

RECEIVED

2:13 pm, Jul 31, 2008

Alameda County Environmental Health

AllWest Environmental, Inc.

Specialists in Physical Due Diligence and Remedial Services

530 Howard Street, Suite 300 San Francisco, *CA* 94105 Tel 415.391.2510 Fax 415.391.2008

2008 BIENNIAL GROUNDWATER MONITORING REPORT

Kragen Auto Supply (Former Grand Auto #43) 4240 International Boulevard (East 14th Street) Oakland, California

(Geotracker ID - T06019705075 & ACHS #RO0002483)

PREPARED FOR:

PACCAR, Inc. Corporate Environmental Department P.O. Box 1518 Bellevue, WA 98009

ALLWEST PROJECT No. 28075.28 July 28, 2008

PREPARED BY:

Michael L. Siembieda, RG 4007 Senior Project Manager

REVIEWED BY:

Glenn Aro

Project Manger

TABLE OF CONTENTS

I.	INT	RODUCTION	Page 1
II.	PRO	OJECT BACKGROUND	Page 1
	A.	Site Setting	Page 1
III.	GRO	OUNDWATER SAMPLING AND FIELD OBSERVATIONS	Page 3
	A.	Sampling Protocols	Page 3
	В.	Well Sampling Purge Characteristics	Page 3
	C.	Groundwater Depth and Gradient	Page 3
IV.	LAB	SORATORY ANALYSES	Page 4
	A.	Halogenated Volatile Organic Compounds Results (HVOCs)	Page 4
	В.	Laboratory QA/QC	_
V.	DISC	CUSSION	Page 5
	A.	Spatial Distribution of Chemical Contaminants	Page 5
	В.	Contaminant Trend Analyses	Page 5
VI.	CON	NCLUSION AND RECOMMENDATIONS	Page 6
VII.	REP	ORT LIMITATIONS	Page 6
TABI	LES		
	Tabl	le 1: Well Construction Details	
	Tabl	e 2: Groundwater Elevation Measurements	
	Tabl	e 3: Summary of Groundwater Analytical Results	
FIGU	IRES		
	Figu	re 1: Site Location Map	
		re 2: Site Plan with Well Locations	
	_	re 3: Groundwater Contour Elevation Map	
LAB	ORAT	ORY RESULTS	
	Anal	lytical Reports and Chain-of-Custody Documents	

APPENDICES

Appendix A - Groundwater Sampling Logs and Protocols

AllWest Environmental, Inc.

Specialists in Physical Due Diligence and Remedial Services

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391.2510 Fax 415.391.2008

2008 Biennial Groundwater Monitoring Report

Former Grand Auto #43 4240 International Boulevard (East 14th Street) Oakland, California

(Geotracker ID - T06019705075 & ACEHD #RO0002483)

I. INTRODUCTION

This report presents the results of the 2008 biennial groundwater monitoring event conducted on June 2, 2008, by AllWest Environmental at the former Grand Auto Retail Store #43, Oakland, California. At the time of the 2008 monitoring the property was occupied by a Kragen Auto Supply facility. The sampling event consisted of monitoring four on-site groundwater wells, MW-1, MW-2, MW-3A and MW-4. Included in this report is an abbreviated site setting, a description of field activities, a summary of analytical results, interpretation of the data and conclusions. Supporting information such as site figures, sampling logs, and laboratory reports are included as attachments or appendices to this report.

The purpose of this report is to present data from the groundwater sampling of the four on-site groundwater monitoring wells, demonstrate the stability of the plume and present conclusions and recommendations to the Alameda County Health Care Services (ACHCS) and the State Water Resources Control Board (Water Board).

II. PROJECT BACKGROUND

A. Site Setting

The approximately 1.2 acre former Grand Auto retail facility is located at the northwest corner of High Street and International Boulevard (formerly 14th Street) in Oakland, California. The site currently is used as a Kragen Auto Supply store. Previously the site was used for retail gasoline sales and had underground storage

tanks (USTs) and a car wash with an associated drainage sump. The USTs were removed in 1986. The car wash drainage sump was removed in August 1992. In October 1993, the remaining fuel conveyance piping associated with the former USTs was excavated and removed from the site.

When environmental activities were initiated at the subject property, the former Super Tire store at 4256 East 14th Street (currently All Mufflers Discounted) was located southeast of the subject property were included as part of the Grand Auto site. Subsequently, the former Super Tire store was considered by both PACCAR and ACHCS as a separate site. In a letter to PACCAR dated December 27, 1993, the ACHCS indicated that no further action was required for soil-related issues at the former Super Tire store. In a second letter dated November 20, 2000, ACHCS approved the destruction of a single groundwater well, HC-1, located on the former Super Tire facility.

Review of previous work indicated the site is underlain by an irregularly layered sequence of silty to gravelly sand lenses separated by clayey silt to depths of 46 feet. The groundwater gradient in the area is very flat, thus the determination of the groundwater flow direction is difficult to assess. Regionally, groundwater is typically reported to flow from the east to the west from the Oakland Hills towards the San Francisco Bay. Groundwater flow in the vicinity of the site has been historically calculated to be to the east, at a very flat gradient. Groundwater levels continued to show a gradual increase since the California drought years of the late 1980s and early 1990s. Groundwater levels have risen approximately 12 to 13 feet at the site since 1993. Groundwater levels measured in 2008 have decreased slightly, approximately 0.3 feet from their 2006 levels and are currently near their highest levels since monitoring began in 1993. The recent decrease in groundwater elevations is attributed to lack of significant precipitation in the water shed since January 2008.

Several series of site investigations and remedial activities have be performed at the property since the USTs were removed in 1986. They include drilling of borings at the former location of the USTs, collection of soil samples during removal of the car wash sump, installation and periodic sampling of monitoring wells, removal of conveyance piping, preparation of a closure report, completion of a risk assessment, an issuance of a closure letter for soil by the ACHS in 1996, the re-establishing of groundwater monitoring in 1999, an issuance of a no further remedial action letter by the ACHS in 2000, the abandonment of two wells and replacement of one well in 2001. A summary of this work was presented in AllWest's "Annual Groundwater Monitoring and Well Destruction Report" dated August 27, 2001. The ACHCS in their letter of November 7, 2005 directed groundwater monitoring be conducted on a biennial basis (every two years).

III. GROUNDWATER SAMPLING AND FIELD OBSERVATIONS

This groundwater monitoring event included, gauging the depth to groundwater to calculate the groundwater flow direction and gradient and sampling of the wells to demonstrate the stability of the groundwater plume. The sampling of the four wells, MW-1 through MW-4, occurred June 2, 2008.

A. Sampling Protocols

AllWest's standard groundwater sampling protocols were followed. As per these protocols, an electronic sounder was utilized to measure the depth to groundwater in each well. Each well was then purged a minimum of three well volumes using a 4-inch teflon bailers. During purging, groundwater field parameters (temperature, pH, and conductivity) were monitored and recorded on a field log. After purging, samples from each well were collected. Copies of the groundwater sampling field logs are presented in Appendix A. The purged groundwater was temporarily stored on site in 55-gallon drums and is scheduled to be removed from the site by Integrated Waste Management, Milpitas, California, a state licensed hazardous waste transporter. The purge water will be transported under appropriate state and local regulations.

B. Well Sampling Purge Characteristics

The groundwater observed during purging was clear to slightly. Field parameters measured were similar to historical measurements. pH measurements were not collected due to concerns with the operation of the meter. Conductivity levels were between 529 uS to 971 uS and temperatures between 65.4°F to 79.5°F. Temperature and conductivities varied from well to well but measurements were consistent in individual wells over time.

C. Groundwater Depth and Gradient

The depth to groundwater ranged between 22.11 feet below ground surface (bgs) in MW-4 to 23.74 feet bgs in MW-3A. As compared to 2006 groundwater levels have decreased approximately 0.3 feet. The current groundwater levels are slightly below historic highs and are approximately 12 to 17 feet higher than those measure in 1993 at the end of the California drought years of the late 1980s and early 1990s. Groundwater elevations are shown on Table 2 and Figure 3.

Groundwater elevations between the wells varied only slightly (0.02 feet). As shown on Figure 3, groundwater elevations ranged from lows of 12.97 feet MSL in MW-2, MW-3A and MW-4 to a high of 12.99 feet MSL in MW-1. The groundwater gradient calculated in the vicinity of MW-1, MW3A and MW-4 is approximately 0.001 feet/foot. As noted during previous investigations, groundwater gradients have historically been very flat.

The local groundwater flow direction measured during this sampling events is generally towards the west. The regional groundwater is to the west towards San Francisco Bay, concurrent with the topography. Prior to the current measurements gradients have be generally to the east. This change is not considered significant due to very small differences in groundwater elevations measured.

IV. LABORATORY ANALYSES

Groundwater samples were forwarded for chemical analyses to McCampbell Analytical, Pittsburg California, a state certified analytical laboratory. The samples were analyzed to detect the presence of halogenated volatile organic compounds (HVOCs) by EPA Method 8260B.

A. Halogenated Volatile Organic Compounds Results (HVOCs)

PCE was the most prevalent chemical detected at the site with concentrations ranging from a low of 6.5 ppb in the sample collected from MW-2 to a high of 71 ppb in the sample collected from MW-3A. The levels of PCE were all below levels observed during the September 2006 sampling event and were at historical low concentration in MW-3A and MW-4. TCE, a degradation product of PCE was detected in samples collected from all wells at concentration of 1.8 ppb in MW-2 to a high of 11 ppb in MW-3A. The TCE concentrations were all at historic lows. Cis-1,2-DCE, another PCE degradation product, has been historically detected in all groundwater samples collected from the site. During the 2008 sampling, Cis-1,2-DCE was not detected in wells MW-2, MW-3A and MW-4 and detected at a concentrations of 4.6 ppb in the sample collected from MW-1.

Dichlorodifluoromethane (Freon 12) was detected in all four wells at concentrations from 8.1 to 47 ppb. Freon 12 concentrations historically ranged in the tens of parts per billion with the lowest concentrations detected in MW-3A and the highest in wells MW-1 and MW-2.

Historically chloroform concentrations have been either been not detected or detected at concentrations of approximately 1 ppb. Chloroform was not detected in any of the samples collected during the June 2008 sampling event.

No other organic constituents were detected during the June 2008 sampling event.

B. Laboratory QA/QC

A review of laboratory internal quality assurance/quality control (QA/QC) report indicates the method blank and sample spike data are within the laboratory recovery limits. The laboratory QA/QC report indicated the groundwater samples were analyzed within the acceptable EPA holding time. A copy of the laboratory analytical reports and chain-of-custody records are presented in the LABORATORY RESULTS section of this report. A summary of the analytical results is presented on Table 3.

V. DISCUSSION

A. Spatial Distribution of Chemical Constituents

Chlorinated solvents continue to be detected in all wells at the property. The highest concentrations of PCE have historically been detected in MW-1. Slightly lower level have been detected in MW-3A and MW-4. Significantly lower concentrations of PCE have been detected in MW-2. The PCE breakdown products, TCE, and cis-1,2 DCE also follow this trend. Based on the spatial distribution of the chemicals detected in site monitoring wells, a single, well defined source for the chemicals does not likely exist.

B. Contaminant Trend Analyses

Concentrations of chlorinated solvents have generally decreased since the last sampling performed in 2006. Historical low PCE concentrations were detected in two of four samples with TCE and Cis-1,2-DCE concentrations all at historic lows. Chloroform levels decreased from the 1 ppb range to non-detectable levels.

Chlorinated solvent concentrations detected in the four wells during the June 2, 2008 monitoring event were compared to Environmental Screening Levels (ESLs) as described in Table F-1b Groundwater Screening Levels (groundwater is NOT a current or potential drinking water resource) in the "Screening For Environmental Concerns At Sites With Contaminated Soil and Groundwater" prepared by the California Regional Water Quality Control Board, San Francisco Bay Region, Interim Final November 2007. None of the chlorinated solvents detected exceeded their ESL.

VI. CONCLUSIONS AND RECOMMENDATIONS

The 2008 groundwater sampling data indicate that shallow groundwater at the subject property is impacted with chlorinated solvents. No specific source of the chemicals has been identified.

Concentrations of PCE and TCE and their breakdown products have generally decreased since the 2006 sampling event and are at or near historical levels indicating a stable shrinking plume. It is reasonable to presume the concentrations will continue to decrease due to the processes of natural in situ degradation which include biodegradation, volatilization and dispersion.

Based on site specific results and a comparison to ESLs propagated by the Water Board, it is unlikely residual chemicals in site groundwater pose an unacceptable risk to human health or the environment.

AllWest recommends the facility be granted "Site Closure" status by the ACHS and the Water Board. After issuance of a "Site Closure" AllWest will destroyed the four wells and disposal of all waste materials and in accordance with applicable regulations.

VII. REPORT LIMITATIONS

This report has been prepared for the exclusive use of PACCAR Inc for submittal to the Alameda County Health Care Services (ACHCS) and the Regional Water Quality Control Board (RWQCB) as it pertains to the property located at 4240 International Boulevard (East 14th Street), Oakland, California. Our services were performed in accordance with generally accepted professional practices, related to the nature of the work accomplished, in the same or similar localities, at the time the services are performed, and under the terms and conditions of the existing contract between PACCAR and AllWest.

TABLES

Table 1 - Well Construction Details

Grand Auto #43 4240 East 14th Street Oakland, California Oakland, California

AllWest Project Number 28075.28

Well Number	Surface Elevation (ft MSL)	Top of Casing (ft MSL)	Total Depth (ft bgs)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Well Diameter (Inches)
MW-1	36.83	36.55	43	33	43	4
MW-2	36.68	36.43	45	31	45	4
MW-3A	37.03	36.71	41	20	41	4
MW-4	25.54	35.08	45	30	45	4

Notes: MW-3 was replaced by MW-3A on May 25, 2000

HC-1 was abandoned on June 18, 2001

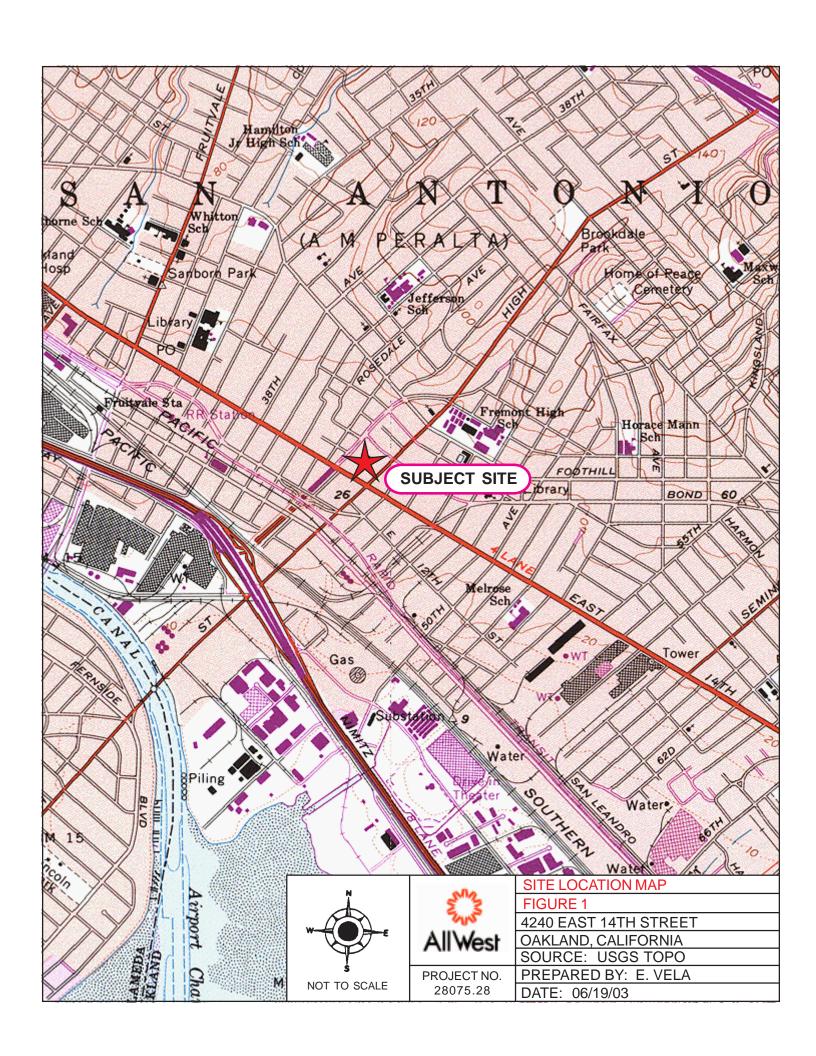
bgs = below ground surface MSL = mean sea level

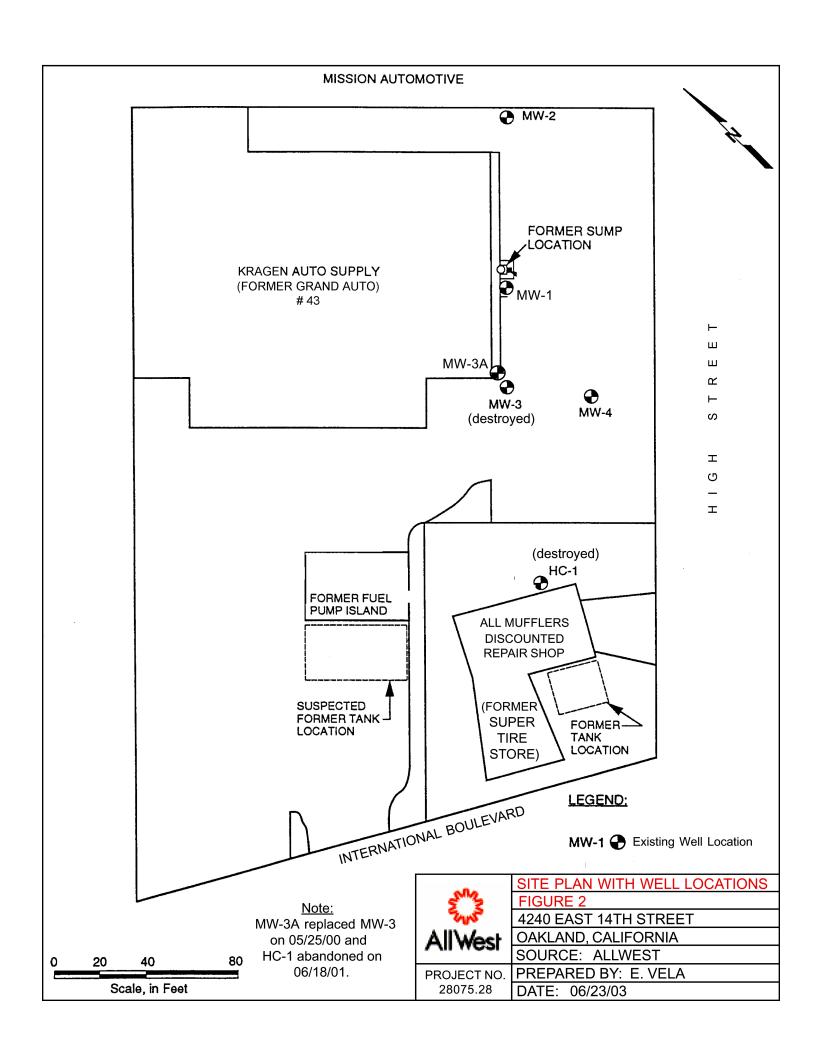
Elevations relative North Amercian Vertical Datum 1988-Ortho. Ht. (GEOID03)

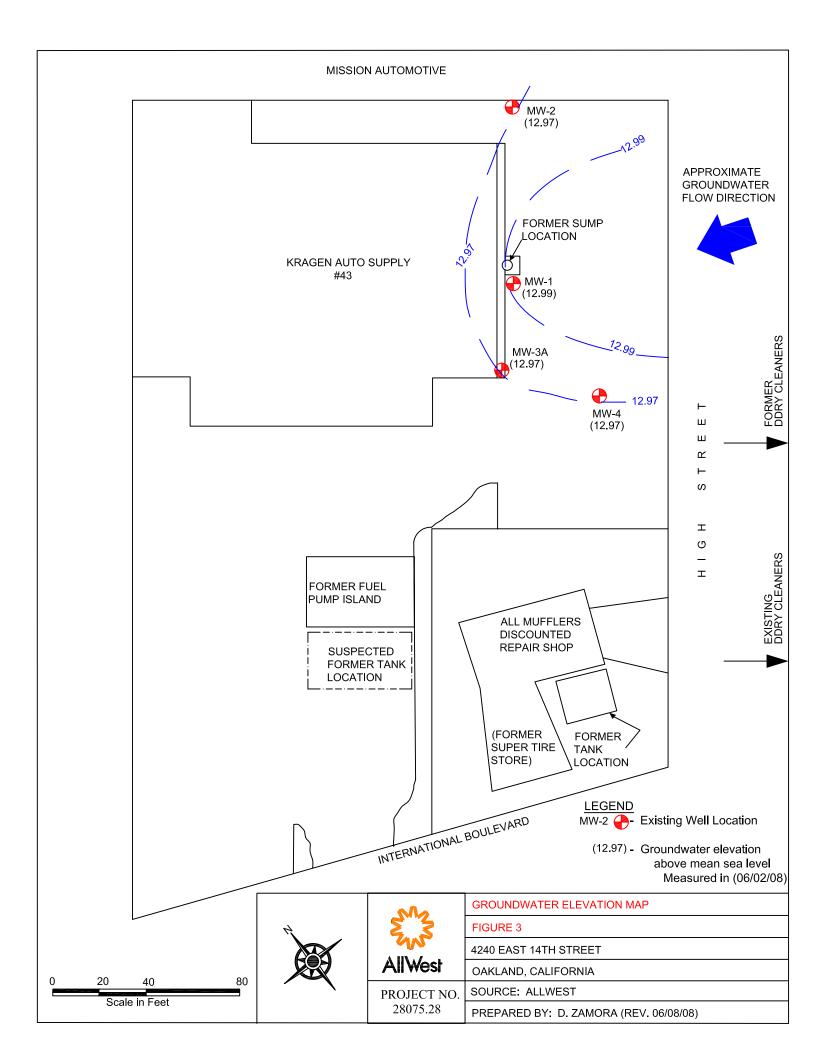
Wells were resurveyed on 9/26/06 for horivatal and verical control by

CSS Environmental Services, Inc,

Novato, Califronia (Aaron N. Stessman PE No: C 054644)


Well Number	Top of Well Casing Feet - MSL (1)	Depth to Groundwater Feet	Groundwater Elevation Feet - MSL	Date
MW-1 (1)	36.55	23.56	12.99	2-Jun-08
MW-1 (1)	36.55	23.27	13.28	27-Sep-06
MW-1	30.53	24.76	5.77	23-Jul-04
MW-1	30.53	25.29	5.24	15-May-03
MW-1	30.53	24.91	5.62	21-May-02
MW-1	30.53	25.67	4.86	19-Jun-01
MW-1	30.53	27.40	3.13	4-Nov-99
MW-1	30.53	28.18	2.35	10-May-96
MW-1	30.53	29.34	1.19	15-Sep-95
MW-1	30.53	30.83	-0.30	31-Jan-95
MW-1	30.53	32.44	-1.91	20-Sep-94
MW-1	30.53	33.04	-2.51	7-Jun-94
MW-1	30.53	34.60	-4.07	18-Feb-94
MW-1	30.53	35.30	-4.77	17-Nov-93
MW-1	30.53	34.93	-4.40	4-Aug-93
MW-1	30.53	35.45	-4.92	5-May-93
MM (2. (4)	00.40	00.40	40.07	0.100
MW-2 (1)	36.43	23.46	12.97	2-Jun-08
MW-2 (1)	36.43 30.41	23.13 24.62	13.30 5.79	27-Sep-06 23-Jul-04
MW-2	30.41	24.62 25.16	5.79	23-Jul-04 15-May-03
MW-2	30.41	25.16	5.63	21-May-02
MW-2	30.41	24.78 25.54	5.63 4.87	21-May-02 19-Jun-01
MW-2	30.41	25.54	3.13	4-Nov-99
MW-2	30.41	28.06	2.35	4-Nov-99 10-May-96
MW-2	30.41	29.19	1.22	15-Sep-95
MW-2	30.41	30.71	-0.30	31-Jan-95
MW-2	30.41	32.40	-1.99	20-Sep-94
MW-2	30.41	32.92	-2.51	7-Jun-94
MW-2	30.41	34.46	-4.05	18-Feb-94
MW-2	30.41	35.18	-4.77	17-Nov-93
MW-2	30.41	34.79	-4.38	4-Aug-93
MW-2	30.41	35.32	-4.91	5-May-93
MW-3A (1)	36.71	23.74	12.97	2-Jun-08
MW-3A (1)	36.71	23.42	13.29	27-Sep-06
MW-3A	30.70	24.90	5.80	23-Jul-04
MW-3A	30.70	25.43	5.27	15-May-03
MW-3A	30.70	25.04	5.66	21-May-02
MW-3A	30.70	25.81	4.89	19-Jun-01
MW-3	30.31	27.22	3.09	4-Nov-99
MW-3	30.31	27.96	2.35	10-May-96
MW-3	30.31	29.11	1.20	15-Sep-95
MW-3	30.31	30.62	-0.31	31-Jan-95
MW-3 MW-3	30.31 30.31	32.30 32.83	-1.99 -2.52	20-Sep-94 7-Jun-94
MW-3	30.31	32.83	-2.52 -4.07	7-Jun-94 18-Feb-94
MW-3	30.31	35.13	-4.07 -4.82	17-Nov-93
MW-3	30.31	34.70	-4.39	4-Aug-93
MW-3	30.31	35.22	-4.91	5-May-93
				ay 00
MW-4 (1)	35.08	22.11	12.97	2-Jun-08
MW-4 (1)	35.08	21.81	13.27	27-Sep-06
MW-4	29.08	23.30	5.78	23-Jul-04
MW-4	29.08	23.82	5.26	15-May-03
MW-4	29.08	23.46	5.62	21-May-02
MW-4	29.08	24.20	4.88	19-Jun-01
MW-4	29.08	25.92	3.16	4-Nov-99
MW-4	29.08	26.70	2.38	10-May-96
MW-4	29.08	27.86	1.22	15-Sep-95
MW-4	29.08	29.38	-0.30	31-Jan-95
MW-4	29.08	31.07	-1.99	20-Sep-94
MW-4	29.08	31.60	-2.52	7-Jun-94
MW-4	29.08	33.14	-4.06	18-Feb-94
MW-4	29.08	33.90	-4.82	17-Nov-93
MW-4	29.08	33.47	-4.39	4-Aug-93
MW-4	29.08	33.98	-4.90	5-May-93


⁽¹⁾ Wells were resurveyed on September 27, 2006 to North America Vertical Datum 1988-Otrho. Mt (GEOID03)


4240 East 14th Street, Oakland, California Project Number 28075.28 All results in parts per billion (ppb)

Ī						in parts per	billion (ppb					
Location	PCE	TCE	cis-1,2	FREON	Chloro-	1,1,1-TCA	1,2-DCA	Vinyl	Carbon	TPH-g	All	Date
			DCE	12	form			Chloride	Tetrachloride	_	others	Collected
	68	10	4.6	36	ND	ND	ND	ND	ND	NA	ND	2-Jun-08
	110	15	8.7	21	0.83	ND	ND	ND	ND	NA	ND	27-Sep-06
	140	19	5.9	69	ND	ND	ND	ND	ND	NA	ND	23-Jul-04
	120	15	5.8	50	ND	ND	ND	ND	ND	NA	ND	15-May-03
	140	15	ND 5.0	ND	ND	ND	ND	ND	ND	NA	ND	21-May-02
	130	17	5.3	35	ND	ND	ND	ND	ND	NA	ND	19-Jun-01
	120	17	6.6	62	ND	ND ND	ND	ND ND	ND ND	ND	ND	4-Nov-99
	270	24	4.3	NR	2.6	ND 1.3	ND 1.3	ND 1.3	ND	NR	ND	10-May-96
	200	25	6.8	NR	1.4	ND 0.5	ND 0.5	ND 0.5	ND	ND	ND	15-Sep-95
	54	13	9.7	NR	ND 1	ND 1	ND 1	ND 2	ND	ND	ND	31-Jan-95
	54	13	9.3	NR	ND 1	ND 1	ND 1	ND 2	ND	ND	ND	31-Jan-95
MW-1	270	37	19	NR	ND 5	ND 5	ND 5	ND 5	ND	ND	ND	20-Sep-94
	270	36	18	NR	ND 5	ND 5	ND 5	ND 5	ND	ND	ND	20-Sep-94
	200	28	25	NR	1.6	ND 0.5	ND 0.5	ND 0.5	ND	ND	ND	7-Jun-94
	340	35	22	NR	1.5	ND 0.5	ND 0.5	ND 0.5	ND	ND	ND	7-Jun-94
	200	25	12	NR	1	ND 0.5	ND 0.5	ND 0.5	ND	ND	ND	18-Feb-94
	230	28	15	NR	1.8	ND 0.5	ND 0.5	ND 1	ND	ND	ND	17-Nov-93
	290	23	10	NR	ND 5	ND 5	ND 5	ND 10	ND	ND	ND	4-Aug-93
	300	22	8.7	37	1	ND 0.5	ND 0.5	ND 1	ND	ND	ND	26-Apr-93
	300	22	8.7	110	1.1	0.6	ND 0.5	ND 1	ND	ND	ND	26-Apr-93
	220	28	14	NR	ND 3	ND 3	ND 1		ND	ND	ND	19-Jan-93
	310	26	11	NR	1.1	ND 0.5	ND 0.6		ND	ND	ND	10-Sep-92
	6.5	1.8	ND	47	ND	ND	ND	ND	ND	NA	ND	2-Jun-08
	8.3	5.9	1.7	24	0.91	ND	ND	ND	1.9	NA	ND	27-Sep-06
	3.7	11	3	60	ND	ND	0.53	ND	ND	NA	ND	23-Jul-04
	3.9	12	2.9	56	ND	ND	0.63	ND	ND	NA	ND	15-May-03
	6.3	4.7	0.84	44	ND	ND	ND	ND	0.61	NA	ND	21-May-02
	9.1	5.3	1	38	ND	ND	ND	ND	0.83	NA	ND	19-Jun-01
	7.6	8.1	1.9	55	ND	ND	ND	ND	2	ND	ND	4-Nov-99
	7.0	51	1.9	NR	ND 1	ND 1	ND 1	ND 1	ND	NR	ND	10-May-96
			17		ND 0.5	ND 0.5	ND 0.5	0.8		ND ND		15-Sep-95
MW-2	6.3	52 69	17	NR NR	ND 0.5 ND 0.5	ND 0.5 ND 0.5		0.8	ND ND	ND ND	ND ND	15-Sep-95 15-Sep-95
IVI VV-∠	6.5						0.9					
	3	60	17	NR	ND1 ND 5	ND 1 ND 5	ND 1 ND 5	ND2	ND ND	ND	ND	31-Jan-95
	6	130	36	NR				ND 5	ND	ND	ND	20-Sep-94
	6.9	120	31	NR	ND 0.5	ND 0.5	1.8	ND 0.5	ND	ND	ND	7-Jun-94
	4.8	75	25	NR	ND 0.5	ND 0.5	1.5	ND 0.5	ND ND	ND	ND	18-Feb-94
	6.1	32	8.7	NR	ND 0.5	ND 0.5	ND 0.5	ND 1	ND	ND	ND	17-Nov-93
	7.2	110	22	NR	ND 1.2	ND 1.2	ND 1.2	ND 2.4	ND	ND	ND	4-Aug-93
	7.5	32	8.5	31	0.9	0.6	0.6	ND 1	ND	ND	ND	26-Apr-93
			N.D.		ND	ND	N.D.		ND		NB	0.1.00
	71	11	ND	8.1	ND	ND	ND	ND	ND	NA	ND	2-Jun-08
	83	12	4.7	3.6	0.83	ND	ND	ND	ND	NA	ND	27-Sep-06
	85	12	2.4	8.3	ND	ND	ND	ND	ND	NA	ND	23-Jul-04
	130	16	ND	21	ND	ND	ND	ND	ND	NA	ND	15-May-03
	120	16	ND	7.1	ND	ND	ND	ND	ND	NA	ND	2-May-02
	120	21	ND	ND	ND	ND	ND	ND	ND	NA	ND	19-Jun-01
	150	24	14	14	ND	ND	ND	ND	ND	61	ND	4-Nov-99
	160	25	7.2	NR	ND 1	ND 1	ND 1	ND 1	ND	NR	ND	10-May-96
MW-3A	170	25	6.2	NR	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND	ND	ND	15-Sep-95
III V-SA	160	34	6.2	NR	ND 1	ND 1	ND 1	ND 5	ND	ND	ND	31-Jan-95
	240	37	11	NR	ND 5	ND 5	ND 5	ND 5	ND	ND	ND	20-Sep-94
	160	34	8.3	NR	0.6	0.6	ND 0.5	ND 0.5	ND	ND	ND	7-Jun-94
	85	19	5	NR	0.7	ND 0.5	ND 0.5	ND 0.5	ND	ND	ND	18-Feb-94
	170	29	12	NR	1.3	0.8	ND 0.5	ND 1	ND	ND	ND	17-Nov-93
	170	28	ND 5	NR	ND 5	ND 5	ND 5	ND 10	ND	ND	ND	4-Aug-93
	79	21	9.7	35	ND 0.5	0.8	ND 0.5	ND 1	ND	ND	ND	26-Apr-93
	39	4.3	ND	29	ND	ND	ND	ND	ND	NA	ND	2-Jun-08
	62	7.8	1.4	13	1.1	ND	ND	ND	1.3	NA	ND	27-Sep-06
	23	3.7	1	26	ND	ND	ND	ND	0.5	NA	ND	23-Jul-04
	120	7.7	0.75	16	ND	ND	ND	ND	ND	NA	ND	15-May-03
	70	7.7	ND	18	ND	ND	ND	ND	ND	NA	ND	21-May-02
	47	7	1.2	19	ND	ND	ND	ND	ND	NA	ND	19-Jun-01
	61	10	2.2	41	ND	ND	ND	ND	ND	ND	ND	4-Nov-99
	190	22	2.5	NR	ND 1.3	ND 1.3	ND 1.3	ND 1.3	ND	NR	ND	10-May-96
	160	24	4.4	NR	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND	ND	ND	15-Sep-95
MW-4	140	20	4.7	NR	ND 1	ND 1	ND 1	ND 5	ND	ND	ND	31-Jan-95
	220	32	5	NR	ND 5	ND 5	ND 5	ND 5	ND	ND	ND	20-Sep-94
	140	28	7.1	NR	0.9	0.9	ND 0.5	ND 0.5	ND	ND	ND	7-Jun-94
	120	31	6	NR	1.9	0.9	ND 0.5	ND 0.5	ND ND	ND	ND	18-Feb-94
	87	20	6.6	NR NR	1.9	ND 0.5	ND 0.5	ND 0.5	ND ND	ND ND	ND ND	17-Nov-93
	110	16	ND 5	NR	ND 5	ND 0.5	ND 0.5	ND 10	ND ND	ND	ND	4-Aug-93
	78	17	3.9	28	0.6	ND 0.5	ND 0.5	ND 10	ND ND	ND ND	ND ND	4-Aug-93 26-Apr-93
	10	17	3.8	20	0.0	ס.ט טאו	כיח חאו	ן טאי	עאו	טאו	טאו	20-Apr-93
	100	17	8.7	43	ND	ND	ND	ND	ND	ND	ND	4-Nov-99
		27		NR		ND 5			ND ND		ND ND	4-Nov-99 10-May-96
	200		13		ND 5		ND 5	ND 5		NR		
	170	27	14	NR	ND 0.5	ND 0.5	ND 0.5	ND 0.5	ND	ND	ND	15-Sep-95
	120	27	11	NR	ND 1	ND 1	ND 1	ND 5	ND	ND	ND	31-Jan-95
116	190	37	15	NR	ND 5	ND 5	ND 5	ND 5	ND	ND	ND	20-Sep-94
HC-1	180	42	22	NR	1	ND 0.5	ND 0.5	ND 0.5	ND	ND	ND	7-Jun-94
	140	30	13	NR	0.7	ND 0.5	ND 0.5	ND 0.5	ND	ND	ND	18-Feb-94
	150	22	11	NR	0.6	ND 0.5	ND 0.5	ND 0.5	ND	ND	ND	18-Feb-94
	130	27	16	NR	1.1	0.7	ND 0.6	ND 2	ND	ND	ND	17-Nov-93
	83	27	15	NR	ND 0.5	ND 0.5	ND 0.5	ND 1	ND	ND	ND	4-Aug-93
	46	22	13	47	ND 0.5	ND 0.5	ND 0.5	ND 1	ND	ND	ND	26-Apr-93
												· · · · · · · · · · · · · · · · · · ·

FIGURES

LABORATORY RESULTS

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

All West Environmental, Inc	Client Project ID: #28075.28; Paccar	Date Sampled: 06/02/08
530 Howard Street, Ste. 300		Date Received: 06/02/08
San Francisco, CA 94105	Client Contact: Mike Siembieda	Date Reported: 06/06/08
Suil Tunesco, Off 71103	Client P.O.:	Date Completed: 06/05/08

WorkOrder: 0806015

June 06, 2008

D		r • •	
Dear	N/	11	70

Enclosed within are:

- 1) The results of the 4 analyzed samples from your project: #28075.28; Paccar,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD

PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email; main@mccampbell.com

Bill To:

Telephone: (877) 252-9262

Report To:MIKE CICMANIONA

Fax: (925) 252-9269

CHAIN OF CUSTODY RECORD

TRITITION	ADOUNT	D TIME
LINKIN	ARUUN	D TIME

GeoTracker EDF 🖾 PDF 🖾 Excel 🖵 Write On (DW) 🖵

RUSH 24 HR

48 HR 72 HR 5 DAY

Check if sample is effluent and "J" flag is required s Request Other Comments Analysis Request

Report To: MIK	& DIEM	pled H	- B	ill To):								_		_			A	nary	YSIS	Rec	ues	I .	_	_		_	_	Other	Comments
Company: ALL													-		6					sus										Filter
530 HOW	ARD ST												\$ 8015) / MTBE		B&I					gen										Samples
S.F. CA	94105				il:M						571	.co	M 3		00 E/					Con		0	Ü			(03	6			for Metals
S.F. CA Tele: (415) 3	91-2510)			415					r			1015		/ 552	0	(\$	21)		ors/		8	2		_	/ 602	602			analysis:
Project #: 280	73.28			rojec	t Nar	ne:	PAG	CC	AR				+		199	418.	VOC	/ 80	3	rocl		icide	F		NAS	010	010			Yes (No
Project Location:	OAKLA	JO, CI	A										8021		se (1	ous (10	602	icid	Y: A	(s)	lerb	8	(S)	s/P	8/6	8/6	020)		
Sampler Signatur	·e:					_							05/		Grea	carb	802	EPA	Pes	ONL	sticic	C	ğ	Svo	PAH	200	200.	9 / 01		
SAMPLING Z MATRIX METHOD PRESERVE					0 86	(8)	18	ydro	010	LY	0	B's (P Pe	cidic	260 (270 (310 (7.00	0.77	/ 60										
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other				Other Gas (602)	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (4068) HVOC	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)		
1W-1		6/2/0Y 6/2/0Y 6/2/0Y	9:48	9 53	VOA					-													X							
MW-Z		6/2/08	11:37	13	VOA	X				X	X												X							
MW-2 MW-39		GIZIOY	10:38	43	VOA	X				X	X												X							
MW-4		6/201	1040	100	VOA	X				X	X												X							
-1.0		Glaci	10 10	3	VUIS	1		+		100	-	\neg	_		\vdash											\vdash				1
				-	\vdash	+			+	-		+	+	+			-											\vdash		
					-	-			+	-		+	+	+												-			-	-
				-	-	+	H	+	+	\vdash		+	+	+	-	-	-				_		-	-	-	-				
				-	-	-		-	+	-		-	+	-	-	-	-						_	-	-	-	-			
						┖							_												_					
1													*																	
					1	\top							\top																	
					1	+				+			+		+															
Relinquished By:		Date:	Time:	Rec	eived	Bur	5			_		1	+	CE/t°	7	64	_	_	_		_	_	_	-	_	-	CC	MM	ENTS:	
Relinquished By:	el	6/2/98	20	1		>	5<			-	1		1	CE/t°	CO	NDIT	TION			/										
Relinquished By:)		Time	Rec	eived I	By:	1 -		1	4	0	_	-	HEAD	SPA	CEA	TED	INI	AR	_		7.								
	7 6	12/00	40)		2	10		Va		K		1	APPR	OPR	IATE	CO	NTA	INE	RS_	V	_								
Retinquished By:	-	Date:	Time:	Rec	eived I	By:	1						٦,	PRES	ERV	ED I	N LA	В			•									
	//	1							10				•	PRES	ERV	ATIC		OAS	0	&G	M.pH	ETA <2_	LS	от	HEI	R				

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Melissa Valles

— // A >	rg, CA 94565-1701 52-9262					Work	Order:	: 08060	015	(ClientC	Code: A	WE				
			WriteOn	✓ EDF		Excel		Fax		✓ Email		Hard	Сору	Thir	dParty	☐ J-1	flag
Report to: Mike Siembieda All West Environmental, Inc 530 Howard Street, Ste. 300		Email: mi cc: PO:			All	ırlene T West E 0 Howa	nviron			Requested TAT: 5 day Date Received: 06/02/200					-		
San Francis	sco, CA 94105 10 FAX (415) 391-2008	ProjectNo: #2	San Francisco, CA 94105 darlene@allwest1.com								Date Printed: 06/02/2008						
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	Req 4	uested 5	Tests 6	(See leg	gend be	elow)	10	11	12
0806015-001	W-MW-1		Water	6/2/2008 9:48		А	Α								T	Т	
0806015-002	W-MW-2		Water	6/2/2008 11:37	ΤĒ	Α									+		
0806015-003	W-MW-3A		Water	6/2/2008 10:38		Α											
0806015-004	W-MW-4		Water	6/2/2008 10:40		Α											
Test Legend:																	
	BMS_W 2	PREDF REPO	ORT	3				4					Γ	5			
6	7			8				9						10			
11	12								•				_				

Comments:

All West Environmental, Inc

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

6/2/08 5:24:35 PM

Date and Time Received:

Sample Receipt Checklist

Project Name:	#28075.28; Pacca	ır				Check	dist completed a	nd reviewed by:	Melissa Valles
WorkOrder N°:	0806015	Matrix	<u>Water</u>			Carrie	r: Rob Pringl	e (MAI Courier)	
			Chain	of Cu	stody (C	OC) Informa	ıtion		
Chain of custody	present?			Yes	V	No 🗆			
Chain of custody	signed when relinquis	shed and	d received?	Yes	V	No 🗆			
Chain of custody	agrees with sample la	abels?		Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?			Yes	✓	No 🗆			
Date and Time of	collection noted by Clie	ent on C	OC?	Yes	✓	No 🗆			
Sampler's name n	noted on COC?			Yes		No 🔽			
			Sa	ample	Receipt	Information	1		
Custody seals int	act on shipping contai	ner/cool		Yes		No 🗆	•	NA 🔽	
-	er/cooler in good condi			Yes	V	No 🗆			
	er containers/bottles?			Yes	V	No 🗆			
Sample container	rs intact?			Yes	✓	No 🗆			
Sufficient sample	volume for indicated	test?		Yes	✓	No 🗌			
		Sa	mple Preser	vation	n and Ho	old Time (HT)) Information		
All samples receiv	ved within holding time			Yes	V	No 🗆			
Container/Temp E	_				er Temp:	7.6°C		NA 🗆	
	s have zero headspac	ce / no b	ubbles?	Yes	✓	No 🗆	No VOA vials s	ubmitted	
	ecked for correct pres			Yes	V	No 🗌			
TTLC Metal - pH	acceptable upon recei	ot (pH<2	2)?	Yes		No 🗆		NA 🗹	
* NOTE: If the "N	lo" box is checked, se	e comm	ents below.						
=====	======	===			===				======
Client contacted:			Date contact	ed:			Conta	cted by:	
Comments:									

McCampbell Analytical, Inc.

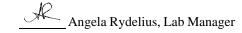
"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

All West Environmental, Inc	Client Project ID: #28075.28; Paccar	Date Sampled: 06/02/08
530 Howard Street, Ste. 300		Date Received: 06/02/08
350 Howard Succe, Stc. 300	Client Contact: Mike Siembieda	Date Extracted: 06/03/08-06/05/08
San Francisco, CA 94105	Client P.O.:	Date Analyzed 06/03/08-06/05/08

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0806015


Extraction Method: SW5030B	Anal	Work Order: 0806015				
Lab ID	0806015-001A	0806015-002A	0806015-003A	0806015-004A	Reporting	Limit for
Client ID	W-MW-1	W-MW-2	W-MW-3A	W-MW-4		=1
Matrix	W	W	W	W	S	W
DF	1	2	1	1		**
Compound		Conce	entration		μg/kg	μg/L
Bromodichloromethane	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
Bromoform	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
Bromomethane	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
Carbon Tetrachloride	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
Chlorobenzene	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
Chloroethane	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
Chloroform	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
Chloromethane	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
Dibromochloromethane	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
1,2-Dibromoethane (EDB)	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
1,2-Dichlorobenzene	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
1,3-Dichlorobenzene	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
1,4-Dichlorobenzene	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
Dichlorodifluoromethane	36	47	8.1	29	NA	0.5
1,1-Dichloroethane	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
1,2-Dichloroethane (1,2-DCA)	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
1,1-Dichloroethene	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
cis-1,2-Dichloroethene	4.6	ND<1.0	ND<2.5	ND<1.0	NA	0.5
trans-1,2-Dichloroethene	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
1,2-Dichloropropane	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
cis-1,3-Dichloropropene	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
trans-1,3-Dichloropropene	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
Freon 113	ND<50	ND<20	ND<50	ND<20	NA	10
Methylene chloride	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
1,1,1,2-Tetrachloroethane	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
1,1,2,2-Tetrachloroethane	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
Tetrachloroethene	68	6.5	71	39	NA	0.5
1,1,1-Trichloroethane	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
1,1,2-Trichloroethane	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
Trichloroethene	10	1.8	11	4.3	NA	0.5
Trichlorofluoromethane	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
Vinyl Chloride	ND<2.5	ND<1.0	ND<2.5	ND<1.0	NA	0.5
	Su	rrogate Recoverie	s (%)	T	1	
%SS1:	103	102	102	103		
%SS2:	104	99	103	105		
%SS3:	103	96	101	80		
Comments						
				•		

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0806015

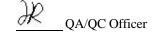
EPA Method SW8260B	A Method SW8260B Extraction SW5030B				BatchID: 36027 S			piked Sample ID: 0806011-010B				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
7 mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Chlorobenzene	ND	10	104	102	1.68	105	104	0.746	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	110	109	0.838	112	114	1.68	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	100	96.8	3.56	99.1	99.8	0.685	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	98.6	95.1	3.59	102	101	0.626	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	110	106	3.80	110	110	0	70 - 130	30	70 - 130	30
%SS1:	98	25	103	102	0.543	102	103	0.586	70 - 130	30	70 - 130	30
% SS2:	95	25	101	101	0	100	99	0.198	70 - 130	30	70 - 130	30
%SS3:	106	25	96	97	0.645	97	97	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

BATCH 36027 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806015-001A	06/02/08 9:48 AM	06/03/08	06/03/08 9:55 AM	0806015-001A	06/02/08 9:48 AM	06/04/08	06/04/08 10:05 PM
0806015-002A	06/02/08 11:37 AM	06/05/08	06/05/08 10:48 PM	0806015-003A	06/02/08 10:38 AM	06/03/08	06/03/08 11:19 AM
0806015-003A	06/02/08 10:38 AM	06/04/08	06/04/08 11:30 PM	0806015-004A	06/02/08 10:40 AM	06/03/08	06/03/08 12:02 PM
0806015-004A	06/02/08 10:40 AM	06/05/08	06/05/08 12:13 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

NONE

Appendix A

Project No.: 28015.28 Project Name: PACCAR									
Well No.: MW-/ Well Location:									
Well Depth: 43 (ft.) Casing Diameter: 4 (in.)									
Depth to Water: 23.59 (ft.) Date: 6-2-08 Time: 4900									
Water Column in Well: $\frac{\sim 20}{\sim}$ (ft.) Well Volume: $\frac{3}{\sim}$ (gal.)									
Odor?		Free Prod			cness:				
Purging M	lethod: H	Hand Pump _	Subme	ersible Pump	Baile	er X Other			
Time	pH	Conduc. (µS)	Temp. (°C)	Water Level	Volume Removed	Remark			
68.58	7.25	621	66.0	23.59	Sturt	< kar			
09:00	7.28	612	67.7		7				
0910	7.07	744.	65.9		16	Turbid			
	6.51	731	631		27	SI Turking			
0930		7,91	64.1		37	ph - MAL Buse			
		,				·			
Purging Start Time: 8:57 Purging Stop Time: 955									
Total Volu	ıme Purge	ed: <u>-40</u>	(gal.)	. F ¹	Well Dewa	ter? _ <i>NG</i>			
					e:				
Sampling	Method:	Teflon Baile:	- D	isposable Ba	ailer X	Sampling Pump			
	•			- Sign	Sample No	: MW-/			
Remark:		3- VU4							
					<u>,</u>				

Sampler: Sienbied/Reve Date/Time: 6/2/08

Project No	.: 2867	5.28	Project	Name: PA	CCAR	
Well No.:	MW-2	2_	Well L	ocation:		
Well Depti	n: <u>45</u>	(ft.)			meter: 4	
Depth to ∇	Vater: 1	3.46 (ft.)	Date: 6/2/0	Tim	e:
Water Coli	umn in V	/ell: <u>ZZ</u>	(ft.)	Well Volum	ie: <u>42</u> (gal.)
Odor?	NO	Free Prod	uct? No	Thic	kness:	
Purging M	ethod: F	Hand Pump	Subm	ersible Pum	p Baile	er X Other
Time	pН	Conduc.	Temp. (°C)	Water Level	Volume Removed	Remark
1100		8:11	76.0		26AC	clear
1107	Name of Persons of	8.03	74.0		96AC	cleu
11 \$8	-carden	879.	72.6		18600	clean
1132		9.41	74.6		3560	
1137		971	79 <		40 54	51 charf
			i			1
		: <u>[[100</u>		•	p Time: Well Dewa	
			/	(ft.) Tin		
		o Sampling:		_		
						Sampling Pump
Sample Co	Mected:	w-Mu	-2-		Sample No	.: <u>MW-2</u>
Remark:						
	3	- UO A1		ph/meh	in of c	norlyng-
Sampler:	Siembied	h / Rueve		Date/Time:	6/2/08	

Project No	.: <u>2807</u> 3	5.28	Project	: Name: <u>P</u>	ACCAR				
Well No.: MW-3A Well Location:									
Well Depth: 4 (ft.) Casing Diameter: 4 (in.)									
Depth to Water: 23.79 (ft.) Date: 6-2-68 Time: 914									
Water Colu	umn in W	Tell: 11 Free Prod	(ft.) uct?	Thic	e: <u>-34-</u> (kness:	gal.) er			
Furging IVI	eniod. Tr								
Time	pН	Conduc. (μS)	Temp. (°C)	Water Level	Volume Removed	Remark			
0948	/	539	65.4		s to ut	SI. Claus			
10:05	1 :	527	71.0		15	Clark Nurbal			
1022		574.	73.5		30	W U			
1038		5.84	742		40_	J			
	Purging Start Time: 9:48 Purging Stop Time: 16 47 Total Volume Purged: 20 (gal.) Well Dewater?								
					ne:				
Sampling i	Method: 1	Teflon Baile	r <u>X</u>	Disposable B	ailer <u>X</u>	Sampling Pump			
						.: MW-3A			
Remark:			3- U(21/11					

Sampler: Siembruh / Pleeve Date/Time: 104x / 6-2-08

Project No	.: 280	75.28	Project	Name: PA	CCAR	
Well No.:	MW-	1_	Well L	ocation:		
Well Dept	h: <u>45</u>	(ft.)		Casing Dian	meter: <u>4</u>	(in.)
Depth to \	Water: _	22e 1/ (ft.)	Date: <u>6/2</u>	log Tim	e:
			•		ne: <u>~ 44</u> (
					kness:	
						er X Other
Time	pН	Conduc.	Temp. (°C)	Water Level	Volume Removed	Remark
1000		5.6/	71.0		1 bac	Clan
1010		8.63	70		10 Gal	
1020		8.57.	71-7		25 (ml).	
1031		8.23	72.2		35 bral	
1040		8.22	72.1		40 hal	l l
		1000		Duraina Sto	p Time: <u>10</u> 5	40
Total Volu	ume Purg	ged: <u>40</u>	(gal.)		Well Dewa	nter? N0
Water Lev	vel Prior	to Sampling:		_ (ft.) Tin	ne:	
Sampling	Method:	Teflon Baile	r I	Disposable B	ailer <u>X</u>	Sampling Pump
						o.: MW-4
_		•				
Remark:		CAP or C			M - 149 14, 64	IN side of wall van It
			3 -	VOIP		
					, .	
Sampler:	Sienbica	ch/Reere		Date/Time:	6/2/08	