

RECEIVED

By Alameda County Environmental Health 1:57 pm, May 13, 2016

May 13, 2016

Alameda County Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Attn: Anne Jurek

Attil. Allino Julor

RE: Groundwater Monitoring Results, First Semi-Annual 2016 Monitoring Period,

Cargill Salt - Alameda Facility, Alameda, California,

SLIC Case No. RO0002480

Dear Ms. Jurek,

The attached report presents the groundwater monitoring results for the first semi-annual 2016 monitoring period for the Cargill Salt Alameda facility. The report presents the results of groundwater monitoring data collected during the first quarter of 2016. Groundwater levels in the site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined.

The tetrachloroethene (PCE) concentrations reported for monitoring well MW-2 continue to indicate that the phytoremediation project implemented in June 2005 has reduced the average seasonal concentration of PCE at the site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report are true and correct to the best of my knowledge.

Should you have any questions concerning the report, please don't hesitate to call me at (510) 790-8182.

Sincerely,

Sean Riley

Environmental Manager

Groundwater Monitoring Results First Semi-Annual 2016 Monitoring Period Cargill Salt – Alameda Facility Alameda, California

Groundwater Monitoring Results First Semi-Annual 2016 Monitoring Period

Cargill Salt – Alameda Facility
Alameda, California

Prepared for:

Cargill Salt 7220 Central Avenue Newark, California 94560

Prepared by:

Crawford Consulting, Inc.
4 North Second Street, Suite 650
San Jose, CA 95113
(408) 287-9934

Project No. CS1605 May 13, 2016

Contents

1	Introduction	1
	1.1 Reporting Period Activities	1
	1.2 Background Information	2
	1.2.1 Site Description	2
	1.2.2 Summary of Investigative and Remedial Activities	
	1.2.3 Source of VOC Impact	
2	Groundwater Flow Analysis	4
	2.1 Water-Level Measurement	
	2.2 Groundwater Flow Direction and Gradient	
	2.3 Groundwater Velocity	5
3	Groundwater Sampling and Analysis	
	3.1 Sample Collection and Analysis	
	3.2 Analytical Results	
	3.2.1 Quality Control	
	3.2.2 Groundwater Results	
	3.3 Discussion	
4	Phytoremediation Project Status	

Professional Certification References Limitations

Tables

Table 1.	Groundwater Level Data
Table 2.	Relative Percent Difference Based on Duplicate Samples
Table 3a.	Summary of Groundwater Monitoring Well Data - First Quarter 2016
Table 3b.	Historical Summary of Groundwater Monitoring Well Data

Illustrations

Figure 1.	Site Location
Figure 2.	Groundwater Monitoring Well Locations
Figure 3.	Graphical Summary of Groundwater Elevations
Figure 4.	Groundwater Elevation Contours – February 2016
Figure 5.	VOC Concentrations in Groundwater – February 2016
Figure 6.	Graphical Summary of PCE Concentrations
Figure 7.	PCE Concentrations vs. Groundwater Elevation

Appendices

(presented in electronic format only)

Appendix A.	Field Data Sheets
Appendix B.	Groundwater Velocity Calculations
Appendix C.	Certified Analytical Reports and Chain-of-Custody Documentation

Electronic File

Entire report presented in electronic file format (pdf) on CD-ROM inside back cover.

1 Introduction

Crawford Consulting, Inc. (Crawford) has prepared this report on behalf of Cargill Salt for the Cargill Salt Dispensing Systems Division facility (hereafter, the Site) in Alameda, California.

Results of groundwater transect sampling and the initial sampling of three groundwater monitoring wells installed in November 1999 were presented in the January 31, 2000 report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW). The purpose of the groundwater transect sampling and the monitoring well installation and sampling was to help characterize and monitor the occurrence of volatile organic compounds (VOCs), primarily tetrachloroethene (PCE) and its breakdown product, trichloroethene (TCE), previously detected in groundwater at the Site.

One of the recommendations in the report was to confirm the groundwater analytical results of the newly installed monitoring wells (wells MW-1, MW-2, and MW-3) and the groundwater flow direction and gradient via quarterly monitoring. Cargill Salt began groundwater monitoring on a quarterly basis after the initial groundwater monitoring well sampling event in November 1999. For 2000 through 2005, reporting was performed on an annual basis. Cargill Salt began reporting on a semi-annual basis in 2006.

Cargill Salt conducted additional characterization activities in November and December 2001 to evaluate the off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue.

A phytoremediation project was implemented at the Site in June 2005. Based on reductions in PCE concentrations in groundwater since 2006, Alameda County Environmental Health suggested in a September 30, 2009 letter that Cargill Salt reduce the groundwater monitoring frequency from quarterly to semi-annually. The second half of 2009 was the first semi-annual monitoring period under the reduced monitoring frequency. Groundwater sampling and analysis are now performed during the first and third quarters.

1.1 Reporting Period Activities

This report presents the results of groundwater monitoring data collected during the first quarter of 2016. Groundwater levels in the site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined.

The monitoring event for the first semi-annual 2016 monitoring period was conducted on February 2, 2016. Supervision of the monitoring event was conducted for Cargill Salt by Crawford. Groundwater level measurements and collection of groundwater samples were conducted by Field Solutions, Inc. The groundwater samples were analyzed by TestAmerica Laboratories, Inc., a state-certified laboratory in Pleasanton, California.

1.2 Background Information

A description of the Site and a summary of the development of characterization and monitoring programs for the Site are presented in this section. The information presented in this section is for historical reference and does not include reporting of monitoring data for the monitoring period of this semi-annual report.

1.2.1 Site Description

Alameda is an island on the east side of San Francisco Bay, separated from Oakland by a tidal canal (Figure 1). The Cargill Salt Dispensing Systems Division facility is located on a rectangular lot in an industrial and residential neighborhood. The facility building occupies approximately one-third of the Site and is separated from the vacant, unpaved side of the lot by an asphalt driveway (Figure 2). The Site is bordered by a sheet-metal shop and a residential lot to the northwest, an apartment complex to the southwest, and a residential lot to the southeast.

From 1951 to 1978, the Alameda facility produced salt-dispensing units, which required casting and milling aluminum parts.

Constituents of concern associated with site operations have included casting sands with elevated concentrations of metals, and solvents, machine oils, and grease used in casting and milling operations. As discussed below, previous investigations and remedial activities have investigated and remediated metals and solvents (VOCs) in vadose-zone soil.

1.2.2 Summary of Investigative and Remedial Activities

Cargill Salt initiated site investigative activities in 1993 to determine if facility operations had impacted site soils. Cargill Salt submitted the results of the soil sampling investigation to the Alameda County Environmental Health Services (ACEHS) in October 1993 along with a workplan for excavation and disposal of impacted soils and assessment of potential impact to groundwater (Groundworks Environmental, Inc. [Groundworks], 1993).

After approval of the workplan by ACEHS, Cargill Salt conducted several phases of soil remediation and groundwater characterization. Surficial soils impacted by metals were excavated for disposal off site. Vadose-zone soils with the highest degree of impact by VOCs were also excavated for off-site disposal (see "Soil excavation area" on Figure 2).

The results of these activities were submitted to the ACEHS in a report, *Soil and Groundwater Investigations and Remedial Activities*, *July 1993 – September 1994*, *Cargill Salt – Alameda Facility*, *Alameda, California* (Groundworks, 1995). Recommendations for additional work to further delineate the lateral and vertical extent of VOCs in groundwater beneath the Site were presented in the report.

A workplan for the additional delineation of VOCs in groundwater, *Workplan for Groundwater Characterization and Monitoring Well Installation*, 2016 Clement Avenue, Alameda, California (CCI), was submitted to the ACEHS in July 1999.

After approval of the workplan by the ACEHS, Cargill Salt conducted groundwater sampling and well installation activities during August and November of 1999. The results of these activities were submitted to the ACEHS in a report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and

Conor Pacific/EFW, dated January 31, 2000). After the initial groundwater monitoring well sampling event in November 1999, Cargill Salt began groundwater monitoring on a quarterly basis.

A work plan for remedial investigation activities, *Workplan for Off-Site Characterization, Cargill Salt* – *Alameda Facility, Alameda, California* (Conor Pacific/EFW), was submitted to the ACEHS in June 2001. After approval of the workplan by the ACEHS, Cargill Salt conducted characterization activities in November and December 2001 to evaluate off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue. The results of these activities were submitted to the ACEHS in the August 21, 2002 submittal *Off-Site Groundwater Characterization, Cargill Salt* – *Alameda Facility, Alameda, California*, prepared by Conor Pacific/EFW.

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid of 24 rows. The rows are generally 6 feet apart with trees on 7-foot centers on each row. Selection of the phytoremediation approach and implementation of the project were described in the October 20, 2006 report, *Groundwater Monitoring Results*, *First through Fourth Quarter 2005*, *Cargill Salt – Alameda Facility*, *Alameda*, *California* prepared by Crawford Consulting, Inc. In April 2008, seven additional saplings were planted in the rear of the property near monitoring well MW-2.

The Site groundwater monitoring wells were re-surveyed in September 2006 by CSS Environmental Services in order to provide Geotracker-compliant survey data. Results of the casing elevation survey indicate that each well is approximately 6.4 feet higher than the previous survey conducted in 1999. This difference is due to the use of different datum for the 2006 and 1999 surveys. The casing elevations from the September 2006 survey are shown on Table 1.

1.2.3 Source of VOC Impact

As discussed in the 1995 report, the occurrence of VOCs in soils and groundwater at the Site appears to be the result of a discharge or spill to surficial soils at a location near the rear property line at the southwestern corner of the property. The area with the highest degree of chemical impact was delineated prior to excavation and was then excavated using a backhoe and transported off-site for appropriate disposal. It is possible that the VOCs detected in soils and groundwater at this location were associated with waste products from facility operations. The VOCs may be associated with solvents previously used for degreasing operations at the facility, although there are no records indicating use of PCE. Site records indicate that the solvents used for degreasing operations were not PCE-based solvents.

It is also possible that the VOCs and oil and grease are associated with waste products discarded from neighboring properties. There is an apartment complex next to the rear property line of the facility, and the laundry room for this complex is in the utility shed immediately adjacent to the rear property line. This laundry room is only 4 feet away from the area of highest impact to soil. If PCE associated with laundry cleaning products were spilled in this laundry room, it is possible that it could have drained onto the Cargill Salt property.

2 Groundwater Flow Analysis

Groundwater levels were measured and a groundwater contour map was prepared for the first semi-annual 2016 monitoring event.

2.1 Water-Level Measurement

Water levels in four of the groundwater monitoring wells (MW-1, MW-2, MW-3 and MW-4) were measured on February 2, 2016, before any of the groundwater monitoring wells were purged for sampling for the semi-annual monitoring event. The groundwater monitoring well locations are shown on Figure 2. The water levels were measured with an electric sounder. The depth to water at each well was recorded on a *Water Level Field Data* sheet (see Appendix A).

The water-level data through the first quarter of 2016 are shown on Table 1. The data in Table 1 include the date and time of measurement, the well casing elevation, the measured depth to groundwater, the groundwater elevation, and the change in elevation from the previous measurement. A plot of historical groundwater elevations is shown in Figure 3.

As reviewed in the last semi-annual monitoring report, groundwater levels in the on-site monitoring wells (MW-1, MW-2, and MW-3) and off-site well (MW-4) showed a different pattern in the first and third quarters of 2011 than the general seasonal pattern for the previous nine years (see Figure 3). Groundwater levels in all four wells generally exhibit similar seasonal fluctuations, and the first quarter groundwater elevations have typically exhibited effects of winter-season recharge. However, the groundwater elevations recorded in March 2011 for the three most downgradient wells showed a decline rather than the typical seasonal rise. The levels measured for those three wells in March 2011 were the lowest recorded to date. That trend continued in 2011, with the September 2011 groundwater elevations recorded for all four wells being the lowest recorded to date for each of the wells.

An overall downward trend had continued from 2011 through the third quarter 2014 measurement event. Seasonal recharge was still apparent but the average groundwater elevation had been declining. The change in the groundwater elevations noted since March 2011 may be related to nearby East Bay Municipal Utility District (EBMUD) sewer pipeline repair and replacement operations as well as to dewatering operations that were conducted at a nearby facility demolition project.

The overall downward trend noted through the third quarter 2014 measurement event appears to have ceased but the average seasonal groundwater elevations remain below those recorded though 2010. The water levels recorded for the first quarter 2015 (March 2015) measurement event indicated a rebound in groundwater elevations, with all the wells showing increases compared to the previous measurements (see Figure 3). The water levels recorded for the third quarter 2015 (September 2015) measurement exhibited a typical seasonal decrease compared to the first quarter 2015 measurement. The water levels recorded in September 2015 were slightly higher than those recorded in September 2014.

The water levels recorded for the first quarter 2016 (February 2016) measurement exhibited a typical seasonal increase.

2.2 Groundwater Flow Direction and Gradient

A groundwater contour map based on the February 2016 water-level data is shown on Figure 4.

The groundwater flow pattern determined for the first quarter of 2016 for the site area was generally similar to patterns previously determined for the site, with flow beneath the site to the northeast. The horizontal hydraulic gradient measured for the site for the first quarter of 2016 was 0.028, similar to gradients previously determined.

2.3 Groundwater Velocity

Average linear groundwater flow velocities (V) were calculated using a form of Darcy's Law,

$$V = Ki/n$$
,

where "K" is the hydraulic conductivity, "i" is the horizontal hydraulic gradient, and "n" is the effective porosity. The groundwater velocity calculations for the first quarter of 2016 groundwater data are presented in Appendix B.

Using hydraulic conductivity and porosity values determined for saturated native materials at the Site [based on slug tests and laboratory soil testing, respectively (Conor Pacific/EFW, 2002)], and the horizontal hydraulic gradients determined from the first quarter 2016 groundwater contour map, the groundwater flow velocity beneath the Site is calculated to be approximately 1.8 feet per year (ft/yr) for the first quarter 2016 measurements. The groundwater velocities measured for the Site have historically been in the range of 0.1 to 2 ft/yr.

3 Groundwater Sampling and Analysis

This section summarizes the sample collection and analytical methods, presents an evaluation of quality control data, and summarizes the results of the sampling events.

3.1 Sample Collection and Analysis

Groundwater samples were collected February 2, 2016 from groundwater monitoring wells MW-1, MW-2, MW-3, and MW-4.

Dedicated tubing was installed in wells MW-1, MW-2, and MW-3 prior to the first quarter 2000 sampling event and on December 17, 2001 in well MW-4 to facilitate sampling with a peristaltic pump. Dedicated fluorinated ethylene propylene resin (FEP)-lined polyethylene tubing was installed in each monitoring well. The tubing intake was placed about one foot above the well bottom in each of the wells. Viton dedicated check valves were installed on the tubing intakes to prevent back-flow of water into the well. A short length of dedicated Viton tubing was installed at the well head for use in a peristaltic pump head. Prior to sample collection for each quarterly monitoring event, the wells were purged using a peristaltic pump. Field parameters (pH, electrical conductivity, temperature, and turbidity) were measured in purged groundwater from each well prior to sampling; these data are recorded on the Sample Collection Field Data sheets presented in Appendix A. After purging, groundwater samples were collected using the peristaltic pump and the dedicated Viton pump head discharge tubing.

The groundwater samples were analyzed for VOCs using U.S. Environmental Protection Agency (USEPA) Method 8260. Results for all Method 8010 analytes were reported. The groundwater samples for the first semi-annual 2016 event were delivered with appropriate chain-of-custody documentation to TestAmerica Laboratories, Inc., a state-certified laboratory in Pleasanton, California, for chemical analysis.

3.2 Analytical Results

The results of field and laboratory quality control measures and the results of the groundwater monitoring well samples are reviewed in this section. The certified analytical reports and chain-of-custody documentation are presented in Appendix C.

3.2.1 Quality Control

Quality control (QC) samples were analyzed as part of the sampling and analysis program to evaluate the precision and accuracy of the reported groundwater chemistry data. QC samples included both field and laboratory samples. Descriptions of the purpose of specific field and laboratory QC samples used during the sampling and analysis program and an evaluation of field and laboratory QC results are presented below.

Field Quality Control Samples

A field duplicate was used during the first semi-annual 2016 sampling event for the Site. A field duplicate is used to assess sampling and analytical precision. The duplicate is collected at a selected well (MW-2) and then submitted "blind" to the laboratory for analysis with the same batch as the regular sample for the selected well. An estimate of precision is obtained by calculating the relative percent difference (RPD) between the regular sample and the duplicate sample using the following formula:

RPD =
$$[x - y] 100$$

0.5 $(x + y)$

where: [x - y] = the absolute value of the difference in concentration between the regular sample (x) and the duplicate sample (y).

Laboratory Quality Control Samples

The following types of laboratory QC samples were used during the first semi-annual 2016 analytical program for the Site:

- surrogate spikes
- matrix spikes/duplicate matrix spikes

A surrogate spike is a check standard added to a sample in a known amount prior to analysis. Surrogate spikes consist of analytes not normally found in environmental samples and not targeted by the analytical procedure. Surrogate spikes provide information on recovery efficiency by comparing the percent recovery of specific surrogate analyses to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis exhibits acceptable recovery efficiency. Recoveries that fall outside the acceptance limits indicate a potential problem with the recovery efficiency of analytes, which in turn indicates a potential bias with respect to the reported concentration of the environmental samples analyzed in the same batch.

Matrix spikes and duplicate matrix spikes are analyzed by the laboratory for the purpose of providing a quantitative measure of accuracy and precision, and to document the effect that the sample matrix has on the analysis. A selected sample is spiked in duplicate with known concentrations of analytes. The recoveries of the spiked analytes are compared to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis has no statistically significant bias (i.e., the analysis is accurate). Recoveries that fall outside of the acceptance limits have a positive or negative bias, depending on whether the recovery is greater or less than the upper or lower acceptance limit, respectively. Analyses where analyte recoveries fall outside the acceptance limits should be regarded as estimates only.

Precision for matrix spikes is measured by calculating the relative percent differences (RPDs) between the measured concentration of analytes in the matrix and the duplicate matrix spike. The following equation is used for matrix spikes:

RPD = [MS - MSD] 100

0.5 (MS + MSD)

where: [MS - MSD] = the absolute value of the difference in

concentration between the matrix spike (MS) and the matrix

spike duplicate (MSD)

First Quarter 2016 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the first quarter 2016 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8260B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). The three parameters [cis-1,2-dichloroethene (cis-1,2-DCE), trichloroethene (TCE), and tetrachloroethene (PCE)] for which the RPDs could be calculated (see Table 2), exhibited high RPD value (greater than 10%) indicative of fair precision.

First Semi-Annual 2016 Laboratory QC Results

A review of the first semi-annual 2016 field data sheets and laboratory reports (presented in Appendices A and C, respectively) indicates that all analyses were performed within USEPA or California Department of Health Services (DHS) recommended maximum sample holding times.

QC data on surrogate spike recoveries and matrix spike recoveries are presented in the laboratory reports. These data indicate: (1) no surrogate spike recoveries were outside of the laboratory's acceptance limits; (2) RPD values for the matrix spikes and duplicate matrix spikes indicate a high overall degree of analytical precision.

No matrix spike or duplicate matrix spike recoveries were outside of the laboratory's control limits.

The laboratory QC data indicate that the results reported herein are of adequate quality for evaluation of site groundwater conditions.

3.2.2 Groundwater Results

The results for the first semi-annual 2016 monitoring event are shown on Table 3a and Figure 5. The results of historical VOC analyses for each quarter for 2000 through first quarter 2016 are summarized in Table 3b, which also shows the VOC results for the initial sampling event for monitoring wells MW-1, MW-2, and MW-3 in November 1999. Historical PCE results for all four wells are plotted on Figure 6.

Consistent with previous monitoring events, PCE and its breakdown product TCE were detected in Site groundwater samples from the first quarter 2016 monitoring event.

For the first semi-annual 2016 event, the concentrations of PCE detected were:

- 58 micrograms per liter (µg/L) in monitoring well MW-1
- 25 μg/L in MW-2
- not detected in MW-3 and MW-4

Other VOCs detected included the following:

- TCE was detected at 27 μ g/L in monitoring well MW-1 and 24 μ g/L in MW-2, but was not detected in MW-3 or MW-4.
- 1,1-Dichloroethene (DCE) was detected at 33 μg/L in monitoring well MW-3, but was not detected in monitoring wells MW-1, MW-2 or MW-4.
- Cis-1,2-DCE was detected at 1.8 μ g/L in monitoring well MW-1 and 16 μ g/L in MW-2, but was not detected in monitoring wells MW-3 or MW-4.
- 1,1-Dichloroethane (DCA) was detected at 1.3 μg/L in monitoring well MW-3, but was not detected in monitoring wells MW-1, MW-2, or MW-4.

3.3 Discussion

Variations in VOC concentrations at monitoring well MW-2, the well with historically the highest reported PCE concentrations at the site, generally correlate with variations in groundwater elevations at the Site. An increase in VOC concentrations generally follows a rise in groundwater elevations, and a decrease in VOC concentration generally follows a fall in groundwater levels (see Figure 7). The variations in VOC concentrations sometimes lag one quarter behind the variations in groundwater elevation.

The results for VOC concentrations reported for the first semi-annual 2016 quarterly monitoring event are generally similar to the results reported since the second quarter of 2006 (see Figure 6), with the following exceptions:

- As of the February 2016 sampling event, the concentrations of PCE reported over the last six and one-half years (since June 2009) for well MW-2 have remained lower than previously reported for MW 2.
- The concentrations of DCE reported for well MW-3 since March 2011 have been notably higher than the concentrations previously reported, but are not showing a significant upward or downward trend over the last ten monitoring events. The concentration of DCE reported for February 2016 was 33 μg/L.

The higher DCE concentrations noted for well MW-3 may be related to the downward trend in groundwater elevations noted for the site through the third quarter of 2014. As discussed in Section 2.1, the downward groundwater elevation trend measured from March 2011 through September 2014 may be related to nearby EBMUD sewer pipeline repair and replacement operations as well as to dewatering operations that were conducted at a nearby facility demolition project.

As described in previous monitoring reports, the average seasonal concentration of PCE reported for groundwater monitoring well MW-2 has been lower since the second quarter of 2006 (June 2006 event) compared to results reported since monitoring began in 1999 (see Figure 6). The PCE concentrations reported for MW-2 since June 2006 are an indication that the phytoremediation project implemented in June 2005 has reduced the average seasonal concentration of PCE at the site.

4 Phytoremediation Project Status

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid on the unpaved portion of the site. Selection of the phytoremediation approach and implementation of the project were described in the report, *Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc., October 20, 2006).

The trees were 4-ft-tall, bare-root poles with no foliage when planted in June 2005. During the first two years of growth, the trees developed foliage and most grew 3 to 10 additional feet in height. Photos comparing the appearance of the trees just after planting in 2005 with photos taken in subsequent years are show below and on the following pages. After three years, most of the trees had grown to heights of 10 to 25 feet. After five years, most of the trees have grown to heights of 25 to 35 feet. The current height of most of the trees is estimated to range from 35 to 50 feet. In April 2008, seven additional saplings were planted in the rear of the property near monitoring well MW-2. There are currently 101 hybrid poplars at the site (two trees were removed to alleviate overcrowding).

As discussed in Section 3.3 and shown on Figure 6, the PCE concentrations reported for monitoring well MW-2 since June 2006 are an indication that the phytoremediation project has been effective at reducing the average seasonal VOC concentration in groundwater at the site.

Bare-root trees planted in June 2005 - View towards rear of property

June 2007 - View from driveway towards rear of property

September 2009 - View from street towards driveway and rear of property

November 2010 – View from street towards driveway and rear of property (compare tree height to photo on previous page)

May 2011 – Same view as above

May 9, 2013 – Same view as previous picture.

September 17, 2015 – Similar view as previous picture.

May 11, 2016 – Similar view as previous picture.

May 11, 2016 – View of the trees from further down the street.

June 2007 - View of front planting strip at Clement Avenue

September 2009 - View of front planting strip at Clement Avenue. (Note relative height of gate vs. trees in the pictures above and on next page)

November 2010 – Trees dropping foliage. Also, branches on bottom 6 feet of trunks have been cleared for site visibility.

May 11, 2011 – Same view as above

May 9, 2013 – Same view as previous picture.

May 11, 2016 – Similar view as above.

May 9, 2013 – View from back of property towards the street.

May 11, 2016 – Similar view as above.

September 17, 2015 – View from back of property towards the street.

September 17, 2015 – Panoramic view of property from back of property towards the street.

Professional Certification

Groundwater Monitoring Results First Semi-Annual 2016 Monitoring Period Cargill Salt – Alameda Facility Alameda, California

Jana C. Johnston

Mak (. Wheele

This report has been prepared by CRAWFORD CONSULTING, INC. with the professional certification of the California professional geologist whose signature appears below.

Dana C. Johnston

Project Manager

Mark C. Wheeler Principal Geologist

P.G. 4563

References

Alameda County Environmental Health Services, 1999. Letter to Cargill Salt: Groundwater Monitoring Well Installation at 2016 Clement Avenue, Alameda, CA, May 7, 1999.
Conor Pacific/EFW, 2001. Workplan for Off-Site Characterization, Cargill Salt Alameda Facility, June 18, 2001.
, 2002. Off-Site Groundwater Characterization, Cargill Salt – Alameda Facility, Alameda, California, August 21, 2002.
Crawford Consulting, Inc., 1999. Workplan for Groundwater Characterization and Monitoring Well Installation, 2016 Clement Avenue, Alameda, California, July 7, 1999.
, 2001. Groundwater Monitoring Results, First through Fourth Quarter 2000, Cargill Salt – Alameda Facility, Alameda, California, April 11, 2001.
, 2002. Groundwater Monitoring Results, First through Fourth Quarter 2001, Cargill Salt – Alameda Facility, Alameda, California, August 14, 2002.
, 2003. Groundwater Monitoring Results, First through Fourth Quarter 2002, Cargill Salt – Alameda Facility, Alameda, California, August 13, 2003.
, 2004. Groundwater Monitoring Results, First through Fourth Quarter 2003, Cargill Salt – Alameda Facility, Alameda, California, February 27, 2004.
, 2005. Groundwater Monitoring Results, First through Fourth Quarter 2004, Cargill Salt – Alameda Facility, Alameda, California, November 7, 2005.
, 2006. Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California, October 20, 2006.
, 2006. Groundwater Monitoring Results, First Semi-Annual 2006 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, November 8, 2006.
, 2007. Groundwater Monitoring Results, Second Semi-Annual 2006 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, February 28, 2007
, 2007. Groundwater Monitoring Results, First Semi-Annual 2007 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, September 28, 2007.
, 2007. Groundwater Monitoring Results, Second Semi-Annual 2007 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, February 28, 2008
, 2008. Groundwater Monitoring Results, First Semi-Annual 2008 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, December 22, 2008.
, 2008. Groundwater Monitoring Results, Second Semi-Annual 2008 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, March 2, 2009
, 2009. Groundwater Monitoring Results, First Semi-Annual 2009 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, September 30, 2009.
, 2009. Groundwater Monitoring Results, Second Semi-Annual 2009 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, November 11, 2009
, 2010. Groundwater Monitoring Results, First Semi-Annual 2010 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, May 12, 2010.
, 2010. Groundwater Monitoring Results, Second Semi-Annual 2010 Monitoring Period, Cargill Salt — Alameda Facility, Alameda California November 12, 2010

References

(continued)

, 2011. Groundwater Monitoring Results, First Semi-Annual 2011 Monitoring Period,
Cargill Salt – Alameda Facility, Alameda, California, May 11, 2011.
, 2011. Groundwater Monitoring Results, Second Semi-Annual 2011 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, November 14, 2011.
, 2012. Groundwater Monitoring Results, First Semi-Annual 2012 Monitoring Period,
Cargill Salt – Alameda Facility, Alameda, California, May 14, 2012.
, 2012. Groundwater Monitoring Results, Second Semi-Annual 2012 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, November 13, 2012.
, 2013. Groundwater Monitoring Results, First Semi-Annual 2013 Monitoring Period,
Cargill Salt – Alameda Facility, Alameda, California, May 14, 2013.
, 2013. Groundwater Monitoring Results, Second Semi-Annual 2013 Monitoring Period,
Cargill Salt – Alameda Facility, Alameda, California, November 13, 2013, Revised November 20, 2013.
, 2014. Groundwater Monitoring Results, First Semi-Annual 2014 Monitoring Period,
Cargill Salt – Alameda Facility, Alameda, California, May 12, 2014.
, 2014. Groundwater Monitoring Results, Second Semi-Annual 2014 Monitoring Period,
Cargill Salt – Alameda Facility, Alameda, California, November 12, 2014.
, 2015. Groundwater Monitoring Results, First Semi-Annual 2015 Monitoring Period,
Cargill Salt – Alameda Facility, Alameda, California, May 12, 2015.
, 2015. Groundwater Monitoring Results, Second Semi-Annual 2015 Monitoring Period,
Cargill Salt – Alameda Facility, Alameda, California, November 12, 2015.
Crawford Consulting, Inc. and Conor Pacific/EFW, 2000. Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California, January 31, 2000.
Groundworks Environmental, Inc. (Groundworks), 1993. Results of Soil Sampling and Workplan for Remedial Activities, Alameda facility, October 19, 1993.
, 1995. Soil and Groundwater Investigations and Remedial Activities, July 1993 – September 1994, Cargill Salt – Alameda Facility, Alameda, California, July 31, 1995.
Hickenbottom, K. S., and Muir, K.S., 1988. Geohydrology and Groundwater-Quality Overview of the East Bay Plain Area, Alameda County, California, 205 (j) Report, prepared for the California Regional Water Quality Control Board, San Francisco Bay Region, by the Alameda County Flood Control and Water Conservation District, June 1988.

Limitations

This report and the evaluations presented herein have been prepared in accordance with generally accepted professional standards and are based solely on the scope of work and services described herein. This report has been prepared solely for the use of Cargill Salt for the purposes noted herein. Any use of this report, in whole or in part, by a third party for other than the purposes noted herein is at such party's sole risk.

Table 1. Groundwater Level Data

*** 11/			Casing	Depth to	Water	Elev. Change
Well/	.	m.	Elevation	Water	Elevation	from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-1	11/16/1999	09:56	13.16	3.75	9.41	NA
MW-1	3/30/2000	10:09	13.16	2.81	10.35	0.94
MW-1	5/16/2000	09:43	13.16	3.32	9.84	-0.51
MW-1	7/28/2000	09:11	13.16	3.58	9.58	-0.26
MW-1	11/30/2000	08:36	13.16	3.52	9.64	0.06
MW-1	3/26/2001	08:47	13.16	3.15	10.01	0.37
MW-1	6/25/2001	10:19	13.16	3.53	9.63	-0.38
MW-1	9/28/2001	09:32	13.16	3.96	9.20	-0.43
MW-1	12/17/2001	10:47	13.16	3.23	9.93	0.73
MW-1	3/21/2002	07:28	13.16	2.89	10.27	0.34
MW-1	6/6/2002	08:03	13.16	3.50	9.66	-0.61
MW-1	9/20/2002	08:30	13.16	3.86	9.30	-0.36
MW-1	12/19/2002	08:38	13.16	3.13	10.03	0.73
MW-1	3/4/2003	10:31	13.16	3.08	10.08	0.05
MW-1	6/9/2003	08:32	13.16	3.29	9.87	-0.21
MW-1	9/8/2003	10:02	13.16	3.79	9.37	-0.50
MW-1	12/1/2003	10:16	13.16	3.78	9.38	0.01
MW-1	3/4/2004	09:31	13.16	2.88	10.28	0.90
MW-1	6/2/2004	08:42	13.16	3.45	9.71	-0.57
MW-1	9/14/2004	08:01	13.16	3.87	9.29	-0.42
MW-1	12/8/2004	07:44	13.16	3.23	9.93	0.64
MW-1	3/3/2005	08:07	13.16	2.01	11.15	1.22
MW-1	6/10/2005	07:05	13.16	2.90	10.26	-0.89
MW-1	9/16/2005	08:00	13.16	3.62	9.54	-0.72
MW-1	12/6/2005	08:00	13.16	3.28	9.88	0.34
MW-1	3/10/2006	07:40	13.16	2.28	10.88	1.00
MW-1	6/9/2006	09:45	13.16	3.09	10.07	-0.81
MW-1	9/11/2006	10:24	13.16	3.70	9.46	-0.61
MW-1	12/15/2006	07:34	13.16	2.94	10.22	0.76
MW-1	3/6/2007	09:18	13.16	2.87	10.29	0.07
MW-1	6/15/2007	07:29	13.16	3.30	9.86	-0.43
MW-1	9/11/2007	08:05	13.16	3.85	9.31	-0.55
MW-1	12/4/2007	08:53	13.16	3.58	9.58	0.27
MW-1	3/20/2008	08:13	13.16	3.00	10.16	0.58
MW-1	6/18/2008	08:22	13.16	3.73	9.43	-0.73
MW-1	9/3/2008	08:06	13.16	3.93	9.23	-0.20
MW-1	12/4/2008	08:12	13.16	3.71	9.45	0.22
MW-1	3/5/2009	09:18	13.16	1.83	11.33	1.88
MW-1	6/11/2009	08:40	13.16	3.52	9.64	-1.69
MW-1	9/3/2009	07:57	13.16	3.98	9.18	-0.46
MW-1	3/2/2010	08:10	13.16	2.37	10.79	1.61
MW-1	9/3/2010	07:01	13.16	3.80	9.36	-1.43
MW-1	3/17/2011	08:04	13.16	4.44	8.72	-0.64
MW-1	9/23/2011	07:25	13.16	6.43	6.73	-1.99
MW-1	3/22/2012	07:47	13.16	4.47	8.69	1.96
MW-1	9/17/2012	08:14	13.16	6.66	6.50	-2.19
MW-1	3/6/2013	07:21	13.16	4.98	8.18	1.68
MW-1	9/4/2013	07:46	13.16	6.89	6.27	-1.91
MW-1	3/12/2014	07:45	13.16	5.18	7.98	1.71

Table 1. Groundwater Level Data

			Casing	Depth to	Water	Elev. Change
Well/			Elevation	Water	Elevation	from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-1	9/26/2014	08:00	13.16	7.35	5.81	-2.17
MW-1	3/3/2015	07:50	13.16	3.95	9.21	3.40
MW-1	9/2/2015	08:21	13.16	6.87	6.29	-2.92
MW-1	2/2/2016	08:54	13.16	4.57	8.59	2.30
MW-2	11/16/1999	11:15	16.22	5.22	11.00	NA
MW-2	3/30/2000	10:05	16.22	2.80	13.42	2.42
MW-2	5/16/2000	09:35	16.22	4.13	12.09	-1.33
MW-2	7/28/2000	09:17	16.22	4.85	11.37	-0.72
MW-2	11/30/2000	08:32	16.22	4.75	11.47	0.10
MW-2	3/26/2001	08:40	16.22	3.28	12.94	1.47
MW-2	6/25/2001	12:12	16.22	4.75	11.47	-1.47
MW-2	9/28/2001	12:20	16.22	5.41	10.81	-0.66
MW-2	12/17/2001	10:44	16.22	4.07	12.15	1.34
MW-2	3/28/2002	09:37	16.22	3.40	12.82	0.67
MW-2	6/6/2002	08:11	16.22	4.70	11.52	-1.30
MW-2	9/20/2002	08:34	16.22	5.28	10.94	-0.58
MW-2	12/19/2002	08:45	16.22	3.37	12.85	1.91
MW-2	3/4/2003	10:26	16.22	3.11	13.11	0.26
MW-2	6/9/2003	08:31	16.22	4.16	12.06	-1.05
MW-2	9/8/2003	10:08	16.22	5.26	10.96	-1.10
MW-2	12/1/2003	10:20	16.22	5.05	11.17	0.21
MW-2	3/4/2004	09:34	16.22	2.86	13.36	2.19
MW-2	6/2/2004	08:53	16.22	4.47	11.75	-1.61
MW-2	9/14/2004	07:59	16.22	5.26	10.96	-0.79
MW-2	12/8/2004	08:00	16.22	4.20	12.02	1.06
MW-2	3/3/2005	08:04	16.22	1.90	14.32	2.30
MW-2	6/10/2005	07:09	16.22	3.74	12.48	-1.84
MW-2	9/16/2005	08:08	16.22	4.92	11.30	-1.18
MW-2	12/6/2005	10:58	16.22	4.39	11.83	0.53
MW-2	3/10/2006	07:47	16.22	2.13	14.09	2.26
MW-2	6/9/2006	10:03	16.22	3.75	12.47	-1.62
MW-2	9/11/2006	10:22	16.22	4.94	11.28	-1.19
MW-2	12/15/2006	07:32	16.22	4.08	12.14	0.86
MW-2	3/6/2007	09:13	16.22	3.27	12.95	0.81
MW-2	6/15/2007	07:31	16.22	4.57	11.65	-1.30
MW-2	9/11/2007	08:07	16.22	5.60	10.62	-1.03
MW-2	12/4/2007	08:47	16.22	4.99	11.23	0.61
MW-2	3/20/2008	08:17	16.22	3.48	12.74	1.51
MW-2	6/18/2008	08:27	16.22	4.93	11.29	-1.45
MW-2	9/3/2008	08:08	16.22	5.58	10.64	-0.65
MW-2	12/4/2008	08:14	16.22	5.07	11.15	0.51
MW-2	3/5/2009	11:10	16.22	2.30	13.92	2.77
MW-2	6/11/2009	08:41	16.22	4.44	11.78	-2.14
MW-2	9/3/2009	08:01	16.22	5.55	10.67	-1.11
MW-2	3/2/2010	08:12	16.22	2.88	13.34	2.67
MW-2	9/3/2010	07:04	16.22	5.18	11.04	-2.30
MW-2	3/17/2011	08:08	16.22	3.14	13.08	2.04
MW-2	9/23/2011	07:27	16.22	6.13	10.09	-2.99
MW-2	3/22/2012	07:42	16.22	4.24	11.98	1.89
1.111 2	<u>-</u> , -012	02	10.22		11.70	1.07

Table 1. Groundwater Level Data

Well/			Casing Elevation	Depth to Water	Water Elevation	Elev. Change from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-2	9/17/2012	08:18	16.22	6.77	9.45	-2.53
MW-2	3/6/2013	07:24	16.22	4.15	12.07	2.62
MW-2	9/4/2013	07:40	16.22	NA	NA	NA
MW-2	3/12/2014	07:47	16.22	5.12	11.10	NA
MW-2	9/26/2014	08:08	16.22	7.65	8.57	-2.53
MW-2	3/3/2015	07:52	16.22	3.80	12.42	3.85
MW-2	9/2/2015	08:27	16.22	6.63	9.59	-2.83
MW-2	2/2/2016	08:57	16.22	4.10	12.12	2.53
MW-3	11/16/1999	15:43	13.34	4.34	9.00	NA
MW-3	3/30/2000	10:01	13.34	2.77	10.57	1.57
MW-3	5/16/2000	09:46	13.34	3.44	9.90	-0.67
MW-3	7/28/2000	09:05	13.34	3.72	9.62	-0.28
MW-3	11/30/2000	08:34	13.34	3.73	9.61	-0.01
MW-3	3/26/2001	08:54	13.34	3.51	9.83	0.22
MW-3	6/25/2001	10:21	13.34	3.65	9.69	-0.14
MW-3	9/28/2001	09:30	13.34	3.96	9.38	-0.31
MW-3	12/17/2001	10:38	13.34	3.28	10.06	0.68
MW-3	3/21/2002	07:28	13.34	3.10	10.24	0.18
MW-3	6/6/2002	08:07	13.34	3.63	9.71	-0.53
MW-3	9/20/2002	08:25	13.34	3.82	9.52	-0.19
MW-3	12/19/2002	08:42	13.34	3.10	10.24	0.72
MW-3	3/4/2003	10:36	13.34	3.29	10.05	-0.19
MW-3	6/9/2003	08:28	13.34	3.41	9.93	-0.12
MW-3	9/8/2003	10:00	13.34	3.85	9.49	-0.44
MW-3	12/1/2003	10:30	13.34	3.90	9.44	-0.05
MW-3	3/4/2004	09:22	13.34	3.11	10.23	0.79
MW-3	6/2/2004	08:46	13.34	3.53	9.81	-0.42
MW-3	9/14/2004	08:05	13.34	4.07	9.27	-0.54
MW-3	12/8/2004	07:40	13.34	3.73	9.61	0.34
MW-3	3/3/2005	07:53	13.34	2.36	10.98	1.37
MW-3	6/10/2005	07:14	13.34	3.15	10.19	-0.79
MW-3	9/16/2005	08:04	13.34	3.90	9.44	-0.75
MW-3	12/6/2005	08:04	13.34	3.35	9.99	0.55
MW-3	3/10/2006	07:43	13.34	2.89	10.45	0.46
MW-3	6/9/2006	09:33	13.34	3.26	10.08	-0.37
MW-3	9/11/2006	10:19	13.34	3.70	9.64	-0.44
MW-3	12/15/2006	07:37	13.34	3.10	10.24	0.60
MW-3	3/6/2007	09:16	13.34	3.04	10.30	0.06
MW-3	6/15/2007	07:27	13.34	3.60	9.74	-0.56
MW-3	9/11/2007	08:03	13.34	3.87	9.47	-0.27
MW-3	12/4/2007	08:50	13.34	3.62	9.72	0.25
MW-3	3/20/2008	08:15	13.34	3.13	10.21	0.49
MW-3	6/18/2008	08:24	13.34	3.90	9.44	-0.77
MW-3	9/3/2008	08:02	13.34	3.92	9.42	-0.02
MW-3	12/4/2008	08:10	13.34	3.59	9.75	0.33
MW-3	3/5/2009	09:23	13.34	2.79	10.55	0.80
MW-3	6/11/2009	08:38	13.34	3.14	10.20	-0.35
MW-3	9/3/2009	07:55	13.34	4.31	9.03	-1.17
MW-3	3/2/2010	08:09	13.34	2.94	10.40	1.37

Table 1. Groundwater Level Data

Well/			Casing Elevation	Depth to Water	Water Elevation	Elev. Change from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-3	9/3/2010	07:07	13.34	3.75	9.59	-0.81
MW-3	3/17/2011	07:59	13.34	4.88	8.46	-1.13
MW-3	9/23/2011	07:23	13.34	6.33	7.01	-1.45
MW-3	3/22/2012	07:45	13.34	5.05	8.29	1.28
MW-3	9/17/2012	08:10	13.34	6.54	6.80	-1.49
MW-3	3/6/2013	07:12	13.34	5.22	8.12	1.32
MW-3	9/4/2013	07:48	13.34	6.58	6.76	-1.36
MW-3	3/12/2014	07:49	13.34	5.33	8.01	1.25
MW-3	9/26/2014	07:50	13.34	NA	NA	NA
MW-3	3/3/2015	07:48	13.34	4.90	8.44	NA
MW-3	9/2/2015	08:18	13.34	7.29	6.05	-2.39
MW-3	2/2/2016	08:52	13.34	4.90	8.44	2.39
MW-4	12/17/2001	10:40	12.43	2.55	9.88	NA
MW-4	3/28/2002	08:05	12.43	3.06	9.37	-0.51
MW-4	6/6/2002	07:57	12.43	2.85	9.58	0.21
MW-4	9/20/2002	08:28	12.43	3.21	9.22	-0.36
MW-4	12/19/2002	08:53	12.43	3.70	8.73	-0.49
MW-4	3/4/2003	10:34	12.43	3.14	9.29	0.56
MW-4	6/9/2003	08:29	12.43	2.82	9.61	0.32
MW-4	9/8/2003	10:04	12.43	3.43	9.00	-0.61
MW-4	12/1/2003	10:14	12.43	3.12	9.31	0.31
MW-4	3/4/2004	09:27	12.43	2.81	9.62	0.31
MW-4	6/2/2004	08:44	12.43	3.34	9.09	-0.53
MW-4	9/14/2004	08:03	12.43	3.51	8.92	-0.17
MW-4	12/8/2004	07:36	12.43	3.10	9.33	0.41
MW-4	3/3/2005	07:44	12.43	2.48	9.95	0.62
MW-4	6/10/2005	07:02	12.43	2.47	9.96	0.01
MW-4	9/16/2005	08:12	12.43	3.23	9.20	-0.76
MW-4	12/6/2005	07:50	12.43	3.17	9.26	0.06
MW-4	3/10/2006	07:37	12.43	3.77	8.66	-0.60
MW-4	6/9/2006	07:30	12.43	2.49	9.94	1.28
MW-4	9/11/2006	10:17	12.43	3.19	9.24	-0.70
MW-4	12/21/2006	NR	12.43	2.90	9.53	0.29
MW-4	3/6/2007	09:20	12.43	2.54	9.89	0.36
MW-4	6/15/2007	07:33	12.43	3.03	9.40	-0.49
MW-4	9/11/2007	08:11	12.43	3.27	9.16	-0.24
MW-4	12/4/2007	08:55	12.43	3.25	9.18	0.02
MW-4	3/20/2008	08:20	12.43	2.65	9.78	0.60
MW-4	6/18/2008	08:31	12.43	3.35	9.08	-0.70
MW-4	9/3/2008	07:58	12.43	3.28	9.15	0.07
MW-4	12/4/2008	08:17	12.43	3.12	9.31	0.16
MW-4	3/5/2009	09:27	12.43	2.16	10.27	0.96
MW-4	6/11/2009	08:43	12.43	2.84	9.59	-0.68
MW-4	9/3/2009	08:04	12.43	3.49	8.94	-0.65
MW-4	3/2/2010	08:14	12.43	2.32	10.11	1.17
MW-4	9/3/2010	07:10	12.43	3.10	9.33	-0.78
MW-4	3/17/2011	07:55	12.43	4.52	7.91	-1.42
MW-4	9/23/2011	07:21	12.43	5.38	7.05	-0.86
MW-4	3/22/2012	07:50	12.43	4.58	7.85	0.80

Table 1. Groundwater Level Data

Well/ Piezometer	Date	Time	Casing Elevation (feet, MSL)	Depth to Water (feet)	Water Elevation (feet, MSL)	Elev. Change from Last Measurement (feet)
MW-4	9/17/2012	08:21	12.43	5.45	6.98	-0.87
MW-4	3/6/2013	07:27	12.43	4.65	7.78	0.80
MW-4	9/4/2013	07:58	12.43	5.47	6.96	-0.82
MW-4	3/12/2014	07:52	12.43	9.25	3.18	-3.78
MW-4	9/26/2014	08:14	12.43	5.57	6.86	3.68
MW-4	3/3/2015	07:55	12.43	4.40	8.03	1.17
MW-4	9/2/2015	08:10	12.43	5.56	6.87	-1.16
MW-4	2/2/2016	09:00	12.43	4.05	8.38	1.51

Key:

NA = Not available

feet, MSL = feet, relative to Mean Sea Level

Casing elevations for all wells were resurveyed on September 6, 2006 by CSS Environmental Services for Geotracker compliance.

Table 2. Relative Percent Difference Based on Duplicate Samples

First Quarter 2016

	1110	t Quarter 20	10
Analysis	Well MW-2 Results	Duplicate (DUP-1) Results	RPD ¹ (%)
Volatile Organic Compounds (µg/L)			
Cis-1,2-Dichloroethene	16	14	13.3
Trichloroethene (TCE)	24	20	18.2
Tetrachloroethene (PCE)	25	22	12.8

 $^{{}^{1}\;}RPD = relative\;percent\;difference\; \\ Results\;measured\;in\;micrograms\;per\;liter\;(\mu g/L)$

All other 8010 list analytes not detected (by 8260).

Table 3a. Summary of Groundwater Monitoring Well Data - First Quarter 2016

Well No.	MW-1	MW-2	MW-3	MW-4	
Field Date	2/2/2016	2/2/2016	2/2/2016	2/2/2016	MCL^1
DCE ²	< 0.5	< 0.5	33	< 0.5	6
DCA ³	< 0.5	< 0.5	1.3	< 0.5	5
cis-1,2-DCE ⁴	1.8	16	< 0.5	< 0.5	6
TCA ⁵	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁶	27	24	< 0.5	< 0.5	5
PCE ⁷	58	25	< 0.5	< 0.5	5
Other analytes ⁸	nd^9	nd	nd	nd	nd

Notes:

Results measured in micrograms per liter (µg/L)

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level

² DCE = 1,1-Dichloroethene

³ DCA = 1,1-Dichloroethane

⁴ cis-1,2-DCE = cis-1,2-Dichloroethene

⁵ TCA = 1,1,1-Trichloroethane

⁶ TCE = Trichloroethene

⁷ PCE = Tetrachloroethene

⁸ All other 8010 list analytes

⁹ nd = not detected above laboratory reporting limit

Table 3b. Historical Summary of Groundwater Monitoring Well Data

Results measured in micrograms per liter (μ g/L)

Well No.												MW	/ -1												
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/21/02	6/6/02	9/20/02	12/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	MCL ¹
DCE^2	<50.0	13	<10	15	14	<13	14	15	<13	<13	<13	<13	<13	<10	12	5.2	8.4	<5.0	5.8	6.6	< 5.0	<5.0	<2.0	<5.0	6
CFC 113 ³	na^4	1.4	<10	<10	<8.3	< 50	< 50	< 50	< 50	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	ne ⁵
DCA ⁶	< 50.0	0.8	<10	<10	<4.2	<13	<13	<13	<13	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	5
Chloroform	< 50.0	0.6*	<10	<10	<8.3	<13	<13	<13	<13	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	<10	ne
cis-1,2-DCE ⁷	<10	<10	<10	<10	<4.2	<13	<13	<13	<13	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	6
TCA ⁸	< 50.0	1.6	<10	<10	<4.2	<13	<13	<13	<13	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	200
TCE ⁹	178	150	190	170	130	180	250	210	190	160	140	190	68	97	90	110	130	53	72	81	39	15	23	34	5
PCE ¹⁰	906	1,400	1,900	1,200	880	1,000	1,400	1,000	1,400	1,100	980	1,100	600	730	770	780	850	370	490	620	380	160	180	240	5
Other analytes ¹¹	nd^{12}	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	ıl I

Well No.												MW	7-2												
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/28/02	6/6/02	9/20/02	12/30/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	5 MCL ¹
DCE ²	<50.0	<0.5	<25	<25	<8.3	<25	<25	<25	<25	<25	<25	<25	<25	<20	<20	<20	<20	<20	<25	<25	<20	<50	<25	<20) 6
CFC 113 ³	na	< 0.5	<25	<25	<17	<100	<100	<100	<100	<25	<25	<25	<25	< 20	< 20	< 20	< 20	< 20	<25	<25	<20	< 50	<25	<20	0 ne ⁵
DCA ⁶	< 50.0	< 0.5	<25	<25	<8.3	<25	<25	<25	<25	<25	<25	<25	<25	<20	<20	<20	< 20	<20	<25	<25	<20	< 50	<25	<20) 5
Chloroform	< 50.0	< 0.5	<25	<25	<17	<25	<25	<25	<25	<25	<25	<25	<25	< 20	< 20	<20	< 20	< 20	<25	<25	<20	< 50	<25	<40	0 ne
cis-1,2-DCE ⁷	< 50.0	< 0.5	<25	<25	<8.3	<25	<25	<25	<25	<25	<25	<25	<25	< 20	< 20	<20	<20	<20	<25	<25	<20	< 50	<25	<20) 6
TCA ⁸	< 50.0	5.0	<25	<25	<8.3	<25	<25	<25	<25	<25	<25	<25	<25	< 20	< 20	< 20	< 20	< 20	<25	<25	<20	< 50	<25	<20	0 200
TCE ⁹	< 50	29	53	<25	20	40	78	<25	<25	49	52	32	<25	58	41	28	25	39	49	37	30	78	43	29) 5
PCE ¹⁰	840	3,600	3,200	3,300	1,700	2,200	4,400	1,700	1,700	3,500	3,800	2,100	1,800	3,900	3,800	2,500	2,500	3,000	4,100	3,800	2,800	7,300	3,600	2,500) 5
Other analytes ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	d

Notes

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L]$)

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ cis-1,2-DCE = cis-1,2-Dichloroethene

⁸ TCA = 1,1,1-Trichloroethane

⁹ TCE = Trichloroethene

¹⁰ PCE = Tetrachloroethene

¹¹ All other 8010 list analytes

¹² nd = not detected above laboratory reporting limit

^{*} Chloroform detected in equipment blank at 1.6 μ g/L for 3/30/00 event.

Table 3b. Historical Summary of Groundwater Monitoring Well Data

Well No.														MW-1																
Field Date	12/6/05	3/10/06	6/9/06	9/11/06	12/15/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	9/3/08	12/4/08	3/5/09	6/11/09	9/3/09	3/2/10	9/3/10	3/17/11	9/23/11	3/22/12	9/17/12	3/6/13	9/4/13	3/12/14	9/26/14	3/3/15	9/2/15	2/2/16	MCL ¹
DCE ²	<2.0	< 0.5	<2.0	3.3	<2.0	<2.0	3.0	<5.0	<5.0	<2.0	<5.0	<5.0	<5.0	< 0.5	<2.5	<10	<5.0	<5.0	<5.0	6.1	<5.0	<5.0	<5.0	<5.0	<5.0	< 0.5	0.56	< 0.5	<0.5	6
CFC 113 ³	<2.0	< 0.5	< 2.0	<2.0	< 2.0	<2.0	< 2.0	< 5.0	< 5.0	<2.0	< 5.0	< 5.0	< 5.0	< 0.5	<2.5	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 0.5	< 0.5	< 0.5	ne ⁵
DCA ⁶	< 2.0	< 0.5	< 2.0	<2.0	< 2.0	<2.0	< 2.0	< 5.0	< 5.0	< 2.0	< 5.0	< 5.0	< 5.0	< 0.5	< 2.5	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	<4.0	1.4	<4.0	<4.0	<4.0	<4.0	<4.0	<10	<10	<4.0	<10	<10	<10	1.9	< 5.0	<20	<10	<10	<10	<10	<10	<10	<10	<10	<10	< 0.5	<1.0	<1.0	<1.0	ne
cis-1,2-DCE ⁷	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	<2.0	< 2.0	< 5.0	< 5.0	< 2.0	< 5.0	< 5.0	< 5.0	0.62	< 2.5	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.5	6.6	< 0.5	1.8	6
TCA ⁸	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 5.0	< 2.0	< 5.0	< 5.0	< 5.0	< 0.5	< 2.5	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁹	16	3.4	22	47	20	17	38	51	29	18	42	65	42	6.5	40	68	27	57	36	89	40	37	60	19	100	8.6	38	7.6	27	5
PCE^{10}	140	39	140	400	210	170	310	430	330	170	390	620	320	68	300	640	170	420	330	850	350	380	390	190	180	78	130	58	58	5
Other analytes ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd^9	nd	nd	nd	nd	nd	nd	nd	

Well No.														MW-2																
Field Date	12/6/05	3/10/06	6/9/06	9/11/06	12/15/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	9/3/08	12/4/08	3/5/09	6/11/09	9/3/09	3/2/10	9/3/10	3/17/11	9/23/11	3/22/12	9/17/12	3/6/13	9/4/13	3/12/14	9/26/14	3/3/15	9/2/15	2/2/16	MCL ¹
DCE ²	<25	<25	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<25	<5.0	<5.0	<5.0	<5.0	< 0.5	< 0.5	<0.5	< 0.5	na	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	6
CFC 113 ³	<25	<25	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<25	< 5.0	< 5.0	< 5.0	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	na	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	ne ⁵
DCA ⁶	<25	<25	<20	< 20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<25	< 5.0	< 5.0	< 5.0	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	na	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 50	< 50	<40	< 20	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	< 50	<10	<10	<10	<10	<1.0	<1.0	<1.0	<1.0	na	<1.0	< 0.5	<1.0	<1.0	<1.0	ne
cis-1,2-DCE ⁷	<25	<25	< 20	< 20	<20	< 20	< 20	< 20	<20	<20	<20	<20	< 20	<20	<25	< 5.0	8.0	6.2	13	1.3	3.8	< 0.5	32	na	3.2	0.72	100	9.2	16	6
TCA ⁸	<25	<25	< 20	< 20	<20	< 20	<20	< 20	<20	<20	<20	<20	< 20	< 20	<25	< 5.0	< 5.0	< 5.0	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	na	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁹	45	59	<20	< 20	< 20	< 20	22	31	<20	<20	21	<20	<20	<20	<25	< 5.0	9.5	< 5.0	6.3	0.93	2.3	< 0.5	3.3	na	< 0.5	< 0.5	10	11	24	. 5
PCE ¹⁰	3,300	5,200	1,600	990	1,000	1,600	2,400	1,700	1,100	2,900	1,700	1,600	2,000	2,300	1,500	410	860	180	530	40	120	18	220	na	5.4	11	600	20	25	5
Other analytes ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	na	nd	nd	nd	nd	nd	

Notes:

 $^{^1\,}$ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter [µg/L])

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ cis-1,2-DCE = cis-1,2-Dichloroethene

 $^{^{8}}$ TCA = 1,1,1-Trichloroethane

⁹ TCE = Trichloroethene

¹⁰ PCE = Tetrachloroethene

¹¹ All other 8010 list analytes

¹² nd = not detected above laboratory reporting limit

Table 3b. Historical Summary of Groundwater Monitoring Well Data

Results measured in micrograms per liter (µg/L)

	results inc	abarca III I	merogram	ns per mer	(MS/L)																							
Well No.]	MW-3														
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/21/02	6/6/02	9/20/02	12/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	MCL ¹
DCE ²	< 0.500	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	0.51	< 0.5	0.81	<0.5	< 0.5	0.68	2.4	1.5	1.1	0.86	4.3	6
CFC 113 ³	na	< 0.5	< 0.5	< 0.5	<1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA ⁶	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.50	5
Chloroform	< 0.500	< 0.5	< 0.5	< 0.5	<1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	ne
cis-1,2-DCE ⁷	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
TCA ⁸	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁹	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ¹⁰	< 0.500	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	0.81	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.90	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Other analytes ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Well No.]	MW-4														
Field Date	12/17/01	3/28/02	6/6/02	9/20/02	12/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06	12/21/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	MCL ¹
DCE ²	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
CFC 113 ³	<2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ne
cis-1,2-DCE ⁷	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
TCA ⁸	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁹	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ¹⁰	2.6	2.8	2.0	2.5	1.1	2.1	2.1	1.6	1.6	1.7	1.4	1.3	1.2	0.93	0.98	0.8	1.1	0.79	0.64	0.70	0.63	0.70	0.75	0.86	0.92	0.91	0.86	5
Other analytes ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Notes:

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L]$)

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ cis-1,2-DCE = cis-1,2-Dichloroethene

⁸ TCA = 1,1,1-Trichloroethane

⁹ TCE = Trichloroethene

¹⁰ PCE = Tetrachloroethene

¹¹ All other 8010 list analytes

¹² nd = not detected above laboratory reporting limit

Table 3b. Historical Summary of Groundwater Monitoring Well Data

Well No.											N	MW-3															1
Field Date	9/11/06 1	2/15/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	9/3/08	12/4/08	3/5/09	6/11/09	9/3/09	3/2/10	9/3/10 3	3/17/11	9/23/11	3/22/12	9/17/12	3/6/13	9/4/13	3/12/14	9/26/14	3/3/15	9/2/15	2/2/16	MCL ¹
DCE^2	2.8	1.6	1.5	2.4	1.4	1.1	1.0	1.4	0.79	0.59	< 0.5	0.95	0.51	<0.5	0.64	13	34	45	53	50	43	61	53	45	30	33	6
CFC 113 ³	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5	<2.0	< 0.5	< 0.5	< 0.5	ne ⁵
DCA ⁶	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.90	1.4	1.4	1.7	2.2	1.5	< 2.5	1.8	2.1	1.8	1.3	5
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	< 0.5	<1.0	<1.0	<1.0	ne
cis-1,2-DCE ⁷	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5	6
TCA ⁸	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.3	1.5	1.5	1.2	1.1	< 2.5	0.87	0.75	< 0.5	< 0.5	200
TCE ⁹	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ¹⁰	< 0.5	0.56	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.79	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Other analytes ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Well No.								MW-4	ļ										
Field Date	9/3/08	12/4/08	3/5/09	6/11/09	9/3/09	3/2/10	9/3/10	3/17/11	9/23/11	3/22/12	9/17/12	3/6/13	9/4/13	3/12/14	9/26/14	3/3/15	9/2/15	2/2/16	MCL ¹
DCE ²	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
CFC 113 ³	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA ⁶	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ne
cis-1,2-DCE ⁷	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
TCA ⁸	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁹	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ¹⁰	0.84	0.65	0.62	0.70	0.79	0.78	0.64	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Other analytes ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Notes:

 $^{^1\,}$ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter [µg/L])

² DCE = 1,1-Dichloroethene

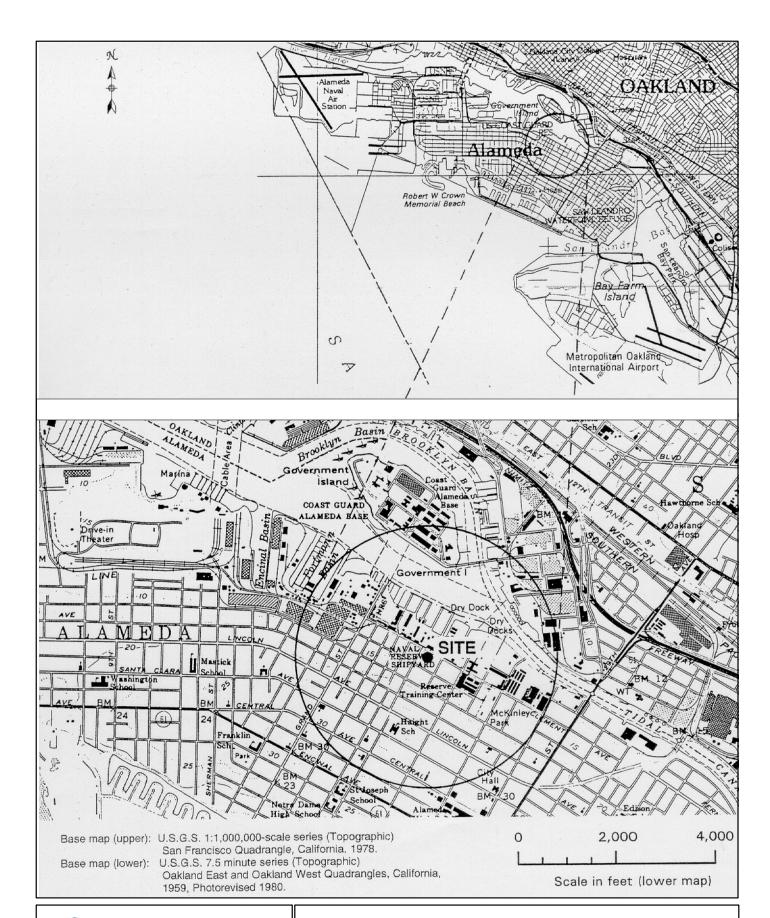
³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ cis-1,2-DCE = cis-1,2-Dichloroethene


⁸ TCA = 1,1,1-Trichloroethane

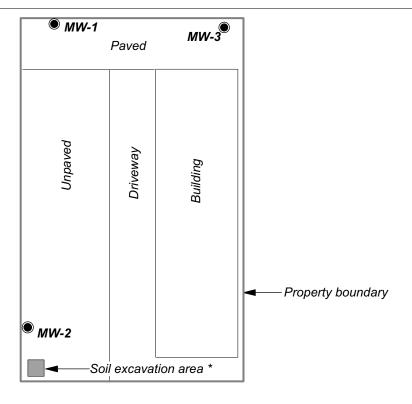
⁹ TCE = Trichloroethene

¹⁰ PCE = Tetrachloroethene

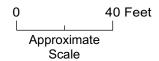
¹¹ All other 8010 list analytes

¹² nd = not detected above laboratory reporting limit

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California


Figure 1. Site Location

MW-4

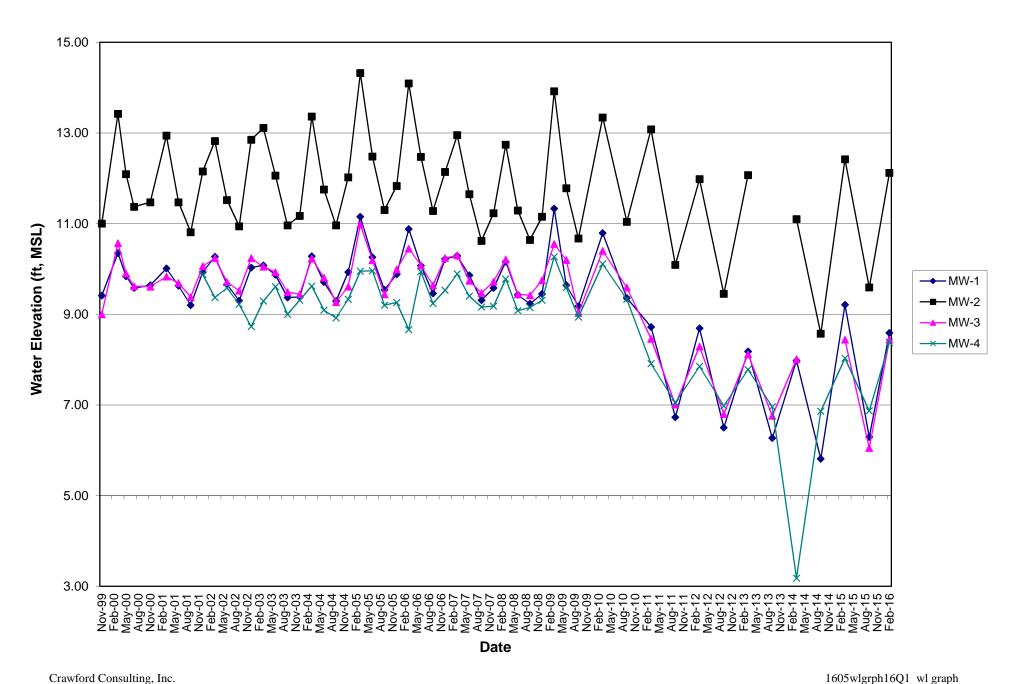

Curb line (Typ.)

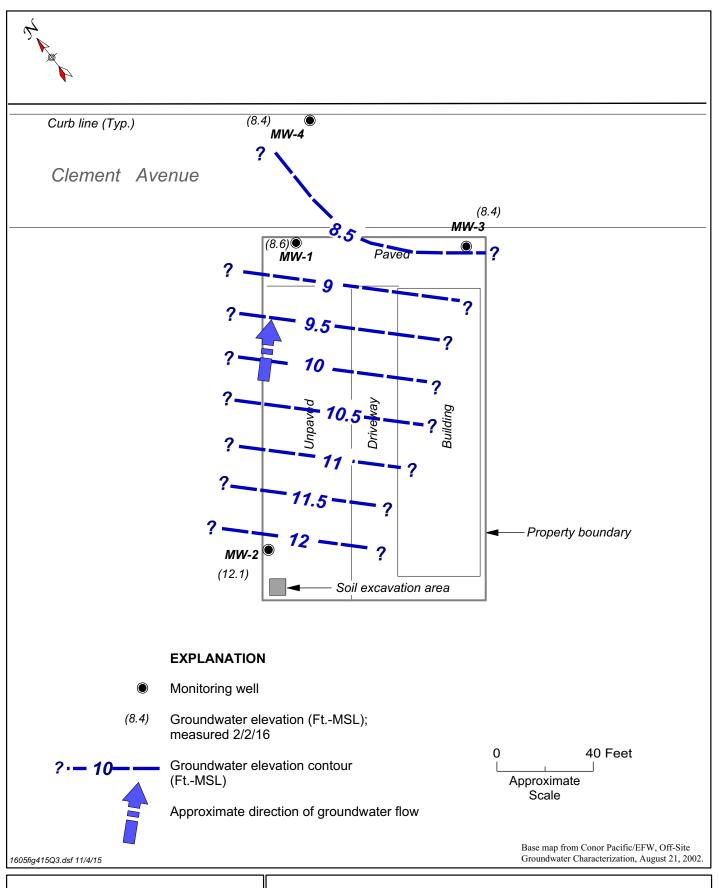
Clement Avenue

EXPLANATION

- Groundwater monitoring well
- * Excavated in February 1994

1605fig215Q1.dsf 3/18/15


Base map from ConorPacific/EFW, Off-Size GroundwaterCharacterization, August 21, 2002

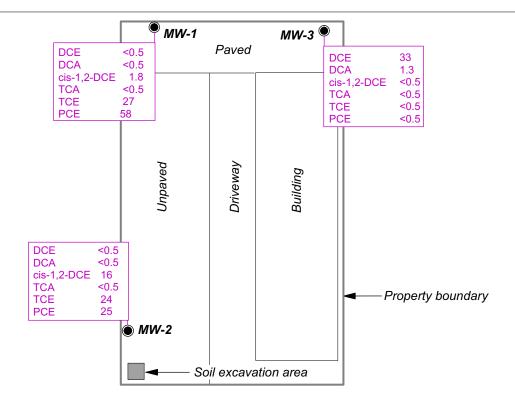


Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 2. Groundwater Monitoring Well Locations

Figure 3. Graphical Summary of Groundwater Elevations





Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

EXPLANATION

Groundwater monitoring well location

All concentrations reported in micrograms per liter (μ g/L), in groundwater. All other 8010 list analytes were below detection limits.

DCE <0.5 DCA <0.5 cis-1,2-DCE 1.8 TCA <0.5 TCE 27 PCE 58

1605fig516Q1.dsf 5/4/16

Analyte concentration

DCE = 1,1-Dichloroethene
DCA = 1,1-Dichloroethane
PCE = Tetrachloroethene
TCA = 1,1,1-Trichloroethane
TCE = Trichloroethene

O 40 Feet
Approximate
Scale

Analytical parameter

VOCs = Volatile organic compounds cis-1,2-DCE = cis-1,2-Dichloroethene

Base map from Conor Pacific/EFW, Off-Site Groundwater Characterization, August 21, 2002.

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 5. VOC Concentrations in Groundwater – February 2016

Figure 6. Graphical Summary of PCE Concentrations

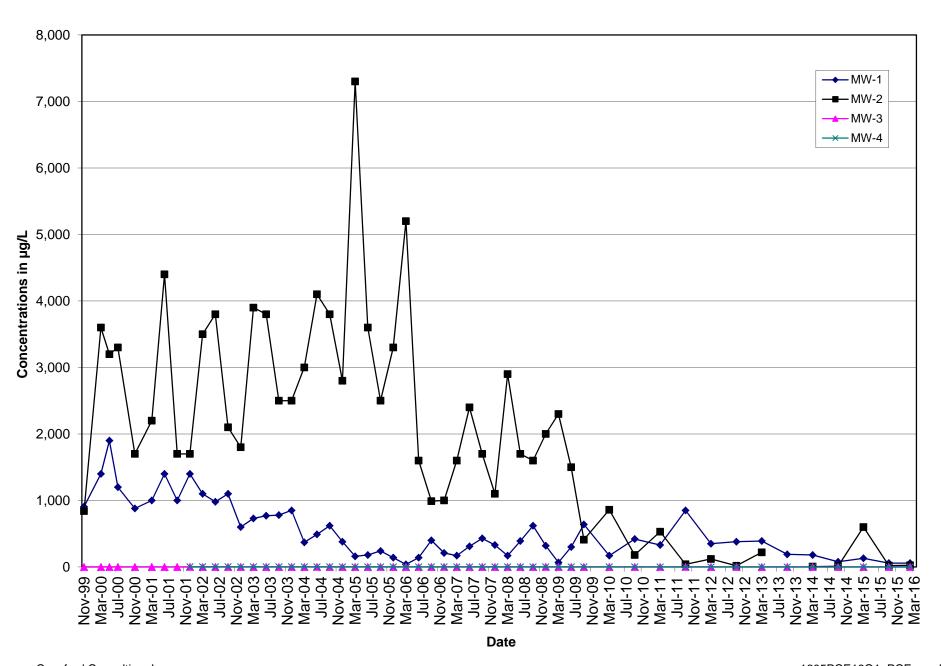
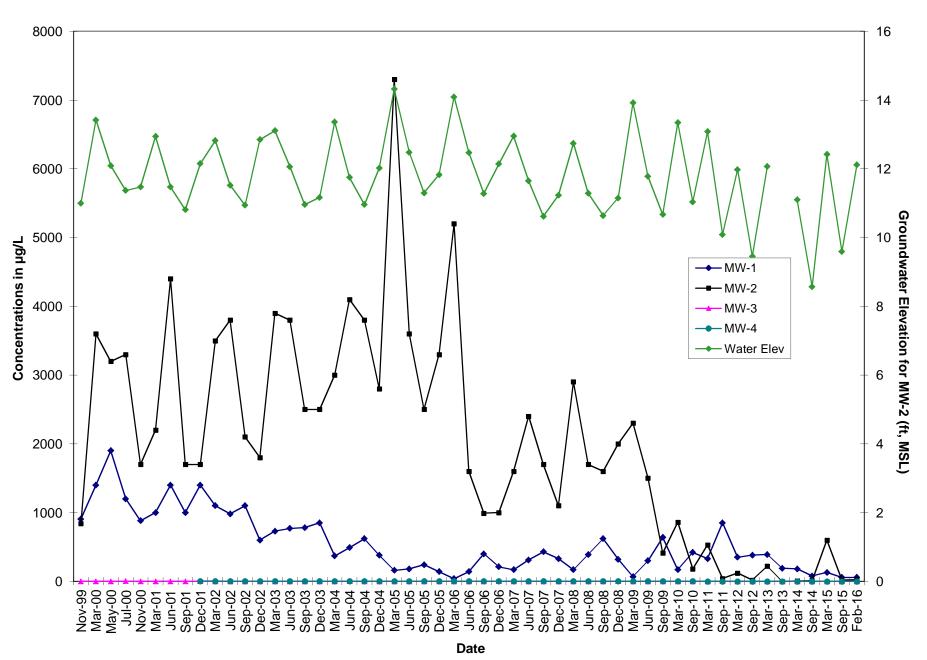



Figure 7. PCE Concentrations vs. Groundwater Elevation

Appendix A

Field Data Sheets

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

			Depth to	Depth to	
			Water	Water	·
Well ID	Date	Time	(1st Msmt.)	(2nd Msmt.)	Comments
			(feet)	(feet)	
MW-1	2/2/14	0854	4,57	4,57	miles me 500, 10501+5
MW-2	2/2/10	0857	4.10	4.10	no selfs invects in 60x
MW-3	2/2/10	0857	4,90	4,90	in well. wester in Lox
1 1	a/a/10	D969	4.05	4,05	no bolts parts mentex

Data Collection	
Field measurements by:	Reviewed by:
Print: Manuel Galleges	Print: J. Buleva
Signature: 10 16 Date: 2-2-16	Signature: Suttees
Date: 2-2-16	Date: 2 - 15 - 16

		s	AMPLI	E COL	LECTION FIE	ELD DA	ΓΑ	Pa	age <u>/</u> of <u>/</u>
Project No.: Project Name: Location: Client:	CS1605 Alameda F Alameda, C Cargill Salt	CA			 		Well ID: Sample ID: Start Date: Finish Date:	MU 2-2- 2-3	u-) w-l -16 2-14
WELL INFORM Casing diameter (One casing volum One casing volum Gallons per linea Floating product	(in.): $me (gal.):$ $me = \pi x [construction for casing the construction for casing $	0.57 sing radit g diamete	Calc s (in.) x r of: 1" =	ulated pu 1 ft/12 in: = 0.041) (3 x casin (ft) - depth = 0.65 5"	g volume) : to water (ft)] = 1.0 6" =	x 7.48 gal	17 /fi ³ 2.6
WELL PURGING Date purged: Purging equipment Purge rate (lpm): Purge water dispo	2-2-1 nt:	Co	Strible pum	pTefl	Bladder pump on bailer Well yield (H/L	Other		O34 ltic pump_	X
Time (2400 hr) [0 7 3	8	Cumulativ Vol. Purge (Liters) 2.1 4.2 6.3	ed	pH units) . 76 . 80	EC (mS/cm) 953 1149 1095	15		Color Visual) CCCV Lear Lear	Turbidity 19.3 18.2 U.S
Total Purged (Lit	ers):	6.3							
WELL SAMPLIN Date sampled:	2-2-14		altic pum	p_ <u> </u>	Bladder pump	epth to wate	er (ft) before s	ampling:	12.68
Weather condition/Re	_	Roun			J. Cr. Kay	_ Ambient	temperature ((° F):	63
Muchs b	polts.			•					
Meter calibration:	: Temper	EC				pH Turbidity			

Purged and sampled by (print):

Reviewed by:

Page of SAMPLE COLLECTION FIELD DATA Project No.: CS1605 Well ID: Project Name: Alameda Facility Sample ID: Location: Alameda, CA Start Date: Client: Cargill Salt Finish Date: WELL INFORMATION Depth to water (ft): 3.97 Well depth (ft): Casing diameter (in.): O. SS Calculated purge volume (gal.) (3 x casing volume): One casing volume (gal.): One casing volume = πx [casing radius (in.) x 1 ft/12 in.] $^2 x$ [well depth (ft) - depth to water (ft)] x 7.48 gal/ft 3 Gallons per linear ft for casing diameter of: 1'' = 0.041 2'' = 0.16 4'' = 0.65 5'' = 1.0 6'' = 1.5 8'' = 2.6Floating product thickness (ft): Method for checking: Interface probe Clear bailer WELL PURGING (3.785 liters per 1 gallon) 2-2-14 1047 Date purged: Start time: 1110 End time: Purging equipment: Submersible pump Bladder pump Peristaltic pump PVC bailer Teflon bailer Other 0.24 Purge rate (lpm): Well yield (H/L): NIGH Purge water disposal: Drummet Cumulative Time T Vol. Purged pΗ EC Color **Turbidity** (2400 hr) (Liters) (units) (mS/cm) (°C) (Visual) (NTU) 20 1050 Leave 4.0 1102 4.0 1110 Total Purged (Liters): WELL SAMPLING Date sampled: Start time: \ \ \ End time: 1114 Depth to water (ft) before sampling: 6.1 X Sampling equipment: Peristaltic pump Bladder pump Teflon bailer PVC bailer Other Weather conditions: Ambient temperature (° F): ban Well condition/Remarks: ALL Collected

Sumples

Callyaps

Turbidity

Reviewed by

Crawford Consulting, Inc.

Muds

Meter calibration:

Purged and sampled by (print):

Temperature

		SAM	PLE COLL	ECTION FIE	LD DATA	Р	age <u></u> of <u>/</u>
Project No.: Project Name: Location: Client:	CS1605 Alameda Alameda, Cargill Sa	CA			Well II Sample Start D Finish	ate: Mu	1-3 1-14 2-14
WELL INFORM Casing diameter (One casing volum One casing volum Gallons per linea Floating product	(in.): ne (gal.): $ne = \pi x [o]$ or ft for cas		Calculated pur a.) $x 1 \text{ ft/12 in.}$ 1'' = 0.041	ge volume (gal.) $x^2 x [well depth (2" = 0.16 4" = 0.16]$		ne):	. <u>5</u> 5
WELL PURGING Date purged: Purging equipme Purge rate (lpm): Purge water dispo	J - J - nt: ⊙sal:	16	Start time:	Bladder pump n bailer Well yield (H/L) EC (mS/cm) SSS	Other :	Color (Visual)	Turbidity (NTU) 53.8
1145	5	Recharge	7118	574	14.5	Clarex	565
Total Purged (Lit	ers):	1.9	And the second s				
WELL SAMPLIDate sampled: Sampling equipm	2-2-	Peristaltic	1	De	End time: _ pth to water (ft) b Teflor	efore sampling:	(0.50
Weather condition Well condition/R liquit [Mod fass TD 6 f	emarks:	Rain y herry of Losses of 2. Jemour	dold	L during Uping St Lubing (Ambient temper	unable	63 to take moll Tagget
Meter calibration		ECerature	· · · · · · · · · · · · · · · · · · ·		pH Turbidity		
Purged and samp		nt): man	me Call	u405	Reviewed by:	9/3	

		SAM	PLE COLL	ECTION FIEI	LD DATA			of
Project No.: Project Name: Location: Client:	CS1605 Alameda Alameda, Cargill Sa	CA		-	Start	le ID:	MW- 2-2-10 2-2	U - / C
	(in.): me (gal.): $me = \pi x [cost)$ ar ft for cast	casing radius (in	1.) $x \ 1 \ ft/12 \ in.$ $1'' = 0.041$	r (ft): $\frac{405}{5}$ rge volume (gal.) ($\frac{7}{2}$ x [well depth ($\frac{7}{2}$ " = 0.16 4" = 0 od for checking:	t) - depth to wa 0.65	ter (ft)] x^2 $6'' = 1.5$	7.48 gal/ft ³	İ
WELL PURGIN Date purged: Purging equipme Purge rate (lpm): Purge water disp	<u>2-2-1</u> ent: :	Submersible PVC bailer 0,35	Start time: _ pump Teflo	0909 Bladder pump_ on bailer_ Well yield (H/L):	End time:	O G Peristaltic		χ
Time (2400 hr) OG 3		Cumulative Vol. Purged (Liters) 2, 3 4, 4	pH (units) 7.46 7.48	EC (mS/cm) 597 597 599		Col (Vist		Turbidity (NTU) 5.7 3.4 2.5
Total Purged (Li	ters):	6.9				-		
WELL SAMPLE Date sampled: Sampling equipn	2-2-1	Peristaltic	,	Bladder pump_	th to water (ft)	before san	npling:	12.45
Weather condition/R	ons:	Rain, colé. A	II San	ngles take	Ambient tempo	erature (° F	F): <u>(</u>	, \$
Meter calibration		EC 15.1 erature U			pH <u>(ø</u> 💪 Furbidity <u>(</u>	8-7.00 Olj _	10.00-10	.a/4.0>. 400
Purged and samp		nt): Marw	2) L. Galle	1905	Davison 31		fly	

Appendix B

Groundwater Velocity Calculations

APPENDIX B GROUNDWATER VELOCITY CALCULATIONS

FOR CARGILL ALAMEDA SITE

GROUNDWATER VELOCITY FORMULA

V = Ki/n where:

 $V = average \ linear \ groundwater \ velocity$ $i = hydraulic \ gradient$ $K = hydraulic \ conductivity$ $n = effective \ porosity$

PARAMETERS

Range of hydraulic conductivity values (K) from slug tests:

Material	Well	K (cm/sec)
Silty sand (SM) and Clayey sand (SC) Silty sand (SM) and Clayey sand (SC) Silty sand (SM) and Clayey sand (SC)	MW-1 MW-2 MW-3	0.00002 0.00002 0.000003

Highest measured K = 0.00002

Porosity (n) = 33% (from laboratory analysis of boring B21 soil sample)

Hydraulic gradient (i) calculated from groundwater contours:

Feb-16 0.028

plante (Wheeler

UNIT CONVERSIONS

1 day = 86,400 sec 1 cm/sec = 2,834.65 ft/day1 foot = 30.48 cm 1 cm/sec = 1,034,645.67 ft/yr

CALCULATED VELOCITIES

	Flow	K	i	n	V
Measurement Event	Direction	(cm/sec)	(ft/ft)		(ft/yr)
Feb-16	NE	0.00002	0.028	0.33	1.8

Calculations and assumptions prepared by:

Date: 5/10/2016

Appendix C Certified Analytical Reports and Chain-of-Custody Documentation

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-70127-1

Client Project/Site: Alameda Facility CS 1605

For:

Crawford Consulting Inc 4 North First Street Suite 650 San Jose, California 95113-1326

Attn: Ms. Dana Johnston

Mint RJ Smit

Authorized for release by: 2/9/2016 2:57:30 PM

Micah Smith, Project Manager II

(925)484-1919

micah.smith@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-70127-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	12
QC Association Summary	17
Lab Chronicle	18
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

Δ

5

7

9

10

12

13

Definitions/Glossary

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 720-70127-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

2/9/2016

Page 3 of 23

Case Narrative

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

TestAmerica Job ID: 720-70127-1

Job ID: 720-70127-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-70127-1

Comments

No additional comments.

Receipt

The samples were received on 2/2/2016 1:15 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 7.4° C.

GC/MS VOA

Method(s) 8260B: The following sample(s) were collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: DUP-1 (720-70127-5). The sample was analyzed within 7 days of collection as recommended.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

6

7

8

9

12

13

Detection Summary

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

TestAmerica Job ID: 720-70127-1

Client Sample ID: MW-1 Lab Sample ID: 720-70127-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	1.8	0.50	ug/L		8260B	Total/NA
Trichloroethene	27	0.50	ug/L	1	8260B	Total/NA
Tetrachloroethene	58	0.50	ug/L	1	8260B	Total/NA

Client Sample ID: MW-2 Lab Sample ID: 720-70127-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	16	0.50	ug/L		8260B	Total/NA
Trichloroethene	24	0.50	ug/L	1	8260B	Total/NA
Tetrachloroethene	25	0.50	ug/L	1	8260B	Total/NA

Client Sample ID: MW-3 Lab Sample ID: 720-70127-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	33		0.50		ug/L	1	_	8260B	Total/NA
1,1-Dichloroethane	1.3		0.50		ug/L	1		8260B	Total/NA

Lab Sample ID: 720-70127-4 Client Sample ID: MW-4

No Detections.

Client Sample ID: DUP-1 Lab Sample ID: 720-70127-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	14		0.50		ug/L	1	_	8260B	Total/NA
Trichloroethene	20		0.50		ug/L	1		8260B	Total/NA
Tetrachloroethene	22		0.50		ug/L	1		8260B	Total/NA

Client Sample ID: TB-1 Lab Sample ID: 720-70127-6

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

Lab Sample ID: 720-70127-1

TestAmerica Job ID: 720-70127-1

Matrix: Water

Client Sample ID: MW-1 Date Collected: 02/02/16 10:36

Date Received: 02/02/16 13:15

1,2-Dichloroethane-d4 (Surr)

Method: 8260B - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L			02/02/16 23:48	1
1,1-Dichloroethane	ND		0.50		ug/L			02/02/16 23:48	1
Dichlorodifluoromethane	ND		0.50		ug/L			02/02/16 23:48	1
Vinyl chloride	ND		0.50		ug/L			02/02/16 23:48	1
Chloroethane	ND		1.0		ug/L			02/02/16 23:48	1
Trichlorofluoromethane	ND		1.0		ug/L			02/02/16 23:48	1
Methylene Chloride	ND		5.0		ug/L			02/02/16 23:48	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			02/02/16 23:48	1
cis-1,2-Dichloroethene	1.8		0.50		ug/L			02/02/16 23:48	1
Chloroform	ND		1.0		ug/L			02/02/16 23:48	1
1,1,1-Trichloroethane	ND		0.50		ug/L			02/02/16 23:48	1
Carbon tetrachloride	ND		0.50		ug/L			02/02/16 23:48	1
1,2-Dichloroethane	ND		0.50		ug/L			02/02/16 23:48	1
Trichloroethene	27		0.50		ug/L			02/02/16 23:48	1
1,2-Dichloropropane	ND		0.50		ug/L			02/02/16 23:48	1
Dichlorobromomethane	ND		0.50		ug/L			02/02/16 23:48	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			02/02/16 23:48	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			02/02/16 23:48	1
1,1,2-Trichloroethane	ND		0.50		ug/L			02/02/16 23:48	1
Tetrachloroethene	58		0.50		ug/L			02/02/16 23:48	1
Chlorodibromomethane	ND		0.50		ug/L			02/02/16 23:48	1
Chlorobenzene	ND		0.50		ug/L			02/02/16 23:48	1
Bromoform	ND		1.0		ug/L			02/02/16 23:48	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			02/02/16 23:48	1
1,3-Dichlorobenzene	ND		0.50		ug/L			02/02/16 23:48	1
1,4-Dichlorobenzene	ND		0.50		ug/L			02/02/16 23:48	1
1,2-Dichlorobenzene	ND		0.50		ug/L			02/02/16 23:48	1
Chloromethane	ND		1.0		ug/L			02/02/16 23:48	1
Bromomethane	ND		1.0		ug/L			02/02/16 23:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			02/02/16 23:48	1
EDB	ND		0.50		ug/L			02/02/16 23:48	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			02/02/16 23:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130			-		02/02/16 23:48	1
4-Bromofluorobenzene	99		67 - 130					02/02/16 23:48	1

2/9/2016

02/02/16 23:48

72 - 130

112

4

7

9

10

12

IJ

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605

Client Sample ID: MW-2

Date Collected: 02/02/16 11:11

Lab Sample ID: 720-70127-2

Matrix: Water

Date Received: 02/02/16 13:15

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50	ug/L			02/03/16 00:16	1
1,1-Dichloroethane	ND		0.50	ug/L			02/03/16 00:16	1
Dichlorodifluoromethane	ND		0.50	ug/L			02/03/16 00:16	1
Vinyl chloride	ND		0.50	ug/L			02/03/16 00:16	1
Chloroethane	ND		1.0	ug/L			02/03/16 00:16	1
Trichlorofluoromethane	ND		1.0	ug/L			02/03/16 00:16	1
Methylene Chloride	ND		5.0	ug/L			02/03/16 00:16	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			02/03/16 00:16	1
cis-1,2-Dichloroethene	16		0.50	ug/L			02/03/16 00:16	1
Chloroform	ND		1.0	ug/L			02/03/16 00:16	1
1,1,1-Trichloroethane	ND		0.50	ug/L			02/03/16 00:16	1
Carbon tetrachloride	ND		0.50	ug/L			02/03/16 00:16	1
1,2-Dichloroethane	ND		0.50	ug/L			02/03/16 00:16	1
Trichloroethene	24		0.50	ug/L			02/03/16 00:16	1
1,2-Dichloropropane	ND		0.50	ug/L			02/03/16 00:16	1
Dichlorobromomethane	ND		0.50	ug/L			02/03/16 00:16	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			02/03/16 00:16	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			02/03/16 00:16	1
1,1,2-Trichloroethane	ND		0.50	ug/L			02/03/16 00:16	1
Tetrachloroethene	25		0.50	ug/L			02/03/16 00:16	1
Chlorodibromomethane	ND		0.50	ug/L			02/03/16 00:16	1
Chlorobenzene	ND		0.50	ug/L			02/03/16 00:16	1
Bromoform	ND		1.0	ug/L			02/03/16 00:16	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			02/03/16 00:16	1
1,3-Dichlorobenzene	ND		0.50	ug/L			02/03/16 00:16	1
1,4-Dichlorobenzene	ND		0.50	ug/L			02/03/16 00:16	1
1,2-Dichlorobenzene	ND		0.50	ug/L			02/03/16 00:16	1
Chloromethane	ND		1.0	ug/L			02/03/16 00:16	1
Bromomethane	ND		1.0	ug/L			02/03/16 00:16	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			02/03/16 00:16	1
EDB	ND		0.50	ug/L			02/03/16 00:16	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			02/03/16 00:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130				02/03/16 00:16	1
4-Bromofluorobenzene	103		67 - 130				02/03/16 00:16	1
1,2-Dichloroethane-d4 (Surr)	112		72 - 130				02/03/16 00:16	1

2

TestAmerica Job ID: 720-70127-1

4

6

8

10

11

13

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

Lab Sample ID: 720-70127-3

TestAmerica Job ID: 720-70127-1

Matrix: Water

Client Sample ID: MW-3 Date Collected: 02/02/16 11:40 Date Received: 02/02/16 13:15

1,2-Dichloroethane-d4 (Surr)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	33		0.50	ug/L			02/03/16 00:44	1
1,1-Dichloroethane	1.3		0.50	ug/L			02/03/16 00:44	1
Dichlorodifluoromethane	ND		0.50	ug/L			02/03/16 00:44	1
Vinyl chloride	ND		0.50	ug/L			02/03/16 00:44	1
Chloroethane	ND		1.0	ug/L			02/03/16 00:44	1
Trichlorofluoromethane	ND		1.0	ug/L			02/03/16 00:44	1
Methylene Chloride	ND		5.0	ug/L			02/03/16 00:44	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			02/03/16 00:44	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			02/03/16 00:44	1
Chloroform	ND		1.0	ug/L			02/03/16 00:44	1
1,1,1-Trichloroethane	ND		0.50	ug/L			02/03/16 00:44	1
Carbon tetrachloride	ND		0.50	ug/L			02/03/16 00:44	1
1,2-Dichloroethane	ND		0.50	ug/L			02/03/16 00:44	1
Trichloroethene	ND		0.50	ug/L			02/03/16 00:44	1
1,2-Dichloropropane	ND		0.50	ug/L			02/03/16 00:44	1
Dichlorobromomethane	ND		0.50	ug/L			02/03/16 00:44	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			02/03/16 00:44	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			02/03/16 00:44	1
1,1,2-Trichloroethane	ND		0.50	ug/L			02/03/16 00:44	1
Tetrachloroethene	ND		0.50	ug/L			02/03/16 00:44	1
Chlorodibromomethane	ND		0.50	ug/L			02/03/16 00:44	1
Chlorobenzene	ND		0.50	ug/L			02/03/16 00:44	1
Bromoform	ND		1.0	ug/L			02/03/16 00:44	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			02/03/16 00:44	1
1,3-Dichlorobenzene	ND		0.50	ug/L			02/03/16 00:44	1
1,4-Dichlorobenzene	ND		0.50	ug/L			02/03/16 00:44	1
1,2-Dichlorobenzene	ND		0.50	ug/L			02/03/16 00:44	1
Chloromethane	ND		1.0	ug/L			02/03/16 00:44	1
Bromomethane	ND		1.0	ug/L			02/03/16 00:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			02/03/16 00:44	1
EDB	ND		0.50	ug/L			02/03/16 00:44	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			02/03/16 00:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130		-		02/03/16 00:44	1
4-Bromofluorobenzene	97		67 - 130				02/03/16 00:44	1

02/03/16 00:44

72 - 130

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

TestAmerica Job ID: 720-70127-1

Lab Sample ID: 720-70127-4

Matrix: Water

Client Sample ID: MW-4

Date Collected: 02/02/16 09:43 Date Received: 02/02/16 13:15

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50	ug/L			02/03/16 01:11	1
1,1-Dichloroethane	ND		0.50	ug/L			02/03/16 01:11	1
Dichlorodifluoromethane	ND		0.50	ug/L			02/03/16 01:11	1
Vinyl chloride	ND		0.50	ug/L			02/03/16 01:11	1
Chloroethane	ND		1.0	ug/L			02/03/16 01:11	1
Trichlorofluoromethane	ND		1.0	ug/L			02/03/16 01:11	1
Methylene Chloride	ND		5.0	ug/L			02/03/16 01:11	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			02/03/16 01:11	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			02/03/16 01:11	1
Chloroform	ND		1.0	ug/L			02/03/16 01:11	1
1,1,1-Trichloroethane	ND		0.50	ug/L			02/03/16 01:11	1
Carbon tetrachloride	ND		0.50	ug/L			02/03/16 01:11	1
1,2-Dichloroethane	ND		0.50	ug/L			02/03/16 01:11	1
Trichloroethene	ND		0.50	ug/L			02/03/16 01:11	1
1,2-Dichloropropane	ND		0.50	ug/L			02/03/16 01:11	1
Dichlorobromomethane	ND		0.50	ug/L			02/03/16 01:11	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			02/03/16 01:11	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			02/03/16 01:11	1
1,1,2-Trichloroethane	ND		0.50	ug/L			02/03/16 01:11	1
Tetrachloroethene	ND		0.50	ug/L			02/03/16 01:11	1
Chlorodibromomethane	ND		0.50	ug/L			02/03/16 01:11	1
Chlorobenzene	ND		0.50	ug/L			02/03/16 01:11	1
Bromoform	ND		1.0	ug/L			02/03/16 01:11	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			02/03/16 01:11	1
1,3-Dichlorobenzene	ND		0.50	ug/L			02/03/16 01:11	1
1,4-Dichlorobenzene	ND		0.50	ug/L			02/03/16 01:11	1
1,2-Dichlorobenzene	ND		0.50	ug/L			02/03/16 01:11	1
Chloromethane	ND		1.0	ug/L			02/03/16 01:11	1
Bromomethane	ND		1.0	ug/L			02/03/16 01:11	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			02/03/16 01:11	1
EDB	ND		0.50	ug/L			02/03/16 01:11	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			02/03/16 01:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130				02/03/16 01:11	1
4-Bromofluorobenzene	99		67 - 130				02/03/16 01:11	1
1,2-Dichloroethane-d4 (Surr)	116		72 - 130				02/03/16 01:11	1

2

5

6

0

10

12

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-70127-1

Client Sample ID: DUP-1 Lab Sample ID: 720-70127-5

Date Collected: 02/02/16 00:00 **Matrix: Water** Date Received: 02/02/16 13:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L			02/03/16 01:39	1
1,1-Dichloroethane	ND		0.50		ug/L			02/03/16 01:39	1
Dichlorodifluoromethane	ND		0.50		ug/L			02/03/16 01:39	1
Vinyl chloride	ND		0.50		ug/L			02/03/16 01:39	1
Chloroethane	ND		1.0		ug/L			02/03/16 01:39	1
Trichlorofluoromethane	ND		1.0		ug/L			02/03/16 01:39	1
Methylene Chloride	ND		5.0		ug/L			02/03/16 01:39	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			02/03/16 01:39	1
cis-1,2-Dichloroethene	14		0.50		ug/L			02/03/16 01:39	1
Chloroform	ND		1.0		ug/L			02/03/16 01:39	1
1,1,1-Trichloroethane	ND		0.50		ug/L			02/03/16 01:39	1
Carbon tetrachloride	ND		0.50		ug/L			02/03/16 01:39	1
1,2-Dichloroethane	ND		0.50		ug/L			02/03/16 01:39	1
Trichloroethene	20		0.50		ug/L			02/03/16 01:39	1
1,2-Dichloropropane	ND		0.50		ug/L			02/03/16 01:39	1
Dichlorobromomethane	ND		0.50		ug/L			02/03/16 01:39	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			02/03/16 01:39	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			02/03/16 01:39	1
1,1,2-Trichloroethane	ND		0.50		ug/L			02/03/16 01:39	1
Tetrachloroethene	22		0.50		ug/L			02/03/16 01:39	1
Chlorodibromomethane	ND		0.50		ug/L			02/03/16 01:39	1
Chlorobenzene	ND		0.50		ug/L			02/03/16 01:39	1
Bromoform	ND		1.0		ug/L			02/03/16 01:39	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			02/03/16 01:39	1
1,3-Dichlorobenzene	ND		0.50		ug/L			02/03/16 01:39	1
1,4-Dichlorobenzene	ND		0.50		ug/L			02/03/16 01:39	1
1,2-Dichlorobenzene	ND		0.50		ug/L			02/03/16 01:39	1
Chloromethane	ND		1.0		ug/L			02/03/16 01:39	1
Bromomethane	ND		1.0		ug/L			02/03/16 01:39	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			02/03/16 01:39	1
EDB	ND		0.50		ug/L			02/03/16 01:39	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			02/03/16 01:39	1
Surrogate	•	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130					02/03/16 01:39	1
4-Bromofluorobenzene	102		67 - 130					02/03/16 01:39	1
1,2-Dichloroethane-d4 (Surr)	117		72 - 130					02/03/16 01:39	1

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

TestAmerica Job ID: 720-70127-1

Lab Sample ID: 720-70127-6

Matrix: Water

Client Sample ID: TB-1

Date Collected: 02/02/16 00:00 Date Received: 02/02/16 13:15

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50	ug/L			02/03/16 02:07	1
1,1-Dichloroethane	ND		0.50	ug/L			02/03/16 02:07	1
Dichlorodifluoromethane	ND		0.50	ug/L			02/03/16 02:07	1
Vinyl chloride	ND		0.50	ug/L			02/03/16 02:07	1
Chloroethane	ND		1.0	ug/L			02/03/16 02:07	1
Trichlorofluoromethane	ND		1.0	ug/L			02/03/16 02:07	1
Methylene Chloride	ND		5.0	ug/L			02/03/16 02:07	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			02/03/16 02:07	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			02/03/16 02:07	1
Chloroform	ND		1.0	ug/L			02/03/16 02:07	1
1,1,1-Trichloroethane	ND		0.50	ug/L			02/03/16 02:07	1
Carbon tetrachloride	ND		0.50	ug/L			02/03/16 02:07	1
1,2-Dichloroethane	ND		0.50	ug/L			02/03/16 02:07	1
Trichloroethene	ND		0.50	ug/L			02/03/16 02:07	1
1,2-Dichloropropane	ND		0.50	ug/L			02/03/16 02:07	1
Dichlorobromomethane	ND		0.50	ug/L			02/03/16 02:07	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			02/03/16 02:07	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			02/03/16 02:07	1
1,1,2-Trichloroethane	ND		0.50	ug/L			02/03/16 02:07	1
Tetrachloroethene	ND		0.50	ug/L			02/03/16 02:07	1
Chlorodibromomethane	ND		0.50	ug/L			02/03/16 02:07	1
Chlorobenzene	ND		0.50	ug/L			02/03/16 02:07	1
Bromoform	ND		1.0	ug/L			02/03/16 02:07	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			02/03/16 02:07	1
1,3-Dichlorobenzene	ND		0.50	ug/L			02/03/16 02:07	1
1,4-Dichlorobenzene	ND		0.50	ug/L			02/03/16 02:07	1
1,2-Dichlorobenzene	ND		0.50	ug/L			02/03/16 02:07	1
Chloromethane	ND		1.0	ug/L			02/03/16 02:07	1
Bromomethane	ND		1.0	ug/L			02/03/16 02:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			02/03/16 02:07	1
EDB	ND		0.50	ug/L			02/03/16 02:07	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			02/03/16 02:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130				02/03/16 02:07	
4-Bromofluorobenzene	101		67 - 130				02/03/16 02:07	1
1,2-Dichloroethane-d4 (Surr)	117		72 - 130				02/03/16 02:07	1

2

4

6

8

10

11

13

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605

Lab Sample ID: MB 720-196716/4

Analysis Batch: 196716

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)

Client Sample ID: Method Blank Prep Type: Total/NA

Prep

	MB	MB							
Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50	u	ıg/L			02/02/16 18:39	1
1,1-Dichloroethane	ND		0.50	u	ıg/L			02/02/16 18:39	1
Dichlorodifluoromethane	ND		0.50	u	ıg/L			02/02/16 18:39	1
Vinyl chloride	ND		0.50	u	ıg/L			02/02/16 18:39	1
Chloroethane	ND		1.0	u	ıg/L			02/02/16 18:39	1
Trichlorofluoromethane	ND		1.0	u	ıg/L			02/02/16 18:39	1
Methylene Chloride	ND		5.0	u	ıg/L			02/02/16 18:39	1
trans-1,2-Dichloroethene	ND		0.50	u	ıg/L			02/02/16 18:39	1
cis-1,2-Dichloroethene	ND		0.50	u	ıg/L			02/02/16 18:39	1
Chloroform	ND		1.0	u	ıg/L			02/02/16 18:39	1
1,1,1-Trichloroethane	ND		0.50	u	ıg/L			02/02/16 18:39	1
Carbon tetrachloride	ND		0.50	u	ıg/L			02/02/16 18:39	1
1,2-Dichloroethane	ND		0.50	u	ıg/L			02/02/16 18:39	1
Trichloroethene	ND		0.50	u	ıg/L			02/02/16 18:39	1
1,2-Dichloropropane	ND		0.50	u	ıg/L			02/02/16 18:39	1
Dichlorobromomethane	ND		0.50	u	ıg/L			02/02/16 18:39	1
trans-1,3-Dichloropropene	ND		0.50	u	ıg/L			02/02/16 18:39	1
cis-1,3-Dichloropropene	ND		0.50	u	ıg/L			02/02/16 18:39	1
1,1,2-Trichloroethane	ND		0.50	u	ıg/L			02/02/16 18:39	1
Tetrachloroethene	ND		0.50	u	ıg/L			02/02/16 18:39	1
Chlorodibromomethane	ND		0.50	u	ıg/L			02/02/16 18:39	1
Chlorobenzene	ND		0.50	u	ıg/L			02/02/16 18:39	1
Bromoform	ND		1.0	u	ıg/L			02/02/16 18:39	1
1,1,2,2-Tetrachloroethane	ND		0.50	u	ıg/L			02/02/16 18:39	1
1,3-Dichlorobenzene	ND		0.50	u	ıg/L			02/02/16 18:39	1
1,4-Dichlorobenzene	ND		0.50	u	ıg/L			02/02/16 18:39	1
1,2-Dichlorobenzene	ND		0.50	u	ıg/L			02/02/16 18:39	1
Chloromethane	ND		1.0	u	ıg/L			02/02/16 18:39	1
Bromomethane	ND		1.0	u	ıg/L			02/02/16 18:39	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	u	ıg/L			02/02/16 18:39	1
EDB	ND		0.50	u	ıg/L			02/02/16 18:39	1
1,2,4-Trichlorobenzene	ND		1.0		ıg/L			02/02/16 18:39	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130		02/02/16 18:39	1
4-Bromofluorobenzene	98		67 - 130		02/02/16 18:39	1
1.2-Dichloroethane-d4 (Surr)	112		72 - 130		02/02/16 18:39	1

Lab Sample ID: LCS 720-196716/5

Matrix: Water

Analysis Batch: 196716

Alialysis Dalcil. 1307 10								
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	25.0	17.6		ug/L		70	64 - 128	
1,1-Dichloroethane	25.0	19.0		ug/L		76	70 - 130	
Dichlorodifluoromethane	25.0	17.7		ug/L		71	34 - 132	
Vinyl chloride	25.0	21.8		ug/L		87	54 - 135	
Chloroethane	25.0	22.8		ug/L		91	62 - 138	

TestAmerica Pleasanton

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 12 of 23

6

3

4

8

10

12

13

oa i icabantoi

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-196716/5

Matrix: Water

Analysis Batch: 196716

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Trichlorofluoromethane	25.0	27.6		ug/L		111	66 - 132	
Methylene Chloride	25.0	20.8		ug/L		83	70 - 147	
trans-1,2-Dichloroethene	25.0	19.7		ug/L		79	68 - 130	
cis-1,2-Dichloroethene	25.0	20.1		ug/L		80	70 - 130	
Chloroform	25.0	22.2		ug/L		89	70 - 130	
1,1,1-Trichloroethane	25.0	23.5		ug/L		94	70 - 130	
Carbon tetrachloride	25.0	24.3		ug/L		97	70 - 146	
1,2-Dichloroethane	25.0	23.2		ug/L		93	61 - 132	
Trichloroethene	25.0	22.2		ug/L		89	70 - 130	
1,2-Dichloropropane	25.0	18.6		ug/L		74	70 - 130	
Dichlorobromomethane	25.0	23.4		ug/L		93	70 - 130	
trans-1,3-Dichloropropene	25.0	23.4		ug/L		93	70 - 140	
cis-1,3-Dichloropropene	25.0	21.7		ug/L		87	70 - 130	
1,1,2-Trichloroethane	25.0	20.1		ug/L		81	70 - 130	
Tetrachloroethene	25.0	22.0		ug/L		88	70 - 130	
Chlorodibromomethane	25.0	23.5		ug/L		94	70 - 145	
Chlorobenzene	25.0	21.6		ug/L		87	70 - 130	
Bromoform	25.0	23.0		ug/L		92	68 - 136	
1,1,2,2-Tetrachloroethane	25.0	18.0		ug/L		72	70 - 130	
1,3-Dichlorobenzene	25.0	20.9		ug/L		84	70 - 130	
1,4-Dichlorobenzene	25.0	21.2		ug/L		85	70 - 130	
1,2-Dichlorobenzene	25.0	20.7		ug/L		83	70 - 130	
Chloromethane	25.0	18.8		ug/L		75	52 - 175	
Bromomethane	25.0	27.0		ug/L		108	43 - 151	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.7		ug/L		87	42 - 162	
ne	<u>.</u>			<u>.</u>				
EDB	25.0	21.6		ug/L		86	70 - 130	
1,2,4-Trichlorobenzene	25.0	22.2		ug/L		89	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifi	er Limits
Toluene-d8 (Surr)	102	70 - 130
4-Bromofluorobenzene	103	67 - 130
1.2-Dichloroethane-d4 (Surr)	110	72 - 130

Lab Sample ID: LCSD 720-196716/6

Matrix: Water

Analysis Batch: 196716

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	25.0	16.9		ug/L		68	64 - 128	4	20
1,1-Dichloroethane	25.0	19.0		ug/L		76	70 - 130	0	20
Dichlorodifluoromethane	25.0	17.5		ug/L		70	34 - 132	1	20
Vinyl chloride	25.0	21.8		ug/L		87	54 - 135	0	20
Chloroethane	25.0	21.7		ug/L		87	62 - 138	5	20
Trichlorofluoromethane	25.0	26.8		ug/L		107	66 - 132	3	20
Methylene Chloride	25.0	20.0		ug/L		80	70 - 147	4	20
trans-1,2-Dichloroethene	25.0	19.5		ug/L		78	68 - 130	1	20
cis-1,2-Dichloroethene	25.0	20.0		ug/L		80	70 - 130	1	20

TestAmerica Pleasanton

Page 13 of 23

5

3

0

10

12

13

2/9/2016

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-196716/6

Matrix: Water

Analysis Batch: 196716

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroform	25.0	22.3		ug/L		89	70 - 130	0	20
1,1,1-Trichloroethane	25.0	23.6		ug/L		94	70 - 130	0	20
Carbon tetrachloride	25.0	24.4		ug/L		98	70 - 146	1	20
1,2-Dichloroethane	25.0	23.0		ug/L		92	61 - 132	1	20
Trichloroethene	25.0	22.4		ug/L		90	70 - 130	1	20
1,2-Dichloropropane	25.0	18.8		ug/L		75	70 - 130	1	20
Dichlorobromomethane	25.0	23.2		ug/L		93	70 - 130	0	20
trans-1,3-Dichloropropene	25.0	23.2		ug/L		93	70 - 140	1	20
cis-1,3-Dichloropropene	25.0	21.8		ug/L		87	70 - 130	0	20
1,1,2-Trichloroethane	25.0	20.1		ug/L		81	70 - 130	0	20
Tetrachloroethene	25.0	21.6		ug/L		86	70 - 130	2	20
Chlorodibromomethane	25.0	23.6		ug/L		94	70 - 145	1	20
Chlorobenzene	25.0	21.6		ug/L		86	70 - 130	0	20
Bromoform	25.0	23.1		ug/L		93	68 - 136	1	20
1,1,2,2-Tetrachloroethane	25.0	18.0		ug/L		72	70 - 130	0	20
1,3-Dichlorobenzene	25.0	21.0		ug/L		84	70 - 130	0	20
1,4-Dichlorobenzene	25.0	21.2		ug/L		85	70 - 130	0	20
1,2-Dichlorobenzene	25.0	21.1		ug/L		84	70 - 130	2	20
Chloromethane	25.0	18.3		ug/L		73	52 - 175	3	20
Bromomethane	25.0	26.6		ug/L		106	43 - 151	1	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.5		ug/L		86	42 - 162	1	20
ne									
EDB	25.0	21.3		ug/L		85	70 - 130	1	20
1,2,4-Trichlorobenzene	25.0	21.9		ug/L		88	70 - 130	1	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		70 - 130
4-Bromofluorobenzene	104		67 - 130
1,2-Dichloroethane-d4 (Surr)	110		72 - 130

Lab Sample ID: 720-70127-1 MS

Matrix: Water

Analysis Batch: 196716

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	ND		25.0	21.8		ug/L		86	60 - 140	
1,1-Dichloroethane	ND		25.0	22.1		ug/L		88	60 - 140	
Dichlorodifluoromethane	ND		25.0	17.7		ug/L		71	38 - 140	
Vinyl chloride	ND		25.0	21.0		ug/L		84	58 - 140	
Chloroethane	ND		25.0	22.3		ug/L		89	51 - 140	
Trichlorofluoromethane	ND		25.0	26.3		ug/L		105	60 - 140	
Methylene Chloride	ND		25.0	23.6		ug/L		95	40 - 140	
trans-1,2-Dichloroethene	ND		25.0	22.9		ug/L		91	60 - 140	
cis-1,2-Dichloroethene	1.8		25.0	25.2		ug/L		93	60 - 140	
Chloroform	ND		25.0	25.2		ug/L		101	60 - 140	
1,1,1-Trichloroethane	ND		25.0	26.4		ug/L		105	60 - 140	
Carbon tetrachloride	ND		25.0	27.2		ug/L		109	60 - 140	
1,2-Dichloroethane	ND		25.0	26.3		ug/L		105	60 - 140	

TestAmerica Pleasanton

Page 14 of 23

Client Sample ID: MW-1

Prep Type: Total/NA

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 720-70127-1 MS

Matrix: Water

Analysis Batch: 196716

Client Sample ID: MW-1 Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Trichloroethene	27		25.0	53.8		ug/L		107	60 - 140	
1,2-Dichloropropane	ND		25.0	21.5		ug/L		86	60 - 140	
Dichlorobromomethane	ND		25.0	26.3		ug/L		104	60 - 140	
trans-1,3-Dichloropropene	ND		25.0	27.1		ug/L		109	60 - 140	
cis-1,3-Dichloropropene	ND		25.0	25.3		ug/L		101	60 - 140	
1,1,2-Trichloroethane	ND		25.0	23.3		ug/L		93	60 - 140	
Tetrachloroethene	58		25.0	85.5		ug/L		112	60 - 140	
Chlorodibromomethane	ND		25.0	27.4		ug/L		109	60 - 140	
Chlorobenzene	ND		25.0	24.1		ug/L		96	60 - 140	
Bromoform	ND		25.0	26.4		ug/L		106	56 - 140	
1,1,2,2-Tetrachloroethane	ND		25.0	20.1		ug/L		80	60 - 140	
1,3-Dichlorobenzene	ND		25.0	23.3		ug/L		93	60 - 140	
1,4-Dichlorobenzene	ND		25.0	23.6		ug/L		95	60 - 140	
1,2-Dichlorobenzene	ND		25.0	23.4		ug/L		94	60 - 140	
Chloromethane	ND		25.0	17.3		ug/L		69	52 - 140	
Bromomethane	ND		25.0	24.8		ug/L		99	23 - 140	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	26.0		ug/L		104	60 - 140	
ne										
EDB	ND		25.0	24.8		ug/L		99	60 - 140	
1,2,4-Trichlorobenzene	ND		25.0	25.4		ug/L		102	60 - 140	

MS MS

Surrogate	%Recovery Q	ualifier	Limits
Toluene-d8 (Surr)	102		70 - 130
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	111		72 - 130

Lab Sample ID: 720-70127-1 MSD

Matrix: Water

Analysis Batch: 196716

Client Sample ID: MW-1	
Prep Type: Total/NA	

Analysis Daton. 1907 10		_									
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND	· <u></u> -	25.0	21.9		ug/L		87	60 - 140	0	20
1,1-Dichloroethane	ND		25.0	22.5		ug/L		90	60 - 140	2	20
Dichlorodifluoromethane	ND		25.0	17.7		ug/L		71	38 - 140	0	20
Vinyl chloride	ND		25.0	22.0		ug/L		88	58 - 140	4	20
Chloroethane	ND		25.0	22.3		ug/L		89	51 - 140	0	20
Trichlorofluoromethane	ND		25.0	27.3		ug/L		109	60 - 140	4	20
Methylene Chloride	ND		25.0	23.5		ug/L		94	40 - 140	0	20
trans-1,2-Dichloroethene	ND		25.0	24.1		ug/L		96	60 - 140	5	20
cis-1,2-Dichloroethene	1.8		25.0	25.5		ug/L		95	60 - 140	1	20
Chloroform	ND		25.0	25.5		ug/L		102	60 - 140	1	20
1,1,1-Trichloroethane	ND		25.0	27.4		ug/L		110	60 - 140	4	20
Carbon tetrachloride	ND		25.0	27.7		ug/L		111	60 - 140	2	20
1,2-Dichloroethane	ND		25.0	26.8		ug/L		107	60 - 140	2	20
Trichloroethene	27		25.0	53.8		ug/L		107	60 - 140	0	20
1,2-Dichloropropane	ND		25.0	22.1		ug/L		88	60 - 140	3	20
Dichlorobromomethane	ND		25.0	26.5		ug/L		105	60 - 140	1	20
trans-1,3-Dichloropropene	ND		25.0	27.1		ug/L		108	60 - 140	0	20
• •						-					

TestAmerica Pleasanton

Page 15 of 23

9

3

7

9

10

12

13

1.4

QC Sample Results

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-70127-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 720-70127-1 MSD

Matrix: Water

Surrogate

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 196716

Client Sample ID: MW-1 **Prep Type: Total/NA**

Autom 1001 10	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,3-Dichloropropene	ND		25.0	25.5		ug/L		102	60 - 140	1	20
1,1,2-Trichloroethane	ND		25.0	23.3		ug/L		93	60 - 140	0	20
Tetrachloroethene	58		25.0	84.9		ug/L		109	60 - 140	1	20
Chlorodibromomethane	ND		25.0	27.5		ug/L		110	60 - 140	0	20
Chlorobenzene	ND		25.0	24.6		ug/L		98	60 - 140	2	20
Bromoform	ND		25.0	27.5		ug/L		110	56 - 140	4	20
1,1,2,2-Tetrachloroethane	ND		25.0	20.0		ug/L		80	60 - 140	0	20
1,3-Dichlorobenzene	ND		25.0	23.6		ug/L		94	60 - 140	1	20
1,4-Dichlorobenzene	ND		25.0	23.9		ug/L		96	60 - 140	1	20
1,2-Dichlorobenzene	ND		25.0	23.4		ug/L		94	60 - 140	0	20
Chloromethane	ND		25.0	18.0		ug/L		72	52 - 140	4	20
Bromomethane	ND		25.0	25.9		ug/L		104	23 - 140	4	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	ND		25.0	27.5		ug/L		110	60 - 140	5	20
EDB	ND		25.0	25.0		ug/L		100	60 - 140	1	20
1,2,4-Trichlorobenzene	ND		25.0	25.1		ug/L		100	60 - 140	1	20

72 - 130

MSD MSD %Recovery Qualifier Limits Toluene-d8 (Surr) 70 - 130 101 67 - 130 4-Bromofluorobenzene 104

111

TestAmerica Pleasanton

QC Association Summary

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-70127-1

GC/MS VOA

Analysis Batch: 196716

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-70127-1	MW-1	Total/NA	Water	8260B	
720-70127-1 MS	MW-1	Total/NA	Water	8260B	
720-70127-1 MSD	MW-1	Total/NA	Water	8260B	
720-70127-2	MW-2	Total/NA	Water	8260B	
720-70127-3	MW-3	Total/NA	Water	8260B	
720-70127-4	MW-4	Total/NA	Water	8260B	
720-70127-5	DUP-1	Total/NA	Water	8260B	
720-70127-6	TB-1	Total/NA	Water	8260B	
LCS 720-196716/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-196716/6	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 720-196716/4	Method Blank	Total/NA	Water	8260B	

6

10

46

13

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

Client Sample ID: MW-1

Lab Sample ID: 720-70127-1

Matrix: Water

Date Collected: 02/02/16 10:36 Date Received: 02/02/16 13:15

Prepared Dilution Batch Batch Batch Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab TAL PLS Total/NA Analysis 8260B 196716 02/02/16 23:48 YB1

Lab Sample ID: 720-70127-2

Matrix: Water

Matrix: Water

Matrix: Water

Date Received: 02/02/16 13:15

Client Sample ID: MW-2

Date Collected: 02/02/16 11:11

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260B 196716 02/03/16 00:16 YB1 TAL PLS Analysis

Client Sample ID: MW-3 Lab Sample ID: 720-70127-3

Date Collected: 02/02/16 11:40

Date Received: 02/02/16 13:15

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor** Number **Analyst** Lab Total/NA Analysis 8260B 196716 02/03/16 00:44 YB1 TAL PLS

Lab Sample ID: 720-70127-4 Client Sample ID: MW-4 **Matrix: Water**

Date Collected: 02/02/16 09:43

Date Received: 02/02/16 13:15

Batch Batch Dilution Batch Prepared Method Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab 196716 02/03/16 01:11 YB1 TAL PLS Total/NA Analysis 8260B

Client Sample ID: DUP-1 Lab Sample ID: 720-70127-5

Date Collected: 02/02/16 00:00

Date Received: 02/02/16 13:15

Dilution Batch Batch Batch Prepared Method Factor Number or Analyzed Prep Type Type Run **Analyst** Lab Total/NA Analysis 8260B 196716 02/03/16 01:39 YB1 TAL PLS

Client Sample ID: TB-1 Lab Sample ID: 720-70127-6

Date Collected: 02/02/16 00:00 **Matrix: Water** Date Received: 02/02/16 13:15

Batch Dilution Batch Batch Prepared Method Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab Total/NA Analysis 8260B 196716 02/03/16 02:07 YB1 TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

TestAmerica Job ID: 720-70127-1

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority California	Program State Program		EPA Region	Certification ID 2496	Expiration Date 01-31-17
Analysis Method	Prep Method	Matrix	Analyte	Э	

3

4

5

7

0

10

4.0

13

Method Summary

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

TestAmerica Job ID: 720-70127-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

3

4

5

6

8

9

11

12

13

Sample Summary

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605

TestAmerica Job ID: 720-70127-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-70127-1	MW-1	Water	02/02/16 10:36	
120-10121-1	IVIVV-I	vvalei	02/02/10 10.30	02/02/10 13.13
720-70127-2	MW-2	Water	02/02/16 11:11	02/02/16 13:15
720-70127-3	MW-3	Water	02/02/16 11:40	02/02/16 13:15
720-70127-4	MW-4	Water	02/02/16 09:43	02/02/16 13:15
720-70127-5	DUP-1	Water	02/02/16 00:00	02/02/16 13:15
720-70127-6	TB-1	Water	02/02/16 00:00	02/02/16 13:15

Test America

1220 Quarry Lane, Pleasanton, CA 94566 (925) 484-1919 FAX (925) 484-1096

CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM
2/2//

925) 484-1919 FAX	X (925) 484-1096						Servic	ce Reg	uest.	· · · · · · · · · · · · · · · · · · ·											Date: _c	<u> 210</u>	110	2
Project Name: Project Number:	Alameda Facility CS1605	720-701	27 Chain of Custoo	dy –											Analys	is Rec	queste	d						_6/2 6
Project Manager: Company/Address:	Dana Johnston Crawford Consultin 4 North Second St, S San Jose, CA 95113 (408) 287-9934	Suite 650	D		Number of Containers	Volatile Organics (VOCs)	(EPA 8021B)	Pb (7421); As (7060)	Same as Metais	500 ml plastic H ₂ SO ₄	Chloride, Nitrate	500 ml plastic NP	pH, Conductivity	500 ml plastic NP	Lotal Fhenois $2 \times 500 \text{ ml glass H}_2\text{SO}_4$	Volatile Organics (8010)	2 x 40 ml vial	TPHgBTEX	2 x 40 ml vial HCl		- Walland		REMARKS	
Sample I.D.	Date	Time	LAB I.D.	Sample Matrix			~	<u> </u>	7	- -		2	<u> </u>	<u>ς </u>	7 7	_	-2	<u></u>	7					1
MW-1	2/2/16	1034		Wazer	3											>	ζ							
MW-2	2/2/14	1111		Water	3											2	ζ					\perp		
MW-3	2/2/14	1140		wa ter	3			<u> </u>					<u> </u>			3	ζ .							
MW-4	2/2/14	0943		water	3	<u> </u>			_	•						2	ζ.					 		-87 ⊅
DUP-1	2/2/14			wa mi	3									\perp		3	ζ							<u> </u>
TB-1	2/3//6			under	3						-			1		Σ	ζ					_		-
									$\frac{1}{1}$					+										-
					<u> </u>																	+-		┫
	inquished By	<u> </u>	Receive	ed By	7	URNA	ROUND	REQUIE	REMEN	TS		REPOR			NTS		INVOI	CE INF	ORMA	TION		SAMPI	E RECEIPT	\dashv
Manuel	L. Balkso	Signatur د	UNUL		x	24 hr Standar		8 hr king days	5 da	ay .		II. Repo		ies DUF		P.O #					Shipping V Shipping #.			
rinted Name		Pnnted 1	Dennis An	q٠Z	x	-	e Verbal l e pdf Res	Prelimina aults	ry Resul	ts		III Data	god as sa . Validati	on Repo		Bill to:					Condition:			Ì
7/2/16 -	- 1315		A	D . 9	Due Dat	e .				_		RWQCI			ta)							· · · · · · · · · · · · · · · · · · ·		-
Date/Time Rel	linquished By	Date/Tin	ne 2/2/16 Receive	13 1 5 ed By	Speci	al Inst	ructio	ns/Cor	nmen	ts:		(MDLs/	PQLs/TR	ACE#)		1								\dashv
ignature		Signatur	<u> </u>		-	Pleas	se repo	ort MRI	Ls onl	у										4	11.9			
Printed Name		Printed)	Vame		-	Pleas	se pdf	results	to [.]	Dan	a John	nston a	t dana	@crav	wfordco	nsultin	ag.cor	n.		l,	47			
Pure.		Firm			1	Pleas	se prov	ride EI	OF for	Geotra	cker.	Globa	al ID is	SL06	5001775	511								
Date/Time		Date/Tir	ne		1																			╝

Login Sample Receipt Checklist

Client: Crawford Consulting Inc Job Number: 720-70127-1

Login Number: 70127 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Arauz, Dennis

Creator. Arauz, Dennis		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

1

9

4 4

12

10

