RECEIVED

3:20 pm, Oct 02, 2007

Alameda County Environmental Health

Groundwater Monitoring Results
First Semi-Annual 2007 Monitoring Period
Cargill Salt – Alameda Facility
Alameda, California

Groundwater Monitoring Results First Semi-Annual 2007 Monitoring Period

Cargill Salt – Alameda Facility Alameda, California

Prepared for:

Cargill Salt 7220 Central Avenue Newark, California 94560

Prepared by:

Crawford Consulting, Inc. 2 North First Street, 4th Floor San Jose, CA 95113 (408) 287-9934

> Project No. CS1605 September 28, 2007

Contents

1	Introduction	1
	1.1 Reporting Period Activities	1
	1.2 Background Information	2
	1.2.1 Site Description	
	1.2.2 Summary of Investigative and Remedial Activities	2
	1.2.3 Source of VOC Impact	3
2	Groundwater Flow Analysis	
	2.1 Water-Level Measurement	
	2.2 Groundwater Flow Direction and Gradient	4
	2.3 Groundwater Velocity	
3	Groundwater Sampling and Analysis	
	3.1 Sample Collection and Analysis	
	3.2 Analytical Results	6
	3.2.1 Quality Control	
	3.2.2 Groundwater Results	
	3.3 Discussion	
4	Phytoremediation Project Status Update	

Professional Certification References Limitations

Tables

Table 1.	Groundwater Level Data
Table 2.	Relative Percent Difference Based on Duplicate Samples
Table 3.	Summary of Groundwater Monitoring Well Data

Illustrations

Figure 1.	Site Location
Figure 2.	Groundwater Monitoring Well Locations
Figure 3.	Graphical Summary of Groundwater Elevations
Figure 4.	Groundwater Elevation Contours – March 2007
Figure 5.	Groundwater Elevation Contours – June 2007
Figure 6.	VOC Concentrations in Groundwater – March and June 2007
Figure 7.	Graphical Summary of PCE Concentrations
Figure 8.	PCE Concentrations vs. Groundwater Elevation

Appendices

(presented in electronic format only)

Appendix A. Field Data Sheets
Appendix B. Groundwater Velocity Calculations

Appendix C. Certified Analytical Reports and Chain-of-Custody Documentation

Electronic File

Entire report presented in electronic file format (pdf) on CD-ROM inside back cover.

1 Introduction

Crawford Consulting, Inc. (Crawford) has prepared this report on behalf of Cargill Salt for the Cargill Salt Dispensing Systems Division facility (hereafter, the Site) in Alameda, California.

Results of groundwater transect sampling and the initial sampling of three groundwater monitoring wells installed in November 1999 were presented in the January 31, 2000 report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW). The purpose of the groundwater transect sampling and the monitoring well installation and sampling was to help characterize and monitor the occurrence of volatile organic compounds (VOCs), primarily tetrachloroethene (PCE) and its breakdown product, trichloroethene (TCE), previously detected in groundwater at the Site.

One of the recommendations in the report was to confirm the groundwater analytical results of the newly installed monitoring wells (wells MW-1, MW-2, and MW-3) and the groundwater flow direction and gradient via quarterly monitoring. Cargill Salt began groundwater monitoring on a quarterly basis after the initial groundwater monitoring well sampling event in November 1999. For 2000 through 2005, reporting was performed on an annual basis. Reporting is now being performed on a semi-annual basis.

Cargill Salt conducted additional characterization activities in November and December 2001 to evaluate the off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue.

1.1 Reporting Period Activities

This report presents the results of groundwater monitoring data collected during the first and second quarters of 2007. For each quarterly period, groundwater levels in the Site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined. The quarterly monitoring schedule for the first semi-annual 2007 monitoring period is shown below.

Quarter of 2007	Field Dates
First	March 6, 2007
Second	June 15, 2007

Supervision of the quarterly monitoring events was conducted for Cargill Salt by Crawford. Groundwater level measurements and collection of groundwater samples were conducted by Field Solutions, Inc. The groundwater samples for the first through second quarters of 2007 were analyzed by STL San Francisco, a state-certified laboratory in Pleasanton, California.

1.2 Background Information

A description of the Site and a summary of the development of characterization and monitoring programs for the Site are presented in this section.

1.2.1 Site Description

Alameda is an island on the east side of San Francisco Bay, separated from Oakland by a tidal canal (Figure 1). The Cargill Salt Dispensing Systems Division facility is located on a rectangular lot in an industrial and residential neighborhood. The facility building occupies approximately one-third of the Site and is separated from the vacant, unpaved side of the lot by an asphalt driveway (Figure 2). The Site is bordered by a sheet-metal shop and a residential lot to the northwest, an apartment complex to the southwest, and a residential lot to the southeast.

From 1951 to 1978, the Alameda facility produced salt-dispensing units, which required casting and milling aluminum parts.

Constituents of concern associated with site operations have included casting sands with elevated concentrations of metals, and solvents, machine oils, and grease used in casting and milling operations. As discussed below, previous investigations and remedial activities have investigated and remediated metals and solvents (VOCs) in vadose-zone soil.

1.2.2 Summary of Investigative and Remedial Activities

Cargill Salt initiated site investigative activities in 1993 to determine if facility operations had impacted site soils. Cargill Salt submitted the results of the soil sampling investigation to the Alameda County Environmental Health Services (ACEHS) in October 1993 along with a workplan for excavation and disposal of impacted soils and assessment of potential impact to groundwater (Groundworks Environmental, Inc. [Groundworks], 1993).

After approval of the workplan by ACEHS, Cargill Salt conducted several phases of soil remediation and groundwater characterization. Surficial soils impacted by metals were excavated for disposal off site. Vadose-zone soils with the highest degree of impact by VOCs were also excavated for off-site disposal (see "Soil excavation area" on Figure 2).

The results of these activities were submitted to the ACEHS in a report, *Soil and Groundwater Investigations and Remedial Activities*, *July 1993 – September 1994*, *Cargill Salt – Alameda Facility*, *Alameda, California* (Groundworks, 1995). Recommendations for additional work to further delineate the lateral and vertical extent of VOCs in groundwater beneath the Site were presented in the report.

A workplan for the additional delineation of VOCs in groundwater, *Workplan for Groundwater Characterization and Monitoring Well Installation*, 2016 Clement Avenue, Alameda, California (CCI), was submitted to the ACEHS in July 1999.

After approval of the workplan by the ACEHS, Cargill Salt conducted groundwater sampling and well installation activities during August and November of 1999. The results of these activities were submitted to the ACEHS in a report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW, dated January 31, 2000). After the initial groundwater monitoring well sampling event in November 1999, Cargill Salt began groundwater monitoring on a quarterly basis.

A work plan for remedial investigation activities, *Workplan for Off-Site Characterization, Cargill Salt* – *Alameda Facility, Alameda, California* (Conor Pacific/EFW), was submitted to the ACEHS in June 2001. After approval of the workplan by the ACEHS, Cargill Salt conducted characterization activities in November and December 2001 to evaluate off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue. The results of these activities were submitted to the ACEHS in the August 21, 2002 submittal *Off-Site Groundwater Characterization, Cargill Salt* – *Alameda Facility, Alameda, California*, prepared by Conor Pacific/EFW.

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid of 24 rows. The rows are generally 6 feet apart with trees on 7-foot centers on each row. Selection of the phytoremediation approach and implementation of the project were described in the October 20, 2006 report, *Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California* prepared by Crawford Consulting, Inc.

1.2.3 Source of VOC Impact

As discussed in the 1995 report, the occurrence of VOCs in soils and groundwater at the Site appears to be the result of a discharge or spill to surficial soils at a location near the rear property line at the southwestern corner of the property. The area with the highest degree of chemical impact was delineated prior to excavation and was then excavated using a backhoe and transported off-site for appropriate disposal. It is possible that the VOCs detected in soils and groundwater at this location were associated with waste products from facility operations. The VOCs may be associated with solvents previously used for degreasing operations at the facility, although there are no records indicating use of PCE. Site records indicate that the solvents used for degreasing operations were not PCE-based solvents.

It is also possible that the VOCs and oil and grease are associated with waste products discarded from neighboring properties. There is an apartment complex next to the rear property line of the facility, and the laundry room for this complex is in the utility shed immediately adjacent to the rear property line. This laundry room is only 4 feet away from the area of highest impact to soil. If PCE associated with laundry cleaning products were spilled in this laundry room, it is possible that it could have drained onto the Cargill Salt property.

2 Groundwater Flow Analysis

Groundwater levels were measured quarterly and groundwater contour maps were prepared for the first and second quarter 2007 monitoring events.

2.1 Water-Level Measurement

Water levels in groundwater monitoring wells (MW-1, MW-2, MW-3, and MW-4) were measured each quarter, before any of the groundwater monitoring wells were purged for sampling for the quarterly monitoring event. The groundwater monitoring well locations are shown on Figure 2. The water levels were measured with an electric sounder. The depth to water at each well was recorded on a *Water Level Field Data* sheet (see Appendix A).

The water-level data through the second quarter of 2007 are shown on Table 1. The data in Table 1 include the date and time of measurement, the well casing elevation, the measured depth to groundwater, the groundwater elevation, and the change in elevation from the previous measurement. A plot of historical groundwater elevations is shown in Figure 3.

The Site groundwater monitoring wells were re-surveyed in September 2006 by CSS Environmental Services in order to provide Geotracker-compliant survey data. Results of the casing elevation survey indicate that each well is approximately 6.4 feet higher than the previous survey conducted in 1999. This difference is due to the use of different datum for the 2006 and 1999 surveys. The casing elevations from the September 2006 survey are shown on Table 1.

Groundwater levels in the on-site monitoring wells (MW-1, MW-2, and MW-3) showed a similar seasonal pattern in the first semi-annual period of 2007 as in the previous seven years (see Figure 3). Groundwater levels rose across the Site between the fourth quarter 2006 and first quarter 2007 measurements, reflecting winter-season recharge. Groundwater levels fell between the first and second quarter 2007 measurements, reflecting dissipation of winter-season discharge. The groundwater level in off-site monitoring well MW-4 showed a similar seasonal pattern as the on-site wells during the first two quarters of 2007.

2.2 Groundwater Flow Direction and Gradient

Groundwater contour maps for the first and second quarters of 2007 based on the March and June 2007 water-level data are shown on Figures 4 and 5.

The groundwater flow direction determined for the first and second quarters of 2007 was to the northeast, consistent with the groundwater flow direction determined previously for the Site. The horizontal hydraulic gradients measured for the first and second quarters of 2007 were 0.023 and 0.014, respectively.

2.3 Groundwater Velocity

Average linear groundwater flow velocities (V) were calculated using a form of Darcy's Law,

V = Ki/n,

where "K" is the hydraulic conductivity, "i" is the horizontal hydraulic gradient, and "n" is the effective porosity. The groundwater velocity calculations for the first and second quarters of 2007 groundwater data are presented in Appendix B.

Using hydraulic conductivity and porosity values determined for saturated native materials at the Site [based on slug tests and laboratory soil testing, respectively (Conor Pacific/EFW, 2002)], and the horizontal hydraulic gradients determined from the first and second quarters 2007 groundwater contour maps, groundwater flow velocities beneath the Site are calculated to be approximately 1 foot per year.

3 Groundwater Sampling and Analysis

This section summarizes the sample collection and analytical methods, presents an evaluation of quality control data, and summarizes the results of the sampling events.

3.1 Sample Collection and Analysis

Groundwater samples were collected March 6, 2007 and June 15, 2007 from groundwater monitoring wells MW-1, MW-2, MW-3, and MW-4. Dedicated tubing was installed in wells MW-1, MW-2, and MW-3 prior to the first quarter 2000 sampling event and on December 17, 2001 in well MW-4 to facilitate sampling with a peristaltic pump. Dedicated fluorinated ethylene propylene resin (FEP)-lined polyethylene tubing was installed in each monitoring well. The tubing intake was placed about one foot above the well bottom in each of the wells. Viton® dedicated check valves were installed on the tubing intakes to prevent back-flow of water into the well. A short length of dedicated Viton® tubing was installed at the well head for use in a peristaltic pump head. Prior to sample collection for each quarterly monitoring event, the wells were purged using a peristaltic pump. Field parameters (pH, electrical conductivity, temperature, and turbidity) were measured in purged groundwater from each well prior to sampling; these data are recorded on the Sample Collection Field Data sheets presented in Appendix A. After purging, groundwater samples were collected using the peristaltic pump and the dedicated Viton® pump head discharge tubing.

The groundwater samples were analyzed for VOCs using U.S. Environmental Protection Agency (USEPA) Method 8021B. Results for all Method 8010 analytes were reported. The groundwater samples for first through second quarter 2007 were delivered with appropriate chain-of-custody documentation to STL San Francisco, a state-certified laboratory in Pleasanton, California, for chemical analysis.

3.2 Analytical Results

The results of field and laboratory quality control measures and the results of the groundwater monitoring well samples are reviewed in this section. The certified analytical reports and chain-of-custody documentation are presented in Appendix C.

3.2.1 Quality Control

Quality control (QC) samples were analyzed as part of the sampling and analysis program to evaluate the precision and accuracy of the reported groundwater chemistry data. QC samples included both field and laboratory samples. Descriptions of the purpose of specific field and laboratory QC samples used during the sampling and analysis program and an evaluation of field and laboratory QC results are presented below.

Field Quality Control Samples

A field duplicate was used during the first through second quarter 2007 sampling program for the Site. A field duplicate is used to assess sampling and analytical precision. The duplicate is collected at a selected well (MW-2 [first and second quarters 2007]) and then submitted "blind" to the laboratory for analysis with the same batch as the regular sample for the selected well. An estimate of precision is obtained by calculating the relative percent difference (RPD) between the regular sample and the duplicate sample using the following formula:

RPD =
$$[x - y] 100$$

0.5 $(x + y)$

where: [x - y] =the absolute value of the difference in concentration

between the regular sample (x) and the duplicate sample (y).

Laboratory Quality Control Samples

The following types of laboratory QC samples were used during the first through second quarter 2007 analytical program for the Site:

- surrogate spikes
- matrix spikes/duplicate matrix spikes

A surrogate spike is a check standard added to a sample in a known amount prior to analysis. Surrogate spikes consist of analytes not normally found in environmental samples and not targeted by the analytical procedure. Surrogate spikes provide information on recovery efficiency by comparing the percent recovery of specific surrogate analyses to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis exhibits an acceptable recovery efficiency. Recoveries that fall outside the acceptance limits indicate a potential problem with the recovery efficiency of analytes, which in turn indicates a potential bias with respect to the reported concentration of the environmental samples analyzed in the same batch.

Matrix spikes and duplicate matrix spikes are analyzed by the laboratory for the purpose of providing a quantitative measure of accuracy and precision, and to document the effect that the sample matrix has on the analysis. A selected sample is spiked in duplicate with known concentrations of analytes. The recoveries of the spiked analytes are compared to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis has no statistically significant bias (i.e., the analysis is accurate). Recoveries that fall outside of the acceptance limits have a positive or negative bias, depending on whether the recovery is greater or less than the upper or lower acceptance limit, respectively. Analyses where analyte recoveries fall outside the acceptance limits should be regarded as estimates only.

Precision for matrix spikes is measured by calculating the relative percent differences (RPDs) between the measured concentration of analytes in the matrix and the duplicate matrix spike. The following equation is used for matrix spikes:

RPD = [MS - MSD] 100 0.5 (MS + MSD)

where: [MS - MSD] = the absolute value of the difference in

concentration between the matrix spike (MS) and the matrix

spike duplicate (MSD)

First Quarter 2007 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the first quarter 2007 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8260B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). The one parameter (PCE) for which RPDs could be calculated (see Table 2) exhibits a low RPD value (i.e., less than 10%) indicative of good precision.

Second Quarter 2007 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the second quarter 2007 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8260B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). The one parameter (PCE) for which RPDs could be calculated (see Table 2) exhibits a low RPD value (i.e., less than 10%) indicative of good precision.

First through Second Quarter 2007 Laboratory QC Results

A review of the first through second quarter 2007 field data sheets and laboratory reports (presented in Appendices A and C, respectively) indicates that all analyses were performed within USEPA or California Department of Health Services (DHS) recommended maximum sample holding times.

QC data on surrogate spike recoveries and matrix spike recoveries are presented in the laboratory reports. These data indicate: (1) no surrogate spike recoveries were outside of the laboratory's acceptance limits; (2) RPD values for the matrix spikes and duplicate matrix spikes indicate a high overall degree of analytical precision.

No matrix spike or duplicate matrix spike recoveries were outside of the laboratory's control limits, with the exception in the Second Quarter 2007 laboratory report the MS or MSD exceeded the control limits for trichloroethene and 1,1-dichloroethene.

The laboratory QC data indicate that the results reported herein are of adequate quality for evaluation of site groundwater conditions.

3.2.2 Groundwater Results

The results of VOC analyses for each quarter for 2000 through second quarter 2007 are summarized in Table 3, which also shows the VOC results for the initial sampling event for monitoring wells MW-1, MW-2, and MW-3 in November 1999. The results for the first and second quarter 2007 monitoring events are also shown on Figures 6 and 7.

Consistent with previous monitoring events, PCE and its breakdown products TCE and 1,1-dichloroethene (DCE) were detected in Site groundwater samples from the first and second quarter 2007 monitoring events.

For the first and second quarters of 2007, the concentrations of PCE detected were 170 and 310 μ g/L in monitoring well MW-1, 1,600 and 2,400 μ g/L in MW-2, not detected in MW-3, and 0.70 and 0.75 μ g/L in MW-4.

The concentrations of TCE detected were 17 and 38 μ g/L in monitoring well MW-1 and not detected and 22 μ g/L in MW-2. TCE was not detected in MW-3 or MW-4.

DCE was detected in monitoring well MW-1 at $3.0 \,\mu\text{g/L}$ for the second quarter 2007 event but was not detected in the first quarter 2007. DCE was detected in MW-3 at $1.5 \,\text{and}\, 2.4 \,\mu\text{g/L}$ during the first and second quarters 2007, respectively. DCE was not detected in MW-2 or MW-4.

3.3 Discussion

The results for the first through second quarter 2007 quarterly monitoring events are generally similar to the results reported for the years 2000 through fourth quarter 2006 quarterly monitoring programs (see Figure 7). Variations in VOC concentrations at monitoring well MW-2, the well with the highest reported PCE concentrations at the site, generally correlate with variations in groundwater elevations at the Site. An increase in VOC concentrations generally follows a rise in groundwater elevations, and a decrease in VOC concentration generally follows a fall in groundwater levels (see Figure 8). The variations in VOC concentrations sometimes lag one quarter behind the variations in groundwater elevation.

The concentrations of PCE reported for groundwater monitoring well MW-2 for the June 2006, September 2006, December 2006, and March 2007 sampling events were the lowest PCE concentrations reported for the well since the initial sampling event in November 1999. The PCE concentration reported for MW-2 for June 2007 was the lowest "seasonal high" reported since the initial sampling event in 1999. The PCE concentrations reported for MW-2 for the last five quarters appear to be an indication that the phytoremediation project is beginning to be effective at reducing VOC concentrations in groundwater at the site. However, it may be premature to correlate these PCE concentrations to the effectiveness of the phytoremediation project as the trees have only been growing for two years (see Section 4). Continued monitoring will be required before a definitive correlation can be made.

4 Phytoremediation Project Status Update

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid on the unpaved portion of the site. Selection of the phytoremediation approach and implementation of the project were described in the report, *Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc., October 20, 2006).

A tree monitoring and maintenance program is being conducted by a landscaping contractor. This program involves monthly inspection of the trees during the growing season, inspection and maintenance of the drip irrigation system, and weed control.

The end of the first semi-annual monitoring period of 2007 marks the first 24 months of the phytoremediation project. The trees were 4-ft-tall, bare-root poles with no foliage when planted in June 2005. During the first two years of growth, the trees developed foliage and most grew 3 to 10 additional feet in height. Photos comparing the appearance of the trees just after planting in 2005 and in June 2007 are show below and on the next page.

As discussed in Section 3.3, the PCE concentrations reported for MW-2 for the last five quarters appear to be an indication that the phytoremediation project is beginning to be effective at reducing VOC concentration in groundwater at the site. Tree growth and VOC concentrations will be monitored and evaluated to determine the effectiveness of the phytoremediation project.

Bare-root trees planted in June 2005 - View towards rear of property

June 2007 - View from gate towards rear of property

June 2007 - View of front planting strip at Clement Avenue

September 28, 2007

Alameda County Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Attn: Jerry Wickham

RE: Groundwater Monitoring Results, First Semi-Annual 2007 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, SLIC Case No. RO0002480

Dear Mr. Wickham,

The attached report presents the groundwater monitoring results for the First Semi-Annual 2007 Monitoring Period for the Cargill Salt Alameda facility. This report presents the results of groundwater monitoring data collected during the first and second quarters of 2007. For each quarterly period, groundwater levels in the site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report are true and correct to the best of my knowledge.

Should you have any questions concerning the report, please don't hesitate to call me at (510) 790-8158.

Sincerely,

Gene Chauffe Site Manager

Professional Certification

Groundwater Monitoring Results First Semi-Annual 2007 Monitoring Period Cargill Salt – Alameda Facility Alameda, California

Java C. Johnson

Mark (. Wheeler

This report has been prepared by CRAWFORD CONSULTING, INC. with the professional certification of the California professional geologist whose signature appears below.

Dana C. Johnston Project Manager

Mark C. Wheeler Principal Geologist

P.G. 4563

References

- Alameda County Environmental Health Services, 1999. Letter to Cargill Salt: Groundwater Monitoring Well Installation at 2016 Clement Avenue, Alameda, CA, May 7, 1999. Conor Pacific/EFW, 2001. Workplan for Off-Site Characterization, Cargill Salt Alameda Facility, June 18, 2001.
- ______, 2002. Off-Site Groundwater Characterization, Cargill Salt Alameda Facility, Alameda, California, August 21, 2002.
- Crawford Consulting, Inc., 1999. Workplan for Groundwater Characterization and Monitoring Well Installation, 2016 Clement Avenue, Alameda, California, July 7, 1999.
- ______, 2001. Groundwater Monitoring Results, First through Fourth Quarter 2000, Cargill Salt Alameda Facility, Alameda, California, April 11, 2001.
- ______, 2002. Groundwater Monitoring Results, First through Fourth Quarter 2001, Cargill Salt Alameda Facility, Alameda, California, August 14, 2002.
- ______, 2003. Groundwater Monitoring Results, First through Fourth Quarter 2002, Cargill Salt Alameda Facility, Alameda, California, August 13, 2003.
- , 2004. Groundwater Monitoring Results, First through Fourth Quarter 2003, Cargill Salt Alameda Facility, Alameda, California, February 27, 2004.
- ______, 2005. Groundwater Monitoring Results, First through Fourth Quarter 2004, Cargill Salt Alameda Facility, Alameda, California, November 7, 2005.
- _______, 2006. Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt Alameda Facility, Alameda, California, October 20, 2006.
- ______, 2006. Groundwater Monitoring Results, First Semi-Annual 2006 Monitoring Results, Cargill Salt Alameda Facility, Alameda, California, November 8, 2006.
- Crawford Consulting, Inc. and Conor Pacific/EFW, 2000. Groundwater Characterization and Monitoring Well Installation, Cargill Salt Alameda Facility, Alameda, California, January 31, 2000.
- Groundworks Environmental, Inc. (Groundworks), 1993. Results of Soil Sampling and Workplan for Remedial Activities, Alameda facility, October 19, 1993.
- ______, 1995. Soil and Groundwater Investigations and Remedial Activities, July 1993 September 1994, Cargill Salt Alameda Facility, Alameda, California, July 31, 1995.
- Hickenbottom, K. S., and Muir, K.S., 1988. Geohydrology and Groundwater-Quality Overview of the East Bay Plain Area, Alameda County, California, 205 (j) Report, prepared for the California Regional Water Quality Control Board, San Francisco Bay Region, by the Alameda County Flood Control and Water Conservation District, June 1988.

Limitations

This report and the evaluations presented herein have been prepared in accordance with generally accepted professional standards and is based solely on the scope of work and services described herein. This report has been prepared solely for the use of Cargill Salt for the purposes noted herein. Any use of this report, in whole or in part, by a third party for other than the purposes noted herein is at such party's sole risk.

Table 1. Groundwater Level Data

			Casing	Depth to	Water	Elev. Change
Well/			Elevation	Water	Elevation	from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-1	11/16/1999	09:56	13.16	3.75	9.41	NA
MW-1	3/30/2000	10:09	13.16	2.81	10.35	0.94
MW-1					9.84	
	5/16/2000	09:43 09:11	13.16	3.32		-0.51 -0.26
MW-1 MW-1	7/28/2000 11/30/2000	08:36	13.16 13.16	3.58 3.52	9.58 9.64	0.06
MW-1		08:47	13.16	3.32	10.01	0.37
MW-1	3/26/2001 6/25/2001	10:19	13.16	3.13	9.63	-0.38
MW-1	9/28/2001	09:32	13.16	3.96	9.20	-0.43
MW-1	12/17/2001	10:47	13.16	3.23	9.93	0.73
MW-1	3/21/2002	07:28	13.16	2.89	10.27	0.34
MW-1	6/6/2002	08:03	13.16	3.50	9.66	-0.61
MW-1	9/20/2002	08:30	13.16	3.86	9.30	-0.36
MW-1	12/19/2002	08:38	13.16	3.13	10.03	0.73
MW-1	3/4/2003	10:31	13.16	3.08	10.08	0.05
MW-1	6/9/2003	08:32	13.16	3.29	9.87	-0.21
MW-1	9/8/2003	10:02	13.16	3.79	9.37	-0.50
MW-1	12/1/2003	10:16	13.16	3.78	9.38	0.01
MW-1	3/4/2004	09:31	13.16	2.88	10.28	0.90
MW-1	6/2/2004	08:42	13.16	3.45	9.71	-0.57
MW-1	9/14/2004	08:01	13.16	3.87	9.29	-0.42
MW-1	12/8/2004	07:44	13.16	3.23	9.93	0.64
MW-1	3/3/2005	08:07	13.16	2.01	11.15	1.22
MW-1	6/10/2005	07:05	13.16	2.90	10.26	-0.89
MW-1	9/16/2005	08:00	13.16	3.62	9.54	-0.72
MW-1	12/6/2005	08:00	13.16	3.28	9.88	0.34
MW-1	3/10/2006	07:40	13.16	2.28	10.88	1.00
MW-1	6/9/2006	09:45	13.16	3.09	10.07	-0.81
MW-1	9/11/2006	10:24	13.16	3.70	9.46	-0.61
MW-1	12/15/2006	07:34	13.16	2.94	10.22	0.76
MW-1	3/6/2007	09:18	13.16	2.87	10.29	0.07
MW-1	6/15/2007	07:29	13.16	3.30	9.86	-0.43
MW-2	11/16/1999	11:15	16.22	5.22	11.00	NA
MW-2	3/30/2000	10:05	16.22	2.80	13.42	2.42
MW-2	5/16/2000	09:35	16.22	4.13	12.09	-1.33
MW-2	7/28/2000	09:17	16.22	4.85	11.37	-0.72
MW-2	11/30/2000	08:32	16.22	4.75	11.47	0.10
MW-2	3/26/2001	08:40	16.22	3.28	12.94	1.47
MW-2	6/25/2001	12:12	16.22	4.75	11.47	-1.47
MW-2	9/28/2001	12:20	16.22	5.41	10.81	-0.66
MW-2	12/17/2001	10:44	16.22	4.07	12.15	1.34
MW-2	3/28/2002	09:37	16.22	3.40	12.82	0.67
MW-2	6/6/2002	08:11	16.22	4.70	11.52	-1.30
MW-2	9/20/2002	08:34	16.22	5.28	10.94	-0.58
MW-2	12/19/2002	08:45	16.22	3.37	12.85	1.91
MW-2	3/4/2003	10:26	16.22	3.11	13.11	0.26
MW-2	6/9/2003	08:31	16.22	4.16	12.06	-1.05
MW-2	9/8/2003	10:08	16.22	5.26	10.96	-1.10
MW-2	12/1/2003	10:20	16.22	5.05	11.17	0.21
MW-2	3/4/2004	09:34	16.22	2.86	13.36	2.19

Table 1. Groundwater Level Data

			Casing	Depth to	Water	Elev. Change
Well/			Elevation	Water	Elevation	from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-2	6/2/2004	08:53	16.22	4.47	11.75	-1.61
MW-2	9/14/2004	07:59	16.22	5.26	10.96	-0.79
MW-2	12/8/2004	08:00	16.22	4.20	12.02	1.06
MW-2	3/3/2005	08:04	16.22	1.90	14.32	2.30
MW-2	6/10/2005	07:09	16.22	3.74	12.48	-1.84
MW-2	9/16/2005	08:08	16.22	4.92	11.30	-1.18
MW-2	12/6/2005	10:58	16.22	4.39	11.83	0.53
MW-2	3/10/2006	07:47	16.22	2.13	14.09	2.26
MW-2	6/9/2006	10:03	16.22	3.75	12.47	-1.62
MW-2	9/11/2006	10:22	16.22	4.94	11.28	-1.19
MW-2	12/15/2006	07:32	16.22	4.08	12.14	0.86
MW-2	3/6/2007	09:13	16.22	3.27	12.95	0.81
MW-2	6/15/2007	07:31	16.22	4.57	11.65	-1.30
1.001.0	44.4.6.4.000	15.10	12.24		0.00	27.
MW-3	11/16/1999	15:43	13.34	4.34	9.00	NA
MW-3	3/30/2000	10:01	13.34	2.77	10.57	1.57
MW-3	5/16/2000	09:46	13.34	3.44	9.90	-0.67
MW-3	7/28/2000	09:05	13.34	3.72	9.62	-0.28
MW-3	11/30/2000	08:34	13.34	3.73	9.61	-0.01
MW-3	3/26/2001	08:54	13.34	3.51	9.83	0.22
MW-3	6/25/2001	10:21	13.34	3.65	9.69	-0.14
MW-3	9/28/2001	09:30	13.34	3.96	9.38	-0.31
MW-3	12/17/2001	10:38	13.34	3.28	10.06	0.68
MW-3	3/21/2002	07:28	13.34	3.10	10.24	0.18
MW-3	6/6/2002	08:07	13.34	3.63	9.71	-0.53
MW-3	9/20/2002	08:25	13.34	3.82	9.52	-0.19
MW-3	12/19/2002	08:42	13.34	3.10	10.24	0.72
MW-3	3/4/2003	10:36	13.34	3.29	10.05	-0.19
MW-3	6/9/2003	08:28	13.34	3.41	9.93	-0.12
MW-3	9/8/2003	10:00	13.34	3.85	9.49	-0.44
MW-3	12/1/2003	10:30	13.34	3.90	9.44	-0.05
MW-3	3/4/2004	09:22	13.34	3.11	10.23	0.79
MW-3	6/2/2004	08:46	13.34	3.53	9.81	-0.42
MW-3	9/14/2004	08:05	13.34	4.07	9.27	-0.54
MW-3	12/8/2004	07:40	13.34	3.73	9.61	0.34
MW-3	3/3/2005	07:53	13.34	2.36	10.98	1.37
MW-3	6/10/2005	07:14	13.34	3.15	10.19	-0.79
MW-3	9/16/2005	08:04	13.34	3.90	9.44	-0.75
MW-3	12/6/2005	08:04	13.34	3.35	9.99	0.55
MW-3	3/10/2006	07:43	13.34	2.89	10.45	0.46
MW-3	6/9/2006	09:33	13.34	3.26	10.08	-0.37
MW-3	9/11/2006	10:19	13.34	3.70	9.64	-0.44
MW-3	12/15/2006	07:37	13.34	3.10	10.24	0.60
MW-3	3/6/2007	09:16	13.34	3.04	10.30	0.06
MW-3	6/15/2007	07:27	13.34	3.60	9.74	-0.56
		.				_
MW-4	12/17/2001	10:40	12.43	2.55	9.88	NA
MW-4	3/28/2002	08:05	12.43	3.06	9.37	-0.51
MW-4	6/6/2002	07:57	12.43	2.85	9.58	0.21
MW-4	9/20/2002	08:28	12.43	3.21	9.22	-0.36

Table 1. Groundwater Level Data

Well/ Piezometer	Date	Time	Casing Elevation (feet, MSL)	Depth to Water (feet)	Water Elevation (feet, MSL)	Elev. Change from Last Measurement (feet)
MW-4	12/19/2002	08:53	12.43	3.70	8.73	-0.49
MW-4	3/4/2003	10:34	12.43	3.14	9.29	0.56
MW-4	6/9/2003	08:29	12.43	2.82	9.61	0.32
MW-4	9/8/2003	10:04	12.43	3.43	9.00	-0.61
MW-4	12/1/2003	10:14	12.43	3.12	9.31	0.31
MW-4	3/4/2004	09:27	12.43	2.81	9.62	0.31
MW-4	6/2/2004	08:44	12.43	3.34	9.09	-0.53
MW-4	9/14/2004	08:03	12.43	3.51	8.92	-0.17
MW-4	12/8/2004	07:36	12.43	3.10	9.33	0.41
MW-4	3/3/2005	07:44	12.43	2.48	9.95	0.62
MW-4	6/10/2005	07:02	12.43	2.47	9.96	0.01
MW-4	9/16/2005	08:12	12.43	3.23	9.20	-0.76
MW-4	12/6/2005	07:50	12.43	3.17	9.26	0.06
MW-4	3/10/2006	07:37	12.43	3.77	8.66	-0.60
MW-4	6/9/2006	07:30	12.43	2.49	9.94	1.28
MW-4	9/11/2006	10:17	12.43	3.19	9.24	-0.70
MW-4	12/21/2006	NR	12.43	2.90	9.53	0.29
MW-4	3/6/2007	09:20	12.43	2.54	9.89	0.36
MW-4	6/15/2007	07:33	12.43	3.03	9.40	-0.49

Key:

NA = Not available

feet, MSL = feet, relative to Mean Sea Level

Casing elevations for all wells were resurveyed on September 6, 2006 by CSS Environmental Services for Geotracker compliance.

Table 2. Relative Percent Difference Based on Duplicate Samples

First Quarter 2007 Second Quarter 2007

	not Quai	101 2007		DCCOII	u Quarter 2	007
Analysis	Well MW-2 Results	Duplicate (DUP-1) Results	RPD ¹ (%)	Well MW-2 Results	Duplicate (DUP-1) Results	RPD ¹ (%)
Volatile Organic Compounds (µg/L)						
1,1-Dichloroethene (DCE)	<20	<20	NM^2	<20	<20	NM
1,1,1-Trichloroethane (TCA)	<20	<20	NM	<20	<20	NM
Trichloroethene (TCE)	<20	20	NM	22	<20	NM
Tetrachloroethene (PCE)	1,600	1,700	6.1	2,400	2,400	0

¹ RPD = relative percent difference

All other 8010 list analytes not detected (by 8260).

 $^{^2}$ NM = not meaningful; RPD cannot be accurately calculated where one or both values are below the method reporting limit.

Table 3. Summary of Groundwater Monitoring Well Data

Results measured in micrograms per liter (µg/L)

-	TC5art5 II	icasarca in	merogra	ms per me	η (μg/ Ε)																											
Well N	0.														MW-1																ļ	1
																															ļ	
Field Da	te 11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/21/02	6/6/02	9/20/02 1	2/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06 1	2/15/06	3/6/07	6/15/07	MCL^1
DCE ²	< 50.0	13	<10	15	14	<13	14	15	<13	<13	<13	<13	<13	<10	12	5.2	8.4	< 5.0	5.8	6.6	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	3.3	< 2.0	< 2.0	3.0	6
CFC 113 ³	na ⁴	1.4	<10	<10	<8.3	< 50	< 50	< 50	< 50	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	ne ⁵
DCA ⁶	< 50.0	0.8	<10	<10	<4.2	<13	<13	<13	<13	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	5
Chloroform	< 50.0	0.6*	<10	<10	<8.3	<13	<13	<13	<13	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	<10	<4.0	1.4	<4.0	<4.0	<4.0	<4.0	<4.0	ne
TCA ⁷	< 50.0	1.6	<10	<10	<4.2	<13	<13	<13	<13	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	200
TCE ⁸	178	150	190	170	130	180	250	210	190	160	140	190	68	97	90	110	130	53	72	81	39	15	23	34	16	3.4	22	47	20	17	38	5
PCE ⁹	906	1,400	1,900	1,200	880	1,000	1,400	1,000	1,400	1,100	980	1,100	600	730	770	780	850	370	490	620	380	160	180	240	140	39	140	400	210	170	310	5
Other analytes ¹	o nd ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Well No.															MW-2																	
E. 11E	11/15/00	2/20/00	5 (1 c (00	5 /20/00 1	1 /20 /00	2/2//01	c/25/01	0/20/01 1	2/15/01	2/20/02	c / c / D O	0/20/02 1/	2/20/02	2/4/02	c 10 10 0	0 10 102	12/1/02	2/4/04	< 10.10.4	0/14/04	12/0/04	0/0/05	< 11.0 /0.5	0/1//07	12/6/05	2/10/04	c 10 10 c	0/11/06 1	2/15/04	2/5/05	< 11 E 10 E	N COT 1
Field Date	11/16/99	3/30/00	5/16/00	7/28/00 1	1/30/00	3/26/01	6/25/01	9/28/01 1	2/17/01	3/28/02	6/6/02	9/20/02 12	2/30/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06 1	2/15/06	3/6/07	6/15/07	MCL ¹
_																																
DCE ²	< 50.0	< 0.5	<25	<25	<8.3	<25	<25	<25	<25	<25	<25	<25	<25	< 20	< 20	<20	< 20	<20	<25	<25	<20	< 50	<25	<20	<25	<25	< 20	< 20	<20	< 20	< 20	6
CFC 113 ³	na	< 0.5	<25	<25	<17	<100	<100	<100	<100	<25	<25	<25	<25	< 20	<20	< 20	< 20	< 20	<25	<25	< 20	< 50	<25	<20	<25	<25	<20	<20	<20	<20	<20	ne ⁵
DCA^6	< 50.0	< 0.5	<25	<25	<8.3	<25	<25	<25	<25	<25	<25	<25	<25	< 20	<20	< 20	<20	< 20	<25	<25	< 20	< 50	<25	<20	<25	<25	< 20	<20	<20	<20	< 20	5
Chloroform	< 50.0	< 0.5	<25	<25	<17	<25	<25	<25	<25	<25	<25	<25	<25	< 20	< 20	< 20	<20	< 20	<25	<25	< 20	< 50	<25	<40	< 50	< 50	<40	< 20	<40	<40	<40	ne
TCA ⁷	< 50.0	5.0	<25	<25	<8.3	<25	<25	<25	<25	<25	<25	<25	<25	< 20	<20	<20	< 20	< 20	<25	<25	<20	< 50	<25	<20	<25	<25	<20	<20	<20	<20	<20	200
TCE ⁸	< 50	29	53	<25	20	40	78	<25	<25	49	52	32	<25	58	41	28	25	39	49	37	30	78	43	29	45	59	<20	< 20	<20	<20	22	5
PCE ⁹	840	3,600	3,200	3,300	1,700	2,200	4,400	1,700	1,700	3,500	3,800	2,100	1,800	3,900	3,800	2,500	2,500	3,000	4,100	3,800	2,800	7,300	3,600	2,500	3,300	5,200	1,600	990	1,000	1,600	2,400	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Notes:

 $^{^{1}}$ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter [µg/L])

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ TCA = 1,1,1-Trichloroethane

⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

¹⁰ All other 8010 list analytes

¹¹ nd = not detected above laboratory reporting limit

^{*} Chloroform detected in equipment blank at 1.6 μ g/L for 3/30/00 event.

Table 3. Summary of Groundwater Monitoring Well Data

Results measured in micrograms per liter (µg/L)

Well No.	Kesuits II	icusurca in	imerogra	ms per m	ιοι (μβ/Δ)										MW-3																$\overline{}$	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,															1.2																	
Field Date	######	3/30/00	5/16/00	7/28/00	######	3/26/01	6/25/01	9/28/01	######	3/21/02	6/6/02	9/20/02 =	######	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06 #	#####	3/6/07	5/15/07	MCL ¹
DCE^2	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.51	< 0.5	0.81	< 0.5	< 0.5	0.68	2.4	1.5	1.1	0.86	4.3	2.8	1.6	1.5	2.4	6
CFC 113 ³	na	< 0.5	< 0.5	< 0.5	<1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA ⁶	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.50	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 0.500	< 0.5	< 0.5	< 0.5	<1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ne
TCA^7	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁸	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ⁹	< 0.500	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	0.81	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.90	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.56	< 0.5	< 0.5	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Well No.											MW-4													
Field Date	######	3/28/02	6/6/02	9/20/02	######	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06	######	3/6/07	6/15/07	MCL ¹
DCE ²	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
CFC 113 ³	<2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ne
TCA ⁷	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁸	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ⁹	2.6	2.8	2.0	2.5	1.1	2.1	2.1	1.6	1.6	1.7	1.4	1.3	1.2	0.93	0.98	0.8	1.1	0.79	0.64	0.70	0.63	0.70	0.75	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Notes

 $^{^1}$ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L])$

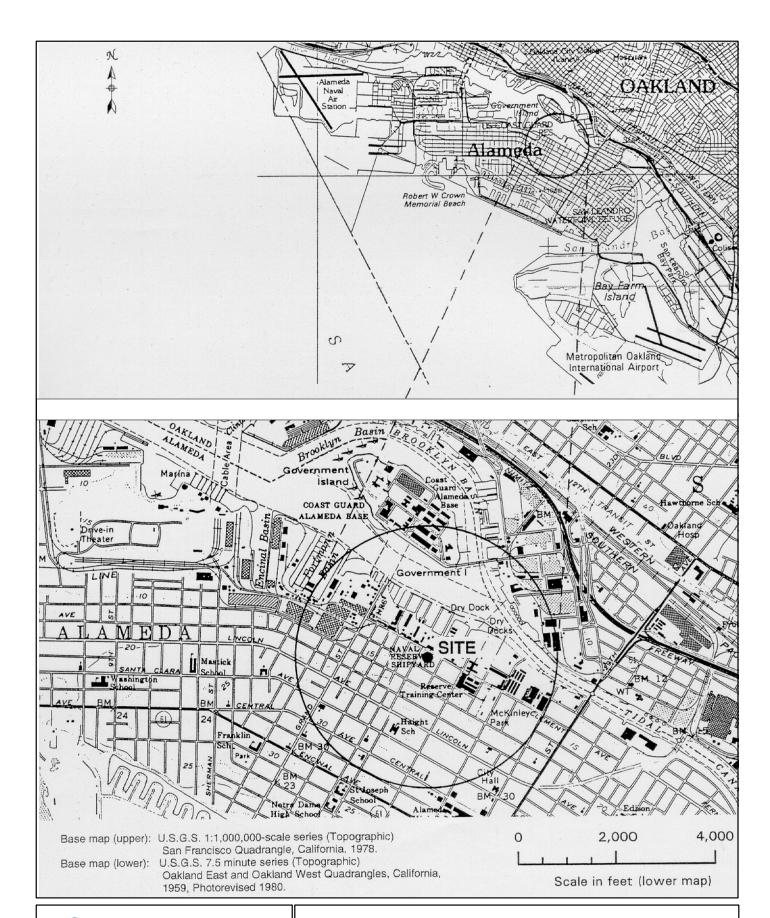
² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane


⁷ TCA = 1,1,1-Trichloroethane

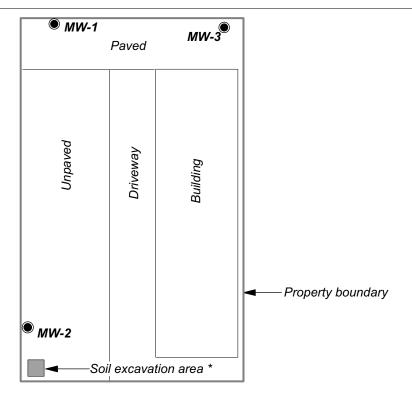
⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

¹⁰ All other 8010 list analytes

¹¹ nd = not detected above laboratory reporting limit

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California


Figure 1. Site Location

MW-4

Curb line (Typ.)

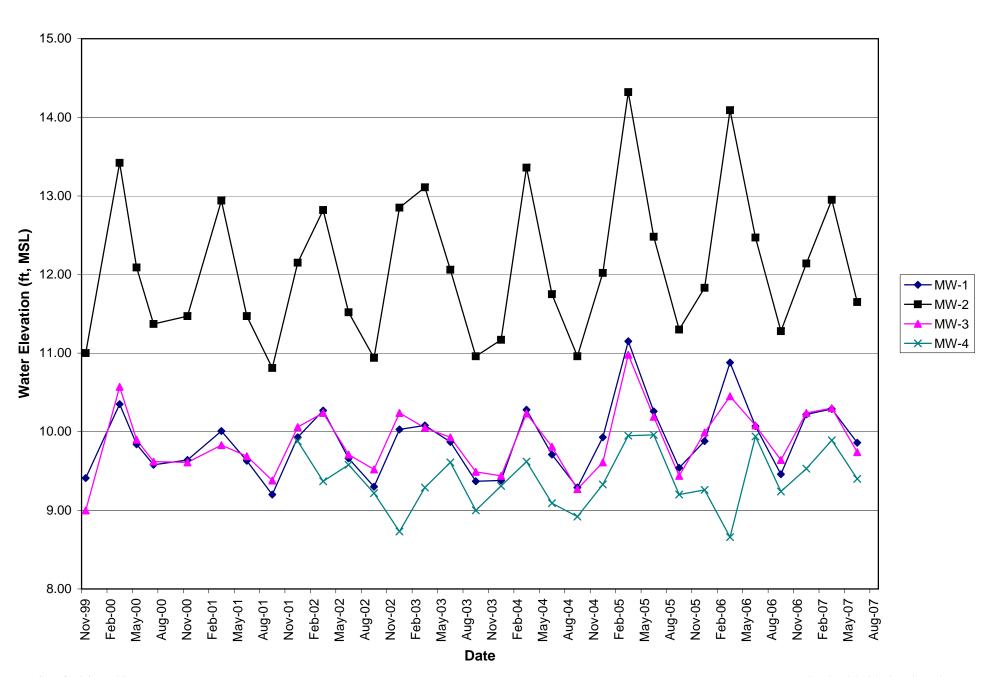
Clement Avenue

EXPLANATION

- Groundwater monitoring well
- * Excavated in February 1994

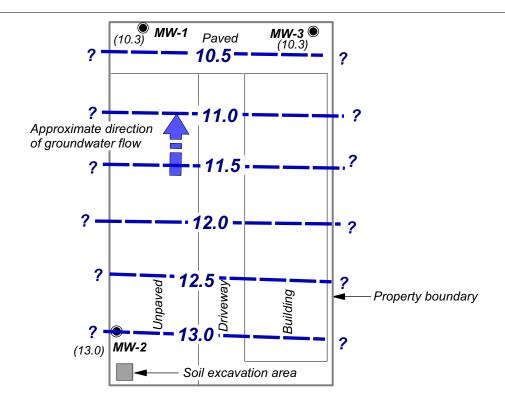
0 40 Feet
Approximate
Scale

1605fig207Q2.dsf 9/19/07


Basem ap from Conor Pacific/EFW , Off-Site Groundwater Characterization, August 21, 2002.

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 2. Groundwater Monitoring Well Locations


Figure 3. Graphical Summary of Groundwater Elevations

(9.9)MW-4 Curb line (Typ.) **-10.0 ——** ?

Clement Avenue

EXPLANATION

Monitoring well

(10.3)Groundwater elevation (Ft.-MSL); measured 3/6/07

Groundwater elevation contour

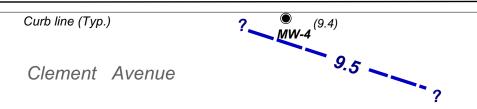
(Ft.-MSL)

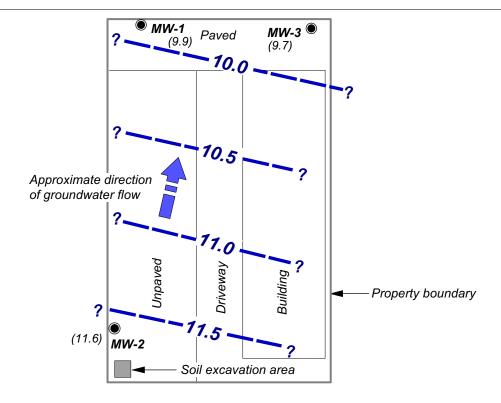
40 Feet Approximate Scale

> Basemap from Conor Pacific/EFW , Off-Site Groundwater Characterization, August 21, 2002

CRAWFORD CONSULTING

INC.


1605fig407Q2.dsf 9/21/07


Project No. CS1605

Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 4. Groundwater Elevation Contours - March 2007

EXPLANATION

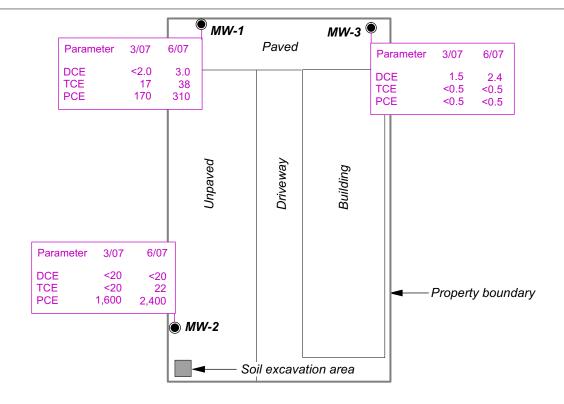
Monitoring well

(9.9) Groundwater elevation (Ft.-MSL); measured 6/15/07

Groundwater elevation contour (Ft.-MSL)

0 40 Feet
Approximate
Scale

Base map from ConorPacific/EFW, Off-Site GroundwaterCharacterization, August 21, 2002


1605fig507Q2.dsf 9/21/07

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 5. Groundwater Elevation Contours - June 2007

EXPLANATION

Groundwater monitoring well location

All concentrations reported in micrograms per liter (μ g/L), in groundwater. All other 8010 list analytes were below detection limits.

DCE 3.0
TCE 38

PCE

1605fig607Q2.dsf 9/21/07

310

DCE = 1,1-Dichloroethene
PCE = Tetrachloroethene
TCE = Trichloroethene
VOCs = Volatile organic compounds

0 40 Feet
Approximate
Scale

Analytical parameter

Base map from ConorPacific/EFW, Off-Site GroundwaterCharacterization, August 21, 2002.

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 6. VOC Concentrations in Groundwater – March and June 2007

Figure 7. Graphical Summary of PCE Concentrations

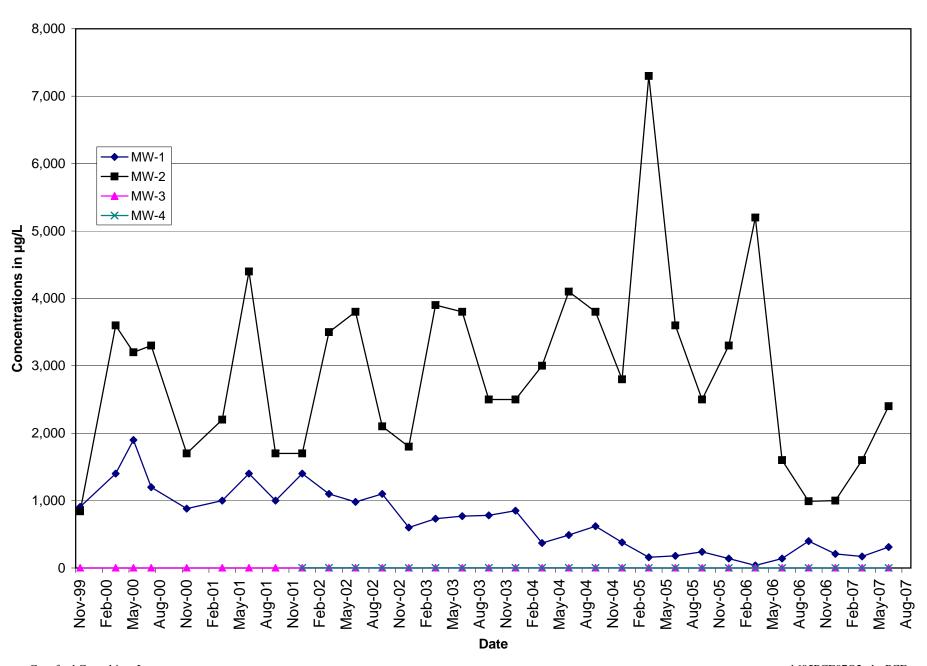
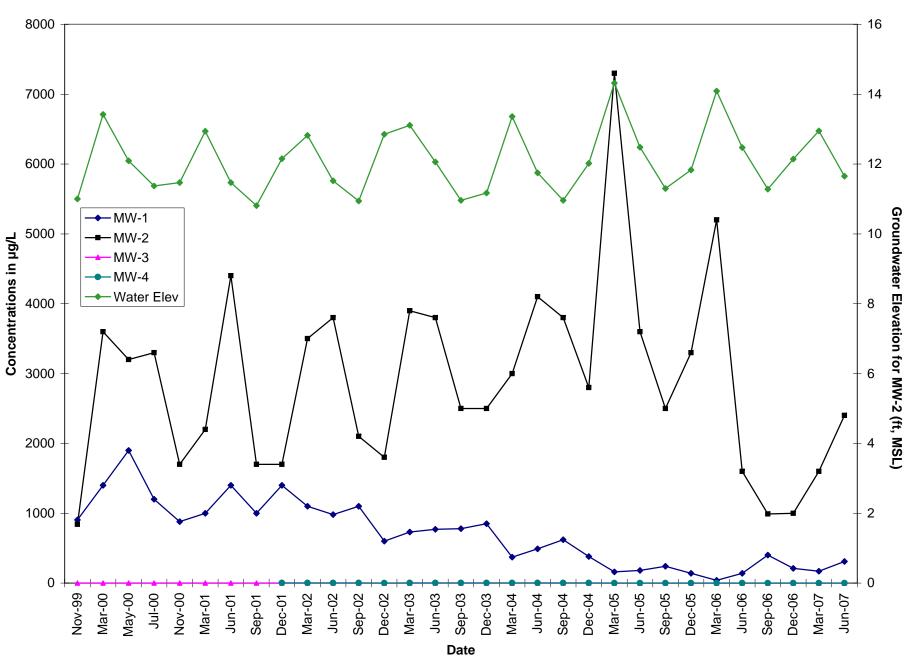
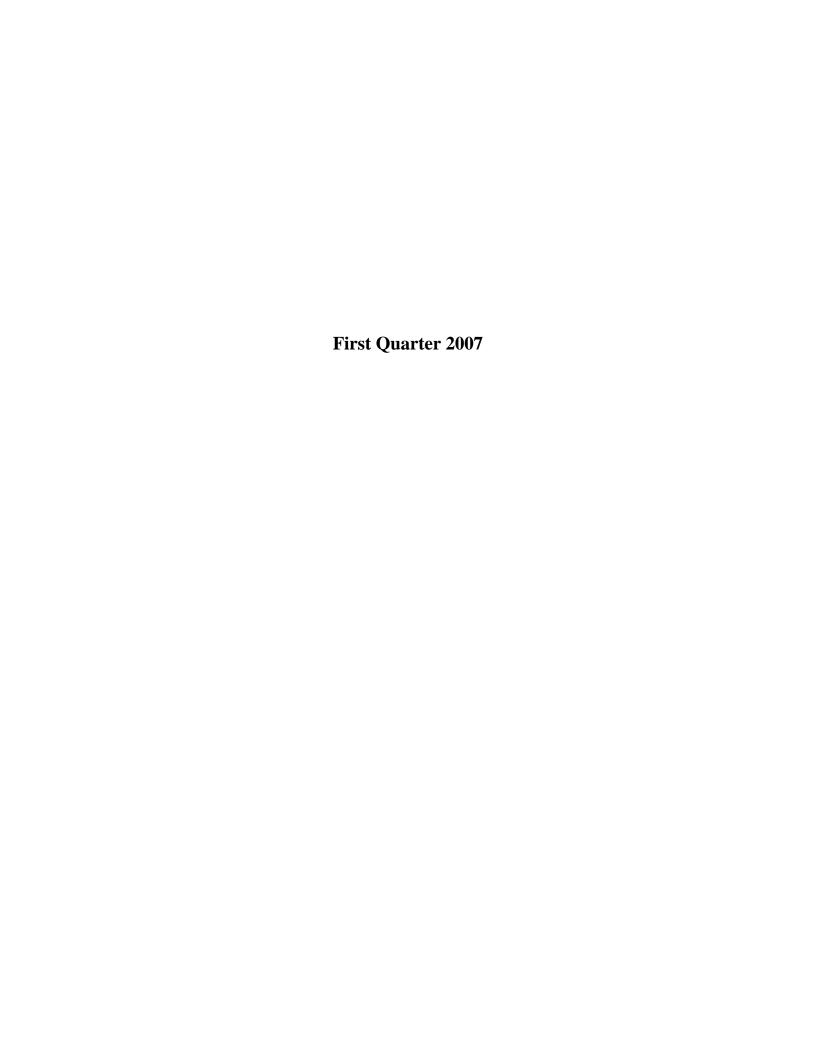




Figure 8. PCE Concentrations vs. Groundwater Elevation

Appendix A

Field Data Sheets

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

Well ID	Date	Time	Depth to Water (1st Msmt.) (feet)	Depth to Water (2nd Msmt.) (feet)	Comments
MW-1	3-6-07	0918	02.87	2.87	water in box
MW-2	3-6-07	0913	3-27	3.27	water in box
MW-3	3607	0914	3.04	3.04	water in box
MW-4		0920	2.54	2,54	water in box

m .	~ 11	. •
Data	(:กม	ection

Field measurements by:	Reviewed by:
Print: Manuel L. Gallegos	Print: Serena tuenter
Signature:	Signature: Separation of the services
Date: 3/4/05	Date: 3657

Page i_{of}

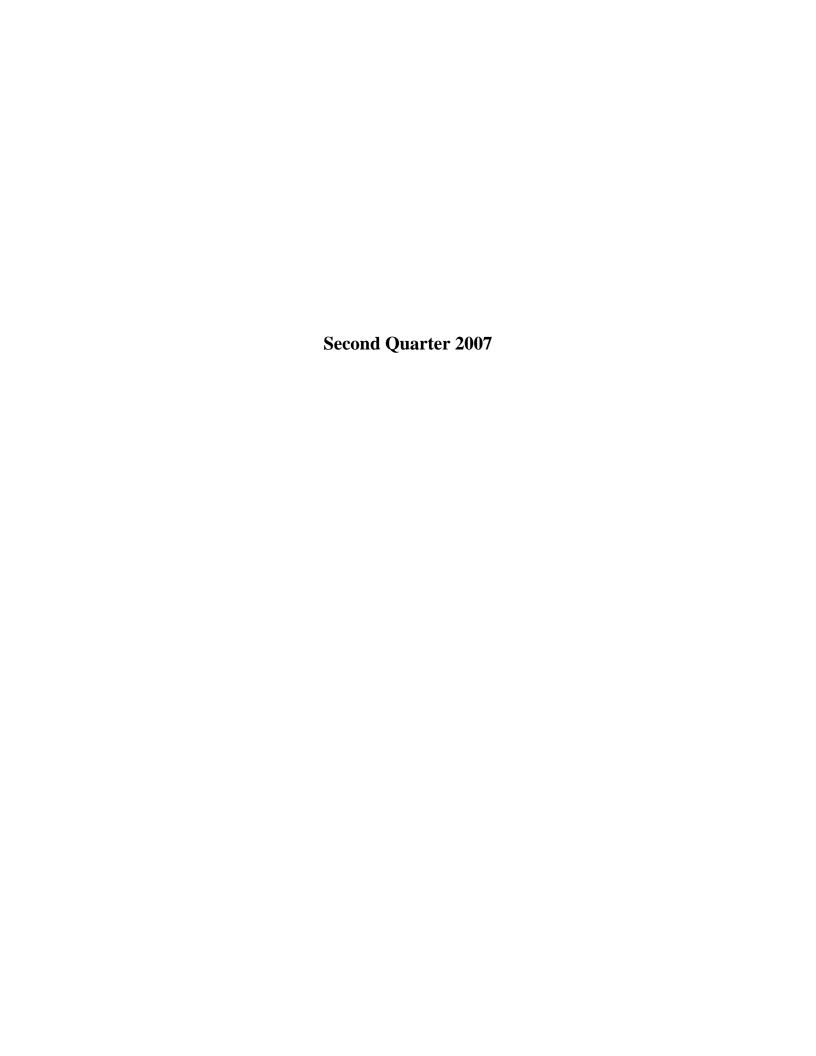
Project No.:	CS1605				Well ID:	MW-	/
-	Alameda F	acility			Sample II	: Mi	/
Location:	Alameda,	CA			Start Date	: 3-4	·~ ~ `Z
Client:	Cargill Sal	t			Finish Da	te: 3- 6	- c7
WELL INFOR Casing diamete One casing vol One casing vol Gallons per lin Floating produce WELL PURGI Date purged: Purging equipr Purge rate: Purge water di Time (2400)	RMATION er (in.): lume (gal.): lume = π x near fi for contict thickness ING 3- 6- ment: isposal:	J. O. L. 3 [casing radius of the content of the co	(in.) x 1 ft/12 if: 1" = 0.041 Start time: pump	in.] ² x [well depth 2" = 0.16 4 d for checking: Bladder pump _ n bailer	Well dept (3 x casing volume) (5 t) (ft) - depth to wa (6 " = 0.65 5" = Interface probe End time:	h (ft): 18. iter (ft)] x 7.48 1.0 6" = 1. Clear bases	$\begin{array}{c} 3 \\ 8 \\ \text{gal/ft}^3 \\ 5 \\ 8'' = 2.6 \\ \text{ailer} \end{array}$
10	19	4.4	6.45 6.52	364	15.4 15.2	Clar	5.85
Total Purged (7/10/	U. Tipers	·				
	: 3-6-	Peristaltic	pump X	Dep	End time: th to water (ft) before Teflon before	ore sampling:	5.37
Weather cond Well condition		Sunny	lebar Sam	ples tak	Ambient temperat	ure (° F):	65
Meter calibrat	Temp	EC erature			Turbidity		
Purged and sa	ampled by (p	print): Mani	ul L. Ga	1/1905	Reviewed by:	Secon	a text

Page 2 of \mathcal{L}

Project No.:	CS1605	······			Well ID:	Mu	1-2
Project Name:	Alameda Facility	<u>'</u> _ 			Sample II		ん-2
Location:	Alameda, CA				Start Date		4.07
Client:	Cargill Salt				Finish Da	nte: 3-	4-07
WELL INFOR Casing diamete One casing vol One casing vol Gallons per lin Floating produc WELL PURGI Date purged: Purging equipr Purge rate: Purge water di	MATION er (in.): ume (gal.): O_{t} ume = π x [casing a cut thickness (ft): ING O_{t} ment: Subsposal: O_{t} Cum	omersible positions of the control o	alculated pury $(n.) \times 1 \text{ fi}/12 \text{ i}$ $(n.) \times 1 \text{ fi}/12 \text{ fi}/12 \text{ i}$ $(n.) \times 1 \text{ fi}/12 $	ge volume (gal.) in.] ² x [well depth 2" = 0.16 of for checking: I 1 2 4 Bladder pump in bailer Well yield (H/L)	Well depited as the probability of the well depth to ward the probe with the well as the probe with the well as the probability of the probability	th (ft): $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$; $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Clear $\begin{bmatrix} 1.0 \\ 6 \end{bmatrix}$ Clear istaltic pump	1.5 8" = 2.6 bailer
Time		ulative Purged	pН	EC	Т	Color	Turbidity
(2400 l	nr) (gan, litus	(units)	(μS/cm)	(° C)	(Visual)	(Visual of NTU)
11	32 2	1,1	2.56	378	17.2	Char	16
	38 -	1.2	6.71	390	162	Char	- (8
	145	<u> e.3</u> _	6.68	399	16.2	Clar	0.30
Total Purged (1.463	2.3					
	3-6-07	_	Start time:	1145	End time:	1147	
Sampling equi	pment:	Peristaltic p		Dep	th to water (ft) bef	ore sampling	4.44
Weather condition	itions:	All	/cla	er Ols fa	Ambient tempera	ture (° F);	67
<u> </u>	DUP-1 @.	fhis	weil.				
Meter calibrat	tion: E0	•		_	pН		
io.or cariorat	Temperatur	SC (Mh-	4	Turbidity		
Purged and sa	mpled by (print);	Man	<u>ull.</u>				
	Signature	111	12 Mar	11	Reviewed by:	Sere	a tra

Page $\underline{3}$ of $\underline{4}$

3	CS1605 Alameda Facility	Well ID: Mw-3 Sample ID: Mw-3
Location:	Alameda, CA	Sample ID: Mw-3 Start Date: 3-4-07
Client:	Cargill Salt	Finish Date: 3-6-47
One casing volume casing volume casing volume Gallons per lin	RMATION er (in.): Depth to water (ft): 3.04 lume (gal.): 0.59 Calculated purge volume (gal.) (3 x lume = π x [casing radius (in.) x 1 ft/12 in.] ² x [well depth (finear fi for casing diameter of: $1'' = 0.041$ $2'' = 0.16$ 4." Let thickness (ft): Method for checking: Interpretations in the second of the sec	(casing volume): $\frac{1}{2}$ (f) - depth to water (ft)] x 7.48 gal/ft ³ = 0.65 5" = 1.0 6" = 1.5 8" = 2.6
WELL PURGI		
Date purged:	3-4-07 Start time: 1058	End time: ///7
Purging equipm	ment: Submersible pump Bladder pump PVC bailer Teflon bailer Other	Peristaltic pump _ 🗶
Purge rate:	O.17 PM Well yield (H/L):	Low
Purge water di		
Time	Cumulative e Vol. Purged pH EC	T Color Turbidity
(2400 h	hr) (gat.) 1. (ω) (μS/cm)	(° C) (Visual) (Visual or NTU)
110	4 44 7.70 3/1	17.9 Cliar 29
110	17 4.4 7.21 519	12.2 Clar 17
Total Purged ((gal.); (e. E.	
WELL SAMP		
Date sampled:	: 3-6 07 Start time: ///7	End time: 1/18
Sampling equi	•	
Weather condition		mbient temperature (° F): 65
Meter calibrat	Temperature Tur	pH
Purged and sa	ampled by (print): Manual (Galleges Signature: Mark fall	Paviawad by:
	Signature. If I was	reviewed by penetral


i

Page $\mathcal{U}_{of}\mathcal{H}$

1605fds 03/00

Project No.: Project Name: Location: Client:	CS1605 Alameda Fa Alameda, C Cargill Salt	CA		Well ID: Sample I Start Dat Finish Da	D: <i>M</i> /e: 3-0	1-4 1w-4 (-07
One casing vol	er (in.): lume (gal.): lume = πx near fi for can	0.45 Calculate [casing radius (in.) x sing diameter of: 1"	ated purge volume ($1 ft/12 in.]^{2} x [weld]$ $= 0.041 2'' = 0.$	gal.) (3 x casing volume l depth (ft) - depth to we left l 4." = 0.65 5" = ing: Interface probe	e): ater (ft)] x 7.48 = 1.0 6" = 1	$\frac{1.94}{8 \text{ gal/ft}^3}$.5 8" = 2.6
WELL PURGI Date purged: Purging equipr Purge rate: Purge water di Time (2400 h	3-6- ment: isposal:	Submersible pump PVC bailer 0.24 mg41	Teflon bailer Well yield (S	Other (H/L): H (9 h) T (° C)	ristaltic pump	
Total Purged ((get): Life	7.2 m 4.	48 641	18.0	Clar	/ 8
WELL SAMP Date sampled: Sampling equi	3-0	Peristaltic pump PVC bailer	∠ Bladder p	End time: 6 Depth to water (ft) before Teflon	fore sampling: bailer	11.34
Weather condition	itions: n/Remarks:	Sund la	la Sampls	Ambient tempera	iture (° F):	65
Meter calibrat		EC/4710/16, crature /2.		pH 7-42 Turbidity 1-6 Reviewed by:	-20/98 8-1.0	1-100/4/30 5

Crawford Consulting, Inc.

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

Well ID	Date	Time	Depth to Water (1st Msmt.) (feet)	Depth to Water (2nd Msmt.) (feet)	Comments
MV-3 MW-1	6/15/1	0727	3.40	3.40	water in box
MW-2	4/15/02	0731	4.57	4,57	water in box
MW-3	6/15/2	0719	3,30	3,30	water in box
		0733	3.03	3,03	

Data Collection

Data Conceiton	
Field measurements by:	Reviewed by:
Print: Wanul L. Galleges	Print: J. Butera
Signature: M. Mul	Signature: Hetter
Date: 6-15-02	Date: 6/4/07
Date	Date.

Page _____ of ____

Project No.:	CS1605				Well ID): M	<i>ω-1</i>
Project Name:					Sample	4	16-1
Location:	Alameda, CA	`			Start Da	. ==.	-15-07
Client:	Cargill Salt	<u> </u>			Finish I	Date:	2-15-03
WELL INFOR	MATION						
Casing diamete	er (in.): /	O D	Depth to water ((ft): 3,49_	Well de	epth (ft): /	8.3
_	ume (gal.):	0.60	Calculated purg	e volume (gal.) (3 x casing volun	ne):	1,82
				x [well depth			
Gallons per lin	ear ft for casir	ig diameter oj	f: 1" = 0.041	$2^{n} = 0.16$	4." = 0.65 5"	= 1.0 6	s' = 1.5 8" = 2.6
Floating produc	ct thickness (ft): MD	Method	for checking:	Interface probe	✓ Cl	ear bailer
WELL DUDGE							
WELL PURGI						5 C- 1	
Date purged:	6-15-6	7. <i>†</i>	Start time:	7824	End time:		
Purging equipn				Bladder pump	P Other	eristaltic pu	mp X
Purge rate: (1	om) 1.1	R baller —	Teflon	Vell yield (H/L):	·		
Purge water di		Dru		S: 4	4.7.4		
l arge water ar	• —	umulative	<u> </u>	<u> </u>			
Time		ol. Purged	рН	EC	T	Color	Turbidity
(2400 h		(gah) 1. hers	(units)	(μS/cm)	(° C)	(Visual)	Visual or NTU)
98	i	2 2 _	7.26	422	18.9	Clear	Cla
084		7.7	684		19.0	Clear	Clear
085		6.8	6.80	378	19.0	Citter	- Cue
-							·
		_ _					
Total Purged (-	gal-): 6	.8	<u> </u>				
	1.402						
WELL SAMP						^	
Date sampled:	6-15-	9 }	Start time:	2221	End time:	0 8g 2	
S1::		Damiataltia e	pump 🗶	_	h to water (ft) be	_	ng: 6.75
Sampling equip	-	Peristantic j PVC bailer	•	Bladder pump_		i baner	
		ve baller_	Oulei -				
Weather condi	tions:	Sunny	/du		Ambient temper	ature (° F):	マン
Well condition	/Remarks:	All	/du som	dos teta			
Meter calibrati	ion:	EC			рН		
	Tempera	ture		т	urbidity		
Dungad and	malad her (n=!=	n. ha		<i>-</i>			
Purged and sar	mpica by (pilli	. JUJUNG	2 - 2-		Davis and 1	VB	
	Signati	ire:	12 fal		Reviewed by:	7-	
						V	

Page <u>l</u> of <u>l</u>

Project Name: Alameda Facility Location: Alameda, CA Client: Cargill Salt WELL INFORMATION Casing diameter (in.): 1.0 Depth to water (ft): 4.43 Well depth (ft): 7, 5 One casing volume (gal.): 0, 52 Calculated purge volume (gal.) (3 x casing volume): /, 5 x One casing volume = π x [casing radius (in.) x 1 ft/12 in.]² x [well depth (ft) - depth to water (ft)] x 7.48 gal/ft³ Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4." = 0.65 5" = 1.0 6" = 1.5 8" = 2.6 Floating product thickness (ft): MO Method for checking: Interface probe X Clear bailer WELL PURGING Date purged: 4 - 1 5 - 3 + Start time: 0957 End time: 1075 Purging equipment: Submersible pump Bladder pump PVC bailer Teflon bailer Other Purge rate: 1 pm 0 122 Well yield (H/L): H 197 Cumulative Vol. Purged pH EC T Color Turbidity (gal.) 1 los (units) (μ.S/cm) (° C) (Visual) (Visua
WELL INFORMATION Casing diameter (in.): One casing volume (gal.): One casing volume (gal.): One casing volume = \pi x [casing radius (in.) x 1 ft/12 in.]^2 x [well depth (ft) - depth to water (ft)] x 7.48 gal/ft^3 Gallons per linear ft for casing diameter of: I'' = 0.041 2" = 0.16 4." = 0.65 5" = 1.0 6" = 1.5 8" = 2.6 Floating product thickness (ft): WELL PURGING Date purged: Date
WELL INFORMATION Casing diameter (in.): 1.0 Depth to water (ft): 4.43 Well depth (ft): 7,5 One casing volume (gal.): 0,52 Calculated purge volume (gal.) (3 x casing volume): /.5 X One casing volume = \pi x [casing radius (in.) x 1 ft/12 in.]^2 x [well depth (ft) - depth to water (ft)] x 7.48 gal/ft^3 Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4." = 0.65 5" = 1.0 6" = 1.5 8" = 2.6 Floating product thickness (ft): MO Method for checking: Interface probe X Clear bailer WELL PURGING Date purged: \(\begin{align*} \cdot - - \sqrt{
Casing diameter (in.): 1.0 Depth to water (ft): 4.43 Well depth (ft): 7,5 One casing volume (gal.): 0,52 Calculated purge volume (gal.) (3 x casing volume): /,5 X One casing volume = \pi x [casing radius (in.) x 1 ft/12 in.]^2 x [well depth (ft) - depth to water (ft)] x 7.48 gal/ft^3 Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4." = 0.65 5" = 1.0 6" = 1.5 8" = 2.6 Floating product thickness (ft): M9 Method for checking: Interface probe X Clear bailer WELL PURGING Date purged: \(\begin{array}{c} -\begin{array}{c} -\be
Date purged: 6-15-07 Start time: 0957 End time: 1023 Purging equipment: Submersible pump Bladder pump Peristaltic pump X PVC bailer Teflon bailer Other Purge rate: 10 10 10 10 10 10 10 10 10 10 10 10 10
Date purged: 6-15-07 Start time: 0957 End time: 1023 Purging equipment: Submersible pump Bladder pump Peristaltic pump X PVC bailer Teflon bailer Other Purge rate: 10 10 10 10 10 10 10 10 10 10 10 10 10
Purging equipment: Submersible pump Bladder pump Peristaltic pump Purge rate: Purge rate: Purge water disposal: Time (2400 hr) Cumulative Vol. Purged (geal) 1-1-1-15 (units) Purge water disposal: Time (2400 hr) Purged (geal) 1-1-15 (units) Purge water disposal: Time (2400 hr) Purged (geal) 1-1-15 (units) Purged (units) Peristaltic pump Peristaltic pump Well yield (H/L): Figh Color Cumulative Vol. Purged (units) (units) (units) (units) (units) (units) (c) C) (c) C) (visual) (visual) Visual or NTU) Purge rate: (a) Color
Purge rate: (Lpm) 0.22 Well yield (H/L): High Purge water disposal: Drum on Sin Cumulative Time Vol. Purged pH EC T Color Turbidity (2400 hr) (gel.) i-las (units) (μS/cm) (°C) (Visual) (Visual) or NTU) 1009 1.9 7.17 434 18.6 Clear Clear 1014 3.8 6.82 437 18.4 Clear Clear
Purge rate: (Lpm) 0.22 Well yield (H/L): High Purge water disposal: Drum on S. In Cumulative Time Vol. Purged pH EC T Color Turbidity (2400 hr) (gal.) i. 1475 (units) (µS/cm) (°C) (Visual) (Visual) or NTU) 1009 1.9 7.17 434 18.6 Clear Clear 1014 3.8 6.82 437 18.4 Clear Clear
Cumulative Vol. Purged pH EC T Color Turbidity (2400 hr) (gal.) 1-1475 (units) (μS/cm) (°C) (Visual) (Visual) or NTU) 1009 1.9 7.17 434 18.6 Clear Clear 1014 3.8 6.82 437 18.4 Clear Clear
Time (2400 hr) Vol. Purged pH EC T Color (Visual) (Visua
(2400 hr) (gah) i. ta/s (units) (μS/cm) (°C) (Visual) (Visual) or NTU) 1009 1.9 7.17 434 18.6 Clear Clear 1014 3.8 6.82 437 18.4 Clear Clear
1014 3,8 6.82 437 18.4 Clear Char
C C
Total Purged (gal.): 50
Total Fulgett (gary).
WELL SAMPLING
Date sampled: 6-15-37 Start time: 1024 End time: 1025
Depth to water (ft) before sampling: 5.72
Sampling equipment: Peristaltic pump Bladder pump Teflon bailer
PVC bailer Other
Weather conditions: Sunny /clim Ambient temperature (° F): 78 Well condition/Remarks: AVI Samples faken
Well condition/Remarks: AV Samples taken
Mater calibration: FC nH
Meter calibration: EC pH Temperature Turbidity
Temperature Turbidity
Temperature Turbidity
Turbidity

Page L of L

Project No.:	CS1605		·		Well ID		
Project Name:					Sample		
Location:	Alameda, O				Start Da		5-07
Client:	Cargill Sal	<u> </u>			Finish D	Pate:C -	15-07
WELL INFOR							
Casing diameter	er (in.):	/ D I	Depth to water ((ft): 3,55	Well de	oth (ft): 17.	4_
One casing vol	lume (gal.):				(3 x casing volum		72
One casing vol	$lume = \pi x$	[casing radius	(in.) x 1 ft/12 ii	n.] ² x [well dep	th (ft) - depth to v	vater (ft)] x 7.4	8 gal/ft³
1 7				2'' = 0.16	<i>4.</i> " = 0.65 5"	= 1.0 6" =	1.5 8" = 2.6
Floating produ	ct thickness	(ft):	Method	for checking:	Interface probe	Clear I	oailer
WELL PURGI	ING						
Date purged:	6-15	07	Start time: &	858	End time:	0943	
Purging equipr	-	Submersible	pump	Bladder pump	Pe	eristaltic pump	
		PYC bailer	Teflon		Other	•	
Purge rate:	pm)U.	14	v	Vell yield (H/L)	: Low		
Purge water di	isposai:	Drum	on sik	 			
Time	_	Cumulative	рН	EC	Т	Color	Turkiditu
Time (2400 h		Vol. Purged دسمار (gal .)	-	μS/cm)	(° C)	(Visual)	Turbidity (Visua) or NTU)
09		2.1	7.12	540	15.0	Clar	1:54+
09	23	4.2	7.34	591	18,2	Clear	Char
09	43	6.3	7.40	594	18.5	Clear	Cha
						· - 	
						_	
			· .	 ·			
Total Purged ((gal.):	6.5					
	1: 605						
WELL SAMP				00.12			
Date sampled:	6-15	-6.4	Start time: _{	2793 <u> </u>	End time:	2945	() (~)
		Desistable			th to water (ft) be		17.83
Sampling equi	pment:	Peristante PVC bailer			Teflon		
Weather condi	itions:	Sund	/clan		Ambient temper	ature (° F):	25
Well condition	n/Remarks:	A11 5	amples +	lakin			
Meter calibrat	ion:	EC			рН		
	Tempe				Turbidity		
Purged and sa	mpled by (n	rint): Manu	1/ 8/1.	נ מ		1.	
	Sinr	nature//	1) W		Reviewed by:	VB	
	Gigi.		11 4/		110.10.100	/	

Page of

Project No.:	CS1605				Well ID	·	
Project Name:	Alameda Fa	cility			Sample		w-4
Location:	Alameda, C				Start Da	٠	
Client:	Cargill Salt				Finish 1	Date: 6 -	(5-0)
One casing voi	er (in.): lume (gal.): lume = πx mear fi for case	O.65 [casing radius sing diameter	Calculated purg (in.) $x \ 1 \ \text{ft/12} \ i$ of: $1'' = 0.041$	(ft): 3.03 The volume (gal.) (ft): $2'' = 0.16$ If for checking:	(3 x casing volun th (ft) - depth to 4." = 0.65 5'	ne): water (ft)] x 7.4 ' = 1.0 6" =	1.5 8" = 2.6
WELL PURG	ING			2			
Date purged:	0 (-	-07	-	738		0815	. ,
Purging equip	ment:	Submersible	• • ——	Bladder pump_	•	Peristaltic pump	-X_
Purge rate:	(a)	PVC bailer –		bailer Well yield (H/L):	Other Hish		
Purge rate: 2		Dru		5:4-	17.55		
l'uige water u		Cumulative		37.7			
Time		Vol. Purged	pH	EC	T	Color	Turbidity
(2400)	15 ·	2 1/ hay	(units) -	(μS/cm)	(° C) 20.0	(Visual)	Visual of NTU)
040	-	48		635	15.2	Clear	Clear
081	_ ···_ ·	7 8	7.28	633	19 5	Cleav	Clear
					· · · · · · · · · · · · · · · · · · ·		
Total Purged	(gal.):	7.41: kms					
WELL SAME	PLING						
Date sampled:	:6-15-	07_	Start time:	816	End time:	0817	·
			,	Dept	th to water (ft) b	efore sampling	10.47
Sampling equi	ipment:			Bladder pump			-
Weather cond Well condition	-	Sunny All c	Khar	falan	Ambient tempe	rature (° F):	70
			-	·			· · · · · · · · · · · · · · · · ·
Meter calibra	tion: Tempe	EC 19	980 151 25.0 m/ [Ga		pH 7 09 Turbidity	1700/1002 NA	1000/390400
Purged and sa	ampled by (p	rint): <i>MG/1</i>	w/ 64	11153		~M	
	Sign	ature.	1/1		Reviewed by	- Y'V	

Appendix B

Groundwater Velocity Calculations

APPENDIX B GROUNDWATER VELOCITY CALCULATIONS

FOR CARGILL ALAMEDA SITE

GROUNDWATER VELOCITY FORMULA

V = Ki/n where:

 $V = average \ linear \ groundwater \ velocity$ $i = hydraulic \ gradient$ $K = hydraulic \ conductivity$ $n = effective \ porosity$

PARAMETERS

Range of hydraulic conductivity values (K) from slug tests:

Material	Well	K (cm/sec)
Silty sand (SM) and Clayey sand (SC) Silty sand (SM) and Clayey sand (SC) Silty sand (SM) and Clayey sand (SC)	MW-1 MW-2	0.00002 0.00002
Silty sand (SM) and Clayey sand (SC)	MW-3	0.000003

Highest measured K = 0.00002

Porosity (n) = 33% (from laboratory analysis of boring B21 soil sample)

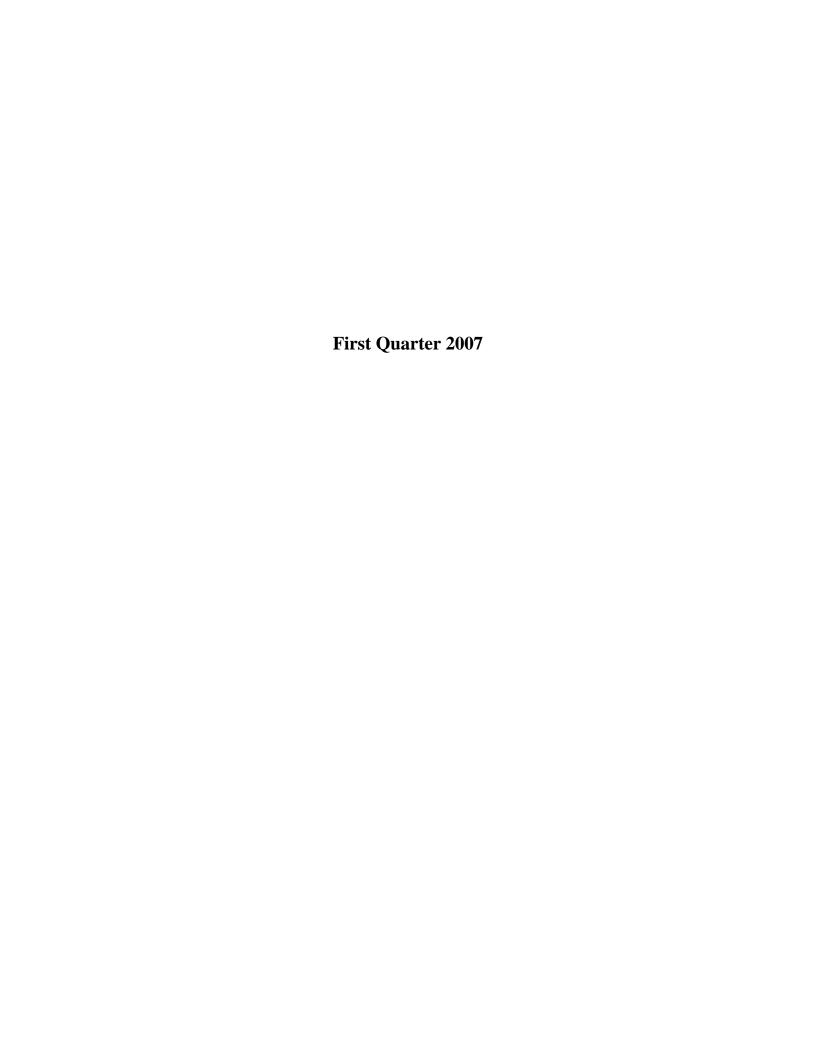
Hydraulic gradient (i) calculated from groundwater contours:

March 2007 0.023 June 2007 0.014

UNIT CONVERSIONS

1 day = 86,400 sec 1 cm/sec = 2,834.65 ft/day 1 foot = 30.48 cm 1 cm/sec = 1,034,645.67 ft/yr

CALCULATED VELOCITIES


	Flow	K	i	n	V
Measurement Event	Direction	(cm/sec)	(ft/ft)		(ft/yr)
March 2007	NE	0.00002	0.023	0.33	1
June 2007	NE	0.00002	0.014	0.33	1

Calculations and assumptions prepared by:

Date: 9/22/2007

plante (. Wheeler

Appendix C Certified Analytical Reports and Chain-of-Custody Documentation

ANALYTICAL REPORT

Job Number: 720-8095-1

Job Description: Alameda Facility CS 1605

For: d Consu

Crawford Consulting Inc 2 North First Street 4th Floor San Jose, CA 95113-1212

Attention: Mark Wheeler

Dimple Sharma

Mar

Project Manager I dsharma@stl-inc.com

03/13/2007

cc: Dana Johnston

Project Manager: Dimple Sharma

EXECUTIVE SUMMARY - Detections

Client: Crawford Consulting Inc Job Number: 720-8095-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-8095-1	MW-1				
Trichloroethene Tetrachloroethene		17 170	2.0 2.0	ug/L ug/L	8260B 8260B
720-8095-2 Tetrachloroethene	MW-2	1600	20	ug/L	8260B
720-8095-3 1,1-Dichloroethene	MW-3	1.5	0.50	ug/L	8260B
720-8095-4 Tetrachloroethene	MW-4	0.70	0.50	ug/L	8260B
720-8095-5FD Trichloroethene Tetrachloroethene	DUP-1	20 1700	20 20	ug/L ug/L	8260B 8260B

METHOD SUMMARY

Client: Crawford Consulting Inc Job Number: 720-8095-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level)	STL SF	SW846 8260	DB .
Purge-and-Trap	STL SF		SW846 5030B

LAB REFERENCES:

STL SF = STL San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Crawford Consulting Inc Job Number: 720-8095-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-8095-1	MW-1	Water	03/06/2007 1028	03/07/2007 1445
720-8095-2	MW-2	Water	03/06/2007 1145	03/07/2007 1445
720-8095-3	MW-3	Water	03/06/2007 1117	03/07/2007 1445
720-8095-4	MW-4	Water	03/06/2007 0950	03/07/2007 1445
720-8095-5FD	DUP-1	Water	03/06/2007 0000	03/07/2007 1445
720-8095-6TB	TB-1	Water	03/06/2007 0000	03/07/2007 1445

Client: Crawford Consulting Inc Job Number: 720-8095-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-8095-1
 Date Sampled:
 03/06/2007
 1028

 Client Matrix:
 Water
 Date Received:
 03/07/2007
 1445

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-19176 Instrument ID: Saturn 2K3

Preparation: 5030B Lab File ID: d:\data\200703\031107\SA-

Dilution: 4.0 Initial Weight/Volume: 40 mL

Date Analyzed: 03/11/2007 1508 Final Weight/Volume: 40 mL

Date Prepared: 03/11/2007 1508

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		2.0
1,1-Dichloroethane	ND		2.0
Dichlorodifluoromethane	ND		2.0
Vinyl chloride	ND		2.0
Chloroethane	ND		4.0
Trichlorofluoromethane	ND		4.0
Methylene Chloride	ND		20
trans-1,2-Dichloroethene	ND		2.0
cis-1,2-Dichloroethene	ND		2.0
Chloroform	ND		4.0
1,1,1-Trichloroethane	ND		2.0
Carbon tetrachloride	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	17		2.0
1,2-Dichloropropane	ND		2.0
Dichlorobromomethane	ND		2.0
trans-1,3-Dichloropropene	ND		2.0
cis-1,3-Dichloropropene	ND		2.0
1,1,2-Trichloroethane	ND		2.0
Tetrachloroethene	170		2.0
Chlorodibromomethane	ND		2.0
Chlorobenzene	ND		2.0
Bromoform	ND		4.0
1,1,2,2-Tetrachloroethane	ND		2.0
1,3-Dichlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
1,2-Dichlorobenzene	ND		2.0
Chloromethane	ND		4.0
Bromomethane	ND		4.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0
EDB	ND		2.0
1,2,4-Trichlorobenzene	ND		4.0
Surrogate	%Rec	Acceptance	Limits
Toluene-d8 (Surr)	96	77 - 121	
4-Bromofluorobenzene	104	79 - 118	
1,2-Dichloroethane-d4 (Surr)	102	78 - 117	

Client: Crawford Consulting Inc Job Number: 720-8095-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-8095-2
 Date Sampled:
 03/06/2007
 1145

 Client Matrix:
 Water
 Date Received:
 03/07/2007
 1445

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-19176 Instrument ID: Saturn 2K3

Preparation: 5030B Lab File ID: d:\data\200703\031107\SA-

Dilution: 40 Initial Weight/Volume: 40 mL Date Analyzed: 03/11/2007 1722 Final Weight/Volume: 40 mL

Date Prepared: 03/11/2007 1722

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		20
1,1-Dichloroethane	ND		20
Dichlorodifluoromethane	ND		20
Vinyl chloride	ND		20
Chloroethane	ND		40
Trichlorofluoromethane	ND		40
Methylene Chloride	ND		200
trans-1,2-Dichloroethene	ND		20
cis-1,2-Dichloroethene	ND		20
Chloroform	ND		40
1,1,1-Trichloroethane	ND		20
Carbon tetrachloride	ND		20
1,2-Dichloroethane	ND		20
Trichloroethene	ND		20
1,2-Dichloropropane	ND		20
Dichlorobromomethane	ND		20
trans-1,3-Dichloropropene	ND		20
cis-1,3-Dichloropropene	ND		20
1,1,2-Trichloroethane	ND		20
Tetrachloroethene	1600		20
Chlorodibromomethane	ND		20
Chlorobenzene	ND		20
Bromoform	ND		40
1,1,2,2-Tetrachloroethane	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,2-Dichlorobenzene	ND		20
Chloromethane	ND		40
Bromomethane	ND		40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
EDB	ND		20
1,2,4-Trichlorobenzene	ND		40
Surrogate	%Rec	Acceptance	Limits
Toluene-d8 (Surr)	94	77 - 121	
4-Bromofluorobenzene	104	79 - 118	
1,2-Dichloroethane-d4 (Surr)	107	78 - 117	

Client: Crawford Consulting Inc Job Number: 720-8095-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-8095-3
 Date Sampled:
 03/06/2007
 1117

 Client Matrix:
 Water
 Date Received:
 03/07/2007
 1445

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-19176 Instrument ID: Saturn 2K3

Preparation: 5030B Lab File ID: d:\data\200703\031107\SA-

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 03/11/2007 1756 Final Weight/Volume: 40 mL

Date Analyzed: 03/11/2007 1756

Date Prepared: 03/11/2007 1756

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	1.5		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	93		77 - 121
4-Bromofluorobenzene	101		79 - 118
1,2-Dichloroethane-d4 (Surr)	104		78 - 117

Client: Crawford Consulting Inc Job Number: 720-8095-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-8095-4
 Date Sampled:
 03/06/2007 0950

 Client Matrix:
 Water
 Date Received:
 03/07/2007 1445

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-19176 Instrument ID: Saturn 2K3

Preparation: 5030B Lab File ID: d:\data\200703\031107\SA-

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 03/11/2007 1830 Final Weight/Volume: 40 mL

Date Prepared: 03/11/2007 1830

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	0.70		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	95		77 - 121
4-Bromofluorobenzene	101		79 - 118
1,2-Dichloroethane-d4 (Surr)	103		78 - 117

Client: Crawford Consulting Inc Job Number: 720-8095-1

Client Sample ID: DUP-1

 Lab Sample ID:
 720-8095-5FD
 Date Sampled:
 03/06/2007
 0000

 Client Matrix:
 Water
 Date Received:
 03/07/2007
 1445

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-19213 Instrument ID: Varian 3900D

Preparation: 5030B Lab File ID: c:\saturnws\data\200703\03

Dilution: 40 Initial Weight/Volume: 40 mL

Date Analyzed: 03/12/2007 1159 Final Weight/Volume: 40 mL

Date Prepared: 03/12/2007 1159

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		20
1,1-Dichloroethane	ND		20
Dichlorodifluoromethane	ND		20
Vinyl chloride	ND		20
Chloroethane	ND		40
Trichlorofluoromethane	ND		40
Methylene Chloride	ND		200
trans-1,2-Dichloroethene	ND		20
cis-1,2-Dichloroethene	ND		20
Chloroform	ND		40
1,1,1-Trichloroethane	ND		20
Carbon tetrachloride	ND		20
1,2-Dichloroethane	ND		20
Trichloroethene	20		20
1,2-Dichloropropane	ND		20
Dichlorobromomethane	ND		20
trans-1,3-Dichloropropene	ND		20
cis-1,3-Dichloropropene	ND		20
1,1,2-Trichloroethane	ND		20
Tetrachloroethene	1700		20
Chlorodibromomethane	ND		20
Chlorobenzene	ND		20
Bromoform	ND		40
1,1,2,2-Tetrachloroethane	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,2-Dichlorobenzene	ND		20
Chloromethane	ND		40
Bromomethane	ND		40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
EDB	ND		20
1,2,4-Trichlorobenzene	ND		40
Surrogate	%Rec	Acceptance	Limits
Toluene-d8 (Surr)	97	77 - 121	
4-Bromofluorobenzene	100	79 - 118	
1,2-Dichloroethane-d4 (Surr)	113	78 - 117	

Client: Crawford Consulting Inc Job Number: 720-8095-1

Client Sample ID: TB-1

 Lab Sample ID:
 720-8095-6TB
 Date Sampled:
 03/06/2007
 0000

 Client Matrix:
 Water
 Date Received:
 03/07/2007
 1445

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-19176 Instrument ID: Saturn 2K3

Preparation: 5030B Lab File ID: d:\data\200703\031107\SA-

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 03/11/2007 1435 Final Weight/Volume: 40 mL

Date Prepared: 03/11/2007 1435

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	99		77 - 121
4-Bromofluorobenzene	104		79 - 118
1,2-Dichloroethane-d4 (Surr)	107		78 - 117

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: Crawford Consulting Inc Job Number: 720-8095-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-19	176				
LCS 720-19176/1	Lab Control Spike	T	Water	8260B	
MB 720-19176/2	Method Blank	Т	Water	8260B	
720-8095-1	MW-1	Т	Water	8260B	
720-8095-1MS	Matrix Spike	T	Water	8260B	
720-8095-1MSD	Matrix Spike Duplicate	Т	Water	8260B	
720-8095-2	MW-2	T	Water	8260B	
720-8095-3	MW-3	T	Water	8260B	
720-8095-4	MW-4	T	Water	8260B	
720-8095-6TB	TB-1	Т	Water	8260B	
Analysis Batch:720-19	213				
LCS 720-19213/1	Lab Control Spike	T	Water	8260B	
MB 720-19213/2	Method Blank	Т	Water	8260B	
720-8095-5FD	DUP-1	Т	Water	8260B	

Report Basis

T = Total

Job Number: 720-8095-1 Client: Crawford Consulting Inc

Method Blank - Batch: 720-19176 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-19176/2 Analysis Batch: 720-19176 Instrument ID: Saturn 2K3

Client Matrix: Water Prep Batch: N/A Lab File ID: d:\data\200703\031107\MB

Dilution: Units: ug/L Initial Weight/Volume: 40 mL 1.0

Date Analyzed: 03/11/2007 1401 Final Weight/Volume: 40 mL Date Prepared: 03/11/2007 1401

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	95	77 - 121	
4-Bromofluorobenzene	98	79 - 118	
1,2-Dichloroethane-d4 (Surr)	96	78 - 117	

Job Number: 720-8095-1 Client: Crawford Consulting Inc

Lab Control Spike - Batch: 720-19176

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-19176/1 Analysis Batch: 720-19176 Instrument ID: Saturn 2K3

Prep Batch: N/A Client Matrix: Water Lab File ID: d:\data\200703\031107\LS-

Units: ug/L Initial Weight/Volume: 40 mL Dilution: 1.0 Date Analyzed: 03/11/2007 1328 Final Weight/Volume: 40 mL

Date Prepared: 03/11/2007 1328

Analyte	Spike Amou	nt Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	21.2	106	65 - 125	
Trichloroethene	20.0	17.9	89	74 - 134	
Chlorobenzene	20.0	20.7	103	61 - 121	
Surrogate	(% Rec	Ad	cceptance Limits	
Toluene-d8 (Surr)		93		77 - 121	
4-Bromofluorobenzene		101		79 - 118	
1,2-Dichloroethane-d4 (Surr)		94		78 - 117	

Matrix Spike/ Method: 8260B Matrix Spike Duplicate Recovery Report - Batch: 720-19176 Preparation: 5030B

MS Lab Sample ID: 720-8095-1 Analysis Batch: 720-19176 Instrument ID: Saturn 2K3

Client Matrix: Water Prep Batch: N/A Lab File ID: d:\data\200703\031107\Sa

Dilution: 4.0 Initial Weight/Volume: 40 mL

Date Analyzed: 03/11/2007 1542 Final Weight/Volume: 40 mL Date Prepared: 03/11/2007 1542

MSD Lab Sample ID: 720-8095-1 Analysis Batch: 720-19176 Instrument ID: Saturn 2K3

Prep Batch: N/A Client Matrix: Water Lab File ID: d:\data\200703\031107\sa-

Dilution: 4.0 Initial Weight/Volume: 40 mL

Date Analyzed: 03/11/2007 1615 Final Weight/Volume: 40 mL Date Prepared: 03/11/2007 1615

	<u>%</u>	Rec.							
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual			
1,1-Dichloroethene	106	106	65 - 125	0	20				
Trichloroethene	92	87	74 - 134	4	20				
Chlorobenzene	105	103	61 - 121	2	20				
Surrogate		MS % Rec	MSD 9	% Rec	Acceptance Limits				
Toluene-d8 (Surr)		95	94		77 - 121				
4-Bromofluorobenzene		101	100		79	9 - 118			
1,2-Dichloroethane-d4 (Surr)		98	83		78	8 - 117			

Job Number: 720-8095-1 Client: Crawford Consulting Inc

Method Blank - Batch: 720-19213 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-19213/2 Analysis Batch: 720-19213 Instrument ID: Varian 3900D

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200703\03

Dilution: Units: ug/L Initial Weight/Volume: 40 mL 1.0

Date Analyzed: 03/12/2007 1018 Final Weight/Volume: 40 mL Date Prepared: 03/12/2007 1018

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	:
Toluene-d8 (Surr)	104	77 - 121	
4-Bromofluorobenzene	104	79 - 118	
1,2-Dichloroethane-d4 (Surr)	106	78 - 117	

Client: Crawford Consulting Inc Job Number: 720-8095-1

Lab Control Spike - Batch: 720-19213

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-19213/1

Client Matrix: Water Dilution: 1.0

Date Analyzed: 03/12/2007 0944 Date Prepared: 03/12/2007 0944 Analysis Batch: 720-19213

Prep Batch: N/A

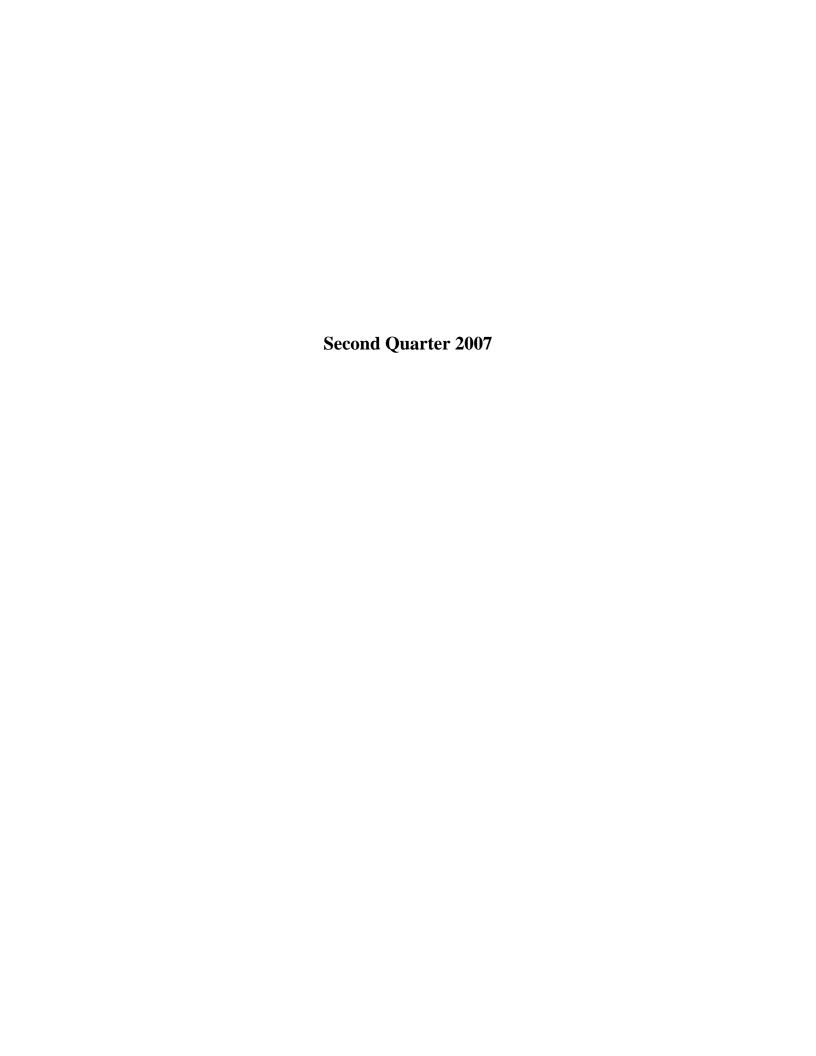
Units: ug/L

Instrument ID: Varian 3900D

Lab File ID: c:\saturnws\data\200703\03

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	23.0	115	65 - 125	
Trichloroethene	20.0	19.7	98	74 - 134	
Chlorobenzene	20.0	20.1	100	61 - 121	
Surrogate	% F	Rec	Acceptance Limits		
Toluene-d8 (Surr)	90	1	77 - 121		
4-Bromofluorobenzene	10	8		79 - 118	
1,2-Dichloroethane-d4 (Surr)	10	2		78 - 117	


STL Chromal	Lab				8	_ CI	IAI	N O	F CUS	ТО	DY	/LA	BC	RAT	OR	Y A	NA	LYSI	SRE	QUE	ST FORM
1220 Quarry Lane, Ple	easanton, CA 94566			809	6										104	U,	7-	7			3-6-07
(925) 484-1919 FAX		// 0	74) =	· X <i>U</i> 7	2	Se	rvice	Requ	est:						107	71	9/		1	Onte:	2-0
	Alameda Facility CS1605		VV	001										Analy	sis Rei	juest	eđ				
	Dana Johnston				1 3		T			T			T								
Company/Address: Phone: Fax:	Crawford Consultin 2 North First St, 4th San Jose, CA 9511 (408) 287-9934 (408) 287-9937	h Floor			r of Containers	Volatile Organics (VOCs) EPA 8021B)	Pb (7421); As (7060)	Same as Metals	COD, TKN 500 ml plastic H ₂ SO ₄	Chloride, Nitrate	500 ml plastic NP	pH, Conductivity	500 ml plastic NP	Total Phenols 2 x 500 ml glass H ₂ SO ₄	Volatile Organics (8010)	nl vial	TEX	x 40 ml vial HCI			
Sampler's Signature	W/_D/	1/2	<u> </u>		Number of	Volatile Organ (EPA 8021B)	Pb (742	Same a	COD, TKN 500 ml plast	Chlorid	500 ml	pH, Co	500 ml	Total Phenols 2 x 500 ml gla	Volatil	3 x 40 ml vial	ТРИВВТЕХ	2 x 40 r			REMARKS
Sample			LAB	Sample																	
1.D.	Date	Time	I.D.	Matrix	-	3333						10000		DEIDE:		1100	1010	HOLDON		DHO:	
MW-1	3/4/07	1058		Water	3										X						
MW-2	3/6/02	1145		water	3			Ĭ							х						
MW-3	3/6/07	1117		Water	3										x						8
MW-4	3/6/07	0950		Water	3										х						of 1
DUP-1	3/4/07			water	3										Х						17
TB-1	3/4/07	_		Water	3		L		-						Х						Раде
2.2 2.8clin	quished By		Regel	ped Bu-	1	RNAROU	ND RE	OUIREN	ENTS	1	REPOR	TREQU	TREM	NTS	11	WO19	EINF	DRMATIO	N		SAMPLE RECEIPT
Firm 3-6-0	- Galleges	Printed Nar	1610	venter	x	24 tir Standard (5 Provide Ver Provide pdf	45 hr working trail Prefi	(days) imisary B	5 day	r	II. Rep MSI that III. Dwi	nine Repo cert (inclu D, as resp rged as sa a Validata Index All B	des DU ared, m mples) ion Rep	ay be	P.O. # Bill to		2000	900000000000000000000000000000000000000	51	happing VIA hipping # condition	
Date/Time /2:00	ouiched Hu — 1	Date/Time	12:00	soltty.	Specia	Instruc	ctions	/Comr	nents:		(MDLs	PQLATE	(ACEV)		_	_	_				
Firm _ \	Frent SI	Signature Printed Nam	ing Th	omes		Please re Please p	port)	MRLs ults to:	only				-5.5	wfordec		ig, co	m				
3171 Date/Time 12:18	07	3/ Date/Time	7/07 1	215	-					-		wp		_ 0 0							
eling- 50/7/0	7 1445	Rec.	SI V	all 3/	7/0	7	1	4.5	45			1									

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Crawford Consulting Inc Job Number: 720-8095-1

Login Number: 8095

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	NO TIME for DUP-1 or TB-1
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

ANALYTICAL REPORT

Job Number: 720-9549-1

Job Description: Alameda Facility CS 1605

For:

Crawford Consulting Inc 2 North First Street 4th Floor San Jose, CA 95113-1212

Attention: Mark Wheeler

Dimple Sharma

Marin

Project Manager I dsharma@stl-inc.com

06/22/2007

cc: Dana Johnston

Project Manager: Dimple Sharma

EXECUTIVE SUMMARY - Detections

Client: Crawford Consulting Inc Job Number: 720-9549-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-9549-1	MW-1				
1,1-Dichloroethene Trichloroethene Tetrachloroethene		3.0 38 310	2.0 2.0 2.0	ug/L ug/L ug/L	8260B 8260B 8260B
720-9549-2 Trichloroethene Tetrachloroethene	MW-2	22 2400	20 20	ug/L ug/L	8260B 8260B
720-9549-3 1,1-Dichloroethene	MW-3	2.4	0.50	ug/L	8260B
720-9549-4 Tetrachloroethene	MW-4	0.75	0.50	ug/L	8260B
720-9549-5 Tetrachloroethene	DUP-1	2400	20	ug/L	8260B

METHOD SUMMARY

Client: Crawford Consulting Inc Job Number: 720-9549-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level)	STL SF	SW846 8260)B
Purge-and-Trap	STL SF		SW846 5030B

LAB REFERENCES:

STL SF = STL San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Crawford Consulting Inc Job Number: 720-9549-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-9549-1	MW-1	Water	06/15/2007 0851	06/15/2007 1130
720-9549-2	MW-2	Water	06/15/2007 1024	06/15/2007 1130
720-9549-3	MW-3	Water	06/15/2007 0943	06/15/2007 1130
720-9549-4	MW-4	Water	06/15/2007 0816	06/15/2007 1130
720-9549-5	DUP-1	Water	06/15/2007 0000	06/15/2007 1130
720-9549-6TB	TB-1	Water	06/15/2007 0000	06/15/2007 1130

Client: Crawford Consulting Inc Job Number: 720-9549-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-9549-1
 Date Sampled:
 06/15/2007 0851

 Client Matrix:
 Water
 Date Received:
 06/15/2007 1130

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-22889 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200706\06

Dilution: 4.0 Initial Weight/Volume: 40 mL Date Analyzed: 06/20/2007 1842 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	3.0		2.0
1,1-Dichloroethane	ND		2.0
Dichlorodifluoromethane	ND		2.0
Vinyl chloride	ND		2.0
Chloroethane	ND		4.0
Trichlorofluoromethane	ND		4.0
Methylene Chloride	ND		20
trans-1,2-Dichloroethene	ND		2.0
cis-1,2-Dichloroethene	ND		2.0
Chloroform	ND		4.0
1,1,1-Trichloroethane	ND		2.0
Carbon tetrachloride	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	38		2.0
1,2-Dichloropropane	ND		2.0
Dichlorobromomethane	ND		2.0
trans-1,3-Dichloropropene	ND		2.0
cis-1,3-Dichloropropene	ND		2.0
1,1,2-Trichloroethane	ND		2.0
Tetrachloroethene	310		2.0
Chlorodibromomethane	ND		2.0
Chlorobenzene	ND		2.0
Bromoform	ND		4.0
1,1,2,2-Tetrachloroethane	ND		2.0
1,3-Dichlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
1,2-Dichlorobenzene	ND		2.0
Chloromethane	ND		4.0
Bromomethane	ND		4.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0
EDB	ND		2.0
1,2,4-Trichlorobenzene	ND		4.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	104		82 - 126
4-Bromofluorobenzene	116		83 - 127
1,2-Dichloroethane-d4 (Surr)	115		86 - 129

Client: Crawford Consulting Inc Job Number: 720-9549-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-9549-2
 Date Sampled:
 06/15/2007 1024

 Client Matrix:
 Water
 Date Received:
 06/15/2007 1130

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-22889 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200706\06

Dilution: 40 Initial Weight/Volume: 40 mL Date Analyzed: 06/20/2007 1915 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		20
1,1-Dichloroethane	ND		20
Dichlorodifluoromethane	ND		20
Vinyl chloride	ND		20
Chloroethane	ND		40
Trichlorofluoromethane	ND		40
Methylene Chloride	ND		200
trans-1,2-Dichloroethene	ND		20
cis-1,2-Dichloroethene	ND		20
Chloroform	ND		40
1,1,1-Trichloroethane	ND		20
Carbon tetrachloride	ND		20
1,2-Dichloroethane	ND		20
Trichloroethene	22		20
1,2-Dichloropropane	ND		20
Dichlorobromomethane	ND		20
trans-1,3-Dichloropropene	ND		20
cis-1,3-Dichloropropene	ND		20
1,1,2-Trichloroethane	ND		20
Tetrachloroethene	2400		20
Chlorodibromomethane	ND		20
Chlorobenzene	ND		20
Bromoform	ND		40
1,1,2,2-Tetrachloroethane	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,2-Dichlorobenzene	ND		20
Chloromethane	ND		40
Bromomethane	ND		40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
EDB	ND		20
1,2,4-Trichlorobenzene	ND		40
Surrogate	%Rec	Acc	eptance Limits
Toluene-d8 (Surr)	103		! - 126
4-Bromofluorobenzene	113		i - 127
1,2-Dichloroethane-d4 (Surr)	117	86	i - 129

Client: Crawford Consulting Inc Job Number: 720-9549-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-9549-3
 Date Sampled:
 06/15/2007 0943

 Client Matrix:
 Water
 Date Received:
 06/15/2007 1130

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-22889 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200706\06

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 06/20/2007 1949 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	2.4		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	106		82 - 126
4-Bromofluorobenzene	116		83 - 127
1,2-Dichloroethane-d4 (Surr)	120		86 - 129

Client: Crawford Consulting Inc Job Number: 720-9549-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-9549-4
 Date Sampled:
 06/15/2007 0816

 Client Matrix:
 Water
 Date Received:
 06/15/2007 1130

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-22925 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200706\06

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 06/21/2007 1314 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	0.75		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec	Acceptance	Limits
Toluene-d8 (Surr)	108	82 - 126	
4-Bromofluorobenzene	111	83 - 127	
1,2-Dichloroethane-d4 (Surr)	119	86 - 129	

Client: Crawford Consulting Inc Job Number: 720-9549-1

Client Sample ID: DUP-1

 Lab Sample ID:
 720-9549-5
 Date Sampled:
 06/15/2007 0000

 Client Matrix:
 Water
 Date Received:
 06/15/2007 1130

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-22925 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200706\06

Dilution: 40 Initial Weight/Volume: 40 mL Date Analyzed: 06/21/2007 1347 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		20
1,1-Dichloroethane	ND		20
Dichlorodifluoromethane	ND		20
Vinyl chloride	ND		20
Chloroethane	ND		40
Trichlorofluoromethane	ND		40
Methylene Chloride	ND		200
trans-1,2-Dichloroethene	ND		20
cis-1,2-Dichloroethene	ND		20
Chloroform	ND		40
1,1,1-Trichloroethane	ND		20
Carbon tetrachloride	ND		20
1,2-Dichloroethane	ND		20
Trichloroethene	ND		20
1,2-Dichloropropane	ND		20
Dichlorobromomethane	ND		20
trans-1,3-Dichloropropene	ND		20
cis-1,3-Dichloropropene	ND		20
1,1,2-Trichloroethane	ND		20
Tetrachloroethene	2400		20
Chlorodibromomethane	ND		20
Chlorobenzene	ND		20
Bromoform	ND		40
1,1,2,2-Tetrachloroethane	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,2-Dichlorobenzene	ND		20
Chloromethane	ND		40
Bromomethane	ND		40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
EDB	ND		20
1,2,4-Trichlorobenzene	ND		40
Surrogate	%Rec	Acceptance	Limits
Toluene-d8 (Surr)	103	82 - 126	
4-Bromofluorobenzene	108	83 - 127	
1,2-Dichloroethane-d4 (Surr)	114	86 - 129	

Client: Crawford Consulting Inc Job Number: 720-9549-1

Client Sample ID: TB-1

 Lab Sample ID:
 720-9549-6TB
 Date Sampled:
 06/15/2007
 0000

 Client Matrix:
 Water
 Date Received:
 06/15/2007
 1130

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-22910 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200706\06

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 06/20/2007 1626 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec	Acceptance	Limits
Toluene-d8 (Surr)	117	82 - 126	
4-Bromofluorobenzene	118	83 - 127	
1,2-Dichloroethane-d4 (Surr)	108	86 - 129	

DATA REPORTING QUALIFIERS

Client: Crawford Consulting Inc Job Number: 720-9549-1

Lab Section	Qualifier	Description	
GC/MS VOA			
	F	MS or MSD exceeds the control limits	

Client: Crawford Consulting Inc Job Number: 720-9549-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-228	889				
LCS 720-22889/1	Lab Control Spike	T	Water	8260B	
MB 720-22889/2	Method Blank	T	Water	8260B	
720-9537-C-2 MS	Matrix Spike	T	Water	8260B	
720-9537-C-2 MSD	Matrix Spike Duplicate	Т	Water	8260B	
720-9549-1	MW-1	Т	Water	8260B	
720-9549-2	MW-2	Т	Water	8260B	
720-9549-3	MW-3	T	Water	8260B	
Analysis Batch:720-229	010				
LCS 720-22910/1	Lab Control Spike	T	Water	8260B	
MB 720-22910/2	Method Blank	Т	Water	8260B	
720-9538-C-2 MS	Matrix Spike	Т	Water	8260B	
720-9538-C-2 MSD	Matrix Spike Duplicate	Т	Water	8260B	
720-9549-6TB	TB-1	Т	Water	8260B	
Analysis Batch:720-229	025				
LCS 720-22925/1	Lab Control Spike	Т	Water	8260B	
MB 720-22925/2	Method Blank	Т	Water	8260B	
720-9541-B-1 MS	Matrix Spike	Т	Water	8260B	
720-9541-C-1 MSD	Matrix Spike Duplicate	Т	Water	8260B	
720-9549-4	MW-4	Т	Water	8260B	
720-9549-5	DUP-1	Т	Water	8260B	

Report Basis

T = Total

Job Number: 720-9549-1 Client: Crawford Consulting Inc

Method Blank - Batch: 720-22889 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-22889/2 Analysis Batch: 720-22889 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200706\06

Dilution: Units: ug/L Initial Weight/Volume: 40 mL 1.0

Date Analyzed: 06/20/2007 0945 Final Weight/Volume: 40 mL Date Prepared: 06/20/2007 0945

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	.
Toluene-d8 (Surr)	110	82 - 126	
4-Bromofluorobenzene	117	83 - 127	
1,2-Dichloroethane-d4 (Surr)	115	86 - 129	

Client: Crawford Consulting Inc Job Number: 720-9549-1

Lab Control Spike - Batch: 720-22889

Date Prepared: 06/20/2007 0911

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-22889/1 Analysis Batch: 720-22889 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200706\06

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 06/20/2007 0911 Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	20.4	102	65 - 125	
Trichloroethene	20.0	17.1	86	74 - 134	
Chlorobenzene	20.0	21.9	109	61 - 121	
Surrogate	% F	Rec	Acc	ceptance Limits	
Toluene-d8 (Surr)	10	6		82 - 126	
4-Bromofluorobenzene	11	4		83 - 127	
1,2-Dichloroethane-d4 (Surr)	11	6		86 - 129	

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 720-22889 Preparation: 5030B

MS Lab Sample ID: 720-9537-C-2 MS Analysis Batch: 720-22889 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200706\(

Dilution: 10 Initial Weight/Volume: 40 mL

Date Analyzed: 06/20/2007 1447 Final Weight/Volume: 40 mL

Date Prepared: 06/20/2007 1447

MSD Lab Sample ID: 720-9537-C-2 MSD Analysis Batch: 720-22889 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200706\06

Dilution: 10 Initial Weight/Volume: 40 mL

Date Analyzed: 06/20/2007 1520 Final Weight/Volume: 40 mL

Date Analyzed: 06/20/2007 1520 Final Weight/Volume: 40 mL Date Prepared: 06/20/2007 1520

	<u>%</u>	Rec.					
Analyte	MS	MS MSD Limit		RPD	RPD Limit	MS Qual MSD Qual	
1,1-Dichloroethene	100	104	65 - 125	3	20		
Trichloroethene	97	92	74 - 134	3	20		
Chlorobenzene	116	116	61 - 121	1	20		
Surrogate		MS % Rec	MSD % Rec		Acceptance Limits		
Toluene-d8 (Surr)		116	110		82 - 126		
4-Bromofluorobenzene		116	119		83	3 - 127	
1,2-Dichloroethane-d4 (Surr)		125	123		80	6 - 129	

Job Number: 720-9549-1 Client: Crawford Consulting Inc

Method Blank - Batch: 720-22910 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-22910/2 Analysis Batch: 720-22910 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200706\06

Dilution: Units: ug/L Initial Weight/Volume: 40 mL 1.0

Date Analyzed: 06/20/2007 1019 Final Weight/Volume: 40 mL Date Prepared: 06/20/2007 1019

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	114	82 - 126	
4-Bromofluorobenzene	113	83 - 127	
1,2-Dichloroethane-d4 (Surr)	99	86 - 129	

Client: Crawford Consulting Inc Job Number: 720-9549-1

Lab Control Spike - Batch: 720-22910

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-22910/1

Client Matrix: Water Dilution: 1.0

Date Analyzed: 06/20/2007 0945 Date Prepared: 06/20/2007 0945 Analysis Batch: 720-22910

Prep Batch: N/A

Units: ug/L

Instrument ID: Varian 3900F

Lab File ID: c:\saturnws\data\200706\06

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	18.3	92	65 - 125	
Trichloroethene	20.0	16.7	83	74 - 134	
Chlorobenzene	20.0	21.5	108	61 - 121	
Surrogate	%	Rec	Ac	ceptance Limits	
Toluene-d8 (Surr)		107		82 - 126	
4-Bromofluorobenzene		105		83 - 127	
1,2-Dichloroethane-d4 (Surr)	•	103			

Matrix Spike/
Matrix Spike Duplicate Recovery Report - Batch: 720-22910

Method: 8260B 20-22910 Preparation: 5030B

MS Lab Sample ID: 720-9538-C-2 MS

Client Matrix: Water Dilution: 200

Date Analyzed: 06/20/2007 1520 Date Prepared: 06/20/2007 1520 Analysis Batch: 720-22910

Prep Batch: N/A

Instrument ID: Varian 3900F

Lab File ID: c:\saturnws\data\200706\f

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

MSD Lab Sample ID: 720-9538-C-2 MSD

Client Matrix: Water Dilution: 200

Date Analyzed: 06/20/2007 1553 Date Prepared: 06/20/2007 1553 Analysis Batch: 720-22910

Prep Batch: N/A

Instrument ID: Varian 3900F

Lab File ID: c:\saturnws\data\200706\06

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

	<u>%</u>	Rec.							
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual			
1,1-Dichloroethene	72	82	65 - 125	12	20				
Trichloroethene	57	77	74 - 134	7	20	F			
Chlorobenzene	94	106	61 - 121	12	20				
Surrogate		MS % Rec	MSD %	% Rec	Acceptance Limits				
Toluene-d8 (Surr)		112	109		82 - 126				
4-Bromofluorobenzene		112	113		83	3 - 127			
1,2-Dichloroethane-d4 (Surr)		103	103		86 - 129				

Job Number: 720-9549-1 Client: Crawford Consulting Inc

Method Blank - Batch: 720-22925 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-22925/2 Analysis Batch: 720-22925 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200706\06

Dilution: Units: ug/L Initial Weight/Volume: 40 mL 1.0

Date Analyzed: 06/21/2007 1026 Final Weight/Volume: 40 mL Date Prepared: 06/21/2007 1026

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	100	82 - 126	
4-Bromofluorobenzene	107	83 - 127	
1,2-Dichloroethane-d4 (Surr)	111	86 - 129	

Client: Crawford Consulting Inc Job Number: 720-9549-1

Lab Control Spike - Batch: 720-22925

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-22925/1 Analysis Batch: 720-22925 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200706\06

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 06/21/2007 0953 Final Weight/Volume: 40 mL Date Prepared: 06/21/2007 0953

Analyte	Spike Amount Result		% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	25.0	125	65 - 125	
Trichloroethene	20.0	18.3	92	74 - 134	
Chlorobenzene	20.0	20.8	104	61 - 121	
Surrogate	% R	lec	Acc		
Toluene-d8 (Surr)	96			82 - 126	
4-Bromofluorobenzene	10	5			
1,2-Dichloroethane-d4 (Surr)	10	5			

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 720-22925 Preparation: 5030B

MS Lab Sample ID: 720-9541-B-1 MS Analysis Batch: 720-22925 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200706\(

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 06/21/2007 1133 Final Weight/Volume: 40 mL

Date Prepared: 06/21/2007 1133

MSD Lab Sample ID: 720-9541-C-1 MSD Analysis Batch: 720-22925 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200706\06

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 06/21/2007 1207 Final Weight/Volume: 40 mL Date Prepared: 06/21/2007 1207

	<u>%</u>	Rec.						
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual	
1,1-Dichloroethene	138	138	65 - 125	0	20	F	F	
Trichloroethene	98	95	74 - 134	1	20			
Chlorobenzene	111	109	61 - 121	2	20			
Surrogate		MS % Rec	MSD 9	% Rec	Acceptance Limits			
Toluene-d8 (Surr)		104	106		82 - 126			
4-Bromofluorobenzene		113	112		83	3 - 127		
1,2-Dichloroethane-d4 (Surr)		117	120		80	6 - 129		

STL San Francisco

Date/Time

CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM

1220 Quarry Lane, Pleasanton, CA 94566 (925) 484-1919 FAX (925) 484-1096				Ser	vice Re	quest				.510.00						Date	105	5-07	
Project Name: Alameda Facility	22										An	alysi	s Reque	sted	-7/4		105	921	
Project Number: CS1605 Project Manager: Dana Johnston Company/Address Crawford Consulting, Inc 2 North First St, 4th Floor San Jose, CA 95113 Phone: (408) 287-9934 Fax: (408) 287-9937 Sampler's Signature	720-4 Yalles	1549	Number of Containers	-	Pb (7421); As (7060)	Same as Metals	COD, 1KN 500 ml plastic H ₂ SO ₄	Chloride, Nitrate	500 ml plastic NP	pH, Conductivity 500 ml plastic NP	Total Phenols	2 x 500 ml glass H ₂ SO ₄	Volatile Organics (8010) 3 x 40 ml vial	TPHgBTEX	2 x 40 ml vial HCl			BMARKS	
Sample	LAB	Sample																	
I,D. Date MW-1 (6/15/07 04)	Sime I.D.	Matrix	3										Х						
MW-2 6/15/07 10	166	Water	3										X						
MW-3 6/15/07 09		Water	3										Х						21
MW-4 6/15/07 09	.(@	Water	3										X						ų
DUP-1 4/5/07 -		Water	3										Х						20
TB-1 6/15/07 -	_	Water	3			1			-			-	X						Page
									1										
Signature L. Gallegos Printol Name FSI Firm (2-15-07	Signature Printed Name Firm	when		TURNAROUI	051		o /	7 Cel\	South epon 51), tipe ta	REQUIR ne Report et (includes au require ed au samp Validation des All Rar	DUP, MS A may be les) Deport		F.O. #	DICE INFO	RMATIO	Stopping Stopping Conditio	#:	ECEIPT	
Date/Time Relinquished By	Date/Time 6-15-0	for the leaders of th	\overline{s}_i	(\ ~ '	4	1			QLSTRA	Ti#)								
Signature	Signature				- semitti	to:	Dan	a Johns	ston n	t dana/a	Bernwfo	rdeor	nsulting.	com					
Printed Name	Printed Name		-	Please pr															
Date/Time	Date/Time																	4.80	

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Crawford Consulting Inc Job Number: 720-9549-1

Login Number: 9549

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	False	REC'D 2-TB-1 not 3
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	NO times for DUP-1 or TB-1
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	False	1of2 TB-1
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	