

RECEIVED

By Alameda County Environmental Health at 3:45 pm, May 16, 2013

May 14, 2013

Alameda County Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Attn: Jerry Wickham

RE: Groundwater Monitoring Results, First Semi-Annual 2013 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, SLIC Case No. RO0002480

Dear Mr. Wickham,

The attached report presents the groundwater monitoring results for the first semi-annual 2013 monitoring period for the Cargill Salt Alameda facility. The report includes the results of groundwater monitoring data collected during the first quarter of 2013. Groundwater levels in the site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report is true and correct to the best of my knowledge. Should you have any questions concerning the report, please don't hesitate to call me at (510) 790-8625.

Sincerely,

Sean Riley

Environmental Manager

Groundwater Monitoring Results First Semi-Annual 2013 Monitoring Period Cargill Salt – Alameda Facility Alameda, California

Groundwater Monitoring Results First Semi-Annual 2013 Monitoring Period

Cargill Salt – Alameda Facility Alameda, California

Prepared for:

Cargill Salt 7220 Central Avenue Newark, California 94560

Prepared by:

Crawford Consulting, Inc.
4 North Second Street, Suite 650
San Jose, CA 95113
(408) 287-9934

Project No. CS1605 May 14, 2013

Contents

1	Introduction	1
	1.1 Reporting Period Activities	1
	1.2 Background Information	
	1.2.1 Site Description	
	1.2.2 Summary of Investigative and Remedial Activities	
	1.2.3 Source of VOC Impact	
2	Groundwater Flow Analysis	
	2.1 Water-Level Measurement	
	2.2 Groundwater Flow Direction and Gradient	
	2.3 Groundwater Velocity	
3	Groundwater Sampling and Analysis	
	3.1 Sample Collection and Analysis	
	3.2 Analytical Results	
	3.2.1 Quality Control.	
	3.2.2 Groundwater Results	
	3.3 Discussion	
4	Phytoremediation Project Status	

Professional Certification References Limitations

Tables

Table 1.	Groundwater Level Data
Table 2.	Relative Percent Difference Based on Duplicate Samples
Table 3a.	Summary of Groundwater Monitoring Well Data - First Quarter 2013
Table 3b.	Historical Summary of Groundwater Monitoring Well Data

Illustrations

Figure 1.	Site Location
Figure 2.	Groundwater Monitoring Well Locations
Figure 3.	Graphical Summary of Groundwater Elevations
Figure 4.	Groundwater Elevation Contours - March 2013
Figure 5.	VOC Concentrations in Groundwater - March 2013
Figure 6.	Graphical Summary of PCE Concentrations
Figure 7.	PCE Concentrations vs. Groundwater Elevation

Appendices

(presented in electronic format only)

Appendix A.	Field Data Sheets
Appendix B.	Groundwater Velocity Calculations
Appendix C.	Certified Analytical Reports and Chain-of-Custody Documentation

Electronic File

Entire report presented in electronic file format (pdf) on CD-ROM inside back cover.

1 Introduction

Crawford Consulting, Inc. (Crawford) has prepared this report on behalf of Cargill Salt for the Cargill Salt Dispensing Systems Division facility (hereafter, the Site) in Alameda, California.

Results of groundwater transect sampling and the initial sampling of three groundwater monitoring wells installed in November 1999 were presented in the January 31, 2000 report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW). The purpose of the groundwater transect sampling and the monitoring well installation and sampling was to help characterize and monitor the occurrence of volatile organic compounds (VOCs), primarily tetrachloroethene (PCE) and its breakdown product, trichloroethene (TCE), previously detected in groundwater at the Site.

One of the recommendations in the report was to confirm the groundwater analytical results of the newly installed monitoring wells (wells MW-1, MW-2, and MW-3) and the groundwater flow direction and gradient via quarterly monitoring. Cargill Salt began groundwater monitoring on a quarterly basis after the initial groundwater monitoring well sampling event in November 1999. For 2000 through 2005, reporting was performed on an annual basis. Cargill Salt began reporting on a semi-annual basis in 2006.

Cargill Salt conducted additional characterization activities in November and December 2001 to evaluate the off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue.

A phytoremediation project was implemented at the Site in June 2005. Based on reductions in PCE concentrations in groundwater since 2006, Alameda County Environmental Health suggested in a September 30, 2009 letter that Cargill Salt reduce the groundwater monitoring frequency from quarterly to semi-annually. The second half of 2009 was the first semi-annual monitoring period under the reduced monitoring frequency. Groundwater sampling and analysis is now performed during the first and third quarters.

1.1 Reporting Period Activities

This report presents the results of groundwater monitoring data collected during the first quarter of 2013. Groundwater levels in the Site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined.

The monitoring event for the first semi-annual 2013 monitoring period was conducted on March 6, 2013. Supervision of the monitoring event was conducted for Cargill Salt by Crawford. Groundwater level measurements and collection of groundwater samples were conducted by Field Solutions, Inc. The groundwater samples were analyzed by TestAmerica Laboratories, Inc., a state-certified laboratory in Pleasanton, California.

1.2 Background Information

A description of the Site and a summary of the development of characterization and monitoring programs for the Site are presented in this section.

1.2.1 Site Description

Alameda is an island on the east side of San Francisco Bay, separated from Oakland by a tidal canal (Figure 1). The Cargill Salt Dispensing Systems Division facility is located on a rectangular lot in an industrial and residential neighborhood. The facility building occupies approximately one-third of the Site and is separated from the vacant, unpaved side of the lot by an asphalt driveway (Figure 2). The Site is bordered by a sheet-metal shop and a residential lot to the northwest, an apartment complex to the southwest, and a residential lot to the southeast.

From 1951 to 1978, the Alameda facility produced salt-dispensing units, which required casting and milling aluminum parts.

Constituents of concern associated with site operations have included casting sands with elevated concentrations of metals, and solvents, machine oils, and grease used in casting and milling operations. As discussed below, previous investigations and remedial activities have investigated and remediated metals and solvents (VOCs) in vadose-zone soil.

1.2.2 Summary of Investigative and Remedial Activities

Cargill Salt initiated site investigative activities in 1993 to determine if facility operations had impacted site soils. Cargill Salt submitted the results of the soil sampling investigation to the Alameda County Environmental Health Services (ACEHS) in October 1993 along with a workplan for excavation and disposal of impacted soils and assessment of potential impact to groundwater (Groundworks Environmental, Inc. [Groundworks], 1993).

After approval of the workplan by ACEHS, Cargill Salt conducted several phases of soil remediation and groundwater characterization. Surficial soils impacted by metals were excavated for disposal off site. Vadose-zone soils with the highest degree of impact by VOCs were also excavated for off-site disposal (see "Soil excavation area" on Figure 2).

The results of these activities were submitted to the ACEHS in a report, *Soil and Groundwater Investigations and Remedial Activities, July 1993 – September 1994, Cargill Salt – Alameda Facility, Alameda, California* (Groundworks, 1995). Recommendations for additional work to further delineate the lateral and vertical extent of VOCs in groundwater beneath the Site were presented in the report.

A workplan for the additional delineation of VOCs in groundwater, *Workplan for Groundwater Characterization and Monitoring Well Installation*, 2016 Clement Avenue, Alameda, California (CCI), was submitted to the ACEHS in July 1999.

After approval of the workplan by the ACEHS, Cargill Salt conducted groundwater sampling and well installation activities during August and November of 1999. The results of these activities were submitted to the ACEHS in a report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW, dated January 31, 2000). After the initial groundwater monitoring well sampling event in November 1999, Cargill Salt began groundwater monitoring on a quarterly basis.

A work plan for remedial investigation activities, *Workplan for Off-Site Characterization, Cargill Salt – Alameda Facility, Alameda, California* (Conor Pacific/EFW), was submitted to the ACEHS in June 2001. After approval of the workplan by the ACEHS, Cargill Salt conducted characterization activities in November and December 2001 to evaluate off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue. The results of these activities were submitted to the ACEHS in the August 21, 2002 submittal *Off-Site Groundwater Characterization, Cargill Salt – Alameda Facility, Alameda, California*, prepared by Conor Pacific/EFW.

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid of 24 rows. The rows are generally 6 feet apart with trees on 7-foot centers on each row. Selection of the phytoremediation approach and implementation of the project were described in the October 20, 2006 report, *Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California* prepared by Crawford Consulting, Inc. In April 2008, seven additional saplings were planted in the rear of the property near monitoring well MW-2.

The Site groundwater monitoring wells were re-surveyed in September 2006 by CSS Environmental Services in order to provide Geotracker-compliant survey data. Results of the casing elevation survey indicate that each well is approximately 6.4 feet higher than the previous survey conducted in 1999. This difference is due to the use of different datum for the 2006 and 1999 surveys. The casing elevations from the September 2006 survey are shown on Table 1.

1.2.3 Source of VOC Impact

As discussed in the 1995 report, the occurrence of VOCs in soils and groundwater at the Site appears to be the result of a discharge or spill to surficial soils at a location near the rear property line at the southwestern corner of the property. The area with the highest degree of chemical impact was delineated prior to excavation and was then excavated using a backhoe and transported off-site for appropriate disposal. It is possible that the VOCs detected in soils and groundwater at this location were associated with waste products from facility operations. The VOCs may be associated with solvents previously used for degreasing operations at the facility, although there are no records indicating use of PCE. Site records indicate that the solvents used for degreasing operations were not PCE-based solvents.

It is also possible that the VOCs and oil and grease are associated with waste products discarded from neighboring properties. There is an apartment complex next to the rear property line of the facility, and the laundry room for this complex is in the utility shed immediately adjacent to the rear property line. This laundry room is only 4 feet away from the area of highest impact to soil. If PCE associated with laundry cleaning products were spilled in this laundry room, it is possible that it could have drained onto the Cargill Salt property.

2 Groundwater Flow Analysis

Groundwater levels were measured and a groundwater contour map was prepared for the first semiannual 2013 monitoring event.

2.1 Water-Level Measurement

Water levels in groundwater monitoring wells (MW-1, MW-2, MW-3, and MW-4) were measured on March 6, 2013, before any of the groundwater monitoring wells were purged for sampling for the semi-annual monitoring event. The groundwater monitoring well locations are shown on Figure 2. The water levels were measured with an electric sounder. The depth to water at each well was recorded on a *Water Level Field Data* sheet (see Appendix A).

The water-level data through the first quarter of 2013 are shown on Table 1. The data in Table 1 include the date and time of measurement, the well casing elevation, the measured depth to groundwater, the groundwater elevation, and the change in elevation from the previous measurement. A plot of historical groundwater elevations is shown in Figure 3.

As reviewed in the last semi-annual monitoring report, groundwater levels in the on-site monitoring wells (MW-1, MW-2, and MW-3) and off-site well (MW-4) showed a different pattern in the first and third quarters of 2011 than the general seasonal pattern for the previous nine years (see Figure 3). Groundwater levels in all four wells generally exhibit similar seasonal fluctuations, and the first quarter groundwater elevations have typically exhibited effects of winter-season recharge. However, the groundwater elevations recorded in March 2011 for the three most downgradient wells showed a decline rather than the typical seasonal rise. The levels measured for those three wells in March 2011 were the lowest recorded to date. The September 2011 groundwater elevations recorded for all four wells were the lowest recorded to date for each of the wells. There was a rebound in the levels as indicated by the March 2012 groundwater elevations, which were 0.8 to 1.96 feet higher than recorded in September 2011.

However, the downward trend noted for 2011 continued in 2012 as groundwater levels fell after 2011/2012 winter-season recharge. The September 2012 groundwater elevations recorded for all four wells were the lowest recorded to date for each of the wells.

Seasonal recharge was reflected in all four wells for the first quarter 2013 (March 2013) groundwater elevations, with increases of 0.8 to 2.6 feet compared to the September 2012 elevations. However, the groundwater elevations for the three most downgradient wells remained approximately 2 feet lower than average first quarter elevations measured prior to 2011.

The reason for the change in the groundwater elevations noted since March 2011 is unknown. It is suspected that artificial dewatering operations or new drainage structures downgradient of the site are resulting in lower than typical groundwater elevations.

2.2 Groundwater Flow Direction and Gradient

A groundwater contour map based on the March 2013 water-level data is shown on Figure 4.

The groundwater flow direction determined for the first quarter of 2013 for the facility area was to the northeast, consistent with the flow direction typically determined for the Site.

The horizontal hydraulic gradient measured for the first quarter of 2013 in the on-site area was 0.031.

2.3 Groundwater Velocity

Average linear groundwater flow velocities (V) were calculated using a form of Darcy's Law,

$$V = Ki/n$$
,

where "K" is the hydraulic conductivity, "i" is the horizontal hydraulic gradient, and "n" is the effective porosity. The groundwater velocity calculations for the first quarter of 2013 groundwater data are presented in Appendix B.

Using hydraulic conductivity and porosity values determined for saturated native materials at the Site [based on slug tests and laboratory soil testing, respectively (Conor Pacific/EFW, 2002)], and the horizontal hydraulic gradients determined from the first quarter 2013 groundwater contour map, the groundwater flow velocity beneath the Site is calculated to be approximately 2 feet per year (ft/yr) for the first quarter 2013 measurements. The groundwater velocities measured for the Site have historically been in the range of 0.1 to 2 ft/yr.

3 Groundwater Sampling and Analysis

This section summarizes the sample collection and analytical methods, presents an evaluation of quality control data, and summarizes the results of the sampling events.

3.1 Sample Collection and Analysis

Groundwater samples were collected March 6, 2013 from groundwater monitoring wells MW-1, MW-2, MW-3, and MW-4. Dedicated tubing was installed in wells MW-1, MW-2, and MW-3 prior to the first quarter 2000 sampling event and on December 17, 2001 in well MW-4 to facilitate sampling with a peristaltic pump. Dedicated fluorinated ethylene propylene resin (FEP)-lined polyethylene tubing was installed in each monitoring well. The tubing intake was placed about one foot above the well bottom in each of the wells. Viton® dedicated check valves were installed on the tubing intakes to prevent back-flow of water into the well. A short length of dedicated Viton® tubing was installed at the well head for use in a peristaltic pump head. Prior to sample collection for each quarterly monitoring event, the wells were purged using a peristaltic pump. Field parameters (pH, electrical conductivity, temperature, and turbidity) were measured in purged groundwater from each well prior to sampling; these data are recorded on the Sample Collection Field Data sheets presented in Appendix A. After purging, groundwater samples were collected using the peristaltic pump and the dedicated Viton® pump head discharge tubing.

The groundwater samples were analyzed for VOCs using U.S. Environmental Protection Agency (USEPA) Method 8260. Results for all Method 8010 analytes were reported. The groundwater samples for the first semi-annual 2013 event were delivered with appropriate chain-of-custody documentation to TestAmerica Laboratories, Inc., a state-certified laboratory in Pleasanton, California, for chemical analysis.

3.2 Analytical Results

The results of field and laboratory quality control measures and the results of the groundwater monitoring well samples are reviewed in this section. The certified analytical reports and chain-of-custody documentation are presented in Appendix C.

3.2.1 Quality Control

Quality control (QC) samples were analyzed as part of the sampling and analysis program to evaluate the precision and accuracy of the reported groundwater chemistry data. QC samples included both field and laboratory samples. Descriptions of the purpose of specific field and laboratory QC samples used during the sampling and analysis program and an evaluation of field and laboratory QC results are presented below.

Field Quality Control Samples

A field duplicate was used during the first semi-annual 2013 sampling event for the Site. A field duplicate is used to assess sampling and analytical precision. The duplicate is collected at a selected well (MW-2) and then submitted "blind" to the laboratory for analysis with the same batch as the regular sample for the selected well. An estimate of precision is obtained by calculating the relative percent difference (RPD) between the regular sample and the duplicate sample using the following formula:

RPD =
$$[x - y] 100$$

0.5 $(x + y)$

where: [x - y] =the absolute value of the difference in concentration

between the regular sample (x) and the duplicate sample (y).

Laboratory Quality Control Samples

The following types of laboratory QC samples were used during the first semi-annual 2013 analytical program for the Site:

- surrogate spikes
- matrix spikes/duplicate matrix spikes

A surrogate spike is a check standard added to a sample in a known amount prior to analysis. Surrogate spikes consist of analytes not normally found in environmental samples and not targeted by the analytical procedure. Surrogate spikes provide information on recovery efficiency by comparing the percent recovery of specific surrogate analyses to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis exhibits acceptable recovery efficiency. Recoveries that fall outside the acceptance limits indicate a potential problem with the recovery efficiency of analytes, which in turn indicates a potential bias with respect to the reported concentration of the environmental samples analyzed in the same batch.

Matrix spikes and duplicate matrix spikes are analyzed by the laboratory for the purpose of providing a quantitative measure of accuracy and precision, and to document the effect that the sample matrix has on the analysis. A selected sample is spiked in duplicate with known concentrations of analytes. The recoveries of the spiked analytes are compared to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis has no statistically significant bias (i.e., the analysis is accurate). Recoveries that fall outside of the acceptance limits have a positive or negative bias, depending on whether the recovery is greater or less than the upper or lower acceptance limit, respectively. Analyses where analyte recoveries fall outside the acceptance limits should be regarded as estimates only.

Precision for matrix spikes is measured by calculating the relative percent differences (RPDs) between the measured concentration of analytes in the matrix and the duplicate matrix spike. The following equation is used for matrix spikes:

 $RPD = \underbrace{[MS - MSD] 100}_{0.5 (MS + MSD)}$

where: [MS - MSD] = the absolute value of the difference in

concentration between the matrix spike (MS) and the matrix

spike duplicate (MSD)

First Quarter 2013 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the first quarter 2013 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8260B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). The three parameters (cis-1,2-DCE, TCE, PCE) for which the RPDs could be calculated (see Table 2), exhibited low RPD values (i.e., less than 5%) indicative of good precision.

First Semi-Annual 2013 Laboratory QC Results

A review of the first semi-annual 2013 field data sheets and laboratory reports (presented in Appendices A and C, respectively) indicates that all analyses were performed within USEPA or California Department of Health Services (DHS) recommended maximum sample holding times.

QC data on surrogate spike recoveries and matrix spike recoveries are presented in the laboratory reports. These data indicate: (1) no surrogate spike recoveries were outside of the laboratory's acceptance limits; (2) RPD values for the matrix spikes and duplicate matrix spikes indicate a high overall degree of analytical precision.

No matrix spike or duplicate matrix spike recoveries were outside of the laboratory's control limits.

The laboratory QC data indicate that the results reported herein are of adequate quality for evaluation of site groundwater conditions.

3.2.2 Groundwater Results

The results for the first semi-annual 2013 monitoring event are shown on Table 3a and Figure 5. The results of historical VOC analyses for each quarter for 2000 through first quarter 2013 are summarized in Table 3b, which also shows the VOC results for the initial sampling event for monitoring wells MW-1, MW-2, and MW-3 in November 1999. Historical VOC results for all the wells are plotted on Figure 6.

Consistent with previous monitoring events, PCE and its breakdown product TCE were detected in Site groundwater samples from the first quarter 2013 monitoring event.

For the first semi-annual 2013 event, the concentrations of PCE detected were:

- 390 micrograms per liter (μ g/L) in monitoring well MW-1
- 220 μg/L in MW-2
- not detected in MW-3 and MW-4

Other VOCs detected included the following:

- TCE was detected at 60 μ g/L in monitoring well MW-1 and 3.3 μ g/L in MW-2, but was not detected in MW-3 or MW-4.
- Cis-1,2-Dichloroethene (Cis-1,2-DCE) was detected at 32 μ g/L in MW-2, but was not detected in monitoring wells MW-1, MW-3, or MW-4.
- 1,1-Dichloroethene (DCE) was detected at 50 μ g/L in monitoring well MW-3, but was not detected in monitoring wells MW-1, MW-2, or MW-4.
- 1,1-Dichloroethane (DCA) was detected at 2.2 μ g/L in monitoring well MW-3, but was not detected in monitoring wells MW-1, MW-2, or MW-4.
- 1,1,1-Thrichloroethane (TCA) was detected at 1.2 μ g/L in monitoring well MW-3, but was not detected in monitoring wells MW-1, MW-2, or MW-4.

3.3 Discussion

Variations in VOC concentrations at monitoring well MW-2, the well with historically the highest reported PCE concentrations at the site, generally correlate with variations in groundwater elevations at the Site. An increase in VOC concentrations generally follows a rise in groundwater elevations, and a decrease in VOC concentration generally follows a fall in groundwater levels (see Figure 7). The variations in VOC concentrations sometimes lag one quarter behind the variations in groundwater elevation.

The average seasonal concentration of PCE reported for groundwater monitoring well MW-2 has been lower since the second quarter of 2006 (June 2006 event) compared to results reported since monitoring began in 1999 (see Figure 6). The PCE concentrations reported for MW-2 since June 2006 are an indication that the phytoremediation project implemented in June 2005 has reduced the average seasonal concentration of PCE at the site.

The results for VOC concentrations reported for the first semi-annual 2013 quarterly monitoring event are generally similar to the results reported since the second quarter of 2006 (see Figure 6), with the following exceptions:

- The concentrations of PCE reported for well MW-2 during the last eight events are the eight lowest consecutive values ever reported for MW-2.
- The concentration of cis-1,2-DCE reported for well MW-2 was the highest reported to date. As cis-1,2-DCE is a breakdown product of PCE, this higher concentration may be an indication of continued degradation of PCE in groundwater near MW-2.
- The concentrations of DCE reported for well MW-3 have shown increases for four of the last five semi-annual events, rising from a concentration of 0.64 μ g/L in September 2010 to 53 μ g/L in September 2012. The concentration of DCE reported for March 2013 was 50 μ g/L, slightly lower than in September 2012.

The rising trend in DCE concentrations noted for well MW-3 may be related to the downward trend in groundwater elevations noted for the site. As discussed in Section 2.1, the reason for the downward groundwater elevation trend measured since March 2011 is unknown and it is suspected that artificial

dewatering operations or new drainage structures downgradient of the site are resulting in lower than typical groundwater elevations.
typical groundwater elevations.

4 Phytoremediation Project Status

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid on the unpaved portion of the site. Selection of the phytoremediation approach and implementation of the project were described in the report, *Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc., October 20, 2006).

The trees were 4-ft-tall, bare-root poles with no foliage when planted in June 2005. During the first two years of growth, the trees developed foliage and most grew 3 to 10 additional feet in height. Photos comparing the appearance of the trees just after planting in 2005 with photos taken in June 2007, September 2009, November 2010, and May 2011 are show below and on the following pages. After three years, most of the trees had grown to heights of 10 to 25 feet. After five years, most of the trees have grown to heights of 25 to 35 feet. In April 2008, seven additional saplings were planted in the rear of the property near monitoring well MW-2. There are currently 101 hydrid poplars at the site (two trees were removed to alleviate overcrowding).

As discussed in Section 3.3, the PCE concentrations reported for monitoring well MW-2 since June 2006 are an indication that the phytoremediation project has been effective at reducing the average seasonal VOC concentration in groundwater at the site.

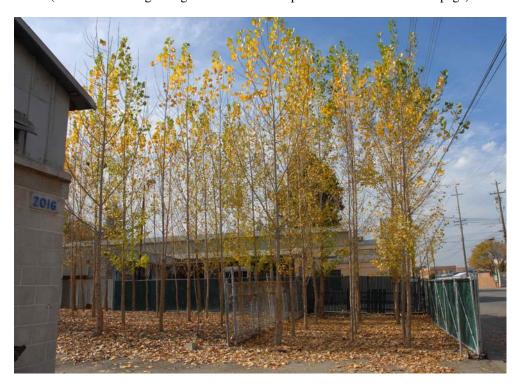
Bare-root trees planted in June 2005 - View towards rear of property

June 2007 - View from driveway towards rear of property

September 2009 - View from street towards driveway and rear of property

November 2010 – View from street towards driveway and rear of property (compare tree height to photo on previous page)

May 2011 - Same view as above


May 9, 2013 – Same view as previous picture.

June 2007 - View of front planting strip at Clement Avenue

September 2009 - View of front planting strip at Clement Avenue. (Note relative height of gate vs. trees in the pictures above and on next page)

November 2010 – Trees dropping foliage. Also, branches on bottom 6 feet of trunks have been cleared for site visibility.

May 11, 2011 - Same view as above

May 9, 2013 - Same view as previous picture.

May 9, 2013 - View from back of property towards the street.

Professional Certification

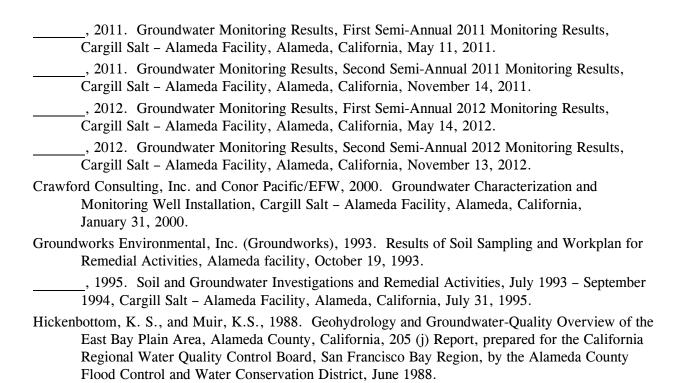
Groundwater Monitoring Results
First Semi-Annual 2013 Monitoring Period
Cargill Salt – Alameda Facility
Alameda, California

Jana C. Johnston

Mak (Wheele

This report has been prepared by CRAWFORD CONSULTING, INC. with the professional certification of the California professional geologist whose signature appears below.

Dana C. Johnston Project Manager


Mark C. Wheeler Principal Geologist

P.G. 4563

References

Alameda County Environmental Health Services, 1999. Letter to Cargill Salt: Groundwater Monitoring Well Installation at 2016 Clement Avenue, Alameda, CA, May 7, 1999. Conor Pacific/EFW, 2001. Workplan for Off-Site Characterization, Cargill Salt Alameda Facility, June 18, 2001. , 2002. Off-Site Groundwater Characterization, Cargill Salt - Alameda Facility, Alameda, California, August 21, 2002. Crawford Consulting, Inc., 1999. Workplan for Groundwater Characterization and Monitoring Well Installation, 2016 Clement Avenue, Alameda, California, July 7, 1999. , 2001. Groundwater Monitoring Results, First through Fourth Quarter 2000, Cargill Salt – Alameda Facility, Alameda, California, April 11, 2001. , 2002. Groundwater Monitoring Results, First through Fourth Quarter 2001, Cargill Salt – Alameda Facility, Alameda, California, August 14, 2002. , 2003. Groundwater Monitoring Results, First through Fourth Quarter 2002, Cargill Salt – Alameda Facility, Alameda, California, August 13, 2003. , 2004. Groundwater Monitoring Results, First through Fourth Quarter 2003, Cargill Salt – Alameda Facility, Alameda, California, February 27, 2004. , 2005. Groundwater Monitoring Results, First through Fourth Quarter 2004, Cargill Salt – Alameda Facility, Alameda, California, November 7, 2005. , 2006. Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt -Alameda Facility, Alameda, California, October 20, 2006. , 2006. Groundwater Monitoring Results, First Semi-Annual 2006 Monitoring Results, Cargill Salt - Alameda Facility, Alameda, California, November 8, 2006. , 2007. Groundwater Monitoring Results, Second Semi-Annual 2006 Monitoring Results, Cargill Salt - Alameda Facility, Alameda, California, February 28, 2007 , 2007. Groundwater Monitoring Results, First Semi-Annual 2007 Monitoring Results, Cargill Salt - Alameda Facility, Alameda, California, September 28, 2007. , 2007. Groundwater Monitoring Results, Second Semi-Annual 2007 Monitoring Results, Cargill Salt - Alameda Facility, Alameda, California, February 28, 2008 , 2008. Groundwater Monitoring Results, First Semi-Annual 2008 Monitoring Results, Cargill Salt - Alameda Facility, Alameda, California, December 22, 2008. , 2008. Groundwater Monitoring Results, Second Semi-Annual 2008 Monitoring Results, Cargill Salt - Alameda Facility, Alameda, California, March 2, 2009 , 2009. Groundwater Monitoring Results, First Semi-Annual 2009 Monitoring Results, Cargill Salt - Alameda Facility, Alameda, California, September 30, 2009. , 2009. Groundwater Monitoring Results, Second Semi-Annual 2009 Monitoring Results, Cargill Salt - Alameda Facility, Alameda, California, November 11, 2009 , 2010. Groundwater Monitoring Results, First Semi-Annual 2010 Monitoring Results, Cargill Salt - Alameda Facility, Alameda, California, May 12, 2010. , 2010. Groundwater Monitoring Results, Second Semi-Annual 2010 Monitoring Results, Cargill Salt – Alameda Facility, Alameda, California, November 12, 2010.

References (continued)

Limitations

This report and the evaluations presented herein have been prepared in accordance with generally accepted professional standards and is based solely on the scope of work and services described herein. This report has been prepared solely for the use of Cargill Salt for the purposes noted herein. Any use of this report, in whole or in part, by a third party for other than the purposes noted herein is at such party's sole risk.

Table 1. Groundwater Level Data

			Casing	Depth to	Water	Elev. Change
Well/	_		Elevation	Water	Elevation	from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-1	11/16/1999	09:56	13.16	3.75	9.41	NA
MW-1	3/30/2000	10:09	13.16	2.81	10.35	0.94
MW-1	5/16/2000	09:43	13.16	3.32	9.84	-0.51
MW-1	7/28/2000	09:11	13.16	3.58	9.58	-0.26
MW-1	11/30/2000	08:36	13.16	3.52	9.64	0.06
MW-1	3/26/2001	08:47	13.16	3.15	10.01	0.37
MW-1	6/25/2001	10:19	13.16	3.53	9.63	-0.38
MW-1	9/28/2001	09:32	13.16	3.96	9.20	-0.43
MW-1	12/17/2001	10:47	13.16	3.23	9.93	0.73
MW-1	3/21/2002	07:28	13.16	2.89	10.27	0.34
MW-1	6/6/2002	08:03	13.16	3.50	9.66	-0.61
MW-1	9/20/2002	08:30	13.16	3.86	9.30	-0.36
MW-1	12/19/2002	08:38	13.16	3.13	10.03	0.73
MW-1	3/4/2003	10:31	13.16	3.08	10.08	0.05
MW-1	6/9/2003	08:32	13.16	3.29	9.87	-0.21
MW-1	9/8/2003	10:02	13.16	3.79	9.37	-0.50
MW-1	12/1/2003	10:16	13.16	3.78	9.38	0.01
MW-1	3/4/2004	09:31	13.16	2.88	10.28	0.90
MW-1	6/2/2004	08:42	13.16	3.45	9.71	-0.57
MW-1	9/14/2004	08:01	13.16	3.87	9.29	-0.42
MW-1	12/8/2004	07:44	13.16	3.23	9.93	0.64
MW-1	3/3/2005	08:07	13.16	2.01	11.15	1.22
MW-1	6/10/2005	07:05	13.16	2.90	10.26	-0.89
MW-1	9/16/2005	08:00	13.16	3.62	9.54	-0.72
MW-1	12/6/2005	08:00	13.16	3.28	9.88	0.34
MW-1	3/10/2006	07:40	13.16	2.28	10.88	1.00
MW-1	6/9/2006	09:45	13.16	3.09	10.07	-0.81
MW-1	9/11/2006	10:24	13.16	3.70	9.46	-0.61
MW-1	12/15/2006	07:34	13.16	2.94	10.22	0.76
MW-1	3/6/2007	09:18	13.16	2.87	10.29	0.07
MW-1	6/15/2007	07:29	13.16	3.30	9.86	-0.43
MW-1	9/11/2007	08:05	13.16	3.85	9.31	-0.55
MW-1	12/4/2007	08:53	13.16	3.58	9.58	0.27
MW-1	3/20/2008	08:13	13.16	3.00	10.16	0.58
MW-1	6/18/2008	08:22	13.16	3.73	9.43	-0.73
MW-1	9/3/2008	08:06	13.16	3.93	9.23	-0.20
MW-1	12/4/2008	08:12	13.16	3.71	9.45	0.22
MW-1	3/5/2009	09:18	13.16	1.83	11.33	1.88
MW-1	6/11/2009	08:40	13.16	3.52	9.64	-1.69
MW-1	9/3/2009	07:57	13.16	3.98	9.18	-0.46
MW-1	3/2/2010	08:10	13.16	2.37	10.79	1.61
MW-1	9/3/2010	07:01	13.16	3.80	9.36	-1.43
MW-1	3/17/2011	08:04	13.16	4.44	8.72	-0.64
MW-1	9/23/2011	07:25	13.16	6.43	6.73	-1.99
MW-1	3/22/2012	07:47	13.16	4.47	8.69	1.96
MW-1	9/17/2012	08:14	13.16	6.66	6.50	-2.19
MW-1	3/6/2013	07:21	13.16	4.98	8.18	1.68
MW-2	11/16/1999	11:15	16.22	5.22	11.00	NA
MW-2	3/30/2000	10:05	16.22	2.80	13.42	2.42
MW-2	5/16/2000	09:35	16.22	4.13	12.09	-1.33

Table 1. Groundwater Level Data

Well/			Casing Elevation	Depth to Water	Water Elevation	Elev. Change from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-2	7/28/2000	09:17	16.22	4.85	11.37	-0.72
MW-2	11/30/2000	08:32	16.22	4.75	11.47	0.10
MW-2	3/26/2001	08:40	16.22	3.28	12.94	1.47
MW-2 MW-2	6/25/2001	12:12	16.22	4.75	11.47	-1.47
MW-2 MW-2	9/28/2001	12:12	16.22	5.41	10.81	-0.66
MW-2	12/17/2001	10:44	16.22	4.07	12.15	1.34
MW-2	3/28/2002	09:37	16.22	3.40	12.13	0.67
MW-2	6/6/2002	08:11	16.22	4.70	11.52	-1.30
MW-2	9/20/2002	08:34	16.22	5.28	10.94	-0.58
MW-2	12/19/2002	08:45	16.22	3.37	12.85	1.91
MW-2	3/4/2003	10:26	16.22	3.11	13.11	0.26
MW-2	6/9/2003	08:31	16.22	4.16	12.06	-1.05
MW-2	9/8/2003	10:08	16.22	5.26	10.96	-1.10
MW-2	12/1/2003	10:20	16.22	5.05	11.17	0.21
MW-2	3/4/2004	09:34	16.22	2.86	13.36	2.19
MW-2	6/2/2004	08:53	16.22	4.47	11.75	-1.61
MW-2	9/14/2004	07:59	16.22	5.26	10.96	-0.79
MW-2	12/8/2004	08:00	16.22	4.20	12.02	1.06
MW-2	3/3/2005	08:04	16.22	1.90	14.32	2.30
MW-2	6/10/2005	07:09	16.22	3.74	12.48	-1.84
MW-2	9/16/2005	08:08	16.22	4.92	11.30	-1.18
MW-2	12/6/2005	10:58	16.22	4.39	11.83	0.53
MW-2	3/10/2006	07:47	16.22	2.13	14.09	2.26
MW-2	6/9/2006	10:03	16.22	3.75	12.47	-1.62
MW-2	9/11/2006	10:22	16.22	4.94	11.28	-1.19
MW-2	12/15/2006	07:32	16.22	4.08	12.14	0.86
MW-2	3/6/2007	09:13	16.22	3.27	12.95	0.81
MW-2	6/15/2007	07:31	16.22	4.57	11.65	-1.30
MW-2	9/11/2007	08:07	16.22	5.60	10.62	-1.03
MW-2	12/4/2007	08:47	16.22	4.99	11.23	0.61
MW-2	3/20/2008	08:17	16.22	3.48	12.74	1.51
MW-2	6/18/2008	08:27	16.22	4.93	11.29	-1.45
MW-2	9/3/2008	08:08	16.22	5.58	10.64	-0.65
MW-2	12/4/2008	08:14	16.22	5.07	11.15	0.51
MW-2	3/5/2009	11:10	16.22	2.30	13.92	2.77
MW-2	6/11/2009	08:41	16.22	4.44	11.78	-2.14
MW-2	9/3/2009	08:01	16.22	5.55	10.67	-1.11
MW-2	3/2/2010	08:12	16.22	2.88	13.34	2.67
MW-2	9/3/2010	07:04	16.22	5.18	11.04	-2.30
MW-2	3/17/2011	08:08	16.22	3.14	13.08	2.04
MW-2	9/23/2011	07:27	16.22	6.13	10.09	-2.99
MW-2	3/22/2012	07:42	16.22	4.24	11.98	1.89
MW-2	9/17/2012	08:18	16.22	6.77	9.45	-2.53
MW-2	3/6/2013	07:24	16.22	4.15	12.07	2.62
MW-3	11/16/1999	15:43	13.34	4.34	9.00	NA
MW-3	3/30/2000	10:01	13.34	2.77	10.57	1.57
MW-3	5/16/2000	09:46	13.34	3.44	9.90	-0.67
MW-3	7/28/2000	09:05	13.34	3.72	9.62	-0.28
MW-3	11/30/2000	08:34	13.34	3.73	9.61	-0.01
MW-3	3/26/2001	08:54	13.34	3.51	9.83	0.22

Table 1. Groundwater Level Data

			Cosina	Donth to	Water	Elay Changa
W/o11/			Casing	Depth to	Water	Elev. Change
Well/	Data	Time	Elevation	Water	Elevation	from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-3	6/25/2001	10:21	13.34	3.65	9.69	-0.14
MW-3	9/28/2001	09:30	13.34	3.96	9.38	-0.31
MW-3	12/17/2001	10:38	13.34	3.28	10.06	0.68
MW-3	3/21/2002	07:28	13.34	3.10	10.24	0.18
MW-3	6/6/2002	08:07	13.34	3.63	9.71	-0.53
MW-3	9/20/2002	08:25	13.34	3.82	9.52	-0.19
MW-3	12/19/2002	08:42	13.34	3.10	10.24	0.72
MW-3	3/4/2003	10:36	13.34	3.29	10.05	-0.19
MW-3	6/9/2003	08:28	13.34	3.41	9.93	-0.12
MW-3	9/8/2003	10:00	13.34	3.85	9.49	-0.44
MW-3	12/1/2003	10:30	13.34	3.90	9.44	-0.05
MW-3	3/4/2004	09:22	13.34	3.11	10.23	0.79
MW-3	6/2/2004	08:46	13.34	3.53	9.81	-0.42
MW-3	9/14/2004	08:05	13.34	4.07	9.27	-0.54
MW-3	12/8/2004	07:40	13.34	3.73	9.61	0.34
MW-3	3/3/2005	07:53	13.34	2.36	10.98	1.37
MW-3	6/10/2005	07:14	13.34	3.15	10.19	-0.79
MW-3	9/16/2005	08:04	13.34	3.90	9.44	-0.75
MW-3	12/6/2005	08:04	13.34	3.35	9.99	0.55
MW-3	3/10/2006	07:43	13.34	2.89	10.45	0.46
MW-3	6/9/2006	09:33	13.34	3.26	10.08	-0.37
MW-3	9/11/2006	10:19	13.34	3.70	9.64	-0.44
MW-3	12/15/2006	07:37	13.34	3.10	10.24	0.60
MW-3	3/6/2007	09:16	13.34	3.04	10.30	0.06
MW-3	6/15/2007	07:27	13.34	3.60	9.74	-0.56
MW-3	9/11/2007	08:03	13.34	3.87	9.47	-0.27
MW-3	12/4/2007	08:50	13.34	3.62	9.72	0.25
MW-3	3/20/2008	08:15	13.34	3.13	10.21	0.49
MW-3	6/18/2008	08:24	13.34	3.90	9.44	-0.77
MW-3	9/3/2008	08:02	13.34	3.92	9.42	-0.02
MW-3	12/4/2008	08:10	13.34	3.59	9.75	0.33
MW-3	3/5/2009	09:23	13.34	2.79	10.55	0.80
MW-3	6/11/2009	08:38	13.34	3.14	10.20	-0.35
MW-3	9/3/2009	07:55	13.34	4.31	9.03	-1.17
MW-3	3/2/2010	08:09	13.34	2.94	10.40	1.37
MW-3	9/3/2010	07:07	13.34	3.75	9.59	-0.81
MW-3	3/17/2011	07:59	13.34	4.88	8.46	-1.13
MW-3	9/23/2011	07:23	13.34	6.33	7.01	-1.45
MW-3	3/22/2012 9/17/2012	07:45	13.34	5.05	8.29	1.28
MW-3		08:10	13.34 13.34	6.54 5.22	6.80	-1.49
MW-3	3/6/2013	07:12	13.34	5.22	8.12	1.32
	40/45/2007	40.40			0.05	·-·
MW-4	12/17/2001	10:40	12.43	2.55	9.88	NA
MW-4	3/28/2002	08:05	12.43	3.06	9.37	-0.51
MW-4	6/6/2002	07:57	12.43	2.85	9.58	0.21
MW-4	9/20/2002	08:28	12.43	3.21	9.22	-0.36
MW-4	12/19/2002	08:53	12.43	3.70	8.73	-0.49
MW-4	3/4/2003	10:34	12.43	3.14	9.29	0.56
MW-4	6/9/2003	08:29	12.43	2.82	9.61	0.32
MW-4	9/8/2003	10:04	12.43	3.43	9.00 9.31	-0.61 0.31
MW-4	12/1/2003	10:14	12.43	3.12	9.31	0.31

Table 1. Groundwater Level Data

Well/ Piezometer	Date	Time	Casing Elevation (feet, MSL)	Depth to Water (feet)	Water Elevation (feet, MSL)	Elev. Change from Last Measurement (feet)
MW-4	3/4/2004	09:27	12.43	2.81	9.62	0.31
MW-4	6/2/2004	08:44	12.43	3.34	9.09	-0.53
MW-4	9/14/2004	08:03	12.43	3.51	8.92	-0.17
MW-4	12/8/2004	07:36	12.43	3.10	9.33	0.41
MW-4	3/3/2005	07:44	12.43	2.48	9.95	0.62
MW-4	6/10/2005	07:02	12.43	2.47	9.96	0.01
MW-4	9/16/2005	08:12	12.43	3.23	9.20	-0.76
MW-4	12/6/2005	07:50	12.43	3.17	9.26	0.06
MW-4	3/10/2006	07:37	12.43	3.77	8.66	-0.60
MW-4	6/9/2006	07:30	12.43	2.49	9.94	1.28
MW-4	9/11/2006	10:17	12.43	3.19	9.24	-0.70
MW-4	12/21/2006	NR	12.43	2.90	9.53	0.29
MW-4	3/6/2007	09:20	12.43	2.54	9.89	0.36
MW-4	6/15/2007	07:33	12.43	3.03	9.40	-0.49
MW-4	9/11/2007	08:11	12.43	3.27	9.16	-0.24
MW-4	12/4/2007	08:55	12.43	3.25	9.18	0.02
MW-4	3/20/2008	08:20	12.43	2.65	9.78	0.60
MW-4	6/18/2008	08:31	12.43	3.35	9.08	-0.70
MW-4	9/3/2008	07:58	12.43	3.28	9.15	0.07
MW-4	12/4/2008	08:17	12.43	3.12	9.31	0.16
MW-4	3/5/2009	09:27	12.43	2.16	10.27	0.96
MW-4	6/11/2009	08:43	12.43	2.84	9.59	-0.68
MW-4	9/3/2009	08:04	12.43	3.49	8.94	-0.65
MW-4	3/2/2010	08:14	12.43	2.32	10.11	1.17
MW-4	9/3/2010	07:10	12.43	3.10	9.33	-0.78
MW-4	3/17/2011	07:55	12.43	4.52	7.91	-1.42
MW-4	9/23/2011	07:21	12.43	5.38	7.05	-0.86
MW-4	3/22/2012	07:50	12.43	4.58	7.85	0.80
MW-4	9/17/2012	08:21	12.43	5.45	6.98	-0.87
MW-4	3/6/2013	07:27	12.43	4.65	7.78	0.80

Key:

NA = Not available

feet, MSL = feet, relative to Mean Sea Level

Casing elevations for all wells were resurveyed on September 6, 2006 by CSS Environmental Services for Geotracker compliance.

Table 2. Relative Percent Difference Based on Duplicate Samples

First Quarter 2013

		. 6 mm 161 = 0	
Analysis	Well MW-2 Results	Duplicate (DUP-1) Results	RPD ¹ (%)
Volatile Organic Compounds (μg/L)			
Cis-1,2-Dichloroethene	32	31	3.18
Trichloroethene	3.3	3.4	2.99
Tetrachloroethene (PCE)	220	210	4.65

¹ RPD = relative percent difference

All other 8010 list analytes not detected (by 8260).

Table 3a. Summary of Groundwater Monitoring Well Data - First Quarter 2013

Well No.	MW-1	MW-2	MW-3	MW-4	
Field Date	3/6/2013	3/6/2013	3/6/2013	3/6/2013	MCL^1
DCE^2	< 5.0	< 0.5	50	< 0.5	6
DCA^3	< 5.0	< 0.5	2.2	< 0.5	5
cis-1,2-DCE ⁴	< 5.0	32	< 0.5	< 0.5	6
TCA ⁵	< 5.0	< 0.5	1.2	< 0.5	200
TCE^6	60	3.3	< 0.5	< 0.5	5
PCE ⁷	390	220	< 0.5	< 0.5	5
Other analytes ⁸	nd ⁹	nd	nd	nd	nd

Notes:

Results measured in micrograms per liter (μ g/L)

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level

² DCE = 1,1-Dichloroethene

 $^{^{3}}$ DCA = 1,1-Dichloroethane

⁴ cis-1,2-DCE = cis-1,2-Dichloroethene

⁵ TCA = 1,1,1-Trichloroethane

⁶ TCE = Trichloroethene

⁷ PCE = Tetrachloroethene

⁸ All other 8010 list analytes

⁹ nd = not detected above laboratory reporting limit

Table 3b. Historical Summary of Groundwater Monitoring Well Data

Results measured in micrograms per liter (μ g/L)

Well No.				7 0								MW	/-1												
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/21/02	6/6/02	9/20/02	12/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	MCL^1
DCE^2	<50.0	13	< 10	15	14	<13	14	15	<13	<13	<13	< 13	<13	< 10	12	5.2	8.4	< 5.0	5.8	6.6	< 5.0	< 5.0	< 2.0	< 5.0	6
CFC 113 ³	na ⁴	1.4	< 10	< 10	< 8.3	< 50	< 50	< 50	< 50	< 13	< 13	< 13	< 13	< 10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	ne ⁵
DCA^6	< 50.0	0.8	< 10	< 10	< 4.2	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	5
Chloroform	< 50.0	0.6*	< 10	< 10	< 8.3	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 10	ne
cis-1,2-DCE ⁷	< 10	< 10	< 10	< 10	< 4.2	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	6
TCA ⁸	< 50.0	1.6	< 10	< 10	< 4.2	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	200
TCE ⁹	178	150	190	170	130	180	250	210	190	160	140	190	68	97	90	110	130	53	72	81	39	15	23	34	5
PCE ¹⁰	906	1,400	1,900	1,200	880	1,000	1,400	1,000	1,400	1,100	980	1,100	600	730	770	780	850	370	490	620	380	160	180	240	5
Other analytes ¹¹	nd ¹²	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Well No.												MW	/-2											
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/28/02	6/6/02	9/20/02	12/30/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05 MCL ¹
DCE^2	< 50.0	< 0.5	< 25	<25	< 8.3	<25	< 25	<25	< 25	<25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	<25	< 25	< 20	< 50	<25	< 20 6
CFC 113 ³	na	< 0.5	< 25	< 25	< 17	< 100	< 100	< 100	< 100	< 25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	< 25	<20 ne ⁵
DCA^6	< 50.0	< 0.5	< 25	< 25	< 8.3	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	< 25	< 20 5
Chloroform	< 50.0	< 0.5	< 25	< 25	< 17	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	< 25	<40 ne
cis-1,2-DCE ⁷	< 50.0	< 0.5	< 25	< 25	< 8.3	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	< 25	< 20 6
TCA ⁸	< 50.0	5.0	< 25	< 25	< 8.3	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	< 25	< 20 200
TCE ⁹	< 50	29	53	<25	20	40	78	< 25	< 25	49	52	32	< 25	58	41	28	25	39	49	37	30	78	43	29 5
PCE^{10}	840	3,600	3,200	3,300	1,700	2,200	4,400	1,700	1,700	3,500	3,800	2,100	1,800	3,900	3,800	2,500	2,500	3,000	4,100	3,800	2,800	7,300	3,600	2,500 5
Other analytes ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L]$)

 $^{^{2}}$ DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ cis-1,2-DCE = cis-1,2-Dichloroethene

 $^{^{8}}$ TCA = 1,1,1-Trichloroethane

⁹ TCE = Trichloroethene

¹⁰ PCE = Tetrachloroethene

¹¹ All other 8010 list analytes

nd = not detected above laboratory reporting limit
* Chloroform detected in equipment blank at 1.6 μ g/L for 3/30/00 event.

Table 3b. Historical Summary of Groundwater Monitoring Well Data

Well No.									MW	'-1														
Field Date	12/6/05	3/10/06	6/9/06	9/11/06	12/15/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	9/3/08	12/4/08	3/5/09	6/11/09	9/3/09	3/2/10	9/3/10	3/17/11	9/23/11	3/22/12	9/17/12	3/6/13	MCL ¹
DCE ²	< 2.0	< 0.5	< 2.0	3.3	< 2.0	< 2.0	3.0	< 5.0	< 5.0	< 2.0	< 5.0	< 5.0	< 5.0	< 0.5	< 2.5	< 10	< 5.0	< 5.0	< 5.0	6.1	< 5.0	< 5.0	< 5.0	6
CFC 113 ³	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 5.0	< 2.0	< 5.0	< 5.0	< 5.0	< 0.5	< 2.5	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	ne ⁵
DCA ⁶	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 5.0	< 2.0	< 5.0	< 5.0	< 5.0	< 0.5	< 2.5	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	5
Chloroform	< 4.0	1.4	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 10	< 10	< 4.0	< 10	< 10	< 10	1.9	< 5.0	< 20	< 10	< 10	< 10	< 10	< 10	< 10	< 10	ne
cis-1,2-DCE ⁷	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 5.0	< 2.0	< 5.0	< 5.0	< 5.0	0.62	< 2.5	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	6
TCA ⁸	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 5.0	< 2.0	< 5.0	< 5.0	< 5.0	< 0.5	< 2.5	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	200
TCE ⁹	16	3.4	22	47	20	17	38	51	29	18	42	65	42	6.5	40	68	27	57	36	89	40	37	60	5
PCE ¹⁰	140	39	140	400	210	170	310	430	330	170	390	620	320	68	300	640	170	420	330	850	350	380	390	5
Other analytes ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd^9	nd	

Well No.									MW	7-2														
Field Date	12/6/05	3/10/06	6/9/06	9/11/06	12/15/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	9/3/08	12/4/08	3/5/09	6/11/09	9/3/09	3/2/10	9/3/10	3/17/11	9/23/11	3/22/12	9/17/12	3/6/13	MCL ¹
DCE ²	<25	<25	< 20	< 20	< 20	< 20	< 20	< 20	<20	< 20	< 20	< 20	< 20	< 20	<25	< 5.0	< 5.0	< 5.0	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	6
CFC 113 ³	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 25	< 5.0	< 5.0	< 5.0	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 25	< 5.0	< 5.0	< 5.0	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 50	< 50	< 40	< 20	< 40	< 40	< 40	< 40	< 40	< 40	< 40	< 40	< 40	< 40	< 50	< 10	< 10	< 10	< 10	< 1.0	< 1.0	< 1.0	< 1.0	ne
cis-1,2-DCE ⁷	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 25	< 5.0	8.0	6.2	13	1.3	3.8	< 0.5	32	6
TCA ⁸	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 25	< 5.0	< 5.0	< 5.0	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁹	45	59	< 20	< 20	< 20	< 20	22	31	< 20	< 20	21	< 20	< 20	< 20	< 25	< 5.0	9.5	< 5.0	6.3	0.93	2.3	< 0.5	3.3	5
PCE^{10}	3,300	5,200	1,600	990	1,000	1,600	2,400	1,700	1,100	2,900	1,700	1,600	2,000	2,300	1,500	410	860	180	530	40	120	18	220	5
Other analytes ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

 $^{^4}$ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

 $^{^{7}}$ cis-1,2-DCE = cis-1,2-Dichloroethene

 $^{^{8}}$ TCA = 1,1,1-Trichloroethane

⁹ TCE = Trichloroethene

¹⁰ PCE = Tetrachloroethene

All other 8010 list analytes

12 nd = not detected above laboratory reporting limit

Table 3b. Historical Summary of Groundwater Monitoring Well Data

Results measured in micrograms per liter ($\mu g/L$)

Well No.	Tresums in		<u> </u>		40 /									MW-3														
Field Date	11/16/99	3/30/00	5/16/00	7/28/00 1	1/30/00	3/26/01	6/25/01	9/28/01 1	2/17/01	3/21/02	6/6/02	9/20/02 1	12/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	MCL^1
DCE^2	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.51	< 0.5	0.81	< 0.5	< 0.5	0.68	2.4	1.5	1.1	0.86	4.3	6
CFC 113 ³	na	< 0.5	< 0.5	< 0.5	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.50	5
Chloroform	< 0.500	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 1.0	< 1.0	< 1.0	ne
cis-1,2-DCE ⁷	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
TCA ⁸	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁹	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ¹⁰	< 0.500	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	0.81	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.90	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Other analytes ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Well N	No.													MW-4														
Field D	eate 12/17/01	3/28/02	6/6/02	9/20/02	12/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06 1	2/21/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	MCL ¹
DCE^2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
CFC 113 ³	<2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ne
cis-1,2-DCE ⁷	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
TCA ⁸	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE^9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE^{10}	2.6	2.8	2.0	2.5	1.1	2.1	2.1	1.6	1.6	1.7	1.4	1.3	1.2	0.93	0.98	0.8	1.1	0.79	0.64	0.70	0.63	0.70	0.75	0.86	0.92	0.91	0.86	5
Other analytes	s ¹¹ nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Notes:

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L]$)

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ cis-1,2-DCE = cis-1,2-Dichloroethene

 $^{^{8}}$ TCA = 1,1,1-Trichloroethane

⁹ TCE = Trichloroethene

¹⁰ PCE = Tetrachloroethene

All other 8010 list analytes

12 nd = not detected above laboratory reporting limit

Table 3b. Historical Summary of Groundwater Monitoring Well Data

Well No.							N	1W-3													
Field Date	9/11/06 1	2/15/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	9/3/08	12/4/08	3/5/09	6/11/09	9/3/09	3/2/10	9/3/10 3	3/17/11	9/23/11 3	3/22/12	9/17/12	3/6/13	MCL ¹
DCE ²	2.8	1.6	1.5	2.4	1.4	1.1	1.0	1.4	0.79	0.59	< 0.5	0.95	0.51	< 0.5	0.64	13	34	45	53	50	6
CFC 113 ³	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA ⁶	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.90	1.4	1.4	1.7	2.2	5
Chloroform	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ne
cis-1,2-DCE ⁷	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
TCA ⁸	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.3	1.5	1.5	1.2	200
TCE ⁹	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ¹⁰	< 0.5	0.56	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.79	< 0.5	< 0.5	< 0.5	5
Other analytes ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Well No.				MW-4									
Field Date	9/3/08	12/4/08	3/5/09	6/11/09	9/3/09	3/2/10	9/3/10	3/17/11	9/23/11	3/22/12	9/17/12	3/6/13	MCL^1
DCE ²	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
CFC 113 ³	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA ⁶	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ne
cis-1,2-DCE ⁷	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
TCA ⁸	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁹	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ¹⁰	0.84	0.65	0.62	0.70	0.79	0.78	0.64	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Other analytes ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level

² DCE = 1,1-Dichloroethene

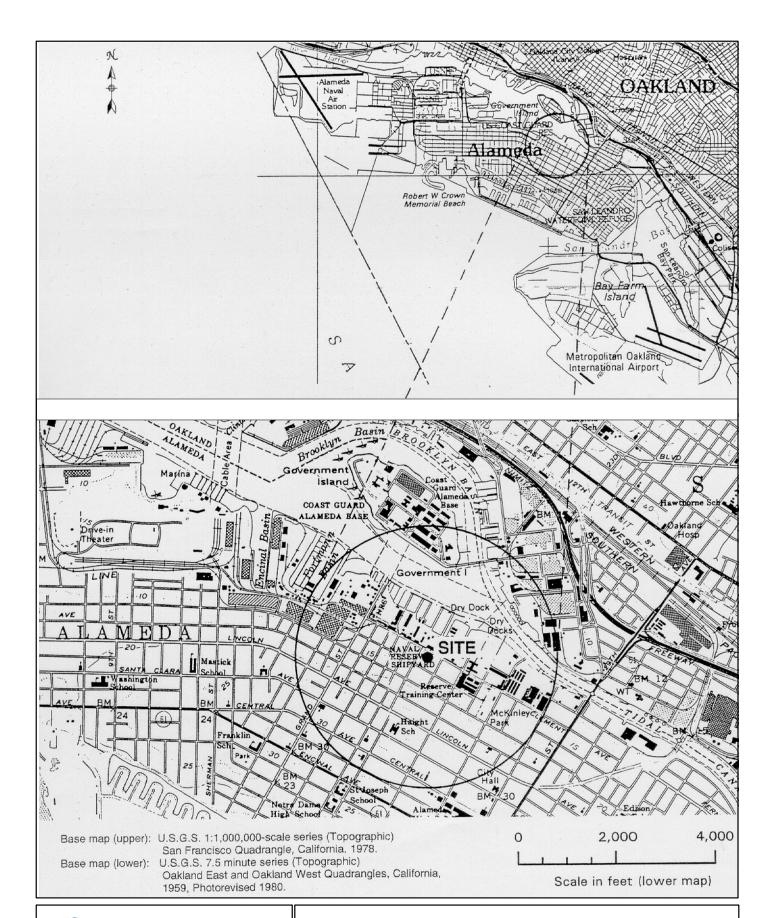
³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

 $^{^4}$ na = not analyzed

⁵ ne = not established or none applicable

 $^{^{6}}$ DCA = 1,1-Dichloroethane

 $^{^{7}}$ cis-1,2-DCE = cis-1,2-Dichloroethene


 $^{^{8}}$ TCA = 1,1,1-Trichloroethane

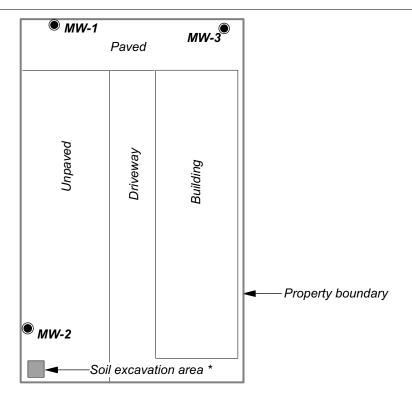
⁹ TCE = Trichloroethene

PCE = Tetrachloroethene

All other 8010 list analytes

12 nd = not detected above laboratory reporting limit

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California


Figure 1. Site Location

MW-4

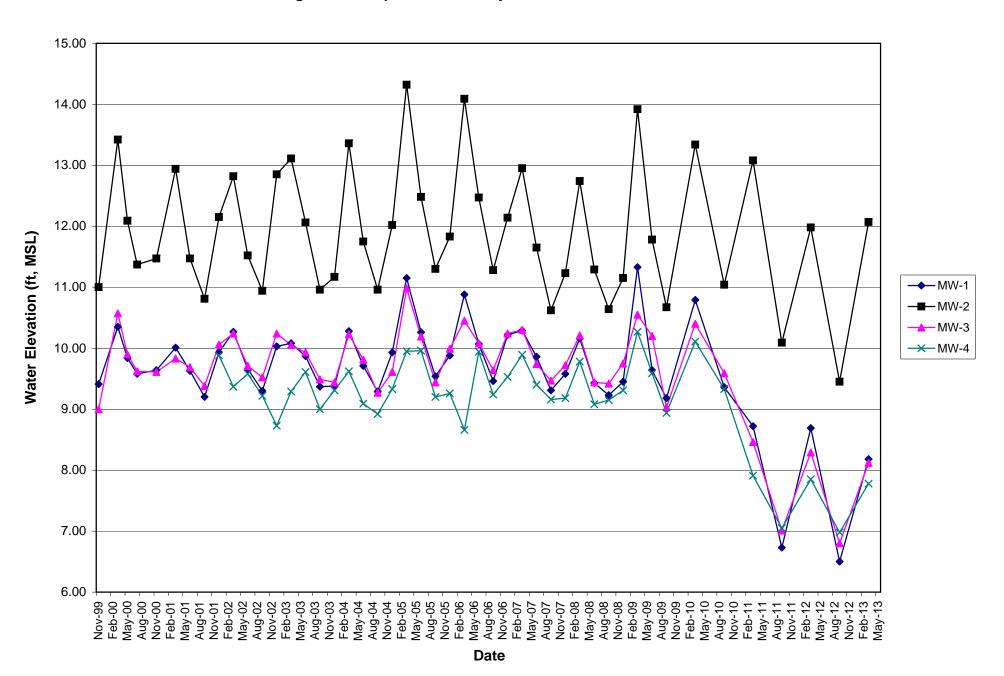
Curb line (Typ.)

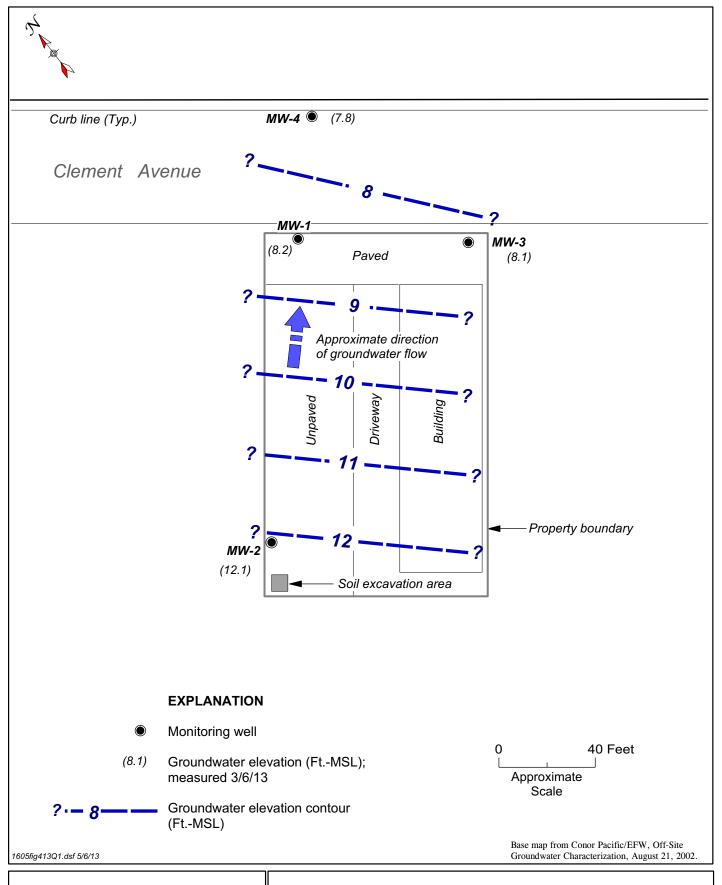
Clement Avenue

EXPLANATION

- Groundwater monitoring well
- * Excavated in February 1994

0 40 Feet
Approximate
Scale

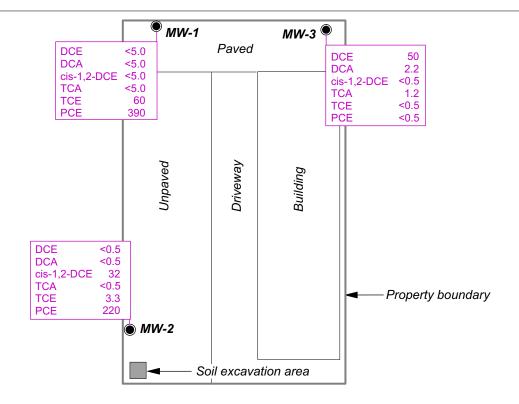

Base map from Conor Pacific/EFW, Off-Site
1605fig210Q1.dsf 4/26/10
Groundwater Characterization, August 21, 2002.



Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 2. Groundwater Monitoring Well Locations

Figure 3. Graphical Summary of Groundwater Elevations



Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

EXPLANATION

Groundwater monitoring well location

All concentrations reported in micrograms per liter ($\mu g/L$), in groundwater. All other 8010 list analytes were below detection limits.

DCE 50 DCA 2.2 cis-1,2-DCE <0.5 TCA 1.2 TCE <0.5 PCE <0.5

1605fig513Q1.dsf 5/8/13

Analyte concentration

DCE = 1,1-Dichloroethene
DCA = 1,1-Dichloroethane
PCE = Tetrachloroethene
TCA = 1,1,1-Trichloroethane
TCE = Trichloroethene
VOCs = Volatile organic compounds

cis-1,2-DCE = cis-1,2-Dichloroethene

0 40 Feet
Approximate
Scale

Analytical parameter

Base map from Conor Pacific/EFW, Off-Site Groundwater Characterization, August 21, 2002.

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 5. VOC Concentrations in Groundwater – March 2013

Figure 6. Graphical Summary of PCE Concentrations

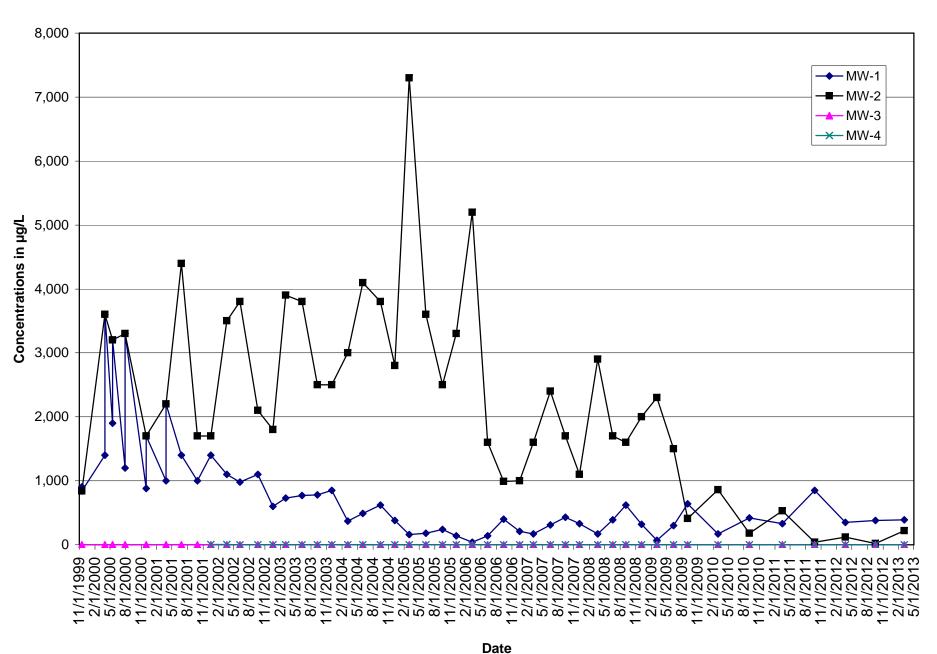
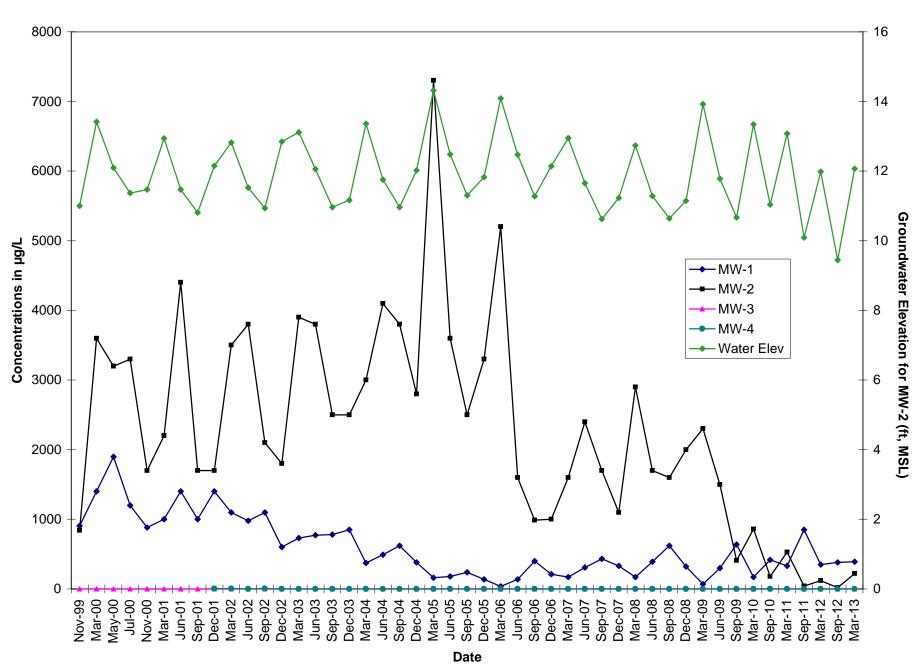



Figure 7. PCE Concentrations vs. Groundwater Elevation

Appendix A

Field Data Sheets

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

Well ID	Date	Time	Depth to Water (1st Msmt.) (feet)	Depth to Water (2nd Msmt.) (feet)	Comments
MW-1	3/10/13	0721	4.98	498	we hunder pressure
MW-2	3/0/13	0724	4.15	4.15	water inbox
MW-3	3/0/3	0712	5.22	522	weter insor
MW-4	2/0/13	0727	4.65	4.65	wateringoy

Data Collection	
Field measurements by: Print: Resulting	Reviewed by: Print: Jim Botevs
Signature:	Signature: With
Date: 3 loll	Date: //3/14//3

Project No.: CS1605 Well ID: MW-1 Project Name: Alameda Facility Sample ID: Location: Alameda, CA Start Date: Client: Cargill Salt Finish Date: WELL INFORMATION 0,1 Depth to water (ft): 5.27 Casing diameter (in.): Well depth (ft): One casing volume (gal.): 0.53 Calculated purge volume (gal.) (3 x casing volume): One casing volume = πx [casing radius (in.) x 1 ft/12 in.] $^2 x$ [well depth (ft) - depth to water (ft)] x 7.48 gal/ft Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4." = 0.65 5" = 1.0 6" = 1.5 8" = 2.6ND Floating product thickness (ft): Method for checking: Interface probe Clear bailer WELL PURGING End time: 1017 Date purged: Start time: Purging equipment: Submersible pump Peristaltic pump Bladder pump PVC bailer Teflon bailer Other Purge rate: Well yield ((1)/L): Purge water disposal: ONSITE Cumulative Time Vol. Purged pН EC Color Turbidity (2400 hr) (gal.) (units) (uS/cm) (Visual) (Visual or NTU) Total Purged (gal.): WELL SAMPLING Date sampled: 3 6 Start time: 108 End time: Depth to water (ft) before sampling: 12.18 Sampling equipment: Peristaltic pump Bladder pump Teflon bailer PVC bailer Other Weather conditions: Ambient temperature (° F): Well condition/Remarks: Bolts weed to be a AUSAMPLES Collected

PH

Turbidity Meter calibration: EC **Temperature** Purged and sampled by (print): Signature: Reviewed by

Mいータ

Well ID:

Sample ID:

SAMPLE COLLECTION FIELD DATA

Start Date: Location: Alameda, CA Client: Cargill Salt Finish Date: WELL INFORMATION Depth to water (ft): 4.37 Well depth (ft): 17.5 Casing diameter (in.): G. l One casing volume (gal.): 54 Calculated purge volume (gal.) (3 x casing volume): One casing volume = πx [casing radius (in.) x 1 ft/12 in.] x [well depth (ft) - depth to water (ft)] x 7.48 gal/ft³ Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4." = 0.65 5" = 1.0 6" = 1.5 8" = 2.6Floating product thickness (ft): NV Method for checking: Interface probe Clear bailer WELL PURGING End time: 1103 Start time: Date purged: Peristaltic pump Purging equipment: Submersible pump Bladder pump PVC bailer Teflon bailer Other Well yield (H/L): Purge rate: Drum onsite Purge water disposal: Cumulative Vol. Purged **Turbidity** pΗ EC Color Time (Visual o(NTU) (Visual) (µS/cm) (2400 hr) (units) eon Total Purged (gal.): WELL SAMPLING Date sampled: 3 Start time: End time: //09 Depth to water (ft) before sampling: Peristaltic pump Bladder pump Teflon bailer Sampling equipment: PVC bailer Other Ambient temperature (° F): Cloud Weather conditions: Well condition/Remarks: collected Quel All samples collectur ÉС Meter calibration: **Temperature** Purged and sampled by (print): Reviewed by Signature:

Project No.:

CS1605

Project Name: Alameda Facility

SAMPLE COLLECTION FIELD DATA

Well ID:

Page __lof_

Project Name: Alameda Facility Sample ID: Location: Alameda, CA Start Date: Client: Cargill Salt Finish Date: WELL INFORMATION Depth to water (ft): 520 Casing diameter (in.): Well depth (ft): One casing volume (gal.): 0.50 Calculated purge volume (gal.) (3 x casing volume): One casing volume = πx [casing radius (in.) x 1 ft/12 in.] x [well depth (ft) - depth to water (ft)] x 7.48 gal/ft³ Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4." = 0.65 5" = 1.0 6" = 1.5Floating product thickness (ft): Method for checking: Interface probe Clear bailer WELL PURGING Start time: Date purged: 31 End time: Purging equipment: Submersible pump Bladder pump PVC bailer Teflon bailer Other Purge rate: Well yield (HA): Purge water disposal: Cumulative Vol. Purged Turbidity Time EC Color (2400 hr) (µS/cm) (Visual) 5,8 Total Purged (gal.) WELL SAMPLING Date sampled: 3 End time: Depth to water (ft) before sampling: /6.35 Sampling equipment: Bladder pump Teflon bailer Peristaltic pump PVC bailer Other Weather conditions: Ambient temperature (° F): Well condition/Remarks: Allsamplescollecter Meter calibration: EC pН Temperature **Turbidity** Purged and sampled by (print): Signature: Reviewed b

Project No.:

CS1605

SAMPLE	COLLECTION	FIFLD DATA
SAMELE	COLLECTION	TIELD DAIA

SAN	IPLE COLLECTION FIELD D	ATA Page
Project No.: CS1605 Project Name: Alameda Facility Location: Alameda, CA Client: Cargill Salt		Well ID: MW-Y Sample ID: MW-Y Start Date: 3/6/3 Finish Date: 3/6/3
One casing volume (gal.): 0.58 One casing volume = $\pi \times [casing \ radius]$	of: 1" = 0.041 2" = 0.16 4." =	depth to water (ft)] x 7.48 gal/ft ³ 0.65 5'' = 1.0 6'' = 1.5 8'' = 2.6
WELL PURGING Date purged: 3/6/3 Purging equipment: Submersible PVC bailer Purge rate: O.IV Lem Purge water disposal: Cumulative Yol. Purged (gat-) L. 2 OB13 U826 Total Purged (gat-): L. 2 Total Purged (gat-): L. 2	pump Bladder pump Teflon bailer Other Well yield (1):	T Color Turbidity
WELL SAMPLING Date sampled: 3 / 1 / 5 Sampling equipment: Peristaltic PVC bailer Weather conditions:	Depth to wat Bladder pump Other	
Meter calibration: EC Ma7 Temperature Purged and sampled by (print): Signature:	guevaro	

Appendix B

Groundwater Velocity Calculations

APPENDIX B GROUNDWATER VELOCITY CALCULATIONS

FOR CARGILL ALAMEDA SITE

GROUNDWATER VELOCITY FORMULA

V = Ki/n where:

V = average linear groundwater velocity i = hydraulic gradient<math>K = hydraulic conductivity i = hydraulic gradient n = effective porosity

PARAMETERS

Range of hydraulic conductivity values (K) from slug tests:

Material	Well	K (cm/sec)
Silty sand (SM) and Clayey sand (SC)	MW-1	0.00002
Silty sand (SM) and Clayey sand (SC)	MW-2	0.00002
Silty sand (SM) and Clayey sand (SC)	MW-3	0.000003

Highest measured K = 0.00002

Porosity (n) = 33% (from laboratory analysis of boring B21 soil sample)

Hydraulic gradient (i) calculated from groundwater contours:

March 2013 0.031

UNIT CONVERSIONS

1 day = 86,400 sec 1 cm/sec = 2,834.65 ft/day1 foot = 30.48 cm 1 cm/sec = 1,034,645.67 ft/yr

CALCULATED VELOCITIES

	Flow	K	i	n	V
Measurement Event	Direction	(cm/sec)	(ft/ft)		(ft/yr)
March 2013	NE	0.00002	0.031	0.33	2

Calculations and assumptions prepared by:

prepared by: Mark (. Wheelv

Date: 5/9/13

Appendix C Certified Analytical Reports and Chain-of-Custody Documentation

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-48188-1

Client Project/Site: Alameda Facility CS 1605

For:

Crawford Consulting Inc 4 North First Street Suite 650 San Jose, California 95113-1326

Attn: Mr. Mark Wheeler

Oniche Howard

Authorized for release by: 3/13/2013 5:27:10 PM

Onieka Howard Project Manager I

onieka.howard@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-48188-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	12
QC Association Summary	18
Lab Chronicle	19
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Racaint Chacklists	24

6

4

5

7

a

10

12

13

Definitions/Glossary

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 720-48188-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits

Glossary

TEQ

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

TestAmerica Job ID: 720-48188-1

Job ID: 720-48188-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-48188-1

Comments

No additional comments.

Receipt

The samples were received on 3/6/2013 12:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.3° C.

GC/MS VOA

No analytical or quality issues were noted.

2

1

5

6

7

8

9

4 4

Client: Crawford Consulting Inc

Client Sample ID: MW-1

Project/Site: Alameda Facility CS 1605

TestAmerica Job ID: 720-48188-1

Lab Sample ID: 720-48188-1

Analyte	Result Qua	alifier RL	MDL Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	60	5.0	ug/L	10	_	8260B	Total/NA
Tetrachloroethene	390	5.0	ug/L	10		8260B	Total/NA

Client Sample ID: MW-2 Lab Sample ID: 720-48188-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	32	0.50	ug/L		8260B	Total/NA
Trichloroethene	3.3	0.50	ug/L	1	8260B	Total/NA
Tetrachloroethene	220	2.5	ug/L	5	8260B	Total/NA

Client Sample ID: MW-3 Lab Sample ID: 720-48188-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	50	0.50	ug/L	1	_	8260B	Total/NA
1,1-Dichloroethane	2.2	0.50	ug/L	1		8260B	Total/NA
1,1,1-Trichloroethane	1.2	0.50	ug/L	1		8260B	Total/NA

Client Sample ID: MW-4 Lab Sample ID: 720-48188-4

No Detections

Client Sample ID: DUP-1 Lab Sample ID: 720-48188-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	31		0.50		ug/L	1	_	8260B	Total/NA
Trichloroethene	3.4		0.50		ug/L	1		8260B	Total/NA
Tetrachloroethene	210		2.5		ug/L	5		8260B	Total/NA

Client Sample ID: TB-1 Lab Sample ID: 720-48188-6

No Detections

This Detection Summary does not include radiochemical test results.

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-48188-1

Lab Sample ID: 720-48188-1

Matrix: Water

Client Sample ID: MW-1

Date Collected: 03/06/13 10:18 Date Received: 03/06/13 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		5.0		ug/L			03/09/13 00:55	10
1,1-Dichloroethane	ND		5.0		ug/L			03/09/13 00:55	10
Dichlorodifluoromethane	ND		5.0		ug/L			03/09/13 00:55	10
Vinyl chloride	ND		5.0		ug/L			03/09/13 00:55	10
Chloroethane	ND		10		ug/L			03/09/13 00:55	10
Trichlorofluoromethane	ND		10		ug/L			03/09/13 00:55	10
Methylene Chloride	ND		50		ug/L			03/09/13 00:55	10
trans-1,2-Dichloroethene	ND		5.0		ug/L			03/09/13 00:55	10
cis-1,2-Dichloroethene	ND		5.0		ug/L			03/09/13 00:55	10
Chloroform	ND		10		ug/L			03/09/13 00:55	10
1,1,1-Trichloroethane	ND		5.0		ug/L			03/09/13 00:55	10
Carbon tetrachloride	ND		5.0		ug/L			03/09/13 00:55	10
1,2-Dichloroethane	ND		5.0		ug/L			03/09/13 00:55	10
Trichloroethene	60		5.0		ug/L			03/09/13 00:55	10
1,2-Dichloropropane	ND		5.0		ug/L			03/09/13 00:55	10
Dichlorobromomethane	ND		5.0		ug/L			03/09/13 00:55	10
trans-1,3-Dichloropropene	ND		5.0		ug/L			03/09/13 00:55	10
cis-1,3-Dichloropropene	ND		5.0		ug/L			03/09/13 00:55	10
1,1,2-Trichloroethane	ND		5.0		ug/L			03/09/13 00:55	10
Tetrachloroethene	390		5.0		ug/L			03/09/13 00:55	10
Chlorodibromomethane	ND		5.0		ug/L			03/09/13 00:55	10
Chlorobenzene	ND		5.0		ug/L			03/09/13 00:55	10
Bromoform	ND		10		ug/L			03/09/13 00:55	10
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			03/09/13 00:55	10
1,3-Dichlorobenzene	ND		5.0		ug/L			03/09/13 00:55	10
1,4-Dichlorobenzene	ND		5.0		ug/L			03/09/13 00:55	10
1,2-Dichlorobenzene	ND		5.0		ug/L			03/09/13 00:55	10
Chloromethane	ND		10		ug/L			03/09/13 00:55	10
Bromomethane	ND		10		ug/L			03/09/13 00:55	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/L			03/09/13 00:55	10
EDB	ND		5.0		ug/L			03/09/13 00:55	10
1,2,4-Trichlorobenzene	ND		10		ug/L			03/09/13 00:55	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		70 - 130			=		03/09/13 00:55	10
4-Bromofluorobenzene	92		67 - 130					03/09/13 00:55	10
1,2-Dichloroethane-d4 (Surr)	107		75 ₋ 138					03/09/13 00:55	10

3

-

6

8

9

11

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-48188-1

Lab Sample ID: 720-48188-2

Matrix: Water

Client Sample ID: MW-2 Date Collected: 03/06/13 11:04

Date Received: 03/06/13 12:30

Method: 8260B - Volatile Organ	ic Compounds (GC/MS)
Amalusa	Desuit Ouslities

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND	0.50	ug/L		03/09/13 01:23	1
1,1-Dichloroethane	ND	0.50	ug/L		03/09/13 01:23	1
Dichlorodifluoromethane	ND	0.50	ug/L		03/09/13 01:23	1
Vinyl chloride	ND	0.50	ug/L		03/09/13 01:23	1
Chloroethane	ND	1.0	ug/L		03/09/13 01:23	1
Trichlorofluoromethane	ND	1.0	ug/L		03/09/13 01:23	1
Methylene Chloride	ND	5.0	ug/L		03/09/13 01:23	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		03/09/13 01:23	1
cis-1,2-Dichloroethene	32	0.50	ug/L		03/09/13 01:23	1
Chloroform	ND	1.0	ug/L		03/09/13 01:23	1
1,1,1-Trichloroethane	ND	0.50	ug/L		03/09/13 01:23	1
Carbon tetrachloride	ND	0.50	ug/L		03/09/13 01:23	1
1,2-Dichloroethane	ND	0.50	ug/L		03/09/13 01:23	1
Trichloroethene	3.3	0.50	ug/L		03/09/13 01:23	1
1,2-Dichloropropane	ND	0.50	ug/L		03/09/13 01:23	1
Dichlorobromomethane	ND	0.50	ug/L		03/09/13 01:23	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		03/09/13 01:23	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		03/09/13 01:23	1
1,1,2-Trichloroethane	ND	0.50	ug/L		03/09/13 01:23	1
Tetrachloroethene	220	2.5	ug/L		03/11/13 13:32	5
Chlorodibromomethane	ND	0.50	ug/L		03/09/13 01:23	1
Chlorobenzene	ND	0.50	ug/L		03/09/13 01:23	1
Bromoform	ND	1.0	ug/L		03/09/13 01:23	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		03/09/13 01:23	1
1,3-Dichlorobenzene	ND	0.50	ug/L		03/09/13 01:23	1
1,4-Dichlorobenzene	ND	0.50	ug/L		03/09/13 01:23	1
1,2-Dichlorobenzene	ND	0.50	ug/L		03/09/13 01:23	1
Chloromethane	ND	1.0	ug/L		03/09/13 01:23	1
Bromomethane	ND	1.0	ug/L		03/09/13 01:23	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		03/09/13 01:23	1
EDB	ND	0.50	ug/L		03/09/13 01:23	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		03/09/13 01:23	1

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130		03/09/13 01:23	1
Toluene-d8 (Surr)	97		70 - 130		03/11/13 13:32	5
4-Bromofluorobenzene	91		67 - 130		03/09/13 01:23	1
4-Bromofluorobenzene	97		67 - 130		03/11/13 13:32	5
1,2-Dichloroethane-d4 (Surr)	107		75 - 138		03/09/13 01:23	1
1 2-Dichloroethane-d4 (Surr)	108		75 138		03/11/13 13:32	5

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-48188-1

Lab Sample ID: 720-48188-3

Matrix: Water

Client Sample ID: MW-3

Date Collected: 03/06/13 09:30 Date Received: 03/06/13 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	50		0.50		ug/L			03/09/13 01:51	1
1,1-Dichloroethane	2.2		0.50		ug/L			03/09/13 01:51	1
Dichlorodifluoromethane	ND		0.50		ug/L			03/09/13 01:51	1
Vinyl chloride	ND		0.50		ug/L			03/09/13 01:51	1
Chloroethane	ND		1.0		ug/L			03/09/13 01:51	1
Trichlorofluoromethane	ND		1.0		ug/L			03/09/13 01:51	1
Methylene Chloride	ND		5.0		ug/L			03/09/13 01:51	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			03/09/13 01:51	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			03/09/13 01:51	1
Chloroform	ND		1.0		ug/L			03/09/13 01:51	1
1,1,1-Trichloroethane	1.2		0.50		ug/L			03/09/13 01:51	1
Carbon tetrachloride	ND		0.50		ug/L			03/09/13 01:51	1
1,2-Dichloroethane	ND		0.50		ug/L			03/09/13 01:51	1
Trichloroethene	ND		0.50		ug/L			03/09/13 01:51	1
1,2-Dichloropropane	ND		0.50		ug/L			03/09/13 01:51	1
Dichlorobromomethane	ND		0.50		ug/L			03/09/13 01:51	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			03/09/13 01:51	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			03/09/13 01:51	1
1,1,2-Trichloroethane	ND		0.50		ug/L			03/09/13 01:51	1
Tetrachloroethene	ND		0.50		ug/L			03/09/13 01:51	1
Chlorodibromomethane	ND		0.50		ug/L			03/09/13 01:51	1
Chlorobenzene	ND		0.50		ug/L			03/09/13 01:51	1
Bromoform	ND		1.0		ug/L			03/09/13 01:51	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			03/09/13 01:51	1
1,3-Dichlorobenzene	ND		0.50		ug/L			03/09/13 01:51	1
1,4-Dichlorobenzene	ND		0.50		ug/L			03/09/13 01:51	1
1,2-Dichlorobenzene	ND		0.50		ug/L			03/09/13 01:51	1
Chloromethane	ND		1.0		ug/L			03/09/13 01:51	1
Bromomethane	ND		1.0		ug/L			03/09/13 01:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			03/09/13 01:51	1
EDB	ND		0.50		ug/L			03/09/13 01:51	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			03/09/13 01:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130			_		03/09/13 01:51	1
4-Bromofluorobenzene	90		67 - 130					03/09/13 01:51	1
1,2-Dichloroethane-d4 (Surr)	106		75 - 138					03/09/13 01:51	1

3

5

7

0

10

12

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-48188-1

Lab Sample ID: 720-48188-4

Matrix: Water

Client Sample ID: MW-4

Date Collected: 03/06/13 08:27 Date Received: 03/06/13 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L			03/09/13 02:19	1
1,1-Dichloroethane	ND		0.50		ug/L			03/09/13 02:19	1
Dichlorodifluoromethane	ND		0.50		ug/L			03/09/13 02:19	1
Vinyl chloride	ND		0.50		ug/L			03/09/13 02:19	1
Chloroethane	ND		1.0		ug/L			03/09/13 02:19	1
Trichlorofluoromethane	ND		1.0		ug/L			03/09/13 02:19	1
Methylene Chloride	ND		5.0		ug/L			03/09/13 02:19	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			03/09/13 02:19	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			03/09/13 02:19	1
Chloroform	ND		1.0		ug/L			03/09/13 02:19	1
1,1,1-Trichloroethane	ND		0.50		ug/L			03/09/13 02:19	1
Carbon tetrachloride	ND		0.50		ug/L			03/09/13 02:19	1
1,2-Dichloroethane	ND		0.50		ug/L			03/09/13 02:19	1
Trichloroethene	ND		0.50		ug/L			03/09/13 02:19	1
1,2-Dichloropropane	ND		0.50		ug/L			03/09/13 02:19	1
Dichlorobromomethane	ND		0.50		ug/L			03/09/13 02:19	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			03/09/13 02:19	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			03/09/13 02:19	1
1,1,2-Trichloroethane	ND		0.50		ug/L			03/09/13 02:19	1
Tetrachloroethene	ND		0.50		ug/L			03/09/13 02:19	1
Chlorodibromomethane	ND		0.50		ug/L			03/09/13 02:19	1
Chlorobenzene	ND		0.50		ug/L			03/09/13 02:19	1
Bromoform	ND		1.0		ug/L			03/09/13 02:19	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			03/09/13 02:19	1
1,3-Dichlorobenzene	ND		0.50		ug/L			03/09/13 02:19	1
1,4-Dichlorobenzene	ND		0.50		ug/L			03/09/13 02:19	1
1,2-Dichlorobenzene	ND		0.50		ug/L			03/09/13 02:19	1
Chloromethane	ND		1.0		ug/L			03/09/13 02:19	1
Bromomethane	ND		1.0		ug/L			03/09/13 02:19	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			03/09/13 02:19	1
EDB	ND		0.50		ug/L			03/09/13 02:19	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			03/09/13 02:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		70 - 130			_		03/09/13 02:19	1
4-Bromofluorobenzene	88		67 - 130					03/09/13 02:19	1
1,2-Dichloroethane-d4 (Surr)	102		75 - 138					03/09/13 02:19	1

3/13/2013

	0	3	

10

11

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-48188-1

Lab Sample ID: 720-48188-5

Matrix: Water

Client Sample ID: DUP-1

Date Collected: 03/06/13 00:00 Date Received: 03/06/13 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L			03/09/13 02:47	1
1,1-Dichloroethane	ND		0.50		ug/L			03/09/13 02:47	1
Dichlorodifluoromethane	ND		0.50		ug/L			03/09/13 02:47	1
Vinyl chloride	ND		0.50		ug/L			03/09/13 02:47	1
Chloroethane	ND		1.0		ug/L			03/09/13 02:47	1
Trichlorofluoromethane	ND		1.0		ug/L			03/09/13 02:47	1
Methylene Chloride	ND		5.0		ug/L			03/09/13 02:47	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			03/09/13 02:47	1
cis-1,2-Dichloroethene	31		0.50		ug/L			03/09/13 02:47	1
Chloroform	ND		1.0		ug/L			03/09/13 02:47	1
1,1,1-Trichloroethane	ND		0.50		ug/L			03/09/13 02:47	1
Carbon tetrachloride	ND		0.50		ug/L			03/09/13 02:47	1
1,2-Dichloroethane	ND		0.50		ug/L			03/09/13 02:47	1
Trichloroethene	3.4		0.50		ug/L			03/09/13 02:47	1
1,2-Dichloropropane	ND		0.50		ug/L			03/09/13 02:47	1
Dichlorobromomethane	ND		0.50		ug/L			03/09/13 02:47	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			03/09/13 02:47	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			03/09/13 02:47	1
1,1,2-Trichloroethane	ND		0.50		ug/L			03/09/13 02:47	1
Tetrachloroethene	210		2.5		ug/L			03/11/13 13:58	5
Chlorodibromomethane	ND		0.50		ug/L			03/09/13 02:47	1
Chlorobenzene	ND		0.50		ug/L			03/09/13 02:47	1
Bromoform	ND		1.0		ug/L			03/09/13 02:47	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			03/09/13 02:47	1
1,3-Dichlorobenzene	ND		0.50		ug/L			03/09/13 02:47	1
1,4-Dichlorobenzene	ND		0.50		ug/L			03/09/13 02:47	1
1,2-Dichlorobenzene	ND		0.50		ug/L			03/09/13 02:47	1
Chloromethane	ND		1.0		ug/L			03/09/13 02:47	1
Bromomethane	ND		1.0		ug/L			03/09/13 02:47	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			03/09/13 02:47	1
EDB	ND		0.50		ug/L			03/09/13 02:47	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			03/09/13 02:47	1
Surrogate		Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130			_		03/09/13 02:47	1
Toluene-d8 (Surr)	100		70 - 130					03/11/13 13:58	5
4-Bromofluorobenzene	90		67 - 130					03/09/13 02:47	1
4-Bromofluorobenzene	101		67 - 130					03/11/13 13:58	5
1,2-Dichloroethane-d4 (Surr)	106		75 - 138					03/09/13 02:47	1
1,2-Dichloroethane-d4 (Surr)	114		75 - 138					03/11/13 13:58	5

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-48188-1

Lab Sample ID: 720-48188-6

Matrix: Water

Client Sample ID: TB-1

Date Collected: 03/06/13 00:00 Date Received: 03/06/13 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L			03/08/13 23:02	1
1,1-Dichloroethane	ND		0.50		ug/L			03/08/13 23:02	1
Dichlorodifluoromethane	ND		0.50		ug/L			03/08/13 23:02	1
Vinyl chloride	ND		0.50		ug/L			03/08/13 23:02	1
Chloroethane	ND		1.0		ug/L			03/08/13 23:02	1
Trichlorofluoromethane	ND		1.0		ug/L			03/08/13 23:02	1
Methylene Chloride	ND		5.0		ug/L			03/08/13 23:02	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			03/08/13 23:02	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			03/08/13 23:02	1
Chloroform	ND		1.0		ug/L			03/08/13 23:02	1
1,1,1-Trichloroethane	ND		0.50		ug/L			03/08/13 23:02	1
Carbon tetrachloride	ND		0.50		ug/L			03/08/13 23:02	1
1,2-Dichloroethane	ND		0.50		ug/L			03/08/13 23:02	1
Trichloroethene	ND		0.50		ug/L			03/08/13 23:02	1
1,2-Dichloropropane	ND		0.50		ug/L			03/08/13 23:02	1
Dichlorobromomethane	ND		0.50		ug/L			03/08/13 23:02	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			03/08/13 23:02	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			03/08/13 23:02	1
1,1,2-Trichloroethane	ND		0.50		ug/L			03/08/13 23:02	1
Tetrachloroethene	ND		0.50		ug/L			03/08/13 23:02	1
Chlorodibromomethane	ND		0.50		ug/L			03/08/13 23:02	1
Chlorobenzene	ND		0.50		ug/L			03/08/13 23:02	1
Bromoform	ND		1.0		ug/L			03/08/13 23:02	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			03/08/13 23:02	1
1,3-Dichlorobenzene	ND		0.50		ug/L			03/08/13 23:02	1
1,4-Dichlorobenzene	ND		0.50		ug/L			03/08/13 23:02	1
1,2-Dichlorobenzene	ND		0.50		ug/L			03/08/13 23:02	1
Chloromethane	ND		1.0		ug/L			03/08/13 23:02	1
Bromomethane	ND		1.0		ug/L			03/08/13 23:02	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			03/08/13 23:02	1
EDB	ND		0.50		ug/L			03/08/13 23:02	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			03/08/13 23:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130			_		03/08/13 23:02	1
4-Bromofluorobenzene	91		67 - 130					03/08/13 23:02	1
1,2-Dichloroethane-d4 (Surr)	104		75 - 138					03/08/13 23:02	1

2

4

6

8

10

12

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605

Method: 8260B - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 720-132000/4

Matrix: Water

Analysis Batch: 132000

Client Sample ID: Method Blank

Prep Type: Total/NA

	MID	WID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L			03/08/13 19:45	1
1,1-Dichloroethane	ND		0.50		ug/L			03/08/13 19:45	1
Dichlorodifluoromethane	ND		0.50		ug/L			03/08/13 19:45	1
Vinyl chloride	ND		0.50		ug/L			03/08/13 19:45	1
Chloroethane	ND		1.0		ug/L			03/08/13 19:45	1
Trichlorofluoromethane	ND		1.0		ug/L			03/08/13 19:45	1
Methylene Chloride	ND		5.0		ug/L			03/08/13 19:45	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			03/08/13 19:45	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			03/08/13 19:45	1
Chloroform	ND		1.0		ug/L			03/08/13 19:45	1
1,1,1-Trichloroethane	ND		0.50		ug/L			03/08/13 19:45	1
Carbon tetrachloride	ND		0.50		ug/L			03/08/13 19:45	1
1,2-Dichloroethane	ND		0.50		ug/L			03/08/13 19:45	1
Trichloroethene	ND		0.50		ug/L			03/08/13 19:45	1
1,2-Dichloropropane	ND		0.50		ug/L			03/08/13 19:45	1
Dichlorobromomethane	ND		0.50		ug/L			03/08/13 19:45	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			03/08/13 19:45	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			03/08/13 19:45	1
1,1,2-Trichloroethane	ND		0.50		ug/L			03/08/13 19:45	1
Tetrachloroethene	ND		0.50		ug/L			03/08/13 19:45	1
Chlorodibromomethane	ND		0.50		ug/L			03/08/13 19:45	1
Chlorobenzene	ND		0.50		ug/L			03/08/13 19:45	1
Bromoform	ND		1.0		ug/L			03/08/13 19:45	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			03/08/13 19:45	1
1,3-Dichlorobenzene	ND		0.50		ug/L			03/08/13 19:45	1
1,4-Dichlorobenzene	ND		0.50		ug/L			03/08/13 19:45	1
1,2-Dichlorobenzene	ND		0.50		ug/L			03/08/13 19:45	1
Chloromethane	ND		1.0		ug/L			03/08/13 19:45	1
Bromomethane	ND		1.0		ug/L			03/08/13 19:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			03/08/13 19:45	1
EDB	ND		0.50		ug/L			03/08/13 19:45	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			03/08/13 19:45	1

	MB MB				
Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	70 - 130		03/08/13 19:45	1
4-Bromofluorobenzene	89	67 - 130		03/08/13 19:45	1
1,2-Dichloroethane-d4 (Surr)	102	75 ₋ 138		03/08/13 19:45	1

Lab Sample ID: LCS 720-132000/5

Matrix: Water

Analysis Batch: 132000

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS		%Rec.
Analyte Added	Result	Qualifier Unit	D %Re	c Limits
1,1-Dichloroethene 25.0	22.6	ug/L	g	64 - 128
1,1-Dichloroethane 25.0	25.1	ug/L	10	0 70 - 130
Dichlorodifluoromethane 25.0	14.9	ug/L	5	9 34 - 132
Vinyl chloride 25.0	16.9	ug/L	6	8 54 - 135
Chloroethane 25.0	20.4	ug/L	8	2 62 - 138

TestAmerica Pleasanton

Page 12 of 24

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-132000/5

Matrix: Water

Analysis Batch: 132000

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Trichlorofluoromethane	25.0	22.0		ug/L		88	66 - 132	
Methylene Chloride	25.0	24.7		ug/L		99	70 - 147	
trans-1,2-Dichloroethene	25.0	24.2		ug/L		97	68 - 130	
cis-1,2-Dichloroethene	25.0	26.4		ug/L		106	70 - 130	
Chloroform	25.0	24.5		ug/L		98	70 - 130	
1,1,1-Trichloroethane	25.0	25.8		ug/L		103	70 - 130	
Carbon tetrachloride	25.0	26.3		ug/L		105	70 - 146	
1,2-Dichloroethane	25.0	25.8		ug/L		103	61 - 132	
Trichloroethene	25.0	25.4		ug/L		102	70 - 130	
1,2-Dichloropropane	25.0	27.0		ug/L		108	70 - 130	
Dichlorobromomethane	25.0	28.4		ug/L		113	70 - 130	
trans-1,3-Dichloropropene	25.0	25.9		ug/L		104	70 - 140	
cis-1,3-Dichloropropene	25.0	30.5		ug/L		122	70 - 130	
1,1,2-Trichloroethane	25.0	28.5		ug/L		114	70 - 130	
Tetrachloroethene	25.0	25.6		ug/L		103	70 - 130	
Chlorodibromomethane	25.0	28.9		ug/L		115	70 - 145	
Chlorobenzene	25.0	26.1		ug/L		104	70 - 130	
Bromoform	25.0	28.8		ug/L		115	68 - 136	
1,1,2,2-Tetrachloroethane	25.0	28.3		ug/L		113	70 - 130	
1,3-Dichlorobenzene	25.0	27.0		ug/L		108	70 - 130	
1,4-Dichlorobenzene	25.0	26.7		ug/L		107	70 - 130	
1,2-Dichlorobenzene	25.0	25.5		ug/L		102	70 - 130	
Chloromethane	25.0	16.7		ug/L		67	52 - 175	
Bromomethane	25.0	20.5		ug/L		82	43 _ 151	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	24.9		ug/L		100	42 _ 162	
ne								
EDB	25.0	30.4		ug/L		121	70 - 130	
1,2,4-Trichlorobenzene	25.0	24.7		ug/L		99	70 - 130	

LCS LCS

Surrogate	%Recovery Qualif	ier Limits
Toluene-d8 (Surr)	106	70 - 130
4-Bromofluorobenzene	108	67 - 130
1.2-Dichloroethane-d4 (Surr)	103	75 ₋ 138

Lab Sample ID: LCSD 720-132000/6

Matrix: Water

Analysis Batch: 132000

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	25.0	22.9		ug/L		92	64 - 128	1	20
1,1-Dichloroethane	25.0	25.2		ug/L		101	70 - 130	0	20
Dichlorodifluoromethane	25.0	14.8		ug/L		59	34 - 132	0	20
Vinyl chloride	25.0	17.1		ug/L		68	54 - 135	1	20
Chloroethane	25.0	20.2		ug/L		81	62 - 138	1	20
Trichlorofluoromethane	25.0	22.1		ug/L		89	66 - 132	1	20
Methylene Chloride	25.0	24.7		ug/L		99	70 - 147	0	20
trans-1,2-Dichloroethene	25.0	24.5		ug/L		98	68 - 130	1	20
cis-1,2-Dichloroethene	25.0	26.4		ug/L		106	70 - 130	0	20

TestAmerica Pleasanton

Page 13 of 24

2

3

_

0

10

12

13

М

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-132000/6

Matrix: Water

Analysis Batch: 132000

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroform	25.0	24.5		ug/L		98	70 - 130	0	20
1,1,1-Trichloroethane	25.0	26.1		ug/L		104	70 - 130	1	20
Carbon tetrachloride	25.0	26.8		ug/L		107	70 - 146	2	20
1,2-Dichloroethane	25.0	25.0		ug/L		100	61 - 132	3	20
Trichloroethene	25.0	25.5		ug/L		102	70 - 130	1	20
1,2-Dichloropropane	25.0	26.7		ug/L		107	70 - 130	1	20
Dichlorobromomethane	25.0	27.9		ug/L		112	70 - 130	2	20
trans-1,3-Dichloropropene	25.0	25.0		ug/L		100	70 - 140	4	20
cis-1,3-Dichloropropene	25.0	29.6		ug/L		119	70 - 130	3	20
1,1,2-Trichloroethane	25.0	27.1		ug/L		108	70 - 130	5	20
Tetrachloroethene	25.0	25.4		ug/L		102	70 - 130	1	20
Chlorodibromomethane	25.0	27.5		ug/L		110	70 - 145	5	20
Chlorobenzene	25.0	26.0		ug/L		104	70 - 130	0	20
Bromoform	25.0	27.6		ug/L		110	68 - 136	4	20
1,1,2,2-Tetrachloroethane	25.0	26.9		ug/L		108	70 - 130	5	20
1,3-Dichlorobenzene	25.0	26.8		ug/L		107	70 - 130	1	20
1,4-Dichlorobenzene	25.0	26.6		ug/L		106	70 - 130	0	20
1,2-Dichlorobenzene	25.0	25.4		ug/L		102	70 - 130	0	20
Chloromethane	25.0	16.8		ug/L		67	52 - 175	1	20
Bromomethane	25.0	20.3		ug/L		81	43 - 151	1	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	25.1		ug/L		101	42 - 162	1	20
ne									
EDB	25.0	28.4		ug/L		113	70 - 130	7	20
1,2,4-Trichlorobenzene	25.0	25.0		ug/L		100	70 - 130	2	20

LCSD LCSD

Surrogate	%Recovery Qualifier	· Limits
Toluene-d8 (Surr)	105	70 - 130
4-Bromofluorobenzene	107	67 - 130
1.2-Dichloroethane-d4 (Surr)	101	75 - 138

Lab Sample ID: MB 720-132049/5

Matrix: Water

Analysis Batch: 132049

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L			03/11/13 09:38	1
1,1-Dichloroethane	ND		0.50		ug/L			03/11/13 09:38	1
Dichlorodifluoromethane	ND		0.50		ug/L			03/11/13 09:38	1
Vinyl chloride	ND		0.50		ug/L			03/11/13 09:38	1
Chloroethane	ND		1.0		ug/L			03/11/13 09:38	1
Trichlorofluoromethane	ND		1.0		ug/L			03/11/13 09:38	1
Methylene Chloride	ND		5.0		ug/L			03/11/13 09:38	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			03/11/13 09:38	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			03/11/13 09:38	1
Chloroform	ND		1.0		ug/L			03/11/13 09:38	1
1,1,1-Trichloroethane	ND		0.50		ug/L			03/11/13 09:38	1
Carbon tetrachloride	ND		0.50		ug/L			03/11/13 09:38	1
1,2-Dichloroethane	ND		0.50		ug/L			03/11/13 09:38	1

TestAmerica Pleasanton

Page 14 of 24

3/13/2013

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-48188-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-132049/5

Matrix: Water

Analysis Batch: 132049

Client Sample ID: Method Blank **Prep Type: Total/NA**

	MB M	ИΒ				
Analyte	Result C	Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Trichloroethene	ND	0.50	ug/L		03/11/13 09:38	1
1,2-Dichloropropane	ND	0.50	ug/L		03/11/13 09:38	1
Dichlorobromomethane	ND	0.50	ug/L		03/11/13 09:38	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		03/11/13 09:38	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		03/11/13 09:38	1
1,1,2-Trichloroethane	ND	0.50	ug/L		03/11/13 09:38	1
Tetrachloroethene	ND	0.50	ug/L		03/11/13 09:38	1
Chlorodibromomethane	ND	0.50	ug/L		03/11/13 09:38	1
Chlorobenzene	ND	0.50	ug/L		03/11/13 09:38	1
Bromoform	ND	1.0	ug/L		03/11/13 09:38	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		03/11/13 09:38	1
1,3-Dichlorobenzene	ND	0.50	ug/L		03/11/13 09:38	1
1,4-Dichlorobenzene	ND	0.50	ug/L		03/11/13 09:38	1
1,2-Dichlorobenzene	ND	0.50	ug/L		03/11/13 09:38	1
Chloromethane	ND	1.0	ug/L		03/11/13 09:38	1
Bromomethane	ND	1.0	ug/L		03/11/13 09:38	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		03/11/13 09:38	1
EDB	ND	0.50	ug/L		03/11/13 09:38	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		03/11/13 09:38	1

мв мв

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130	_		03/11/13 09:38	1
4-Bromofluorobenzene	100		67 - 130			03/11/13 09:38	1
1,2-Dichloroethane-d4 (Surr)	111		75 - 138			03/11/13 09:38	1

Lab Sample ID: LCS 720-132049/6

Matrix: Water

Analysis Batch: 132049

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	25.0	24.9		ug/L		99	64 - 128
1,1-Dichloroethane	25.0	28.6		ug/L		115	70 - 130
Dichlorodifluoromethane	25.0	20.6		ug/L		83	34 - 132
Vinyl chloride	25.0	26.3		ug/L		105	54 ₋ 135
Chloroethane	25.0	26.0		ug/L		104	62 _ 138
Trichlorofluoromethane	25.0	26.1		ug/L		104	66 - 132
Methylene Chloride	25.0	26.2		ug/L		105	70 - 147
trans-1,2-Dichloroethene	25.0	25.1		ug/L		100	68 - 130
cis-1,2-Dichloroethene	25.0	30.1		ug/L		121	70 - 130
Chloroform	25.0	29.0		ug/L		116	70 - 130
1,1,1-Trichloroethane	25.0	27.5		ug/L		110	70 - 130
Carbon tetrachloride	25.0	26.4		ug/L		106	70 - 146
1,2-Dichloroethane	25.0	30.2		ug/L		121	61 - 132
Trichloroethene	25.0	25.4		ug/L		101	70 - 130
1,2-Dichloropropane	25.0	29.8		ug/L		119	70 - 130
Dichlorobromomethane	25.0	30.0		ug/L		120	70 ₋ 130
trans-1,3-Dichloropropene	25.0	32.4		ug/L		130	70 - 140
cis-1,3-Dichloropropene	25.0	32.9	*	ug/L		132	70 - 130

TestAmerica Pleasanton

Page 15 of 24

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-132049/6

Matrix: Water Analysis Batch: 132049 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS				%Rec.
						/UINGU.
Added	Result	Qualifier	Unit	D	%Rec	Limits
25.0	30.6		ug/L		122	70 - 130
25.0	25.2		ug/L		101	70 _ 130
25.0	29.0		ug/L		116	70 - 145
25.0	27.5		ug/L		110	70 _ 130
25.0	25.9		ug/L		104	68 _ 136
25.0	32.2		ug/L		129	70 - 130
25.0	27.8		ug/L		111	70 _ 130
25.0	27.6		ug/L		110	70 _ 130
25.0	27.0		ug/L		108	70 - 130
25.0	24.6		ug/L		98	52 ₋ 175
25.0	25.0		ug/L		100	43 - 151
25.0	25.7		ug/L		103	42 _ 162
25.0	30.2		ug/L		121	70 _ 130
25.0	24.5		ug/L		98	70 - 130
	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	25.0 25.2 25.0 29.0 25.0 27.5 25.0 25.9 25.0 32.2 25.0 27.8 25.0 27.6 25.0 27.0 25.0 24.6 25.0 25.0 25.0 25.7	25.0 25.2 25.0 29.0 25.0 27.5 25.0 25.9 25.0 32.2 25.0 27.8 25.0 27.6 25.0 27.0 25.0 24.6 25.0 25.0 25.0 25.0 25.0 25.7	25.0 25.2 ug/L 25.0 29.0 ug/L 25.0 27.5 ug/L 25.0 25.9 ug/L 25.0 32.2 ug/L 25.0 27.8 ug/L 25.0 27.6 ug/L 25.0 27.6 ug/L 25.0 27.6 ug/L 25.0 25.0 ug/L 25.0 30.2 ug/L	25.0 25.2 ug/L 25.0 29.0 ug/L 25.0 27.5 ug/L 25.0 25.9 ug/L 25.0 32.2 ug/L 25.0 27.8 ug/L 25.0 27.6 ug/L 25.0 27.6 ug/L 25.0 27.0 ug/L 25.0 25.0 ug/L 25.0 25.0 ug/L 25.0 25.0 ug/L 25.0 30.2 ug/L	25.0 25.2 ug/L 101 25.0 29.0 ug/L 116 25.0 27.5 ug/L 110 25.0 25.9 ug/L 104 25.0 32.2 ug/L 129 25.0 27.8 ug/L 111 25.0 27.6 ug/L 110 25.0 27.0 ug/L 110 25.0 27.0 ug/L 108 25.0 24.6 ug/L 98 25.0 25.0 ug/L 100 25.0 25.7 ug/L 103

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		70 - 130
4-Bromofluorobenzene	104		67 - 130
1,2-Dichloroethane-d4 (Surr)	109		75 ₋ 138

Lab Sample ID: LCSD 720-132049/7

Matrix: Water

Analysis Batch: 132049

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	25.0	25.6		ug/L		102	64 - 128	3	20
1,1-Dichloroethane	25.0	29.0		ug/L		116	70 - 130	1	20
Dichlorodifluoromethane	25.0	22.0		ug/L		88	34 - 132	7	20
Vinyl chloride	25.0	27.4		ug/L		110	54 - 135	4	20
Chloroethane	25.0	26.9		ug/L		107	62 - 138	3	20
Trichlorofluoromethane	25.0	27.3		ug/L		109	66 - 132	4	20
Methylene Chloride	25.0	26.0		ug/L		104	70 - 147	1	20
trans-1,2-Dichloroethene	25.0	25.9		ug/L		104	68 - 130	3	20
cis-1,2-Dichloroethene	25.0	30.0		ug/L		120	70 - 130	0	20
Chloroform	25.0	28.8		ug/L		115	70 - 130	1	20
1,1,1-Trichloroethane	25.0	28.6		ug/L		114	70 - 130	4	20
Carbon tetrachloride	25.0	27.4		ug/L		110	70 - 146	4	20
1,2-Dichloroethane	25.0	29.0		ug/L		116	61 - 132	4	20
Trichloroethene	25.0	25.8		ug/L		103	70 - 130	2	20
1,2-Dichloropropane	25.0	29.1		ug/L		116	70 - 130	3	20
Dichlorobromomethane	25.0	29.2		ug/L		117	70 - 130	3	20
trans-1,3-Dichloropropene	25.0	30.8		ug/L		123	70 - 140	5	20
cis-1,3-Dichloropropene	25.0	31.9		ug/L		127	70 - 130	3	20
1,1,2-Trichloroethane	25.0	29.3		ug/L		117	70 - 130	4	20
Tetrachloroethene	25.0	25.6		ug/L		103	70 - 130	2	20
Chlorodibromomethane	25.0	27.7		ug/L		111	70 - 145	5	20
Chlorobenzene	25.0	27.8		ug/L		111	70 - 130	1	20

TestAmerica Pleasanton

Page 16 of 24

QC Sample Results

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

TestAmerica Job ID: 720-48188-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-132049/7

Matrix: Water

Analysis Batch: 132049

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromoform	25.0	25.2		ug/L		101	68 - 136	3	20
1,1,2,2-Tetrachloroethane	25.0	31.1		ug/L		124	70 - 130	4	20
1,3-Dichlorobenzene	25.0	27.7		ug/L		111	70 - 130	0	20
1,4-Dichlorobenzene	25.0	27.6		ug/L		110	70 - 130	0	20
1,2-Dichlorobenzene	25.0	26.7		ug/L		107	70 - 130	1	20
Chloromethane	25.0	26.0		ug/L		104	52 - 175	6	20
Bromomethane	25.0	25.7		ug/L		103	43 - 151	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	27.1		ug/L		109	42 - 162	5	20
ne									
EDB	25.0	28.6		ug/L		114	70 - 130	5	20
1,2,4-Trichlorobenzene	25.0	24.9		ug/L		100	70 - 130	2	20

LCSD	LCSD
LUSD	LUSD

Surrogate	%Recovery Qualifier	Limits
Toluene-d8 (Surr)	101	70 - 130
4-Bromofluorobenzene	102	67 - 130
1,2-Dichloroethane-d4 (Surr)	104	75 ₋ 138

Client Sample ID: Lab Control Sample Dup

QC Association Summary

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-48188-1

GC/MS VOA

Analysis Batch: 132000

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48188-1	MW-1	Total/NA	Water	8260B	
720-48188-2	MW-2	Total/NA	Water	8260B	
720-48188-3	MW-3	Total/NA	Water	8260B	
720-48188-4	MW-4	Total/NA	Water	8260B	
720-48188-5	DUP-1	Total/NA	Water	8260B	
720-48188-6	TB-1	Total/NA	Water	8260B	
LCS 720-132000/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-132000/6	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 720-132000/4	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 132049

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48188-2	MW-2	Total/NA	Water	8260B	
720-48188-5	DUP-1	Total/NA	Water	8260B	
LCS 720-132049/6	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-132049/7	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 720-132049/5	Method Blank	Total/NA	Water	8260B	

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

Lab Sample ID: 720-48188-1

Date Collected: 03/06/13 10:18 Date Received: 03/06/13 12:30

Client Sample ID: MW-1

Matrix: Water

Batch Dilution Batch Batch Prepared Factor **Prep Type** Type Method Run Number or Analyzed Analyst Lab Total/NA Analysis 8260B 10 132000 03/09/13 00:55 LL TAL SF

Lab Sample ID: 720-48188-2

Client Sample ID: MW-2 Date Collected: 03/06/13 11:04 **Matrix: Water**

Date Received: 03/06/13 12:30

Batch Batch Dilution Batch Prepared or Analyzed Method Run Factor **Prep Type** Type Number Analyst Lab Total/NA Analysis 8260B 132000 03/09/13 01:23 LL TAL SF Total/NA 8260B 5 132049 03/11/13 13:32 LL TAL SF Analysis

Client Sample ID: MW-3 Lab Sample ID: 720-48188-3

Date Collected: 03/06/13 09:30 Matrix: Water

Date Received: 03/06/13 12:30

Batch Batch Dilution Batch Prepared Method **Prep Type** Factor Number or Analyzed Type Run Analyst Lab Total/NA TAL SF Analysis 8260B 132000 03/09/13 01:51 LL

Client Sample ID: MW-4 Lab Sample ID: 720-48188-4

Date Collected: 03/06/13 08:27 Matrix: Water

Date Received: 03/06/13 12:30

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 132000 03/09/13 02:19 LL TAL SF

Client Sample ID: DUP-1 Lab Sample ID: 720-48188-5

Date Collected: 03/06/13 00:00 **Matrix: Water**

Date Received: 03/06/13 12:30

Batch Dilution Batch Prepared Batch Factor **Prep Type** Type Method Run Number or Analyzed **Analyst** Lab Total/NA 8260B 132000 03/09/13 02:47 TAL SF Analysis LL TAL SF Total/NA Analysis 8260B 5 132049 03/11/13 13:58 11

Client Sample ID: TB-1 Lab Sample ID: 720-48188-6

Date Collected: 03/06/13 00:00 Matrix: Water

Date Received: 03/06/13 12:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	132000	03/08/13 23:02	LL	TAL SF

Laboratory References:

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

TestAmerica Job ID: 720-48188-1

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

3

Δ

E

0

8

10

12

13

Method Summary

Client: Crawford Consulting Inc

Project/Site: Alameda Facility CS 1605

TestAmerica Job ID: 720-48188-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

3

4

5

6

0

10

11

13

Sample Summary

Client: Crawford Consulting Inc Project/Site: Alameda Facility CS 1605 TestAmerica Job ID: 720-48188-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-48188-1	MW-1	Water	03/06/13 10:18	03/06/13 12:30
720-48188-2	MW-2	Water	03/06/13 11:04	03/06/13 12:30
720-48188-3	MW-3	Water	03/06/13 09:30	03/06/13 12:30
720-48188-4	MW-4	Water	03/06/13 08:27	03/06/13 12:30
720-48188-5	DUP-1	Water	03/06/13 00:00	03/06/13 12:30
720-48188-6	TB-1	Water	03/06/13 00:00	03/06/13 12:30

3

4

5

8

9

44

12

13

Test America

Page

23 of 24

3/13/2013

1220 Quarry Lane, Pleasanton, CA 94566

720-48188

CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM

(925) 484-1919 FAX (925) 484-1096 Service Request: Project Name: Alameda Facility Analysis Requested Project Number: CS1605 Project Manager: Dana Johnston Volatile Organics (VOCs) Company/Address: Crawford Consulting, Inc. Volatile Organics (8010) $2 \times 500 \text{ mi glass H}_2\text{SO}_4$ Number of Containers 4 North Second St, Suite 650 Pb (7421); As (7060) 500 ml plastic H₂SO₄ San Jose, CA 95113 2 x 40 ml vial HCl 500 ml plastic NP 500 ml plastic NP pH, Conductivity Phone: (408) 287-9934 Chloride, Nitrate Same as Metals **Fotal Phenols** 3 x 40 ml vial EPA 8021B) TPHgBTEX COD, TKN Sampler's Signature:// REMARKS Sample LAB Sample LD. Matrix LD. Date Time water 3 X MW-1 1604 X MW-2 water 3 X MW-3 3 Water X MW-4 Water 3 X DUP-1 X TB-1 INVOICE INFORMATION SAMPLE RECEIPT REPORT REQUIREMENTS Received By TURNAROUND REQUIREMENTS Relinquished By I. Routine Report 48 ter _ x II. Report (includes DUP, MS 24 hr _ x Standard (5 working days) MSD, as required, may be Provide Verbal Preliminary Results charged as samples) III. Data Validation Report x Provide pdf Results (includes All Raw Data) Due Date RWQCB (MDLs/PQLs/TRACE#) Special Instructions/Comments: Please report MRLs only Signature Signature Dana Johnston at dana@crawfordconsulting.com Please pdf results to: Printed Name Printed Name Please provide EDF for Geotracker. Global ID is SL0600177511 Firm Date/Time

ယ

٥

 ∞

7

တ

١

n | .

ယ

Client: Crawford Consulting Inc

Job Number: 720-48188-1

Login Number: 48188 List Source: TestAmerica Pleasanton

List Number: 1 Creator: Mullen, Joan

Creator: Mullen, Joan		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Pleasanton

