RECEIVED

2:16 pm, Oct 01, 2009

Alameda County Environmental Health

Groundwater Monitoring Results First Semi-Annual 2009 Monitoring Period Cargill Salt – Alameda Facility Alameda, California

September 30, 2009

Alameda County Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Attn: Jerry Wickham

RE: Groundwater Monitoring Results, First Semi-Annual 2009 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, SLIC Case No. RO0002480

Dear Mr. Wickham,

The attached report presents the groundwater monitoring results for the first semi-annual 2009 monitoring period for the Cargill Salt Alameda facility. This report presents the results of groundwater monitoring data collected during the first and second quarters of 2009. For each quarterly period, groundwater levels in the site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report are true and correct to the best of my knowledge.

Should you have any questions concerning the report, please don't hesitate to call me at (510) 790-8625.

Sincerely,

Sean Riley Environmental Manager

Groundwater Monitoring Results First Semi-Annual 2009 Monitoring Period Cargill Salt – Alameda Facility Alameda, California

Prepared for: Cargill Salt 7220 Central Avenue Newark, California 94560

Prepared by:

Crawford Consulting, Inc. 2 North First Street, 4th Floor San Jose, CA 95113 (408) 287-9934

> Project No. CS1605 September 30, 2009

Contents

1	Introduction	.1
	1.1 Reporting Period Activities	.1
	1.2 Background Information	.2
	1.2.1 Site Description	
	1.2.2 Summary of Investigative and Remedial Activities	
	1.2.3 Source of VOC Impact	
2	Groundwater Flow Analysis	
	2.1 Water-Level Measurement	.4
	2.2 Groundwater Flow Direction and Gradient	.4
	2.3 Groundwater Velocity	.5
3	Groundwater Sampling and Analysis	.6
	3.1 Sample Collection and Analysis	
	3.2 Analytical Results	
	3.2.1 Quality Control	
	3.2.2 Groundwater Results	
	3.3 Discussion	.9
4	Phytoremediation Project Status Update	10

Professional Certification References Limitations

Tables

- Table 1. Groundwater Level Data
- Table 2.
 Relative Percent Difference Based on Duplicate Samples
- Table 3.
 Summary of Groundwater Monitoring Well Data

Illustrations

- Figure 1. Site Location
- Figure 2. Groundwater Monitoring Well Locations
- Figure 3. Graphical Summary of Groundwater Elevations
- Figure 4. Groundwater Elevation Contours March 2009
- Figure 5. Groundwater Elevation Contours June 2009
- Figure 6. VOC Concentrations in Groundwater March and June 2009
- Figure 7. Graphical Summary of PCE Concentrations
- Figure 8. PCE Concentrations vs. Groundwater Elevation

Appendices

(presented in electronic format only)

- Appendix A. Field Data Sheets
- Appendix B. Groundwater Velocity Calculations
- Appendix C. Certified Analytical Reports and Chain-of-Custody Documentation

Electronic File

Entire report presented in electronic file format (pdf) on CD-ROM inside back cover.

1 Introduction

Crawford Consulting, Inc. (Crawford) has prepared this report on behalf of Cargill Salt for the Cargill Salt Dispensing Systems Division facility (hereafter, the Site) in Alameda, California.

Results of groundwater transect sampling and the initial sampling of three groundwater monitoring wells installed in November 1999 were presented in the January 31, 2000 report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW). The purpose of the groundwater transect sampling and the monitoring well installation and sampling was to help characterize and monitor the occurrence of volatile organic compounds (VOCs), primarily tetrachloroethene (PCE) and its breakdown product, trichloroethene (TCE), previously detected in groundwater at the Site.

One of the recommendations in the report was to confirm the groundwater analytical results of the newly installed monitoring wells (wells MW-1, MW-2, and MW-3) and the groundwater flow direction and gradient via quarterly monitoring. Cargill Salt began groundwater monitoring on a quarterly basis after the initial groundwater monitoring well sampling event in November 1999. For 2000 through 2005, reporting was performed on an annual basis. Reporting is now being performed on a semi-annual basis.

Cargill Salt conducted additional characterization activities in November and December 2001 to evaluate the off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue.

1.1 Reporting Period Activities

This report presents the results of groundwater monitoring data collected during the first and second quarters of 2009. For each quarterly period, groundwater levels in the Site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined. The quarterly monitoring schedule for the first semi-annual 2009 monitoring period is shown below.

Quarter of 2009	Field Dates
First	March 5, 2009
Second	June 11, 2009

Supervision of the quarterly monitoring events was conducted for Cargill Salt by Crawford. Groundwater level measurements and collection of groundwater samples were conducted by Field Solutions, Inc. The groundwater samples for the first through second quarters of 2009 were analyzed by TestAmerica Laboratories, Inc., a state-certified laboratory in Pleasanton, California.

1.2 Background Information

A description of the Site and a summary of the development of characterization and monitoring programs for the Site are presented in this section.

1.2.1 Site Description

Alameda is an island on the east side of San Francisco Bay, separated from Oakland by a tidal canal (Figure 1). The Cargill Salt Dispensing Systems Division facility is located on a rectangular lot in an industrial and residential neighborhood. The facility building occupies approximately one-third of the Site and is separated from the vacant, unpaved side of the lot by an asphalt driveway (Figure 2). The Site is bordered by a sheet-metal shop and a residential lot to the northwest, an apartment complex to the southwest, and a residential lot to the southeast.

From 1951 to 1978, the Alameda facility produced salt-dispensing units, which required casting and milling aluminum parts.

Constituents of concern associated with site operations have included casting sands with elevated concentrations of metals, and solvents, machine oils, and grease used in casting and milling operations. As discussed below, previous investigations and remedial activities have investigated and remediated metals and solvents (VOCs) in vadose-zone soil.

1.2.2 Summary of Investigative and Remedial Activities

Cargill Salt initiated site investigative activities in 1993 to determine if facility operations had impacted site soils. Cargill Salt submitted the results of the soil sampling investigation to the Alameda County Environmental Health Services (ACEHS) in October 1993 along with a workplan for excavation and disposal of impacted soils and assessment of potential impact to groundwater (Groundworks Environmental, Inc. [Groundworks], 1993).

After approval of the workplan by ACEHS, Cargill Salt conducted several phases of soil remediation and groundwater characterization. Surficial soils impacted by metals were excavated for disposal off site. Vadose-zone soils with the highest degree of impact by VOCs were also excavated for off-site disposal (see "Soil excavation area" on Figure 2).

The results of these activities were submitted to the ACEHS in a report, *Soil and Groundwater Investigations and Remedial Activities, July 1993 – September 1994, Cargill Salt – Alameda Facility, Alameda, California* (Groundworks, 1995). Recommendations for additional work to further delineate the lateral and vertical extent of VOCs in groundwater beneath the Site were presented in the report.

A workplan for the additional delineation of VOCs in groundwater, *Workplan for Groundwater Characterization and Monitoring Well Installation, 2016 Clement Avenue, Alameda, California* (CCI), was submitted to the ACEHS in July 1999.

After approval of the workplan by the ACEHS, Cargill Salt conducted groundwater sampling and well installation activities during August and November of 1999. The results of these activities were submitted to the ACEHS in a report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and

Conor Pacific/EFW, dated January 31, 2000). After the initial groundwater monitoring well sampling event in November 1999, Cargill Salt began groundwater monitoring on a quarterly basis.

A work plan for remedial investigation activities, *Workplan for Off-Site Characterization, Cargill Salt – Alameda Facility, Alameda, California* (Conor Pacific/EFW), was submitted to the ACEHS in June 2001. After approval of the workplan by the ACEHS, Cargill Salt conducted characterization activities in November and December 2001 to evaluate off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue. The results of these activities were submitted to the ACEHS in the August 21, 2002 submittal *Off-Site Groundwater Characterization, Cargill Salt – Alameda Facility, Alameda, California*, prepared by Conor Pacific/EFW.

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid of 24 rows. The rows are generally 6 feet apart with trees on 7-foot centers on each row. Selection of the phytoremediation approach and implementation of the project were described in the October 20, 2006 report, *Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California* prepared by Crawford Consulting, Inc. In April 2008, seven additional saplings were planted in the rear of the property near monitoring well MW-2.

1.2.3 Source of VOC Impact

As discussed in the 1995 report, the occurrence of VOCs in soils and groundwater at the Site appears to be the result of a discharge or spill to surficial soils at a location near the rear property line at the southwestern corner of the property. The area with the highest degree of chemical impact was delineated prior to excavation and was then excavated using a backhoe and transported off-site for appropriate disposal. It is possible that the VOCs detected in soils and groundwater at this location were associated with waste products from facility operations. The VOCs may be associated with solvents previously used for degreasing operations at the facility, although there are no records indicating use of PCE. Site records indicate that the solvents used for degreasing operations were not PCE-based solvents.

It is also possible that the VOCs and oil and grease are associated with waste products discarded from neighboring properties. There is an apartment complex next to the rear property line of the facility, and the laundry room for this complex is in the utility shed immediately adjacent to the rear property line. This laundry room is only 4 feet away from the area of highest impact to soil. If PCE associated with laundry cleaning products were spilled in this laundry room, it is possible that it could have drained onto the Cargill Salt property.

2 Groundwater Flow Analysis

Groundwater levels were measured quarterly and groundwater contour maps were prepared for the first and second quarter 2009 monitoring events.

2.1 Water-Level Measurement

Water levels in groundwater monitoring wells (MW-1, MW-2, MW-3, and MW-4) were measured each quarter, before any of the groundwater monitoring wells were purged for sampling for the quarterly monitoring event. The groundwater monitoring well locations are shown on Figure 2. The water levels were measured with an electric sounder. The depth to water at each well was recorded on a *Water Level Field Data* sheet (see Appendix A).

The water-level data through the second quarter of 2009 are shown on Table 1. The data in Table 1 include the date and time of measurement, the well casing elevation, the measured depth to groundwater, the groundwater elevation, and the change in elevation from the previous measurement. A plot of historical groundwater elevations is shown in Figure 3.

The Site groundwater monitoring wells were re-surveyed in September 2006 by CSS Environmental Services in order to provide Geotracker-compliant survey data. Results of the casing elevation survey indicate that each well is approximately 6.4 feet higher than the previous survey conducted in 1999. This difference is due to the use of different datum for the 2006 and 1999 surveys. The casing elevations from the September 2006 survey are shown on Table 1.

Groundwater levels in the on-site monitoring wells (MW-1, MW-2, and MW-3) showed a similar seasonal pattern in the first semi-annual period of 2009 as in the previous nine years (see Figure 3). Groundwater levels rose across the Site between the fourth quarter 2008 and first quarter 2009 measurements, reflecting winter-season recharge. Groundwater levels fell between the first and second quarter 2009 measurements, reflecting dissipation of winter-season discharge. Groundwater levels rose in off-site well MW-4 between the fourth quarter 2008 and first quarter 2009 measurements and fell between the first and second quarter 2009 measurements, similar to the pattern exhibited by the on-site wells.

2.2 Groundwater Flow Direction and Gradient

Groundwater contour maps for the first and second quarters of 2009 based on the March and June 2009 water-level data are shown on Figures 4 and 5.

The groundwater flow direction determined for the first and second quarters of 2009 was to the northeast and north-northeast, respectively, consistent with the groundwater flow direction determined previously for the Site. The horizontal hydraulic gradient measured for the first quarter of 2009 was 0.023 and for the second quarter of 2009 was 0.020.

2.3 Groundwater Velocity

Average linear groundwater flow velocities (V) were calculated using a form of Darcy's Law,

$$V = Ki/n$$

where "K" is the hydraulic conductivity, "i" is the horizontal hydraulic gradient, and "n" is the effective porosity. The groundwater velocity calculations for the first and second quarters of 2009 groundwater data are presented in Appendix B.

Using hydraulic conductivity and porosity values determined for saturated native materials at the Site [based on slug tests and laboratory soil testing, respectively (Conor Pacific/EFW, 2002)], and the horizontal hydraulic gradients determined from the first and second quarters 2009 groundwater contour maps, groundwater flow velocities beneath the Site are calculated to be approximately 1.4 feet per year (ft/yr) for the first quarter 2009 measurements and 1.2 ft/yr for the second quarter 2009 measurements.

3 Groundwater Sampling and Analysis

This section summarizes the sample collection and analytical methods, presents an evaluation of quality control data, and summarizes the results of the sampling events.

3.1 Sample Collection and Analysis

Groundwater samples were collected March 5, 2009 and June 11, 2009 from groundwater monitoring wells MW-1, MW-2, MW-3, and MW-4. Dedicated tubing was installed in wells MW-1, MW-2, and MW-3 prior to the first quarter 2000 sampling event and on December 17, 2001 in well MW-4 to facilitate sampling with a peristaltic pump. Dedicated fluorinated ethylene propylene resin (FEP)-lined polyethylene tubing was installed in each monitoring well. The tubing intake was placed about one foot above the well bottom in each of the wells. Viton[®] dedicated check valves were installed on the tubing intakes to prevent back-flow of water into the well. A short length of dedicated Viton[®] tubing was installed at the well head for use in a peristaltic pump head. Prior to sample collection for each quarterly monitoring event, the wells were purged using a peristaltic pump. Field parameters (pH, electrical conductivity, temperature, and turbidity) were measured in purged groundwater from each well prior to sampling; these data are recorded on the Sample Collection Field Data sheets presented in Appendix A. After purging, groundwater samples were collected using the peristaltic pump and the dedicated Viton[®] pump head discharge tubing.

The groundwater samples were analyzed for VOCs using U.S. Environmental Protection Agency (USEPA) Method 8260. Results for all Method 8010 analytes were reported. The groundwater samples for first through second quarter 2009 were delivered with appropriate chain-of-custody documentation to TestAmerica Laboratories, Inc., a state-certified laboratory in Pleasanton, California, for chemical analysis.

3.2 Analytical Results

The results of field and laboratory quality control measures and the results of the groundwater monitoring well samples are reviewed in this section. The certified analytical reports and chain-of-custody documentation are presented in Appendix C.

3.2.1 Quality Control

Quality control (QC) samples were analyzed as part of the sampling and analysis program to evaluate the precision and accuracy of the reported groundwater chemistry data. QC samples included both field and laboratory samples. Descriptions of the purpose of specific field and laboratory QC samples used during the sampling and analysis program and an evaluation of field and laboratory QC results are presented below.

Field Quality Control Samples

A field duplicate was used during the first through second quarter 2009 sampling program for the Site. A field duplicate is used to assess sampling and analytical precision. The duplicate is collected at a selected well (MW-2 [first and second quarters 2009]) and then submitted "blind" to the laboratory for analysis with the same batch as the regular sample for the selected well. An estimate of precision is obtained by calculating the relative percent difference (RPD) between the regular sample and the duplicate sample using the following formula:

$$RPD = \frac{[x - y] 100}{0.5 (x + y)}$$

where:
$$[x - y] = the absolute value of the difference in concentrationbetween the regular sample (x) and the duplicate sample (y).$$

Laboratory Quality Control Samples

The following types of laboratory QC samples were used during the first through second quarter 2009 analytical program for the Site:

- surrogate spikes
- matrix spikes/duplicate matrix spikes

A surrogate spike is a check standard added to a sample in a known amount prior to analysis. Surrogate spikes consist of analytes not normally found in environmental samples and not targeted by the analytical procedure. Surrogate spikes provide information on recovery efficiency by comparing the percent recovery of specific surrogate analyses to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis exhibits acceptable recovery efficiency. Recoveries that fall outside the acceptance limits indicate a potential problem with the recovery efficiency of analytes, which in turn indicates a potential bias with respect to the reported concentration of the environmental samples analyzed in the same batch.

Matrix spikes and duplicate matrix spikes are analyzed by the laboratory for the purpose of providing a quantitative measure of accuracy and precision, and to document the effect that the sample matrix has on the analysis. A selected sample is spiked in duplicate with known concentrations of analytes. The recoveries of the spiked analytes are compared to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analysis, the analysis has no statistically significant bias (i.e., the analysis is accurate). Recoveries that fall outside of the acceptance limits have a positive or negative bias, depending on whether the recovery is greater or less than the upper or lower acceptance limit, respectively. Analyses where analyte recoveries fall outside the acceptance limits should be regarded as estimates only.

Precision for matrix spikes is measured by calculating the relative percent differences (RPDs) between the measured concentration of analytes in the matrix and the duplicate matrix spike. The following equation is used for matrix spikes:

$$RPD = \frac{[MS - MSD] 100}{0.5 (MS + MSD)}$$

where:
$$[MS - MSD] = the absolute value of the difference inconcentration between the matrix spike (MS) and the matrixspike duplicate (MSD)$$

First Quarter 2009 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the first quarter 2009 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8260B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). The one parameter (PCE) for which RPDs could be calculated (see Table 2) exhibits a low RPD value (i.e., less than 10%) indicative of good precision.

Second Quarter 2009 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the second quarter 2009 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8260B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). The one parameter (PCE) for which RPDs could be calculated (see Table 2) exhibits a medium RPD value (i.e., 11-25%) indicative of fair precision.

First through Second Quarter 2009 Laboratory QC Results

A review of the first through second quarter 2009 field data sheets and laboratory reports (presented in Appendices A and C, respectively) indicates that all analyses were performed within USEPA or California Department of Health Services (DHS) recommended maximum sample holding times.

QC data on surrogate spike recoveries and matrix spike recoveries are presented in the laboratory reports. These data indicate: (1) no surrogate spike recoveries were outside of the laboratory's acceptance limits; (2) RPD values for the matrix spikes and duplicate matrix spikes indicate a high overall degree of analytical precision.

No matrix spike or duplicate matrix spike recoveries were outside of the laboratory's control limits.

The laboratory QC data indicate that the results reported herein are of adequate quality for evaluation of site groundwater conditions.

3.2.2 Groundwater Results

The results of VOC analyses for each quarter for 2000 through second quarter 2009 are summarized in Table 3, which also shows the VOC results for the initial sampling event for monitoring wells MW-1, MW-2, and MW-3 in November 1999. The results for the first and second quarter 2908 monitoring events are also shown on Figures 6 and 7.

Consistent with previous monitoring events, PCE and its breakdown products TCE and 1,1-dichloroethene (DCE) were detected in Site groundwater samples from the first and second quarter 2009 monitoring events.

For the first and second quarters of 2009, the concentrations of PCE detected were:

- 68 and 300 micrograms per liter (μ g/L) in monitoring well MW-1
- 2,300 and 1,500 µg/L in MW-2
- not detected and not detected in MW-3
- 0.62 and 0.70 μ g/L in MW-4.

The concentrations of TCE detected were 6.5 and 40 μ g/L in monitoring well MW-1. TCE was not detected in MW-2, MW-3 or MW-4.

Chloroform and cis-1,2-Dichloroethene were detected in monitoring well MW-1 at 1.9 and 0.62 μ g/L for the first quarter 2009. DCE was not detected in monitoring well MW-3 during the first quarter of 2009 and detected at 0.95 μ g/L for the second quarter of 2009. DCE was not detected in MW-1, MW-2, or MW-4 during the first and second quarters of 2009.

3.3 Discussion

Variations in VOC concentrations at monitoring well MW-2, the well with the highest reported PCE concentrations at the site, generally correlate with variations in groundwater elevations at the Site. An increase in VOC concentrations generally follows a rise in groundwater elevations, and a decrease in VOC concentration generally follows a fall in groundwater levels (see Figure 8). The variations in VOC concentrations sometimes lag one quarter behind the variations in groundwater elevation.

The results for VOC concentrations reported for the first through second quarter 2009 quarterly monitoring events are generally similar to the results reported since the second quarter of 2006 (see Figure 7).

The average seasonal concentration of PCE reported for groundwater monitoring well MW-2 has been lower since the second quarter of 2006 (June 2006 event) compared to results reported since monitoring began in 1999. The concentration of PCE reported for MW-2 decreased from 5,200 μ g/L in March 2006 to 1,600 μ g/L in June 2006. The concentrations of PCE reported for MW-2 for seven of the sampling events since March 2006 have had lower PCE concentrations reported for the well than for each of the twenty-five events from March 2000 to March 2006. Also, the annual highs have been lower in 2007, 2008, and 2009 than in the previous years.

The PCE concentrations reported for MW-2 since June 2006 appear to be an indication that the phytoremediation project implemented in June 2005 has reduced the average seasonal concentration of PCE at the site. Continued monitoring will be required to assess the effectiveness of the phytoremediation project in further reducing the PCE concentrations in groundwater.

4 Phytoremediation Project Status Update

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid on the unpaved portion of the site. Selection of the phytoremediation approach and implementation of the project were described in the report, *Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc., October 20, 2006).

A tree monitoring and maintenance program is being conducted by a landscaping contractor. This program involves monthly inspection of the trees during the growing season, inspection and maintenance of the drip irrigation system, and weed control.

The trees were 4-ft-tall, bare-root poles with no foliage when planted in June 2005. During the first two years of growth, the trees developed foliage and most grew 3 to 10 additional feet in height. Photos comparing the appearance of the trees just after planting in 2005, in June 2007, and in September 2009 are show below and on the following pages. After three years, most of the trees had grown to heights of 10 to 25 feet. After four years, most of the trees have grown to heights of 20 to 35 feet. In April 2008, seven additional saplings were planted in the rear of the property near monitoring well MW-2.

As discussed in Section 3.3, the PCE concentrations reported for monitoring well MW-2 since June 2006 appear to be an indication that the phytoremediation project has been effective at reducing the average seasonal VOC concentration in groundwater at the site. Tree growth and VOC concentrations will be monitored and evaluated to determine the effectiveness of the phytoremediation project in further reducing VOC concentrations.

Bare-root trees planted in June 2005 - View towards rear of property

June 2007 - View from driveway towards rear of property

September 2009 - View from street towards driveway and rear of property

June 2007 - View of front planting strip at Clement Avenue

September 2009 - View of front planting strip at Clement Avenue. Note relative height of gate vs. trees in the pictures above.

Professional Certification

Groundwater Monitoring Results First Semi-Annual 2009 Monitoring Period Cargill Salt – Alameda Facility Alameda, California

This report has been prepared by CRAWFORD CONSULTING, INC. with the professional certification of the California professional geologist whose signature appears below.

Jana C. Johnston

Dana C. Johnston Project Manager

Make (. wheele

Mark C. Wheeler Principal Geologist P.G. 4563

References

Alameda County Environmental Health Services, 1999. Letter to Cargill Salt: Groundwater Monitoring Well Installation at 2016 Clement Avenue, Alameda, CA, May 7, 1999.
Conor Pacific/EFW, 2001. Workplan for Off-Site Characterization, Cargill Salt Alameda Facility, June 18, 2001.
, 2002. Off-Site Groundwater Characterization, Cargill Salt – Alameda Facility, Alameda, California, August 21, 2002.
Crawford Consulting, Inc., 1999. Workplan for Groundwater Characterization and Monitoring Well Installation, 2016 Clement Avenue, Alameda, California, July 7, 1999.
, 2001. Groundwater Monitoring Results, First through Fourth Quarter 2000, Cargill Salt – Alameda Facility, Alameda, California, April 11, 2001.
, 2002. Groundwater Monitoring Results, First through Fourth Quarter 2001, Cargill Salt – Alameda Facility, Alameda, California, August 14, 2002.
, 2003. Groundwater Monitoring Results, First through Fourth Quarter 2002, Cargill Salt – Alameda Facility, Alameda, California, August 13, 2003.
, 2004. Groundwater Monitoring Results, First through Fourth Quarter 2003, Cargill Salt – Alameda Facility, Alameda, California, February 27, 2004.
, 2005. Groundwater Monitoring Results, First through Fourth Quarter 2004, Cargill Salt – Alameda Facility, Alameda, California, November 7, 2005.
, 2006. Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California, October 20, 2006.
, 2006. Groundwater Monitoring Results, First Semi-Annual 2006 Monitoring Results, Cargill Salt – Alameda Facility, Alameda, California, November 8, 2006.
, 2007. Groundwater Monitoring Results, Second Semi-Annual 2006 Monitoring Results, Cargill Salt – Alameda Facility, Alameda, California, February 28, 2007
, 2007. Groundwater Monitoring Results, First Semi-Annual 2007 Monitoring Results, Cargill Salt – Alameda Facility, Alameda, California, September 28, 2007.
, 2007. Groundwater Monitoring Results, Second Semi-Annual 2007 Monitoring Results, Cargill Salt – Alameda Facility, Alameda, California, February 28, 2008
, 2008. Groundwater Monitoring Results, First Semi-Annual 2008 Monitoring Results, Cargill Salt – Alameda Facility, Alameda, California, December 22, 2008.
, 2008. Groundwater Monitoring Results, Second Semi-Annual 2008 Monitoring Results, Cargill Salt – Alameda Facility, Alameda, California, March 2, 2009
Crawford Consulting, Inc. and Conor Pacific/EFW, 2000. Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California, January 31, 2000.
Groundworks Environmental, Inc. (Groundworks), 1993. Results of Soil Sampling and Workplan for Remedial Activities, Alameda facility, October 19, 1993.
, 1995. Soil and Groundwater Investigations and Remedial Activities, July 1993 – September 1994, Cargill Salt – Alameda Facility, Alameda, California, July 31, 1995.

References (continued)

Hickenbottom, K. S., and Muir, K.S., 1988. Geohydrology and Groundwater-Quality Overview of the East Bay Plain Area, Alameda County, California, 205 (j) Report, prepared for the California Regional Water Quality Control Board, San Francisco Bay Region, by the Alameda County Flood Control and Water Conservation District, June 1988.

Limitations

This report and the evaluations presented herein have been prepared in accordance with generally accepted professional standards and is based solely on the scope of work and services described herein. This report has been prepared solely for the use of Cargill Salt for the purposes noted herein. Any use of this report, in whole or in part, by a third party for other than the purposes noted herein is at such party's sole risk.

Well/			Casing Elevation	Depth to Water	Water Elevation	Elev. Change from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-1	11/16/1999	09:56	13.16	3.75	9.41	NA
MW-1	3/30/2000	10:09	13.16	2.81	10.35	0.94
MW-1	5/16/2000	09:43	13.16	3.32	9.84	-0.51
MW-1	7/28/2000	09:11	13.16	3.58	9.58	-0.26
MW-1	11/30/2000	08:36	13.16	3.52	9.64	0.06
MW-1	3/26/2001	08:47	13.16	3.15	10.01	0.37
MW-1	6/25/2001	10:19	13.16	3.53	9.63	-0.38
MW-1	9/28/2001	09:32	13.16	3.96	9.20	-0.43
MW-1	12/17/2001	10:47	13.16	3.23	9.93	0.73
MW-1	3/21/2002	07:28	13.16	2.89	10.27	0.34
MW-1	6/6/2002	08:03	13.16	3.50	9.66	-0.61
MW-1	9/20/2002	08:30	13.16	3.86	9.30	-0.36
MW-1	12/19/2002	08:38	13.16	3.13	10.03	0.73
MW-1	3/4/2003	10:31	13.16	3.08	10.08	0.05
MW-1	6/9/2003	08:32	13.16	3.29	9.87	-0.21
MW-1	9/8/2003	10:02	13.16	3.79	9.37	-0.50
MW-1	12/1/2003	10:16	13.16	3.78	9.38	0.01
MW-1	3/4/2004	09:31	13.16	2.88	10.28	0.90
MW-1	6/2/2004	08:42	13.16	3.45	9.71	-0.57
MW-1	9/14/2004	08:01	13.16	3.87	9.29	-0.42
MW-1	12/8/2004	07:44	13.16	3.23	9.93	0.64
MW-1	3/3/2005	08:07	13.16	2.01	11.15	1.22
MW-1	6/10/2005	07:05	13.16	2.90	10.26	-0.89
MW-1	9/16/2005	08:00	13.16	3.62	9.54	-0.72 0.34
MW-1 MW-1	12/6/2005 3/10/2006	08:00 07:40	13.16 13.16	3.28 2.28	9.88 10.88	0.34
MW-1 MW-1	6/9/2006	07:40	13.16	3.09	10.88	-0.81
MW-1	9/11/2006	10:24	13.10	3.70	9.46	-0.61
MW-1	12/15/2006	07:34	13.10	2.94	10.22	0.76
MW-1	3/6/2007	07:54	13.16	2.94	10.22	0.07
MW-1	6/15/2007	07:29	13.16	3.30	9.86	-0.43
MW-1	9/11/2007	08:05	13.16	3.85	9.31	-0.55
MW-1	12/4/2007	08:53	13.16	3.58	9.58	0.27
MW-1	3/20/2008	08:13	13.16	3.00	10.16	0.58
MW-1	6/18/2008	08:22	13.16	3.73	9.43	-0.73
MW-1	9/3/2008	08:06	13.16	3.93	9.23	-0.20
MW-1	12/4/2008	08:12	13.16	3.71	9.45	0.22
MW-1	3/5/2009	09:18	13.16	1.83	11.33	1.88
MW-1	6/11/2009	08:40	13.16	3.52	9.64	-1.69
MW-2	11/16/1999	11:15	16.22	5.22	11.00	NA
MW-2	3/30/2000	10:05	16.22	2.80	13.42	2.42
MW-2	5/16/2000	09:35	16.22	4.13	12.09	-1.33
MW-2	7/28/2000	09:17	16.22	4.85	11.37	-0.72
MW-2	11/30/2000	08:32	16.22	4.75	11.47	0.10
MW-2	3/26/2001	08:40	16.22	3.28	12.94	1.47
MW-2	6/25/2001	12:12	16.22	4.75	11.47	-1.47
MW-2	9/28/2001	12:20	16.22	5.41	10.81	-0.66
MW-2	12/17/2001	10:44	16.22	4.07	12.15	1.34
MW-2	3/28/2002	09:37	16.22	3.40	12.82	0.67
MW-2	6/6/2002	08:11	16.22	4.70	11.52	-1.30

Well/			Casing Elevation	Depth to Water	Water Elevation	Elev. Change from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-2	9/20/2002	08:34	16.22	5.28	10.94	-0.58
MW-2	12/19/2002	08:45	16.22	3.37	12.85	1.91
MW-2	3/4/2003	10:26	16.22	3.11	13.11	0.26
MW-2	6/9/2003	08:31	16.22	4.16	12.06	-1.05
MW-2	9/8/2003	10:08	16.22	5.26	10.96	-1.10
MW-2	12/1/2003	10:20	16.22	5.05	11.17	0.21
MW-2	3/4/2004	09:34	16.22	2.86	13.36	2.19
MW-2	6/2/2004	08:53	16.22	4.47	11.75	-1.61
MW-2	9/14/2004	07:59	16.22	5.26	10.96	-0.79
MW-2	12/8/2004	08:00	16.22	4.20	12.02	1.06
MW-2	3/3/2005	08:04	16.22	1.90	14.32	2.30
MW-2	6/10/2005	07:09	16.22	3.74	12.48	-1.84
MW-2	9/16/2005	08:08	16.22	4.92	11.30	-1.18
MW-2	12/6/2005	10:58	16.22	4.39	11.83	0.53
MW-2	3/10/2006	07:47	16.22	2.13	14.09	2.26
MW-2	6/9/2006	10:03	16.22	3.75	12.47	-1.62
MW-2	9/11/2006	10:22	16.22	4.94	11.28	-1.19
MW-2	12/15/2006	07:32	16.22	4.08	12.14	0.86
MW-2	3/6/2007	09:13	16.22	3.27	12.95	0.81
MW-2	6/15/2007	07:31	16.22	4.57	11.65	-1.30
MW-2	9/11/2007	08:07	16.22	5.60	10.62	-1.03
MW-2	12/4/2007	08:47	16.22	4.99	11.23	0.61
MW-2	3/20/2008	08:17	16.22	3.48	12.74	1.51
MW-2	6/18/2008	08:27	16.22	4.93	11.29	-1.45
MW-2	9/3/2008	08:08	16.22	5.58	10.64	-0.65
MW-2	12/4/2008	08:14	16.22	5.07	11.15	0.51
MW-2	3/5/2009	11:10	16.22	2.30	13.92	2.77
MW-2	6/11/2009	08:41	16.22	4.44	11.78	-2.14
MW-3	11/16/1999	15:43	13.34	4.34	9.00	NA
MW-3	3/30/2000	10:01	13.34	2.77	10.57	1.57
MW-3	5/16/2000	09:46	13.34	3.44	9.90	-0.67
MW-3	7/28/2000	09:05	13.34	3.72	9.62	-0.28
MW-3	11/30/2000	08:34	13.34	3.73	9.61	-0.01
MW-3	3/26/2001	08:54	13.34	3.51	9.83	0.22
MW-3	6/25/2001	10:21	13.34	3.65	9.69	-0.14
MW-3	9/28/2001	09:30	13.34	3.96	9.38	-0.31
MW-3	12/17/2001	10:38	13.34	3.28	10.06	0.68
MW-3	3/21/2002	07:28	13.34	3.10	10.24	0.18
MW-3	6/6/2002	08:07	13.34	3.63	9.71	-0.53
MW-3	9/20/2002	08:25	13.34	3.82	9.52	-0.19
MW-3	12/19/2002	08:42	13.34	3.10	10.24	0.72
MW-3	3/4/2003	10:36	13.34	3.29	10.05	-0.19
MW-3	6/9/2003	08:28	13.34	3.41	9.93	-0.12
MW-3	9/8/2003	10:00	13.34	3.85	9.49	-0.44
MW-3	12/1/2003	10:30	13.34	3.90	9.44	-0.05
MW-3	3/4/2004	09:22	13.34	3.11	10.23	0.79
MW-3	6/2/2004	08:46	13.34	3.53	9.81	-0.42
MW-3	9/14/2004	08:05	13.34	4.07	9.27	-0.54
MW-3 MW-3	12/8/2004 3/3/2005	07:40 07:53	13.34 13.34	3.73 2.36	9.61 10.98	0.34 1.37

Well/			Casing Elevation	Depth to Water	Water Elevation	Elev. Change
Piezometer	Data	Time		(feet)		from Last Measurement (feet)
Plezometer	Date	Time	(feet, MSL)	(leel)	(feet, MSL)	Measurement (leet)
MW-3	6/10/2005	07:14	13.34	3.15	10.19	-0.79
MW-3	9/16/2005	08:04	13.34	3.90	9.44	-0.75
MW-3	12/6/2005	08:04	13.34	3.35	9.99	0.55
MW-3	3/10/2006	07:43	13.34	2.89	10.45	0.46
MW-3	6/9/2006	09:33	13.34	3.26	10.08	-0.37
MW-3	9/11/2006	10:19	13.34	3.70	9.64	-0.44
MW-3	12/15/2006	07:37	13.34	3.10	10.24	0.60
MW-3	3/6/2007	09:16	13.34	3.04	10.30	0.06
MW-3	6/15/2007	07:27	13.34	3.60	9.74	-0.56
MW-3	9/11/2007	08:03	13.34	3.87	9.47	-0.27
MW-3	12/4/2007	08:50	13.34	3.62	9.72	0.25
MW-3	3/20/2008	08:15	13.34	3.13	10.21	0.49
MW-3	6/18/2008	08:24	13.34	3.90	9.44	-0.77
MW-3	9/3/2008	08:02	13.34	3.92	9.42	-0.02
MW-3	12/4/2008	08:10	13.34	3.59	9.75	0.33
MW-3	3/5/2009	09:23	13.34	2.79	10.55	0.80
MW-3	6/11/2009	08:38	13.34	3.14	10.20	-0.35
MW-4	12/17/2001	10:40	12.43	2.55	9.88	NA
MW-4	3/28/2002	08:05	12.43	3.06	9.37	-0.51
MW-4	6/6/2002	07:57	12.43	2.85	9.58	0.21
MW-4	9/20/2002	08:28	12.43	3.21	9.22	-0.36
MW-4	12/19/2002	08:53	12.43	3.70	8.73	-0.49
MW-4	3/4/2003	10:34	12.43	3.14	9.29	0.56
MW-4	6/9/2003	08:29	12.43	2.82	9.61	0.32
MW-4	9/8/2003	10:04	12.43	3.43	9.00	-0.61
MW-4	12/1/2003	10:14	12.43	3.12	9.31	0.31
MW-4	3/4/2004	09:27	12.43	2.81	9.62	0.31
MW-4	6/2/2004	08:44	12.43	3.34	9.09	-0.53
MW-4	9/14/2004	08:03	12.43	3.51	8.92	-0.17
MW-4	12/8/2004	07:36	12.43	3.10	9.33	0.41
MW-4	3/3/2005	07:44	12.43	2.48	9.95	0.62
MW-4	6/10/2005	07:02	12.43	2.47	9.96	0.01
MW-4	9/16/2005	08:12	12.43	3.23	9.20	-0.76
MW-4	12/6/2005	07:50	12.43	3.17	9.26	0.06
MW-4	3/10/2006	07:37	12.43	3.77	8.66	-0.60
MW-4	6/9/2006	07:30	12.43	2.49	9.94	1.28
MW-4	9/11/2006	10:17	12.43	3.19	9.24	-0.70
MW-4	12/21/2006	NR	12.43	2.90	9.53	0.29
MW-4	3/6/2007	09:20	12.43	2.54	9.89	0.36
MW-4	6/15/2007	07:33	12.43	3.03	9.40	-0.49
MW-4	9/11/2007	08:11	12.43	3.27	9.16	-0.24
MW-4	12/4/2007	08:55	12.43	3.25	9.18	0.02
MW-4	3/20/2008	08:20	12.43	2.65	9.78	0.60
MW-4	6/18/2008	08:31	12.43	3.35	9.08	-0.70
MW-4	9/3/2008	07:58	12.43	3.28	9.15	0.07
MW-4	12/4/2008	08:17	12.43	3.12	9.31	0.16
MW-4	3/5/2009	09:27	12.43	2.16	10.27	0.96
MW-4	6/11/2009	08:43	12.43	2.84	9.59	-0.68

Table 1. Groundwater Level Data

Table 1. Groundwater Level Data

			Casing	Depth to	Water	Elev. Change
Well/			Elevation	Water	Elevation	from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)

Key:
NA = Not available
feet, $MSL =$ feet, relative to Mean Sea Level
Casing elevations for all wells were resurveyed on September 6, 2006 by CSS Environmental Services
for Geotracker compliance.

Table 2.Relative Percent Difference Based on Duplicate Samples

	First	Quarter 20	09	Second Quarter 2009							
Analysis	Well MW-2 Results	Duplicate (DUP-1) Results	RPD ¹ (%)	Well MW-2 Results	Duplicate (DUP-1) Results	RPD ¹ (%)					
Volatile Organic Compounds (µg/L)											
Trichloroethene (TCE)	< 20	< 20	NM	<25	<25	NM					
Tetrachloroethene (PCE)	2,300	2,200	4.44	1,500	1,700	12.5					
 ¹ RPD = relative percent difference ² NM = not meaningful; RPD cannot below the method reporting limit. All other 8010 list analytes not detected 			where of	ne or both	values are						

	Results mea	asured in	n microgran	ns per lite	$r (\mu g/L)$																																		
Well No																			MW-1																				
Field Da	e 11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01 1	2/17/01	3/21/02	6/6/02	9/20/02 12	/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06 1	2/15/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	9/3/08	12/4/08	3/5/09	6/11/09 MCL ¹
DCE^2	< 50.0	13	< 10	15	14	<13	14	15	<13	<13	<13	<13	<13	<10	12	5.2	8.4	< 5.0	5.8	6.6	< 5.0	< 5.0	< 2.0	< 5.0	<2.0	< 0.5	< 2.0	3.3	< 2.0	<2.0	3.0	< 5.0	< 5.0	<2.0	< 5.0	< 5.0	< 5.0	< 0.5	< 2.5 6
CFC 113 ³	na ⁴	1.4	< 10	<10	< 8.3	< 50	< 50	< 50	< 50	<13	<13	<13	<13	<10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	<2.0	< 0.5	< 2.0	<2.0	< 2.0	< 2.0	<2.0	< 5.0	< 5.0	< 2.0	< 5.0	< 5.0	< 5.0	< 0.5	<2.5 ne ⁵
DCA^{6}	< 50.0	0.8	<10	<10	<4.2	<13	<13	<13	<13	<13	<13	<13	<13	< 10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	<2.0	< 2.0	< 2.0	<2.0	< 5.0	< 5.0	<2.0	< 5.0	< 5.0	< 5.0	< 0.5	< 2.5 5
Chloroform	< 50.0	0.6*	<10	<10	< 8.3	<13	<13	<13	<13	<13	<13	<13	<13	< 10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	<10	<4.0	1.4	<4.0	<4.0	<4.0	<4.0	<4.0	< 10	< 10	<4.0	< 10	< 10	<10	1.9	<5.0 ne
cis-1,2-DCE			<10	< 10	<4.2	<13	<13	<13	<13	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	<2.0	<2.0	< 2.0	<2.0	< 5.0	< 5.0	<2.0	< 5.0	< 5.0	< 5.0	0.62	<2.5 ne
TCA^7	< 50.0	1.6	<10	<10	<4.2	<13	<13	<13	<13	<13	<13	<13	<13	< 10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	<2.0	< 2.0	< 2.0	<2.0	< 5.0	< 5.0	<2.0	< 5.0	< 5.0	< 5.0	< 0.5	< 2.5 200
TCE ⁸	178	150	190	170	130	180	250	210	190	160	140	190	68	97	90	110	130	53	72	81	39	15	23	34	16	3.4	22	47	20	17	38	51	29	18	42	65	42	6.5	40 5
PCE ⁹	906	1,400	1,900	1,200	880	1,000	1,400	1,000	1,400	1,100	980	1,100	600	730	770	780	850	370	490	620	380	160	180	240	140	39	140	400	210	170	310	430	330	170	390	620	320	68	300 5
Other analytes	0 nd ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

Well No.																			MW-2																				
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01 1	2/17/01	3/28/02	6/6/02	9/20/02 12	2/30/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06 1	2/15/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	5/18/08	9/3/08	12/4/08	3/5/09	6/11/09 MCL ¹
DCE^2	< 50.0	< 0.5	<25	<25	<8.3	<25	<25	<25	<25	<25	<25	<25	<25	< 20	<20	< 20	<20	< 20	<25	<25	< 20	<50	<25	< 20	<25	<25	< 20	< 20	<20	< 20	<20	< 20	< 20	<20	< 20	<20	<20	< 20	<25 6
CFC 113 ³	na	< 0.5	<25	<25	<17	<100	<100	< 100	<100	<25	<25	<25	<25	< 20	< 20	< 20	< 20	< 20	<25	<25	< 20	< 50	<25	< 20	<25	<25	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	<25 ne ⁵
DCA^{6}	< 50.0	< 0.5	<25	<25	< 8.3	<25	<25	< 25	<25	<25	< 25	<25	<25	< 20	< 20	< 20	< 20	< 20	< 25	<25	< 20	< 50	<25	< 20	<25	<25	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	<25 5
Chloroform	< 50.0	< 0.5	<25	<25	<17	<25	<25	< 25	<25	<25	< 25	<25	<25	< 20	< 20	< 20	< 20	< 20	<25	<25	< 20	< 50	<25	<40	< 50	< 50	<40	< 20	<40	<40	< 40	<40	<40	< 40	<40	<40	< 40	<40	<50 ne
cis-1,2-DCE	< 50.0	< 0.5	<25	<25	< 8.3	<25	<25	<25	<25	<25	<25	<25	<25	< 20	< 20	< 20	< 20	< 20	<25	<25	< 20	< 50	<25	< 20	< 25	<25	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	<25 ne
TCA ⁷	< 50.0	5.0	<25	<25	< 8.3	<25	<25	<25	<25	<25	<25	<25	<25	< 20	< 20	< 20	< 20	< 20	<25	<25	< 20	< 50	<25	< 20	<25	<25	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	<25 200
TCE ⁸	< 50	29	53	<25	20	40	78	<25	<25	49	52	32	<25	58	41	28	25	39	49	37	30	78	43	29	45	59	< 20	< 20	<20	< 20	22	31	< 20	<20	21	< 20	< 20	< 20	<25 5
PCE ⁹	840	3,600	3,200	3,300	1,700	2,200	4,400	1,700	1,700	3,500	3,800	2,100	1,800	3,900	3,800	2,500	2,500	3,000	4,100	3,800	2,800	7,300	3,600	2,500	3,300	5,200	1,600	990	1,000	1,600	2,400	1,700	1,100	2,900	1,700	1,600	2,000	2,300	1, 500 5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

Notes:

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level

(in micrograms per liter $[\mu g/L]$)

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1, 1, 2-Trichloro-1, 2, 2-trifluoroethane)

- ⁴ na = not analyzed
 ⁵ ne = not established or none applicable
- 6 DCA = 1,1-Dichloroethane
- ⁷ TCA = 1,1,1-Trichloroethane

⁸ TCE = Trichloroethene

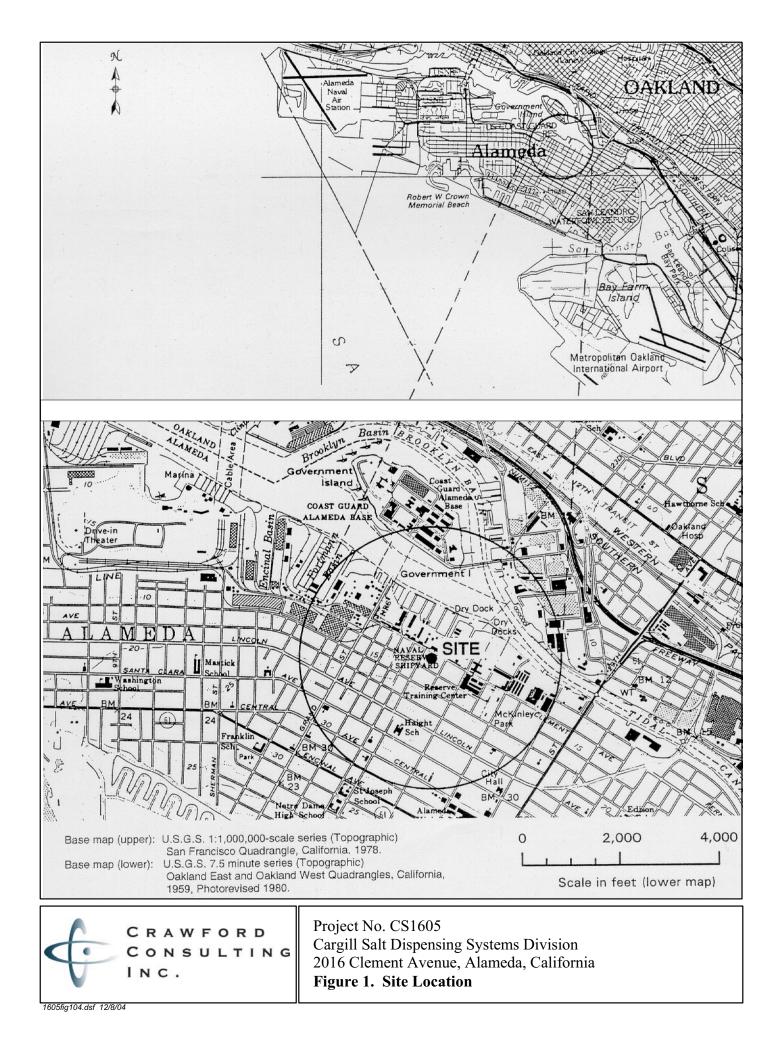
⁹ PCE = Tetrachloroethene

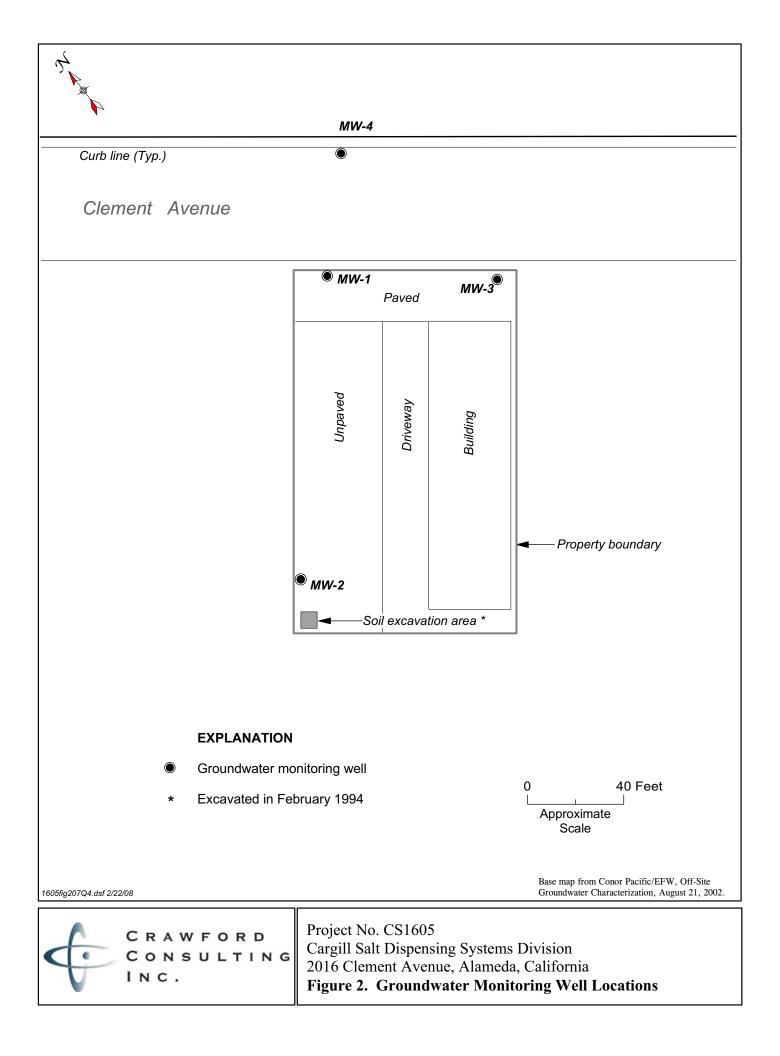
¹⁰ All other 8010 list analytes

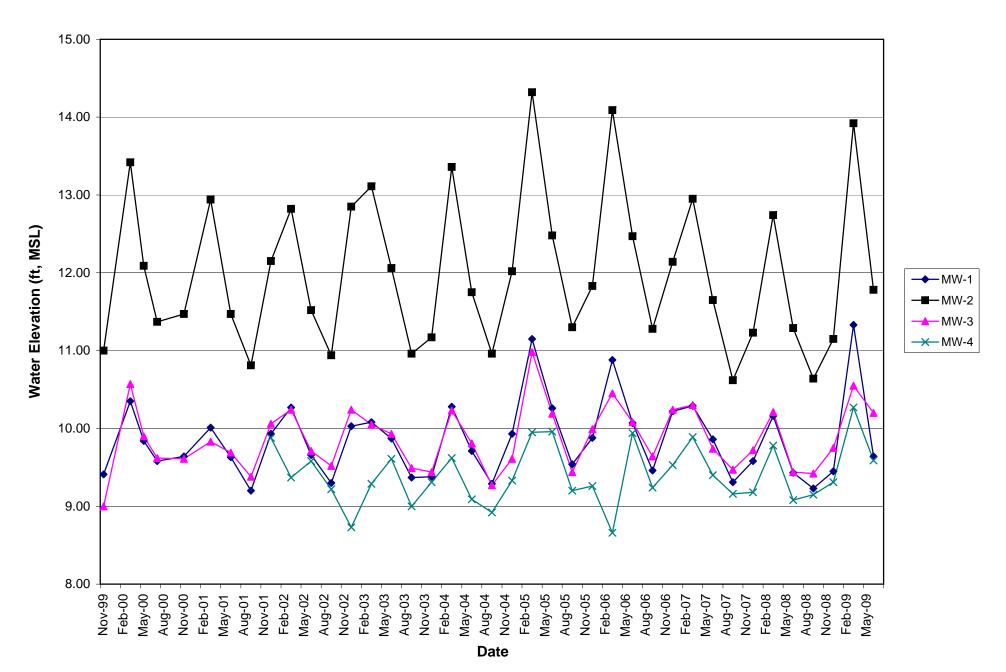
¹¹ nd = not detected above laboratory reporting limit * Chloroform detected in equipment blank at 1.6 μ g/L for 3/30/00 event.

	Results measured in micrograms per liter $(\mu g/L)$																																					
Well N	lo.																	I	MW-3																			
Field D	ate 11/16/99	3/30/00	5/16/00	7/28/00 1	1/30/00	3/26/01	6/25/01	9/28/01 1	12/17/01	3/21/02	6/6/02	9/20/02 1	2/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06 1	2/15/06 3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	9/3/08	12/4/08	3/5/09 6	/11/09 MCL ¹
DCE^2	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.51	< 0.5	0.81	< 0.5	< 0.5	0.68	2.4	1.5	1.1	0.86	4.3	2.8	1.6 1.5	2.4	1.4	1.1	1.0	1.4	0.79	0.59	< 0.5	0.95 6
CFC 113 ³	na	< 0.5	< 0.5	< 0.5	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5 <0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5 ne ⁵
DCA^{6}	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.50	< 0.5	<0.5 <0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 5
Chloroform	< 0.500	< 0.5	< 0.5	< 0.5	<1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	< 1.0	<1.0	< 1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0 ne
cis-1,2-DCE	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5 ne
TCA^7	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 200
TCE ⁸	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5 <0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 5
PCE ⁹	< 0.500	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	0.81	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.90	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.56 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	< 0.5	< 0.5 5
Other analyte	s ¹⁰ nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

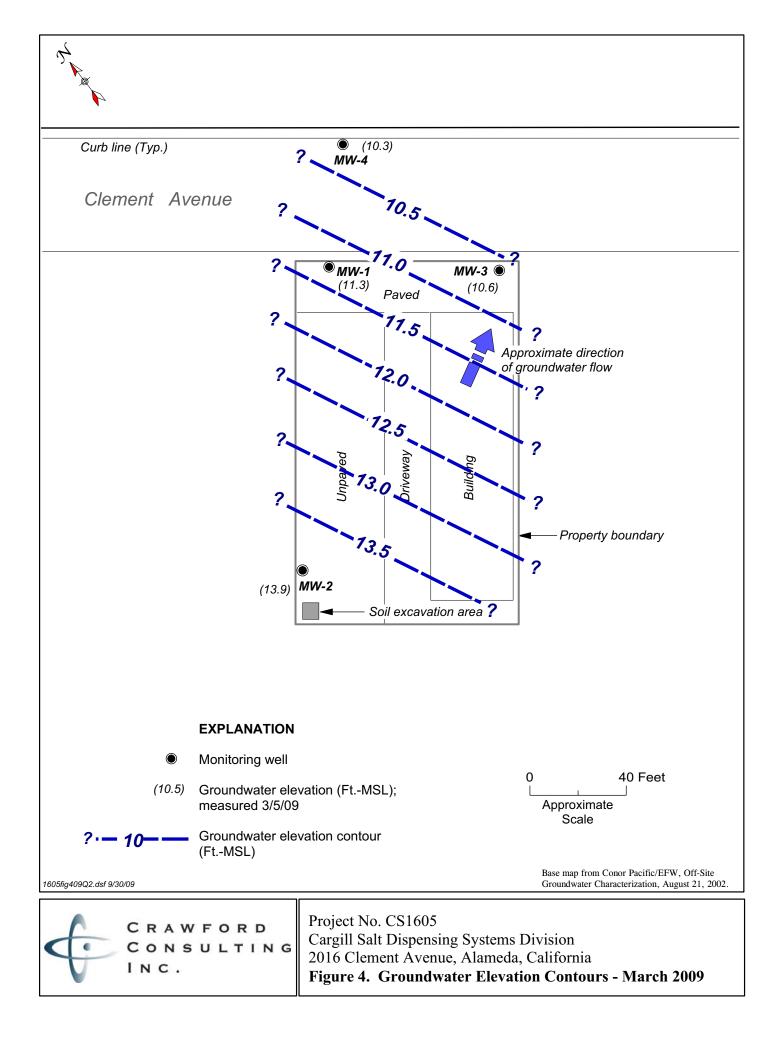
Well No.									MW-4																							
Field Date	12/17/01	3/28/02	6/6/02	9/20/02	2/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06	12/21/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	9/3/08	12/4/08	3/5/09	6/11/09	MCL^1
DCE^2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
CFC 113 ³	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^{6}	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	< 1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0	<1.0	ne
cis-1,2-DCE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne
TCA^7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁸	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ⁹	2.6	2.8	2.0	2.5	1.1	2.1	2.1	1.6	1.6	1.7	1.4	1.3	1.2	0.93	0.98	0.8	1.1	0.79	0.64	0.70	0.63	0.70	0.75	0.86	0.92	0.91	0.86	0.84	0.65	0.62	0.70	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

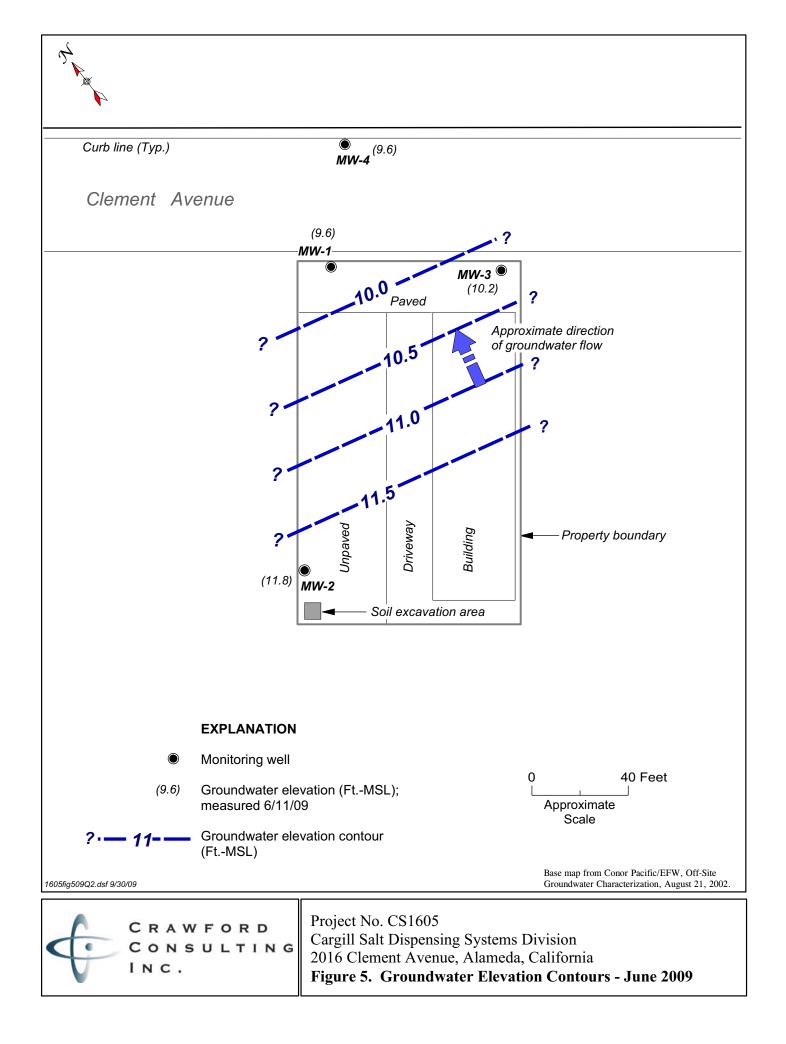

Notes: ¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level $\frac{1}{1}$ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level

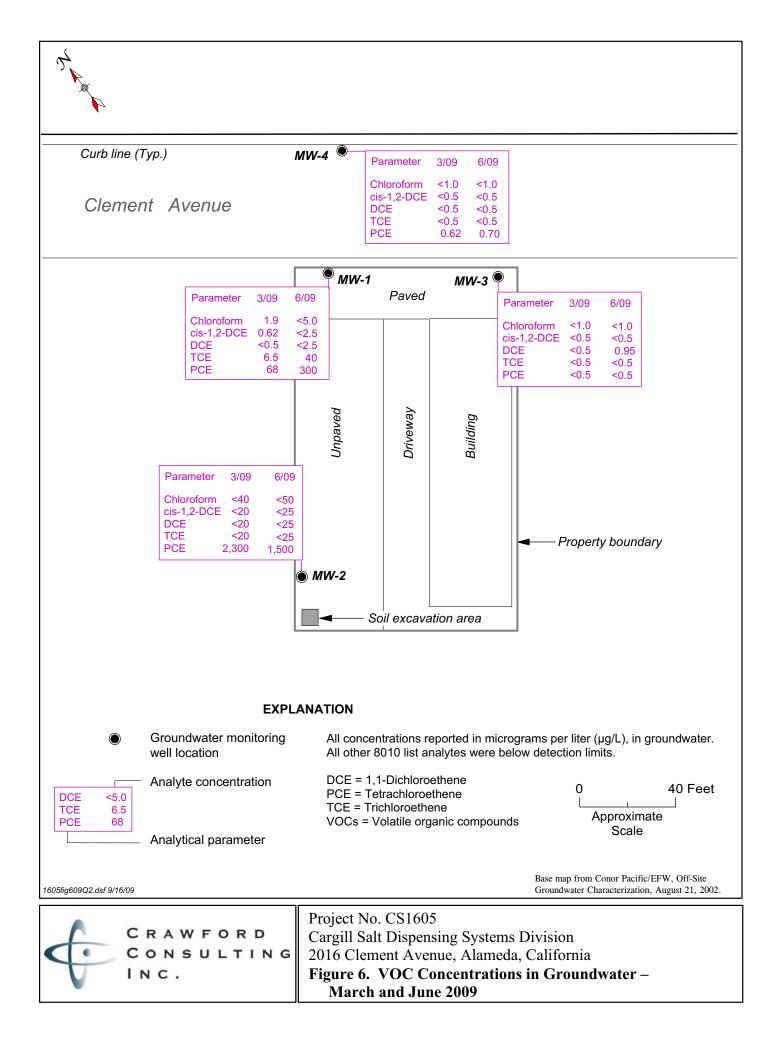

² DCE = 1,1-Dichloroethene


- ³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)
- 4 na = not analyzed 5 ne = not established or none applicable
- ⁶ DCA = 1,1-Dichloroethane
- ⁷ TCA = 1,1,1-Trichloroethane
- ⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene


- ¹⁰ All other 8010 list analytes
- ¹¹ nd = not detected above laboratory reporting limit





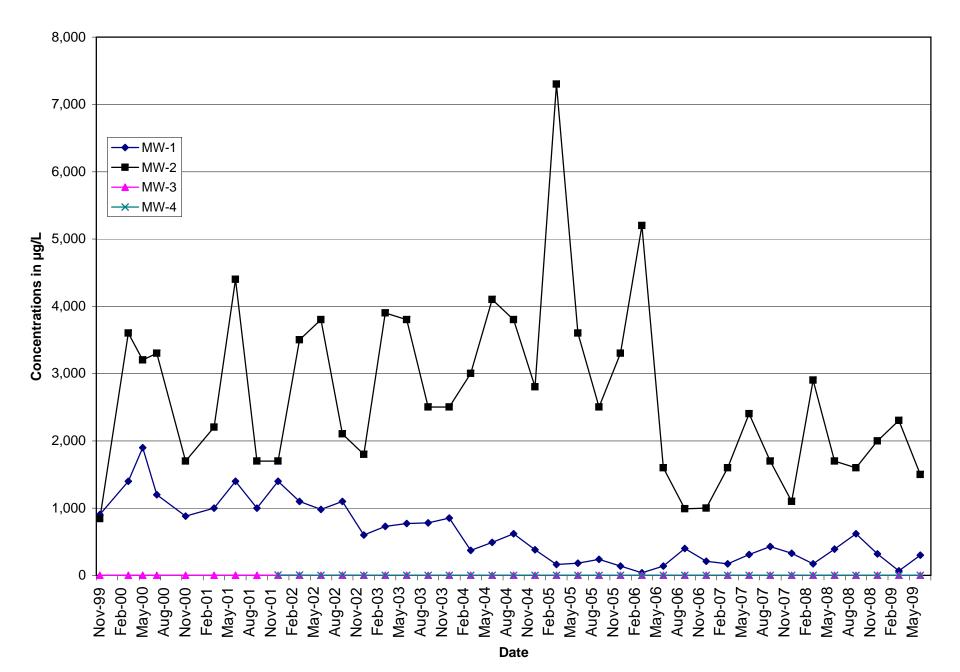


Figure 3. Graphical Summary of Groundwater Elevations

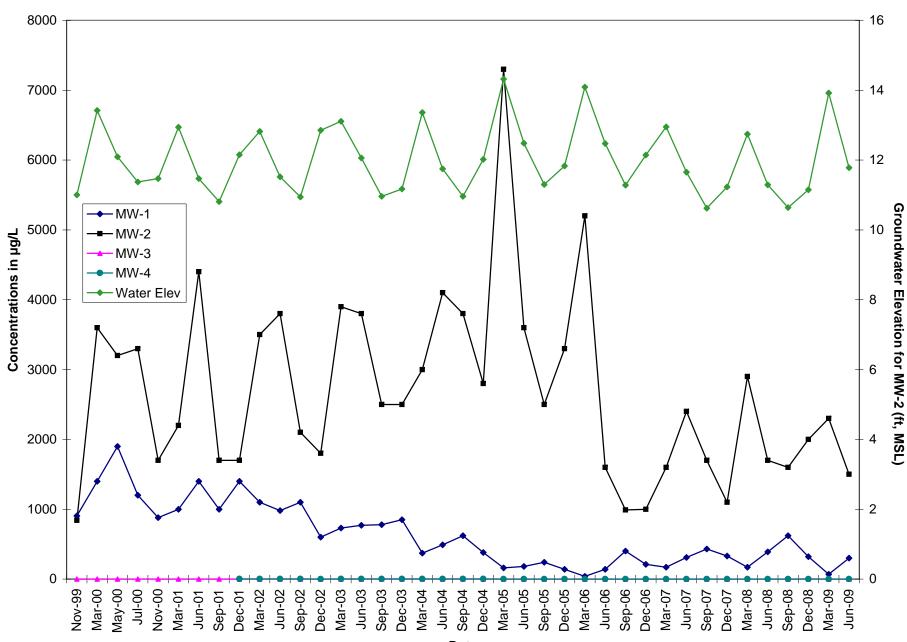


Figure 7. Graphical Summary of PCE Concentrations

Crawford Consulting, Inc.

Figure 8. PCE Concentrations vs. Groundwater Elevation

Appendix A

Field Data Sheets

First Quarter 2009

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

Well ID	Date	Time	Depth to Water (1st Msmt.) (feet)	Depth to Water (2nd Msmt.) (feet)	Comments
MW-1	3/5/09	0925	1.83	1.83	hater inbox habolts
MW-2	3/5/09	0427	216	2+16-30	water jubox no belts
MW-3	3/5/09	09 23	2,79	2.79	water in b.x no boets
MW-4	3/5/09	0927	2.16	2.16	water in bax ho Bolts

Data Collection

/

Field measurements by:	Reviewed by:
Print: <u>LI Bruk</u>	Print: J. Suter
Signature:Rah	Signature: Buter
Date: 3509	Date: <u>3/9/09</u>

		SAM	IPLE COLL	ECTION FIE	ELD DATA		Page <u>1</u> of [
Project No.:	CS1605				Well ID	M	W-1
Project Name:		acility			Sample		$\overline{v-1}$
Location:	Alameda,	CA			Start Da		509
Client:	Cargill Sal	t			Finish D	Date: 3	5/09
WELL INFOR	RMATION		·····				
Casing diameter	er (in.):	1,0	Depth to water	(ft): 183	3 Well dep	pth (ft): /8	3
One casing vol	lume (gal.):	0.68	Calculated pur	ge volume (gal.)	(3 x casing volum	e): Zi	03
One casing vol	$lume = \pi x$	[casing radius	s (in.) x 1 ft/12	in.] ² x [well dept	h (ft) - depth to w	ater (ft)] x 7.4	48 gal/ft ³
-		- 14	-		4. " = 0.65 5" :	- 1	1.5 8" = 2.6
Floating produ	ct thickness	(ft):	Metho	d for checking:	Interface probe	Clean	bailer
WELL PURG	ING						
Date purged:	2/5	109	Start time:	1059	End time:	1138	
Purging equip	<u>ا حراحــــــــــــــــــــــــــــــــــ</u>	Submersible		Bladder pump		eristaltic pump	$\overline{\mathbf{x}}$
99 odarbi		PVC bailer	• •	n bailer	Other	puni	
Purge rate:		0.05		Well yield (H/L)	g	Yield	Well
Purge water d	isposal:		immed o	n site i	n 55,9.	al dr	UM
rrt		Cumulative	۱ ۳۱۱	EC		()-1	́т
Tim (2400 1		Vol. Purged	pH (units)	EC (µS/cm)	Т (°С)	Color (Visual)	Turbidity (Visual or NTU)
113	•	2,6	6,88	371.5	15,9	Clear	5.7
1120	6	512	6.65	359,6	15.2	O-la.	- 3,7
	7	2.8	6,70	36018	14.9	Clear	- 2.9
			·				
			<u> </u>	······			
Total Purged	(gal.):	2.2ga]	8.4L				
WELL SAMP	PLING						
Date sampled:	35	09	Start time:	[139]	End time:	1143	
			\sim		th to water (ft) be		3,29
Sampling equi	ipment:	Peristalti	•••	Bladder pump	Teflon	bailer	-
		PVC bailer	Other				-
Weather cond	itions.	Silver	m, Clea		Ambient temper	ature (° E).	55
Well condition		tva-	er in		~ Bolts	aure (F).	
	A-11.5	amples	collec	ted, W	ill need	d peris	taltic
tub	fing -	AS #	s ne	ll nex	of time (small	hole in tub
Meter calibra	tion:	EC	see Mu	1-3	рH		
		erature	2-0 11		Turbidity		
	*	· · · · ·	1 12		·		
Purged and sa			- BUK		/	Ve	
	Sig	nature:	HS wh		Reviewed by:		

Page <u>1</u> of <u>1</u>

Project No.: Project Name: Location: Client:	CS1605 Alameda Facility Alameda, CA Cargill Salt	Well ID: $MW - Z$ Sample ID: $MW - Z$ Start Date: $3 5 \circ 9$ Finish Date: $3 5 \circ 9$	2
One casing vol One casing vol Gallons per lin	MATION er (in.): $\int_{1} O$ Depth to water (ft): Z ume (gal.): $O.6Z$ Calculated purge volume (ume = πx [casing radius (in.) x 1 ft/12 in.] ² x [well thear ft for casing diameter of: $1'' = 0.041$ $2'' = 0.12$ ct thickness (ft): ND Method for checking	gal.) (3 x casing volume): $1 88$ 1 depth (ft) - depth to water (ft)] x 7.48 gal/ft ³ 16 4." = 0.65 5" = 1.0 6" = 1.5 8" = 2.6	.6
WELL PURG Date purged: Purging equips Purge rate: Purge water di (2400 1 30 32 32	$\frac{3/5/29}{\text{nent:}} \text{ Start time:} \frac{1256}{\text{Bladder pump}} \text{Bladder pump} \text{Bladder pump} \text{Bladder pump} \text{Bladder pump} \frac{1256}{\text{O} \text{Closed}} \text{Comparison} \frac{1256}{\text{Closed}} \text{Closed} \frac{1256}{\text{Closed}} Clos$	Other H/L): Ion Yield Site in SSgal drum T Color Turbiditor (°C) (Visual) (Visual or NT	
Total Purged (gal.): 1,98 7,5 C		
WELL SAMP Date sampled: Sampling equi	<u>3/5/09</u> Start time: 1332	Depth to water (ft) before sampling: 3.36	}
Weather cond Well condition	n/Remarks: Water wel	Ambient temperature (° F): 55 Cox; no Colts	
Meter calibrat	ion: EC <u>see MW-3</u> Temperature	pHTurbidity	
Purged and sa	mpled by (print): <u>LIBruk</u> Signature: Bruk	Reviewed by:	

.

•

	1		i
Page	1	of	
8-	4	•••	-

Project No.: Project Name: Location:	CS1605 Alameda F Alameda, 0				Well II Sample Start D	ID: MM	V-3 1-3 5/09	
Client:	Cargill Sal	t			Finish	Date: 3/5	109	
WELL INFOR Casing diamete One casing volu	er (in.): ume (gal.):	0.61	Calculated pur	(ft): <u>Z(</u> ge volume (gal.)	(3 x casing volu	me): 1,8	6 2	
	ear ft for ca	sing diameter of	of: $l'' = 0.04$	$in.]^2 x [well depindent of a constraint of $	4." = 0.65 5"	= 1.0 $6'' = 1$	1.5 8" = 2.6	
WELL PURGI Date purged: Purging equipn	3/5/	09 Submersible PVC bailer	• • • • • • • • • • • • • • • • • • • •	0935 Bladder pump n bailer	End time: _ I Other	1041 Peristaltic pump	×	
Purge rate: Purge water di		02 gp Store Cumulative		Well yield (H/L)	onsite	Yield M in 55	gal drum	
Time (2400 h 0953		Vol. Purged	pH (units) $\overline{7}, \overline{67}$	EC (µS/cm) 405,6	т 	Color (Visual)	Turbidity (Visual of NTU)	þ
1041 		<i>4.7</i> <i>7.0</i>	7110 7115	<u>476,9</u> <u>414,0</u>	 	<u>Clear</u> <u>Clear</u>		
Total Purged ()	gal.):	1,96	7,4L					
WELL SAMP Date sampled: Sampling equip	35	Peristaltic PVC bailer		/043 Dep Bladder pump	End time: th to water (ft) b Teflor	efore sampling:	10.78	
Weather condi Well condition		Sun Was	hun / Cl ler in	lear box;	Ambient tempe No Col		60	
Meter calibrati		EC <u>14</u> erature		000_	pH <u>6,9</u> Turbidity	13/7100, ZZ	4.01/4.00	987/10,00
Purged and sai	mpled by (p	1	· Bruk		Reviewed by:	J3		-

	SAMPLE COLLECTION FIELD D	ATA Page <u>1</u> of <u>1</u>
Project No .:	CS1605	well ID: MW-Y
Project Name:	Alameda Facility	Sample ID: $M_{W} = 4$
Location:	Alameda, CA	Start Date: 3/5/09
Client:	Cargill Salt	Finish Date: $3/5/09$
		ing volume): ZO3
Gallons per lind	ear fi for casing diameter of: $I'' = 0.041$ $2'' = 0.16$ $4.'' = 0$ to thickness (ft): MD Method for checking: Interfa	.65 5'' = 1.0 6'' = 1.5 8'' = 2.6
WELL PURGI	NG	
Date purged: Purging equipm Purge rate: Purge water dis	hent: Submersible pump Bladder pump PVC bailer $$ Teflon bailer Other O, OG gpm Well yield (H/L): U	time: 12.39 Peristaltic pump X'
Time (2400 h 121 221 23	Cumulative Vol. Purged pH EC r) $(units)$ $(\mu S/cm)$ (° 2_16 7_133 6 8.1 7_1 5_1 7_130 $6/8.2$ 8	$\frac{SS}{Gal} \frac{Gal}{arum}$ $\Gamma Color Turbidity}{\frac{C}{Visual}} \frac{Visual}{(Visual or NTU)}$ $\frac{R}{2} \frac{Gear}{1.5}$ $\frac{Gear}{1.5}$ $\frac{Gear}{1.9}$
Total Purged (gal.): <u>2,/</u> 80L	
WELL SAMPI	LING 2/=/02	(1) 20
Date sampled: Sampling equip	<u>3/5/09</u> Start time: <u>1235</u> Er Depth to wa poment: Peristaltic pump <u>X</u> Bladder pump PVC bailer Other	ter (ft) before sampling: $//, >2$
Weather condition.		nt temperature (° F): <u>54</u> Balts
	All samples collected.	
Meter calibrati	ion: EC <u>See Well MW-3</u> pl Temperature Turbidit	H y
Purged and sar	npled by (print): Signature: Revie	ewed by:

)

Second Quarter 2009

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

3

Well ID	Date	Time	Depth to Water (1st Msmt.) (feet)	Depth to Water (2nd Msmt.) (feet)	Comments
MW- 1	idulog	08-10	352	3.52	Waterinber
MW-2	6/1/69	UB4]	Ll.yl	4.44	waterunbur
MW-3	3/1/05	<i>c</i> 238	34	3At	wateringer (3.14)
MW-4	ollio	003	284	2.84	

Data Collection

Field measurements by:	Reviewed by:
Print: R-9 NUGVA	Print: J. Butern
Signature: DSU	Signature: Butern
Date: 6110	Date: 6/22/09

Project Name: Location:	CS1605 Alameda F Alameda, Cargill Sal	CA		-	Start	ID: M() ble ID: M() Date: () h Date: ()	-1 Tites
WELL INFORM Casing diameter One casing volu One casing volu	MATION r (in.): ume (gal.): ume = πx ear ft for co	Contracting radii	Calculated put us (in.) x 1 ft/12 r of: $1'' = 0.04$	er (ft): $3,5$ urge volume (gal 2 in.] ² x [well de 41 2" = 0.16 od for checking:	Well) (3 x casing vol pth (ft) - depth to 4. " = 0.65	depth (ft): lume): o water (ft)] x 7 5" = 1.0 6" =	8
WELL PURGI Date purged: Purging equipm Purge rate: Purge water dis	lo] II nent:	PVC bailer	le pump Tefle	Bladder pump on bailer Well yield (H/I	Other L): Low		np
Time (2400 hr [24] [36]		Cumulative Vol. Purged (gal.)- 23 V. G		$EC_{(\mu S/cm)}$ 436 35 385	T (° C) [7.4] 17.5 [7.5]	Color (Visual) CliGA CliGA CliGA	Turbidity (Visual or NTID) 8.76 5.23 1.48
Total Purged (g	(gal.). a	6.8 Liter 2.0 gal	>/				
WELL SAMPI Date sampled: Sampling equip	6/11/0		Start time: tic pump X r Other	Bladder pum	End time epth to water (ft) p Tef	before samplin lon bailer	
Weather condit Well condition/			X, Neeps All.	Bolts	Ambient tem		•
Meter calibration	Temp npled by (p	EC erature orint): nature:	Stever Guerce	TW-M s	pH Turbidity Reviewed	$\sim \Lambda_{\ell}$	

Project No.: Project Name: Location: Client:	CS1605 Alameda l Alameda, Cargill Sa	CA			Well I Sample Start I Finish	e ID: Mu=	2 47 19 19
One casing vol Gallons per lin	er (in.): lume (gal.): lume = πx hear ft for co	653 (casing radius asing diameter	Calculated put s (in.) x 1 ft/12 of: $1" = 0.04$	r (ft): 4.44 rge volume (gal.) in.] ² x [well dept 1 2" = 0.16 od for checking:	(3 x casing volu h (ft) - depth to 4. " = 0.65 5'	(me): $(ft)] x 7.48(rec) = 1.0 6'' = 1$	$g_{al/ft}^{3}$ $g_{al/ft}^{3} = 2.6$
WELL PURG Date purged: Purging equipr Purge rate: Purge water di	(<i>a</i>][1] nent: (Submersible PVC bailer Share Down	e pump Teflo	Bladder pump _ n bailer Well yield (H/L)	Other	Peristaltic pump	+
Time (2400 1 [2010 [2]0 [2]0 [2]9		Cumulative Vol. Purged (201.) $(201.)$ $(201.$	pH (units) (0-75 (0-68 (0-68	EC (µS/cm) 357 375 375 386	T (° C) 16.9 16-8 17-0	Color (Visual) TGN Ulan Clian	Turbidity (Visual or (NTU) 73, 6 23, 7 33, 7 33, 7
Total Purged (6.0 (or 1.6	gallows			
WELL SAMP Date sampled: Sampling equi	611	Peristaltic PVC bailer	Start time: c pump Other	Dept	th to water (ft) b	before sampling:	552
Weather condition		Claim we p1Col	el ok	Necdsne	NJBOHS		
Meter calibrat		ECS	Ans CE Mi	- <i>T</i>	pH		
Purged and sa		orint):	Juer	1919	Reviewed by	JB	

.

÷.

Project No .:	CS1605				Well I	D: MU	13
Project Name:	Alameda I	Facility			Sample	ID: MU	13
Location:	Alameda,	CA			Start D	Date: 6	ILS
Client:	Cargill Sa	<u>lt</u>			Finish	Date: 61	ilos
WELL INFOR Casing diamete One casing vol	er (in.): _),0			Well d		7.6
					-		<i>†</i> 0
				-	th (ft) - depth to	• • •	7.48 gal/ft^{3} = 1.5 8" = 2.6
		(ft):	•		4. $= 0.05$ 5 Interface probe	•	
WELL PURGI	1						
Date purged:	6/11	ເົ	Start time:	100	End time:	1050	
Purging equipn		Submersible		Bladder pump	I	Peristaltic pur	np +
		PVC bailer	Teflor	n bailer		_	
Purge rate:	,ou	gpm	•••••••••••••••••••••••••••••••••••••••	Well yield (H/L)	: Lew Yre	17	
Purge water di	sposal:		edonaile		- t		
Time		Cumulative	pН	EC	T	0-1	Tubit
(2400 h		Vol. Purged	units)	EC (μS/cm)	T (°C)	Color (Visual)	Turbidity (Visual or 1(TU)
1022		2.19	7.23	567	17.0	clear	
IOUI		<u> <u>u</u><u>y</u></u>	7.33	566	170	TEN	/17
1058		lo.7	735	585	17.0	rean	17.4
Total Purged (gal.):	2.06960	or 6.7 4te	evs			
WELL SAMPI Date sampled: Sampling equip	Celu	Peristaltic PVC bailer	pump X	DSG Dep Bladder pump	End time: th to water (ft) b Teflor	1/05 efore samplin bailer	ng: 15.32
Weather condition Well condition HEFlurtubing	tions: /Remarks:						GO with rew
Meter calibrati	Tempe	EC Se	EME	. 1			
Purged and san		rint):	S	7	Reviewed by:	JB.	

1

SAMPLE COLLECTION F	TELD DATA
---------------------	-----------

Project No.: CS1			_	Well I	· · · · · · · · · · · · · · · · · · ·	Ý
Project Name: Alar			-	Sampl Start I		16
	meda, CA				Date: 6110	
Client: Car	gill Salt			1 11130	Daie0[1] I	<u>/</u>]
WELL INFORMA	TION					
Casing diameter (in	.): <u>1.</u>	Depth to wat	ter (ft): λ 84	Well o	lepth (ft): 19.0	2
	(gal.): 100			.) (3 x casing volu		
	$= \pi x$ [casing radiu.		$2 \text{ in.} J^2 x [well determined on the set of the$	pth (ft) - depth to	water (ft)] x 7.4	8 gal/ft ³
	t for casing diameter					
	ckness (ft): NO					
WELL PURGING	1 (
Date purged: 🜔	ula	Start time:	004 F	End time:		
Purging equipment:			Bladder pump	· · · · · · · · · · · · · · · · · · ·	Peristaltic pump	<u>+</u>
		Tef	lon bailer	Other	AD UP 1	
Purge rate:	504 GPM		Well yield (H/I	L): Lewy	han weig	
Purge water disposa		ummed o	msite	/		
Time	Cumulative Vol. Purged	pН	EC	Т	Color	Turbidity
(2400 hr)	رو ودا:) ل	(units)	(μS/cm)	(° C)	(Visual)	(Visual of NTU)
0905	2.4	6.8)	618	- 183-	CROR	5.22
0920	<u> </u>	711	616	18-4	Clean_	-7.45
0937	7,6	+.10	616	18.5	Ugn	1.32
	7.6 liters	/				
Total Purged (gal.)	: 2.0 ga	love				
	`			····		
WELL SAMPLING			600		00110	
Date sampled:	11109	Start time		End time:		1.10
				epth to water (ft)		1010
Sampling equipment		ic pump		p Tefl	on bailer	-
	PVC bailer	Oth	er			-
Weather conditions	= clou	54		Ambient temp	perature (° F):	60
Well condition/Rer		LOK A	Leen'S New	Ambient temp Bolts For	Wellis	
Meter calibration:	EC 150	50 /150	ω	рН (7.0	57.W) (N	(w.Kr? E) (2. 9/ 50)
	Temperature			Turbidity	5.7,10.0	
D		Gillion	10		\sim	
Purged and sample		100	,	Reviewed	XB	
	Signature:	v pry		Keviewed D	71	
		•			U	

Appendix B

Groundwater Velocity Calculations

APPENDIX B GROUNDWATER VELOCITY CALCULATIONS

FOR CARGILL ALAMEDA SITE

GROUNDWATER VELOCITY FORMULA

V = Ki/n where:

V = average linear groundwater velocity	i = hydraulic gradient
K = hydraulic conductivity	n = effective porosity

PARAMETERS

Range of hydraulic conductivity values (K) from slug tests:

Material	Well	K (cm/sec)	_				
Silty sand (SM) and Clayey sand (SC)	MW-1	0.00002					
Silty sand (SM) and Clayey sand (SC)	MW-2	0.00002					
Silty sand (SM) and Clayey sand (SC)	MW-3	0.000003					
	Highest measured $K =$	0.00002	-				
Porosity (n) = 33% (from laboratory	Porosity (n) = 33% (from laboratory analysis of boring B21 soil sample)						
Hydraulic gradient (i) calculated from	groundwater contours:						
		March 2009	0.023				
		June 2009	0.020				

UNIT CONVERSIONS

1 day =	86,400 sec	1 cm/sec =	2,834.65 ft/day
1 foot =	30.48 cm	1 cm/sec =	1,034,645.67 ft/yr

CALCULATED VELOCITIES

	Flow	Κ	i	n	V
Measurement Event	Direction	(cm/sec)	(ft/ft)		(ft/yr)
March 2009 June 2009	NE NE	0.00002 0.00002	0.023 0.020	0.33 0.33	1.4 1.2

Calculations and assumptions prepared by:

plante (. wheele

Date: 9/28/2009

Appendix C

Certified Analytical Reports and Chain-of-Custody Documentation

First Quarter 2009

ANALYTICAL REPORT

Job Number: 720-18412-1

Job Description: Alameda Facility CS 1605

For: Crawford Consulting Inc 2 North First Street 4th Floor San Jose, CA 95113-1212

Attention: Mark Wheeler

Surmider Sidhu

Approved for release. Surinder Sidhu Customer Service Manager 3/12/2009 3:19 PM

Designee for Dimple Sharma Project Manager I dimple.sharma@testamericainc.com 03/12/2009

cc: Dana Johnston

TestAmerica Laboratories, Inc.

TestAmerica San Francisco 1220 Quarry Lane, Pleasanton, CA 94566 Tel (925) 484-1919 Fax (925) 600-3002 <u>www.testamericainc.com</u> Job Narrative 720-J18412-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: Crawford Consulting Inc

Lab Sample ID Cl Analyte	ient Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-18412-1	MW-1				
cis-1,2-Dichloroethene		0.62	0.50	ug/L	8260B
Chloroform		1.9	1.0	ug/L	8260B
Trichloroethene		6.5	0.50	ug/L	8260B
Tetrachloroethene		68	0.50	ug/L	8260B
720-18412-2 Tetrachloroethene	MW-2	2300	20	ug/L	8260B
720-18412-4	MW-4				
Tetrachloroethene		0.62	0.50	ug/L	8260B
720-18412-5	DUP-1				
Tetrachloroethene		2200	20	ug/L	8260B

METHOD SUMMARY

Client: Crawford Consulting Inc

Job Number: 720-18412-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL SF	SW846 8260B	
Purge and Trap	TAL SF		SW846 5030B
Lab References:			

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Crawford Consulting Inc

Job Number: 720-18412-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-18412-1	MW-1	Water	03/05/2009 1139	03/05/2009 1450
720-18412-2	MW-2	Water	03/05/2009 1332	03/05/2009 1450
720-18412-3	MW-3	Water	03/05/2009 1043	03/05/2009 1450
720-18412-4	MW-4	Water	03/05/2009 1235	03/05/2009 1450
720-18412-5	DUP-1	Water	03/05/2009 0000	03/05/2009 1450
720-18412-6TB	TB-1	Water	03/05/2009 0000	03/05/2009 1450

Client: Crawford Consulting Inc

Analytical Data

Job Number:	720-18412-1

Client Sample ID:	MW-1		
Lab Sample ID: Client Matrix:	720-18412-1 Water		Date Sampled:03/05/20091139Date Received:03/05/20091450
		8260B Volatile Organic Compoun	ds (GC/MS)
Method:	8260B	Analysis Batch: 720-47600	Instrument ID: Saturn 2K3
Preparation:	5030B		Lab File ID: d:\data\200903\031209\SA-
Dilution:	1.0		Initial Weight/Volume: 40 mL
Date Analyzed:	03/12/2009 1309		Final Weight/Volume: 40 mL
Date Prepared:	03/12/2009 1309		
Analyte		Result (ug/L)	Qualifier RL
1,1-Dichloroethene		ND	0.50
1,1-Dichloroethane		ND	0.50
Dichlorodifluorometh	hane	ND	0.50
Vinyl chloride		ND	0.50
Chloroethane		ND	1.0
Trichlorofluorometha	ane	ND	1.0
Methylene Chloride		ND	5.0
rans-1,2-Dichloroet	hene	ND	0.50
cis-1,2-Dichloroethe	ene	0.62	0.50
Chloroform		1.9	1.0
1,1,1-Trichloroethan	e	ND	0.50
Carbon tetrachloride	9	ND	0.50
1,2-Dichloroethane		ND	0.50
Trichloroethene		6.5	0.50
1,2-Dichloropropane	9	ND	0.50
Dichlorobromometha	ane	ND	0.50
rans-1,3-Dichloropr	opene	ND	0.50
cis-1,3-Dichloroprop	ene	ND	0.50
1,1,2-Trichloroethan	ie	ND	0.50
Tetrachloroethene		68	0.50
Chlorodibromometh	ane	ND	0.50
Chlorobenzene		ND	0.50
Bromoform		ND	1.0
1,1,2,2-Tetrachloroe		ND	0.50
1,3-Dichlorobenzene		ND	0.50
1,4-Dichlorobenzene		ND	0.50
1,2-Dichlorobenzene	e	ND	0.50
Chloromethane		ND	1.0
Bromomethane		ND	1.0
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND	0.50
EDB		ND	0.50
1,2,4-Trichlorobenze	ene	ND	1.0
Surrogate		%Rec	Acceptance Limits
Toluene-d8 (Surr)		102	82 - 120
4-Bromofluorobenze		99	74 - 131
1,2-Dichloroethane-	d4 (Surr)	85	76 - 132

Analytical Data

Client: Crawford Consulting Inc

Job Number: 720-18412-1

Client Sample ID:	MW-2		
Lab Sample ID: Client Matrix:	720-18412-2 Water		Date Sampled:03/05/20091332Date Received:03/05/20091450
		8260B Volatile Organic Compoun	ds (GC/MS)
Method:	8260B	Analysis Batch: 720-47518	Instrument ID: Saturn 2K3
Preparation:	5030B		Lab File ID: d:\data\200903\031009\SA-
Dilution:	40		Initial Weight/Volume: 40 mL
Date Analyzed:	03/10/2009 1739		Final Weight/Volume: 40 mL
Date Prepared:	03/10/2009 1739		
Analyte		Result (ug/L)	Qualifier RL
1,1-Dichloroethene		ND	20
1,1-Dichloroethane		ND	20
Dichlorodifluoromet	hane	ND	20
/inyl chloride		ND	20
Chloroethane		ND	40
richlorofluorometh	ane	ND	40
lethylene Chloride		ND	200
rans-1,2-Dichloroet		ND	20
is-1,2-Dichloroethe		ND	20
Chloroform		ND	40
,1,1-Trichloroethar	ne	ND	20
Carbon tetrachloride	e	ND	20
,2-Dichloroethane		ND	20
richloroethene		ND	20
,2-Dichloropropane	9	ND	20
Dichlorobromometh	ane	ND	20
rans-1,3-Dichloropr	ropene	ND	20
is-1,3-Dichloroprop	bene	ND	20
,1,2-Trichloroethar	ne	ND	20
etrachloroethene		2300	20
Chlorodibromometh	ane	ND	20
Chlorobenzene		ND	20
Bromoform		ND	40
,1,2,2-Tetrachloroe	ethane	ND	20
,3-Dichlorobenzen	e	ND	20
,4-Dichlorobenzen	e	ND	20
,2-Dichlorobenzen	e	ND	20
Chloromethane		ND	40
Bromomethane		ND	40
,1,2-Trichloro-1,2,2	2-trifluoroethane	ND	20
DB		ND	20
,2,4-Trichlorobenz	ene	ND	40
Surrogate		%Rec	Acceptance Limits
Toluene-d8 (Surr)		103	82 - 120
4-Bromofluorobenzo		94	74 - 131
,2-Dichloroethane-	-d4 (Surr)	79	76 - 132

Client: Crawford Consulting Inc

Analytical Data

Job Number: 720-18412-1

Client Sample ID:	MW-3		
Lab Sample ID: Client Matrix:	720-18412-3 Water		Date Sampled:03/05/20091043Date Received:03/05/20091450
		8260B Volatile Organic Compoun	ds (GC/MS)
Method:	8260B	Analysis Batch: 720-47518	Instrument ID: Saturn 2K3
Preparation:	5030B		Lab File ID: d:\data\200903\031009\sa-
Dilution:	1.0		Initial Weight/Volume: 40 mL
Date Analyzed:	03/10/2009 1247		Final Weight/Volume: 40 mL
Date Prepared:	03/10/2009 1247		
Analyte		Result (ug/L)	Qualifier RL
1,1-Dichloroethene		ND	0.50
1,1-Dichloroethane		ND	0.50
Dichlorodifluoromet	hane	ND	0.50
√inyl chloride		ND	0.50
Chloroethane		ND	1.0
Frichlorofluorometh	ane	ND	1.0
Methylene Chloride		ND	5.0
rans-1,2-Dichloroet		ND	0.50
cis-1,2-Dichloroethe	ene	ND	0.50
Chloroform		ND	1.0
1,1,1-Trichloroethar	ne	ND	0.50
Carbon tetrachloride	e	ND	0.50
1,2-Dichloroethane		ND	0.50
Trichloroethene		ND	0.50
1,2-Dichloropropane		ND	0.50
Dichlorobromometh	ane	ND	0.50
rans-1,3-Dichloropi	ropene	ND	0.50
cis-1,3-Dichloroprop	bene	ND	0.50
1,1,2-Trichloroethar	ne	ND	0.50
Fetrachloroethene		ND	0.50
Chlorodibromometh	ane	ND	0.50
Chlorobenzene		ND	0.50
Bromoform		ND	1.0
1,1,2,2-Tetrachloroe	ethane	ND	0.50
1,3-Dichlorobenzen		ND	0.50
1,4-Dichlorobenzen		ND	0.50
1,2-Dichlorobenzen	e	ND	0.50
Chloromethane		ND	1.0
Bromomethane		ND	1.0
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND	0.50
EDB		ND	0.50
1,2,4-Trichlorobenz	ene	ND	1.0
Surrogate		%Rec	Acceptance Limits
Toluene-d8 (Surr)		110	82 - 120
4-Bromofluorobenz		97	74 - 131
1,2-Dichloroethane	-a4 (Surr)	90	76 - 132

Client: Crawford Consulting Inc

Analytical Data

Client Sample ID:	MW-4		
Lab Sample ID: Client Matrix:	720-18412-4 Water		Date Sampled:03/05/20091235Date Received:03/05/20091450
		8260B Volatile Organic Compoun	ds (GC/MS)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 03/11/2009 1801 03/11/2009 1801	Analysis Batch: 720-47582	Instrument ID: Saturn 2K3 Lab File ID: d:\data\200903\031109\SA- Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL
Analyte		Result (ug/L)	Qualifier RL
1,1-Dichloroethene		ND	0.50
,1-Dichloroethane		ND	0.50
Dichlorodifluoromet	thane	ND	0.50
/inyl chloride		ND	0.50
Chloroethane		ND	1.0
richlorofluorometh	ane	ND	1.0
lethylene Chloride	9	ND	5.0
rans-1,2-Dichloroe	thene	ND	0.50
is-1,2-Dichloroethe	ene	ND	0.50
Chloroform		ND	1.0
,1,1-Trichloroethar	ne	ND	0.50
Carbon tetrachlorid	e	ND	0.50
,2-Dichloroethane		ND	0.50
richloroethene		ND	0.50
,2-Dichloropropan	e	ND	0.50
Dichlorobromometh	nane	ND	0.50
rans-1,3-Dichlorop	ropene	ND	0.50
is-1,3-Dichloropro	pene	ND	0.50
,1,2-Trichloroethar	ne	ND	0.50
etrachloroethene		0.62	0.50
Chlorodibromometh	nane	ND	0.50
Chlorobenzene		ND	0.50
Bromoform		ND	1.0
,1,2,2-Tetrachloro	ethane	ND	0.50
,3-Dichlorobenzen		ND	0.50
,4-Dichlorobenzen		ND	0.50
,2-Dichlorobenzen	ne	ND	0.50
Chloromethane		ND	1.0
Bromomethane		ND	1.0
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND	0.50
EDB		ND	0.50
1,2,4-Trichlorobenz	zene	ND	1.0
Surrogate		%Rec	Acceptance Limits
Toluene-d8 (Surr)		105	82 - 120
4-Bromofluorobenz		100	74 - 131
1,2-Dichloroethane	-d4 (Surr)	96	76 - 132

Analytical Data

Job Number: 720-18412-1 Client: Crawford Consulting Inc DUP-1 **Client Sample ID:** 03/05/2009 0000 Lab Sample ID: 720-18412-5 Date Sampled: 03/05/2009 1450 **Client Matrix:** Water Date Received: 8260B Volatile Organic Compounds (GC/MS) 8260B Analysis Batch: 720-47518 Method: Instrument ID: Saturn 2K3 Preparation: 5030B Lab File ID: d:\data\200903\031009\SA-Dilution: 40 Initial Weight/Volume: 40 mL Date Analyzed: 03/10/2009 1811 Final Weight/Volume: 40 mL Date Prepared: 03/10/2009 1811 Result (ug/L) Qualifier RL Analyte 1,1-Dichloroethene ND 20 ND 20 1,1-Dichloroethane Dichlorodifluoromethane ND 20 Vinyl chloride ND 20 Chloroethane ND 40 Trichlorofluoromethane ND 40 Methylene Chloride ND 200 trans-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20 Chloroform ND 40 1,1,1-Trichloroethane ND 20 Carbon tetrachloride ND 20 1,2-Dichloroethane ND 20 Trichloroethene ND 20 1,2-Dichloropropane ND 20 Dichlorobromomethane ND 20 trans-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 1,1,2-Trichloroethane ND 20 Tetrachloroethene 2200 20 Chlorodibromomethane ND 20 Chlorobenzene ND 20 Bromoform ND 40 1,1,2,2-Tetrachloroethane ND 20 20 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 20 1.2-Dichlorobenzene 20 ND Chloromethane ND 40 Bromomethane ND 40 1,1,2-Trichloro-1,2,2-trifluoroethane 20 ND EDB ND 20 1,2,4-Trichlorobenzene ND 40 %Rec Acceptance Limits Surrogate Toluene-d8 (Surr) 104 82 - 120 97 4-Bromofluorobenzene 74 - 131 1,2-Dichloroethane-d4 (Surr) 92 76 - 132

Client: Crawford Consulting Inc

Analytical Data

JOD NUMBER: 720-18412-1	0-18412-1	72	Number:	Job
-------------------------	-----------	----	---------	-----

Client Sample ID:	TB-1		
Lab Sample ID: Client Matrix:	720-18412-6TB Water		Date Sampled:03/05/20090000Date Received:03/05/20091450
		8260B Volatile Organic Compoun	lds (GC/MS)
Method:	8260B	Analysis Batch: 720-47600	Instrument ID: Saturn 2K3
Preparation:	5030B		Lab File ID: d:\data\200903\031209\SA-
Dilution:	1.0		Initial Weight/Volume: 40 mL
Date Analyzed:	03/12/2009 1341		Final Weight/Volume: 40 mL
Date Prepared:	03/12/2009 1341		
Analyte		Result (ug/L)	Qualifier RL
1,1-Dichloroethene		ND	0.50
I,1-Dichloroethane		ND	0.50
Dichlorodifluoromet	hane	ND	0.50
/inyl chloride		ND	0.50
Chloroethane		ND	1.0
Frichlorofluorometha	ane	ND	1.0
Methylene Chloride		ND	5.0
rans-1,2-Dichloroet	hene	ND	0.50
cis-1,2-Dichloroethe	ene	ND	0.50
Chloroform		ND	1.0
I,1,1-Trichloroethan	ne	ND	0.50
Carbon tetrachloride	e	ND	0.50
,2-Dichloroethane		ND	0.50
richloroethene		ND	0.50
,2-Dichloropropane	e	ND	0.50
Dichlorobromometh	ane	ND	0.50
rans-1,3-Dichloropr	opene	ND	0.50
sis-1,3-Dichloroprop	bene	ND	0.50
,1,2-Trichloroethan	ne	ND	0.50
etrachloroethene		ND	0.50
Chlorodibromometh	ane	ND	0.50
Chlorobenzene		ND	0.50
Bromoform		ND	1.0
1,1,2,2-Tetrachloroe		ND	0.50
,3-Dichlorobenzen		ND	0.50
,4-Dichlorobenzen		ND	0.50
1,2-Dichlorobenzen	e	ND	0.50
Chloromethane		ND	1.0
Bromomethane		ND	1.0
1,1,2-Trichloro-1,2,2	2-triffuoroetnane	ND	0.50
EDB		ND	0.50
1,2,4-Trichlorobenze	ene	ND	1.0
Surrogate		%Rec	Acceptance Limits
Toluene-d8 (Surr)		102	82 - 120
4-Bromofluorobenze		101	74 - 131
1,2-Dichloroethane-	d4 (Surr)	89	76 - 132

DATA REPORTING QUALIFIERS

Lab Section

Qualifier

Description

Client: Crawford Consulting Inc

Job Number: 720-18412-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-475	18				
LCS 720-47518/3	Lab Control Spike	Т	Water	8260B	
LCSD 720-47518/2	Lab Control Spike Duplicate	Т	Water	8260B	
MB 720-47518/5	Method Blank	Т	Water	8260B	
720-18412-2	MW-2	Т	Water	8260B	
720-18412-3	MW-3	Т	Water	8260B	
720-18412-3MS	Matrix Spike	Т	Water	8260B	
720-18412-3MSD	Matrix Spike Duplicate	Т	Water	8260B	
720-18412-5	DUP-1	Т	Water	8260B	
Analysis Batch:720-475	82				
LCS 720-47582/4	Lab Control Spike	Т	Water	8260B	
LCSD 720-47582/3	Lab Control Spike Duplicate	Т	Water	8260B	
MB 720-47582/6	Method Blank	Т	Water	8260B	
720-18412-4	MW-4	Т	Water	8260B	
Analysis Batch:720-476	00				
LCS 720-47600/2	Lab Control Spike	Т	Water	8260B	
LCSD 720-47600/1	Lab Control Spike Duplicate	Т	Water	8260B	
MB 720-47600/4	Method Blank	Т	Water	8260B	
720-18412-1	MW-1	Т	Water	8260B	
720-18412-6TB	TB-1	Т	Water	8260B	

Report Basis

T = Total

Quality Control Results

Job Number: 720-18412-1

Method Blank - Batch: 720-47518

Client: Crawford Consulting Inc

Lab Sample ID:	MB 720-47518/5				
Client Matrix:	Water				
Dilution:	1.0				
Date Analyzed:	03/10/2009 0831				
Date Prepared:	03/10/2009 0831				

Analysi	s Batch:	720-47518
Prep B	atch: N/A	
Units:	ug/L	

Method: 8260B Preparation: 5030B

Instrument ID: Saturn 2K3 Lab File ID: d:\data\200903\031009\MB-W Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	104	82 - 120	
4-Bromofluorobenzene	96	74 - 131	
1,2-Dichloroethane-d4 (Surr)	83	76 - 132	

Page 14 of 22

Quality Control Results

Job Number: 720-18412-1

Method: 8260B Preparation: 5030B

LCS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 720-47518/3 Water 1.0 03/10/2009 0903 03/10/2009 0903	Analysis Batch: 720-47518 Prep Batch: N/A Units: ug/L	Instrument ID: Saturn 2K3 Lab File ID: d:\data\200903\031009\ls-wa Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL
LCSD Lab Sample ID Client Matrix: Dilution: Date Analyzed: Date Prepared:	 LCSD 720-47518/2 Water 1.0 03/10/2009 0934 03/10/2009 0934 	Analysis Batch: 720-47518 Prep Batch: N/A Units: ug/L	Instrument ID: Saturn 2K3 Lab File ID: d:\data\200903\031009\ld-wa Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

		<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,1-Dichloroethene	95	94	70 - 130	1	20		
Trichloroethene	99	98	70 - 130	1	20		
Chlorobenzene	116	113	70 - 130	2	20		
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
Toluene-d8 (Surr)	9	9	93		8	2 - 120	
4-Bromofluorobenzene	1	00	94		7	4 - 131	
1,2-Dichloroethane-d4 (Surr)	8	4	80		7	6 - 132	

Page 15 of 22

Client: Crawford Consulting Inc

Lab Control Spike/ Lab Control Spike Duplicate Recovery Report - Batch: 720-47518

Quality Control Results

Job Number: 720-18412-1

Client: Crawford Consulting Inc

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 720-47518

Method: 8260B Preparation: 5030B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	720-18412-3 Water 1.0 03/10/2009 1455 03/10/2009 1455	Analysis Batch: 720-47518 Prep Batch: N/A	Instrument ID: Saturn 2K3 Lab File ID: d:\data\200903\031009\SA-\ Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	720-18412-3 Water 1.0 03/10/2009 1527 03/10/2009 1527	Analysis Batch: 720-47518 Prep Batch: N/A	Instrument ID: Saturn 2K3 Lab File ID: d:\data\200903\031009\SA-W, Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
1,1-Dichloroethene	97	100	70 - 130	3	20		
Trichloroethene	96	98	70 - 130	2	20		
Chlorobenzene	115	116	70 - 130	1	20		
Surrogate		MS % Rec	MSD % Rec Acceptance Limits				
Toluene-d8 (Surr)		90	95 82 - 120				
4-Bromofluorobenzene		90	89		7	4 - 131	
1,2-Dichloroethane-d4 (Surr)		88	87		7	6 - 132	

Client: Crawford Consulting Inc

Method Blank - Batch: 720-47582

 Lab Sample ID:
 MB 720-47582/6

 Client Matrix:
 Water

 Dilution:
 1.0

 Date Analyzed:
 03/11/2009 0808

 Date Prepared:
 03/11/2009 0808

Analysis Batch: 720-47582 Prep Batch: N/A Units: ug/L

Quality Control Results

Job Number: 720-18412-1

Method: 8260B Preparation: 5030B

Instrument ID: Saturn 2K3 Lab File ID: d:\data\200903\031109\MB-W Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	106	82 - 120	
4-Bromofluorobenzene	101	74 - 131	
1,2-Dichloroethane-d4 (Surr)	85	76 - 132	

Final Weight/Volume:

Method: 8260B

Initial Weight/Volume:

Instrument ID:

Lab File ID:

Preparation: 5030B

LCSD Lab Sample ID:	LCSD 720-47582/3	Analysis Batch: 720-47582	Instrument ID: Saturn 2K3	
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: d:\data\200903\03	81109\LD-WA
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 40 mL	
Date Analyzed:	03/11/2009 0911		Final Weight/Volume: 40 mL	
Date Prepared:	03/11/2009 0911			

Analysis Batch: 720-47582

Prep Batch: N/A

Units: ug/L

	0	<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,1-Dichloroethene	93	92	70 - 130	1	20		
Trichloroethene	97	100	70 - 130	3	20		
Chlorobenzene	114	117	70 - 130	3	20		
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
Toluene-d8 (Surr)	1	00	102		8	2 - 120	
4-Bromofluorobenzene	1	00	101		7	4 - 131	
1,2-Dichloroethane-d4 (Surr)	8	6	86		7	6 - 132	

Quality Control Results

Saturn 2K3

Job Number: 720-18412-1

d:\data\200903\031109\LS-W/

40 mL

40 mL

Client: Crawford Consulting Inc

LCS Lab Sample ID: LCS 720-47582/4

Water

03/11/2009 0839

03/11/2009 0839

1.0

Lab Control Spike/

Client Matrix:

Date Analyzed:

Date Prepared:

Dilution:

Lab Control Spike Duplicate Recovery Report - Batch: 720-47582

Client: Crawford Consulting Inc

Method Blank - Batch: 720-47600

 Lab Sample ID:
 MB 720-47600/4

 Client Matrix:
 Water

 Dilution:
 1.0

 Date Analyzed:
 03/12/2009 0950

 Date Prepared:
 03/12/2009 0950

Analysis Batch: 720-47600 Prep Batch: N/A Units: ug/L

20-18412-1

Quality Control Results

Method: 8260B Preparation: 5030B

Instrument ID: Saturn 2K3 Lab File ID: d:\data\200903\031209\MB-W Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	103	82 - 120	
4-Bromofluorobenzene	100	74 - 131	
1,2-Dichloroethane-d4 (Surr)	85	76 - 132	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Quality Control Results

Job Number: 720-18412-1

Method: 8260B Preparation: 5030B

LCS Lab Sample ID:	LCS 720-47600/2	Analysis Batch: 720-47600	Instrument ID: Saturn 2K3
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: d:\data\200903\031209\LS-W/
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 40 mL
Date Analyzed:	03/12/2009 1022		Final Weight/Volume: 40 mL
Date Prepared:	03/12/2009 1022		
LCSD Lab Sample ID Client Matrix: Dilution:	: LCSD 720-47600/1 Water 1.0	Analysis Batch: 720-47600 Prep Batch: N/A Units: ug/L	Instrument ID: Saturn 2K3 Lab File ID: d:\data\200903\031209\LD-WA Initial Weight/Volume: 40 mL
Date Analyzed:	03/12/2009 1054		Final Weight/Volume: 40 mL
Date Prepared:	03/12/2009 1054		

	(<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,1-Dichloroethene	82	83	70 - 130	2	20		
Trichloroethene	93	92	70 - 130	0	20		
Chlorobenzene	117	117	70 - 130	0	20		
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
Toluene-d8 (Surr)	8	3	96		8	82 - 120	
4-Bromofluorobenzene	9	0	94		7	'4 - 131	
1,2-Dichloroethane-d4 (Surr)	7	8	88		7	'6 - 132	

Client: Crawford Consulting Inc

.

Lab Control Spike/ Lab Control Spike Duplicate Recovery Report - Batch: 720-47600

Test America

CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM

.

(925) 484-1919 FAX		,				Ser	vice Requ	est:							Date:	<u>3/5/07</u>
Project Number: 0	Alameda Facility 181605						·		1	1	Analy	sis Reques	ted		;; 	Malen -
Company/Address: (Phone: (2 North First St. 4th San Jose, CA 9511. 408) 287-9934 (408) 287-9937	i Floor	19-18	341Z	Number of Containers	Volatile Organics (VOCs) (EPA 8021B)	Pb (7421); As (7060) Same as Metals	COD, TKN 500 ml plastic H ₂ SO4	Chloride, Nitrate 500 ml plastic NP	pH. Conductivity 500 mł plastic NP	Total Phenois 2 x 500 ml glass H ₂ S() ₄	Volatile Organics (8010) 3 x 40 ml vial	TPHgBTEX 2 x 40 ml vial HCl			REMARKS
Sample L.D.	Date	Time	LAB LD.	Sample Matrix												
MW-1	3/5/09	1139		H2C	01							x				
MW-2	3/3/09			1	(v)							x				
MW-3	3/5/09	1043	· · · · · · · · · · · · · · · · · · ·		5.7					ļ		x			_	
MW-3 MW-4	3/5/09 3/5/09 3/5/09 3/5/09	1235			3							x				
DUP-1	3/5/09	~			3							x			_	
ТВ-1	3/5/07				(r)							x				
																· · · · · · · · · · · · · · · · · · ·
	juished By		Receive	d By		RNAROUN	DREQUIRE	MENTS		AT REQUIRE	MENTS	INVO	ICE INFORM	IATION		SAMPLE RECEIPT
Signature F Frinted Nause F	7 1450	1	MSF 3/5/0 Ci	1450	X X Due Date	Standard (S w Provide Verb Provide pdE P		Results	x II Re MS cba III. Da fim RWQ0	pent (includes 5D, as required arged as sampl da Validation I cludes Ali Ray	l, may be es) Ceport , Data)	₽ C. # Bill to:			Shipping VLA: Shipping # If onktion	
Reling Signatur: Printed Name	uished By	Signature Printed Na	Receive	d Hy		Piease rep	tions/Com Fort MRLs f results to	only	a Johnston	at dana(\overline{u} :	erawforder	onsulting.c	οm			
Firm		Finn				Please pro	ovide EDF	for Geotra	neker, Glot	bal ID is S	1.0600177	511				
Date/Time		Date/i ine		•••••••••	1											

Login Number: 18412

Creator: Lewis, Trenton L List Number: 1

List Number. 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

Job Number: 720-18412-1

List Source: TestAmerica San Francisco

Second Quarter 2009

ANALYTICAL REPORT

Job Number: 720-20572-1 Job Description: Alameda Facility CS 1605

> For: Crawford Consulting Inc 2 North First Street 4th Floor San Jose, CA 95113-1212

Attention: Mark Wheeler

arma

Approved for release. Dimple Sharma Project Manager I 6/18/2009 6:32 PM

Dimple Sharma Project Manager I dimple.sharma@testamericainc.com 06/18/2009

cc: Dana Johnston

TestAmerica Laboratories, Inc.

TestAmerica San Francisco 1220 Quarry Lane, Pleasanton, CA 94566 Tel (925) 484-1919 Fax (925) 600-3002 <u>www.testamericainc.com</u> Job Narrative 720-J20572-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: Crawford Consulting Inc

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method	
720-20572-1	MW-1					
Trichloroethene		40	2.5	ug/L	8260B	
Tetrachloroethene		300	2.5	ug/L	8260B	
720-20572-2	MW-2					
Tetrachloroethene		1500	25	ug/L	8260B	
720-20572-3	MW-3					
1,1-Dichloroethene		0.95	0.50	ug/L	8260B	
1, 1-Dichloroculenc		0.00	0.00	ug/L	02000	
720-20572-4	MW-4					
Tetrachloroethene		0.70	0.50	ug/L	8260B	
720-20572-5FD	DUP-1					
Tetrachloroethene		1700	25	ug/L	8260B	

METHOD SUMMARY

Client: Crawford Consulting Inc

Job Number: 720-20572-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL SF	SW846 8260B	
Purge and Trap	TAL SF		SW846 5030B
Lab References:			

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Crawford Consulting Inc

Job Number: 720-20572-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-20572-1	MW-1	Water	06/11/2009 1139	06/11/2009 1330
720-20572-2	MW-2	Water	06/11/2009 1220	06/11/2009 1330
720-20572-3	MW-3	Water	06/11/2009 1059	06/11/2009 1330
720-20572-4	MW-4	Water	06/11/2009 0938	06/11/2009 1330
720-20572-5FD	DUP-1	Water	06/11/2009 0000	06/11/2009 1330
720-20572-6TB	TB-1	Water	06/11/2009 0000	06/11/2009 1330

Analytical Data

Job Number: 720-20572-1

Client Sample ID:	MW-1		
Lab Sample ID: Client Matrix:	720-20572-1 Water		Date Sampled:06/11/20091139Date Received:06/11/20091330
		8260B Volatile Organic Compoun	ds (GC/MS)
Method:	8260B	Analysis Batch: 720-52225	Instrument ID: Chemstation 3.0 on 95PC
Preparation:	5030B		Lab File ID: 06150915.D
Dilution:	5.0		Initial Weight/Volume: 10 mL
Date Analyzed:	06/15/2009 1646		Final Weight/Volume: 10 mL
Date Prepared:	06/15/2009 1646		
Analyte		Result (ug/L)	Qualifier RL
1,1-Dichloroethene		ND	2.5
1,1-Dichloroethane		ND	2.5
Dichlorodifluoromet	hane	ND	2.5
vinyl chloride		ND	2.5
Chloroethane		ND	5.0
Trichlorofluorometha		ND	5.0
Methylene Chloride		ND	25
rans-1,2-Dichloroet		ND	2.5
cis-1,2-Dichloroethe	ene	ND	2.5
Chloroform		ND	5.0
1,1,1-Trichloroethane		ND	2.5
Carbon tetrachloride	e	ND	2.5
1,2-Dichloroethane		ND	2.5
Frichloroethene		40	2.5
1,2-Dichloropropane		ND	2.5
Dichlorobromometh		ND	2.5
rans-1,3-Dichloropr		ND	2.5
cis-1,3-Dichloroprop		ND	2.5
I,1,2-Trichloroethan	ne	ND	2.5
Tetrachloroethene		300	2.5
Chlorodibromometh	ane	ND	2.5
Chlorobenzene		ND	2.5
Bromoform	- th = = = =	ND	5.0
1,1,2,2-Tetrachloroe		ND	2.5
1,3-Dichlorobenzen		ND	2.5
1,4-Dichlorobenzen		ND	2.5
1,2-Dichlorobenzene		ND	2.5
Chloromethane Bromomethane		ND	5.0
	2 trifluoroothana	ND ND	5.0 2.5
1,1,2-Trichloro-1,2,2 EDB		ND	2.5
208 1,2,4-Trichlorobenze	ene	ND	2.5 5.0
Surrogate		%Rec	Acceptance Limits
Toluene-d8 (Surr)		94	70 - 130
4-Bromofluorobenze		78	67 - 130
1,2-Dichloroethane-	-d4 (Surr)	103	67 - 130

Client: Crawford Consulting Inc Job Number: 720-20572-1 Client Sample ID: MW-2 Lab Sample ID: 06/11/2009 1220 720-20572-2 Date Sampled: 06/11/2009 1330 Client Matrix: Water Date Received: 8260B Volatile Organic Compounds (GC/MS) Method: 8260B Analysis Batch: 720-52225 Instrument ID: Chemstation 3.0 on 95PC Preparation: 5030B Lab File ID: 06150916.D Dilution: Initial Weight/Volume: 10 mL 50 Date Analyzed: 06/15/2009 1719 Final Weight/Volume: 10 mL Date Prepared: 06/15/2009 1719 Result (ug/L) Qualifier RL Analyte 1,1-Dichloroethene ND 25 ND 25 1,1-Dichloroethane Dichlorodifluoromethane ND 25

Dichlorodifluoromethane	ND	25
Vinyl chloride	ND	25
Chloroethane	ND	50
Trichlorofluoromethane	ND	50
Methylene Chloride	ND	250
trans-1,2-Dichloroethene	ND	25
cis-1,2-Dichloroethene	ND	25
Chloroform	ND	50
1,1,1-Trichloroethane	ND	25
Carbon tetrachloride	ND	25
1,2-Dichloroethane	ND	25
Trichloroethene	ND	25
1,2-Dichloropropane	ND	25
Dichlorobromomethane	ND	25
trans-1,3-Dichloropropene	ND	25
cis-1,3-Dichloropropene	ND	25
1,1,2-Trichloroethane	ND	25
Tetrachloroethene	1500	25
Chlorodibromomethane	ND	25
Chlorobenzene	ND	25
Bromoform	ND	50
1,1,2,2-Tetrachloroethane	ND	25
1,3-Dichlorobenzene	ND	25
1,4-Dichlorobenzene	ND	25
1,2-Dichlorobenzene	ND	25
Chloromethane	ND	50
Bromomethane	ND	50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	25
EDB	ND	25
1,2,4-Trichlorobenzene	ND	50
Surrogate	%Rec	Acceptance Limits
Toluene-d8 (Surr)	92	70 - 130
4-Bromofluorobenzene	80	67 - 130
1,2-Dichloroethane-d4 (Surr)	104	67 - 130

TestAmerica San Francisco

Client Sample ID:	MW-3		
Lab Sample ID: Client Matrix:	720-20572-3 Water		Date Sampled:06/11/20091059Date Received:06/11/20091330
		8260B Volatile Organic Compoun	ds (GC/MS)
Method:	8260B	Analysis Batch: 720-52225	Instrument ID: Chemstation 3.0 on 95PC
Preparation:	5030B		Lab File ID: 06150917.D
Dilution:	1.0		Initial Weight/Volume: 10 mL
Date Analyzed:	06/15/2009 1750		Final Weight/Volume: 10 mL
Date Prepared:	06/15/2009 1750		
Analyte		Result (ug/L)	Qualifier RL
1,1-Dichloroethene		0.95	0.50
1,1-Dichloroethane		ND	0.50
Dichlorodifluoromet		ND	0.50
Vinyl chloride	-	ND	0.50
Chloroethane		ND	1.0
Trichlorofluorometh	ane	ND	1.0
Methylene Chloride		ND	5.0
trans-1,2-Dichloroe		ND	0.50
cis-1,2-Dichloroethe		ND	0.50
Chloroform		ND	1.0
1,1,1-Trichloroethane		ND	0.50
Carbon tetrachlorid	e	ND	0.50
1,2-Dichloroethane		ND	0.50
Trichloroethene		ND	0.50
1,2-Dichloropropan	e	ND	0.50
Dichlorobromometh	nane	ND	0.50
trans-1,3-Dichlorop	ropene	ND	0.50
cis-1,3-Dichloropro	pene	ND	0.50
1,1,2-Trichloroetha	ne	ND	0.50
Fetrachloroethene		ND	0.50
Chlorodibromometh	nane	ND	0.50
Chlorobenzene		ND	0.50
Bromoform		ND	1.0
1,1,2,2-Tetrachloro		ND	0.50
1,3-Dichlorobenzen		ND	0.50
1,4-Dichlorobenzen		ND	0.50
1,2-Dichlorobenzene		ND	0.50
Chloromethane		ND	1.0
Bromomethane	0.1.1	ND	1.0
1,1,2-Trichloro-1,2,	2-trifluoroethane	ND	0.50
EDB		ND	0.50
1,2,4-Trichlorobenz	zene	ND	1.0
Surrogate		%Rec	Acceptance Limits
Toluene-d8 (Surr)		91	70 - 130
4-Bromofluorobenz		81	67 - 130
1,2-Dichloroethane	-d4 (Surr)	106	67 - 130

Job Number:	720-20572-1

Client Sample ID:	MW-4		
Lab Sample ID: Client Matrix:	720-20572-4 Water		Date Sampled:06/11/20090938Date Received:06/11/20091330
		8260B Volatile Organic Compoun	ds (GC/MS)
Method: Preparation: Dilution: Date Analyzed:	8260B 5030B 1.0 06/15/2009 1822	Analysis Batch: 720-52225	Instrument ID: Chemstation 3.0 on 95PC Lab File ID: 06150918.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL
Date Prepared:	06/15/2009 1822		
Analyte		Result (ug/L)	Qualifier RL
1,1-Dichloroethene		ND	0.50
,1-Dichloroethane		ND	0.50
Dichlorodifluoromet	thane	ND	0.50
/inyl chloride		ND	0.50
Chloroethane		ND	1.0
Frichlorofluorometh	ane	ND	1.0
Aethylene Chloride	•	ND	5.0
rans-1,2-Dichloroet	thene	ND	0.50
sis-1,2-Dichloroethe	ene	ND	0.50
Chloroform		ND	1.0
,1,1-Trichloroethar	ne	ND	0.50
Carbon tetrachlorid	e	ND	0.50
,2-Dichloroethane		ND	0.50
richloroethene		ND	0.50
,2-Dichloropropan	e	ND	0.50
Dichlorobromometh		ND	0.50
rans-1,3-Dichlorop	ropene	ND	0.50
is-1,3-Dichloroprop		ND	0.50
,1,2-Trichloroethar		ND	0.50
etrachloroethene		0.70	0.50
Chlorodibromometh	nane	ND	0.50
Chlorobenzene		ND	0.50
Bromoform		ND	1.0
,1,2,2-Tetrachloroe	ethane	ND	0.50
,3-Dichlorobenzen		ND	0.50
,4-Dichlorobenzen		ND	0.50
, 2-Dichlorobenzen		ND	0.50
Chloromethane		ND	1.0
Bromomethane		ND	1.0
,1,2-Trichloro-1,2,2	2-trifluoroethane	ND	0.50
EDB		ND	0.50
1,2,4-Trichlorobenz	ene	ND	1.0
Surrogate		%Rec	Acceptance Limits
Toluene-d8 (Surr)		91	70 - 130
4-Bromofluorobenz		79	67 - 130
1,2-Dichloroethane	-d4 (Surr)	106	67 - 130

Client: Crawford	d Consulting Inc		Job Number: 720-20572-
Client Sample ID:	DUP-1		
Lab Sample ID:	720-20572-5FD		Date Sampled: 06/11/2009 0000
Client Matrix:	Water		Date Received: 06/11/2009 1330
		8260B Volatile Organic Compour	nds (GC/MS)
Method:	8260B	Analysis Batch: 720-52225	Instrument ID: Chemstation 3.0 on 95PC
Preparation:	5030B		Lab File ID: 06150919.D
Dilution:	50		Initial Weight/Volume: 10 mL
Date Analyzed:	06/15/2009 1854		Final Weight/Volume: 10 mL
Date Prepared:	06/15/2009 1854		ŭ
Analyte		Result (ug/L)	Qualifier RL
1,1-Dichloroethene	2	ND	25
1,1-Dichloroethane		ND	25
Dichlorodifluorome		ND	25
Vinyl chloride		ND	25
Chloroethane		ND	50
Trichlorofluoromethane		ND	50
Methylene Chloride		ND	250
trans-1,2-Dichloroethene		ND	25
cis-1,2-Dichloroethene		ND	25
Chloroform		ND	50
1,1,1-Trichloroetha	ine	ND	25
Carbon tetrachlorid		ND	25
1,2-Dichloroethane		ND	25
Trichloroethene		ND	25
1,2-Dichloropropan	ne	ND	25
Dichlorobromometl		ND	25
trans-1,3-Dichlorop		ND	25
cis-1,3-Dichloropro		ND	25
1,1,2-Trichloroetha		ND	25
Tetrachloroethene		1700	25
Chlorodibromomet	hane	ND	25
Chlorobenzene		ND	25
Bromoform		ND	50
1,1,2,2-Tetrachloro	bethane	ND	25
1,3-Dichlorobenzer		ND	25
1,4-Dichlorobenzer	ne	ND	25
1,2-Dichlorobenzer	ne	ND	25
Chloromethane		ND	50
Bromomethane		ND	50
1,1,2-Trichloro-1,2,	,2-trifluoroethane	ND	25
EDB		ND	25
		ND	-0

Surrogate	%Rec	Acceptance Limits
Toluene-d8 (Surr)	90	70 - 130
4-Bromofluorobenzene	77	67 - 130
1,2-Dichloroethane-d4 (Surr)	100	67 - 130

ND

Analytical Data

50

1,2,4-Trichlorobenzene

0572-1

Client Sample ID:	TB-1		
Lab Sample ID: Client Matrix:	720-20572-6TB Water		Date Sampled:06/11/20090000Date Received:06/11/20091330
		8260B Volatile Organic Compoun	lds (GC/MS)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 06/15/2009 1926 06/15/2009 1926	Analysis Batch: 720-52225	Instrument ID: Chemstation 3.0 on 95PC Lab File ID: 06150920.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL
Analyte		Result (ug/L)	Qualifier RL
1,1-Dichloroethene	;	ND	0.50
1,1-Dichloroethane	9	ND	0.50
Dichlorodifluorome	thane	ND	0.50
Vinyl chloride		ND	0.50
Chloroethane		ND	1.0
Trichlorofluorometh	nane	ND	1.0
Methylene Chloride	9	ND	5.0
trans-1,2-Dichloroe	ethene	ND	0.50
cis-1,2-Dichloroeth	ene	ND	0.50
Chloroform		ND	1.0
1,1,1-Trichloroetha	ne	ND	0.50
Carbon tetrachlorid	le	ND	0.50
1,2-Dichloroethane)	ND	0.50
Trichloroethene		ND	0.50
1,2-Dichloropropan	ne	ND	0.50
Dichlorobromometh	hane	ND	0.50
trans-1,3-Dichlorop	propene	ND	0.50
cis-1,3-Dichloropro	pene	ND	0.50
1,1,2-Trichloroetha	ne	ND	0.50
Tetrachloroethene		ND	0.50
Chlorodibromometl	hane	ND	0.50
Chlorobenzene		ND	0.50
Bromoform		ND	1.0
1,1,2,2-Tetrachloro	ethane	ND	0.50
1,3-Dichlorobenzer	ne	ND	0.50
1,4-Dichlorobenzer	ne	ND	0.50
1,2-Dichlorobenzer	ne	ND	0.50
Chloromethane		ND	1.0
Bromomethane		ND	1.0
1,1,2-Trichloro-1,2,	,2-trifluoroethane	ND	0.50
EDB		ND	0.50
1,2,4-Trichlorobenz	zene	ND	1.0
Surrogate		%Rec	Acceptance Limits
Toluene-d8 (Surr)		89	70 - 130
4-Bromofluorobenz		77	67 - 130
1,2-Dichloroethane	e-d4 (Surr)	105	67 - 130

DATA REPORTING QUALIFIERS

Lab Section

Qualifier

Description

Quality Control Results

Client: Crawford Consulting Inc

Job Number: 720-20572-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-5222	5				
LCS 720-52225/3	Lab Control Sample	Т	Water	8260B	
LCSD 720-52225/4	Lab Control Sample Duplicate	Т	Water	8260B	
MB 720-52225/5	Method Blank	Т	Water	8260B	
720-20572-1	MW-1	Т	Water	8260B	
720-20572-2	MW-2	Т	Water	8260B	
720-20572-3	MW-3	Т	Water	8260B	
720-20572-4	MW-4	Т	Water	8260B	
720-20572-5FD	DUP-1	Т	Water	8260B	
720-20572-6TB	TB-1	Т	Water	8260B	

Report Basis

T = Total

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Crawford Consulting Inc

Method Blank - Batch: 720-52225

Lab Sample ID:	MB 720-52225/5			
Client Matrix:	Water			
Dilution:	1.0			
Date Analyzed:	06/15/2009 1102			
Date Prepared:	06/15/2009 1102			

Analysi	is Batch:	720-52225
Prep B	atch: N/A	
Units:	ug/L	

Quality Control Results

Job Number: 720-20572-1

Method: 8260B Preparation: 5030B

Instrument ID:	Chems	tatio	n 3.0 on 95PC
Lab File ID:	061509	05.E)
Initial Weight/Volume:		10	mL
Final Weight/Volume:		10	mL

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
rans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
rans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
I,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	94	70 - 130	
4-Bromofluorobenzene	87	67 - 130	
1,2-Dichloroethane-d4 (Surr)	106	67 - 130	

Page 14 of 17

Calculations are performed before rounding to avoid round-off errors in calculated results.

Quality Control Results

Job Number: 720-20572-1

Method: 8260B Preparation: 5030B

LCS Lab Sample ID:	LCS 720-52225/3	Analysis Batch: 720-52225	Instrument ID: Chemstation 3.0 on 95PC
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: 06150903.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 10 mL
Date Analyzed:	06/15/2009 0958		Final Weight/Volume: 10 mL
Date Prepared:	06/15/2009 0958		
LCSD Lab Sample ID:	LCSD 720-52225/4	Analysis Batch: 720-52225	Instrument ID: Chemstation 3.0 on 95PC
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: 06150904.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 10 mL
Date Analyzed:	06/15/2009 1030		Final Weight/Volume: 10 mL

	0	<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,1-Dichloroethene	111	113	76 - 128	2	20		
Trichloroethene	118	122	72 - 138	3	20		
Chlorobenzene	109	115	80 - 122	5	20		
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
Toluene-d8 (Surr)	9	5	96		7	0 - 130	
4-Bromofluorobenzene	9	9	103		6	7 - 130	
1,2-Dichloroethane-d4 (Surr)	9	6	98		6	7 - 130	

Client: Crawford Consulting Inc

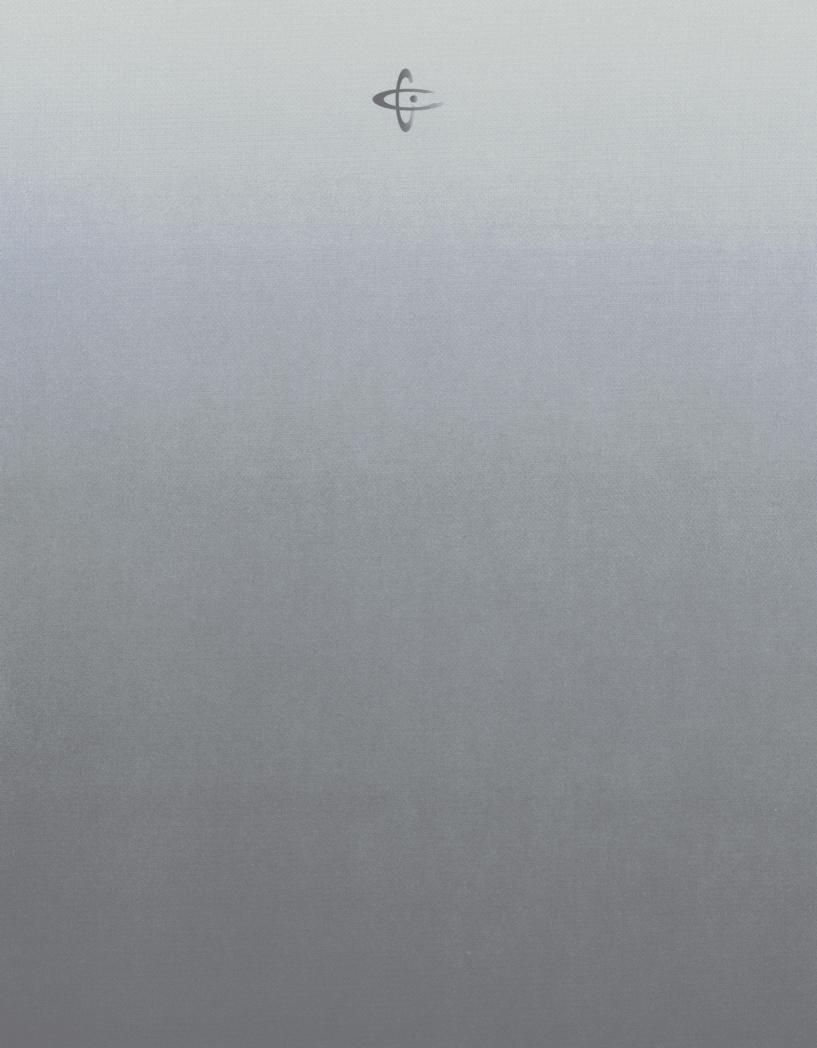
Lab Control Sample Duplicate Recovery Report - Batch: 720-52225

06/15/2009 1030

Lab Control Sample/

Date Prepared:

(925) 484-1919 FAX Project Name: /	(925) 484-1096 Alameda Facility	10	0-20	510		1	Servie	ee Req	iest:		-			Anal	ysis Re			53	>	Date: (Q	11109
Project Manager: I Company/Address: C Phone: (CS1605 Dana Johnston Crawford Consultin 2 North First St, 4t San Jose, CA 9511 408) 287-9934 (408) 287-9937	h Floor		8	Number of Containers	Volatile Organics (VOCs)	(EPA 8021B)	Pb (7421); As (7060) Same as Metals	COD, TKN	500 ml plastic $\mathrm{H}_2\mathrm{SO}_4$	Chloride, Nitrate	500 ml plastic NP	pH, Conductivity 500 ml plastic NP	.80.	6	19903	ITEN	2 x 40 ml vial HCI			REMARKS
Sample /	Date	Time	LAB I.D.	Sample Matrix																	
MW-1	6/1107	1135)	water	3											x					
MW-2	6)115	1220	2	Water	3											x					
MW-3	6/11/09	1059	3	Water	3										3	x					
MW-4	6/11/05	0938	4	Wedte	3											x					
DUP-1	6/11/09		- 5	Waler	3											x					
TB-1	6/11/07		6	wolfen	3											x	3				
	·				_		+		-	_		+			-	_		-	_		
			00																		
Reling ingentie Kruben Gruen imm EST Jute/Time GUUGA	Printed N	DateTime 6/11/09 - 1330			TURNAROUND REQUIREMENTS REPORT REQUIR 24 hr 48 hr 3 day 1. Rousses Report 24 hr 48 hr 3 day MED. are present in the second se					ne Report t fincludes I as required, ed as sample Validation R fes All Raw	DUP, MS may be () eport []teta)	P, MS P.O. 0 ary be Bill to oct				~ I	SAMPLE RECEIPT Shipping VIA Condition				
ignature Relinfr	aished By	Signature	' Receiv	са ву				ns/Con													
Printed Name Printed Name			MBC		Please pdf results to: Dana Johnston at dana@							ing.co	m								
Firm. F			Firm			Please	provi	ide EDI	for G	eotnic	ker. G	lobal	ID is SI	.060017	7511						
Date/Time		DateTime																			


Login Number: 20572

Creator: Hoang, Julie

List	Number: 1	

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

List Source: TestAmerica San Francisco

