RECEIVED

1:48 pm, Mar 03, 2009

Alameda County Environmental Health

Groundwater Monitoring Results First Semi-Annual 2008 Monitoring Period Cargill Salt – Alameda Facility Alameda, California

December 22, 2008

Alameda County Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Attn: Jerry Wickham

RE: Groundwater Monitoring Results, First Semi-Annual 2008 Monitoring Period,

Cargill Salt - Alameda Facility, Alameda, California,

SLIC Case No. RO0002480

Dear Mr. Wickham,

The attached report presents the groundwater monitoring results for the First Semi-Annual 2008 Monitoring Period for the Cargill Salt Alameda facility. This report presents the results of groundwater monitoring data collected during the first and second quarters of 2008. For each quarterly period, groundwater levels in the site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report are true and correct to the best of my knowledge.

Should you have any questions concerning the report, please don't hesitate to call me at (510) 790-8182.

Sineerely,

Sean Riley

Environmental Manager

Groundwater Monitoring Results First Semi-Annual 2008 Monitoring Period

Cargill Salt – Alameda Facility Alameda, California

Prepared for:

Cargill Salt 7220 Central Avenue Newark, California 94560

Prepared by:

Crawford Consulting, Inc.

2 North First Street, 4th Floor
San Jose, CA 95113

(408) 287-9934

Project No. CS1605 December 22, 2008

Contents

1	Introduction	1
	1.1 Reporting Period Activities	
	1.2 Background Information	
	1.2.1 Site Description	
	1.2.2 Summary of Investigative and Remedial Activities	
	1.2.3 Source of VOC Impact	
2	Groundwater Flow Analysis	4
	2.1 Water-Level Measurement	
	2.2 Groundwater Flow Direction and Gradient	
	2.3 Groundwater Velocity	
3	Groundwater Sampling and Analysis	
	3.1 Sample Collection and Analysis	
	3.2 Analytical Results	
	3.2.1 Quality Control	
	3.2.2 Groundwater Results	
	3.3 Discussion	
4	Phytoremediation Project Status Update	

Professional Certification References Limitations

Tables

Table 1.	Groundwater Level Data
Table 2.	Relative Percent Difference Based on Duplicate Samples
Table 3.	Summary of Groundwater Monitoring Well Data

Illustrations

Figure 1.	Site Location
Figure 2.	Groundwater Monitoring Well Locations
Figure 3.	Graphical Summary of Groundwater Elevations
Figure 4.	Groundwater Elevation Contours - March 2008
Figure 5.	Groundwater Elevation Contours – June 2008
Figure 6.	VOC Concentrations in Groundwater - March and June 2008
Figure 7.	Graphical Summary of PCE Concentrations
Figure 8.	PCE Concentrations vs. Groundwater Elevation

Appendices

(presented in electronic format only)

Appendix A.	Field Data Sheets
Appendix B.	Groundwater Velocity Calculations
Appendix C.	Certified Analytical Reports and Chain-of-Custody Documentation

Electronic File

Entire report presented in electronic file format (pdf) on CD-ROM inside back cover.

1 Introduction

Crawford Consulting, Inc. (Crawford) has prepared this report on behalf of Cargill Salt for the Cargill Salt Dispensing Systems Division facility (hereafter, the Site) in Alameda, California.

Results of groundwater transect sampling and the initial sampling of three groundwater monitoring wells installed in November 1999 were presented in the January 31, 2000 report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW). The purpose of the groundwater transect sampling and the monitoring well installation and sampling was to help characterize and monitor the occurrence of volatile organic compounds (VOCs), primarily tetrachloroethene (PCE) and its breakdown product, trichloroethene (TCE), previously detected in groundwater at the Site.

One of the recommendations in the report was to confirm the groundwater analytical results of the newly installed monitoring wells (wells MW-1, MW-2, and MW-3) and the groundwater flow direction and gradient via quarterly monitoring. Cargill Salt began groundwater monitoring on a quarterly basis after the initial groundwater monitoring well sampling event in November 1999. For 2000 through 2005, reporting was performed on an annual basis. Reporting is now being performed on a semi-annual basis.

Cargill Salt conducted additional characterization activities in November and December 2001 to evaluate the off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue.

1.1 Reporting Period Activities

This report presents the results of groundwater monitoring data collected during the first and second quarters of 2008. For each quarterly period, groundwater levels in the Site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined. The quarterly monitoring schedule for the first semi-annual 2008 monitoring period is shown below.

Quarter of 2008	Field Dates
First	March 20, 2008
Second	June 18, 2008

Supervision of the quarterly monitoring events was conducted for Cargill Salt by Crawford. Groundwater level measurements and collection of groundwater samples were conducted by Field Solutions, Inc. The groundwater samples for the first through second quarters of 2008 were analyzed by TestAmerica Laboratories, Inc., a state-certified laboratory in Pleasanton, California.

1.2 Background Information

A description of the Site and a summary of the development of characterization and monitoring programs for the Site are presented in this section.

1.2.1 Site Description

Alameda is an island on the east side of San Francisco Bay, separated from Oakland by a tidal canal (Figure 1). The Cargill Salt Dispensing Systems Division facility is located on a rectangular lot in an industrial and residential neighborhood. The facility building occupies approximately one-third of the Site and is separated from the vacant, unpaved side of the lot by an asphalt driveway (Figure 2). The Site is bordered by a sheet-metal shop and a residential lot to the northwest, an apartment complex to the southwest, and a residential lot to the southeast.

From 1951 to 1978, the Alameda facility produced salt-dispensing units, which required casting and milling aluminum parts.

Constituents of concern associated with site operations have included casting sands with elevated concentrations of metals, and solvents, machine oils, and grease used in casting and milling operations. As discussed below, previous investigations and remedial activities have investigated and remediated metals and solvents (VOCs) in vadose-zone soil.

1.2.2 Summary of Investigative and Remedial Activities

Cargill Salt initiated site investigative activities in 1993 to determine if facility operations had impacted site soils. Cargill Salt submitted the results of the soil sampling investigation to the Alameda County Environmental Health Services (ACEHS) in October 1993 along with a workplan for excavation and disposal of impacted soils and assessment of potential impact to groundwater (Groundworks Environmental, Inc. [Groundworks], 1993).

After approval of the workplan by ACEHS, Cargill Salt conducted several phases of soil remediation and groundwater characterization. Surficial soils impacted by metals were excavated for disposal off site. Vadose-zone soils with the highest degree of impact by VOCs were also excavated for off-site disposal (see "Soil excavation area" on Figure 2).

The results of these activities were submitted to the ACEHS in a report, *Soil and Groundwater Investigations and Remedial Activities, July 1993 – September 1994, Cargill Salt – Alameda Facility, Alameda, California* (Groundworks, 1995). Recommendations for additional work to further delineate the lateral and vertical extent of VOCs in groundwater beneath the Site were presented in the report.

A workplan for the additional delineation of VOCs in groundwater, *Workplan for Groundwater Characterization and Monitoring Well Installation*, 2016 Clement Avenue, Alameda, California (CCI), was submitted to the ACEHS in July 1999.

After approval of the workplan by the ACEHS, Cargill Salt conducted groundwater sampling and well installation activities during August and November of 1999. The results of these activities were submitted to the ACEHS in a report, *Groundwater Characterization and Monitoring Well Installation*, Cargill Salt – Alameda Facility, Alameda, California (Crawford Consulting, Inc. and

Conor Pacific/EFW, dated January 31, 2000). After the initial groundwater monitoring well sampling event in November 1999, Cargill Salt began groundwater monitoring on a quarterly basis.

A work plan for remedial investigation activities, *Workplan for Off-Site Characterization, Cargill Salt – Alameda Facility, Alameda, California* (Conor Pacific/EFW), was submitted to the ACEHS in June 2001. After approval of the workplan by the ACEHS, Cargill Salt conducted characterization activities in November and December 2001 to evaluate off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue. The results of these activities were submitted to the ACEHS in the August 21, 2002 submittal *Off-Site Groundwater Characterization, Cargill Salt – Alameda Facility, Alameda, California*, prepared by Conor Pacific/EFW.

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid of 24 rows. The rows are generally 6 feet apart with trees on 7-foot centers on each row. Selection of the phytoremediation approach and implementation of the project were described in the October 20, 2006 report, *Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California* prepared by Crawford Consulting, Inc.

1.2.3 Source of VOC Impact

As discussed in the 1995 report, the occurrence of VOCs in soils and groundwater at the Site appears to be the result of a discharge or spill to surficial soils at a location near the rear property line at the southwestern corner of the property. The area with the highest degree of chemical impact was delineated prior to excavation and was then excavated using a backhoe and transported off-site for appropriate disposal. It is possible that the VOCs detected in soils and groundwater at this location were associated with waste products from facility operations. The VOCs may be associated with solvents previously used for degreasing operations at the facility, although there are no records indicating use of PCE. Site records indicate that the solvents used for degreasing operations were not PCE-based solvents.

It is also possible that the VOCs and oil and grease are associated with waste products discarded from neighboring properties. There is an apartment complex next to the rear property line of the facility, and the laundry room for this complex is in the utility shed immediately adjacent to the rear property line. This laundry room is only 4 feet away from the area of highest impact to soil. If PCE associated with laundry cleaning products were spilled in this laundry room, it is possible that it could have drained onto the Cargill Salt property.

2 Groundwater Flow Analysis

Groundwater levels were measured quarterly and groundwater contour maps were prepared for the first and second quarter 2008 monitoring events.

2.1 Water-Level Measurement

Water levels in groundwater monitoring wells (MW-1, MW-2, MW-3, and MW-4) were measured each quarter, before any of the groundwater monitoring wells were purged for sampling for the quarterly monitoring event. The groundwater monitoring well locations are shown on Figure 2. The water levels were measured with an electric sounder. The depth to water at each well was recorded on a *Water Level Field Data* sheet (see Appendix A).

The water-level data through the second quarter of 2008 are shown on Table 1. The data in Table 1 include the date and time of measurement, the well casing elevation, the measured depth to groundwater, the groundwater elevation, and the change in elevation from the previous measurement. A plot of historical groundwater elevations is shown in Figure 3.

The Site groundwater monitoring wells were re-surveyed in September 2006 by CSS Environmental Services in order to provide Geotracker-compliant survey data. Results of the casing elevation survey indicate that each well is approximately 6.4 feet higher than the previous survey conducted in 1999. This difference is due to the use of different datum for the 2006 and 1999 surveys. The casing elevations from the September 2006 survey are shown on Table 1.

Groundwater levels in the on-site monitoring wells (MW-1, MW-2, and MW-3) showed a similar seasonal pattern in the first semi-annual period of 2008 as in the previous eight years (see Figure 3). Groundwater levels rose across the Site between the fourth quarter 2007 and first quarter 2008 measurements, reflecting winter-season recharge. Groundwater levels fell between the first and second quarter 2008 measurements, reflecting dissipation of winter-season discharge winter-season recharge. The groundwater level in off-site monitoring well MW-4 showed a similar seasonal pattern as the on-site wells during the first and second quarter 2008.

2.2 Groundwater Flow Direction and Gradient

Groundwater contour maps for the first and second quarters of 2008 based on the March and June 2008 water-level data are shown on Figures 4 and 5.

The groundwater flow direction determined for the first and second quarters of 2008 was to the northeast, consistent with the groundwater flow direction determined previously for the Site. The horizontal hydraulic gradient measured for the first quarter of 2008 was 0.020 and for the second quarter of 2008 was 0.015.

2.3 Groundwater Velocity

Average linear groundwater flow velocities (V) were calculated using a form of Darcy's Law,

$$V = Ki/n$$
,

where "K" is the hydraulic conductivity, "i" is the horizontal hydraulic gradient, and "n" is the effective porosity. The groundwater velocity calculations for the first and second quarters of 2008 groundwater data are presented in Appendix B.

Using hydraulic conductivity and porosity values determined for saturated native materials at the Site [based on slug tests and laboratory soil testing, respectively (Conor Pacific/EFW, 2002)], and the horizontal hydraulic gradients determined from the first and second quarters 2008 groundwater contour maps, groundwater flow velocities beneath the Site are calculated to be approximately 1.0 foot per year (ft/yr) for the first quarter 2008 measurements and 0.9 ft/yr for the second quarter 2008 measurements.

3 Groundwater Sampling and Analysis

This section summarizes the sample collection and analytical methods, presents an evaluation of quality control data, and summarizes the results of the sampling events.

3.1 Sample Collection and Analysis

Groundwater samples were collected March 20, 2008 and June 18, 2008 from groundwater monitoring wells MW-1, MW-2, MW-3, and MW-4. Dedicated tubing was installed in wells MW-1, MW-2, and MW-3 prior to the first quarter 2000 sampling event and on December 17, 2001 in well MW-4 to facilitate sampling with a peristaltic pump. Dedicated fluorinated ethylene propylene resin (FEP)-lined polyethylene tubing was installed in each monitoring well. The tubing intake was placed about one foot above the well bottom in each of the wells. Viton® dedicated check valves were installed on the tubing intakes to prevent back-flow of water into the well. A short length of dedicated Viton® tubing was installed at the well head for use in a peristaltic pump head. Prior to sample collection for each quarterly monitoring event, the wells were purged using a peristaltic pump. Field parameters (pH, electrical conductivity, temperature, and turbidity) were measured in purged groundwater from each well prior to sampling; these data are recorded on the Sample Collection Field Data sheets presented in Appendix A. After purging, groundwater samples were collected using the peristaltic pump and the dedicated Viton® pump head discharge tubing.

The groundwater samples were analyzed for VOCs using U.S. Environmental Protection Agency (USEPA) Method 8260. Results for all Method 8010 analytes were reported. The groundwater samples for first through second quarter 2008 were delivered with appropriate chain-of-custody documentation to TestAmerica Laboratories, Inc., a state-certified laboratory in Pleasanton, California, for chemical analysis.

3.2 Analytical Results

The results of field and laboratory quality control measures and the results of the groundwater monitoring well samples are reviewed in this section. The certified analytical reports and chain-of-custody documentation are presented in Appendix C.

3.2.1 Quality Control

Quality control (QC) samples were analyzed as part of the sampling and analysis program to evaluate the precision and accuracy of the reported groundwater chemistry data. QC samples included both field and laboratory samples. Descriptions of the purpose of specific field and laboratory QC samples used during the sampling and analysis program and an evaluation of field and laboratory QC results are presented below.

Field Quality Control Samples

A field duplicate was used during the first through second quarter 2008 sampling program for the Site. A field duplicate is used to assess sampling and analytical precision. The duplicate is collected at a selected well (MW-2 [first and second quarters 2008]) and then submitted "blind" to the laboratory for analysis with the same batch as the regular sample for the selected well. An estimate of precision is obtained by calculating the relative percent difference (RPD) between the regular sample and the duplicate sample using the following formula:

RPD =
$$[x - y] 100$$

0.5 $(x + y)$

where: [x - y] = the absolute value of the difference in concentration

between the regular sample (x) and the duplicate sample (y).

Laboratory Quality Control Samples

The following types of laboratory QC samples were used during the first through second quarter 2008 analytical program for the Site:

- surrogate spikes
- matrix spikes/duplicate matrix spikes

A surrogate spike is a check standard added to a sample in a known amount prior to analysis. Surrogate spikes consist of analytes not normally found in environmental samples and not targeted by the analytical procedure. Surrogate spikes provide information on recovery efficiency by comparing the percent recovery of specific surrogate analyses to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis exhibits an acceptable recovery efficiency. Recoveries that fall outside the acceptance limits indicate a potential problem with the recovery efficiency of analytes, which in turn indicates a potential bias with respect to the reported concentration of the environmental samples analyzed in the same batch.

Matrix spikes and duplicate matrix spikes are analyzed by the laboratory for the purpose of providing a quantitative measure of accuracy and precision, and to document the effect that the sample matrix has on the analysis. A selected sample is spiked in duplicate with known concentrations of analytes. The recoveries of the spiked analytes are compared to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analysis, the analysis has no statistically significant bias (i.e., the analysis is accurate). Recoveries that fall outside of the acceptance limits have a positive or negative bias, depending on whether the recovery is greater or less than the upper or lower acceptance limit, respectively. Analyses where analyte recoveries fall outside the acceptance limits should be regarded as estimates only.

Precision for matrix spikes is measured by calculating the relative percent differences (RPDs) between the measured concentration of analytes in the matrix and the duplicate matrix spike. The following equation is used for matrix spikes:

 $RPD = \underbrace{[MS - MSD] 100}_{0.5 (MS + MSD)}$

where: [MS - MSD] = the absolute value of the difference in

concentration between the matrix spike (MS) and the matrix

spike duplicate (MSD)

First Quarter 2008 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the first quarter 2008 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8260B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). The one parameter (PCE) for which RPDs could be calculated (see Table 2) PCE exhibits a low RPD value (i.e., less than 10%) indicative of good precision.

Second Quarter 2008 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the second quarter 2008 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8260B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). The one parameter (PCE) for which RPDs could be calculated (see Table 2) exhibits a medium RPD value (i.e., 11-25%) indicative of fair precision.

First through Second Quarter 2008 Laboratory QC Results

A review of the first through second quarter 2008 field data sheets and laboratory reports (presented in Appendices A and C, respectively) indicates that all analyses were performed within USEPA or California Department of Health Services (DHS) recommended maximum sample holding times.

QC data on surrogate spike recoveries and matrix spike recoveries are presented in the laboratory reports. These data indicate: (1) no surrogate spike recoveries were outside of the laboratory's acceptance limits; (2) RPD values for the matrix spikes and duplicate matrix spikes indicate a high overall degree of analytical precision.

No matrix spike or duplicate matrix spike recoveries were outside of the laboratory's control limits.

The laboratory QC data indicate that the results reported herein are of adequate quality for evaluation of site groundwater conditions.

3.2.2 Groundwater Results

The results of VOC analyses for each quarter for 2000 through second quarter 2008 are summarized in Table 3, which also shows the VOC results for the initial sampling event for monitoring wells MW-1, MW-2, and MW-3 in November 1999. The results for the first and second quarter 2008 monitoring events are also shown on Figures 6 and 7.

Consistent with previous monitoring events, PCE and its breakdown products TCE and 1,1-dichloroethene (DCE) were detected in Site groundwater samples from the first and second quarter 2008 monitoring events.

For the first and second quarters of 2008, the concentrations of PCE detected were:

- 170 and 390 μ g/L in monitoring well MW-1
- 2,900 and 1,700 μ g/L in MW-2
- not detected in MW-3
- 0.91 and 0.86 μ g/L in MW-4.

The concentrations of TCE detected were 18 and 42 μ g/L in monitoring well MW-1 and not detected and 21 μ g/L in MW-2. TCE was not detected in MW-3 or MW-4.

DCE was detected in monitoring well MW-3 at 1.0 and 1.4 μ g/L for the first and second quarters 2008. DCE was not detected in MW-1, MW-2, or MW-4.

3.3 Discussion

Variations in VOC concentrations at monitoring well MW-2, the well with the highest reported PCE concentrations at the site, generally correlate with variations in groundwater elevations at the Site. An increase in VOC concentrations generally follows a rise in groundwater elevations, and a decrease in VOC concentration generally follows a fall in groundwater levels (see Figure 8). The variations in VOC concentrations sometimes lag one quarter behind the variations in groundwater elevation.

The results for the first through second quarter 2008 quarterly monitoring events are generally similar to the results reported since the second quarter of 2006 (see Figure 7).

The average seasonal concentration of PCE reported for groundwater monitoring well MW-2 has been lower since the second quarter of 2006 (June 2006 event) compared to results reported since monitoring began in 1999. The concentration of PCE reported for MW-2 decreased from 5,200 μ g/L in March 2006 to 1,600 μ g/L in June 2006. The concentrations of PCE reported for MW-2 for the June 2006, September 2006, December 2006, March 2007, and December 2007 sampling events were the lowest PCE concentrations reported for the well since the initial sampling event in November 1999, and the annual highs have been lower in 2007 and 2008 than in the previous years.

The PCE concentrations reported for MW-2 for the last nine quarters appear to be an indication that the phytoremediation project implemented in June 2005 has reduced the average seasonal concentration of PCE at the site. However, continued monitoring will be required to assess the effectiveness of the phytoremediation project in further reducing the PCE concentrations in groundwater.

4 Phytoremediation Project Status Update

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid on the unpaved portion of the site. Selection of the phytoremediation approach and implementation of the project were described in the report, *Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc., October 20, 2006).

A tree monitoring and maintenance program is being conducted by a landscaping contractor. This program involves monthly inspection of the trees during the growing season, inspection and maintenance of the drip irrigation system, and weed control.

The end of the first semi-annual monitoring period of 2008 marks the first three years of the phytoremediation project. The trees were 4-ft-tall, bare-root poles with no foliage when planted in June 2005. During the first two years of growth, the trees developed foliage and most grew 3 to 10 additional feet in height. Photos comparing the appearance of the trees just after planting in 2005 and in June 2007 are show below and on the next page. By the end of year three, most of the trees had grown to heights of 10 to 25 feet. In April 2008, seven additional saplings were planted in the rear of the property near monitoring well MW-2.

As discussed in Section 3.3, the PCE concentrations reported for monitoring well MW-2 for the last nine quarters appear to be an indication that the phytoremediation project has been effective at reducing the average seasonal VOC concentration in groundwater at the site. Tree growth and VOC concentrations will be monitored and evaluated to determine the effectiveness of the phytoremediation project in further reducing VOC concentrations.

Bare-root trees planted in June 2005 - View towards rear of property

June 2007 - View from gate towards rear of property

June 2007 - View of front planting strip at Clement Avenue

Professional Certification

Groundwater Monitoring Results First Semi-Annual 2008 Monitoring Period Cargill Salt – Alameda Facility Alameda, California

Sew (. Johnson)

plank (. Wheale

This report has been prepared by CRAWFORD CONSULTING, INC. with the professional certification of the California professional geologist whose signature appears below.

Dana C. Johnston Project Manager

Mark C. Wheeler Principal Geologist

P.G. 4563

References

- Alameda County Environmental Health Services, 1999. Letter to Cargill Salt: Groundwater Monitoring Well Installation at 2016 Clement Avenue, Alameda, CA, May 7, 1999.
- Conor Pacific/EFW, 2001. Workplan for Off-Site Characterization, Cargill Salt Alameda Facility, June 18, 2001.
- ______, 2002. Off-Site Groundwater Characterization, Cargill Salt Alameda Facility, Alameda, California, August 21, 2002.
- Crawford Consulting, Inc., 1999. Workplan for Groundwater Characterization and Monitoring Well Installation, 2016 Clement Avenue, Alameda, California, July 7, 1999.
- ______, 2001. Groundwater Monitoring Results, First through Fourth Quarter 2000, Cargill Salt Alameda Facility, Alameda, California, April 11, 2001.
- ______, 2002. Groundwater Monitoring Results, First through Fourth Quarter 2001, Cargill Salt Alameda Facility, Alameda, California, August 14, 2002.
- ______, 2003. Groundwater Monitoring Results, First through Fourth Quarter 2002, Cargill Salt Alameda Facility, Alameda, California, August 13, 2003.
- ______, 2004. Groundwater Monitoring Results, First through Fourth Quarter 2003, Cargill Salt Alameda Facility, Alameda, California, February 27, 2004.
- ______, 2005. Groundwater Monitoring Results, First through Fourth Quarter 2004, Cargill Salt Alameda Facility, Alameda, California, November 7, 2005.
- ______, 2006. Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt Alameda Facility, Alameda, California, October 20, 2006.
- Crawford Consulting, Inc. and Conor Pacific/EFW, 2000. Groundwater Characterization and Monitoring Well Installation, Cargill Salt Alameda Facility, Alameda, California, January 31, 2000.
- Groundworks Environmental, Inc. (Groundworks), 1993. Results of Soil Sampling and Workplan for Remedial Activities, Alameda facility, October 19, 1993.
- ______, 1995. Soil and Groundwater Investigations and Remedial Activities, July 1993 September 1994, Cargill Salt Alameda Facility, Alameda, California, July 31, 1995.
- Hickenbottom, K. S., and Muir, K.S., 1988. Geohydrology and Groundwater-Quality Overview of the East Bay Plain Area, Alameda County, California, 205 (j) Report, prepared for the California Regional Water Quality Control Board, San Francisco Bay Region, by the Alameda County Flood Control and Water Conservation District, June 1988.

Limitations

This report and the evaluations presented herein have been prepared in accordance with generally accepted professional standards and is based solely on the scope of work and services described herein. This report has been prepared solely for the use of Cargill Salt for the purposes noted herein. Any use of this report, in whole or in part, by a third party for other than the purposes noted herein is at such party's sole risk.

Table 1. Groundwater Level Data

W-11/			Casing	Depth to	Water	Elev. Change
Well/ Piezometer	Date	Time	Elevation (feet, MSL)	Water (feet)	Elevation (feet, MSL)	from Last Measurement (feet)
1 iczonictei					(ICCL, MISL)	Wicasurcinciii (icci)
MW-1	11/16/1999	09:56	13.16	3.75	9.41	NA
MW-1	3/30/2000	10:09	13.16	2.81	10.35	0.94
MW-1	5/16/2000	09:43	13.16	3.32	9.84	-0.51
MW-1	7/28/2000	09:11	13.16	3.58	9.58	-0.26
MW-1	11/30/2000	08:36	13.16	3.52	9.64	0.06
MW-1	3/26/2001	08:47	13.16	3.15	10.01	0.37
MW-1	6/25/2001	10:19	13.16	3.53	9.63	-0.38
MW-1	9/28/2001	09:32	13.16	3.96	9.20	-0.43
MW-1	12/17/2001	10:47	13.16	3.23	9.93	0.73
MW-1	3/21/2002	07:28	13.16	2.89	10.27	0.34
MW-1	6/6/2002	08:03	13.16	3.50	9.66	-0.61
MW-1	9/20/2002	08:30	13.16	3.86	9.30	-0.36
MW-1	12/19/2002	08:38	13.16	3.13	10.03	0.73
MW-1	3/4/2003	10:31	13.16	3.08	10.08	0.05
MW-1	6/9/2003	08:32	13.16	3.29	9.87	-0.21
MW-1	9/8/2003	10:02	13.16	3.79	9.37	-0.50
MW-1	12/1/2003	10:16	13.16	3.78	9.38	0.01
MW-1	3/4/2004	09:31	13.16	2.88	10.28	0.90
MW-1	6/2/2004	08:42	13.16	3.45	9.71	-0.57
MW-1	9/14/2004	08:01	13.16	3.87	9.29	-0.42
MW-1	12/8/2004	07:44	13.16	3.23	9.93	0.64
MW-1	3/3/2005	08:07	13.16	2.01	11.15	1.22
MW-1	6/10/2005	07:05	13.16	2.90	10.26	-0.89
MW-1	9/16/2005	08:00	13.16	3.62	9.54	-0.72
MW-1	12/6/2005	08:00	13.16	3.28	9.88	0.34
MW-1	3/10/2006	07:40	13.16	2.28	10.88	1.00
MW-1	6/9/2006	09:45	13.16	3.09	10.07	-0.81
MW-1	9/11/2006	10:24	13.16	3.70	9.46	-0.61
MW-1	12/15/2006	07:34 09:18	13.16	2.94	10.22	0.76
MW-1 MW-1	3/6/2007 6/15/2007	09:18	13.16	2.87 3.30	10.29 9.86	0.07 -0.43
MW-1	9/11/2007	08:05	13.16 13.16	3.85	9.80	-0.45
MW-1	12/4/2007	08:53	13.16	3.58	9.58	0.27
MW-1	3/20/2008	08:33	13.16	3.00	10.16	0.58
MW-1	6/18/2008	08:13	13.16	3.73	9.43	-0.73
IVI VV - I	0/16/2008	06.22	13.10	3.73	9.43	-0.73
MW-2	11/16/1999	11:15	16.22	5.22	11.00	NA
MW-2	3/30/2000	10:05	16.22	2.80	13.42	2.42
MW-2	5/16/2000	09:35	16.22	4.13	12.09	-1.33
MW-2	7/28/2000	09:17	16.22	4.85	11.37	-0.72
MW-2	11/30/2000	08:32	16.22	4.75	11.47	0.10
MW-2	3/26/2001	08:40	16.22	3.28	12.94	1.47
MW-2	6/25/2001	12:12	16.22	4.75	11.47	-1.47
MW-2	9/28/2001	12:20	16.22	5.41	10.81	-0.66
MW-2	12/17/2001	10:44	16.22	4.07	12.15	1.34
MW-2	3/28/2002	09:37	16.22	3.40	12.82	0.67
MW-2	6/6/2002	08:11	16.22	4.70	11.52	-1.30
MW-2	9/20/2002	08:34	16.22	5.28	10.94	-0.58
MW-2	12/19/2002	08:45	16.22	3.37	12.85	1.91
MW-2	3/4/2003	10:26	16.22	3.11	13.11	0.26
MW-2	6/9/2003	08:31	16.22	4.16	12.06	-1.05

Table 1. Groundwater Level Data

Piezometer Date Time (feet, MSL) (feet) MW-2 9/8/2003 10:08 16.22 5.26 MW-2 12/1/2003 10:20 16.22 5.05 MW-2 3/4/2004 09:34 16.22 2.86	(feet, MSL)	Measurement (feet)
MW-2 12/1/2003 10:20 16.22 5.05	10.00	
	10.96	-1.10
$MW_{-2} = 3/4/2004 = 00.24 = 16.22 = 2.96$	11.17	0.21
191 99 - 2 3/4/2004 09.34 10.22 2.00	13.36	2.19
MW-2 6/2/2004 08:53 16.22 4.47	11.75	-1.61
MW-2 9/14/2004 07:59 16.22 5.26	10.96	-0.79
MW-2 12/8/2004 08:00 16.22 4.20	12.02	1.06
MW-2 3/3/2005 08:04 16.22 1.90	14.32	2.30
MW-2 6/10/2005 07:09 16.22 3.74	12.48	-1.84
MW-2 9/16/2005 08:08 16.22 4.92	11.30	-1.18
MW-2 12/6/2005 10:58 16.22 4.39	11.83	0.53
MW-2 3/10/2006 07:47 16.22 2.13	14.09	2.26
MW-2 6/9/2006 10:03 16.22 3.75	12.47	-1.62
MW-2 9/11/2006 10:22 16.22 4.94	11.28	-1.19
MW-2 12/15/2006 07:32 16.22 4.08	12.14	0.86
MW-2 3/6/2007 09:13 16.22 3.27	12.95	0.81
MW-2 6/15/2007 07:31 16.22 4.57	11.65	-1.30
MW-2 9/11/2007 08:07 16.22 5.60	10.62	-1.03
MW-2 12/4/2007 08:47 16.22 4.99	11.23	0.61
MW-2 3/20/2008 08:17 16.22 3.48	12.74	1.51
MW-2 6/18/2008 08:27 16.22 4.93	11.29	-1.45
MW-3 11/16/1999 15:43 13.34 4.34	9.00	NA
MW-3 3/30/2000 10:01 13.34 2.77	10.57	1.57
MW-3 5/16/2000 09:46 13.34 3.44	9.90	-0.67
MW-3 7/28/2000 09:05 13.34 3.72	9.62	-0.28
MW-3 11/30/2000 08:34 13.34 3.73	9.61	-0.01
MW-3 3/26/2001 08:54 13.34 3.51	9.83	0.22
MW-3 6/25/2001 10:21 13.34 3.65	9.69	-0.14
MW-3 9/28/2001 09:30 13.34 3.96	9.38	-0.31
MW-3 12/17/2001 10:38 13.34 3.28	10.06	0.68
MW-3 3/21/2002 07:28 13.34 3.10	10.24	0.18
MW-3 6/6/2002 08:07 13.34 3.63	9.71	-0.53
MW-3 9/20/2002 08:25 13.34 3.82	9.52	-0.19
MW-3 12/19/2002 08:42 13.34 3.10	10.24	0.72
MW-3 3/4/2003 10:36 13.34 3.29	10.05	-0.19
MW-3 6/9/2003 08:28 13.34 3.41	9.93	-0.12
MW-3 9/8/2003 10:00 13.34 3.85	9.49	-0.44
MW-3 12/1/2003 10:30 13.34 3.90	9.44	-0.05
MW-3 3/4/2004 09:22 13.34 3.11	10.23	0.79
MW-3 6/2/2004 08:46 13.34 3.53	9.81	-0.42
MW-3 9/14/2004 08:05 13.34 4.07	9.27	-0.54
MW-3 12/8/2004 07:40 13.34 3.73	9.61	0.34
MW-3 3/3/2005 07:53 13.34 2.36	10.98	1.37
MW-3 6/10/2005 07:14 13.34 3.15	10.19	-0.79
MW-3 9/16/2005 08:04 13.34 3.90	9.44	-0.75
MW-3 12/6/2005 08:04 13.34 3.35	9.99	0.55
MW-3 3/10/2006 07:43 13.34 2.89	10.45	0.46
MW-3 6/9/2006 09:33 13.34 3.26	10.08	-0.37
MW-3 9/11/2006 10:19 13.34 3.70	9.64	-0.44
MW-3 12/15/2006 07:37 13.34 3.10 MW-3 3/6/2007 09:16 13.34 3.04	10.24 10.30	0.60 0.06

Table 1. Groundwater Level Data

Well/			Casing Elevation	Depth to Water	Water Elevation	Elev. Change from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-3	6/15/2007	07:27	13.34	3.60	9.74	-0.56
MW-3	9/11/2007	08:03	13.34	3.87	9.47	-0.27
MW-3	12/4/2007	08:50	13.34	3.62	9.72	0.25
MW-3	3/20/2008	08:15	13.34	3.13	10.21	0.49
MW-3	6/18/2008	08:24	13.34	3.90	9.44	-0.77
141 (4 5	0/10/2000	00.21	13.31	5.50	2.11	0.77
MW-4	12/17/2001	10:40	12.43	2.55	9.88	NA
MW-4	3/28/2002	08:05	12.43	3.06	9.37	-0.51
MW-4	6/6/2002	07:57	12.43	2.85	9.58	0.21
MW-4	9/20/2002	08:28	12.43	3.21	9.22	-0.36
MW-4	12/19/2002	08:53	12.43	3.70	8.73	-0.49
MW-4	3/4/2003	10:34	12.43	3.14	9.29	0.56
MW-4	6/9/2003	08:29	12.43	2.82	9.61	0.32
MW-4	9/8/2003	10:04	12.43	3.43	9.00	-0.61
MW-4	12/1/2003	10:14	12.43	3.12	9.31	0.31
MW-4	3/4/2004	09:27	12.43	2.81	9.62	0.31
MW-4	6/2/2004	08:44	12.43	3.34	9.09	-0.53
MW-4	9/14/2004	08:03	12.43	3.51	8.92	-0.17
MW-4	12/8/2004	07:36	12.43	3.10	9.33	0.41
MW-4	3/3/2005	07:44	12.43	2.48	9.95	0.62
MW-4	6/10/2005	07:02	12.43	2.47	9.96	0.01
MW-4	9/16/2005	08:12	12.43	3.23	9.20	-0.76
MW-4	12/6/2005	07:50	12.43	3.17	9.26	0.06
MW-4	3/10/2006	07:37	12.43	3.77	8.66	-0.60
MW-4	6/9/2006	07:30	12.43	2.49	9.94	1.28
MW-4	9/11/2006	10:17	12.43	3.19	9.24	-0.70
MW-4	12/21/2006	NR	12.43	2.90	9.53	0.29
MW-4	3/6/2007	09:20	12.43	2.54	9.89	0.36
MW-4	6/15/2007	07:33	12.43	3.03	9.40	-0.49
MW-4	9/11/2007	08:11	12.43	3.27	9.16	-0.24
MW-4	12/4/2007	08:55	12.43	3.25	9.18	0.02
MW-4	3/20/2008	08:20	12.43	2.65	9.78	0.60
MW-4	6/18/2008	08:31	12.43	3.35	9.08	-0.70

Key:

NA = Not available

feet, MSL = feet, relative to Mean Sea Level

Casing elevations for all wells were resurveyed on September 6, 2006 by CSS Environmental Services for Geotracker compliance.

Table 2.
Relative Percent Difference Based on Duplicate Samples

First Quarter 2008 Second Quarter 2008

Analysis	Well MW-2 Results	Duplicate (DUP-1) Results	RPD ¹ (%)	Well MW-2 Results	Duplicate (DUP-1) Results	RPD ¹ (%)
Volatile Organic Compounds (μg/L)						
1,1-Dichloroethene (DCE)	< 20	< 20	NM^2	< 20	< 20	NM
1,1,1-Trichloroethane (TCA)	< 20	< 20	NM	< 20	< 20	NM
Trichloroethene (TCE)	< 20	< 20	NM	21	< 20	NM
Tetrachloroethene (PCE)	2,900	3,000	3.4	1,700	1,900	11.1

 $^{1 \}text{ RPD}$ = relative percent difference

All other 8010 list analytes not detected (by 8260).

 $^{^2}$ NM = not meaningful; RPD cannot be accurately calculated where one or both values are below the method reporting limit.

Table 3. Summary of Groundwater Monitoring Well Data

Results measured in micrograms per liter (μ g/L)

Well No	١.																	MW-1																		
Field Dat	e 11/16/99	3/30/00	5/16/00	7/28/00 1	1/30/00	3/26/01	6/25/01	9/28/01 12	2/17/01	3/21/02	6/6/02	9/20/02 1	2/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06 1	2/15/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08 MC	$\mathbb{C}L^1$
DCE^2	< 50.0	13	< 10	15	14	<13	14	15	<13	<13	<13	<13	< 13	< 10	12	5.2	8.4	< 5.0	5.8	6.6	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	3.3	< 2.0	< 2.0	3.0	< 5.0	< 5.0	< 2.0	< 5.0	6
CFC 113 ³	na ⁴	1.4	< 10	< 10	< 8.3	< 50	< 50	< 50	< 50	< 13	< 13	< 13	< 13	< 10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 5.0	< 2.0	< 5.0 n	ьe ⁵
DCA^6	< 50.0	0.8	< 10	< 10	< 4.2	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 5.0	< 2.0	< 5.0	5
Chloroform	< 50.0	0.6*	< 10	< 10	< 8.3	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 10	< 4.0	1.4	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 10	< 10	< 4.0	<10 n	ie.
TCA ⁷	< 50.0	1.6	< 10	< 10	< 4.2	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 5.0	< 2.0	< 5.0 2	00
TCE ⁸	178	150	190	170	130	180	250	210	190	160	140	190	68	97	90	110	130	53	72	81	39	15	23	34	16	3.4	22	47	20	17	38	51	29	18	42	5
PCE ⁹	906	1,400	1,900	1,200	880	1,000	1,400	1,000	1,400	1,100	980	1,100	600	730	770	780	850	370	490	620	380	160	180	240	140	39	140	400	210	170	310	430	330	170	390	5
Other analytes ¹⁰	nd ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd -	

Well No.																		MW-2																		
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01 1	2/17/01	3/28/02	6/6/02	9/20/02 1	2/30/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06 1	2/15/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	MCL ¹
DCE^2	< 50.0	< 0.5	<25	<25	< 8.3	<25	<25	<25	<25	<25	<25	<25	<25	< 20	< 20	< 20	< 20	< 20	<25	<25	< 20	< 50	<25	< 20	<25	<25	< 20	< 20	< 20	< 20	< 20	<20	< 20	<20	< 20	6
CFC 113 ³	na	< 0.5	< 25	< 25	< 17	< 100	< 100	< 100	< 100	< 25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	< 25	< 20	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	ne ⁵
DCA^6	< 50.0	< 0.5	< 25	< 25	< 8.3	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	< 25	< 20	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	5
Chloroform	< 50.0	< 0.5	< 25	< 25	< 17	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	< 25	< 40	< 50	< 50	< 40	< 20	< 40	< 40	< 40	< 40	< 40	< 40	< 40	ne
TCA^7	< 50.0	5.0	< 25	< 25	< 8.3	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	< 25	< 20	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	200
TCE ⁸	< 50	29	53	< 25	20	40	78	< 25	< 25	49	52	32	< 25	58	41	28	25	39	49	37	30	78	43	29	45	59	< 20	< 20	< 20	< 20	22	31	< 20	< 20	21	5
PCE ⁹	840	3,600	3,200	3,300	1,700	2,200	4,400	1,700	1,700	3,500	3,800	2,100	1,800	3,900	3,800	2,500	2,500	3,000	4,100	3,800	2,800	7,300	3,600	2,500	3,300	5,200	1,600	990	1,000	1,600	2,400	1,700	1,100	2,900	1,700	5
Other analytes 10	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L]$)

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

 $^{^{7}}$ TCA = 1,1,1-Trichloroethane

⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

¹⁰ All other 8010 list analytes

nd = not detected above laboratory reporting limit
* Chloroform detected in equipment blank at 1.6 μ g/L for 3/30/00 event.

Table 3. Summary of Groundwater Monitoring Well Data

Results measured in micrograms per liter (μ g/L)

Well No.	Tresums inc			•	, ,													MW-3																		
Field Date	11/16/99	3/30/00	5/16/00	7/28/00 1	1/30/00	3/26/01	6/25/01	9/28/01 1	2/17/01	3/21/02	6/6/02	9/20/02 12	2/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06 1	2/15/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	MCL^1
DCE^2	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.51	< 0.5	0.81	< 0.5	< 0.5	0.68	2.4	1.5	1.1	0.86	4.3	2.8	1.6	1.5	2.4	1.4	1.1	1.0	1.4	6
CFC 113 ³	na	< 0.5	< 0.5	< 0.5	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 0.500	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ne
TCA ⁷	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁸	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ⁹	< 0.500	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	0.81	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.90	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.56	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Well No.														MW-4														
Field Date	12/17/01	3/28/02	6/6/02	9/20/02 1	2/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06	12/21/06	3/6/07	6/15/07	9/11/07	12/4/07	3/20/08	6/18/08	MCL^1
DCE^2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
CFC 113 ³	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ne
TCA ⁷	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁸	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ⁹	2.6	2.8	2.0	2.5	1.1	2.1	2.1	1.6	1.6	1.7	1.4	1.3	1.2	0.93	0.98	0.8	1.1	0.79	0.64	0.70	0.63	0.70	0.75	0.86	0.92	0.91	0.86	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Notes

 $^{^1}$ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter [μ g/L])

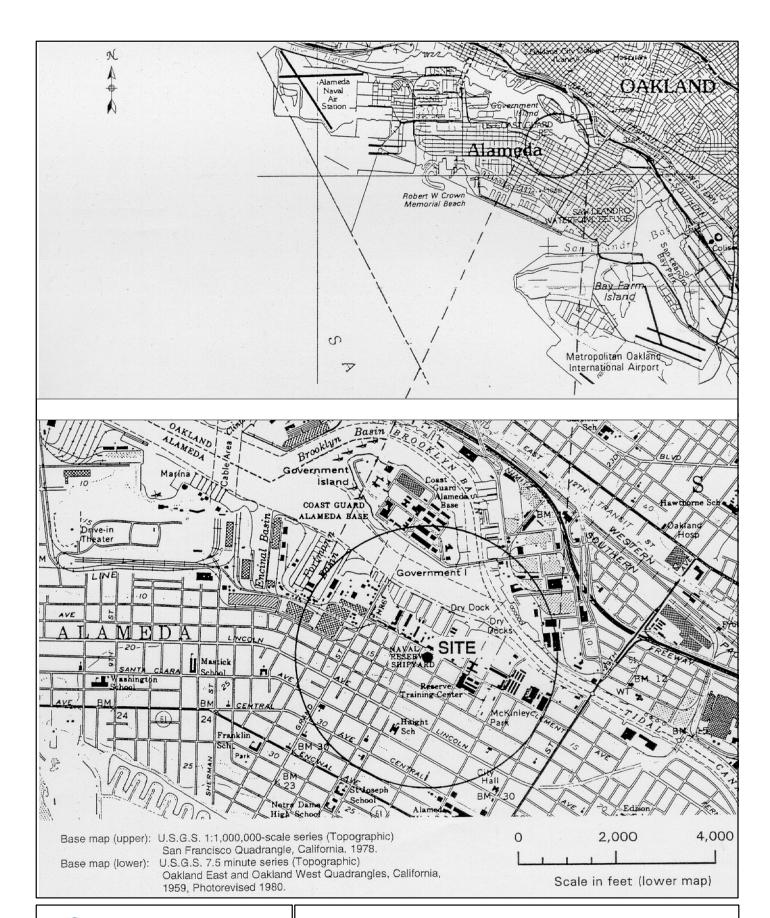
² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane


⁷ TCA = 1,1-Dichloroethane

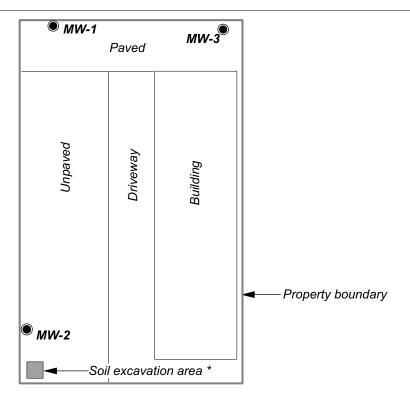
⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

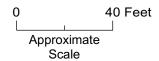
¹⁰ All other 8010 list analytes

¹¹ nd = not detected above laboratory reporting limit

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California


Figure 1. Site Location

MW-4

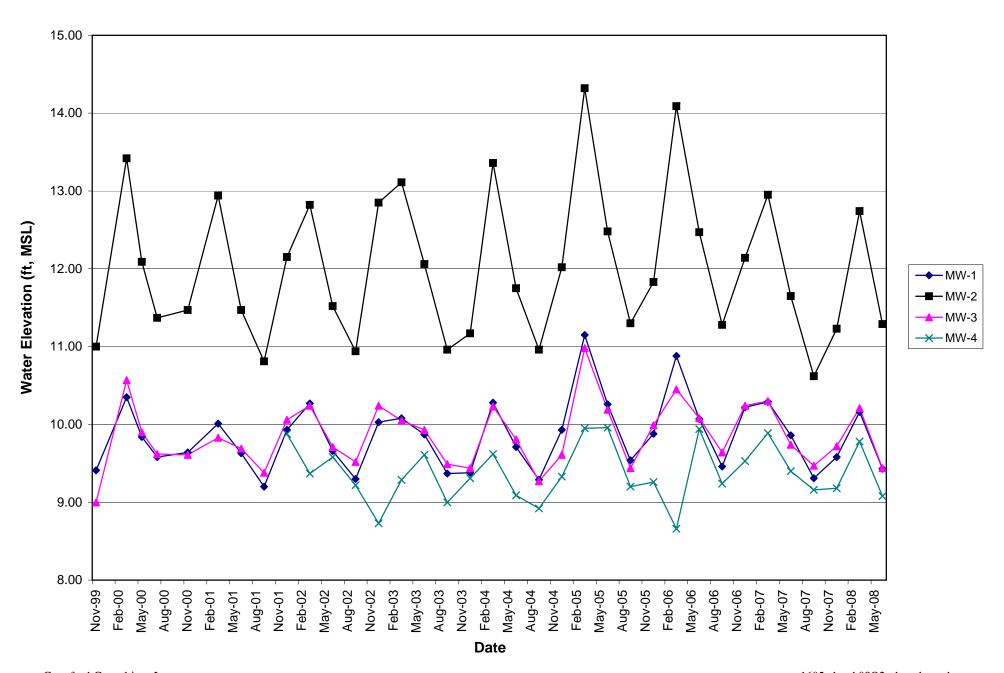

Curb line (Typ.)

Clement Avenue

EXPLANATION

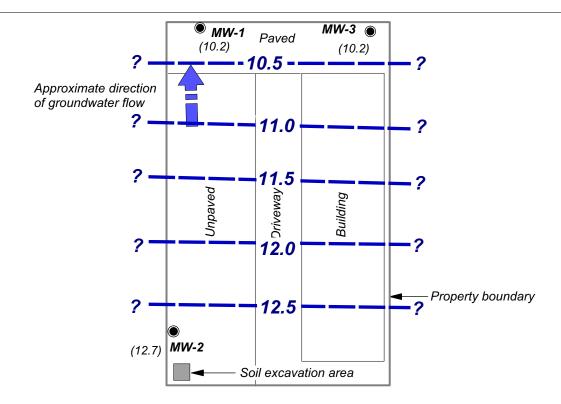
- Groundwater monitoring well
- * Excavated in February 1994

1605fig207Q4.dsf 2/22/08

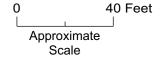

Base map from Conor Pacific/EFW, Off-Site Groundwater Characterization, August 21, 2002.

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 2. Groundwater Monitoring Well Locations


Figure 3. Graphical Summary of Groundwater Elevations

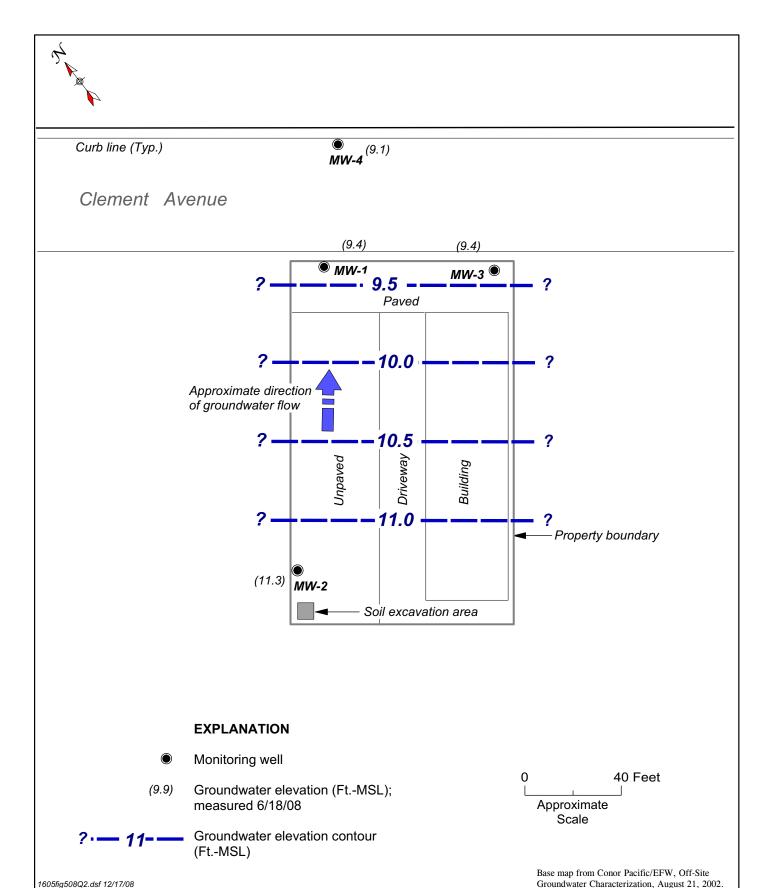
Curb line (Typ.) (9.8) **MW-4**


Clement Avenue ?———-10.0-——— ?

EXPLANATION

- Monitoring well
- (9.3) Groundwater elevation (Ft.-MSL); measured 3/20/08

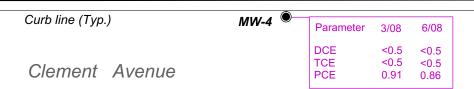
? - 10 — Groundwater elevation contour (Ft.-MSL)

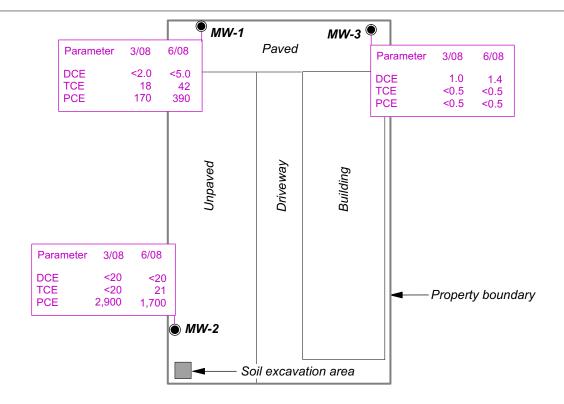

Base map from Conor Pacific/EFW, Off-Site Groundwater Characterization, August 21, 2002.

1605fig408Q2.dsf 12/17/08

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 4. Groundwater Elevation Contours - March 2008





Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 5. Groundwater Elevation Contours - June 2008

EXPLANATION

Groundwater monitoring well location

All concentrations reported in micrograms per liter (μ g/L), in groundwater. All other 8010 list analytes were below detection limits.

DCE <2.0 TCE 18

PCE

1605fig608Q2.dsf 12/8/08

170

DCE = 1,1-Dichloroethene
PCE = Tetrachloroethene
TCE = Trichloroethene
VOCs = Volatile organic compounds

0 40 Feet
Approximate
Scale

Analytical parameter

Base map from Conor Pacific/EFW, Off-Site Groundwater Characterization, August 21, 2002.

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 6. VOC Concentrations in Groundwater – March and June 2008

Figure 7. Graphical Summary of PCE Concentrations

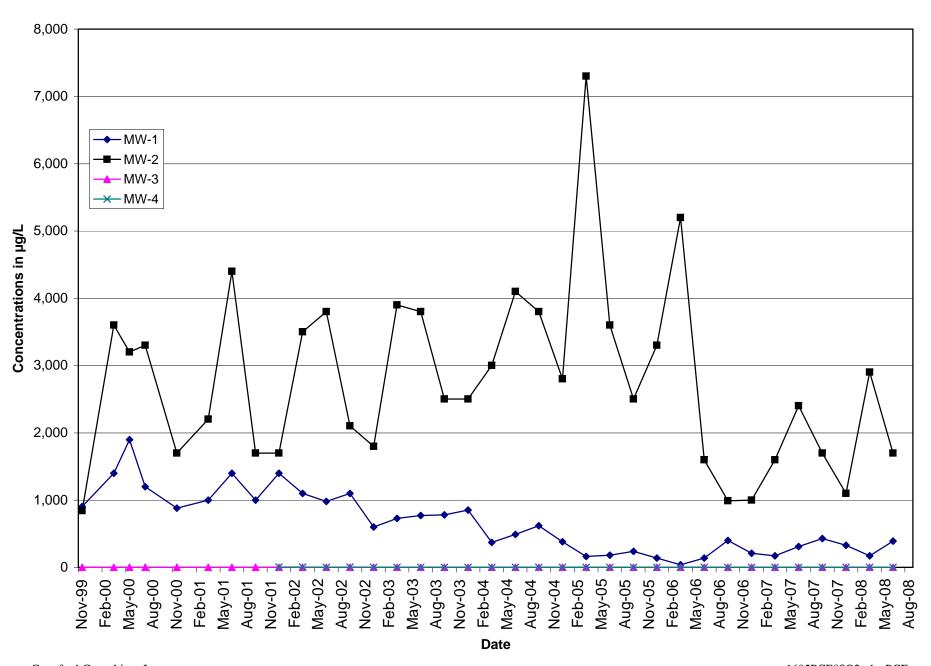
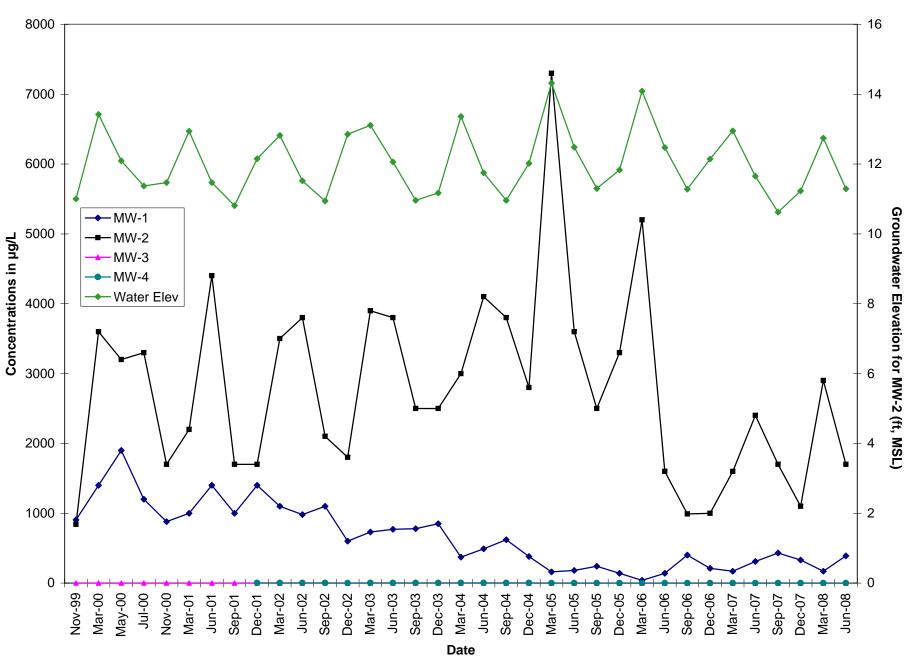
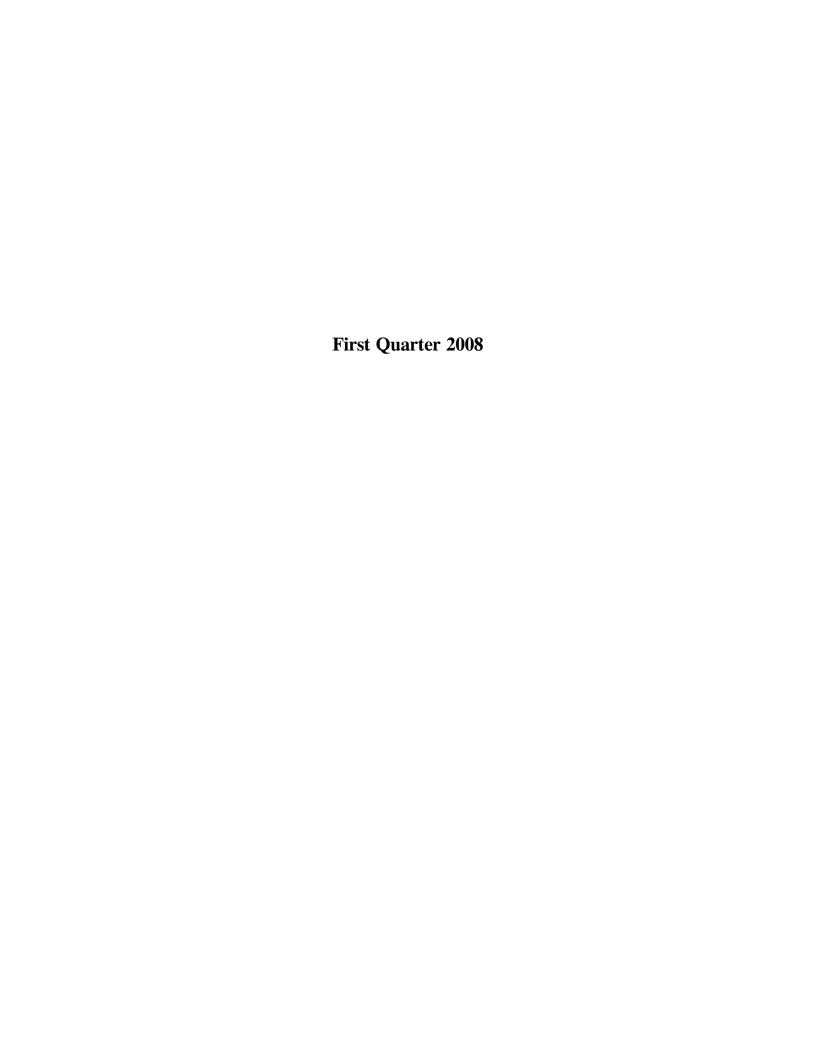




Figure 8. PCE Concentrations vs. Groundwater Elevation

Appendix A

Field Data Sheets

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

Well ID	Date	Time	Depth to Water (1st Msmt.) (feet)	Depth to Water (2nd Msmt.) (feet)	Comments					
MW-1	3/20/08	0=613	3.00	300						
MW-2	3/1908	0817	3,48	3.48						
MW-3	3/20/08	0412	3./3	3,/3						
MW-4	3/20/04	0420	2,65	2.65						

Data Collection

Data Concetion	
Field measurements by:	Reviewed by:
Print: Manuel L Galliges	Print: Dividers
Print: Propriet	Time.
Signature:	Signature: Signature:
Date: 3+20-08	Date: $4/\ell/6$
	

Page ___ of ___

Project No.: Project Name: Location: Client:	CS1605 Alameda Alameda, Cargill Sa	CA			Well ID Sample Start Da Finish I	ID: Mu ate: 3-20	u-1 _08
WELL INFORM Casing diameter One casing volur One casing volur	IATION (in.): me (gal.): $me = \pi x$ ar fi for cas	1.0 O.(,) Casing radius (ii ing diameter of:	Calculated purp $(x, 1) \times 1$ ft/12 in. (x, 1) = 0.041	(ft): $3 \circ 4$ ge volume (gal.) ($1^2 \times [well \ depth]$ $2'' = 0.16 4''$ It for checking:	Well de $(3 \times casing\ volunt (ft) - depth\ to\ water = 0.65 5" = 0.65$	epth (ft): $\frac{18}{100}$ me): $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$	87 $8'' = 2.6$
WELL PURGIN Date purged: Purging equipme	3-20- ent:		Start time: pump Teflor	0903 Bladder pump bailer Well yield (H/L):	Other	O925 Peristaltic pump	
Purge water disp Time (2400 hr	oosal:	Drum Cumulative Vol. Purged (Liters) 2,3 4.4 6,9	pH (units) (6, 44 (6,72 (6.77	•	T (° C) 14.8 14.8	Color (Visual) Clear Clear Clear	Turbidity (NTU) /. 00 O. 49 O. 12
Total Purged (L		6.9					
l	3-2	Peristaltic PVC bailer	pump	Dept Bladder pump	th to water (ft) b Teflor	efore sampling: n bailer	
Weather condition/I				falan			62
Meter calibration	Tem	ECperature	inul L	Galliges	Furbidity		

Page ___ of ___

Project No.:	CS1605				Well ID:	mw-	2
Project Name:	Alameda F	acility			Sample 1	D: mw.	-2
Location:	Alameda, C				Start Da	te: 3-,24	>~6.A
Client:	Cargill Salt				Finish D	ate: 3~2	0- 64
Chont.	- Curgin Dan						
WELL INFORM Casing diameter (One casing volum One casing volum Gallons per linea Floating product WELL PURGING Date purged:	(in.): ne (gal.): $ne = \pi x [c]$ or ft for casin thickness (ft	asing radius (in ng diameter of:	1.) $x = 1$ ft/12 in. x = 0.041 Method	$J^2 x [well depth 2" = 0.16 4"$	= 0.65 5" = Interface probe	er (ft)] $x 7.48 g$ 1.0 6'' = 1.5 Clear 1	gal/ft^3 $8'' = 2.6$
Purging equipme		Submersible		Bladder pump		eristaltic pump	· ·
I dignig equipine	111.	PVC bailer		bailer	Other		
Purge rate (lpm):	0,			Well yield (H/L)			
Purge water disp		Drum		,, e.i. j.e.a (11, 12)	·		
Time (2400 hr / 929) 5	Cumulative Vol. Purged (Liters) 2,/ 4,2 4,3	pH (units) 6.73 6.74 6.74	EC (mS/cm) '399 '404	T (°C) /5.0 /4.8 /4.9	Color (Visual) Char Char Char	Turbidity (NTU) 4.66 0.32 0.31
Total Purged (Li		6.3					
WELL SAMPLI	NG						
Date sampled:	3-20	- 04	Start time:	1041			
Sampling equipn	nent:	Peristaltic PVC bailer		Bladder pump	th to water (ft) be		
Weather condition/R		Sunny	Clear		Ambient temper	ature (° F):	65
Well colldition/F	CIIIai KS.	All S	amples	fa pan			
Meter calibration		EC			pH		
Purged and samp		nt): Mor nature:	rul L. G	allegos	Reviewed by:	JE	

Page ___ of ___

Project No.: CS	\$1605			Well ID:	mu.	<u>- 'S</u>
	ameda Facility			Sample II): <u>mu</u>	·-3
	ameda, CA			Start Date	: 3-20)-0 Y
Client: Ca	argill Salt			Finish Da	te: <u>3-2</u> 9	9-0 Y
Gallons per linear fit Floating product thic): $/$ 0 $/$ 2 $/$	Calculated purp $(in.) \times I \text{ ft/12 in.}$ of: I'' = 0.041 Method	ge volume (gal.) ($2'' = 0.16 4''$	= 0.65 5" = 1.	$\begin{array}{ccc} (ft) & & & & \\ (ft) & & $	8" = 2.6
	3.785 liters per 1 gal		mazu	End time:	1010	
	3-20-08			-	<u> </u>	
Purging equipment:		ole pump			istaltic pump_	
Purge rate (lpm):	Da 135 PVC bailer		n bailer Well yield (H/L):	Other Low		
Purge water disposa	1. 7/	um on	s: Le			
I tilge water disposa	Cumulative		3. +0			
Time	Vol. Purged		EC	T	Color	Turbidity
(2400 hr)	(Liters)	(units)	(mS/cm)	(° C)	(Visual)	(NTU)
<i>७</i> न ४५		7,28	574	14.1	Clear	9.13
0954		7,33	<u>573</u>	14.7	Clear	80.4
1010	10.3	7.35	573	15.3	Cher	268
Total Purged (Liter	s): 6.3					
WELL SAMPLING	·				-	
Date sampled:		Start time:	OID.	End time: /	9/2	
Date sampled.	2-6-	_ start time. L	Dent	h to water (ft) before		15 ()
Sampling equipmen			Bladder pump_	Teflon b	pailer	75,02
Weather conditions Well condition/Ren		iny /cliar		Ambient tempera	ture (° F):	64
Meter calibration:	EC			pH		
	-	1 - 4 - 1 4			4	
Purged and sample	d by (print):	rancy c	alless		Ms	
	d by (print): Signature:	My		Reviewed by:	+ -	

Page ___ of___

Project No.:	CS1605				Well ID	mu-	4
Project Name:	Alameda	Facility			Sample !		-4
Location:	Alameda,	CA			Start Da		0-08
Client:	Cargill Sa	ılt			Finish D)ate:	208
WELL INFORM	MATION						
Casing diameter	(in.):	l. 5 E	epth to water	(ft): 2.4°	Well de	pth (ft):	=19.0
One casing volu	me (gal.):			ge volume (gal.) (3		*	.0/
		casing radius (in) $x 1 ft/12 in.$	$\int_0^2 x [well depth (fine)]^2$) - depth to wat	ter (ft)] x 7.48 g	gal/ft³
				2" = 0.16 4" =			
Floating product				l for checking: I			
WELL DIDGIN	IC (2 795 1	iters per 1 cellon)					
		iters per 1 gallon)	Start time:	∩ <i>≪</i> 22	End time:	5730	
Date purged:	3-20-	Submersible p		Bladder pump		eristaltic pump	/
Purging equipme	ent:	PVC bailer			Other	rustante hamb	
Purge rate (lpm)	١٠	O.U.S		Well yield (H/L):			
Purge rate (Ipm) Purge water dist					17.99		
ruige water dis	posar.	Cumulative	on s	; te			
Time	;	Vol. Purged	pН	EC	T	Color	Turbidity
(2400 h		(Liters)	(units)	(mS/cm)	(° C)	(Visual)	(NTU)
	7827	7 =	7.03	608	16. 7	Clear	727
	839	5.0	7.21	608	16.7	Char	097
	8 39 850	7.5	7.61	591	16.9	01	0.01
<u>v</u>	3 3 0	<u> </u>	7.18	37/	- (() -	MAN	
-							
Total Purged (L	Liters):	7.5			·		
10001100000							
WELL SAMPL							
Date sampled:	3-20	-08	Start time:	0220			
			,	•	to water (ft) be		
Sampling equip	ment:			Bladder pump_	Teflor	bailer	-
		PVC bailer_	Other _	-			
Weather conditi	iona	٠	01		Ambiant tampar	estura (° E).	60
Well condition/		ni i	Carolis	faken	ambient temper	ature (1).	
well condition.	Kemai ks.	11/ 30	rapus	707-01			
Meter calibration	on:	EC /// see	-17 200		DH 659	-700 //oc	2 -100- 38
Janoran	Temi	EC 14.870 perature 5	V		urbidity		1
_					· <u> </u>		
Purged and sam	ipled by (pr	rint): Man	ulf L. Gal	10925		1/2	
	Si	gnature:	11-ll		Reviewed by:	15	
						1	

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

Data Collection

Date: 6-18-07

Well ID	Date	Time	Depth to Water (1st Msmt.) (feet)	Depth to Water (2nd Msmt.) (feet)	Comments
MW-1	4/15/0%	0822	3,73	3.73	No bolts on box
MW-2	4/18/08		4.93	4.93	No folk on box
MW-3	Le/146/08	0824	3.90	3,90	No botts on boy
MW-4	6/14/08	0831	3.35	3.35	ho bolts on b-x

Field measurements by:	Reviewed by:
Print: Manuel L. Gallegos	Print: Jim Buttera
Signature: Mound 1 shelos	Signature: Hutter

Date:

Page ___of__

Project No.:	CS1605				Well 1	ID: Mw	-1	
Project Name:	Alameda F	acility			Sampl	le ID: W		
Location:	Alameda,	CA			Start 1	Date: ' 🕻 -	18-08	
Client:	Cargill Sal	t			Finish	Date:	-12-08	
One casing volu One casing volu	r (in.): sime (gal.): $sime = \pi x$	0,59 (casing radius	Calculated purg (in.) x 1 ft/12	ge volume (gal.) in.] ² x [well depo	(3 x casing volu th (ft) - depth to	ume):	79 48 gal/ft³	
		_		$2^n = 0.16$ d for checking:		,	1.5 8" = 2.6 bailer	
roating produc	- I Unickliess	(11). 7013		d for checking.	interface prob	C _ X _ Cicar	Danci	
WELL PURGI				_		~ ^ ~		
Date purged:				0922			-	
Purging equipm	nent:			Bladder pump		Peristaltic pump		
Purge rate:		PVC bailer		n bailer Well yield (H/L)	Other			
Purge water dis	sposal:		Onsim	wen yield (11, 2)				
Time		Cumulative Vol. Purged	рН	EC	T	Color	Turbidity	
(2400 h		2.2		(μS/cm)	(° C)	(Visual)	(Visual or NTU)	
097	 .	- 4.4	4.93	464		Clear	0.00	
094		<u>(e.4</u>	6.87	411	189 189	Clear	66.0	
Total Purged (s	(al.):	6.4						
WELL SAMPI				/				
Date sampled: Sampling equip		Peristaltic	pump	Bladder pump	th to water (ft)	D55U before sampling: on bailer	4.75	
		PVC baller	Other _					
Weather condition/		Sunny 10	char 5cm plus	takn	Ambient temp	erature (° F):	74	
Meter calibration		EC			pH Furbidity			
Purged and san		rint): Manuature: Manua	4 / 1 -	liges	Reviewed by	B		

Page of

Project No.:	CS1605				Well II		<u> </u>
Project Name:					Sample	ID: Mu-	-2
	Alameda,				Start D	Pate: 6-/	8-08
Client:	Cargill Sal	<u>lt</u>			Finish	Date: \bigcirc \bigcirc	18-08
WELL INFOR	MATION						
Casing diameter	r (in.):	0.25	Depth to wate	r (ft): 495	Well d	epth (ft): 17	5
One casing volu	_			rge volume (gal.)			54
				$[in.]^2 \times [well\ dept]$			8 gal/ft ³
-				2" = 0.16	•	•	· · · · · ·
_		(ft):		od for checking:			
					<u> </u>		
WELL PURGI	NG						
Date purged:	6-18-	08	Start time:	1112	End time:	1141	
Purging equipm	nent:			Bladder pump_		Peristaltic pump	
		PVC bailer			Other		
Purge rate:				Well yield (H/L):	: H19h	•	
Purge water dis	sposal:	Drum	on	Sik			
Time		Cumulative Vol. Purged	pН	EC	Т	Color	Turbidity
(2400 h		(gal-)/, L/S	(units)	(μS/cm)	(° C)	(Visual)	(Visual of NTU)
12	21	19	7.08	446	19,7	Cher	17.09
117	31	3.8	4.84	458	195	Clear	6.81
1/4	-11	5.7	6.79	461	19,4	Cloar	1.80
Total Purged (g		5,2					
Total Turget (ilus	<u> </u>					
WELL SAMPI	LING						
Date sampled:	Ce-18	-08	Start time:	1142	End time:	1144	
				Dept	th to water (ft) b	efore sampling:	5,50
Sampling equip	ment:	Peristaltic	pump	Bladder pump_	Teflo	n bailer	}
		PVC bailer _	Other				
Weather condit	ione	5/	01		Ambient tempe	roture (0 E).	75
Well condition/	Remarks:	Duny	Canal	faker	Ambient tempe	rature (* F):	/
wen condition	Romarks.	-1761	Sanges	faces			
Meter calibration	on:	EC			рН		
	Tempe	erature					
Durged and con	nnled by (n	rint). Ma	11/1 60	Ilia.		\lambda	
Purged and san	uhien na (b	1111). 11 M	0/) reger	D	X	
	Sign	iatur o :	41		Reviewed by:	/}	

Page ____ of ___

Project No.:	CS1605				Well I	D: Mا	-3		
Project Name:	Alameda	Facility		Sample ID: Mw-3					
Location:	Alameda,				Start D	Date: 6-1	8-04		
Client:	Cargill Sa				Finish		4-08		
One casing vol One casing vol Gallons per lin	er (in.): lume (gal.): lume = π : near ft for c	Cosing radius casing diameter	Calculated pury (in.) $x \ 1 \ ft/12$ of: $1'' = 0.04$	(ft): 3.69 ge volume (gal.) in. J^2 x [well dep J^2 = 0.16 d for checking:	(3 x casing voluth (ft) - depth to 4. " = 0.65 5	me):	$ \begin{array}{ccc} $		
WELL PURG	ING		·		 				
Date purged:	1,-18-	-64	Start time:	1010	End time:	1059			
Purging equipr		Submersible		Bladder pump	-	Peristaltic pump	v l		
88 - 4		PVC bailer	• •	n bailer	Other				
Purge rate:		0.12 4		Well yield (H/L)			•		
Purge water di	isposal:	Drum	on situ						
Time	.	Cumulative Vol. Purged	рН	EC	Т	Color	Turbidity		
(2400 h		teal./: Ls		(μS/cm)	(° C)	(Visual)	(Visual or NTU)		
10:	24	2.1	7118	571	19.4	Clock	9,12/		
100	42	4.2	7.37	590	19.4	Clear	963		
04	59	103	2.41	590	19.8	COX	8,38		
Total Purged	gat.):	(a3							
WELL SAMP	LING								
Date sampled:	(0-18-	Ø⁴	Start time:	059	End time:	1197			
Sampling equip		Peristaltic	pump <u></u>	Dep Bladder pump	th to water (ft) b	efore sampling: n bailer	i5.18		
Weather condi Well condition	itions: /Remarks:	Sunny l	sher Smfls	Jakin	Ambient tempe	rature (° F):	75		
Meter calibrati					рН				
Purged and sar	mpled by (p	print): Mynumature:	July Gall	ncho	Reviewed by	J ¹³			

Page _ of _ (

Project No.:	CS1605				Well I		U-4
Project Name:	Alameda F	acility			Sample	e ID:	1W-4
Location:	Alameda,	CA			Start D	Date: 6-	18-08
Client:	Cargill Sal	t			Finish	Date: (2-18-08
One casing voi Gallons per lin	er (in.): lume (gal.): lume = πx near ft for ca	[casing radius (i	alculated purg $(n.) \times 1 \text{ ft/12 it}$ $(1.1) \times 1 = 0.041$	$n.J^2 x [well deposition 0.16]$	(3 x casing voluth (ft) - depth to 4. " = 0.65 5	me): $\frac{1}{\text{water (ft)]}} x$ $= 1.0 6$	92
WELL PURG	INĢ			<u>-</u>			
Date purged:	(0-15	8-08	Start time:	28:33	End time:	0909	
Purging equipr				Bladder pump	-	Peristaltic pur	mp 人
		PVC bailer			Other	•	•
Purge rate:	\mathcal{O}	122 Lpm	V	Vell yield (H/L)	High		
Purge water di	isposal:	Brum	onsik				
		Cumulative				<u>.</u>	
Time (2400 t		Vol. Purged	pH (units)	EC	T (° C)	Color	Turbidity
980		(gat likus	7.04	(μS/cm) (e 2 C	29.1	(Visual)	(Visual of NTU)
08		2.4 11ps	7,27	(27)	20.0	Clear	10,53
096		7.31.45	733	627	19.9	Cla	0.00
Total Purged (gat.):	7.3					
WELL SAMP	LING	·					
Date sampled:	6-18-	Peristaltic p	ump	Bladder pump_	th to water (ft) b	pefore sampling n bailer	
Weather condition		Sunny (llear Sam plus	fakan	Ambient tempe	erature (° F):	70
Meter calibrat		EC 15,00 erature 20			pH 7.03	3-200/10	00-1000/405-40°
Purged and sa		rint): Manue nature: Affect	1 Gold	1905	Reviewed by	Shy-	

Appendix B

Groundwater Velocity Calculations

APPENDIX B GROUNDWATER VELOCITY CALCULATIONS

FOR CARGILL ALAMEDA SITE

GROUNDWATER VELOCITY FORMULA

V = Ki/n where:

V = average linear groundwater velocity i = hydraulic gradient<math>K = hydraulic conductivity i = hydraulic gradient n = effective porosity

PARAMETERS

Range of hydraulic conductivity values (K) from slug tests:

Material	Well	K (cm/sec)
Silty sand (SM) and Clayey sand (SC)	MW-1	0.00002
Silty sand (SM) and Clayey sand (SC)	MW-2	0.00002
Silty sand (SM) and Clayey sand (SC)	MW-3	0.000003

Highest measured K = 0.00002

Porosity (n) = 33% (from laboratory analysis of boring B21 soil sample)

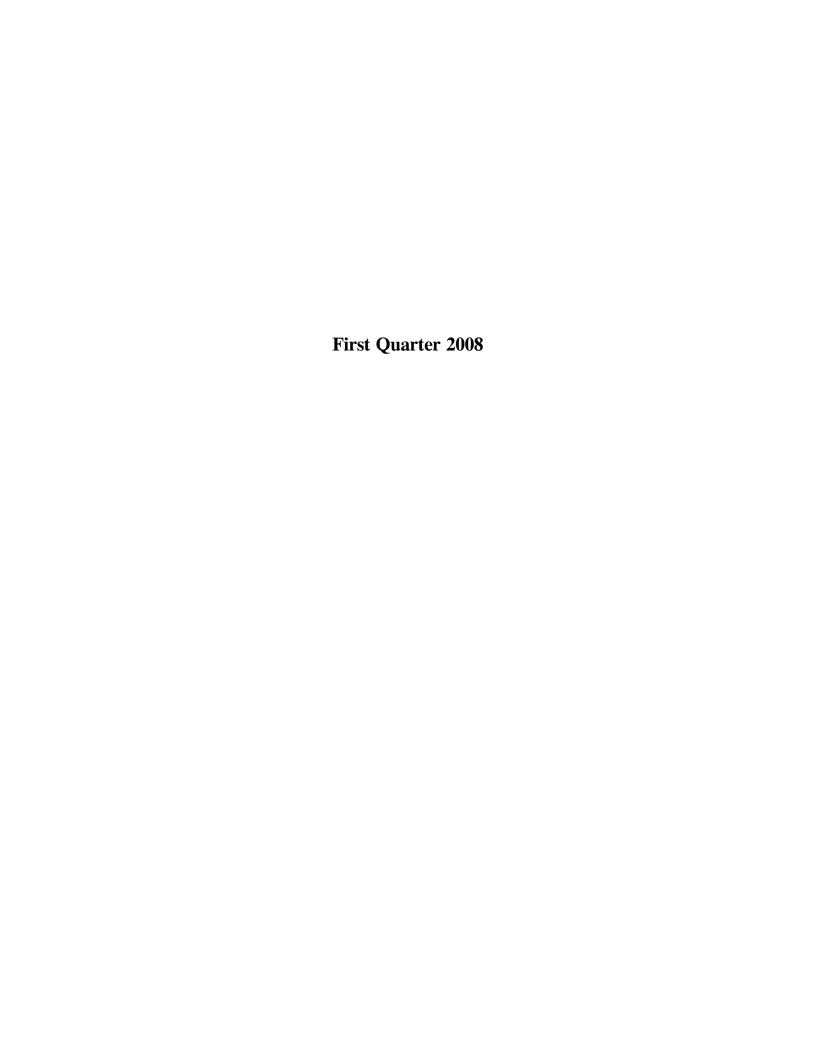
Hydraulic gradient (i) calculated from groundwater contours:

March 2008 0.020 June 2008 0.015

UNIT CONVERSIONS

1 day = 86,400 sec 1 cm/sec = 2,834.65 ft/day1 foot = 30.48 cm 1 cm/sec = 1,034,645.67 ft/yr

CALCULATED VELOCITIES


	Flow	K	i	n	V
Measurement Even	t Directio	n (cm/sec)	(ft/ft)		(ft/yr)
March 20	008 NE	0.00002	0.020	0.33	1.0
June 200	NE NE	0.00002	0.015	0.33	0.9

Calculations and assumptions prepared by:

Date: 12/17/2008

plank (. Wheeler

Appendix C Certified Analytical Reports and Chain-of-Custody Documentation

ANALYTICAL REPORT

Job Number: 720-13548-1

Job Description: Alameda Facility CS 1605

For:

Crawford Consulting Inc 2 North First Street 4th Floor San Jose, CA 95113-1212

Attention: Dana Johnston

Melissa Brewer
Project Manager I
melissa.brewer@testamericainc.com
03/27/2008

cc: Mark Wheeler

Job Narrative 720-J13548-1

Comments

No additional comments.

Receipt All samples were received in good condition within temperature requirements.

GC/MS VOANo analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: Crawford Consulting Inc Job Number: 720-13548-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-13548-1	MW-1				
Trichloroethene Tetrachloroethene		18 170	2.0 2.0	ug/L ug/L	8260B 8260B
720-13548-2 Tetrachloroethene	MW-2	2900	20	ug/L	8260B
720-13548-3 1,1-Dichloroethene	MW-3	1.0	0.50	ug/L	8260B
720-13548-4 Tetrachloroethene	MW-4	0.91	0.50	ug/L	8260B
720-13548-5 Tetrachloroethene	DUP-1	3000	20	ug/L	8260B

METHOD SUMMARY

Client: Crawford Consulting Inc Job Number: 720-13548-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level)	TAL SF	SW846 8260B	
Purge-and-Trap	TAL SF		SW846 5030B

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Crawford Consulting Inc Job Number: 720-13548-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-13548-1	MW-1	Water	03/20/2008 0925	03/20/2008 1143
720-13548-2	MW-2	Water	03/20/2008 1041	03/20/2008 1143
720-13548-3	MW-3	Water	03/20/2008 1010	03/20/2008 1143
720-13548-4	MW-4	Water	03/20/2008 0850	03/20/2008 1143
720-13548-5	DUP-1	Water	03/20/2008 0000	03/20/2008 1143
720-13548-6TB	TB-1	Water	03/20/2008 0000	03/20/2008 1143

Client: Crawford Consulting Inc Job Number: 720-13548-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-13548-1
 Date Sampled:
 03/20/2008 0925

 Client Matrix:
 Water
 Date Received:
 03/20/2008 1143

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-33537 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200803\03

Dilution: 4.0 Initial Weight/Volume: 40 mL Date Analyzed: 03/27/2008 1247 Final Weight/Volume: 40 mL

Date Prepared: 03/27/2008 1247

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		2.0
1,1-Dichloroethane	ND		2.0
Dichlorodifluoromethane	ND		2.0
Vinyl chloride	ND		2.0
Chloroethane	ND		4.0
Trichlorofluoromethane	ND		4.0
Methylene Chloride	ND		20
trans-1,2-Dichloroethene	ND		2.0
cis-1,2-Dichloroethene	ND		2.0
Chloroform	ND		4.0
1,1,1-Trichloroethane	ND		2.0
Carbon tetrachloride	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	18		2.0
1,2-Dichloropropane	ND		2.0
Dichlorobromomethane	ND		2.0
trans-1,3-Dichloropropene	ND		2.0
cis-1,3-Dichloropropene	ND		2.0
1,1,2-Trichloroethane	ND		2.0
Tetrachloroethene	170		2.0
Chlorodibromomethane	ND		2.0
Chlorobenzene	ND		2.0
Bromoform	ND		4.0
1,1,2,2-Tetrachloroethane	ND		2.0
1,3-Dichlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
1,2-Dichlorobenzene	ND		2.0
Chloromethane	ND		4.0
Bromomethane	ND		4.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0
EDB	ND		2.0
1,2,4-Trichlorobenzene	ND		4.0
Surrogate	%Rec	Acceptance	e Limits
Toluene-d8 (Surr)	97	73 - 117	
4-Bromofluorobenzene	105	71 - 139	
1,2-Dichloroethane-d4 (Surr)	102	62 - 118	

Client: Crawford Consulting Inc Job Number: 720-13548-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-13548-2
 Date Sampled:
 03/20/2008 1041

 Client Matrix:
 Water
 Date Received:
 03/20/2008 1143

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-33489 Instrument ID: Saturn 2K3

Preparation: 5030B Lab File ID: d:\data\200803\032608\SA-

Dilution: 40 Initial Weight/Volume: 40 mL

Date Analyzed: 03/26/2008 1926 Final Weight/Volume: 40 mL

Date Prepared: 03/26/2008 1926

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		20
1,1-Dichloroethane	ND		20
Dichlorodifluoromethane	ND		20
Vinyl chloride	ND		20
Chloroethane	ND		40
Trichlorofluoromethane	ND		40
Methylene Chloride	ND		200
trans-1,2-Dichloroethene	ND		20
cis-1,2-Dichloroethene	ND		20
Chloroform	ND		40
1,1,1-Trichloroethane	ND		20
Carbon tetrachloride	ND		20
1,2-Dichloroethane	ND		20
Trichloroethene	ND		20
1,2-Dichloropropane	ND		20
Dichlorobromomethane	ND		20
trans-1,3-Dichloropropene	ND		20
cis-1,3-Dichloropropene	ND		20
1,1,2-Trichloroethane	ND		20
Tetrachloroethene	2900		20
Chlorodibromomethane	ND		20
Chlorobenzene	ND		20
Bromoform	ND		40
1,1,2,2-Tetrachloroethane	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,2-Dichlorobenzene	ND		20
Chloromethane	ND		40
Bromomethane	ND		40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
EDB	ND		20
1,2,4-Trichlorobenzene	ND		40
Surrogate	%Rec	Acceptance	e Limits
Toluene-d8 (Surr)	88	73 - 117	
4-Bromofluorobenzene	111	71 - 139	
1,2-Dichloroethane-d4 (Surr)	96	62 - 118	
, , , , , , , , , , , , , , , , , , , ,			

Client: Crawford Consulting Inc Job Number: 720-13548-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-13548-3
 Date Sampled:
 03/20/2008 1010

 Client Matrix:
 Water
 Date Received:
 03/20/2008 1143

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-33537 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200803\03

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 03/27/2008 1320 Final Weight/Volume: 40 mL

Date Prepared: 03/27/2008 1320

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	1.0		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	100		73 - 117
4-Bromofluorobenzene	102		71 - 139
1,2-Dichloroethane-d4 (Surr)	104		62 - 118

Client: Crawford Consulting Inc Job Number: 720-13548-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-13548-4
 Date Sampled:
 03/20/2008 0850

 Client Matrix:
 Water
 Date Received:
 03/20/2008 1143

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-33537 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200803\03

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 03/27/2008 1354 Final Weight/Volume: 40 mL

Date Prepared: 03/27/2008 1354

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	0.91		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	103		73 - 117
4-Bromofluorobenzene	102		71 - 139
1,2-Dichloroethane-d4 (Surr)	106		62 - 118

Client: Crawford Consulting Inc Job Number: 720-13548-1

Client Sample ID: DUP-1

 Lab Sample ID:
 720-13548-5
 Date Sampled:
 03/20/2008 0000

 Client Matrix:
 Water
 Date Received:
 03/20/2008 1143

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-33489 Instrument ID: Saturn 2K3

Preparation: 5030B Lab File ID: d:\data\200803\032608\SA-

Dilution: 40 Initial Weight/Volume: 40 mL

Date Analyzed: 03/26/2008 1959 Final Weight/Volume: 40 mL

Date Prepared: 03/26/2008 1959

1,1-Dichloroethane ND 20 1,1-Dichloroethane ND 20 Dichlorodifluoromethane ND 20 Vinyl chloride ND 40 Chloroethane ND 40 Trichlorofluoromethane ND 40 Methylene Chloride ND 20 tris-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20 Carbon tetrachloride ND 20 1,1,1-Trichloroethane ND 20 Trichloroethane ND 20 Trichloroethane ND 20 Trichloroethene ND 20 1,2-Dichloropropane ND 20 1,2-Dichloropropane ND 20 1,2-Trichloroethane ND 20 1,1,2-Trichloroethane ND 20 1,1,2-	Analyte	Result (ug/L)	Qualifier	RL
Dichlorodifluoromethane ND 20 Viryl chloride ND 20 Chloroethane ND 40 Trichlorofluoromethane ND 40 Methylene Chloride ND 200 trans-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20 Chloroform ND 40 1,1,1-Trichloroethane ND 20 Carbon tetrachloride ND 20 1,2-Dichloroproethane ND 20 1,2-Dichloropropane ND 20 Trichloroethane ND 20 1,2-Dichloropropane ND 20 Dichlorobromomethane ND 20 trans-1,3-Dichloropropene ND 20 trans-1,3-Dichloropropene ND 20 trans-1,3-Dichloropropene ND 20 Tetrachloroethane ND 20 Tetrachloroethane ND 20 Tollorobroethane ND 20	1,1-Dichloroethene	ND		20
Vinyl chloride ND 20 Chloroethane ND 40 Trichloroffuoromethane ND 40 Methylene Chloride ND 200 trans-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20 Chloroform ND 40 1,1,1-Trichloroethane ND 20 Carbon tetrachloride ND 20 1,2-Dichloroethane ND 20 1,2-Dichloroethane ND 20 1,2-Dichloropropane ND 20 Dichlorobromomethane ND 20 1,2-Dichloropropane ND 20 Dichloropropene ND 20 s-1,3-Dichloropropene ND 20 tars-1,3-Dichloropropene ND 20 1,1,2-Trichloroethane ND 20 Tetrachloroethane ND 20 Tetrachloroethane ND 20 Romoform ND 20 Romoform <th< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>20</td></th<>	1,1-Dichloroethane	ND		20
Choroethane ND 40 Trichlorofluoromethane ND 40 Methylene Chloride ND 200 trans-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20 Chloroform ND 40 1,1,1-Trichloroethane ND 20 Carbon tetrachloride ND 20 1,2-Dichloroethane ND 20 1,2-Dichloroethane ND 20 1,2-Dichloropropane ND 20 Dichlorobromomethane ND 20 trins-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 ti-1,2-Trichloroethane ND 20 1,1,2-Trichloroethane ND 20 Chlorodebrzene ND 20 Chlorobenzene ND 20 Bromoform ND 20 Trichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 1,2-Dichlorobenzene<	Dichlorodifluoromethane	ND		20
Trichlorofluoromethane ND 40 Methylene Chloride ND 200 trans-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20 Chloroform ND 40 1,1,1-Trichloroethane ND 20 Carbon tetrachloride ND 20 1,2-Dichloroethane ND 20 Trichloroethane ND 20 1,2-Dichloropropane ND 20 1,2-Dichloropropane ND 20 1,2-Dichloropropane ND 20 trans-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 Chlorodibromomethane ND 20 Chlorodibromomethane ND 20 Chlorobenzene ND 20 Chlorobenzene ND 20 1,2-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,4	Vinyl chloride	ND		20
Methylene Chloride ND 200 trans-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20 Chloroform ND 40 1,1,1-Trichloroethane ND 20 Carbon tetrachloride ND 20 1,2-Dichloroethane ND 20 1,2-Dichloroptomethane ND 20 1,2-Dichloropropane ND 20 Dichlorobromomethane ND 20 1,2-Dichloropropane ND 20 Dichlorobromomethane ND 20 trans-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 Tetrachloroethane ND 20 Tetrachloroethane ND 20 Tetrachloroethane ND 20 Bromoform ND 20 Chlorobenzene ND 20 1,2-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 Chloromethane	Chloroethane	ND		40
trans-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20 Chloroform ND 40 1,1,1-Trichloroethane ND 20 Carbon tetrachloride ND 20 1,2-Dichloroethane ND 20 Trichloroethene ND 20 1,2-Dichloropropane ND 20 1,2-Dichloropropane ND 20 trans-1,3-Dichloropropene ND 20 trans-1,3-Dichloropenee ND 20 Tetrachloroethane ND 20 Tetrachloroethane ND 20 Chlorobenzene ND 20 Bromoform ND 20 1,2-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 40	Trichlorofluoromethane	ND		40
cis-1,2-Dichloroethene ND 20 Chloroform ND 40 1,1,1-Trichloroethane ND 20 Carbon tetrachloride ND 20 1,2-Dichloroethane ND 20 Trichloroethene ND 20 1,2-Dichloropropane ND 20 Dichlorobromomethane ND 20 trans-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 cis-1,2-Dichloropropene ND 20 cis-1,2-Dichloropropene ND 20 1,1,2-Trichloroethane ND 20 1,1,2-Trichloroethane ND 20 Chlorobenzene ND 20 Bromoform ND 20 1,2-Pichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 40 Bromomethane ND 40 Bromomethane ND 20 EDB N	Methylene Chloride	ND		200
Chloroform ND 40 1,1,1-Trichloroethane ND 20 Carbon tetrachloride ND 20 1,2-Dichloroethane ND 20 Trichloroethene ND 20 1,2-Dichloropropane ND 20 Dichlorobromomethane ND 20 bichlorobromomethane ND 20 trans-1,3-Dichloropropene ND 20 1,1,2-Trichloroethane ND 20 1,1,2-Trichloroethane ND 20 Tetrachloroethane ND 20 Chlorodibromomethane ND 20 Chlorobenzene ND 20 Bromoform ND 40 1,1,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 40 Bromomethane ND 40 Bromomethane ND	trans-1,2-Dichloroethene	ND		20
1,1,1-Trichloroethane ND 20 Carbon tetrachloride ND 20 1,2-Dichloroethane ND 20 Trichloroethene ND 20 1,2-Dichloropropane ND 20 Dichlorobroromethane ND 20 trans-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 1,1,2-Trichloroethane ND 20 Tetrachloroethane ND 20 Chlorodibromomethane ND 20 Chlorobenzene ND 20 Chlorobenzene ND 20 Bromoform ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 40 Bromomethane ND 40 Bromomethane ND 20 L,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB	cis-1,2-Dichloroethene	ND		20
Carbon tetrachloride ND 20 1,2-Dichloroethane ND 20 Trichloroethene ND 20 1,2-Dichloropropane ND 20 Dichlorobromomethane ND 20 trans-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 1,1,2-Trichloroethane ND 20 Tetrachloroethane ND 20 Chlorodibromomethane ND 20 Chlorobenzene ND 20 Bromoform ND 20 Bromoform ND 40 1,1,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 Chloromethane ND 20 Chloromethane ND 40 Bromomethane ND 20 EDB ND 20 1,2,4-Trichloro-1,2,2-trifluoroethane <	Chloroform	ND		40
1,2-Dichloroethane ND 20 Trichloroethene ND 20 1,2-Dichloropropane ND 20 Dichlorobromomethane ND 20 trans-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 1,1,2-Trichloroethane ND 20 Tetrachloroethane ND 20 Chlorodibromomethane ND 20 Chlorobenzene ND 20 Bromoform ND 20 Bromoform ND 40 1,1,2,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 40 Bromomethane ND 40 Bromomethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND	1,1,1-Trichloroethane	ND		20
Trichloroethene ND 20 1,2-Dichloropropane ND 20 Dichlorobromomethane ND 20 trans-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 1,1,2-Trichloroethane ND 20 Tetrachloroethene 3000 20 Chlorodibromomethane ND 20 Chlorobenzene ND 20 Bromoform ND 40 1,1,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 40 Bromomethane ND 40 Bromomethane ND 40 Bromomethane ND 20 EDB ND 20 1,2,4-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND	Carbon tetrachloride	ND		20
1,2-Dichloropropane ND 20 Dichlorobromomethane ND 20 trans-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 1,1,2-Trichloroethane ND 20 Tetrachloroethene 3000 20 Chlorodibromomethane ND 20 Chlorobenzene ND 20 Bromoform ND 40 1,1,2,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 20 Bromomethane ND 40 Bromomethane ND 20 EDB ND 20 1,2,4-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>20</td>	1,2-Dichloroethane	ND		20
Dichlorobromomethane ND 20 trans-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 1,1,2-Trichloroethane ND 20 Tetrachloroethene 3000 20 Chlorodibromomethane ND 20 Chlorobenzene ND 20 Bromoform ND 40 1,1,2,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 20 Chloromethane ND 40 Bromomethane ND 40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Brom	Trichloroethene	ND		20
trans-1,3-Dichloropropene ND 20 cis-1,3-Dichloropropene ND 20 1,1,2-Trichloroethane ND 20 Tetrachloroethene 3000 20 Chlorodibromomethane ND 20 Chlorobenzene ND 20 Bromoform ND 40 1,1,2,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 20 Chloromethane ND 40 Bromomethane ND 40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	1,2-Dichloropropane	ND		20
cis-1,3-Dichloropropene ND 20 1,1,2-Trichloroethane ND 20 Tetrachloroethene 3000 20 Chlorodibromomethane ND 20 Chlorobenzene ND 20 Bromoform ND 40 1,1,2,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 40 Bromomethane ND 40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 20 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	Dichlorobromomethane	ND		20
1,1,2-Trichloroethane ND 20 Tetrachloroethene 3000 20 Chlorodibromomethane ND 20 Chlorobenzene ND 20 Bromoform ND 40 1,1,2,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 40 Bromomethane ND 40 Bromomethane ND 20 L,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 L,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	trans-1,3-Dichloropropene	ND		20
Tetrachloroethene 3000 20 Chlorodibromomethane ND 20 Chlorobenzene ND 20 Bromoform ND 40 1,1,2,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 40 Bromomethane ND 40 T,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	cis-1,3-Dichloropropene	ND		20
Chlorodibromomethane ND 20 Chlorobenzene ND 20 Bromoform ND 40 1,1,2,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 40 Bromomethane ND 40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139		ND		20
Chlorobenzene ND 20 Bromoform ND 40 1,1,2,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 40 Bromomethane ND 40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	Tetrachloroethene	3000		
Bromoform ND 40 1,1,2,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 40 Bromomethane ND 40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	Chlorodibromomethane	ND		20
1,1,2,2-Tetrachloroethane ND 20 1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 40 Bromomethane ND 40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	Chlorobenzene	ND		20
1,3-Dichlorobenzene ND 20 1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 40 Bromomethane ND 40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	Bromoform	ND		
1,4-Dichlorobenzene ND 20 1,2-Dichlorobenzene ND 20 Chloromethane ND 40 Bromomethane ND 40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	1,1,2,2-Tetrachloroethane	ND		20
1,2-Dichlorobenzene ND 20 Chloromethane ND 40 Bromomethane ND 40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	1,3-Dichlorobenzene	ND		20
Chloromethane ND 40 Bromomethane ND 40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	1,4-Dichlorobenzene	ND		20
Bromomethane ND 40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	1,2-Dichlorobenzene	ND		20
1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	Chloromethane	ND		40
EDB ND 20 1,2,4-Trichlorobenzene ND 40 Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	Bromomethane	ND		40
1,2,4-TrichlorobenzeneND40Surrogate%RecAcceptance LimitsToluene-d8 (Surr)9273 - 1174-Bromofluorobenzene11671 - 139	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
Surrogate %Rec Acceptance Limits Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	EDB	ND		20
Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	1,2,4-Trichlorobenzene	ND		40
Toluene-d8 (Surr) 92 73 - 117 4-Bromofluorobenzene 116 71 - 139	Surrogate	%Rec	Acceptance	e Limits
4-Bromofluorobenzene 116 71 - 139	-	92	73 - 117	
1,2-Dichloroethane-d4 (Surr) 110 62 - 118			71 - 139	
	1,2-Dichloroethane-d4 (Surr)	110	62 - 118	

Client: Crawford Consulting Inc Job Number: 720-13548-1

Client Sample ID: TB-1

 Lab Sample ID:
 720-13548-6TB
 Date Sampled:
 03/20/2008 0000

 Client Matrix:
 Water
 Date Received:
 03/20/2008 1143

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-33537 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200803\03

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 03/27/2008 1427 Final Weight/Volume: 40 mL

Date Prepared: 03/27/2008 1427

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	99		73 - 117
4-Bromofluorobenzene	101		71 - 139
1,2-Dichloroethane-d4 (Surr)	102		62 - 118

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: Crawford Consulting Inc Job Number: 720-13548-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-3	33489				
LCS 720-33489/2	Lab Control Spike	T	Water	8260B	
LCSD 720-33489/1	Lab Control Spike Duplicate	T	Water	8260B	
MB 720-33489/3	Method Blank	T	Water	8260B	
720-13548-2	MW-2	Т	Water	8260B	
720-13548-5	DUP-1	Т	Water	8260B	
Analysis Batch:720-3	33537				
LCS 720-33537/2	Lab Control Spike	Т	Water	8260B	
LCSD 720-33537/1	Lab Control Spike Duplicate	Т	Water	8260B	
MB 720-33537/3	Method Blank	Т	Water	8260B	
720-13548-1	MW-1	Т	Water	8260B	
720-13548-3	MW-3	Т	Water	8260B	
720-13548-4	MW-4	Т	Water	8260B	
720-13548-6TB	TB-1	Т	Water	8260B	

Page 13 of 19

Report Basis

T = Total

Client: Crawford Consulting Inc Job Number: 720-13548-1

Method Blank - Batch: 720-33489 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-33489/3 Analysis Batch: 720-33489 Instrument ID: Saturn 2K3

Client Matrix: Water Prep Batch: N/A Lab File ID: d:\data\200803\032608\MB

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 03/26/2008 1213 Final Weight/Volume: 40 mL Date Prepared: 03/26/2008 1213

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	93	73 - 117	
4-Bromofluorobenzene	108	71 - 139	
1,2-Dichloroethane-d4 (Surr)	94	62 - 118	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Crawford Consulting Inc Job Number: 720-13548-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-33489 Preparation: 5030B

LCS Lab Sample ID: LCS 720-33489/2 Analysis Batch: 720-33489 Instrument ID: Saturn 2K3

Date Prepared:

03/26/2008 1106

Client Matrix: Water Prep Batch: N/A Lab File ID: d:\data\200803\032608\LS

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 03/26/2008 1106 Final Weight/Volume: 40 mL

LCSD Lab Sample ID: LCSD 720-33489/1 Analysis Batch: 720-33489 Instrument ID: Saturn 2K3

Client Matrix: Water Prep Batch: N/A Lab File ID: d:\data\200803\032608\LD-V

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 03/26/2008 1139 Final Weight/Volume: 40 mL Date Prepared: 03/26/2008 1139

% Rec. LCS **LCSD** RPD RPD Limit LCS Qual LCSD Qual Analyte Limit 1,1-Dichloroethene 107 95 65 - 125 11 20 Trichloroethene 94 87 74 - 134 20 8 Chlorobenzene 110 103 61 - 121 7 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 90 88 Toluene-d8 (Surr) 73 - 117 4-Bromofluorobenzene 92 71 - 139 91 1,2-Dichloroethane-d4 (Surr) 91 97 62 - 118

Calculations are performed before rounding to avoid round-off errors in calculated results.

Job Number: 720-13548-1 Client: Crawford Consulting Inc

Method Blank - Batch: 720-33537 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-33537/3 Analysis Batch: 720-33537 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200803\03

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Final Weight/Volume: 40 mL Date Analyzed: 03/27/2008 1107 Date Prepared: 03/27/2008 1107

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	103	73 - 117	
4-Bromofluorobenzene	102	71 - 139	
1,2-Dichloroethane-d4 (Surr)	106	62 - 118	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Crawford Consulting Inc Job Number: 720-13548-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-33537 Preparation: 5030B

LCS Lab Sample ID: LCS 720-33537/2 Analysis Batch: 720-33537 Instrument ID: Varian 3900F

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 03/27/2008 1001 Final Weight/Volume: 40 mL

Date Analyzed: 03/27/2008 1001 Final Weight/Volume: 40 mL Date Prepared: 03/27/2008 1001

LCSD Lab Sample ID: LCSD 720-33537/1 Analysis Batch: 720-33537 Instrument ID: Varian 3900F

Date Prepared:

03/27/2008 1034

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200803\032

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 03/27/2008 1034 Final Weight/Volume: 40 mL

% Rec. LCS **LCSD RPD** RPD Limit LCS Qual LCSD Qual Analyte Limit 1,1-Dichloroethene 96 92 65 - 125 4 20 Trichloroethene 91 88 74 - 134 4 20 Chlorobenzene 106 107 61 - 121 0 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 95 93 73 - 117 Toluene-d8 (Surr) 4-Bromofluorobenzene 95 71 - 139 97 1,2-Dichloroethane-d4 (Surr) 94 95 62 - 118

Test America	San Francis	co /				CH	IAIN	OI	CUS	TOL	ΟY	/ LAB	ORAT	OR	ΥA	NAI	LYSIS	REQ	UEŚ	ΓFORM	m
1220 Quarry Lane, Plea (925) 484-1919 FAX		6 /1	10-1	3542		Se	rvice F	Reque	est:									Date	3	120/08	2008
Project Name: A	Alameda Facility	-		,									Anal	ysis Re	ques	ted			160	120,08	03/27/2008
Project Manager: I Company/Address C 2 Si Phone: (4	North First St, 4th an Jose, CA 95113 408) 287-9934 408) 287-9937	Floor	>		Number of Containers	Volatile Organics (VOCs) (EPA 8021B)	Pb (7421); As (7060)	Same as Metals	COD, TKN 500 ml plastic H ₂ SO ₄	Chloride, Nitrate	500 ml plastic NP	pH, Conductivity 500 ml plastic NP	Total Phenols 2 x 500 ml place H.SO.	Volatile Organics (8010)	3 x 40 ml vial	TPHgBTEX	2 x 40 ml vial HCl			REMARKS	
Sample 1.D.	Date	Time	LAB I.D.	Sample Matrix																	
MW-1	3/20/08	0925	1	water	3									,	X						
MW-2	3/20100	1041	2	Water	3									1	x						
MW-3	3/20/08	1010	3	Water	3									,	X						o
MW-4	3/20/08	0850	4	water	3									,	ĸ						of 19
DUP-I	3/20/08		5	water	3									3	K						18
TB-1	3/2/05	_	6	water	2									3	X						Page
Printed Name 5 I Firm 2/20/0 y / 11:45		Signature Printed N	Printed Name			TURNARGUND REQUIREMENTS 24 hr 48 hr 5 day x Standard (5 working days) Provide Verbal Preliminary Results x Provide pdf Results				x 1	REPORT REQUIREMENTS [. Rastine Report x. II. Report (includes DUP, MS MSD, as required, may be charged as samples) [II. Data Validation Report (includes All Raw Data)			INVOICE INFORMATION P.O. #			Shipp	SAMPLE RECEIPT Shipping VIA Shipping # Coodition:			
Firm Zeoloy 11:45		Date/Time	DetoTime 3-20-08 1/43			Disc DateRWQCB										7		16			
Relinquished By Rec			Rece	ived By	Special Instructions/Comments: Please report MRLs only																
Signature			Signature Printed Name			Please report MRLs only Please pdf results to: Dana Johnston at dana@crawfordconsulting.com															
			Firm			Please provide EDF for Geotracker. Global ID is SL0600177511															
Firm Date/Time	100,000,000	Date/Time			and the latest of the	0.00000000	mitroCtal)	(m) (1.14 (1.17) (1.17)		- SAT-5077	0.000.00000470							5.	9 6		

Login Sample Receipt Check List

Client: Crawford Consulting Inc Job Number: 720-13548-1

List Source: TestAmerica San Francisco

Login Number: 13548 Creator: Mullen, Joan

List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

ANALYTICAL REPORT

Job Number: 720-14809-1

Job Description: Alameda Facility CS 1605

For:

Crawford Consulting Inc 2 North First Street 4th Floor San Jose, CA 95113-1212

Attention: Dana Johnston

Melissa Brewer
Project Manager I
melissa.brewer@testamericainc.com
06/25/2008

cc: Mark Wheeler

Job Narrative 720-J14809-1

Comments

No additional comments.

Receipt All samples were received in good condition within temperature requirements.

GC/MS VOANo analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: Crawford Consulting Inc Job Number: 720-14809-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-14809-1	MW-1				
Trichloroethene Tetrachloroethene		42 390	5.0 5.0	ug/L ug/L	8260B 8260B
720-14809-2 Trichloroethene Tetrachloroethene	MW-2	21 1700	20 20	ug/L ug/L	8260B 8260B
720-14809-3 1,1-Dichloroethene	MW-3	1.4	0.50	ug/L	8260B
720-14809-4 Tetrachloroethene	MW-4	0.86	0.50	ug/L	8260B
720-14809-5 Tetrachloroethene	DUP-1	1900	20	ug/L	8260B

METHOD SUMMARY

Client: Crawford Consulting Inc Job Number: 720-14809-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level)	TAL SF	SW846 8260B	
Purge-and-Trap	TAL SF		SW846 5030B

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Crawford Consulting Inc Job Number: 720-14809-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-14809-1	MW-1	Water	06/18/2008 0954	06/18/2008 1243
720-14809-2	MW-2	Water	06/18/2008 1142	06/18/2008 1243
720-14809-3	MW-3	Water	06/18/2008 1059	06/18/2008 1243
720-14809-4	MW-4	Water	06/18/2008 0910	06/18/2008 1243
720-14809-5	DUP-1	Water	06/18/2008 0000	06/18/2008 1243
720-14809-6TB	TB-1	Water	06/18/2008 0000	06/18/2008 1243

Client: Crawford Consulting Inc Job Number: 720-14809-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-14809-1
 Date Sampled:
 06/18/2008 0954

 Client Matrix:
 Water
 Date Received:
 06/18/2008 1243

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-37243 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200806\06

Dilution: 10 Initial Weight/Volume: 40 mL Date Analyzed: 06/24/2008 1407 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		5.0
1,1-Dichloroethane	ND		5.0
Dichlorodifluoromethane	ND		5.0
Vinyl chloride	ND		5.0
Chloroethane	ND		10
Trichlorofluoromethane	ND		10
Methylene Chloride	ND		50
trans-1,2-Dichloroethene	ND		5.0
cis-1,2-Dichloroethene	ND		5.0
Chloroform	ND		10
1,1,1-Trichloroethane	ND		5.0
Carbon tetrachloride	ND		5.0
1,2-Dichloroethane	ND		5.0
Trichloroethene	42		5.0
1,2-Dichloropropane	ND		5.0
Dichlorobromomethane	ND		5.0
trans-1,3-Dichloropropene	ND		5.0
cis-1,3-Dichloropropene	ND		5.0
1,1,2-Trichloroethane	ND		5.0
Tetrachloroethene	390		5.0
Chlorodibromomethane	ND		5.0
Chlorobenzene	ND		5.0
Bromoform	ND		10
1,1,2,2-Tetrachloroethane	ND		5.0
1,3-Dichlorobenzene	ND		5.0
1,4-Dichlorobenzene	ND		5.0
1,2-Dichlorobenzene	ND		5.0
Chloromethane	ND		10
Bromomethane	ND		10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0
EDB	ND		5.0
1,2,4-Trichlorobenzene	ND		10
Surrogate	%Rec	Accepta	ance Limits
Toluene-d8 (Surr)	96	82 - 1	
4-Bromofluorobenzene	90	74 - 1	31
1,2-Dichloroethane-d4 (Surr)	101	88 - 1	

Client: Crawford Consulting Inc Job Number: 720-14809-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-14809-2
 Date Sampled:
 06/18/2008
 1142

 Client Matrix:
 Water
 Date Received:
 06/18/2008
 1243

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-37199 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200806\06

Dilution: 40 Initial Weight/Volume: 40 mL

Date Analyzed: 06/23/2008 1642 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		20
1,1-Dichloroethane	ND		20
Dichlorodifluoromethane	ND		20
Vinyl chloride	ND		20
Chloroethane	ND		40
Trichlorofluoromethane	ND		40
Methylene Chloride	ND		200
trans-1,2-Dichloroethene	ND		20
cis-1,2-Dichloroethene	ND		20
Chloroform	ND		40
1,1,1-Trichloroethane	ND		20
Carbon tetrachloride	ND		20
1,2-Dichloroethane	ND		20
Trichloroethene	21		20
1,2-Dichloropropane	ND		20
Dichlorobromomethane	ND		20
trans-1,3-Dichloropropene	ND		20
cis-1,3-Dichloropropene	ND		20
1,1,2-Trichloroethane	ND		20
Tetrachloroethene	1700		20
Chlorodibromomethane	ND		20
Chlorobenzene	ND		20
Bromoform	ND		40
1,1,2,2-Tetrachloroethane	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,2-Dichlorobenzene	ND		20
Chloromethane	ND		40
Bromomethane	ND		40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
EDB	ND		20
1,2,4-Trichlorobenzene	ND		40
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	97		82 - 120
4-Bromofluorobenzene	91		74 - 131
1,2-Dichloroethane-d4 (Surr)			7 - 101

Client: Crawford Consulting Inc Job Number: 720-14809-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-14809-3
 Date Sampled:
 06/18/2008 1059

 Client Matrix:
 Water
 Date Received:
 06/18/2008 1243

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-37205 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200806\06

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 06/23/2008 1312 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	1.4		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	102		82 - 120
4-Bromofluorobenzene	101		74 - 131
1,2-Dichloroethane-d4 (Surr)	109		88 - 119

Client: Crawford Consulting Inc Job Number: 720-14809-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-14809-4
 Date Sampled:
 06/18/2008 0910

 Client Matrix:
 Water
 Date Received:
 06/18/2008 1243

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-37205 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200806\06

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 06/23/2008 1345 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	0.86		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	101		82 - 120
4-Bromofluorobenzene	95		74 - 131
1,2-Dichloroethane-d4 (Surr)	103		88 - 119
· ,			

Client: Crawford Consulting Inc Job Number: 720-14809-1

Client Sample ID: DUP-1

 Lab Sample ID:
 720-14809-5
 Date Sampled:
 06/18/2008 0000

 Client Matrix:
 Water
 Date Received:
 06/18/2008 1243

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-37205 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200806\06

Dilution: 40 Initial Weight/Volume: 40 mL

Date Analyzed: 06/23/2008 1739 Final Weight/Volume: 40 mL

1,1-Dichloroethene ND 20 1,1-Dichloroethane ND 20 Dichlorodifluoromethane ND 20 Vinyl chloride ND 20 Chloroethane ND 40 Trichlorofluoromethane ND 40 Methylene Chloride ND 200 trans-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20 Chloroform ND 40
Dichlorodifluoromethane ND 20 Vinyl chloride ND 20 Chloroethane ND 40 Trichlorofluoromethane ND 40 Methylene Chloride ND 200 trans-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20
Vinyl chlorideND20ChloroethaneND40TrichlorofluoromethaneND40Methylene ChlorideND200trans-1,2-DichloroetheneND20cis-1,2-DichloroetheneND20
ChloroethaneND40TrichlorofluoromethaneND40Methylene ChlorideND200trans-1,2-DichloroetheneND20cis-1,2-DichloroetheneND20
TrichlorofluoromethaneND40Methylene ChlorideND200trans-1,2-DichloroetheneND20cis-1,2-DichloroetheneND20
Methylene ChlorideND200trans-1,2-DichloroetheneND20cis-1,2-DichloroetheneND20
trans-1,2-Dichloroethene ND 20 cis-1,2-Dichloroethene ND 20
cis-1,2-Dichloroethene ND 20
·
Chloroform ND 40
Onioroioni Tu
1,1,1-Trichloroethane ND 20
Carbon tetrachloride ND 20
1,2-Dichloroethane ND 20
Trichloroethene ND 20
1,2-Dichloropropane ND 20
Dichlorobromomethane ND 20
trans-1,3-Dichloropropene ND 20
cis-1,3-Dichloropropene ND 20
1,1,2-Trichloroethane ND 20
Tetrachloroethene 1900 20
Chlorodibromomethane ND 20
Chlorobenzene ND 20
Bromoform ND 40
1,1,2,2-Tetrachloroethane ND 20
1,3-Dichlorobenzene ND 20
1,4-Dichlorobenzene ND 20
1,2-Dichlorobenzene ND 20
Chloromethane ND 40
Bromomethane ND 40
1,1,2-Trichloro-1,2,2-trifluoroethane ND 20
EDB ND 20
1,2,4-Trichlorobenzene ND 40
Surrogate %Rec Acceptance Limits
Toluene-d8 (Surr) 101 82 - 120
4-Bromofluorobenzene 97 74 - 131
1,2-Dichloroethane-d4 (Surr) 110 88 - 119

Client: Crawford Consulting Inc Job Number: 720-14809-1

Client Sample ID: TB-1

 Lab Sample ID:
 720-14809-6TB
 Date Sampled:
 06/18/2008
 0000

 Client Matrix:
 Water
 Date Received:
 06/18/2008
 1243

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-37205 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200806\06

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 06/23/2008 1418 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec	Acceptance	Limits
Toluene-d8 (Surr)	105	82 - 120	
4-Bromofluorobenzene	99	74 - 131	
1,2-Dichloroethane-d4 (Surr)	107	88 - 119	

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: Crawford Consulting Inc Job Number: 720-14809-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA	Olient Gample 15		Olient matrix	Metriod	1 Tep Baten
Analysis Batch:720-371	90				
LCS 720-37199/2	Lab Control Spike	Т	Water	8260B	
LCSD 720-37199/1	Lab Control Spike Duplicate	T	Water	8260B	
MB 720-37199/3	Method Blank	Ť	Water	8260B	
720-14809-2	MW-2	Ť	Water	8260B	
Analysis Batch:720-372	205				
LCS 720-37205/2	Lab Control Spike	Т	Water	8260B	
LCSD 720-37205/1	Lab Control Spike Duplicate	Т	Water	8260B	
MB 720-37205/3	Method Blank	Т	Water	8260B	
720-14809-3	MW-3	Т	Water	8260B	
720-14809-3MS	Matrix Spike	T	Water	8260B	
720-14809-3MSD	Matrix Spike Duplicate	Т	Water	8260B	
720-14809-4	MW-4	Т	Water	8260B	
720-14809-5	DUP-1	Т	Water	8260B	
720-14809-6TB	TB-1	Т	Water	8260B	
Analysis Batch:720-372	243				
LCS 720-37243/2	Lab Control Spike	Т	Water	8260B	
LCSD 720-37243/1	Lab Control Spike Duplicate	Т	Water	8260B	
MB 720-37243/3	Method Blank	T	Water	8260B	
720-14809-1	MW-1	Т	Water	8260B	

Report Basis

T = Total

Job Number: 720-14809-1 Client: Crawford Consulting Inc

Method Blank - Batch: 720-37199 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-37199/3 Analysis Batch: 720-37199 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200806\06

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Final Weight/Volume: 40 mL Date Analyzed: 06/23/2008 1106 Date Prepared: 06/23/2008 1106

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	96	82 - 120	
4-Bromofluorobenzene	89	74 - 131	
1,2-Dichloroethane-d4 (Surr)	99	88 - 119	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Crawford Consulting Inc Job Number: 720-14809-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-37199 Preparation: 5030B

LCS Lab Sample ID: LCS 720-37199/2 Analysis Batch: 720-37199 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200806\06

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 06/23/2008 0958 Final Weight/Volume: 40 mL

Date Prepared: 06/23/2008 0958

LCSD Lab Sample ID: LCSD 720-37199/1 Analysis Batch: 720-37199 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200806\062

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 06/23/2008 1032 Final Weight/Volume: 40 mL

Date Prepared:

06/23/2008 1032

% Rec. LCS **LCSD RPD** RPD Limit LCS Qual LCSD Qual Analyte Limit 1,1-Dichloroethene 104 103 75 - 116 0 20 Trichloroethene 87 88 70 - 106 20 1 Chlorobenzene 102 102 89 - 118 20 0 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 88 93 Toluene-d8 (Surr) 82 - 120 4-Bromofluorobenzene 83 84 74 - 131 1,2-Dichloroethane-d4 (Surr) 92 98 88 - 119

Job Number: 720-14809-1 Client: Crawford Consulting Inc

Method Blank - Batch: 720-37205 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-37205/3 Analysis Batch: 720-37205 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200806\06

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 06/23/2008 1238 Final Weight/Volume: 40 mL Date Prepared: 06/23/2008 1238

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	100	82 - 120	
4-Bromofluorobenzene	97	74 - 131	
1,2-Dichloroethane-d4 (Surr)	105	88 - 119	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Crawford Consulting Inc Job Number: 720-14809-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-37205 Preparation: 5030B

LCS Lab Sample ID: LCS 720-37205/2 Analysis Batch: 720-37205 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200806\06

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 06/23/2008 1132 Final Weight/Volume: 40 mL Date Prepared: 06/23/2008 1132

LCSD Lab Sample ID: LCSD 720-37205/1 Analysis Batch: 720-37205 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200806\062

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 06/23/2008 1205 Initial Weight/Volume: 40 mL

Date Prepared:

06/23/2008 1205

% Rec. LCS **LCSD RPD** RPD Limit LCS Qual LCSD Qual Analyte Limit 1,1-Dichloroethene 91 96 75 - 116 5 20 Trichloroethene 90 93 70 - 106 3 20 Chlorobenzene 102 103 89 - 118 20 1 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 96 99 Toluene-d8 (Surr) 82 - 120 4-Bromofluorobenzene 91 96 74 - 131 1,2-Dichloroethane-d4 (Surr) 96 97 88 - 119

Client: Crawford Consulting Inc Job Number: 720-14809-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 720-37205 Preparation: 5030B

MS Lab Sample ID: 720-14809-3 Analysis Batch: 720-37205 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200806\(

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 06/23/2008 1525 Final Weight/Volume: 40 mL

Date Prepared: 06/23/2008 1525

MSD Lab Sample ID: 720-14809-3 Analysis Batch: 720-37205 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200806\06

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 06/23/2008 1632 Final Weight/Volume: 40 mL Date Prepared: 06/23/2008 1632

% Rec. MS MSD **RPD RPD Limit** MS Qual MSD Qual Analyte Limit 74 - 122 1,1-Dichloroethene 87 102 15 20 Trichloroethene 87 98 61 - 123 11 20 Chlorobenzene 101 104 88 - 121 3 20 MS % Rec MSD % Rec Surrogate Acceptance Limits Toluene-d8 (Surr) 92 99 82 - 120 4-Bromofluorobenzene 89 92 74 - 131 1,2-Dichloroethane-d4 (Surr) 95 110 88 - 119

Client: Crawford Consulting Inc Job Number: 720-14809-1

Method Blank - Batch: 720-37243 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-37243/3 Analysis Batch: 720-37243 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200806\06

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 06/24/2008 1045 Final Weight/Volume: 40 mL Date Prepared: 06/24/2008 1045

1,1-Dichloroethane ND 0.50 1,1-Dichloroethane ND 0.50 Dichlorodifiloromethane ND 0.50 Vinyl chloride ND 0.50 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethane ND 0.50 cis-1,2-Dichloroethane ND 0.50 cis-1,2-Dichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,1-1-Tichloroethane ND 0.50 1,2-Dichloroprotehane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 1,1-2-Tichloropropane ND	Analyte	Result	Qual	RL
Dichlorodifluoromethane ND 0.50 Vinyl chloride ND 0.50 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Methylene Chloride ND 0.50 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 0.50 Chloroform ND 0.50 Chloroform ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 Cis-1,3-Dichloroppopene ND 0.50 Cis-3-Dichloroppopene ND 0.50 Cis-1,1-2-Trichloroethane ND 0.50	1,1-Dichloroethene	ND		0.50
Vinyl chloride ND 0.50 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 0.50 Chloroform ND 0.50 1,1,1-Trichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropthane ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 Chlorodethane ND 0.50 Chlorodethane ND 0.50 Chlorodenzene ND 0.50	1,1-Dichloroethane	ND		0.50
Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 0.50 Chloroform ND 0.50 Carbon tetrachloride ND 0.50 Carbon tetrachloride ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 Trichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 tetrachloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chloroderzene ND 0.50 Chloroderzene ND 0.50 <	Dichlorodifluoromethane	ND		0.50
Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 0.50 Chloroform ND 0.50 Carbon tetrachloride ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 Dichlorobromomethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodethane ND 0.50 Chlorodersene ND 0.50 Bromoform ND 0.50 I,1,2,2-Tetrachloroethane ND 0.50 I,3-Dichlorobenzene ND 0.50 I,4-Dichlorobenzene ND 0.50 I,2-Dichlorobenzene ND 0.50	Vinyl chloride	ND		0.50
Methylene Chloride trans-1,2-Dichloroethene ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroptorethane ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 Lin,2-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Bromoform ND 0.50 Bromoform ND 0.50 1,4-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene	Chloroethane	ND		1.0
trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroptoane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropene ND 0.50 1,2-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropene ND 0.50 Chlorodenene ND 0.50 Chlorodenzene ND 0.50 Bromoform ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 <	Trichlorofluoromethane	ND		1.0
cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Tetrachloroethane ND 0.50 Tetrachloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Chloromethane ND 0.50 L,2-Tichloro-1,2,2-trifluoroethane ND	Methylene Chloride	ND		5.0
Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloroptopene ND 0.50 cis-1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 Chloromethane ND 0.50 EDB ND 0.50	trans-1,2-Dichloroethene	ND		0.50
1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Strondorm ND 0.50 Hobidorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichloroethane ND 0.50 Promomethane ND 0.50 ND 0.50 0.50 Liptoroethane ND 0.50 Chloromethane	cis-1,2-Dichloroethene	ND		0.50
Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 0.50 Bromoform ND 0.50 1,2-2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50	Chloroform	ND		1.0
1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Tetrachloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 0.50 Bromoform ND 0.50 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 Bromomethane ND 0.50 EDB ND 0.50 1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2-Trichlorobenzene ND 0.50 1,2-Trichlorobenzene	1,1,1-Trichloroethane	ND		0.50
Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 0.50 Chlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50	Carbon tetrachloride	ND		0.50
1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surr	1,2-Dichloroethane	ND		0.50
Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 0.50 1,2,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 1,2,4-Trichlorobenzene ND 0.50 1,2,4-Trichlorobenzene ND 0.50	Trichloroethene	ND		0.50
trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Tetrachloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 DB ND 0.50 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichloro-1,2,2-trifluoroethane ND 0.50 <	1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	Dichlorobromomethane	ND		0.50
1,1,2-Trichloroethane ND 0.50 Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	trans-1,3-Dichloropropene	ND		0.50
Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	cis-1,3-Dichloropropene	ND		0.50
Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Tolluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	1,1,2-Trichloroethane	ND		0.50
Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	Tetrachloroethene	ND		0.50
Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	Chlorodibromomethane	ND		0.50
1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	Chlorobenzene	ND		0.50
1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	Bromoform	ND		1.0
1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	1,1,2,2-Tetrachloroethane	ND		0.50
1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	1,3-Dichlorobenzene	ND		0.50
Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	1,4-Dichlorobenzene	ND		0.50
Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	1,2-Dichlorobenzene	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	Chloromethane	ND		1.0
EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	Bromomethane	ND		1.0
1,2,4-TrichlorobenzeneND1.0Surrogate% RecAcceptance LimitsToluene-d8 (Surr)9882 - 1204-Bromofluorobenzene8874 - 131	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	EDB	ND		0.50
Toluene-d8 (Surr) 98 82 - 120 4-Bromofluorobenzene 88 74 - 131	1,2,4-Trichlorobenzene	ND		1.0
4-Bromofluorobenzene 88 74 - 131	Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene 88 74 - 131	Toluene-d8 (Surr)	98	82 - 120	
1,2-Dichloroethane-d4 (Surr) 102 88 - 119		88	74 - 131	
	1,2-Dichloroethane-d4 (Surr)	102	88 - 119	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Crawford Consulting Inc Job Number: 720-14809-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-37243 Preparation: 5030B

LCS Lab Sample ID: LCS 720-37243/2 Analysis Batch: 720-37243 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200806\06

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 06/24/2008 0937 Final Weight/Volume: 40 ml

Date Analyzed: 06/24/2008 0937 Final Weight/Volume: 40 mL Date Prepared: 06/24/2008 0937

LCSD Lab Sample ID: LCSD 720-37243/1 Analysis Batch: 720-37243 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200806\062

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 06/24/2008 1011 Final Weight/Volume: 40 mL

Date Prepared:

06/24/2008 1011

% Rec. LCS **LCSD RPD** RPD Limit LCS Qual LCSD Qual Analyte Limit 1,1-Dichloroethene 109 106 75 - 116 3 20 Trichloroethene 89 90 70 - 106 20 1 Chlorobenzene 102 103 89 - 118 20 1 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 96 96 Toluene-d8 (Surr) 82 - 120 4-Bromofluorobenzene 87 90 74 - 131 1,2-Dichloroethane-d4 (Surr) 100 100 88 - 119

CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM Test America 720-14809 1220 Quarry Lane, Pleasanton, CA 94566 (925) 484-1919 FAX (925) 484-1096 Service Request: Alameda Facility Project Name: Analysis Requested CS1605 Project Number: Project Manager: Dana Johnston Volatile Organics (8010) 7 olatile Organics (VOCs) Company/Address Crawford Consulting, Inc. 2×500 ml glass H_2SO_4 of Containers Pb (7421); As (7060) 2 North First St. 4th Floor 500 ml plastic H₂SO₄ 2 x 40 ml vial HCl 500 ml plastic NP San Jose, CA 95113 500 ml plastic NP pH, Conductivity Chloride, Nitrate Same as Metals 2 x 40 ml vial Phone: (408) 287-9934 Total Phenols **TPHgBTEX** COD, TKN (408) 287-9937 Fax: Sampler's Signature REMARKS LAB Sample Sample Time LD. Matrix LD. Date X MW-1 3 20 X MW-2 3 X MW-3 22 3 X MW-4 X DUP-1 3 X TB-1 SAMPLE RECEIPT INVOICE INFORMATION REPORT REQUIREMENTS. TURNAROUND REQUIREMENTS inquished By Received By 1 Houtine Report x II. Report (includes DUP, MS 24 hr 48-hr MSD, as required, may be x Standard (5 working days). charged as samples) Provide Verbal Preliminary Results x Provide pdf Results III Data Validation Report (includes All Raw Data) RWQCB 108 12:43 (MDL#FQL#TRACE#) Special Instructions/Comments: Received By Relinquished By Please report MRLs only Signature Signature 0.700 Please pdf results to: Dana Johnston at dana@crawfordconsulting.com Printed Name Printed Name Please provide EDF for Geotracker. Global ID is SL0600177511 Firm Dato/Time Date/Time

Login Sample Receipt Check List

Client: Crawford Consulting Inc Job Number: 720-14809-1

List Source: TestAmerica San Francisco

Login Number: 14809 Creator: Bullock, Tracy

Multiphasic samples are not present.

Samples do not require splitting or compositing.

List Number: 1

Question T / F/ NA Comment Radioactivity either was not measured or, if measured, is at or below N/A background The cooler's custody seal, if present, is intact. N/A The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True There are no discrepancies between the sample IDs on the containers and True the COC. Samples are received within Holding Time. True Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in False SEE NARRATIVE diameter. If necessary, staff have been informed of any short hold time or quick TAT True needs

True

True

