samples collected from both borings GP-1 and GP-2, at respective concentrations of 0.73 μ g/L and 0.72 μ g/L. Toluene and MTBE were detected in the groundwater sample from GP-1 at respective concentrations of 0.63 μ g/L and 0.96 μ g/L. No other VOCs were detected in groundwater samples from either boring.

TPH-g was not detected in groundwater samples from either boring GP-1 or GP-2. TPH-d and TPH-mo were detected only in the shallow perched zone water sample from boring GP-2 at respective concentrations of 200 μ g/L and 1,000 μ g/L.

Nickel and zinc were detected in both water samples at maximum respective concentrations of 14 μ g/L and 34 μ g/L. Groundwater analytical results are summarized in Table 3. Laboratory analytical reports are included in Appendix F.

C. Laboratory Quality Assurance and Quality Control

A review of laboratory internal quality assurance/quality control (QA/QC) reports indicates the method blank and sample spike data for all analyses were within the laboratory recovery limits. The samples were also analyzed within the acceptable EPA holding times. The data from the McCampbell Analytical laboratories are considered to be of good quality. Laboratory analytical reports and chain-of-custody records are included in Appendix F.

VI. DISCUSSION

A. Site Hydrogeology

The lithology and depth to groundwater encountered during this investigation in boring GP-1 to the total explored depth of 35 feet bgs is quite similar to that previously encountered in boring B-7 (MW-1). However, the thick clayey gravel layers encountered in GP-1 to approximately 23.5 feet bgs are inconsistent with lithology encountered in most other previous onsite borings, with the exception of B-7 (MW-1). The clayey gravel encountered in boring GP-1 to a depth of approximately 12 feet bgs had a disturbed bedding structure which appeared to indicate fill material; however, it is uncertain whether this constitutes UST excavation backfill as encountered in the nearby boring GP-2

Therefore, it is uncertain whether GP-1 is located within the former UST excavation. The suspected fill material seems to be consistent with previous subsurface investigations which reported as much as 20 feet of fill material

present at the subject site. A very moist but not saturated layer of clayey gravel encountered from approximately 16.5 to 23.5 feet bgs was consistent with moist layers and perched zones encountered in several previous borings at the subject site.

The relatively thick layer of stiff low permeability silty to sandy clay encountered between approximately 23.5 feet bgs and first encountered groundwater at approximately 34.5 feet bgs would likely inhibit vertical migration of potential contaminants from surface releases to groundwater, and also inhibit soil vapor intrusion from potential groundwater contaminants. This silty clay or clayey silt confining layer, which overlies the sand layer containing the first encountered groundwater, appears to be present in all of the deeper subject site borings.

The saturated clayey sand and first groundwater encountered in GP-1 near the total boring depth at approximately 34.5 to 35 feet bgs was consistent with the lithology and first groundwater encountered at about that depth in previous borings at the subject site. The static depth of confined groundwater encountered in GP-1 of approximately 20.6 feet bgs was approximately 3 to 4 feet higher than depth to water measured in the onsite monitoring wells during the December 20, 2011 monitoring event.

The loose gravelly fine sand encountered in boring GP-2 from below the pavement to a depth of approximately 6.5 to 10 feet bgs is inconsistent with lithology encountered in other previous borings at the subject site, and appears to be UST excavation backfill, as does the underlying clayey gravel extending to 12 feet bgs. A sharply defined contact at 12 feet bgs between clayey gravel fill material and native sandy clay below probably defines the base of the former UST excavation.

The clayey gravel layer was saturated at a depth of approximately 10.4 feet bgs; this water level did not rise after the first encounter, indicating a localized shallow unconfined perched water-bearing zone within the former UST excavation backfill confined by low permeability native clay below. This perched zone appears to be consistent with those encountered in several other previous borings, and does not constitute a continuous groundwater-bearing zone across the subject property.

B. Environmental Screening Levels

Soil Vapor Screening Levels

To assess if the identified COCs in soil vapor pose a risk to human health and the environment, AllWest compared detected concentrations to ESLs for commercial land use compiled by the RWQCB in *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater*, Interim Final November 2007,

revised May 2008), and listed in *Table E - Environmental Screening Levels* (*ESLs*) – *Indoor Air and Soil Gas (Vapor Intrusion Concerns), Commercial / Industrial Land Use Only* (RWQCB, November 2007, revised May 2008). The ESL for PCE as soil gas in a commercial/industrial setting is 1,400 µg/m³.

Under most circumstances, the presence of a chemical at a concentration below the corresponding ESL is presumed to not pose a significant risk to human health or the environment. Since the site is paved and in a commercial area, the outdoor vapor intrusion exposure pathway is insignificant and residential exposure standards do not apply.

AllWest also compared soil vapor, IAQ and AAC data generated during this assessment to the CalEPA, *Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties, Table 3 - California Human Health Screening Levels for Indoor Air and Soil Gas*, January 2005, revised September 23, 2010 (CalEPA, 2010). The soil vapor CHHSL for PCE is 600 μ g/m³ for commercial/industrial sites constructed without engineered fill. The ESLs and CHHSLs are based on a target cancer risk of 1.0 x 10⁻⁶ (1/1,000,000) for an average 8-hour per day exposure period in a commercial/industrial workplace setting.

PCE soil vapor concentrations in probes SVP-3 and SVP-5 exceeded the applicable commercial/industrial RWQCB ESL and CalEPA CHHSL. The PCE concentration in probe SVP-6 slightly exceeded its applicable commercial/industrial CHHSL. None of the other VOCs detected in soil vapor samples exceeded their applicable ESLs or CHHSLs. Applicable ESLs and CHHSLs for VOCs detected in site soil vapor samples are listed in Table 1.

Soil Screening Levels

To assess if the identified constituents of concern (COCs) in site soils pose a risk to human health and the environment, AllWest compared soil sample analytical data generated during this investigation to ESLs for commercial/industrial land use compiled by the RWQCB in *Tables A and A-2 – ESLs for Shallow Soils* (\leq 9.9 *feet bgs*) and *Tables C and C-2 – ESLs for Deep Soils* (> 9.9 *feet bgs*) where *Groundwater IS a Current or Potential Source of Drinking Water* (RWQCB, November 2007, revised May 2008). Since the site is paved and in a commercial area, there is no direct contact exposure pathway and residential exposure standards do not apply.

None of the petroleum hydrocarbons or VOCs detected exceeded their applicable ESLs for commercial/industrial land use in shallow or deep soils where groundwater is a potential drinking water resource (RWQCB *Tables A and C*, 2008). The nickel concentration of 160 mg/kg detected in boring GP-1 at 9.0 to 9.5 feet bgs slightly exceeded the ESL of 150 mg/kg for commercial/industrial

land use in shallow soils where groundwater is a potential drinking water resource (RWQCB *Table A*, 2008). Applicable soil ESLs are listed in Table 2.

Groundwater Screening Levels

To assess if the identified COCs in the groundwater pose a risk to human health and the environment, AllWest compared concentrations with the RWQCB ESLs from *Table F-1a – Groundwater Screening Levels (Groundwater IS a Current or Potential Drinking Water Resource)*, (RWQCB, Interim Final November 2007, revised May 2008).

All VOCs detected in groundwater samples were at concentrations below groundwater ESLs for commercial/industrial land use where groundwater is a potential drinking water resource. TPH-d and TPH-mo concentrations, detected in the shallow perched water sample from GP-2, exceeded their respective drinking water ESLs of 100 μ g/L for each. Nickel, detected at 14 μ g/L in the groundwater sample from boring GP-1, slightly exceeded the drinking water ESL of 8.2 μ g/L.

C. Contaminant Distribution and Exposure Pathways

Soil Vapor

The distribution of VOCs detected in soil vapor samples indicates the highest PCE and TCE concentrations were detected in samples SVP-3 and SVP-5, located nearest to the former sump. There does not appear to be a correlation between concentrations and distribution of VOCs detected in soil vapor samples and the suspected current location of the lateral sanitary sewer line (as traced by Subtronic).

Only one (SVP-3) of the three soil vapor samples collected from beneath the building interior floor slab contained PCE at a concentration exceeding the applicable ESL and CHHSL. Therefore, soil vapor intrusion into the building interior is probably not a significant exposure pathway to building occupants. A second soil vapor sample (SVP-5) contained PCE at a concentration exceeding the applicable ESL and CHHSL, and a third sample (SVP-6) contained PCE at a concentration exceeding the concentration exceeding the CHHSL; however, both were located in the exterior asphalt-paved parking area where vapor intrusion is not a significant exposure pathway.

None of the other VOCs detected in soil vapor samples exceeded their respective applicable ESLs or CHHSLs and do not represent environmental concerns. With the exception of PCE, TCE, BTEX, Freon 12, chloroform and naphthalene, which have all been historically detected in soil or groundwater samples at the subject site, it is likely the remaining detected VOCs are laboratory contaminants.

<u>Soil</u>

The very low concentrations of TPH-d, TPH-mo, PCE and naphthalene detected in soil samples from GP-1 and/or GP-2 are all well below their applicable ESLs and do not represent an environmental concern, indicating that the former USTs have not significantly impacted soil at the subject site. Since most of the subject site areas are paved or covered with buildings, it is unlikely that any direct contact exposure pathway to human receptors is present.

All metals detected were below their applicable ESLs with the exception of nickel in GP-1 at 9.0 to 9.5 feet bgs, which slightly exceeded the ESL for commercial/industrial land use in shallow soils where groundwater is a potential drinking water resource. However, the detected nickel concentration of 160 mk/kg is within the 6.0 to 380 mg/kg naturally occurring background range for soils in the nearby East Bay Hills, as summarized by the Lawrence Berkeley National Laboratory (LBNL) *Analysis of Background Distribution of Metals in the Soil at Lawrence Berkeley National Laboratory* (LBNL, June 2002, revised April 2009).

Groundwater

The TPH-d and TPH-mo detected at concentrations exceeding applicable ESLs in the groundwater sample from boring GP-2 is from a sample collected from a localized shallow perched water-bearing zone and not representative of true groundwater at the subject site. Nickel detected in the groundwater sample from boring GP-1 slightly exceeded its applicable drinking water ESL; however the groundwater sample was not pre-filtered in the field and sample analysis may have been biased by high sediment concentrations. All other VOCs and metals detected in groundwater samples collected from borings GP-1 and GP-2 during this event were below applicable ESLs and do not represent an environmental concern.

VOC concentrations exceeding applicable ESLs were detected in groundwater samples collected on December 20, 2011 from onsite monitoring wells MW-1, MW-2, MW-3A and MW-4, located downgradient (northeast) from the former USTs. The origin of the VOC concentrations in subject site groundwater is uncertain, but they do not appear to originate from the former onsite USTs due to the very low VOC concentrations detected in groundwater samples from borings GP-1 and GP-2 in the former UST vicinity.

TPH-g concentrations reported in groundwater samples by the analytical laboratories during the December 2011 and previous historical events in the early 1990s are actually representative of chlorinated VOCs (mostly PCE) within the TPH-g range, and do not originate from the former onsite USTs.

Although groundwater in the area is designated as potential municipal use by the RWQCB, it is not currently used as drinking water and unlikely to be used as such in the future due to the numerous LUST and industrial solvent leak sites in the area, therefore any ingestion pathway to human receptors is unlikely. Since groundwater at the subject site is typically first encountered at approximately 35 feet bgs and most of the subject site areas are paved or covered with buildings, it is unlikely that any direct contact or vapor intrusion exposure pathway to human receptors is present from site groundwater.

VII. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

AllWest concludes the highest VOC concentrations detected in soil vapor samples were from the vicinity of the former sump. Soil vapor intrusion into the building interior is probably not a significant exposure pathway to building occupants, since only one of the three soil vapor samples collected from beneath the building interior floor slab contained PCE at concentrations exceeding the applicable ESL, by less than one order of magnitude.

AllWest concludes the former fuel USTs have not significantly impacted soil or groundwater at the subject property. The source of the VOCs in groundwater at the subject property has not been determined, but they do not originate from the former onsite USTs. TPH-g concentrations reported in laboratory analytical results for groundwater samples collected during the December 2011 event, and previous historical events during the 1990s are probably representative of chlorinated VOCs, mostly PCE.

B. Recommendations

AllWest recommends a meeting be arranged with the ACHCS to discuss further steps toward obtaining case closure for the subject site.

VIII. REPORT LIMITATIONS

The work described in this report is performed in accordance with the Environmental Consulting Agreement between PACCAR, Inc. (Client) and AllWest Environmental, Inc, dated October 2011. AllWest has prepared this report for the exclusive use of the Client for this particular project and in accordance with generally accepted practices at the time of the work. No other warranties, certifications or representations, either expressed or implied are made as to the professional advice offered.

The services provided for the Client were limited to their specific requirements; the limited scope allows for AllWest to form no more than an opinion of the actual site conditions.

The conclusions and recommendations contained in this report are made based on observed conditions existing at the site, laboratory test results of the submitted samples, and interpretation of a limited data set. It must be recognized that changes can occur in subsurface conditions due to site use or other reasons. Furthermore, the distribution of chemical concentrations in the subsurface can vary spatially and over time. The results of chemical analysis are valid as of the date and at the sampling location only. AllWest is not responsible for the accuracy of the test data from an independent laboratory nor for any analyte quantities falling below the recognized standard detection limits or for the method utilized by the independent laboratories.

Background information that AllWest has used in preparing this report, including but not limited to previous field measurements, analytical results, site plans, and other data, has been furnished to AllWest by the Client, its previous consultants, and/or third parties. AllWest has relied on this information as furnished. AllWest is not responsible for nor has it confirmed the accuracy of this information.

IX. REFERENCES

AllWest Environmental, Inc. (AllWest), *Environmental Site Assessment, Grand Auto Store #43, 4240 East 14th Street, Oakland, California 94601*, August 10, 1995.

AllWest, Workplan for Well Development and Sampling at Grand Auto #43, 4240 East 14th Street, Oakland, October 29, 1999.

AllWest, Site Closure and Groundwater Monitoring Report, Grand Auto Store #43, 4240 East 14th Street, Oakland, California, August 15, 2000.

AllWest, Annual Groundwater Monitoring and Well Destruction Report, Grand Auto Store #43, 4240 East 14th Street, Oakland, California, August 27, 2001.

AllWest, 2008 Biennial Groundwater Monitoring Report, Kragen Auto Supply (Former Grand Auto #43), 4240 International Boulevard (East 14th Street), Oakland, California, July 28, 2008.

AllWest, Soil Vapor Investigation and Groundwater Monitoring Work Plan, Kragen Auto Supply (Former Grand Auto #43), 4240 International Boulevard (East 14th Street), Oakland, California 94601, April 15, 2011. AllWest, Soil and Groundwater Investigation Work Plan Addendum, Kragen Auto Supply (Former Grand Auto #43), 4240 International Boulevard (East 14th Street), Oakland, California 94601, July 15, 2011.

AllWest, 2011 Biennial Groundwater Monitoring Report, O'Reilly Auto Parts Auto Supply (Former Grand Auto #43), 4240 International Boulevard (East 14th Street), Oakland, California, February 22, 2011 (Draft).

Hart Crowser, Inc. (Hart Crowser), Sampling and Analysis Plan, Grand Auto/Super Tire Facilities, 4240/4256 East 14th Street, Oakland, California, July 13, 1992.

Hart Crowser, Preliminary Site Investigation Report, Grand Auto/Super Tire Facilities, 4240/4256 East 14th Street, Oakland, California 94621, November 20, 1992.

Hart Crowser, Supplemental Site Investigation, Grand Auto Facility, 4240 E. 14th Street, Oakland, California, June 18, 1993.

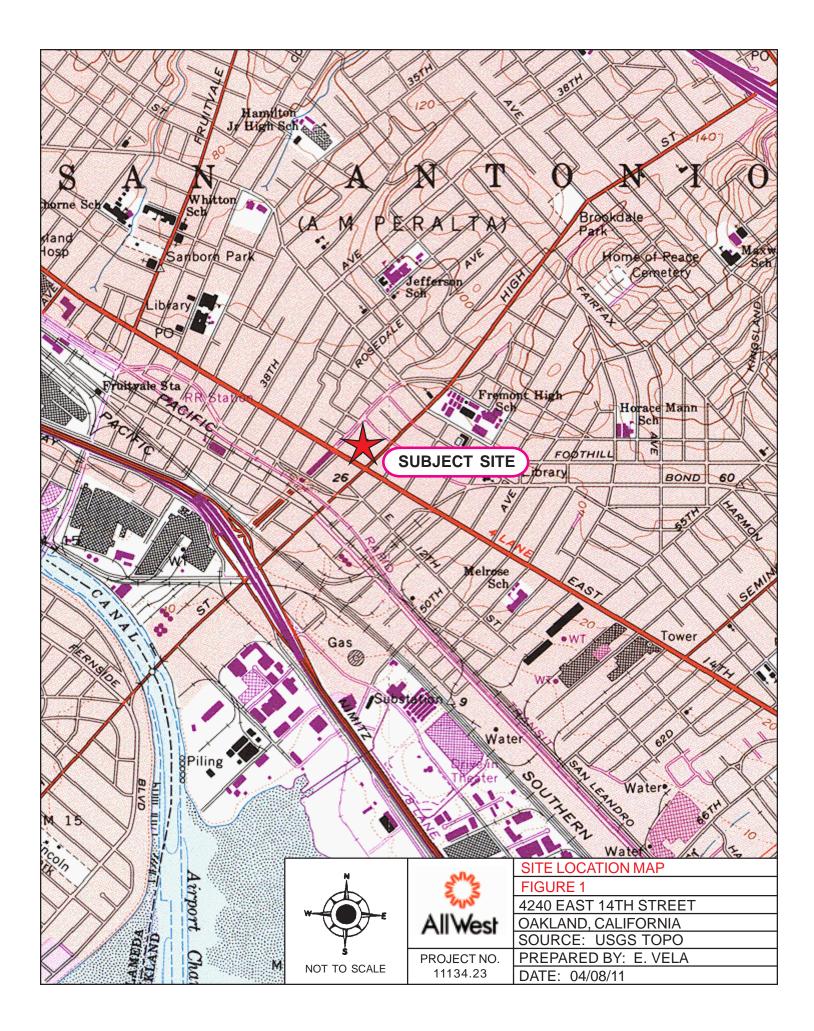
Hart Crowser, *Quarterly Status Report, Grand Auto Facility, 4240 E. 14th Street, Oakland, California, January 14, 1994.*

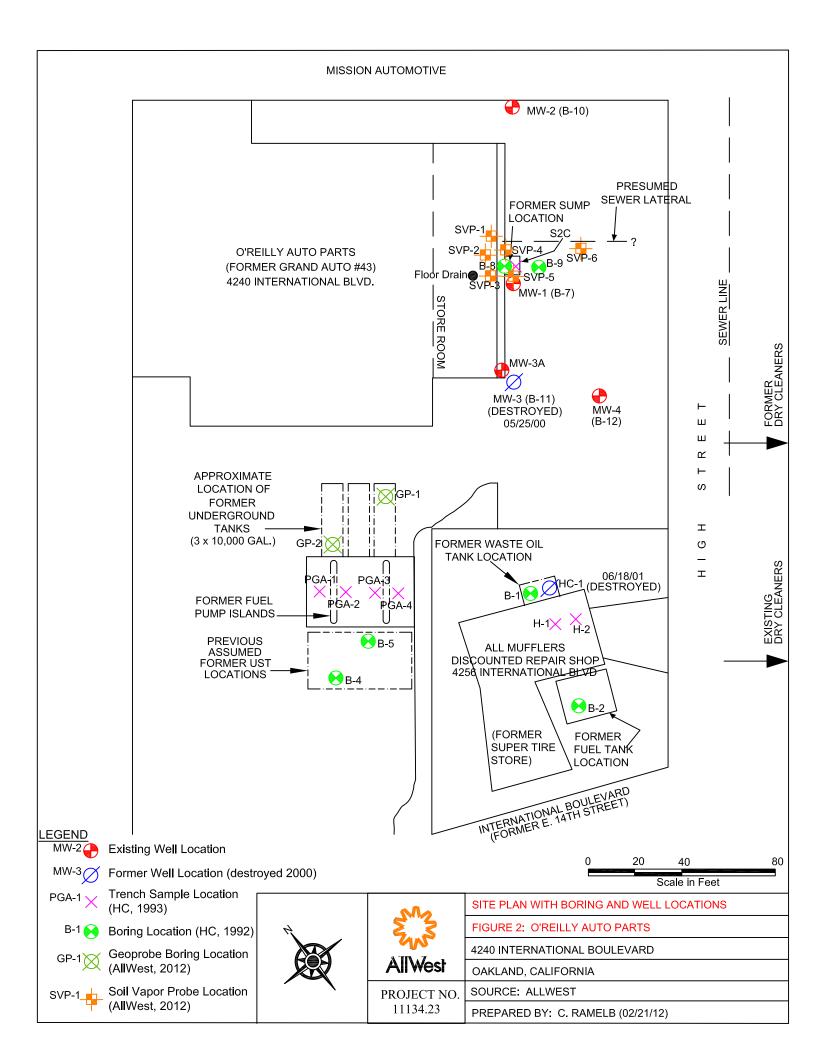
Hart Crowser, *Quarterly Status Report, Grand Auto Facility, 4240 E. 14th Street, Oakland, California*, November 9, 1994

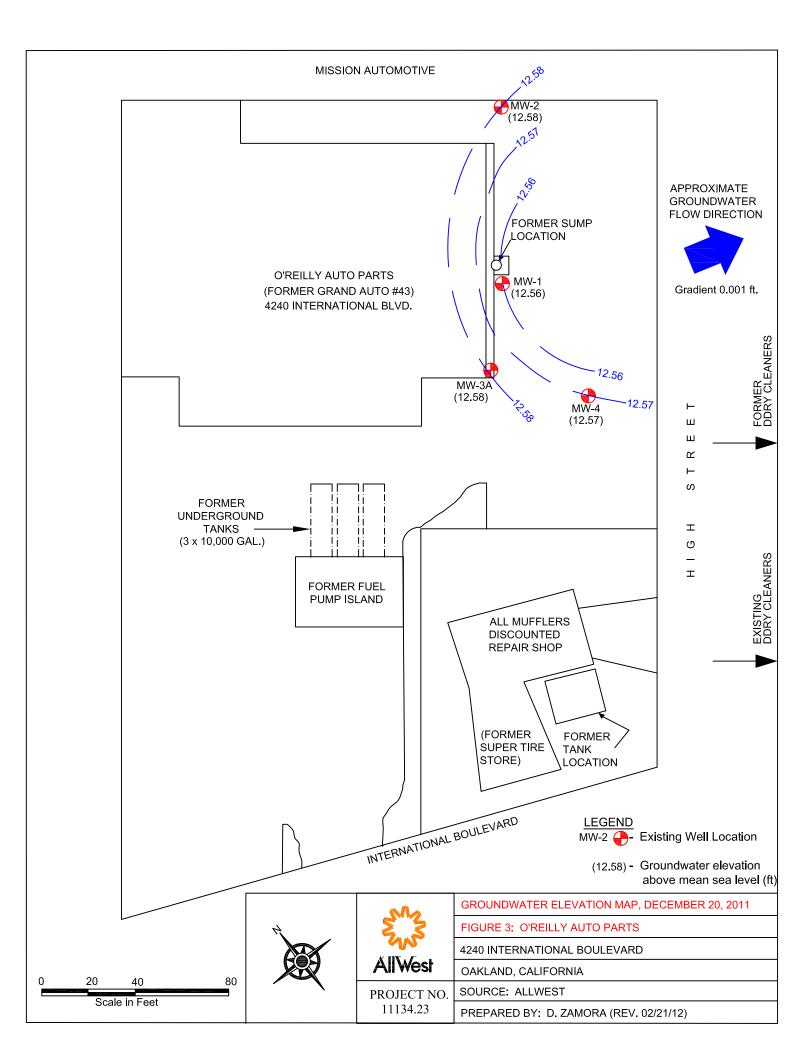
Hart Crowser, Facility Closure Report, Grand Auto Supply, 4240 East 14th Street, Oakland, California, February 16, 1996.

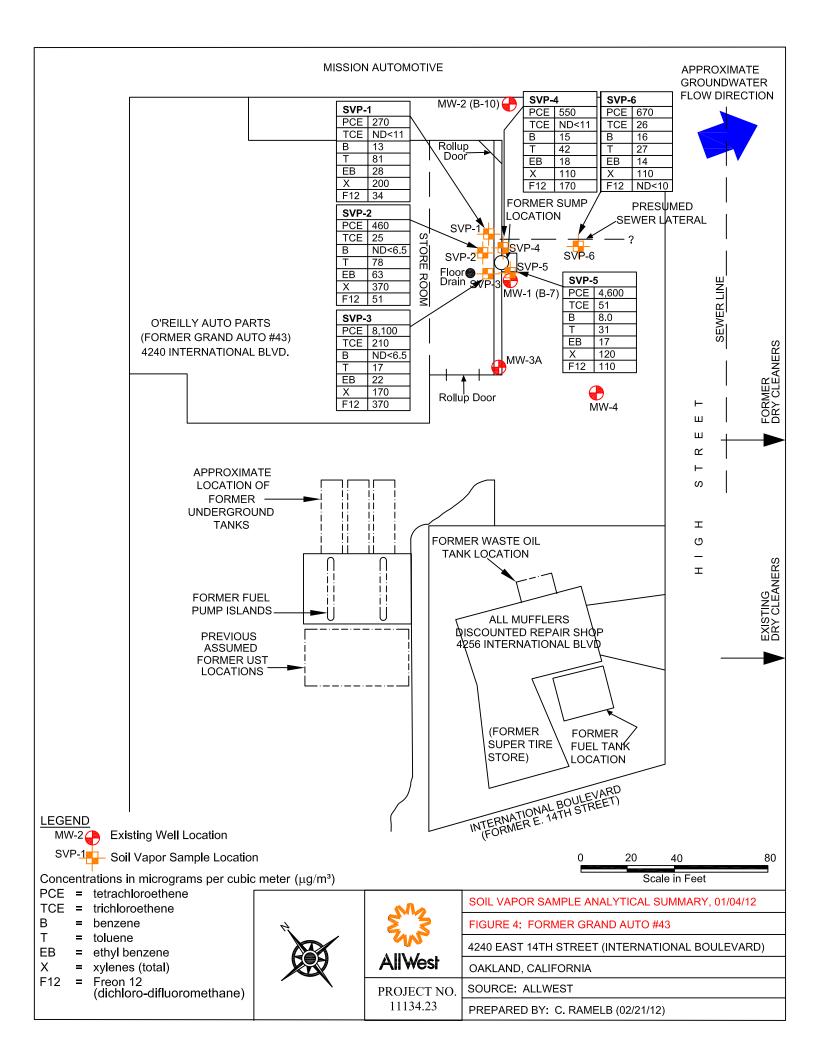
Hart Crowser, *Risk Assessment, Grand Auto Supply, 4240 East 14th Street, Oakland, California*, October 8, 1996.

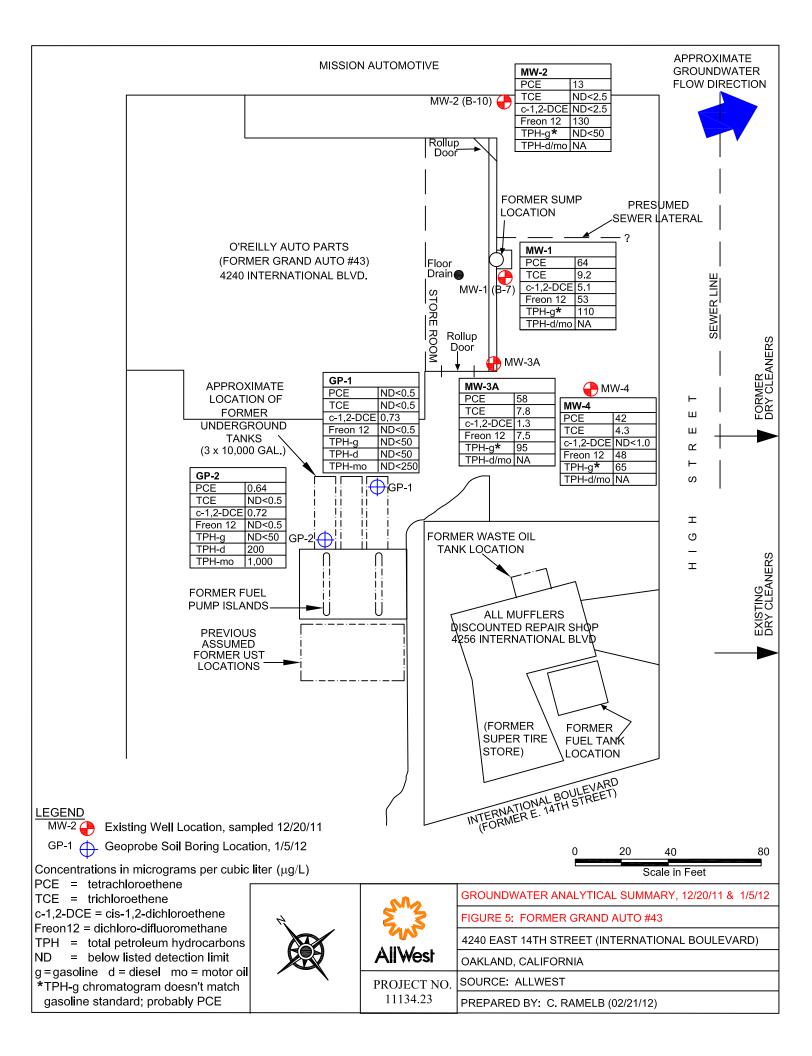
State of California Department of Toxics Substance Control (DTSC) and State of California Regional Water Quality Control Board, Los Angeles Region (LARWQCB), *Advisory – Active Soil Gas Investigations*, January 28, 2003.


DTSC, Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), October 2011.


DTSC, 2011. Vapor Intrusion Mitigation Advisory Final Revision 1, October 2011.


Lawrence Berkeley National Laboratory (LBNL) Analysis of Background Distribution of Metals in the Soil at Lawrence Berkeley National Laboratory, June 2002.


State of California Environmental Protection Agency (Cal EPA), Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties, Table 2- California Human Health Screening Levels for Indoor Air and Soil Gas, January 2005, updated September 23, 2010. State of California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB), *Screening For Environmental Concerns at Sites with Contaminated Soil and Groundwater*, Interim Final November 2007, Updated March 2008.


FIGURES

TABLES

TABLE 1

SUMMARY OF SOIL VAPOR SAMPLE ANALYTICAL DATA O'REILLY AUTO SUPPLY (FORMER GRAND AUTO SUPPLY #43) OAKLAND, CALIFORNIA AllWest Project No. 11134.23

Sample Number	Date	Sample Depth feet bgs		Benzene µg/m ³	1,3- Butadiene μg/m ³	Chloroform µg/m ³	Dichloro- difluoromethane (Freon 12) µg/m ³	Ethanol μg/m ³	Ethyl- benzene µg/m ³	Ethyl Acetate μg/m ³	4- Ethyltoluene μg/m ³	Alcohol	4-Methyl-2- pentanone (MIBK) µg/m ³	Naphthalene µg/m ³		Tetrachloro- ethene (PCE) µg/m ³	Toluene μg/m ³	Trichloro- ethene (TCE) μg/m ³	1.1	1,3,5- Trimethyl- benzene µg/m ³	Xylenes (Total) µg/m ³	Other VOCs µg/m ³
SVP-1	1/4/2012	5	ND (<120)	13	ND (<4.5)	ND (<9.9)	34	1,600	28	46	18	91	ND (<8.3)	ND (<11)	ND (<88)	270	81	ND (<11)	66	23	200	ND (varies)
SVP-2	1/4/2012	5	ND (<120)	ND (<6.5)	ND (<4.5)	ND (<9.9)	51	200	63	21	23	ND (<50)	14	ND (<11)	ND (<88)	460	78	25	39	14	370	ND (varies)
SVP-3	1/4/2012	5	ND (<120)	ND (<6.5)	ND (<4.5)	97	370	170	22	15	22	ND (<50)	15	ND (<11)	ND (<88)	8,100	17	210	55	23	170	ND (varies)
SVP-4	1/4/2012	5	140	15	28	28	170	1,500	18	76	30	80	30	ND (<11)	770	550	42	ND (<11)	49	18	110	ND (varies)
SVP-5	1/4/2012	5	320	8.0	ND (<4.5)	ND (<9.9)	110	1,900	17	250	32	88	47	11	470	4,600	31	51	55	19	120	ND (varies)
SVP-6	1/4/2012	5	ND (<120)	16	76	ND (<9.9)	ND (<10)	340	14	40	17	ND (<50)	20	ND (<11)	ND (<88)	670	27	26	65	22	110	ND (varies)
ESL	Residential		660,000	84	NL	460	NL	NL	980	NL	NL	NL	NL	72	NL	410	63,000	1,200	NL	NL	21,000	Varies
ESL	Commercia	1	1,800,000	280	NL	1,500	NL	NL	3,300	NL	NL	NL	NL	240	NL	1,400	180,000	4,100	NL	NL	58,000	Varies
CHHSL	Residential		NL	36	NL	NL	NL	NL	420	NL	NL	NL	NL	32	NL	180	140,000	530	NL	NL	320,000	Varies
CHHSL	Commercia	1	NL	120	NL	NL	NL	NL	1,400	NL	NL	NL	NL	110	NL	600	380,000	1,800	NL	NL	890,000	Varies

Notes:

VOCs Volatile Organic Compounds by EPA Method TO-15, McCampbell Analytical, Inc., Pittsburg, CA

MIBK 4-Methyl-2-pentanone

 $\mu g/m^3$ Micrograms per cubic meter = 0.001 micrograms per liter

ND Not detected at or below laboratory reporting limit (reporting limit in parenthesis)

NA Not Analyzed

NL Not Listed

ESL Environmental Screening Level (Screening For Environmental Concerns At Sites With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, San Francisco Bay, INTERIM FINAL - November 2007 (revised May 2008). Table E, Shallow Soil Gas Screening Levels, For Evaluation Of Potential Vapor Intrusion Concerns, Residential Exposure, Commercial/Industrial Land Use).

CHHSL California Environmental Protection Agency (CalEPA), Office of Environmental Health Hazard Assessment (OEHHA) Use of California Human Health Screening Levels (CHHSLS) in Evaluation of Contaminated Properties, Table 3, Soil-Gas Screening Numbers for Volatile Chemicals Below Buildings Constructed Without Engineered Fill Below Sub-Slab Gravel, January 2005, updated tables September 23, 2010.

TABLE 2 Summary of Soil Sample Analytical Data O'Reilly Auto Supply (Former Grand Auto Supply #43)

4240 East 14th Street Oakland, California

AllWest Project No. 11134.23

Sample ID Number	Depth (feet bgs)	Date	TPH-g	TPH-d C10-C-23	TPH-mo C18-C36	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Naph- thalene	PCE	Other VOCs	Cadmium	Chromium	Lead	Nickel	Zinc
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
GP-1-9.0-9.5	9.0-9.5	01/05/12	ND (<0.25)	1.2	ND (<5.0)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (varies)	ND (<1.5)	120	6.5	160	99
(qualifiers)				(e2)														
GP-1-19.5-20.0	19.5-20.0	01/05/12	ND (<0.25)	2.1	ND (<5.0)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (varies)	ND (<1.5)	47	ND (<5.0)	85	100
(qualifiers)				(e2)														
GP-2-10.0-10.5	10.0-10.5	01/05/12	ND (<0.25)	15	72	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	0.0056	0.0067	ND (varies)	ND (<1.5)	63	5.5	48	75
(qualifiers)				(e7, e2)	(e7, e2)													
GP-2-17.0-17.5	17.0-17.5	01/05/12	ND (<0.25)	2.0	ND (<5.0)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (<0.005)	ND (varies)	ND (<1.5)	38	ND (<5.0)	50	57
(qualifiers)				(e2)														
RWQCB Com ≤9.9 feet bgs, o			83	83	2,500	0.0044	2.9	3.3	2.3	0.0023	2.8	0.7	varies	7.4	750 (Cr III) 8.0 (Cr VI)	750	150	600
RWQCB Com >9.9 feet bgs, o		,	83	83	5,000	0.0044	2.9	3.3	2.3	0.0023	3.4	0.7	varies	39.0	5,000 (Cr III) 0.53 (Cr VI)	750	260	5,000

Notes: All samples analyzed at McCampbell Analytical, Inc., Pittsburg, California

All results are reported in milligrams per kilogram (mg/kg) [equivalent to parts per million (ppm)], except where noted.

feet bgs = feet below ground surface

TPH-g - Total petroleum hydrocarbons as gasoline (analytical method SW8260B)

TPH-d - Total petroleum hydrocarbons as diesel, C10-C23 range (analytical method SW8015B with silica gel cleanup)

TPH-mo - Total petroleum hydrocarbons as motor oil, C18-C36 range (analytical method SW8015B with silica gel cleanup)

MTBE - Methyl tert-butyl ether (analytical method SW8260B)

PCE - Tetrachloroethene (analytical method SW8260B)

Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) (analytical method SW8260B)

MEK - methyl ethyl ketone (analytical method SW8260B)

VOCs - Volatile organic compounds (analytical method SW8260B)

LUFT 5 Metals - (analytical method SW6010B)

ND (<0.01) - Not detected at or above listed reporting limit

NA - Not analyzed

NE - Not Established

Laboratory Qualifiers:

e2 - diesel range compounds are significant, no recognizable pattern

e7 - oil range compounds are significant

San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs), shallow soils ($\leq 3 \text{ m bgs}$) and deep soils (> 3 m bgs) for commercial/industrial land use where groundwater is a potential drinking water resource from Tables A, A-2, C and C-2, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*. RWQCB, Interim Final November 2007, revised May 2008.

TABLE 3

Summary of Groundwater Sample Analytical Data

O'Reilly Auto Supply

(Former Grand Auto Supply #43)

4240 East 14th Street, Oakland, California

AllWest Project Number 11134.23

Location	Date	PCE	ТСЕ	cis-1,2 DCE	FREON 12	Chloroform	1,1,1-TCA	1,2-DCA	Vinyl Chloride	Carbon Tetrachloride	TPH-g	TPH-d	TPH-mo	Other VOCs	LUFT 5 Metals
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μ g/L)	(µg/L)	(μg/L)	(µg/L)
MW-1	12/20/2011	64	9.2	5.1	53	ND (<1.7)	ND (<1.7)	ND (<1.7)	ND (<1.7)	ND (<1.7)	110 ⁶	NA	NA	ND (varies)	NA
MW-1	6/2/2008	68	10	4.6	36	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	NA	NA	NA	ND (varies)	NA
MW-1 MW-1	9/27/2006	110	15	8.7	21	0.83	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	NA	NA	NA	ND (varies)	NA
MW-1	7/23/2004	140	19	5.9	69	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	NA	NA	NA	ND (varies)	NA
MW-1	5/15/2003	120	15	5.8	50	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	NA	NA	NA	ND (varies)	NA
MW-1	5/21/2002	140	15	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	NA	NA	NA	ND (varies)	NA
MW-1	6/19/2001	130	17	5.3	35	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	NA	NA	NA	ND (varies)	NA
MW-1	11/4/1999	120	17	6.6	62	ND (<3.0)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<50)	NA	NA	ND (varies)	NA
MW-1	5/10/1996	270	24	4.3	NA	2.6	ND (<1.3)	ND (<1.3)	ND (<1.3)	ND (<1.3)	NA	NA	NA	ND (varies)	NA
MW-1	9/15/1995	200	25	6.8	NA	1.4	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	NA	NA	NA	ND (varies)	NA
MW-1	1/31/1995	54	13	9.7	NA	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<2.0)	ND (<1.0)	NA	NA	NA	ND (varies)	NA
MW-1 (D)	1/31/1995	54	13	9.3	NA	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<2.0)	ND (<1.0)	NA	NA	NA	ND (varies)	NA
MW-1	9/20/1994	270	37	19	NA	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	NA	NA	NA	ND (varies)	NA
MW-1 (D)	9/20/1994	270	36	18	NA	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	NA	NA	NA	ND (varies)	NA
MW-1	6/7/1994	200	28	25	NA	1.6	(ND <0.5)	(ND <0.5)	(ND <0.5)	(ND <0.5)	83 ⁵	NA	NA	ND (varies)	ND (varies)
MW-1 (D)	6/7/1994	340	35	22	NA	1.5	(ND < 0.5)	(ND <0.5)	(ND <0.5)	(ND <0.5)	NA	NA	NA	ND (varies)	NA
MW-1	2/18/1994	200	25	12	NA	1	(ND < 0.5)	(ND <0.5)	(ND <0.5)	(ND <0.5)	110 ⁵	NA	NA	ND (varies)	ND (varies)
MW-1	11/17/1993	230	28	15	NA	1.8	(ND <0.5)	(ND <0.5)	ND (<1.0)	(ND <0.5)	99 ⁵	NA	NA	ND (varies)	ND (varies)
MW-1	8/4/1993	290	23	10	NA	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<10)	ND (<5.0)	150 ⁵	NA	NA	Toluene 0.4 , others ND (varies)	ND (varies)
MW-1	4/26/1993	300	22	8.7	37	1.0	ND (<0.5)	ND (<0.5)	ND (<1.0)	ND (<0.5)	57 ⁵	NA	NA	ND (varies)	ND (varies)
MW-1 (D)	4/26/1993	300	22	8.7	110	1.1	0.6	ND (<0.5)	ND (<1.0)	ND (<0.5)	74 ⁵	NA	NA	ND (varies)	ND (varies)
MW-1	1/19/1993	220	28	14	NA	ND (<3.0)	ND (<3.0)	ND (<1.0)		ND (<1.0)	160 ⁵	NA	NA	ND (varies)	ND (varies)
MW-1	9/10/1992	310	26	11	NA	1.1	ND (<0.5)	ND (<0.6)		ND (<0.5)	150 ⁵	NA	NA	ND (varies)	ND (varies)
MW-2	12/20/2011	13	ND (<2.5)	ND (<2.5)	130	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<50)	NA	NA	ND (varies)	NA
MW-2	6/2/2008	6.5	1.8	ND	47	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	NA	NA	NA	ND (varies)	NA
MW-2	9/27/2006	8.3	5.9	1.7	24	0.91	ND (<0.5)	ND (<0.5)	ND (<0.5)	1.9	NA	NA	NA	ND (varies)	NA
MW-2	7/23/2004	3.7	11	3	60	ND (<0.5)	ND (<0.5)	0.53	ND (<0.5)	ND (<0.5)	NA	NA	NA	ND (varies)	NA
MW-2	5/15/2003	3.9	12	2.9	56	ND (<0.5)	ND (<0.5)	0.63	ND (<0.5)	ND (<0.5)	NA	NA	NA	ND (varies)	NA
MW-2	5/21/2002	6.3	4.7	0.84	44	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	0.61	NA	NA	NA	ND (varies)	NA
MW-2	6/19/2001	9.1	5.3	1	38	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	0.83	NA	NA	NA	ND (varies)	NA
MW-2	11/4/1999	7.6	8.1	1.9	55	ND (<3.0)	ND (<0.5)	ND (<0.5)	ND (<0.5)	2.0	ND (<50)	NA	NA	ND (varies)	NA
MW-2	5/10/1996	7.2	51	13	NA	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	NA	NA	NA	ND (varies)	NA
MW-2	9/15/1995	6.3	52	17	NA	ND (<0.5)	ND (<0.5)	ND (<0.5)	0.8	ND (<0.5)	NA	NA	NA	ND (varies)	NA
MW-2 (D)	9/15/1995	6.5	69	17	NA	ND (<0.5)	ND (<0.5)	0.9	0.9	ND (<0.5)	NA	NA	NA	ND (varies)	NA
MW-2	1/31/1995	3	60	17	NA	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<2.0)	ND (<1.0)	NA	NA	NA	ND (varies)	NA
MW-2	9/20/1994	6	130	36	NA	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	NA	NA	NA	ND (varies)	NA
MW-2	6/7/1994	6.9	120	31	NA	ND (<0.5)	ND (<0.5)	1.8	ND (<0.5)	ND (<0.5)	52 ⁵	NA	NA	ND (varies)	Zinc 20 , others ND (varies)

TABLE 3Summary of Groundwater Sample Analytical Data
O'Reilly Auto Supply(Former Grand Auto Supply #43)4240 East 14th Street, Oakland, California
AllWest Project Number 11134.23

Location	Date	PCE	TCE	cis-1,2 DCE	FREON 12	Chloroform	1,1,1-TCA	1,2-DCA	Vinyl Chloride	Carbon Tetrachloride	TPH-g	TPH-d	TPH-mo	Other VOCs	LUFT 5 Metals
		(µg/L)	(μ g/L)	DCE (µg/L)	12 (µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μ g/L)	(µg/L)	(µg/L)	νοcs (μg/L)	(µg/L)
MW-2	2/18/1994	4.8	(µg/L) 75	25	NA	ND (<0.5)	ND (<0.5)	1.5	ND (<0.5)	ND (<0.5)	58 ⁵	NA	NA	ND (varies)	ND (varies)
MW-2 MW-2			-	-					ND (<0.3) ND (<1.0)	. ,			NA	· · · ·	. ,
INI W-2	11/17/1993	6.1	32	8.7	NA	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<1.0)	ND (<0.5)	ND (<50)	NA	NA	ND (varies)	ND (varies)
MW-2	8/4/1993	7.2	110	22	NA	ND (<1.2)	ND (<1.2)	ND (<1.2)	ND (<2.4)	ND (<1.2)	120 ⁵	NA	NA	Toluene 0.3 , others ND	ND (varies)
IVI VV -2	0/4/1993	1.2	110	22	INA	ND(<1.2)	$ND(\langle 1.2 \rangle$	ND(<1.2)	ND (<2.4)	ND(<1.2)	120	INA	INA	(varies)	ND (varies)
														Benzene 0.8 ,	
														Toluene 1.1 ,	
MW-2	4/26/1993	7.5	32	8.5	31	0.9	0.6	0.6	ND (<1.0)	ND (<0.5)	70	NA	NA	Xylenes 1.0,	ND (varies)
		1.0		0.0	01	0.9	0.0	0.0	112 ((110)	112 (1012)	10	1.1.1		others ND	112 ((anos)
														(varies)	
MW-3A	12/20/2011	58	7.8	1.3	7.5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	95 ⁶	NA	NA	ND (varies)	NA
MW-3A	6/2/2008	71	11	ND (<2.5)	8.1	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	NA	NA	NA	ND (varies)	NA
MW-3A	9/27/2006	83	12	4.7	3.6	0.83	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	NA	NA	NA	ND (varies)	NA
MW-3A	7/23/2004	85	12	2.4	8.3	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	NA	NA	NA	ND (varies)	NA
MW-3A	5/15/2003	130	16	ND (<2.5)	21	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	NA	NA	NA	ND (varies)	NA
MW-3A	5/2/2002	120	16	ND (<2.5)	7.1	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	NA	NA	NA	ND (varies)	NA
MW-3A ⁴	6/19/2001	120	21	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	NA	NA	NA	ND (varies)	NA
MW-3	11/4/1999	150	24	14	14	ND (<15)	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	61	NA	NA	ND (varies)	NA
MW-3	5/10/1996	160	25	7.2	NA	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	NA	NA	NA	ND (varies)	NA
MW-3	9/15/1995	170	25	6.2	NA	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	NA	NA	NA	ND (varies)	NA
MW-3	1/31/1995	160	34	6.2	NA	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<5.0)	ND (<1.0)	NA	NA	NA	ND (varies)	NA
MW-3	9/20/1994	240	37	11	NA	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	NA	NA	NA	ND (varies)	NA
MW-3	6/7/1994	160	34	8.3	NA	0.6	0.6	ND (<0.5)	ND (<0.5)	ND (<0.5)	78 ⁵	NA	NA	ND (varies)	ND (varies)
MW-3	2/18/1994	85	19	5	NA	0.7	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	64 ⁵	NA	NA	ND (varies)	ND (varies)
MW-3	11/17/1993	170	29	12	NA	1.3	0.8	ND (<0.5)	ND (<1.0)	ND (<0.5)	ND (<50)	NA	NA	ND (varies)	ND (varies)
														Benzene 0.3,	
MW-3	8/4/1993	170	28	ND (<5.0)	NA	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<10)	ND (<5.0)	170 ⁵	NA	NA	Toluene 0.4,	ND (varies)
	0/ 1/ 1995	1/0	-0	TTE ((0.0)	1011	112 ((0.0)	112 ((0.0)	T(D) ((0.0)	112 ((10)	TLD ((0.0)	1/0	1011	141	others ND	(valies)
														(varies)	
															Chromium 170,
MW-3	4/26/1993	79	21	9.7	35	ND (<0.5)	0.8	ND (<0.5)	ND (<1.0)	ND (<0.5)	ND (<50)	NA	NA	ND (varies)	others ND
											6				(varies)
MW-4	12/20/2011	42	4.3	ND (<1.0)	48	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	65 ⁶	NA	NA	ND (varies)	NA
MW-4	6/2/2008	39	4.3	ND (<1.0)	29	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	NA	NA	NA	ND (varies)	NA
MW-4	9/27/2006	62	7.8	1.4	13	1.1	ND (<0.5)	ND (<0.5)	ND (<0.5)	1.3	NA	NA	NA	ND (varies)	NA
MW-4	7/23/2004	23	3.7	1	26	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	0.5	NA	NA	NA	ND (varies)	NA
MW-4	5/15/2003	120	7.7	0.75	16	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	NA	NA	NA	ND (varies)	NA
MW-4	5/21/2002	70	7.7	ND (<2.5)	18	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	ND (<2.5)	NA	NA	NA	ND (varies)	NA
MW-4	6/19/2001 11/4/1999	47 61	7 10	1.2	<u>19</u> 41	ND (<0.5)	ND (<0.5) ND (<0.5)	ND (<0.5)	ND (<0.5) ND (<0.5)	ND (<0.5) ND (<0.5)	NA ND (<50)	NA NA	NA NA	ND (varies)	NA NA
MW-4 MW-4		01 190	22	2.2 2.5	AI NR	ND (<3.0)		$\frac{ND(<0.5)}{ND(<1.3)}$, , ,		<u>````</u>		NA NA	ND (varies)	
MW-4	5/10/1996	190	<i>LL</i>	2.3	INK	ND (<1.3)	ND (<1.3)	ND (<1.3)	ND (<1.3)	ND (<1.3)	NA	NA	INA	ND (varies)	NA

TABLE 3Summary of Groundwater Sample Analytical Data
O'Reilly Auto Supply(Former Grand Auto Supply #43)4240 East 14th Street, Oakland, California
AllWest Project Number 11134.23

Location	Date	PCE	ТСЕ	cis-1,2 DCE	FREON 12	Chloroform	1,1,1-TCA	1,2-DCA	Vinyl Chloride	Carbon Tetrachloride	TPH-g	TPH-d	TPH-mo	Other VOCs	LUFT 5 Metals
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μ g/L)	(µg/L)	(μ g/L)	(µg/L)
MW-4	9/15/1995	160	24	4.4	NR	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	NA	NA	NA	ND (varies)	NA
MW-4	1/31/1995	140	20	4.7	NR	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<5.0)	ND (<1.0)	NA	NA	NA	ND (varies)	NA
MW-4	9/20/1994	220	32	5	NR	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	NA	NA	NA	ND (varies)	NA
MW-4	6/7/1994	140	28	7.1	NR	0.9	0.9	ND (<0.5)	ND (<0.5)	ND (<0.5)	62 ⁵	NA	NA	ND (varies)	Nickel 20 , others ND (varies)
MW-4	2/18/1994	120	31	6	NR	1.9	0.7	ND 0.5	ND 0.5	ND	95 ⁵	NA	NA	ND (varies)	ND (varies)
MW-4	11/17/1993	87	20	6.6	NR	1.0	ND (<0.5)	ND (<0.5)	ND (<1.0)	ND (<0.5)	ND (<50)	NA	NA	ND (varies)	ND (varies)
MW-4	8/4/1993	110	16	ND (<5.0)	NR	ND (<5.0)	ND (<5.0)		ND (<10)	ND (<5.0)	110 ⁵	NA	NA	Toluene 0.4 , others ND (varies)	ND (varies)
MW-4	4/26/1993	78	17	3.9	28	0.6	ND (<0.5)	. ,	ND (<1.0)	ND (<0.5)	ND (<50)	NA	NA	ND (varies)	Chromium 60, others ND (varies)
HC-1	11/4/1999	100	17	8.7	43	ND <3.0)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<50)	NA	NA	ND (varies)	NA
HC-1	5/10/1996	200	27	13	NR	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	NA	NA	NA	ND (varies)	NA
HC-1	9/15/1995	170	27	14	NR	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<50)	NA	NA	ND (varies)	NA
HC-1	1/31/1995	120	27	11	NR	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<50)	NA	NA	ND (varies)	NA
HC-1	9/20/1994	190	37	15	NR	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<50)	NA	NA	ND (varies)	NA
HC-1	6/7/1994	180	42	22	NR	1.0	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	69 ⁵	NA	NA	ND (varies)	NA
HC-1	2/18/1994	140	30	13	NR	0.7	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	96 ⁵	NA	NA	ND (varies)	NA
HC-1	2/18/1994	150	22	11	NR	0.6	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	90 ⁵	NA	NA	ND (varies)	NA
HC-1	11/17/1993	130	27	16	NR	1.1	0.7	ND (<0.6)	ND (<2.0)	ND (<0.5)	ND (<50)	NA	NA	ND (varies)	NA
HC-1	8/4/1993	83	27	15	NR	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<1.0)	ND (<0.5)	100 5	NA	NA	ND (varies)	NA
HC-1	4/26/1993	46	22	13	47	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<1.0)	ND (<0.5)	ND (<50)	NA	NA	ND (varies)	NA
GP-1-GW-35	1/5/2012	ND (<0.5)	ND (<0.5)	0.73	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<50) ¹	ND (<50) ¹	ND (<250) ¹	Toluene 0.63 , MTBE 0.96 , other VOCs ND (varies)	Nickel 14, Zinc 33, others ND (varies) ¹
GP-2-GW-15, GP-2-GW-20	1/5/2012	0.64	ND (<0.5)	0.72	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<0.5)	ND (<50) ¹	200 ^{2,3}	1,000 ^{2,3}	Carbon Disulfide 0.62, other VOCs ND (varies)	Nickel 7.0 , Zinc 34 , others ND (varies)
RWQ0 Commercial/Ind current or poten wate	ustrial ESLs, tial drinking	5	5	6	NE	70	62	0.5	0.5	0.5	100	100	100	Benzene 1.0, Toluene 40, Xylenes 20, MTBE 5.0, others NE or varies	Cadmium 0.25, Chromium 50, Lead 2.5, Nickel 8.2, and Zinc 81

TABLE 3

Summary of Groundwater Sample Analytical Data

O'Reilly Auto Supply

(Former Grand Auto Supply #43)

4240 East 14th Street, Oakland, California

AllWest Project Number 11134.23

Location	Date	PCE	TCE	cis-1,2 DCE	FREON 12	Chloroform	1,1,1-TCA	1,2-DCA	Vinyl Chloride	Carbon Tetrachloride	TPH-g	TPH-d	TPH-mo	Other VOCs	LUFT 5 Metals
		(µg/L)	(μ g/L)	(μ g/L)	(μ g/L)	(µg/L)	(µg/L)	(μ g/L)	(µg/L)	(μ g/L)	(µg/L)	(μ g/L)	(µg/L)	(µg/L)	(μ g/L)

Notes: All results are reported in micrograms per liter ($\mu g/L$) [equivalent to parts per billion (ppb)], except where noted.

1,1,1-TCA = 1,1,1-Trichloroethane (analytical method SW8260B)

1,2-DCA = 1,2-Dichloroethane (analytical method SW8260B)

cis-1,2 DCE = cis-1,2-Dichloroethene (analytical method SW8260B)

Freon 12 = Dichlorodifluoromethane (analytical method SW8260B)

MTBE = Methyl tertiary butyl ether (analytical method SW8260B)

TCE = Trichloroethene (analytical method SW8260B)

TPH-d = Total petroleum hydrocarbons as diesel (analytical method SW8015B with silica gel cleanup)

TPH-g = Total petroleum hydrocarbons as gasoline (analytical method SW8260B)

TPH-mo = Total petroleum hydrocarbons as motor oil (analytical method SW8015B with silica gel cleanup)

VOCs = Volatile organic compounds (analytical method SW8260B)

LUFT 5 Metals = Cadmium, chromium, lead, nickel and zonce by EPA Method 200.8

- (D) = Duplicate sample
- NA = Not analyzed

ND (<0.5) = Not detected at or above listed reporting limit

NE = Not established

NR = Not reported

1 - Aqueous sample that contains greater than \sim 1 vol. % sediment.

2 - Oil range compounds are significant

3 - Diesel range compounds are significant; no recognizable pattern

4 - Monitoring Well MW-3 was destroyed in May 2000 and replaced by MW-3A

5 - Gasoline range concentration reported. The chromatogram showed only a single peak in the gasoline range, and did not match typical gasoline pattern. Was interpreted by Hart Crowser to represent analytical overlap from halogenated VOCs detected in samples and not TPH-g (Hart Crowser Quarterly Status Report, November 9, 1994.

6 - Upon laboratory review of chromatogram, TPH range is derived solely from chlorinated hydrocarbons (mostly PCE) detected in samples and not TPH-g range fuel pattern (McCampbell Analytical, Inc., written communication, February 21, 2012).

San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is a current or potential drinking water resource from Tables A and F1a, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*. RWQCB, Interim Final November 2007, revised May 2008.

Appendix A

		GRA		MARY OF	BLE A-1 SOIL ANAL , OAKLAND	YSES , CALIFORN	IA		
BORING/WELL	B4-21	B5-19	B5-26	S2C-8	MW2-10.5	MW2-35	MW3-35.5	MW4-36	B8-11
DATE	7/16/92	7/16/92	7/16/92	8/7/92	4/14,15,16/93	4/14,15,16/93	4/14,15,16/93	4/14,15,10/93	4/14,15,16/93
Oil & Grease TPH-Diesel TPH-Gasoline Organic Lead	NT ND<10 ND<1 ND<2	NT ND<10 ND<1 NT	NT ND<10 ND<1 ND<2	ND<50 120 310 ND<2	NT ND<10 ND<1 NT	NT ND<10 ND<1 NT	NT ND<10 ND<1 NT	NT ND<10 ND<1 NT	NT ND<10 ND<1 NT
Benzene Ethyl Benzene Toluene Xylenes		ND<0.003 ND<0.003	ND<0.003 ND<0.003 ND<0.003 ND<0.003		ND<0.003 ND<0.003 ND<0.003 ND<0.009	ND<0.003 ND<0.003 ND<0.003 ND<0.009	ND<0.003 ND<0.003 ND<0.003 ND<0.009	ND<0.003 ND<0.003 ND<0.003 ND<0.009	ND<0.003 ND<0.003 ND<0.003 ND<0.009
PCE Other Chlorinated VOCs	NT NT	NT NT	NT NT	0.104 ND	ND<0.005 ND	ND<0.005 ND	0.009 ND	0.012 ND	0.005 ND
Cadmium Chromium Lead Nickel Zinc	NT NT NT NT NT	NT NT NT NT	NT NT NT NT	ND<1 73 9 110 30	ND<1 28 5 61 39	ND<1 31 ND 47 49	ND<1 29 ND 42 47	ND<1 35 ND 59 34	ND<1 58 9 150 61

Notes:

ND denotes chemical not dected in sample at a concentration of x. NT denotes analysis not performed on sample. Concentrations listed are in milligrams per kilogram (mg/kg).

Page 1

			TABLE ARY OF SOI	L ANALYSE				
		AND AUTO			1111111-111-11-11-11-11-11-11-11-11-11-		r	1
BORING/WELL	B8-16	B8-21	B8-25	B9-10	P1-2.5	P2-2.5	P3-2.5	P4-2.5
DATE	4/14,15,16/93	4/14,15,16/93	4/14,15,16/93	4/14,15,16/93	10/20/93	10/20/93	10/20/93	10/20/93
		NIT	NT	NT	NT	NT	NT	NT
Oil & Grease TPH-Diesel	NT ND<10	NT ND<10	NT ND<10	ND<10	NT NT	NT	NT	NT
TPH-Gasoline	ND<10	ND<10	ND<10	ND<1	ND<1.0	ND<1.0	ND<1.0	ND<1.0
	NT	ND<1	ND	ND	NDC1.0	NDC1.0	NDC1.0	NT NT
Organic Lead	IN I					14.1		
Benzene	ND<0.003	ND<0.003	ND<0.003	ND<0.003	ND<0.003	ND<0.003	ND<0.003	ND<0.003
Ethyl Benzene	ND<0.003	ND<0.003	ND<0.003	ND<0.003	ND<0.003	ND<0.003	ND<0.003	ND<0.003
Toluene	ND<0.003	ND<0.003	ND<0.003	ND<0.003				ND<0.003
Xylenes	ND<0.009	ND<0.009	ND<0.009	ND<0.009				ND<0.009
PCE	ND<0.005	ND<0.005	0.030	ND<0.005	NT	NT	NT	NT
			ND<0.005			NT	NT	NT
Other Chlorinated VOCs	ND	ND	ND<0.005	ND<0.005	NT			
Cadmium	ND<1	ND<1	ND<1	ND<1	NT	NT	NT	NT
Chromium	29	29	28	27	NT	NT	NT	NT
Lead	ND	ND	6	6	NT	NT	NT	NT
Nickel	53	43	41	72	NT	NT	NT	NT
Zinc	45	37	48	40	NT	NT	NT	NT

Notes:

ND denotes chemical not dected in sample at a concentration of x. NT denotes analysis not performed on sample. Concentrations listed are in milligrams per kilogram (mg/kg).

.

Page 2

Appendix B

Alameda County Public Works Agency - Water Resources Well Permit

PUBLIC	399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939	
Application Approved	d on: 12/20/2011 By jamesy		Permit Numbers: W2011-0779 from 01/04/2012 to 01/05/2012
Application Id: Site Location:	1323884356677 4240 International Boulevard	City of Proje	ct Site:Oakland
Project Start Date: Assigned Inspector:	Kragen/O'Reilly Auto Parts Store 01/04/2012 Contact Steve Miller at (510) 670-5517 or stevem@		n Date: 01/05/2012
Applicant:	AllWest Environemntal, Inc Leonard Niles 530 Howard Street, Suite 300, San Francisco, CA		Phone: 415-391-2510 x109
Property Owner:	Sandra & Joseph Hess, c/o Hess Properties,		Phone: 415-269-7220
Client: Contact:	LLC 2709 Park Avenue, La Verne, CA 91750 Vicki ZumBrunnen, c/o PACCAR,Inc. 777 106th Avenue N.E., Bellevue, WA 98004 Leonard Niles		Phone: 425-468-7055 Phone: 415-391-2510 x109 Cell: 415-686-4412
	т	otal Duo:	\$265.00

	Total Due:	\$265.00
Receipt Number: WR2011-0378	Total Amount Paid:	\$265.00
Payer Name : AllWest Environmental		PAID IN FULL

Works Requesting Permits:

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 8 Boreholes Driller: Vironex, Inc. - Lic #: 705927 - Method: DP

Work Total: \$265.00

Specifications											
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth						
Number			Boreholes								
W2011-	12/20/2011	04/03/2012	8	2.00 in.	35.00 ft						
0779											

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

Alameda County Public Works Agency - Water Resources Well Permit

5. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Appendix C

STANDARD GEOPROBE® AND SUB-SLAB PROBE SOIL VAPOR SAMPLING PROCEDURES

Geoprobe® PRT Soil Vapor Probe Advancement Sampling

The Geoprobe® Post Run Tubing (PRT) soil vapor sampling process involves driving into the subsurface a disposable Geoprobe® sampling probe with expendable tip and a PRT adapter that are connected to 4-foot sections of Geoprobe® 1.25-inch inside diameter (ID) extension rods. The PRT adapter has a reverse-thread adapter at the upper end to allow the connection of flexible soil vapor sampling tubing with a PRT tubing adaptor after the installation (post-run) of the tip. The entire sampling assembly, the sampling tip, PRT adapter, and the Geoprobe® extension rods, is driven into the subsurface by a truck-mounted hydraulic percussion hammer. The sampler is driven to the desired depth as additional rods are connected. At the desired sampling depth, a sufficient length of disposable flexible polyethylene or Teflon® sample tubing is first lowered through the center of the extension rod and connected to the PRT adapter. The extension rod is then retracted 3 to 4 inches to create a small void around the PRT adapter and the expendable sampling tip for extracting a soil vapor sample from that location. Bentonite chips will be used to fill the annular space between the probe and the subgrade material to the ground surface. The bentonite will then be hydrated with distilled water. The temporary Geoprobe® PRT soil vapor probe will be sampled at least 30 minutes following driving of the probe, to allow vapor conditions to equalize in subsurface materials and the bentonite surface seal to hydrate.

Sub Slab Soil Vapor Probe Installation

Semi-permanent sub-slab soil vapor probes are emplaced as follows: A 1-inch diameter hole is drilled through the concrete floor slab using a portable electric drill. The boreholes are advanced approximately 0.5 feet bgs into the subgrade material beneath the floor slab. Stainless steel vapor probes 2 inches long by 0.5 inches in diameter, tipped with porous plastic membranes, will be inserted to the bottom of each sub-slab borehole. The probe tips will be attached to lengths of 0.25-inch diameter Teflon® tubing extending to the top of the floor slab. A fine sand filter pack will be placed in the borehole annulus around the probe. Bentonite chips will then used to fill the borehole annular space above the filter pack between the probe and the to the floor slab base. The bentonite will then be hydrated with distilled water. Portland cement will be poured into the borehole annulus in the concrete floor slab to seal the probe. Care will be taken not to over hydrate the bentonite and cement to limit the introduction of excess moisture to the subsurface. Each probe will be constructed with a brass threaded fitting and cap attached to the top of the Teflon® tubing and recessed below the concrete floor. A plastic cap will then be placed flush with the concrete floor to minimize tripping hazards. AllWest will allow a minimum of two days prior to sampling to allow the cement to setup and for subsurface conditions to stabilize.

Soil vapor sampling procedures will be similar for both the semi-permanent and temporary vapor probes, in general accordance with *Interim Final, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air - DTSC December 15, 2004 (Revised February 7, 2005).* Soil vapor sampling will not be performed if measurable precipitation has occurred within the previous five days.

Soil Vapor Sampling via Syringe and Mobile Laboratory

The surface end of the flexible tubing is first connected to a vacuum tank with a diaphragm pump to purge the ambient air from the tubing. After a minimum of one minute purging time to remove at least 3

sampling system volumes, the flexible tubing is connected to a syringe collect a vapor sample. The syringe is them immediately transported to an on-site mobile laboratory for analysis.

Soil Vapor Sampling via Summa Canister

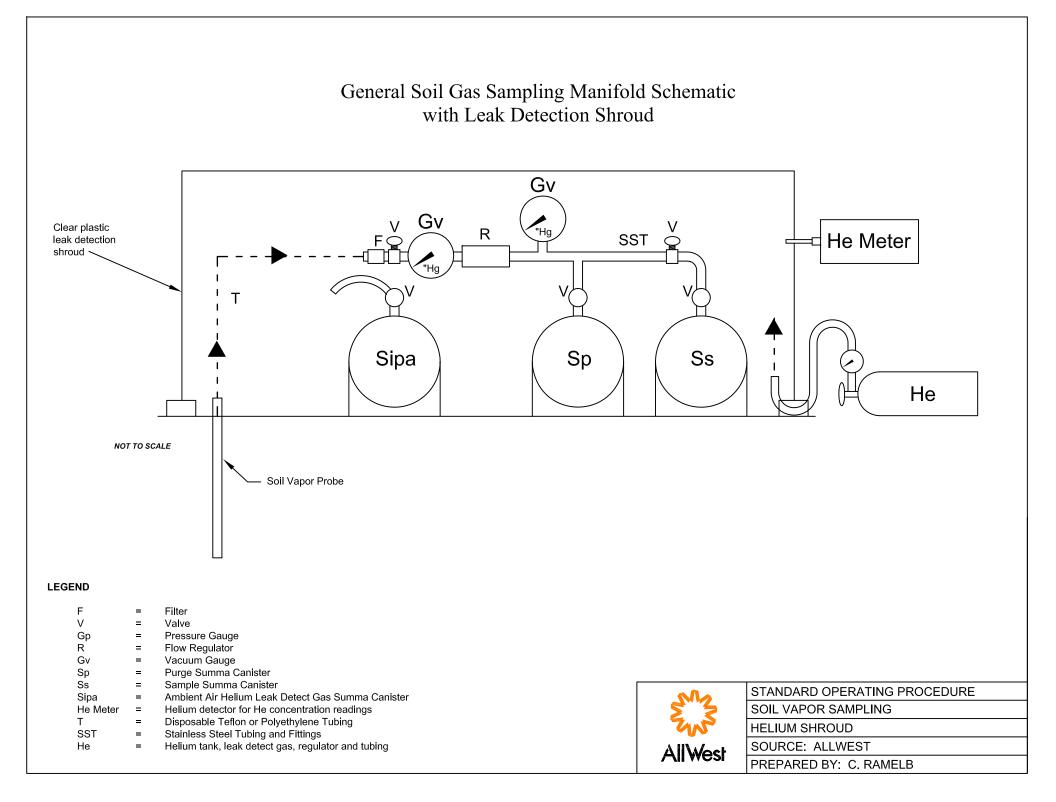
AllWest will collect soil vapor samples in laboratory prepared 6-liter capacity SUMMA canisters. Prior to vapor purging and sample collection, a vacuum leak test of the flow-controller/gauge manifold assembly we be performed for a minimum of 5 minutes. Prior to sample collection, approximately 1 liter of soil vapor (or a minimum of 3 sampling system volumes) will be purged at a flow rate of approximately 200 milliliters per minute (ml/min) from each sub-slab vapor probe using a dedicated 6-liter capacity SUMMA purge canister.

During vapor sample collection, a vacuum leak test of the flow-controller/gauge manifold assembly will be performed using isopropyl alcohol (IPA), diflouroethane or helium as a leak tracer inside an airtight shroud. IPA concentrations inside the shroud will be monitored using a photo-ionization detector (PID). An ambient air sample will collected using a SUMMA canister inside the leak detection shroud during at least one soil vapor probe sampling to measure IPA, difluoroethane or helium concentrations inside the shroud soil vapor sample analysis. Flow rates of approximate 200 milliters per minute (ml/min) will be used to fill the canisters. The canisters will be filled to approximately 80% of capacity. All pertinent field observations, pressure, times and readings will be recorded. Sample containers will be labeled, placed in a dark container and transported under chain-of-custody control to the analytical laboratory.

STANDARD GEOPROBETM DPT SAMPLING PROCEDURES

Soil Sampling

Direct push technology (DPT) soil core sampling using GeoprobeTM or similar methods is accomplished using a nominal 4-foot long, 2-inch diameter stainless steel steel drive probe and extension rods. The drive probe is equipped with nominal 1-1/2 inch diameter clear plastic poly tubes that line the interior of the probe. The probe and insert tubes are together pneumatically driven using a percussion hammer in 4-foot intervals. After each drive interval the drive probe and rods are retrieved to the surfaced. The poly tube containing subsurface soil is then removed. The drive probe is then cleaned, equipped with a new poly tube and reinserted into the boring with extension rods as required. The apparatus is then driven following the above procedure until the desired depth is obtained. The poly tubes and soil are inspected after each drive interval with lithologic and relevant drilling observations recorded. Soil samples are screened for organic vapors using an organic vapor meter (OVM), photo-ionization detector (PID) or other appropriate device. OVM/PID readings, soil staining and other relevant observations are recorded. Selected soil sample intervals can be cut from the 4-foot intervals for possible analytical or geotechnical testing or other purposes.


The soils contained in the sample liners are then classified according to the Uniform Soil Classification System and recorded on the soil boring logs.

Sample liners selected for laboratory analyses are sealed with Teflon sheets, plastic end caps, and silicon tape. The sealed sample liner is then labeled, sealed in a plastic bag, and placed in an ice chest cooled to 4° C with crushed ice for temporary field storage and transportation. The standard chain-of-custody protocol is maintained for all soil samples from the time of collection to arrival at the laboratory.

Groundwater Sampling

Groundwater sampling is performed after the completion of soil sampling and when the boring has reached its desired depth. The steel probe and rods are then removed from the boring and new, nominal 1-inch diameter PVC solid and perforated temporary casing is lowered into the borehole. Alternatively, a retractable screen sampling device such as a HydropunchTM can be driven to the desired depth and pulled back to expose the screened interval. Depth to water is then measured using an electronic groundwater probe. Groundwater samples are collected using a stainless steel bailer, disposable TeflonTM bailer, or check valve or peristaltic pump with disposable TeflonTM or polyethylene sample tubing.

After the retrieval of the bailer, groundwater contained in the bailer (or discharged from sample tubing) is decanted into laboratory provided containers. The containers are then sealed with Teflon coated caps with no headspace, labeled, and placed in an ice chest for field storage and transportation to a state certified analytical laboratory. The standard chain-of-custody protocols are followed from sample collection to delivery to the laboratory. A new bailer (or sample tubing) is used for each groundwater sampling location to avoid cross contamination.

Appendix D

AllWest Environmental, Inc.

Specialists in Physical Due Diligence and Remedial Services

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391.2510 Fax 415.391.2008

SOIL GAS VAPOR FIELD LOG

AllWest

Project No: 1134.23	Project Name: <u>P</u>	ACCAR-Daklau	id Sub
Date: 1/4/2012,,	Vapor Probe No:	<u>SVP-1</u> IL Su Seria 6 L Ruge.	II No: 6309
Regulatory Agencies: <u>ACEH</u>	[ACPWA	6L Auge.	Sunarra L4768
Contractor: Vivoner/Allu	rest		
Hole Diameter: T	otal Depth: <u>5</u>	Grout/Bentonite?	+2/16 sand-bottom + to top; hydrated
Plastic Probe Diameter: 1/4"10, 1/2"00x2"LL	ine Length:	Purge Volume: <u>5</u>	20 m 1
Tracer Gas: <u>helium</u>	#MAN 3161-715 Flow Regulator: _	<u>/50</u> (ml/min)	Leak Test: Pass/Fail
Laboratory Name and Number: $\underline{\mathcal{N}}$	1cCampbell Analy	tical TO-19	-VOCS

Start Time	Time Elapsed	Pressure	Remarks
14:34	0 -	20,2/21,9"	startleykcheck, Summa #14768
14:38	4 min	VIV	stopleak Check-pussed
14:39	0-	20,2"	Start purge, -2.5"=0.5 L, Summa L4768
14:42	3 min.	-17,64	stoppurge
14:48	0 -	28.0"/29.3"	Start shimple, summa # 6309
14:50	Zmin	-20"	He = 20.6% in shroud
14.51	3 Min	-13'	He = 20.5%
14.52	TMIN	-1011	He = 20.5%
14:54	6 min	-3.011*	He= 20.3% (gauge#988 reads-5.3")
Remarks: 📗	itial vacu	rum Su	mma#6309 = -30"(+9 (sange#988)
Initial	helium con	centratio	in in shroud, 2 20%, drojoped to 3%
phen /	itted to Sy	art, ini	ected He to bring to 220%
Manitoli	1 gauges A	1AN 3167-	775 inaccurate
Fihal S	umma #6		uum = -5.3!!
	0,1-1,72		st-sample from tubing
Measu	red Sampl	e flow r	at $l = 137 \text{ m}/\text{min}$, average the 20,48%
1	and A 1	01	
Sampler: L	eenard Nil	US .	

AllWest Environmental, Inc.

Specialists in Physical Due Diligence and Remedial Services

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391 2510 Fax 413.391.2008

SOIL GAS VAPOR FIELD LOG

AllWest

Project No: 1(134.23	Project Name: 💋	
Date: 1/4/2012.	Vapor Probe No:	SVP-2 IL Summa Serial No: 6305 6L Purge Summa #++4678
Regulatory Agencies: <u>ACE</u>	H/ACPWA	6L Purge Summa #+++678
Contractor: Vivonex/All	West	
Hole Diameter:(//	Total Depth: <u>5</u>	Grout Bentonite: > to top, hydrated
Probe Diameter: <u>/4"10/ 1/2"</u> 0.D	Line Length: 6.5	Purge Volume: <u>500m</u> (
Tracer Gas: <u>helium</u>	Flow Regulator: _	(ml/min) Leak Test: Pase/Fail
Laboratory Name and Number: <u>/</u>	necampbell An	alytical, TO-15-VOCS

Start Time	Time Elapsed	Pressure	Remarks
15:27	0 -18.9 /19,1	125.91294	Start lak check, Summa #L4768
15:31	4min 1.	+18.9/19.1"	Stop leak check -passed
15:32	0	-18/9"	Start purge
15:35	3 min	+-16,4 ···	Stop purge, -2.5"=0.56 16.4
15:40	0	-29.0/28.1	Start sample; He & 8% Symma #6305
15:42	2 min .	+18''/	He=23,7%
15:42	2 min -	-15/1	He = 24,0%
15:43	3 min	-9"	AC = 24.0%
15:44	4 min	-4,[''	He= 24,0% (gauge # 988 reads - 5.9")
Remarks: <u><u>J</u></u>	nitial Suma	na#6305 i	acuum = -29.9" (gauge#MAN316M-988)
Initial			von x 20%, disped to x 8 % when internance
- to 5tor	+ sample	<u>cinjecta</u>	9 more #0 = 24%
1 . 1 . / . / .	итта #63		im reads -5,9" (gauge # 988)
PIDreadi	ng from tubi	ng = 0.7 - 1.	3 ppm post sample rambient div=0.3-1 ppm-
	hmes indoors		
Measu,	ved samp	le flow 1	at $\simeq 201 ml/min, average He \approx 20.74\%$
	1	(
Sampler:(Leonard	Niles	

AllWest

AllWest Environmental, Inc.

Specialists in Physical Due Diligence and Remedial Services

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391.2510 Fax 415.391.2008

SOIL GAS VAPOR FIELD LOG

Project No: 11194,23	Project Name: <u>P</u>	Accar - Dakla	
Date: 1/4/2012-	Vapor Probe No:	<u>SVP-3</u> IL Sui Ser	м МЦ ial No: <u>6166</u> Pe Siummei #L4768
Regulatory Agencies: <u>ACE</u>	H/ACPWA	6LPurg	e Summe #L4768
Contractor: Vivourex/Al	INPST		
Hole Diameter:	Total Depth: 5	Grout/Bentonite?	#2/16 sand-bottom 9 to top, hydrated
Probe Diameter: 14"(D, 1/2" 00	Line Length:	Purge Volume:	500 km (
Tracer Gas: <u>helium</u>	Flow Regulator:	<u>(50</u> (ml/min)	Leak Test: Pass/Fail
Laboratory Name and Number: <u>/</u>	McCampbell An	alytical, TO-	15, VOCS

Start Time	Time Elapsed Pressure	Remarks
16:18	$-0 + s_1 ^{\prime}/ 4_9^{\prime\prime}$	start leak check
16:21	3 min 1/V	Stopleak Check-passed
16:22	0 - 15.19	Start PUrge - Summa #6166
16:25	3 min -12.4"	stop purge, -2.5"= 0.5L -12.6"
16:28	0 = 28,4"	start sample, HE ~ 15.76
16:27	min -24"	He = [8.9] 90
6:30	-2min - 18''	He = 20.10
16:32	4 min - 10 11	$Ne = 20.0 \ p$
16:22	5 min + 153.8"	He= 20.0% (-60 per gauge # 988)
Remarks: <u>[17</u>	itial Summa #6166 Va	CUUM = - 30"Hg (gauge #MAN316M-988).
pitio	1 herum concentra	Finn 2 20+ 10, dropped when litted to
Stov-st		wre He to x 1/2010
-inal S		uum=-6.011 using gauge # 988.
PID read		-sample = 2.4-2.6 ppm (20.3 ppm ambient
_ <u>Measuv</u>	ed sample flow bate?	= 175 ml/min, Average He = 18.82%
		P.D. 1010
		4106149
Sampler:	Leonard Niles	

AllWest

AllWest Environmental, Inc.

Specialists in Physical Due Diligence and Remedial Services

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391.2510 Fax 415.391.2008

SOIL GAS VAPOR FIELD LOG

Project No: 11134,23	Project Name: 🧕	PACCAR-Oakl	and Sub
Date: 1/4/2012	Vapor Probe No:	<u>SUP-4</u> 12.500 Serie	mma 11 No: <u>6408</u> Summa #L4768
Regulatory Agencies: <u>ACEH</u>	ACPWA	6L Purge	Summa #14768
Contractor: Vironex/Allu	est		
Hole Diameter:	Total Depth: <u>5</u>	Grout/Bentonite	2/16 sand - bottom hydrafled to top
<i>Probe Diameter: <u>14"10,1/2"0</u>D×2"</i> []	Line Length: <u>6.5</u>	Purge Volume: <u>5</u>	00m1
Tracer Gas: <u>helium</u>	#MAN 3167-778 Flow Regulator: _	<u> 50 (ml/min)</u>	Leak Test: Pass/Fail
Laboratory Name and Number: <u>//</u>	Ic Campbell Anal	ytical, TO-15,	VOCS

Start Time	Time Elapsed	Pressure	Remarks
11:50	0	-28,2"	Start leak check, Summa # L4768
11:54	4 min	-28.2"	stop leak check - passed
16:55	$\dot{\rho}$	-28.2"	start Purge, SUMMa#L4768
1(:58	3 min	-25.78	Stop pluge, -2.5" =0.5L
12:03		-3011	start sample, summa # 6408, He= 14.1/0
12:05	2 min	-2011	HP=20,10%
12:06	3 min	-1511	He = 19, 10/5
12:08	5 min	-'4.8"	He= 20,4% (-4.7" using gruge MANM-988
		ι	

Ìſ Remarks: Initial Summa # 6408 AN316M-988 gauget inm °ea V 0 1000 VORDE 11 n er Mor 9 4 A i Ó 0 111 imma ang C U 60 O, \mathcal{O} NOM in 00 N/ 6 ÔL ai Ć A

Leonard Niles Sampler: ____

AllWest Environmental, Inc.

i

Specialists in Physical Due Diligence and Remedial Services

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391.2510 Fax 415.391.2008

SOIL GAS VAPOR FIELD LOG

Project No: 11134.23	Project Name: <u>P/</u>	ICCAR-Dakland	l.Sub
Date: 1/4/2012, ,	Vapor Probe No: 1	<u>SUP-5</u> Seria	umma 1No: <u>6203</u> eSumma#L4768
Regulatory Agencies: <u>ACEH</u>	(ACPWA	EL Purg	e Summa #14768
Contractor: Vivonex /A	Illest		
Hole Diameter:	Total Depth: <u>5</u>	Grout/Bentonite:	+ 12/18 sand-bottom
p(astiC Probe Diameter: <u>1/4"10,1/2"00</u> ×2"L1	Line Length:	Purge Volume: <u>5</u>	00m(
Tracer Gas: helium		<u>50 (ml/min)</u>	Leak Test: Pass/Fail
Laboratory Name and Number: <u>/</u>	AcCampbell Anal	ytical TO-1.	5-VOCS

Start Time	Time Elapse	d Pressure	Remarks
10:44	\square	-28.0/29.3	Start manifold leak check Summa # 14768
10:53	9 min	-28,0"/29,3"	stop leak check-passed
10:53	0	-28,0" 1-29,3"	Start purge
10:56	3 min	-25,4/-2,6,6"	stop, purge, -2,5"=0.5L
11:06	<u>Õ</u>	-28.9"/27.6	Start sample, He conc in shroud = 9,6%
(20)	1 min	-19:01	He = 20,6% in shroud
17:07	3 min	-10 //	He= 70,70%
1(;10	4 min	-4,6"	He X 20.6% (separate gauge reads -6.4")
	, , , , , , , , , , , , , , , , , , , ,		

Remarks: USE gauge-16M for initial ac #M983 Nacuum Mani MA aaua CAC concentration 'n ia 1l ium 0 CAN NI PLA amole a horna art N a б 0 Iar. neusi Ù gauge 100 IUM relaz m O Measur % a e Sampler: ennor

AllWest

AllWest Environmental, Inc.

Specialists in Physical Due Diligence and Remedial Services

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391 2510 Fax 415 391.2008

SOIL GAS VAPOR FIELD LOG

Project No: 11134.23	Project Name: <u>}</u> A	CCAR-Ockland	Sub
Date: 1/4/2012	Vapor Probe No: <u>S</u>	UP-6 Il Sun Serial	No: 6413
Regulatory Agencies: <u>ACEH</u>	[ACPWA	GCTurge	Summa#L4768
Contractor: Vivonex/All			
Hole Diameter:	Total Depth: <u>5</u>	Grout Bentonite:	16 sand-bottom to top, hydrated
Probe Diameter: 1/4"10, 1/2"00x2"L	Line Length: <u>6,5</u>	Purge Volume: <u>50</u>	om/
Tracer Gas: helium	-#MAN36/~7/9 Flow Regulator: # RAN 3167-772	(ml/min)	Leak Test: Pass/Fail)
Laboratory Name and Number: $\underline{\mathcal{N}}$	accampbell Analytica	(, TO-15-V	ocs

Start Time	Time Elapsed	Pressure	Remarks
12:52	0	26.0"/27.0"	start leak cheek, Summa#L4768-Fail-Varunn
13:10	0	25.7"	Sterleak check restart, manifold #MAN 316F77
13:14	4 min	-25.4"	stop leak check, very slight drop-passed
13:15	0	-25,4"	Start purge, Summatt L 4768
13:(8	3 min	-22.9"	stop purge, 2.5"=0.5L
13:22	0	-30"	start sample, $He = 16.2\%$
13:24	2 min	Ali-18"	He=21,2%
3:25	3 min	-15"	20,9%
3:20	4 min	-0",	20,1%
19:27	5 Min	- 4,3"	2/12/11/ 2012 (2020)
Remarks: 11	stial Summat		unn=-30" (gauge#MAN 316M-988)
1st manit	old #MAN3167-	779 failed	leak test, re-used #MAN316T-778 after decom
by blast	ing with he	lium,	
	uum Shimm		-4.2" (gauge #988)
piD read	ling = 0.4-0.	6 ppm ps	st sample from tubing.
_Measure	ed sample +	-low ran	$H \cong 172 \text{ ml/min}, average He ~ 19.7270$
·	1		/ · ·/

Sampler: Leonourd Niles

Appendix E

A	NII V	Ne:	st	530 Ho San Fr Teleph	oward anciso one:	ronmental Street, #30 co, Californ 415-391-25 1-2008	ia 94105	BC	DRING	NUN		PAGE 1 OF 2
c	LIE	NT	PAC	CAR, I	Inc			PROJECT NAME PACCAR - Oaklar	nd Sub			
P	RO	JEC	CT NU	MBER	1113	34.23		PROJECT LOCATION O'Reilly Auto	4240 Intern	ational I	Blvo	d., Oakland, CA
D	ATE	E S	TART	ED _1/	5/12		COMPLETED 1/5/12	GROUND ELEVATION	HOLE S	SIZE _2		
D	RIL	LIN.	IG CO	NTRAC	TOR	Vironex		GROUND WATER LEVELS:				
D	RIL	LIN.	IG ME	THOD	Geo	probe		Σ AT TIME OF DRILLING 35.00	ft			
L	.OG	GEI	D BY	Leona	ard Nil	es	CHECKED BY Leonard Niles					
N	юті	ES	Grou	ited wit	h nea	t cement		AFTER DRILLING				
DEDTU			NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		L DESCRIPTION	Environmental Data	v	/EL	L DIAGRAM
					GC	0.3	 Asphalt pavement (GC) Clayey gravel, baserock f 	/~				
Ļ		_				2.0			PID = 0			
F			AU	100	CL		(CL) Sandy clay, dark grayish t fine sand, fill	prown, damp, moderate plasticity, soft,	110 - 0			
F		╡	'			4.0			PID = 0			
	5		UD	100			(GC) Clayey gravel, yellowish t damp, fill, low to very low plasti	prown, fine to coarse sand, fine gravel, city, sub angular clasts, disturbed	PID = 0			
F		ĥ	0D 0P-1-5. - 5.5	100			structure - Fill?					
		JV	/	100			Clayey gravel as above, except color change to dark greenish gray					
			UD	100	GC	H A	and yellowish brown					
							grades to clayey sand		PID = 0			
	10	ď	UD 6P-1-9.1	100	1				PID = 0			
		Λ	- 9.5 NR		1				PID = 0			
		JV		100		<u> </u>		ay, fine to coarse sand, minor fine				
]		100	sc		gravel, low plasticity, damp to r	noist - fill?				
		7	V			14.0						
	15	C) NR	0			(CL) Grading to sandy clay, oliv moderate plasticity, moist	ve brown, fine to coarse sand, low to	PID = 0			
			/		CL	16.0			PID = 0			Temporary 3/4" ID PVC casing
GPJ		11	/				(GC) Clayey gravel, olive brown	n to olive gray, fine to coarse sand,				
AND		٦1	UD	100			fine gravel, very low plasticity, v	very moist.				
DAKL		٦/١					Gravel grading coarser at 19 to	20 feet				
CAR	20	∕	UD	100	GC				PID = 0			
PAC	20	Tè	P-1-19 - 20.0	р <u> </u>	1		Static water level (rose from 35 ▼	')				
4.23		1//	/									
1113		٦Ň	UD	100		23.0						
GINT		1/	V			23.0	(CL) Silty clay, yellowish brown	mottled with olive gray, low to				
- Z:-	25	$\overline{\mathbf{c}}$) NR	0	1		moderate plasticity, damp, <5%	6 sand, native soil (?)	PID = 0			
11:34	25	Ť	1		1		0.11					
9/12		-1)	/					k yellowish brown, moderate plasticity, core recover at 25-35 feet due to				
- 2/2		٦V	UD	100	CL		hard clay jamming liner into co	re barrel				
GDT		-1		100								
SU O	•••	+/	\mathbb{N}				Softer at 32.5 feet, increasing s	silt and very fine sand, moist				
	30	+	+		-				PID = 0		. : . .	
<u>ا</u> 9		-1/ /	/									
		١V	UD	100	<u> </u>	32.0		ery fine sand and silt, low to moderate				
OLEC		$ \rangle$			CL		plasticity, moist					 Temporary 3/4" ID PVC screen, Groundwater sample GP-1-GW-35
BOREHOLEONLY - GINT STD US.GDT - 2/29/12 11:34 - Z/GINT/11134.23 PACCAR OAKLAND.GPJ		-[00	34.0	(SC) Clavey sand light olive br	own, very fine to fine sand, very low				
	35	\geq	UD	100	SC	35.0	<u>_</u>		PID = 0	Ľ…⊟:	•.:	
							(Contin	ued Next Page)				

AllWest Environmental 530 Howard Street, #30 San Francisco, Califorr Telephone: 415-391-2 Fax: 415-391-2008						, #300 liforni 91-25	00 PAGE 1 OF 1							
CLIENT PACCAR, Inc PROJECT NAME PACCAR - Oakland Sub														
PROJECT NUMBER 11134.23 PROJECT LOCATION O'Reilly Auto														
DATE STARTED 1/5/12 COMPLETED 1/5/12														
								GROUND WATER LEVELS:						
DRILLING METHOD _Geoprobe														
LOGGED BY Leonard Niles AT END OF DRILLING NOTES Grouted with neat cement AFTER DRILLING														
o DEPTH (ft)	SAMPLE TYPE	NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL	DESCRIPTION	Environmental Data	WELL DIAGRAM				
 5		AU UD 2-2-5.0 - 5.5 UD	100 100 100	SP		0.3_/			PID = 0 PID = 0					
		NR	0				Uncertain contact at approximate				•	Temporary 3/4" ID PVC casing		
 		UD 2-2-10.0 10.5 UD	<u>100</u>	GC		10.0 12.0		olive gray, fine to coarse sand, fine	PID = 0					
		NR	0	CL		13.0	 fine sand, ow to moderate plasti No recovery from 13 feet - 15 feet 	city, moist (native soil)	PID = 0					
15	1			CL		15.0 15.5	(CL) Sandy clay as above				∃ ∷.	•		
X ud			100	GC		16.0	(GC) Clayey gravel, yellowish brown, fine to coarse sand, fine to							
		UD -2-17.	100	SC		17.5	Coarse gravel, moist (SC) Clavey sand, olive brown, f	 ine sand, very low plasticity, moist,	PID = 0	Ē		Temporary 3/4" ID PVC		
	L.	17.5					grading to sandy clay at 17.5 fee	et		E	≣∵	screen, Groundwater sample GP-2-GW-15 and GP-2-GW-20		
 20	М	NR	0			20.0	No recover from 17.5 feet to 20	leet						
20	└──┛					20.0	Bottom of bor	rehole at 20.0 feet.			<u> </u>	•		

Appendix F

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

All West Environmental, Inc	All West Environmental, Inc Client Project ID: #11134.23; PACCAR Sub					
530 Howard Street, Ste. 300		Date Received:	01/05/12			
550 Howard Bacel, Sec. 500	Client Contact: Leonard Niles	Date Reported:	01/12/12			
San Francisco, CA 94105	Client P.O.:	Date Completed:	01/12/12			

WorkOrder: 1201090

January 12, 2012

Dear Leonard:

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: #11134.23; PACCAR Sub,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1201090

	1534 WILLOW Website: www.m	/ PASS F	ROAD / P	ALYTICAL INC. ITTSBURG, CA 94565 Email: main@mccampb 2 / Fax: (925) 252-9269 Bill To: Day (+	-1701	CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 DAY EDF Required? Coelt (Normal) No Write On (DW) No - Lab Use Only								
	Company: Allinest	Fhi	Aural	1 / /	1C.		10000		Alv - any sign	Pr	Pressurization Gas			
	530 Howard	stre	ets	inite 300	11 14	Pressurize	ed By		Date		N2	He		
	San Francisc Tele: (415)391-2510	0,0	4 9 41	Fax: (45)30	pallulest 1. con	And the second second second	All and a star	States Land	and the second	17 1 K (1) C (10) 2				
				Project Name: A	ACCAR Sub	Helium Shroud SN#:	an a start type	enter l'antier	and a start	nije klada		And the second		
		01	1. 11-1		ACCAR JUB	Other:								
	Project Location: O'Reilly	SAU	19 429	6 International D	Vd, Dakland, CA		A (10 10			
	Sampler Signature: Jeonated Villes Collection			ls	Manifold / Sampler	Notes: Re-used m. Since # AAAA	anifold JT-11	MAN	316 (-7 316T- 1	78 af	er dei 2d /eak	check		
	(Location)	(Location) Canister SN#		Kit SN#	Analysis Requested	Indoor	Soil	Ca	nister Pres	ssure/Vacu	um			
		Date	Time				Air	Gas	Initial	Final	Receipt	Final (psi)		
L	SVP4 SVP-5	1/4/12	1510	6203	MAN316T-777	TO-15, VOGS		X	-30"	-6.4"	A			
LY	15-1-5-5VP-4	1	12:08	6408	MAN316T-778	TO-15, VOES		X	-3011	-4.74		in an		
1999	SVP-6		3:27	6413	MAN 316T-778	TO-15, VOCS		X	-30"	-4.2"	Care and	Part Part		
	SVP-L		14:54	6309	MAN 316T-775	TO-15, VOCS		X	-3011	-5,311		9		
	SVP-2		15:44	6305	MAN316T-997	TO-15, VOCS		X	-29.9"	-5.9"				
	SVP-3	V	6:33	6166	MAN 316T-774	TO-15, VOCS		X	-3011	-6,0"	10 11 1 M			
						/						1.2.12		
											a tingen son	「水産は		
		- /									Weight in the	1997 - 1997 -		
	Relinquished By:	Dater	Time:	Received By:	1				L	0.1	(Tight) and			
ł	Honard Villes	5/12 Date: 5/120	1410 Time:	Received By:	all	Equipment OUC Condition:	Work Order			140				
	Relinquished By:	Date:	Time:	Received By:		Supped via:	<u>(</u> /// c)					

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 1201090	Client	Code: AWE		
	WaterTrax	WriteOn	∠ EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	☐ J-flag
Report to:				Bill	I to:		Req	uested TAT:	5 days
Leonard Niles	Email: L	_eonard@allwes	t1.com		Darlene Torio)			
All West Environmental, Inc	cc:				All West Env	ironmental, Inc			
530 Howard Street, Ste. 300	PO:				530 Howard	Street, Ste.300	Dat	e Received:	01/05/2012
San Francisco, CA 94105	ProjectNo: #	#11134.23; PAC	CAR Sub		San Francisc	o, CA 94105	Dat	e Printed:	01/05/2012
(415) 391-2510 FAX: (415) 391-2008					darlene@allv	vest1.com			

				Ē	Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1201090-001	SVP-5	Soil Gas	1/4/2012 11:10		А											
1201090-002	SVP-4	Soil Gas	1/4/2012 12:08		А											
1201090-003	SVP-6	Soil Gas	1/4/2012 13:27		А											
1201090-004	SVP-1	Soil Gas	1/4/2012 14:54		А											
1201090-005	SVP-2	Soil Gas	1/4/2012 15:44		А											
1201090-006	SVP-3	Soil Gas	1/4/2012 16:33		А											

Test Legend:

1	TO15_SOIL(UG/M3)
6	
11	

2	
7	
12	

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Melissa Valles

Sample Receipt Checklist

Client Name:	All West Environmer	ntal, Inc			Date a	and Time Received:	1/5/2012 4:	40:27 PM
Project Name:	#11134.23; PACCAF	R Sub			Check	klist completed and re	viewed by:	Melissa Valles
WorkOrder N°:	1201090	Matrix: Soil Gas			Carrie	er: Rob Pringle (M	AI Courier)	
		<u>Cha</u>	<u>in of Cι</u>	istody (COC) Informa	tion		
Chain of custody	present?		Yes	\checkmark	No			
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No			
Chain of custody	agrees with sample la	bels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No			
Date and Time of	f collection noted by Cl	lient on COC?	Yes	✓	No 🗌			
Sampler's name noted on COC?			Yes	✓	No 🗌			
			<u>Sample</u>	Receipt Inf	ormation			
Custody seals int	tact on shipping contai	ner/cooler?	Yes		No 🗌		NA 🗹	
Shipping contain	er/cooler in good condi	ition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	\checkmark	No			
Sample containe	rs intact?		Yes	✓	No			
Sufficient sample	e volume for indicated t	test?	Yes	✓	No 🗌			
		Sample Pres	ervatio	n and Hold	<u> Time (HT)</u>	Information		
All samples recei	ived within holding time	e?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🖌	
Water - VOA vial	s have zero headspace	e / no bubbles?	Yes		No 🗌	No VOA vials submi	itted 🖌	
Sample labels ch	necked for correct pres	ervation?	Yes	\checkmark	No			
Metal - pH accep	table upon receipt (pH	<2)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Comments:

Ĵ	McCampbell A "When Quality		al <u>, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com								
All W	est Environmental, Inc		Project ID: ;	#11134.23;		Date Sampled:01/04/12Date Received:01/05/12						
530 H	oward Street, Ste. 300	PACC	AR Sub									
		Client	Contact: Leo	nard Niles		Date Extracted: 01/0	7/12-01/1	0/12				
San Fr	ancisco, CA 94105	Client	P.O.:			Date Analyzed: 01/0	7/12-01/1	0/12				
Extractio	n method: TO15			neck Compou			Work	Order: 12	201090			
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressure		Isopropyl Alcohol	DF	% SS	Comments			
001A	SVP-5	Soil Gas	11.84	23.59		88	1	N/A				
002A	SVP-4	Soil Gas	12.77	25.45		80	1	N/A				
003A	SVP-6	Soil Gas	12.66	25.24		ND	1	N/A				
004A	SVP-1	Soil Gas	12.75	25.43		91	1	N/A				
005A	SVP-2	Soil Gas	12.53	24.97		ND	1	N/A				
006A	SVP-3	Soil Gas	12.52	24.96		ND	1	N/A				
	Reporting Limit for DF =1; ND means not detected at or above the reporting limit	W SoilGas	psia psia	psia psia		NA 50			NA 1g/m ³			

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

The IPA reference is:

DTSC, Advisory-Active Soil Gas Investigations, March 3rd, 2010, page 24, section 2.4:

"The laboratory reports should quantify and annotate all detections of the leak check compound at the reporting limit of the target analytes."

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

McCampbel	ll Analytica Quality Counts''	l, Inc.		Toll Free Telepho	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fa pbell.com / E-mail: mair	x: (925) 252-9269				
All West Environmental, Inc	Client I	Project II	D: #1	1134.23;	Date Sampled:	01/04/12				
	PACCA	AR Sub			Date Received:	Date Received: 01/05/12				
530 Howard Street, Ste. 300	Client (Contact:	Leona	Date Extracted:	01/07/12					
San Francisco, CA 94105	Client I		200110		Date Analyzed:					
San Trancisco, CA 94105	Chent	.0	01/07/12							
	Vola	0		ompounds in µg/m	3*					
Extraction Method: TO15		Analytical N	Method:	T015		Work Order: 12010	90			
Lab ID			120	1090-001A		Initial Pressure	e (psia)	11.84		
Client ID				SVP-5		Final Pressure	e (psia)	23.59		
Matrix			S	Soil Gas						
Compound	Concentration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reporting Limit		
Acetone	320	1.0	120	Acrylonitrile		ND	1.0	4.4		
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene		8.0	1.0	6.5		
Benzyl chloride	ND	1.0	11	Bromodichloromethar	ne	ND	1.0	14		
Bromoform	ND	1.0	21	Bromomethane		ND	1.0	7.9		
1.3-Butadiene	ND	1.0	4.5	2-Butanone (MEK)		ND	1.0	150		
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide	ND	1.0	6.3			
Carbon Tetrachloride	ND	1.0	13	Chlorobenzene	ND	1.0	9.4			
Chloroethane	ND	1.0	5.4	Chloroform		ND	1.0	9.9		
Chloromethane	ND	1.0	4.2	Cyclohexane		ND	1.0	180		
Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chloropropane		ND	1.0	20		
1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzene		ND	1.0	12		
1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzene		ND	1.0	12		
Dichlorodifluoromethane	110	1.0	10	1,1-Dichloroethane		ND	1.0	8.2		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene		ND	1.0	8.1		
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroethe	ene	ND	1.0	8.1		
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloroprope	cis-1,3-Dichloropropene		1.0	9.2		
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2-t	etrafluoroethane	ND	1.0	14		
Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane		ND	1.0	7.3		
Ethanol	1900	10	96	Ethyl acetate		250	1.0	7.3		
Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene		17	1.0	8.8		
4-Ethyltoluene	32	1.0	10	Freon 113		ND	1.0	16		
Heptane	ND	1.0	210	Hexachlorobutadiene		ND	1.0	22		
Hexane	ND	1.0	180	2-Hexanone		ND	1.0	210		
4-Methyl-2-pentanone (MIBK)	47	1.0	8.3	Methyl-t-butyl ether (1	MTBE)	ND	1.0	7.3		
Methylene chloride	ND	1.0	7.1	Naphthalene		11	1.0	11		
Propene	470	1.0	88	Styrene		ND	1.0	8.6		
1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloroeth	ane	ND	1.0	14		
Tetrachloroethene	4600	10	14	Tetrahydrofuran		ND	1.0	6.0		
Toluene	31	1.0	7.7	1,2,4-Trichlorobenzen		ND	1.0	15		
1,1,1-Trichloroethane	ND	1.0	11	1,1,2-Trichloroethane		ND	1.0	11		
Trichloroethene	51	1.0	11	Trichlorofluoromethan		ND	1.0	11		
1,2,4-Trimethylbenzene	55	1.0	10	1,3,5-Trimethylbenzer	ne	19	1.0	10		
Vinyl Acetate	ND	1.0	180	Vinyl Chloride		ND	1.0	5.2		
Xylenes, Total	120	1.0	27							
0/ 881.			ogate R	ecoveries (%)			,			
%SS1:	9			%SS2:		97				
<u>%\$\$3:</u>	9	0		J						
Comments:										
*vapor samples are reported in ug/m ³ .										

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

	Analytica ality Counts''	l, Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
All West Environmental, Inc		Project II	D: #11	134.23;	Date Sampled:	01/04/12				
	PACCA	AR Sub			Date Received:	ved: 01/05/12				
530 Howard Street, Ste. 300	Client (Contact:	Leona	01/09/12						
San Francisco, CA 94105	Client I				Date Analyzed:					
San Hancisco, CA 94105	Chentr	0			Date Analyzeu.	01/09/12				
	Volat	-		ompounds in µg/m	3*					
Extraction Method: TO15		Analytical	Method:	T015		Work Order: 12010	90			
Lab ID			1201	1090-002A		Initial Pressure	e (psia)	12.77		
Client ID				SVP-4		Final Pressure	(psia)	25.45		
Matrix			S	oil Gas						
Compound	Concentration *	DF	Reporting Limit	Compour	ıd	Concentration *	DF	Reporting Limit		
Acetone	140	1.0	120	Acrylonitrile		ND	1.0	4.4		
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene		15	1.0	6.5		
Benzyl chloride	ND	1.0	11	Bromodichloromethan	e	ND	1.0	14		
Bromoform	ND	1.0	21	Bromomethane	•	ND	1.0	7.9		
1,3-Butadiene	28	1.0	4.5	2-Butanone (MEK)		ND	1.0	150		
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide	ND	1.0	6.3			
Carbon Tetrachloride	ND	1.0	13	Chlorobenzene			1.0	9.4		
Chloroethane	ND	1.0	5.4	Chloroform		28	1.0	9.9		
Chloromethane	ND	1.0	4.2	Cyclohexane		ND	1.0	180		
Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chloropropane		ND	1.0	20		
1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzene		ND	1.0	12		
1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzene		ND	1.0	12		
Dichlorodifluoromethane	170	1.0	10	1,1-Dichloroethane		ND	1.0	8.2		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene		ND	1.0	8.1		
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroethene		ND	1.0	8.1		
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloropropene		cis-1,3-Dichloropropene		ND	1.0	9.2
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2-te	etrafluoroethane	ND	1.0	14		
Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane		ND	1.0	7.3		
Ethanol	1500	10	96	Ethyl acetate		76	1.0	7.3		
Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene		18	1.0	8.8		
4-Ethyltoluene	30	1.0	10	Freon 113		ND	1.0	16		
Heptane	ND	1.0	210	Hexachlorobutadiene		ND	1.0	22		
Hexane	ND	1.0	180	2-Hexanone		ND	1.0	210		
4-Methyl-2-pentanone (MIBK)	30	1.0	8.3	Methyl-t-butyl ether (N	MTBE)	ND	1.0	7.3		
Methylene chloride	ND	1.0	7.1	Naphthalene		ND	1.0	11		
Propene	770	10	88	Styrene		ND	1.0	8.6		
1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloroeth	ane	ND	1.0	14		
Tetrachloroethene	550	1.0	14	Tetrahydrofuran		ND	1.0	6.0		
Toluene	42	1.0	7.7	1,2,4-Trichlorobenzen	e	ND	1.0	15		
1,1,1-Trichloroethane	ND	1.0	11	1,1,2-Trichloroethane		ND	1.0	11		
Trichloroethene	ND	1.0	11	Trichlorofluoromethan		ND	1.0	11		
1,2,4-Trimethylbenzene	49	1.0	10	1,3,5-Trimethylbenzen	ne	18	1.0	10		
Vinyl Acetate	ND	1.0	180	Vinyl Chloride		ND	1.0	5.2		
Xylenes, Total	110	1.0 Surr	27	ecoveries (%)						
%SS1:	99		ogate K	%SS2:		100	n			
%\$\$3:	9			/0002.		10	0			
Comments:	9.	L		J						
*vapor samples are reported in ug/m ³ .										

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

McCampbel	ll Analytica Quality Counts''	l, Inc.		Toll Free Telepho	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fa pbell.com / E-mail: mair	x: (925) 252-9269		
All West Environmental, Inc		Project II	D: #1	1134.23;	Date Sampled:	01/04/12		
	PACCA	AR Sub			Date Received:	01/05/12		
530 Howard Street, Ste. 300	Client	Contact:	Leona	rd Niles	Date Extracted:	01/10/12		
San Francisco, CA 94105	Client l	PO·			Date Analyzed:			
Sui Funcisco, CA 94105					-	01/10/12		
	Vola			ompounds in µg/m	l ^{3*}			
Extraction Method: TO15	1	Analytical I	Method:	TO15		Work Order: 12010	90	
Lab ID			120	1090-003A		Initial Pressure	e (psia)	12.66
Client ID				SVP-6		Final Pressure	e (psia)	25.24
Matrix			S	oil Gas				
Compound	Concentration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	120	Acrylonitrile		ND	1.0	4.4
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene		16	1.0	6.5
Benzyl chloride	ND	1.0	11	Bromodichloromethan	ne	ND	1.0	14
Bromoform	ND	1.0	21	Bromomethane		ND	1.0	7.9
1.3-Butadiene	76	1.0	4.5	2-Butanone (MEK)		ND	1.0	150
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide		ND	1.0	6.3
Carbon Tetrachloride	ND	1.0	13	Chlorobenzene		ND	1.0	9.4
Chloroethane	ND	1.0	5.4	Chloroform		ND	1.0	9.9
Chloromethane	ND	1.0	4.2	Cyclohexane		ND	1.0	180
Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chloro	propane	ND	1.0	20
1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzene	F	ND	1.0	12
1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzene		ND	1.0	12
Dichlorodifluoromethane	ND	1.0	10	1,1-Dichloroethane		ND	1.0	8.2
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene		ND	1.0	8.1
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroethe	ene	ND	1.0	8.1
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloroprope	ene	ND	1.0	9.2
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2-t		ND	1.0	14
Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane		ND	1.0	7.3
Ethanol	340	1.0	96	Ethyl acetate		40	1.0	7.3
Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene		14	1.0	8.8
4-Ethyltoluene	17	1.0	10	Freon 113		ND	1.0	16
Heptane	ND	1.0	210	Hexachlorobutadiene		ND	1.0	22
Hexane	ND	1.0	180	2-Hexanone		ND	1.0	210
4-Methyl-2-pentanone (MIBK)	20	1.0	8.3	Methyl-t-butyl ether (MTBE)	ND	1.0	7.3
Methylene chloride	ND	1.0	7.1	Naphthalene		ND	1.0	11
Propene	ND	1.0	88	Styrene		ND	1.0	8.6
1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloroeth	nane	ND	1.0	14
Tetrachloroethene	670	1.0	14	Tetrahydrofuran		ND	1.0	6.0
Toluene	27	1.0	7.7	1,2,4-Trichlorobenzen	ie	ND	1.0	15
1,1,1-Trichloroethane	ND	1.0	11	1,1,2-Trichloroethane		ND	1.0	11
Trichloroethene	26	1.0	11	Trichlorofluoromethan	ne	ND	1.0	11
1,2,4-Trimethylbenzene	65	1.0	10	1,3,5-Trimethylbenzer	ne	22	1.0	10
Vinyl Acetate	ND	1.0	180	Vinyl Chloride		ND	1.0	5.2
Xylenes, Total	110	1.0	27]				
0/ 001			ogate R	ecoveries (%)			0	
%SS1:	10			%SS2:		10	0	
%SS3:	10	13		J				
Comments:								
*vapor samples are reported in ug/m ³ .								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

	Analytica ality Counts''	ıl, Inc.		Toll Free Telepho	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fax pbell.com / E-mail: main	x: (925) 252-9269		
All West Environmental, Inc		Project II	D: #1	1134.23;	Date Sampled:	01/04/12		
520 H 1.0 0	PACCA	AR Sub			Date Received:	01/05/12		
530 Howard Street, Ste. 300	Client	Contact:	Leona	rd Niles	Date Extracted:	01/09/12-01/10	0/12	
San Francisco, CA 94105	Client	P.O.:			Date Analyzed:	01/09/12-01/10	0/12	
	Vola	tile Org	onia C	ompounds in µg/m	.3*			
Extraction Method: TO15	v ora	Analytical l			F .	Work Order: 12010	990	
Lab ID			120	1090-004A		Initial Pressure	n (neia)	12.75
Client ID				SVP-1		Final Pressure		25.43
Matrix				Soil Gas		Tillal Tiessure	(psia)	23.43
			Reporting					Reporting
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	ND	1.0	120	Acrylonitrile		ND	1.0	4.4
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene		13	1.0	6.5
Benzyl chloride	ND	1.0	11	Bromodichloromethan	ne	ND	1.0	14
Bromoform	ND	1.0	21	Bromomethane		ND	1.0	7.9
1,3-Butadiene	ND	1.0	4.5	2-Butanone (MEK)		ND	1.0	150
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide		ND	1.0	6.3
Carbon Tetrachloride	ND	1.0	13	Chlorobenzene		ND	1.0	9.4
Chloroethane	ND	1.0	5.4	Chloroform		ND	1.0	9.9
Chloromethane	ND	1.0	4.2	Cyclohexane		ND	1.0	180
Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chloro	propane	ND	1.0	20
1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzene		ND	1.0	12
1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzene		ND	1.0	12
Dichlorodifluoromethane	34	1.0	10	1,1-Dichloroethane		ND	1.0	8.2
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene		ND	1.0	8.1
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroethe	ene	ND	1.0	8.1
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloroprope	ne	ND	1.0	9.2
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2-t	etrafluoroethane	ND	1.0	14
Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane		ND	1.0	7.3
Ethanol	1600	10	96	Ethyl acetate		46	1.0	7.3
Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene		28	1.0	8.8
4-Ethyltoluene	18	1.0	10	Freon 113		ND	1.0	16
Heptane	ND	1.0	210	Hexachlorobutadiene		ND	1.0	22
Hexane	ND	1.0	180	2-Hexanone		ND	1.0	210
4-Methyl-2-pentanone (MIBK)	ND	1.0	8.3	Methyl-t-butyl ether (1	MTBE)	ND	1.0	7.3
Methylene chloride	ND	1.0	7.1	Naphthalene		ND	1.0	11
Propene	ND	1.0	88	Styrene		ND	1.0	8.6
1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloroeth	ane	ND	1.0	14
Tetrachloroethene	270	1.0	14	Tetrahydrofuran		ND	1.0	6.0
Toluene	81	1.0	7.7	1,2,4-Trichlorobenzen		ND	1.0	15
1,1,1-Trichloroethane	ND	1.0	11	1,1,2-Trichloroethane		ND	1.0	11
Trichloroethene	ND	1.0	11	Trichlorofluoromethar		ND	1.0	11
1,2,4-Trimethylbenzene	66	1.0	10	1,3,5-Trimethylbenzer	ne	23	1.0	10
Vinyl Acetate	ND	1.0	180	Vinyl Chloride		ND	1.0	5.2
Xylenes, Total	200	1.0 Surr	27	ecoveries (%)				
%SS1:	10		ogate K	%SS2:		99)	
%\$\$3:	10			/0002.			•	
Comments:				J				
*vapor samples are reported in ug/m ³ .								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

	Analytica	l, Inc.		Toll Free Telepho	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fa: pbell.com / E-mail: main	x: (925) 252-9269		
All West Environmental, Inc		Project II	D: #11	1134.23;	Date Sampled:	01/04/12		
	PACCA	AR Sub			Date Received:	01/05/12		
530 Howard Street, Ste. 300	Client (Contact:	Leona	rd Niles	Date Extracted:	01/10/12		
San Francisco, CA 94105	Client I				Date Analyzed:			
San Francisco, CA 74105	Client	.0			Date Analyzed.	01/10/12		
	Vola	-		ompounds in µg/m	3*			
Extraction Method: TO15		Analytical	Method:	TO15		Work Order: 12010	90	
Lab ID				1090-005A		Initial Pressure	`I /	12.53
Client ID				SVP-2		Final Pressure	e (psia)	24.97
Matrix			S	oil Gas				
Compound	Concentration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	120	Acrylonitrile		ND	1.0	4.4
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene		ND	1.0	6.5
Benzyl chloride	ND	1.0	11	Bromodichloromethan	ie	ND	1.0	14
Bromoform	ND	1.0	21	Bromomethane		ND	1.0	7.9
1,3-Butadiene	ND	1.0	4.5	2-Butanone (MEK)		ND	1.0	150
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide		ND	1.0	6.3
Carbon Tetrachloride	ND	1.0	13	Chlorobenzene		ND	1.0	9.4
Chloroethane	ND	1.0	5.4	Chloroform		ND	1.0	9.9
Chloromethane	ND	1.0	4.2	Cyclohexane		ND	1.0	180
Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chloro	propane	ND	1.0	20
1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzene		ND	1.0	12
1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzene		ND	1.0	12
Dichlorodifluoromethane	51	1.0	10	1,1-Dichloroethane		ND	1.0	8.2
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene		ND	1.0	8.1
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroethe	ene	ND	1.0	8.1
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloroprope	ne	ND	1.0	9.2
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2-t	etrafluoroethane	ND	1.0	14
Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane		ND	1.0	7.3
Ethanol	200	1.0	96	Ethyl acetate		21	1.0	7.3
Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene		63	1.0	8.8
4-Ethyltoluene	23	1.0	10	Freon 113		ND	1.0	16
Heptane	ND	1.0	210	Hexachlorobutadiene		ND	1.0	22
Hexane	ND	1.0	180	2-Hexanone		ND	1.0	210
4-Methyl-2-pentanone (MIBK)	14	1.0	8.3	Methyl-t-butyl ether (1	MTBE)	ND	1.0	7.3
Methylene chloride	ND	1.0	7.1	Naphthalene		ND	1.0	11
Propene	ND	1.0	88	Styrene		ND	1.0	8.6
1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloroeth	ane	ND	1.0	14
Tetrachloroethene	460	1.0	14	Tetrahydrofuran		ND	1.0	6.0
Toluene	78	1.0	7.7	1,2,4-Trichlorobenzen	e	ND	1.0	15
1,1,1-Trichloroethane	ND	1.0	11	1,1,2-Trichloroethane		ND	1.0	11
Trichloroethene	25	1.0	11	Trichlorofluoromethan		ND	1.0	11
1,2,4-Trimethylbenzene	39	1.0	10	1,3,5-Trimethylbenzer	ne	14	1.0	10
Vinyl Acetate	ND	1.0	180	Vinyl Chloride		ND	1.0	5.2
Xylenes, Total	370	1.0 Surr	27	ecoveries (%)				
%SS1:	10		ogate K	%SS2:		99)	
%SS1:	92			/0552.		99	,	
Comments:	9.	4		J				
*vapor samples are reported in ug/m ³ .								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

McCampbell "When Qu	Analytica ality Counts''	ıl, Inc.		Toll Free Telepho	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Far pbell.com / E-mail: main	x: (925) 252-9269		
All West Environmental, Inc		Project II	D: #1	1134.23;	Date Sampled:	01/04/12		
520 H 1 G	PACCA	AR Sub			Date Received:	01/05/12		
530 Howard Street, Ste. 300	Client	Contact:	Leona	rd Niles	Date Extracted:	01/09/12-01/10	0/12	
San Francisco, CA 94105	Client	P.O.:			Date Analyzed:	01/09/12-01/10	0/12	
	Vola	tile Org	nia C	ompounds in µg/m	.3*			
Extraction Method: TO15	v ola	Analytical l			F .	Work Order: 12010	990	
Lab ID			120	1090-006A		Initial Pressure	n (neia)	12.52
Client ID				SVP-3		Final Pressure		24.96
Matrix				Soil Gas		Tillal Tiessure	(psia)	24.90
			Reporting					Reporting
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	ND	1.0	120	Acrylonitrile		ND	1.0	4.4
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene		ND	1.0	6.5
Benzyl chloride	ND	1.0	11	Bromodichloromethar	ne	ND	1.0	14
Bromoform	ND	1.0	21	Bromomethane		ND	1.0	7.9
1,3-Butadiene	ND	1.0	4.5	2-Butanone (MEK)		ND	1.0	150
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide		ND	1.0	6.3
Carbon Tetrachloride	ND	1.0	13	Chlorobenzene		ND	1.0	9.4
Chloroethane	ND	1.0	5.4	Chloroform		97	1.0	9.9
Chloromethane	ND	1.0	4.2	Cyclohexane		ND	1.0	180
Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chloro	propane	ND	1.0	20
1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzene		ND	1.0	12
1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzene		ND	1.0	12
Dichlorodifluoromethane	370	1.0	10	1,1-Dichloroethane		ND	1.0	8.2
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene		ND	1.0	8.1
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroethe	ene	ND	1.0	8.1
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloroprope	ne	ND	1.0	9.2
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2-t	etrafluoroethane	ND	1.0	14
Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane		ND	1.0	7.3
Ethanol	170	1.0	96	Ethyl acetate		15	1.0	7.3
Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene		22	1.0	8.8
4-Ethyltoluene	22	1.0	10	Freon 113		ND	1.0	16
Heptane	ND	1.0	210	Hexachlorobutadiene		ND	1.0	22
Hexane	ND	1.0	180	2-Hexanone		ND	1.0	210
4-Methyl-2-pentanone (MIBK)	15	1.0	8.3	Methyl-t-butyl ether (1	MTBE)	ND	1.0	7.3
Methylene chloride	ND	1.0	7.1	Naphthalene		ND	1.0	11
Propene	ND	1.0	88	Styrene		ND	1.0	8.6
1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloroeth	ane	ND	1.0	14
Tetrachloroethene	8100	10	14	Tetrahydrofuran		ND	1.0	6.0
Toluene	17	1.0	7.7	1,2,4-Trichlorobenzen		ND	1.0	15
1,1,1-Trichloroethane	ND	1.0	11	1,1,2-Trichloroethane		ND	1.0	11
Trichloroethene	210	1.0	11	Trichlorofluoromethan		ND	1.0	11
1,2,4-Trimethylbenzene	55	1.0	10	1,3,5-Trimethylbenzer	ne	23	1.0	10
Vinyl Acetate	ND	1.0	180	Vinyl Chloride		ND	1.0	5.2
Xylenes, Total	170	1.0 Sum	27	(9/)				
%SS1:	1/	02	ogate R	ecoveries (%) %SS2:		99)	
		02		70.552.		99	7	
%SS3:	10	U+		J				
Comments: *vapor samples are reported in ug/m ³ .								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soilgas	QC Matrix:	Soilgas			BatchID	: 63853		WorkC	order: 1201090
EPA Method: TO15	Extraction: TO15					ę	Spiked Sam	ple ID:	N/A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
Analyte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Acrylonitrile	N/A	25	N/A	N/A	N/A	90.7	N/A	N/A	70 - 130
tert-Amyl methyl ether (TAME)	N/A	25	N/A	N/A	N/A	85.4	N/A	N/A	70 - 130
Benzene	N/A	25	N/A	N/A	N/A	81.8	N/A	N/A	70 - 130
Benzyl chloride	N/A	25	N/A	N/A	N/A	106	N/A	N/A	70 - 130
Bromodichloromethane	N/A	25	N/A	N/A	N/A	89.9	N/A	N/A	70 - 130
Bromoform	N/A	25	N/A	N/A	N/A	100	N/A	N/A	70 - 130
Carbon Disulfide	N/A	25	N/A	N/A	N/A	88.9	N/A	N/A	70 - 130
Carbon Tetrachloride	N/A	25	N/A	N/A	N/A	88	N/A	N/A	70 - 130
Chlorobenzene	N/A	25	N/A	N/A	N/A	85.5	N/A	N/A	70 - 130
Chloroethane	N/A	25	N/A	N/A	N/A	99.2	N/A	N/A	70 - 130
Chloroform	N/A	25	N/A	N/A	N/A	87.1	N/A	N/A	70 - 130
Chloromethane	N/A	25	N/A	N/A	N/A	104	N/A	N/A	70 - 130
Dibromochloromethane	N/A	25	N/A	N/A	N/A	94.4	N/A	N/A	70 - 130
1,2-Dibromo-3-chloropropane	N/A	25	N/A	N/A	N/A	101	N/A	N/A	70 - 130
1,2-Dibromoethane (EDB)	N/A	25	N/A	N/A	N/A	87	N/A	N/A	70 - 130
1,3-Dichlorobenzene	N/A	25	N/A	N/A	N/A	98.9	N/A	N/A	70 - 130
1,4-Dichlorobenzene	N/A	25	N/A	N/A	N/A	98.9	N/A	N/A	70 - 130
Dichlorodifluoromethane	N/A	25	N/A	N/A	N/A	85.1	N/A	N/A	70 - 130
1,1-Dichloroethane	N/A	25	N/A	N/A	N/A	87.6	N/A	N/A	70 - 130
1,2-Dichloroethane (1,2-DCA)	N/A	25	N/A	N/A	N/A	87.5	N/A	N/A	70 - 130
cis-1,2-Dichloroethene	N/A	25	N/A	N/A	N/A	87.3	N/A	N/A	70 - 130
trans-1,2-Dichloroethene	N/A	25	N/A	N/A	N/A	87	N/A	N/A	70 - 130
1,2-Dichloropropane	N/A	25	N/A	N/A	N/A	85.5	N/A	N/A	70 - 130
cis-1,3-Dichloropropene	N/A	25	N/A	N/A	N/A	89.6	N/A	N/A	70 - 130
trans-1,3-Dichloropropene	N/A	25	N/A	N/A	N/A	92.3	N/A	N/A	70 - 130
1,2-Dichloro-1,1,2,2-tetrafluoroethane	N/A	25	N/A	N/A	N/A	80.9	N/A	N/A	70 - 130
Diisopropyl ether (DIPE)	N/A	25	N/A	N/A	N/A	103	N/A	N/A	70 - 130
1,4-Dioxane	N/A	25	N/A	N/A	N/A	92.5	N/A	N/A	70 - 130
Ethyl acetate	N/A	25	N/A	N/A	N/A	101	N/A	N/A	70 - 130
Ethyl tert-butyl ether (ETBE)	N/A	25	N/A	N/A	N/A	84.8	N/A	N/A	70 - 130
Ethylbenzene	N/A	25	N/A	N/A	N/A	83.4	N/A	N/A	70 - 130

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

R____QA/QC Officer

QC SUMMARY REPORT FOR TO15

QC Matrix: Soilgas BatchID: 63853 WorkOrder: 1201090 W.O. Sample Matrix: Soilgas EPA Method: TO15 Extraction: TO15 Spiked Sample ID: N/A Sample Spiked MS MSD MS-MSD LCS Acceptance Criteria (%) Analyte nL/L nL/L % Rec. % Rec. % RPD % Rec. MS / MSD RPD LCS Freon 113 N/A 25 N/A N/A 70 - 130 N/A N/A N/A 81.6 Hexachlorobutadiene N/A 25 N/A N/A N/A 115 N/A N/A 70 - 130 4-Methyl-2-pentanone (MIBK) N/A 25 N/A N/A N/A 92.8 N/A N/A 70 - 130 Methyl-t-butyl ether (MTBE) N/A 25 N/A N/A N/A 85.5 N/A N/A 70 - 130 Methylene chloride N/A 25 N/A N/A N/A 103 N/A N/A 70 - 130 N/A 25 N/A N/A N/A 110 N/A N/A 70 - 130 Naphthalene Styrene N/A 25 N/A N/A N/A 90.4 N/A N/A 70 - 130 1,1,1,2-Tetrachloroethane N/A 25 N/A N/A N/A 89.9 N/A N/A 70 - 130 25 N/A 1,1,2,2-Tetrachloroethane N/A N/A N/A N/A 85.3 N/A 70 - 130 Tetrachloroethene N/A 25 N/A N/A N/A 80.9 N/A N/A 70 - 130 Tetrahydrofuran N/A 25 N/A N/A N/A 104 N/A N/A 70 - 130 N/A Toluene N/A 25 N/A N/A N/A 85 5 N/A 70 - 1301,2,4-Trichlorobenzene N/A 25 N/A N/A N/A 105 N/A N/A 70 - 130 N/A 25 N/A N/A N/A 70 - 130 1.1.1-Trichloroethane N/A N/A 86.7 1,1,2-Trichloroethane N/A 25 N/A N/A N/A 86.6 N/A N/A 70 - 130 N/A 25 N/A 85.4 N/A N/A 70 - 130 Trichloroethene N/A N/A 1,2,4-Trimethylbenzene N/A 25 N/A N/A N/A 99.7 N/A N/A 70 - 130 N/A 1,3,5-Trimethylbenzene N/A 25 N/A N/A N/A 97 N/A 70 - 130 Vinyl Chloride 25 N/A 90.9 N/A N/A N/A N/A N/A 70 - 130 %SS1: N/A 500 N/A N/A N/A 97 N/A N/A 70 - 130 100 %SS2: N/A 500 N/A N/A N/A N/A N/A 70 - 130 %SS3: N/A 500 N/A N/A N/A 102 N/A N/A 70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

R_QA/QC Officer

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR TO15

QC Matrix: Soilgas BatchID: 63853 WorkOrder: 1201090 W.O. Sample Matrix: Soilgas EPA Method: TO15 Extraction: TO15 Spiked Sample ID: N/A Sample Spiked MS MSD MS-MSD LCS Acceptance Criteria (%) Analyte nL/L nL/L % Rec. % Rec. % RPD % Rec. MS / MSD RPD LCS BATCH 63853 SUMMARY Lab ID Date Sampled Date Extracted Date Analyzed Lab ID Date Sampled Date Extracted Date Analyzed 1201090-001A 01/04/12 11:10 AM 01/07/12 01/07/12 1:15 PM 1201090-001A 01/04/12 11:10 AM 01/07/12 01/07/12 3:29 PM 1201090-002A 01/04/12 12:08 PM 01/09/12 01/09/12 7:47 PM 1201090-002A 01/04/12 12:08 PM 01/09/12 01/09/12 11:52 PM 1201090-004A 1201090-003A 01/10/12 01/09/12 01/04/12 1:27 PM 01/10/12 12:36 AM 01/04/12 2:54 PM 01/09/12 9:07 PM 1201090-004A 01/04/12 2:54 PM 01/10/12 01/10/12 1:21 AM 1201090-005A 01/04/12 3:44 PM 01/10/12 01/10/12 2:04 AM 1201090-006A 01/04/12 4:33 PM 01/09/12 01/09/12 10:30 PM 1201090-006A 01/04/12 4:33 PM 01/10/12 01/10/12 2:47 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

All West Environmental, Inc	Client Project ID: #11134.23; PACCAR-Oakland Sub	Date Sampled:	01/05/12
530 Howard Street, Ste. 300		Date Received:	01/06/12
550 Howard Suber, Sec. 500	Client Contact: Leonard Niles	Date Reported:	01/13/12
San Francisco, CA 94105	Client P.O.:	Date Completed:	01/13/12

WorkOrder: 1201140

January 13, 2012

Dear Leonard:

Enclosed within are:

- 1) The results of the 7 analyzed samples from your project: #11134.23; PACCAR-Oakland Sub,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

Wel Telepho	bsite: <u>www.mc</u> ne: (877) 252	PITTSBU campbell. -9262	LOW PAS RG, CA 94 <u>com</u> Ema	565-1 il: m	AD 701 ain@n F	acca	mpt (92	ell.c 5) 2	om 52-9					G	eo'			ou	ND	T	IMI	E	1	RUS	H	24	HR		48 H	COR	72 HF	5 DAY V) Q
Company All	hard Nill	25	В	ill To	: Do	irl	en	e	12	br	10							-	A	nal	ysis	Req	ues	t		-		-		Oth	her	Comments
Report To: Leon Company: All(1 530 How Tele: (415)39 Project #: [][] Project Location: Sampler Signatur	1-2510 34.23 0'Reilly An	ata 42	P 40 (nto	-Ma ax: (rojec	11: 00 11: 00 14: 01 1: 01 1: 01 1: 01 1: 01		ena 29/ PAL Blu	die Condig	Qa all 201 1R-1 0a	llu ve Val Ki	rest st1 klan ahi	1.00	in M	as Gas (602 / 8021 + 8015)	EPA 602 / 8021)	Oil (8015)/51 11090	rease (1664 / 5520 E/B&F)	arbons (418.1)	8021 (HVOCs)	Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners		Cl Herbicides)	OCs)/TPH-9	VOCs)	AHs / PNAs)	00.8 / 6010 / 6020)	00.8 / 6010 / 6020)	/ 6020)			Filter Samples for Metals analysis: Ves No
SAMPLE ID	LOCATION/ Field Point Name	SAMF Date	Time	# Containers	Type Containers	Water	MA	TR			RES	ERV	וע	BTEX & TPH	MTBE / BTEX ONLY (EPA 602 / 8021)	TPH as Diesel / Motor O	Total Petroleum Oil & Grease (1664 / 5520	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's O	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 /	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 /			
GP-1-5.0-5.5 5P-1-9.0-9.5 GP-1-19.5-20,0 GP-1-34.5-35.0	GP-1	1/5/12	9:13	1	PT		X			1	x									-	-	-	-		-	-	-	-	-	-	-	HOLD
SP-1-7.0-9.5	GP-1	1 14	9:19	1	PT		×			Í	×					X								X	-		-	V		-		11000
21-1-17,520,0 CP-1-345-35A	GP-1		10:10	1	PT	-	X	_			x <		-			X								X				X				
SP-1-GW-35	GP-1		10:18	1	PT		X	-	+		×																	1				HOLD
SP-1-GW-35	GP-1		10:40 10:40	5	14	X		-	+		$\langle X \rangle$		_			1								X								
GP-1-GW-35	GP-1		10:40	+	PE	6		-	-	K	$\langle \rangle$	9		_	-	X		_					_		3						_	-11-
GP-1-GW-35 GP-2-5.0-5.5 GP-2-10.0-10.5	GP-1		12:25	(PT	1	V	+	+	K			-	-	-	-		-		-			_					X			-	Filter
GP-2-10.0-10.5	GP-2		(3:47	1	PT		X	+	+	3	1		-		-	V			-	-			_	25				V	_		_	HOLD
GP-2-17.0-17.5 GP-2-GW-15	GP-2		13:56	1	PT		X		-	Ś	2				-	¢	-				-	-		Š	_	_		X	-			
GP-2-GW-15	GP-2		12:53	3	VOA					K	du					^				-				Θ				X	-			
5P-2-GW-20		1	13:45	1						15	XX					X				-				4	-			-	-			
GP-2-GW-20	GP-2	V	13:45	1	ILA 250 PE	X		-		1	(-			X	1			Filter
Relinquished By: Relinquished By: Relinquished By:	Viles	Date: -/6/2 Date: 16 Date:	Time: / 6/5 Time: 1837 Time:	Rece	ived B	y:~		-	V	/	1			GO HE DE AP	E/t°_ DOD CAD S CHI PRO ESE	CON SPAC	DIT CE A NAT	ION BSE ED COI		AB_NEF	us_		_	FL	ilt ul	er = T an	w 5 up	co vat NA	er	san fals	mple s S H-d	s for ilicage

XA

McCampbell Analytical, Inc.

Pittsburg, CA 94565-1701

1C.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkO	rder: 1201140	Client	tCode: AWE		
	WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCopy	ThirdParty	☐J-flag
Report to:				Bi	ill to:		Req	uested TAT:	5 days
Leonard Niles	Email:	Leonard@allwest	1.com		Darlene Torio)			
All West Environmental, Inc	CC:				All West Envi	ronmental, Inc			
530 Howard Street, Ste. 300	PO:				530 Howard S	Street, Ste.300	Dat	e Received:	01/06/2012
San Francisco, CA 94105	ProjectNo:	#11134.23; PAC	CAR-Oakland Sul	C	San Francisco	o, CA 94105	Dat	e Printed:	01/06/2012
(415) 391-2510 FAX: (415) 391-2008					darlene@allw	est1.com			

								Re	quested	l Tests (See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1201140-002	GP-1-9.0-9.5	Soil	1/5/2012 9:19		А		А			A						
1201140-003	GP-1-19.5-20.0	Soil	1/5/2012 10:10		Α		Α			Α	-					
1201140-005	GP-1-GW-35	Water	1/5/2012 10:40			Α		С	С		В					
1201140-007	GP-2-10.0-10.5	Soil	1/5/2012 13:45		А		Α			А						
1201140-008	GP-2-17.0-17.5	Soil	1/5/2012 13:56		А		Α			А						
1201140-009	GP-2-GW-15	Water	1/5/2012 12:53			Α										
1201140-010	GP-2-GW-20	Water	1/5/2012 13:45					В	В		Α					

Test Legend:

1	GAS8260_S	2	GAS8260_W	3	LUFT_S	4	LUFTMS_DISS	5	PRDISSOLVED
6	TPH(DMO)WSG_S	7	TPH(DMO)WSG_W	8		9		10	
11		12]					

The following SampIDs: 002A, 003A, 005A, 007A, 008A, 009A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Ana Venegas

Sample Receipt Checklist

Client Name:	All West Environme	ntal, Inc			Da	ate and	Time Received:	1/6/2012 8:2	0:52 PM
Project Name:	#11134.23; PACCAF	R-Oakland Sub			Cł	necklist	completed and re	eviewed by:	Ana Venegas
WorkOrder N°:	1201140	Matrix: Soil/Water			Ca	arrier:	Benjamin Ysla	s (MAI Courier) J
		<u>Chai</u>	n of Ըւ	<u>istody (C</u>	COC) Info	rmatio	<u>n</u>		
Chain of custody	present?		Yes	✓	No				
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No				
Chain of custody	agrees with sample la	bels?	Yes	✓	No				
Sample IDs note	d by Client on COC?		Yes	✓	No				
Date and Time of	f collection noted by C	lient on COC?	Yes	✓	No				
Sampler's name	noted on COC?		Yes	✓	No				
		5	Sample	Receipt	Informat	<u>ion</u>			
Custody seals inf	tact on shipping contai	ner/cooler?	Yes		No			NA 🗹	
Shipping contain	er/cooler in good cond	ition?	Yes	✓	No				
Samples in prope	er containers/bottles?		Yes	✓	No				
Sample containe	rs intact?		Yes	✓	No				
Sufficient sample	e volume for indicated	test?	Yes	✓	No				
		Sample Prese	ervatio	n and Ho	old Time (<u>HT) Inf</u>	ormation		
All samples recei	ived within holding time	e?	Yes	✓	No				
Container/Temp	Blank temperature		Coole	r Temp:	3.2°C				
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes	✓	No		o VOA vials submi	itted	
Sample labels ch	necked for correct pres	ervation?	Yes	✓	No [
Metal - pH accep	table upon receipt (pH	<2)?	Yes		No			NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No				
		(Ice Type	e: WE	TICE)				
* NOTE: If the "N	lo" box is checked, see	e comments below.							

Comments:

	II Analytica Quality Counts''	l, Inc	<u>.</u>	Toll Free Telepho		rg, CA 94565-1701 2 / Fax: (925) 252-9269 : main@mccampbell.com		
All West Environmental, Inc	Client F	Project I	D: #11	134.23;	Date Sampl	ed: 01/05/12		
		AR-Oakl			Date Receiv	ved: 01/06/12		
530 Howard Street, Ste. 300	Client (Contact:	Leona	d Niles	Date Extrac	ted: 01/06/12		
San Francisco, CA 94105	Client F		Leona	u 1 (1105		zed: 01/12/12		
,			0 - T	A CC/MS (Desis)	5			
Extraction Method: SW5030B	volatile Organ	•		d GC/MS (Basic 7 od: SW8260B	l arget List)*	Work Order: 1201	140	
		7 mary	tieur wieur		0.0024	Work Order: 1201	140	
Lab ID Client ID				120114 GP-1-9				
Matrix				Sc Sc				
	Concentration *	DE	Reporting			Comparison time *	DE	Reportin
Compound	Concentration *	DF	Limit	Compou		Concentration *	DF	Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl ethe	er (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometha	ne	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	、 、	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND ND	1.0	0.005
Carbon Tetrachloride	ND ND	1.0 1.0	0.005	Chlorobenzene Chloroform		ND	1.0	0.005
Chloromethane		1.0				ND		0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene			1.0	0.005
4-Chlorotoluene	ND		0.005	Dibromochlorometha		ND	1.0	0.005
1,2-Dibromo-3-chloropropane Dibromomethane	ND ND	1.0	0.004	1,2-Dibromoethane (1 1,2-Dichlorobenzene	EDB)	ND ND	1.0	0.004
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene		ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.003	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.004	trans-1,2-Dichloroeth	ene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	lene	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene		ND	1.0	0.005
cis-1.3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropro	nene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	pene	ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether ((MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanon		ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene	. /	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroet	hane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzer	ne	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane		ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropa	ne	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenze	ene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005
		Sur	rogate Re	ecoveries (%)				
%SS1:	87		0	%SS2:		11	8	
%SS3:	10			-				
Comments:								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

McCampbel	Analytica	l, Inc.	:	Toll Free Telephor		CA 94565-1701 Fax: (925) 252-9269 ain@mccampbell.com		
All West Environmental, Inc				134.23;	Date Sample	l: 01/05/12		
530 Howard Street, Ste. 300	PACCA	AR-Oakl	and Sul	0	Date Receive	d: 01/06/12		
550 Howard Street, Stc. 500	Client C	Contact:	Leonar	d Niles	Date Extracte	d: 01/06/12		
San Francisco, CA 94105	Client I	P.O.:			Date Analyze	d: 01/12/12		
Extraction Method: SW5030B	Volatile Organ	•		d GC/MS (Basic T od: SW8260B	arget List)*	Work Order: 1201	140	
Lab ID				1201140	-003A			
Client ID				GP-1-19.	5-20.0			
Matrix				Soi	1			
Compound	Concentration *	DF	Reporting Limit	Compoun	d	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl ether	(TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethan	e	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethan	e	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (E	DB)	ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene		ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene		ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethe	ne	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane		ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene		ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloroprop	bene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (M	ATBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone	(MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroeth	ane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzen	9	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane		ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005			ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005				1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005
			ogate Re	ecoveries (%)				
%SS1:	88			%SS2:		12	5	
%SS3:	98	2		1				

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	ll Analytica Quality Counts''	l, Inc	<u>.</u>	Toll Free Telepho		g, CA 94565-1701 / Fax: (925) 252-9269 main@mccampbell.com				
All West Environmental, Inc	Client I	Project I	D: #11	134.23;	Date Sample	ed: 01/05/12				
	PACCA	AR-Oakl	and Sul	0	Date Receiv	red: 01/06/12				
530 Howard Street, Ste. 300	Client (Contact:	Leona	d Niles	Date Extract					
San Francisco, CA 94105	Client I		Leona			xed: $01/12/12$				
·			о т		2					
Extraction Method: SW5030B	volatile Organ	•		d GC/MS (Basic T od: SW8260B	arget List)*	Work Order: 1201	140			
Lab ID		7 1141 9	dear Wieda	1201140	0074	Work Order: 1201	140			
Client ID				GP-2-10						
Matrix				So						
Compound	Concentration *	DF	Reporting	Compour		Concentration *	DF	Reporting		
•			Limit					Limit		
Acetone	ND	1.0	0.05	tert-Amyl methyl ethe	r (IAME)	ND	1.0	0.005		
Benzene Bromochloromethane	ND ND	1.0	0.005	Bromobenzene Bromodichloromethar	20	ND ND	1.0	0.005		
Bromocniorometnane	ND	1.0	0.005	Bromodichloromethan		ND	1.0	0.005		
2-Butanone (MEK)	ND	1.0	0.005	t-Butyl alcohol (TBA)		ND	1.0	0.005		
n-Butyl benzene	ND	1.0	0.02	sec-Butyl benzene		ND	1.0	0.005		
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005		
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005		
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005		
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometha	1e	ND	1.0	0.005		
1,2-Dibromo-3-chloropropane	ND	1.0	0.003	1,2-Dibromoethane (E		ND	1.0	0.003		
Dibromomethane	ND	1.0	0.004	1,2-Dichlorobenzene		ND	1.0	0.005		
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene		ND	1.0	0.005		
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005		
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethe	ene	ND	1.0	0.005		
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane		ND	1.0	0.005		
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene		ND	1.0	0.005		
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropro	pene	ND	1.0	0.005		
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005		
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1		
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005		
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005		
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005		
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone		ND	1.0	0.005		
Naphthalene	0.0056	1.0	0.005	n-Propyl benzene		ND	1.0	0.005		
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroeth	ane	ND	1.0	0.005		
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		0.0067	1.0	0.005		
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzen	ie	ND	1.0	0.005		
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane		ND	1.0	0.005		
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005		
Trichlorofluoromethane	ND	1.0	0.005			ND	1.0	0.005		
1,2,4-Trimethylbenzene	ND	1.0	0.005			ND	1.0	0.005		
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005		
		Sur	rogate Re	ecoveries (%)						
%SS1:	94		<u> </u>	%SS2:		10	9			
%SS3:	10)8				· · ·				
Comments:	· · · · · · · · · · · · · · · · · · ·									

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	II Analytica Quality Counts''	l, Inc	<u>.</u>	Toll Free Telephon	e: (877) 252-9262	g, CA 94565-1701 2 / Fax: (925) 252-9269 main@mccampbell.com				
All West Environmental, Inc	Client F	Project I	D: #11	134.23;	Date Sample	ed: 01/05/12				
	PACCA	AR-Oakl	and Sul)	Date Receiv	ved: 01/06/12				
530 Howard Street, Ste. 300	Client (Contact:	Leonar	d Niles	Date Extract					
San Francisco, CA 94105	Client F		Leona			zed: 01/13/12				
,			е т			Ecu. 01/13/12				
Extraction Method: SW5030B	volatile Organ	•		d GC/MS (Basic Ta od: SW8260B	arget List)*	Work Order: 1201	140			
		7 mary	lieur meur		008 4	Work Order: 1201	140			
Lab ID Client ID				1201140- GP-2-17.0						
Matrix				Soil	-17.5					
Compound	Concentration *	DF	Reporting	Compound	4	Concentration *	DF	Reportin		
•			Limit					Limit		
Acetone	ND ND	1.0	0.05	tert-Amyl methyl ether Bromobenzene	(IAME)	ND ND	1.0	0.005		
Benzene Bromochloromethane	ND	1.0	0.005	Bromobenzene Bromodichloromethane	<u>`</u>	ND	1.0	0.005		
Bromoform	ND	1.0	0.005	Bromomethane	2	ND	1.0	0.005		
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.05		
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005		
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005		
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005		
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005		
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	e	ND	1.0	0.005		
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EI	DB)	ND	1.0	0.004		
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene		ND	1.0	0.005		
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene		ND	1.0	0.005		
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005		
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroether	ne	ND	1.0	0.005		
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane		ND	1.0	0.005		
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene		ND	1.0	0.005		
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloroprop	ene	ND	1.0	0.005		
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005		
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1		
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005		
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005		
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (M		ND	1.0	0.005		
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone	(MIBK)	ND	1.0	0.005		
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005		
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroetha	ine	ND	1.0	0.005		
1,1,2,2-Tetrachloroethane Toluene	ND ND	<u>1.0</u> 1.0	0.005	Tetrachloroethene		ND ND	1.0	0.005		
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,2,3-Trichlorobenzene 1,1,1-Trichloroethane		ND	1.0	0.005		
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005		
Trichlorofluoromethane	ND	1.0	0.005			ND	1.0	0.005		
1,2,4-Trimethylbenzene	ND	1.0	0.005			ND	1.0	0.005		
Vinyl Chloride	ND	1.0	0.005 Xylenes, Total ND			1.0	0.005			
· ····································				ecoveries (%)		112		0.000		
%SS1:	88		ogate Ke	%SS2:		12	1			
%SS3:	99			/0002.		12	1			
%SSS: Comments:	95	7		<u> </u>						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	II Analytica Quality Counts''	l <u>, Inc</u>	<u>.</u>	Toll Free Telepho	ne: (877) 252-9262	g, CA 94565-1701 2 / Fax: (925) 252-9269 main@mccampbell.com					
All West Environmental, Inc	Client F	Project I	D: #1	1134.23;	Date Sampl	ed: 01/05/12					
500 M 1 G 000	PACCA	R-Oakl	and Su	b	Date Receiv	/ed: 01/06/12					
530 Howard Street, Ste. 300	Client C	Contact:	Leona	rd Niles	Date Extrac	ed: 01/13/12					
San Francisco, CA 94105	Client F	P.O.:			Date Analy	zed: 01/13/12					
	Volatile Organi	ics by P	&T an	d GC/MS (Basic T	arget List)*						
Extraction Method: SW5030B	0	•		od: SW8260B	0	Work Order: 1201	140				
Lab ID				1201140	-005A						
Client ID				GP-1-G	W-35						
Matrix				Wat	er						
Compound	Concentration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reportin Limit			
Acetone	ND	1.0	10	tert-Amyl methyl ether	r (TAME)	ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene	· · · · · · · · · · · · · · · · · · ·	ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichloromethan	ne	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	1	ND	1.0	2.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5			
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5			
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethar	ne	ND	1.0	0.5			
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (E	EDB)	ND	1.0	0.5			
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene		ND	1.0	0.5			
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene		ND	1.0	0.5			
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5			
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5			
cis-1,2-Dichloroethene	0.73	1.0	0.5	trans-1,2-Dichloroethe	ene	ND	1.0	0.5			
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane		ND	1.0	0.5			
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene		ND	1.0	0.5			
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropro	pene	ND	1.0	0.5			
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5			
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10			
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5			
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5			
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (I		0.96	1.0	0.5			
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone	e (MIBK)	ND	1.0	0.5			
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroeth	lane	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	_	ND	1.0	0.5			
Toluene	0.63	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND ND	1.0 1.0	0.5	1,1,1-Trichloroethane		ND ND	1.0 1.0	0.5			
1,1,2-Trichloroethane Trichlorofluoromethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,2,3-Trichloropropane 1,3,5-Trimethylbenzene		ND	1.0	0.5			
Vinyl Chloride	ND	1.0			1.0	0.5					
vinyi emoride	ND			•		ΝD	1.0	0.5			
0/ 661.	10		rogate R	ecoveries (%)		10	1				
%SS1:	10			%SS2:		10	1				
%SS3: Comments: b1	10	U									

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

McCampbell Analytical, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 Http://www.mccampbell.com / E-mail: main@mccampbell.com Pass Road, Pittsburg, CA 94565-1701								
All West Environmental, Inc	Client I	Project I	D: #1	1134.23;	Date Sampled	01/05/12		
	PACCA	AR-Oakl	and Su	b	Date Received	: 01/06/12		
530 Howard Street, Ste. 300	Client (Contact:	Leona	rd Niles	Date Extracted	· 01/13/12		
San Francisco, CA 94105	Client I		Leona		Date Analyzed			
					-	1. 01/13/12		
Fata dia Matala GUI7020D	Volatile Organ	•		d GC/MS (Basic	Target List)*	West-Orden 1001	1.40	
Extraction Method: SW5030B		Analy	tical Meth	od: SW8260B	0.000.1	Work Order: 1201	140	
Lab ID					0-009A			
Client ID Matrix					GW-15 ater			
			Reporting			a 1 1		Reporting
Compound	Concentration *	DF	Limit	Compou		Concentration *	DF	Limit
Acetone	ND	1.0	10	tert-Amyl methyl eth	er (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorometha	ane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA	A)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		0.62	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochlorometha	ane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	1	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	1	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1,2-Dichloroethene	0.72	1.0	0.5	trans-1,2-Dichloroet		ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane		ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene		ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropr	opene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether	· · · ·	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanor	ne (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroe	thane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		0.64	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenze		ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane		ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5				1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total		ND	1.0	0.5
	1		ogate R	ecoveries (%)				
%SS1:	10			%SS2:		10)1	
%SS3:	10	2		1				

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

<u> Мс</u>	Campbell Ana "When Quality Con	lytical, Inc. unts''	Toll Free Telepho	Pass Road, Pittsburg ne: (877) 252-9262 pbell.com / E-mail: 1	/ Fax: (925	5) 252-9269		
All West Enviro	,	Client Project ID: #11134.23; PACCAR-Oakland SubDate Sampled: 01/05/12Date Received: 01/06/12						
550 Howard Su		Client Contact: Le	ent Contact: Leonard Niles Date Extracted 01/06/12-01/12					
San Francisco,	CA 94105	Client P.O.:	P.O.: Date Analyzed 01/12/12				2-01/13/12	
Extraction method: SW			z Trap and GC/MS* ethods: SW8260B		Wo	ork Order:	1201140	
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments	
002A	GP-1-9.0-9.5	S	ND		1	118		
003A	GP-1-19.5-20.0	S	ND		1	125		
005A	GP-1-GW-35	W	ND		1	105	b1	
007A	GP-2-10.0-10.5	S	ND		1	113		
008A	GP-2-17.0-17.5	S	ND		1	122		
009A	GP-2-GW-15	W	ND		1	104	b1	
							<u> </u>	

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	0.25	mg/kg

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	McCamp	bell A hen Quality		<u>Inc.</u>	Toll Free	e Telepho	ne: (87	Road, Pittsburg, CA 9 77) 252-9262 / Fax: com / E-mail: main@	(925) 252-9269				
All Wes	st Environmental, Ir	nc		ject ID: #1 -Oakland Su				ate Sampled:	01/05/12				
530 Hov	ward Street, Ste. 30	0	Client Co.	ntact: Leona	- INHas			ate Received:	01/06/12				
San Fra	ncisco, CA 94105		Client Col										
Extraction	method: SW3050B		I		TT 5 Metals* 1 methods: SW6		<u> </u>			Work (Order: 12	201140	
Lab ID	Client ID	Matrix	Extraction Type	Cadmium	Chromium	Lea	ıd	Nickel	Zinc	DF	% SS	Comments	
002A	GP-1-9.0-9.5	S	TOTAL	ND	120	6.5	5	160	99	1	115		
003A	GP-1-19.5-20.0	S	TOTAL	ND	47	NI)	85	100	1	112	<u> </u>	
007A	GP-2-10.0-10.5	S	TOTAL	ND	63	5.5	5	48	75	1	118		
008A	GP-2-17.0-17.5	S	TOTAL	ND	38	NI)	50	57	1	118		
												L	
												L	
												<u>.</u>	
1	ng Limit for DF =1;	W	TOTAL	NA	NA	NA	4	NA	NA		NA		
ND mea	ans not detected at or	S	ΤΟΤΑΙ	15	1.5	5 (2	1.5	5.0	1	ma/k		

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

1.5

5.0

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

1.5

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

TOTAL

DISS = Dissolved metals by direct analysis of $0.45 \,\mu m$ filtered and acidified sample.

S

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

DHS ELAP Certification 1644

above the reporting limit

1.5

Angela Rydelius, Lab Manager

5.0

mg/Kg

	McCamp	bell Ar hen Quality		<u>Inc.</u>	Toll Fre	e Telepho	ne: (8	Road, Pittsburg, CA 77) 252-9262 / Fax: com / E-mail: main@	(925) 252-9269	1		
	st Environmental, Ir			Client Project ID: #11134.23; PACCAR-Oakland Sub Date Received: 01/05/12								
530 Ho	ward Street, Ste. 30	0	Client Co	ntact: Leon	ard Niles			ate Extracted:	01/06/12			
San Fra	ncisco, CA 94105		Client P.C).:	Date Analyzed: 01/10/12							
Extraction	method: E200.8	T 5 Metals* al methods: E200					Work (Order: 12	201140			
Lab ID	Client ID	Matrix	Extraction Type	Cadmium	Chromium	Lea	d	Nickel	Zinc	DF	% SS	Comments
005C	GP-1-GW-35	W	DISS.	ND	ND	NE)	14	33	1	N/A	b1
010B	GP-2-GW-20	W	DISS.	ND	ND	NE)	7.0	34	1	N/A	
Reporti	ing Limit for $DF = 1$;	W	DISS.	0.25	0.5	0.5	τ	0.5	5.0		μg/	ſ

Reporting Limit for $DF = 1$; ND means not detected at or	W	DISS.	0.25	0.5	0.5	0.5	5.0	μg/L	
above the reporting limit	S	TOTAL	NA	NA	NA	NA	NA	NA	

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of $0.45 \,\mu m$ filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

b1) aqueous sample that contains greater than ~1 vol. % sediment

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	CCampbell Ana ''When Quality Con		Toll Free	Villow Pass Road, Pittsburg, CA Felephone: (877) 252-9262 / Fax: mccampbell.com / E-mail: main@	(925) 252-9	269			
All West Envi	ronmental, Inc	Client Project I PACCAR-Oak	ID: #11134.23; land Sub	Date Sampled: Date Received:					
530 Howard S	treet, Ste. 300	Client Contact:	Leonard Niles	Date Extracted:		01/06/12			
San Francisco,	, CA 94105	Client P.O.:		Date Analyzed:	01/07	/12-01/0	09/12		
Extraction method:	Total Ext SW3510C/3630C/SW3550B/3630C		um Hydrocarbons with methods: SW8015B	Silica Gel Clean-Up*	Work Order: 1201140				
Lab ID	Client ID	Matrix	TPH-Diesel TPH-Motor Oil				Comments		
1201140-002A	GP-1-9.0-9.5	S	1.2	ND	1	106	e2		
1201140-003A	GP-1-19.5-20.0	S	2.1	ND	1	110	e2		
1201140-005B	GP-1-GW-35	W	ND	ND	1	93	b1		
1201140-007A	GP-2-10.0-10.5	S	15	72	5	105	e7,e2		
1201140-008A	GP-2-17.0-17.5	S	2.0	ND	1	108	e2		
1201140-010A	GP-2-GW-20	W	200	1000	1	93	e7,e2		

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	1.0	5.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

e2) diesel range compounds are significant; no recognizable pattern

e7) oil range compounds are significant

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil	QC Matrix:	Soil		BatchID: 63849					WorkOrder: 1201140		
EPA Method: SW8260B	Extraction: SW5030B					;	Spiked Sam	ple ID:	1201084-020A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)		
, and yes	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
tert-Amyl methyl ether (TAME)	ND<0.20	0.050	92.8	91.1	1.84	121	70 - 130	30	70 - 130		
Benzene	ND<0.20	0.050	98.7	97.1	1.60	120	70 - 130	30	70 - 130		
t-Butyl alcohol (TBA)	ND<2.0	0.20	117	114	3.20	115	70 - 130	30	70 - 130		
Chlorobenzene	ND<0.20	0.050	108	106	1.43	117	70 - 130	30	70 - 130		
1,2-Dibromoethane (EDB)	ND<0.16	0.050	121	121	0	127	70 - 130	30	70 - 130		
1,2-Dichloroethane (1,2-DCA)	ND<0.16	0.050	90	87.5	2.87	115	70 - 130	30	70 - 130		
1,1-Dichloroethene	ND<0.20	0.050	51.6,F1	48.1,F1	6.97	106	70 - 130	30	70 - 130		
Diisopropyl ether (DIPE)	ND<0.20	0.050	76.1	74.7	1.84	116	70 - 130	30	70 - 130		
Ethyl tert-butyl ether (ETBE)	ND<0.20	0.050	87	85.8	1.44	115	70 - 130	30	70 - 130		
Methyl-t-butyl ether (MTBE)	ND<0.20	0.050	102	99.3	2.92	120	70 - 130	30	70 - 130		
Toluene	ND<0.20	0.050	128	133, F1	3.43	130	70 - 130	30	70 - 130		
Trichloroethene	ND<0.20	0.050	NR	NR	NR	120	70 - 130	30	70 - 130		
%SS1:	107	0.12	93	92	0.265	99	70 - 130	30	70 - 130		
%SS2:	#	0.12	99	99	0	88	70 - 130	30	70 - 130		
%SS3:	#	0.012	#	#	#	126	70 - 130	30	70 - 130		
All target compounds in the Method Blank NONE	of this extraction batch were ND	less than th	e method	RL with t	he following	g exceptior	15:				
F1 = MS / MSD outside of acceptance crite		3849 SU									

			BATCH 63849 SI	<u>UMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1201140-002A	01/05/12 9:19 AM	01/06/12	01/12/12 10:49 PM	1201140-003A	01/05/12 10:10 AM	01/06/12	01/12/12 11:29 PM
1201140-007A	01/05/12 1:45 PM	01/06/12	01/12/12 3:31 PM	1201140-008A	01/05/12 1:56 PM	01/06/12	01/13/12 12:10 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

A QA/QC Officer

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 63815		WorkO	order: 1201140
EPA Method: SW8260B Extraction	: SW5030B						Spiked Sam	ple ID:	1201040-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	113	119	5.08	113	70 - 130	30	70 - 130
Benzene	ND	10	107	111	3.54	114	70 - 130	30	70 - 130
t-Butyl alcohol (TBA)	ND	40	96.1	96.2	0.0727	83	70 - 130	30	70 - 130
Chlorobenzene	ND	10	103	108	4.34	111	70 - 130	30	70 - 130
1,2-Dibromoethane (EDB)	ND	10	113	119	5.23	115	70 - 130	30	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	107	112	4.30	110	70 - 130	30	70 - 130
1,1-Dichloroethene	ND	10	87.3	90.3	3.38	88.9	70 - 130	30	70 - 130
Diisopropyl ether (DIPE)	ND	10	82.4	83.4	1.23	82.1	70 - 130	30	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	102	112	9.22	110	70 - 130	30	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	98.6	101	2.23	91.7	70 - 130	30	70 - 130
Toluene	ND	10	103	108	4.98	112	70 - 130	30	70 - 130
Trichloroethene	ND	10	109	115	5.22	118	70 - 130	30	70 - 130
%SS1:	106	25	107	106	0.861	106	70 - 130	30	70 - 130
%SS2:	114	25	114	114	0	115	70 - 130	30	70 - 130
%SS3:	99	2.5	120	121	1.23	121	70 - 130	30	70 - 130
All target compounds in the Method Blank of this extractio NONE	n batch were ND	less than th	e method	RL with the	he following	g exception	ns:		

BATCH 63815 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1201140-005A	01/05/12 10:40 AN	A 01/13/12	01/13/12 2:54 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

MO O De ser la Matrice Materia

Datable 62002

WorkOrdory 1201110

QC SUMMARY REPORT FOR SW8260B

OC Matrix: Mator

EPA Method: SW8260B	Extraction: SW5030B						Spiked Sam	ple ID:	1201151-005B
Analyte	Samp	le Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, noryco	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	97.5	98.5	0.928	128	70 - 130	30	70 - 130
Benzene	ND	10	103	101	2.11	115	70 - 130	30	70 - 130
t-Butyl alcohol (TBA)	ND	40	109	116	6.08	96.1	70 - 130	30	70 - 130
Chlorobenzene	ND	10	97.9	94.5	3.44	112	70 - 130	30	70 - 130
1,2-Dibromoethane (EDB)	ND	10	99.1	100	0.957	126	70 - 130	30	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	102	101	0.480	114	70 - 130	30	70 - 130
1,1-Dichloroethene	ND	10	103	101	1.51	101	70 - 130	30	70 - 130
Diisopropyl ether (DIPE)	ND	10	110	109	0.871	121	70 - 130	30	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	104	105	1.41	121	70 - 130	30	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	106	107	1.48	123	70 - 130	30	70 - 130
Toluene	ND	10	93.1	95	2.01	112	70 - 130	30	70 - 130
Trichloroethene	ND	10	102	100	2.23	113	70 - 130	30	70 - 130
%SS1:	111	25	102	105	2.55	106	70 - 130	30	70 - 130
%SS2:	96	25	116	116	0	80	70 - 130	30	70 - 130
%SS3:	105	2.5	102	100	1.98	123	70 - 130	30	70 - 130

BATCH 63883 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1201140-009A	01/05/12 12:53 PM	a 01/13/12	01/13/12 3:37 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR 6010B

			C Matrix: Soil BatchID: 6					
050B						Spiked Sam	ple ID:	1201042-001A
Sample	Spiked	MS	MSD	MS-MSD	LCS	Acce	eptance	Criteria (%)
mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
ND	50	92.4	93.1	0.755	90.8	75 - 125	25	75 - 125
34	50	90.9	91.8	0.565	88.8	75 - 125	25	75 - 125
21	50	100	98.1	1.52	81.5	75 - 125	25	75 - 125
16	50	91.4	94.3	2.35	89.6	75 - 125	25	75 - 125
40	500	93.1	93.9	0.788	91.6	75 - 125	25	75 - 125
99	500	99	97	2.34	102	70 - 130	20	70 - 130
S	Sample mg/Kg ND 34 21 16 40	Sample Spiked mg/Kg mg/Kg ND 50 34 50 21 50 16 50 40 500	Sample Spiked MS mg/Kg mg/Kg % Rec. ND 50 92.4 34 50 90.9 21 50 100 16 50 91.4 40 500 93.1	Sample Spiked MS MSD mg/Kg mg/Kg % Rec. % Rec. ND 50 92.4 93.1 34 50 90.9 91.8 21 50 100 98.1 16 50 91.4 94.3 40 500 93.1 93.9	Sample Spiked MS MSD MS-MSD mg/Kg mg/Kg % Rec. % Rec. % RPD ND 50 92.4 93.1 0.755 34 50 90.9 91.8 0.565 21 50 100 98.1 1.52 16 50 91.4 94.3 2.35 40 500 93.1 93.9 0.788	Sample Spiked MS MSD MS-MSD LCS mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. ND 50 92.4 93.1 0.755 90.8 34 50 90.9 91.8 0.565 88.8 21 50 100 98.1 1.52 81.5 16 50 91.4 94.3 2.35 89.6 40 500 93.1 93.9 0.788 91.6	Sample Spiked MS MSD MS-MSD LCS Accession mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. MS / MSD ND 50 92.4 93.1 0.755 90.8 75 - 125 34 50 90.9 91.8 0.565 88.8 75 - 125 21 50 100 98.1 1.52 81.5 75 - 125 16 50 91.4 94.3 2.35 89.6 75 - 125 40 500 93.1 93.9 0.788 91.6 75 - 125	Sample Spiked MS MSD MS-MSD LCS Acceptance mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. MS / MSD RPD ND 50 92.4 93.1 0.755 90.8 75 - 125 25 34 50 90.9 91.8 0.565 88.8 75 - 125 25 21 50 100 98.1 1.52 81.5 75 - 125 25 16 50 91.4 94.3 2.35 89.6 75 - 125 25 40 500 93.1 93.9 0.788 91.6 75 - 125 25

BATCH 63816 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1201140-002A	01/05/12 9:19 AM	01/06/12	01/09/12 10:22 AM	1201140-003A	01/05/12 10:10 AM	01/06/12	01/09/12 10:25 AM
1201140-007A	01/05/12 1:45 PM	01/06/12	01/09/12 10:28 AM	1201140-008A	01/05/12 1:56 PM	01/06/12	01/09/12 10:32 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

ACC Officer

QC SUMMARY REPORT FOR E200.8

QC Matrix: Water BatchID: 63855 WorkOrder: 1201140 W.O. Sample Matrix: Water EPA Method: E200.8 Extraction: E200.8 Spiked Sample ID: 1112539-010A Sample Spiked MS MSD MS-MSD LCS Acceptance Criteria (%) Analyte RPD µg/L µg/L % Rec. % Rec. % RPD % Rec. MS / MSD LCS Cadmium ND 50 99.6 100 0.481 102 70 - 130 20 85 - 115 Chromium ND 50 101 101 0 104 70 - 130 20 85 - 115 Lead ND 50 96.3 97.6 1.35 97.9 70 - 130 20 85 - 115 Nickel 2.2 50 98.8 98.5 0.252 103 70 - 130 20 85 - 115 Zinc 44 500 98.2 98 0.131 102 70 - 130 20 85 - 115 103 750 103 102 1.04 70 - 130 20 70 - 130 %SS: 100 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 63855 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1201140-005C	01/05/12 10:40 AM	01/06/12	01/10/12 3:08 AM	1201140-010B	01/05/12 1:45 PM	01/06/12	01/10/12 3:14 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

✓ _QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil	QC Matrix	Soil		BatchID: 63824			WorkOrder: 1201140		
EPA Method: SW8015B Extr	action: SW3550B/36	30C				÷	Spiked Sam	ple ID:	1201061-005A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	3.3	40	134, F1	133, F1	1.27	118	70 - 130	30	70 - 130
%SS:	110	25	109	108	7.15	97	70 - 130	30	70 - 130
All target compounds in the Method Blank of this ex NONE	straction batch were ND	less than th	e method	RL with th	he following	g exceptior	18:		
F1 = MS / MSD outside of acceptance criteria LCS	validates prep batch								

F1 = MS / MSD outside of acceptance criteria. LCS validates prep batch.

BATCH 63824 SUMMARY									
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed		
1201140-002A	01/05/12 9:19 AM	01/06/12	01/09/12 4:56 PM	1201140-003A	01/05/12 10:10 AM	01/06/12	01/07/12 4:39 PM		
1201140-007A	01/05/12 1:45 PM	01/06/12	01/09/12 5:09 PM	1201140-008A	01/05/12 1:56 PM	01/06/12	01/07/12 3:32 PM		

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

₩___QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water	QC Matrix	Water		BatchID: 63798			WorkOrder: 1201140		
EPA Method: SW8015B Ex	traction: SW3510C/36	30C		Spiked Sample ID: N//					N/A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	109	N/A	N/A	70 - 130
%SS:	N/A	625	N/A	N/A	N/A	98	N/A	N/A	70 - 130
All target compounds in the Method Blank of this NONE	extraction batch were ND	less than th	e method	RL with tl	he following	g exceptior	18:		

BATCH 63798 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1201140-005B	01/05/12 10:40 AM	I 01/06/12	01/07/12 6:53 PM	1201140-010A	01/05/12 1:45 PM	I 01/06/12	01/07/12 5:46 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

K__QA/QC Officer