RECEIVED

By dehloptoxic at 2:10 pm, Mar 01, 2007

Groundwater Monitoring Results
Second Semi-Annual 2006 Monitoring Period
Cargill Salt – Alameda Facility
Alameda, California

February 28, 2007

Alameda County Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Attn: Jerry Wickham

RE: Groundwater Monitoring Results, Second Semi-Annual 2006 Monitoring Period, Cargill Salt – Alameda Facility, Alameda, California, SLIC Case No. RO0002480

Dear Mr. Wickham.

The attached report presents the groundwater monitoring results for the Second Semi-Annual 2006 Monitoring Period for the Cargill Salt Alameda facility. This report presents the results of groundwater monitoring data collected during the third and fourth quarters of 2006. For each quarterly period, groundwater levels in the site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report are true and correct to the best of my knowledge.

Should you have any questions concerning the report, please don't hesitate to call me at (510) 790-8625.

Sincerely.

Teri Peterson

Environmental Manager

Groundwater Monitoring Results Second Semi-Annual 2006 Monitoring Period

Cargill Salt – Alameda Facility Alameda, California

Prepared for:

Cargill Salt 7220 Central Avenue Newark, California 94560

Prepared by:

Crawford Consulting, Inc. 2 North First Street, 4th Floor San Jose, CA 95113 (408) 287-9934

> Project No. CS1605 February 28, 2007

Contents

1	Introduction	1
	1.1 Reporting Period Activities	1
	1.2 Background Information	2
	1.2.1 Site Description	2
	1.2.2 Summary of Investigative and Remedial Activities	
	1.2.3 Source of VOC Impact	
2	Groundwater Flow Analysis	
	2.1 Water-Level Measurement	
	2.2 Groundwater Flow Direction and Gradient	
	2.3 Groundwater Velocity	
3	Groundwater Sampling and Analysis	
	3.1 Sample Collection and Analysis	
	3.2 Analytical Results.	
	3.2.1 Quality Control	
	3.2.2 Groundwater Results	
	3.3 Discussion	
4	Phytoremediation Project Status Update	

Professional Certification References Limitations

Tables

Table 1.	Groundwater Level Data
Table 2.	Relative Percent Difference Based on Duplicate Samples
Table 3.	Summary of Groundwater Monitoring Well Data

Illustrations

Figure 1.	Site Location
Figure 2.	Groundwater Monitoring Well Locations
Figure 3.	Graphical Summary of Groundwater Elevations
Figure 4.	Groundwater Elevation Contours – September 2006
Figure 5.	Groundwater Elevation Contours – December 2006
Figure 6.	VOC Concentrations in Groundwater – September through December 2006
Figure 7.	Graphical Summary of PCE Concentrations
Figure 8.	PCE Concentrations vs. Groundwater Elevation

Appendices

(presented in electronic format only)

Appendix A.	Field Data Sheets
Appendix B.	Groundwater Velocity Calculations
Appendix C.	Certified Analytical Reports and Chain-of-Custody Documentation

Electronic File

Entire report presented in electronic file format (pdf) on CD-ROM inside back cover.

1 Introduction

Crawford Consulting, Inc. (Crawford) has prepared this report on behalf of Cargill Salt for the Cargill Salt Dispensing Systems Division facility (hereafter, the Site) in Alameda, California.

Results of groundwater transect sampling and the initial sampling of three groundwater monitoring wells installed in November 1999 were presented in the January 31, 2000 report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW). The purpose of the groundwater transect sampling and the monitoring well installation and sampling was to help characterize and monitor the occurrence of volatile organic compounds (VOCs), primarily tetrachloroethene (PCE) and its breakdown product, trichloroethene (TCE), previously detected in groundwater at the Site.

One of the recommendations in the report was to confirm the groundwater analytical results of the newly installed monitoring wells (wells MW-1, MW-2, and MW-3) and the groundwater flow direction and gradient via quarterly monitoring. Cargill Salt began groundwater monitoring on a quarterly basis after the initial groundwater monitoring well sampling event in November 1999. For 2000 through 2005, reporting was performed on an annual basis. Reporting is now being performed on a semi-annual basis.

Cargill Salt conducted additional characterization activities in November and December 2001 to evaluate the off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue.

1.1 Reporting Period Activities

This report presents the results of groundwater monitoring data collected during the third and fourth quarters of 2006. For each quarterly period, groundwater levels in the Site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined. The quarterly monitoring schedule for the second semi-annual 2006 monitoring period is shown below.

Quarter of 2006	Field Dates
Third	September 11, 2006
Fourth	December 15 and 21, 2006

Supervision of the quarterly monitoring events was conducted for Cargill Salt by Crawford. Groundwater level measurements and collection of groundwater samples were conducted by Field Solutions, Inc. The groundwater samples for the third through fourth quarters of 2006 were analyzed by STL San Francisco, a state-certified laboratory in Pleasanton, California.

1.2 Background Information

A description of the Site and a summary of the development of characterization and monitoring programs for the Site are presented in this section.

1.2.1 Site Description

Alameda is an island on the east side of San Francisco Bay, separated from Oakland by a tidal canal (Figure 1). The Cargill Salt Dispensing Systems Division facility is located on a rectangular lot in an industrial and residential neighborhood. The facility building occupies approximately one-third of the Site and is separated from the vacant, unpaved side of the lot by an asphalt driveway (Figure 2). The Site is bordered by a sheet-metal shop and a residential lot to the northwest, an apartment complex to the southwest, and a residential lot to the southeast.

From 1951 to 1978, the Alameda facility produced salt-dispensing units, which required casting and milling aluminum parts.

Constituents of concern associated with site operations have included casting sands with elevated concentrations of metals, and solvents, machine oils, and grease used in casting and milling operations. As discussed below, previous investigations and remedial activities have investigated and remediated metals and solvents (VOCs) in vadose-zone soil.

1.2.2 Summary of Investigative and Remedial Activities

Cargill Salt initiated site investigative activities in 1993 to determine if facility operations had impacted site soils. Cargill Salt submitted the results of the soil sampling investigation to the Alameda County Environmental Health Services (ACEHS) in October 1993 along with a workplan for excavation and disposal of impacted soils and assessment of potential impact to groundwater (Groundworks Environmental, Inc. [Groundworks], 1993).

After approval of the workplan by ACEHS, Cargill Salt conducted several phases of soil remediation and groundwater characterization. Surficial soils impacted by metals were excavated for disposal off site. Vadose-zone soils with the highest degree of impact by VOCs were also excavated for off-site disposal (see "Soil excavation area" on Figure 2).

The results of these activities were submitted to the ACEHS in a report, *Soil and Groundwater Investigations and Remedial Activities*, *July 1993 – September 1994*, *Cargill Salt – Alameda Facility*, *Alameda, California* (Groundworks, 1995). Recommendations for additional work to further delineate the lateral and vertical extent of VOCs in groundwater beneath the Site were presented in the report.

A workplan for the additional delineation of VOCs in groundwater, *Workplan for Groundwater Characterization and Monitoring Well Installation*, 2016 Clement Avenue, Alameda, California (CCI), was submitted to the ACEHS in July 1999.

After approval of the workplan by the ACEHS, Cargill Salt conducted groundwater sampling and well installation activities during August and November of 1999. The results of these activities were submitted to the ACEHS in a report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW, dated January 31, 2000). After the initial groundwater monitoring well sampling event in November 1999, Cargill Salt began groundwater monitoring on a quarterly basis.

A work plan for remedial investigation activities, *Workplan for Off-Site Characterization, Cargill Salt* – *Alameda Facility, Alameda, California* (Conor Pacific/EFW), was submitted to the ACEHS in June 2001. After approval of the workplan by the ACEHS, Cargill Salt conducted characterization activities in November and December 2001 to evaluate off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue. The results of these activities were submitted to the ACEHS in the August 21, 2002 submittal *Off-Site Groundwater Characterization, Cargill Salt* – *Alameda Facility, Alameda, California*, prepared by Conor Pacific/EFW.

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid of 24 rows. The rows are generally 6 feet apart with trees on 7-foot centers on each row. Selection of the phytoremediation approach and implementation of the project were described in the October 20, 2006 report, *Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California* prepared by Crawford Consulting, Inc.

1.2.3 Source of VOC Impact

As discussed in the 1995 report, the occurrence of VOCs in soils and groundwater at the Site appears to be the result of a discharge or spill to surficial soils at a location near the rear property line at the southwestern corner of the property. The area with the highest degree of chemical impact was delineated prior to excavation and was then excavated using a backhoe and transported off-site for appropriate disposal. It is possible that the VOCs detected in soils and groundwater at this location were associated with waste products from facility operations. The VOCs may be associated with solvents previously used for degreasing operations at the facility, although there are no records indicating use of PCE. Site records indicate that the solvents used for degreasing operations were not PCE-based solvents.

It is also possible that the VOCs and oil and grease are associated with waste products discarded from neighboring properties. There is an apartment complex next to the rear property line of the facility, and the laundry room for this complex is in the utility shed immediately adjacent to the rear property line. This laundry room is only 4 feet away from the area of highest impact to soil. If PCE associated with laundry cleaning products were spilled in this laundry room, it is possible that it could have drained onto the Cargill Salt property.

2 Groundwater Flow Analysis

Groundwater levels were measured quarterly and groundwater contour maps were prepared for the third and fourth quarter 2006 monitoring events.

2.1 Water-Level Measurement

Water levels in groundwater monitoring wells (MW-1, MW-2, MW-3, and MW-4) were measured each quarter, before any of the groundwater monitoring wells were purged for sampling for the quarterly monitoring event. The groundwater monitoring well locations are shown on Figure 2. The water levels were measured with an electric sounder. The depth to water at each well was recorded on a *Water Level Field Data* sheet (see Appendix A).

The water-level data through the fourth quarter of 2006 are shown on Table 1. The data in Table 1 include the date and time of measurement, the well casing elevation, the measured depth to groundwater, the groundwater elevation, and the change in elevation from the previous measurement. A plot of historical groundwater elevations is shown in Figure 3.

The Site groundwater monitoring wells were re-surveyed in September 2006 by CSS Environmental Services in order to provide Geotracker-compliant survey data. Results of the casing elevation survey indicate that each well is approximately 6.4 feet higher than the previous survey conducted in 1999. This difference is due to the use of different datum for the 2006 and 1999 surveys. The casing elevations from the September 2006 survey are shown on Table 1.

Groundwater levels in the on-site monitoring wells (MW-1, MW-2, and MW-3) showed a similar seasonal pattern in the second semi-annual period of 2006 as in the previous six years (see Figure 3). Groundwater levels fell across the Site between the second quarter 2006 and third quarter 2006 measurements, reflecting dissipation of winter-season discharge. Groundwater levels rose between the third and fourth quarter 2006 measurements, reflecting winter-season recharge.

2.2 Groundwater Flow Direction and Gradient

Groundwater contour maps for the third and fourth quarters of 2006 based on the September and December 2006 water-level data are shown on Figures 4 and 5.

The groundwater flow direction determined for the third and fourth quarters of 2006 was to the northeast, consistent with the groundwater flow direction determined previously for the Site. The horizontal hydraulic gradients measured for the third and fourth quarters of 2006 were 0.014 and 0.015, respectively.

2.3 Groundwater Velocity

Average linear groundwater flow velocities (V) were calculated using a form of Darcy's Law,

$$V = Ki/n$$
,

where "K" is the hydraulic conductivity, "i" is the horizontal hydraulic gradient, and "n" is the effective porosity. The groundwater velocity calculations for the third and fourth quarters of 2006 groundwater data are presented in Appendix B.

Using hydraulic conductivity and porosity values determined for saturated native materials at the Site [based on slug tests and laboratory soil testing, respectively (Conor Pacific/EFW, 2002)], and the horizontal hydraulic gradients determined from the third and fourth quarters 2006 groundwater contour maps, groundwater flow velocities beneath the Site are calculated to be approximately 1 foot per year.

3 Groundwater Sampling and Analysis

This section summarizes the sample collection and analytical methods, presents an evaluation of quality control data, and summarizes the results of the sampling events.

3.1 Sample Collection and Analysis

Groundwater samples were collected September 11, 2006 and December 15 and 21, 2006 from groundwater monitoring wells MW-1, MW-2, MW-3, and MW-4. Dedicated tubing was installed in wells MW-1, MW-2, and MW-3 prior to the first quarter 2000 sampling event and on December 17, 2001 in well MW-4 to facilitate sampling with a peristaltic pump. Dedicated fluorinated ethylene propylene resin (FEP)-lined polyethylene tubing was installed in each monitoring well. The tubing intake was placed about one foot above the well bottom in each of the wells. Viton® dedicated check valves were installed on the tubing intakes to prevent back-flow of water into the well. A short length of dedicated Viton® tubing was installed at the well head for use in a peristaltic pump head. Prior to sample collection for each quarterly monitoring event, the wells were purged using a peristaltic pump. Field parameters (pH, electrical conductivity, temperature, and turbidity) were measured in purged groundwater from each well prior to sampling; these data are recorded on the Sample Collection Field Data sheets presented in Appendix A. After purging, groundwater samples were collected using the peristaltic pump and the dedicated Viton® pump head discharge tubing.

The groundwater samples were analyzed for VOCs using U.S. Environmental Protection Agency (USEPA) Method 8021B. Results for all Method 8010 analytes were reported. The groundwater samples for third through fourth quarter 2006 were delivered with appropriate chain-of-custody documentation to STL San Francisco, a state-certified laboratory in Pleasanton, California, for chemical analysis.

3.2 Analytical Results

The results of field and laboratory quality control measures and the results of the groundwater monitoring well samples are reviewed in this section. The certified analytical reports and chain-of-custody documentation are presented in Appendix C.

3.2.1 Quality Control

Quality control (QC) samples were analyzed as part of the sampling and analysis program to evaluate the precision and accuracy of the reported groundwater chemistry data. QC samples included both field and laboratory samples. Descriptions of the purpose of specific field and laboratory QC samples used during the sampling and analysis program and an evaluation of field and laboratory QC results are presented below.

Field Quality Control Samples

A field duplicate was used during the third through fourth quarter 2006 sampling program for the Site. A field duplicate is used to assess sampling and analytical precision. The duplicate is collected at a selected well (MW-2 [third and fourth quarters 2006]) and then submitted "blind" to the laboratory for analysis with the same batch as the regular sample for the selected well. An estimate of precision is obtained by calculating the relative percent difference (RPD) between the regular sample and the duplicate sample using the following formula:

RPD =
$$[x - y] 100$$

0.5 $(x + y)$

where: [x - y] =the absolute value of the difference in concentration between the regular sample (x) and the duplicate sample (y).

Laboratory Quality Control Samples

The following types of laboratory QC samples were used during the third through fourth quarter 2006 analytical program for the Site:

- surrogate spikes
- matrix spikes/duplicate matrix spikes

A surrogate spike is a check standard added to a sample in a known amount prior to analysis. Surrogate spikes consist of analytes not normally found in environmental samples and not targeted by the analytical procedure. Surrogate spikes provide information on recovery efficiency by comparing the percent recovery of specific surrogate analyses to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis exhibits an acceptable recovery efficiency. Recoveries that fall outside the acceptance limits indicate a potential problem with the recovery efficiency of analytes, which in turn indicates a potential bias with respect to the reported concentration of the environmental samples analyzed in the same batch.

Matrix spikes and duplicate matrix spikes are analyzed by the laboratory for the purpose of providing a quantitative measure of accuracy and precision, and to document the effect that the sample matrix has on the analysis. A selected sample is spiked in duplicate with known concentrations of analytes. The recoveries of the spiked analytes are compared to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis has no statistically significant bias (i.e., the analysis is accurate). Recoveries that fall outside of the acceptance limits have a positive or negative bias, depending on whether the recovery is greater or less than the upper or lower acceptance limit, respectively. Analyses where analyte recoveries fall outside the acceptance limits should be regarded as estimates only.

Precision for matrix spikes is measured by calculating the relative percent differences (RPDs) between the measured concentration of analytes in the matrix and the duplicate matrix spike. The following equation is used for matrix spikes:

RPD = [MS - MSD] 100

0.5 (MS + MSD)

where: [MS - MSD] = the absolute value of the difference in

concentration between the matrix spike (MS) and the matrix

spike duplicate (MSD)

Third Quarter 2006 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the third quarter 2006 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8021B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). The one parameter (PCE) for which RPDs could be calculated (see Table 2) exhibits a low RPD value (i.e., less than 10%) indicative of good precision.

Fourth Quarter 2006 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the fourth quarter 2006 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8021B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). The one parameter (PCE) for which RPDs could be calculated (see Table 2) exhibits a low RPD value (i.e., less than 10%) indicative of good precision.

Third through Fourth Quarter 2006 Laboratory QC Results

A review of the third through fourth quarter 2006 field data sheets and laboratory reports (presented in Appendices A and C, respectively) indicates that all analyses were performed within USEPA or California Department of Health Services (DHS) recommended maximum sample holding times.

QC data on surrogate spike recoveries and matrix spike recoveries are presented in the laboratory reports. These data indicate: (1) no surrogate spike recoveries were outside of the laboratory's acceptance limits; (2) no matrix spike or duplicate matrix spike recoveries were outside of the laboratory's control limits; and (3) RPD values for the matrix spikes and duplicate matrix spikes indicate a high overall degree of analytical precision. The laboratory QC data indicate that the results reported herein are of adequate quality for evaluation of site groundwater conditions.

3.2.2 Groundwater Results

The results of VOC analyses for each quarter for 2000 through fourth quarter 2006 are summarized in Table 3, which also shows the VOC results for the initial sampling event for monitoring wells MW-1, MW-2, and MW-3 in November 1999. The results for the third and fourth quarter 2006 monitoring events are also shown on Figures 6 and 7.

Consistent with previous monitoring events, PCE and its breakdown products TCE and 1,1-dichloroethene (DCE) were detected in Site groundwater samples from the third and fourth quarter 2006 monitoring events.

For the third and fourth quarters of 2006, the concentrations of PCE detected were 400 and 210 μ g/L in monitoring well MW-1, 990 and 1,000 μ g/L in MW-2, not detected and 0.56 μ g/L in MW-3, and 0.70 and 0.63 μ g/L in MW-4.

The concentrations of TCE detected were 47 and 20 μ g/L in monitoring well MW-1. TCE was not detected in MW-2, MW-3 or MW-4.

DCE was detected in monitoring well MW-1 at 3.3 μ g/L for the third quarter 2006 event but was not detected in the fourth quarter 2006. DCE was detected in MW-3 at 2.8 and 1.6 μ g/L during the third and fourth quarters 2006, respectively. DCE was not detected in MW-2 or MW-4.

3.3 Discussion

The results for the third through fourth quarter 2006 quarterly monitoring events are generally similar to the results reported for the years 2000 through second quarter 2006 quarterly monitoring programs (see Figure 7). Variations in VOC concentrations at monitoring well MW-2, the well with the highest reported PCE concentrations at the site, correlate with variations in groundwater elevations at the Site. An increase in VOC concentrations generally follows a rise in groundwater elevations, and a decrease in VOC concentration generally follows a fall in groundwater levels (see Figure 8). The variations in VOC concentrations sometimes lag one quarter behind the variations in groundwater elevation.

The concentrations of PCE reported for groundwater monitoring well MW-2 for the June, September, and December 2006 sampling events were the lowest PCE concentrations reported for the well since the initial sampling event in November 1999. The PCE concentrations reported for MW-2 for the last three quarters may be an indication that the phytoremediation project is beginning to be effective at reducing VOC concentrations in groundwater at the site. However, it may be premature to correlate these PCE concentrations to the effectiveness of the phytoremediation project as the trees have only been growing for one-and-a-half years (see Section 4). Continued monitoring will be required before a definitive correlation can be made.

As shown on Figure 7, the concentrations of PCE reported for groundwater monitoring well MW-1 show an overall decreasing trend for the last several years.

4 Phytoremediation Project Status Update

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid on the unpaved portion of the site. Selection of the phytoremediation approach and implementation of the project were described in the report, *Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc., October 20, 2006).

A tree monitoring and maintenance program is being conducted by a landscaping contractor. This program involves monthly inspection of the trees during the growing season, inspection and maintenance of the drip irrigation system, and weed control.

The end of the first semi-annual monitoring period of 2006 marks the first 18 months of the phytoremediation project. The trees were 4-ft-tall, bare-root poles with no foliage when planted in June 2005. During the first year and a half of growth, the trees developed foliage and grew several feet in height.

It is expected that it will take two to three years after planting for the trees and root systems to become well established and for the trees to start having a significant effect on VOC concentrations in groundwater at the Site. Tree growth and VOC concentrations will be monitored and evaluated to determine the effectiveness of the phytoremediation project.

Professional Certification

Groundwater Monitoring Results Second Semi-Annual 2006 Monitoring Period Cargill Salt – Alameda Facility Alameda, California

Jaea C. Johnson

Mot (Wheeler

This report has been prepared by CRAWFORD CONSULTING, INC. with the professional certification of the California professional geologist whose signature appears below.

No. 4563

Dana C. Johnston

Project Manager

Mark C. Wheeler

Principal Geologist

P.G. 4563

References

- Alameda County Environmental Health Services, 1999. Letter to Cargill Salt: Groundwater Monitoring Well Installation at 2016 Clement Avenue, Alameda, CA, May 7, 1999. Conor Pacific/EFW, 2001. Workplan for Off-Site Characterization, Cargill Salt Alameda Facility, June 18, 2001. ____, 2002. Off-Site Groundwater Characterization, Cargill Salt – Alameda Facility, Alameda, California, August 21, 2002. Crawford Consulting, Inc., 1999. Workplan for Groundwater Characterization and Monitoring Well Installation, 2016 Clement Avenue, Alameda, California, July 7, 1999. , 2001. Groundwater Monitoring Results, First through Fourth Quarter 2000, Cargill Salt – Alameda Facility, Alameda, California, April 11, 2001. _____, 2002. Groundwater Monitoring Results, First through Fourth Quarter 2001, Cargill Salt – Alameda Facility, Alameda, California, August 14, 2002. , 2003. Groundwater Monitoring Results, First through Fourth Quarter 2002, Cargill Salt – Alameda Facility, Alameda, California, August 13, 2003. , 2004. Groundwater Monitoring Results, First through Fourth Quarter 2003, Cargill Salt – Alameda Facility, Alameda, California, February 27, 2004. , 2005. Groundwater Monitoring Results, First through Fourth Quarter 2004, Cargill Salt – Alameda Facility, Alameda, California, November 7, 2005. , 2006. Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California, October 20, 2006. , 2006. Groundwater Monitoring Results, First Semi-Annual 2006 Monitoring Results, Cargill Salt – Alameda Facility, Alameda, California, November 8, 2006. Crawford Consulting, Inc. and Conor Pacific/EFW, 2000. Groundwater Characterization and Monitoring Well Installation, Cargill Salt - Alameda Facility, Alameda, California, January 31, 2000. Groundworks Environmental, Inc. (Groundworks), 1993. Results of Soil Sampling and Workplan for Remedial Activities, Alameda facility, October 19, 1993. , 1995. Soil and Groundwater Investigations and Remedial Activities, July 1993 – September 1994, Cargill Salt – Alameda Facility, Alameda, California, July 31, 1995. Hickenbottom, K. S., and Muir, K.S., 1988. Geohydrology and Groundwater-Quality Overview of the
- East Bay Plain Area, Alameda County, California, 205 (j) Report, prepared for the California Regional Water Quality Control Board, San Francisco Bay Region, by the Alameda County Flood Control and Water Conservation District, June 1988.
- Green, C. and Hoffnagle, A., 2004, Phytoremediation Field Studies Database for Chlorinated Solvents, Pesticides, Explosives, and Metals, Prepared for U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation Washington, DC, August 2004.
- U.S. Environmental Protection Agency, 2001, Brownfields Technology Primer: Selecting and Using Phytoremediation for Site Cleanup, U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC 20460 EPA 542-R-01-006, July 2001.

Limitations

This report and the evaluations presented herein have been prepared in accordance with generally accepted professional standards and is based solely on the scope of work and services described herein. This report has been prepared solely for the use of Cargill Salt for the purposes noted herein. Any use of this report, in whole or in part, by a third party for other than the purposes noted herein is at such party's sole risk.

Table 1. Groundwater Level Data

			Casing	Depth to	Water	Elev. Change
Well/			Elevation	Water	Elevation	from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-1	11/16/1999	09:56	13.16	3.75	9.41	NA
MW-1	3/30/2000	10:09	13.16	2.81	10.35	0.94
MW-1	5/16/2000	09:43	13.16	3.32	9.84	-0.51
MW-1	7/28/2000	09:43	13.16	3.58	9.58 9.58	-0.26
MW-1	11/30/2000	08:36	13.16	3.52	9.64	0.06
MW-1	3/26/2001	08:47	13.16	3.15	10.01	0.37
MW-1	6/25/2001	10:19	13.16	3.53	9.63	-0.38
MW-1	9/28/2001	09:32	13.16	3.96	9.20	-0.43
MW-1	12/17/2001	10:47	13.16	3.23	9.93	0.73
MW-1	3/21/2002	07:28	13.16	2.89	10.27	0.34
MW-1	6/6/2002	08:03	13.16	3.50	9.66	-0.61
MW-1	9/20/2002	08:30	13.16	3.86	9.30	-0.36
MW-1	12/19/2002	08:38	13.16	3.13	10.03	0.73
MW-1	3/4/2003	10:31	13.16	3.08	10.08	0.05
MW-1	6/9/2003	08:32	13.16	3.29	9.87	-0.21
MW-1	9/8/2003	10:02	13.16	3.79	9.37	-0.50
MW-1	12/1/2003	10:16	13.16	3.78	9.38	0.01
MW-1	3/4/2004	09:31	13.16	2.88	10.28	0.90
MW-1	6/2/2004	08:42	13.16	3.45	9.71	-0.57
MW-1	9/14/2004	08:01	13.16	3.87	9.29	-0.42
MW-1	12/8/2004	07:44	13.16	3.23	9.93	0.64
MW-1	3/3/2005	08:07	13.16	2.01	11.15	1.22
MW-1	6/10/2005	07:05	13.16	2.90	10.26	-0.89
MW-1	9/16/2005	08:00	13.16	3.62	9.54	-0.72
MW-1	12/6/2005	08:00	13.16	3.28	9.88	0.34
MW-1	3/10/2006	07:40	13.16	2.28	10.88	1.00
MW-1	6/9/2006	09:45	13.16	3.09	10.07	-0.81
MW-1	9/11/2006	10:24	13.16	3.70	9.46	-0.61
MW-1	12/15/2006	07:34	13.16	2.94	10.22	0.76
MW-2	11/16/1999	11:15	16.22	5.22	11.00	NA
MW-2	3/30/2000	10:05	16.22	2.80	13.42	2.42
MW-2	5/16/2000	09:35	16.22	4.13	12.09	-1.33
MW-2	7/28/2000	09:17	16.22	4.85	11.37	-0.72
MW-2	11/30/2000	08:32	16.22	4.75	11.47	0.10
MW-2	3/26/2001	08:40	16.22	3.28	12.94	1.47
MW-2	6/25/2001	12:12	16.22	4.75	11.47	-1.47
MW-2	9/28/2001	12:20	16.22	5.41	10.81	-0.66
MW-2	12/17/2001	10:44	16.22	4.07	12.15	1.34
MW-2	3/28/2002	09:37	16.22	3.40	12.82	0.67
MW-2	6/6/2002	08:11	16.22	4.70	11.52	-1.30
MW-2	9/20/2002	08:34	16.22	5.28	10.94	-0.58
MW-2	12/19/2002	08:45	16.22	3.37	12.85	1.91
MW-2	3/4/2003	10:26	16.22	3.11	13.11	0.26
MW-2	6/9/2003	08:31	16.22	4.16	12.06	-1.05
MW-2	9/8/2003	10:08	16.22	5.26	10.96	-1.10
MW-2	12/1/2003	10:20	16.22	5.05	11.17	0.21
MW-2	3/4/2004	09:34	16.22	2.86	13.36	2.19
MW-2	6/2/2004	08:53	16.22	4.47	11.75	-1.61
MW-2	9/14/2004	07:59	16.22	5.26	10.96	-0.79
MW-2	12/8/2004	08:00	16.22	4.20	12.02	1.06
MW-2	3/3/2005	08:04	16.22	1.90	14.32	2.30

Table 1. Groundwater Level Data

			Casing	Depth to	Water	Elev. Change
Well/			Elevation	Water	Elevation	from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-2	6/10/2005	07:09	16.22	3.74	12.48	-1.84
MW-2	9/16/2005	08:08	16.22	4.92	11.30	-1.18
MW-2	12/6/2005	10:58	16.22	4.39	11.83	0.53
MW-2	3/10/2006	07:47	16.22	2.13	14.09	2.26
MW-2	6/9/2006	10:03	16.22	3.75	12.47	-1.62
MW-2	9/11/2006	10:22	16.22	4.94	11.28	-1.19
MW-2	12/15/2006	07:32	16.22	4.08	12.14	0.86
MW-3	11/16/1999	15:43	13.34	4.34	9.00	NA
MW-3	3/30/2000	10:01	13.34	2.77	10.57	1.57
MW-3	5/16/2000	09:46	13.34	3.44	9.90	-0.67
MW-3	7/28/2000	09:05	13.34	3.72	9.62	-0.28
MW-3	11/30/2000	08:34	13.34	3.73	9.61	-0.01
MW-3	3/26/2001	08:54	13.34	3.51	9.83	0.22
MW-3	6/25/2001	10:21	13.34	3.65	9.69	-0.14
MW-3	9/28/2001	09:30	13.34	3.96	9.38	-0.31
MW-3	12/17/2001	10:38	13.34	3.28	10.06	0.68
MW-3	3/21/2002	07:28	13.34	3.10	10.24	0.18
MW-3	6/6/2002	08:07	13.34	3.63	9.71	-0.53
MW-3	9/20/2002	08:25	13.34	3.82	9.52	-0.19
MW-3	12/19/2002	08:42	13.34	3.10	10.24	0.72
MW-3	3/4/2003	10:36	13.34	3.29	10.05	-0.19
MW-3	6/9/2003	08:28	13.34	3.41	9.93	-0.12
MW-3	9/8/2003	10:00	13.34	3.85	9.49	-0.44
MW-3	12/1/2003	10:30	13.34	3.90	9.44	-0.05
MW-3	3/4/2004	09:22	13.34	3.11	10.23	0.79
MW-3	6/2/2004	08:46	13.34	3.53	9.81	-0.42
MW-3	9/14/2004	08:05	13.34	4.07	9.27	-0.54
MW-3	12/8/2004	07:40	13.34	3.73	9.61	0.34
MW-3	3/3/2005	07:53	13.34	2.36	10.98	1.37
MW-3	6/10/2005	07:14	13.34	3.15	10.19	-0.79
MW-3	9/16/2005	08:04	13.34	3.90	9.44	-0.75
MW-3	12/6/2005	08:04	13.34	3.35	9.99	0.55
MW-3	3/10/2006	07:43	13.34	2.89	10.45	0.46
MW-3	6/9/2006	09:33	13.34	3.26	10.08	-0.37
MW-3	9/11/2006	10:19	13.34	3.70	9.64	-0.44
MW-3	12/15/2006	07:37	13.34	3.10	10.24	0.60
MW-4	12/17/2001	10:40	12.43	2.55	9.88	NA
MW-4	3/28/2002	08:05	12.43	3.06	9.37	-0.51
MW-4	6/6/2002	07:57	12.43	2.85	9.58	0.21
MW-4	9/20/2002	08:28	12.43	3.21	9.22	-0.36
MW-4	12/19/2002	08:53	12.43	3.70	8.73	-0.49
MW-4	3/4/2003	10:34	12.43	3.14	9.29	0.56
MW-4	6/9/2003	08:29	12.43	2.82	9.61	0.32
MW-4	9/8/2003	10:04	12.43	3.43	9.00	-0.61
MW-4	12/1/2003	10:14	12.43	3.12	9.31	0.31
MW-4	3/4/2004	09:27	12.43	2.81	9.62	0.31
MW-4	6/2/2004	08:44	12.43	3.34	9.09	-0.53
MW-4	9/14/2004	08:03	12.43	3.51	8.92	-0.17
MW-4	12/8/2004	07:36	12.43	3.10	9.33	0.41

Table 1. Groundwater Level Data

Well/ Piezometer	Date	Time	Casing Elevation (feet, MSL)	Depth to Water (feet)	Water Elevation (feet, MSL)	Elev. Change from Last Measurement (feet)
MW-4	3/3/2005	07:44	12.43	2.48	9.95	0.62
MW-4	6/10/2005	07:02	12.43	2.47	9.96	0.01
MW-4	9/16/2005	08:12	12.43	3.23	9.20	-0.76
MW-4	12/6/2005	07:50	12.43	3.17	9.26	0.06
MW-4	3/10/2006	07:37	12.43	3.77	8.66	-0.60
MW-4	6/9/2006	07:30	12.43	2.49	9.94	1.28
MW-4	9/11/2006	10:17	12.43	3.19	9.24	-0.70
MW-4	12/21/2006	NR	12.43	2.90	9.53	0.29

Key:

NA = Not available

feet, MSL = feet, relative to Mean Sea Level

Casing elevations for all wells were resurveyed on September 6, 2006 by CSS Environmental Services

for Geotracker compliance.

Table 2.
Relative Percent Difference Based on Duplicate Samples

Third Quarter 2006 Fourth Quarter 2006

		· Quarter 20			err Quarter 2	
Analysis	Well MW-2 Results	Duplicate (DUP-1) Results	RPD ¹ (%)	Well MW-2 Results	Duplicate (DUP-1) Results	RPD ¹ (%)
Organic Compounds (µg/L)						
1,1-Dichloroethene (DCE)	<20	<20	NM^2	<20	<20	NM
1,1,1-Trichloroethane (TCA)	<20	<20	NM	<20	<20	NM
Trichloroethene (TCE)	<20	<20	NM	<20	<20	NM
Tetrachloroethene (PCE)	990	950	4.1	1,000	910	9.4

¹ RPD = relative percent difference

All other 8010 analytes not detected (by 8021B).

 $^{^2}$ NM = not meaningful; RPD cannot be accurately calculated where one or both values are below the method reporting limit.

Table 3. Summary of Groundwater Monitoring Well Data

Results measured in micrograms per liter (µg/L)

Well No.															MW-1															
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/21/02	6/6/02	9/20/02 1	2/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06 12	2/15/06 I	MCL ¹
DCE ²	<50.0	13	<10	15	14	<13	14	15	<13	<13	<13	<13	<13	<10	12	5.2	8.4	<5.0	5.8	6.6	<5.0	< 5.0	<2.0	<5.0	<2.0	<0.5	<2.0	3.3	<2.0	6
CFC 113 ³	na ⁴	1.4	<10	<10	<8.3	< 50	< 50	< 50	< 50	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	ne ⁵
DCA ⁶	<50.0	0.8	<10	<10	<4.2	<13	<13	<13	<13	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	5
Chloroform	<50.0	0.6*	<10	<10	<8.3	<13	<13	<13	<13	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	<10	<4.0	1.4	<4.0	<4.0	<4.0	ne
TCA ⁷	<50.0	1.6	<10	<10	<4.2	<13	<13	<13	<13	<13	<13	<13	<13	<10	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	< 2.0	< 2.0	200
TCE ⁸	178	150	190	170	130	180	250	210	190	160	140	190	68	97	90	110	130	53	72	81	39	15	23	34	16	3.4	22	47	20	5
PCE ⁹	906	1,400	1,900	1,200	880	1,000	1,400	1,000	1,400	1,100	980	1,100	600	730	770	780	850	370	490	620	380	160	180	240	140	39	140	400	210	5
Other analytes ¹⁰	nd ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Well No.															MW-2															
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/28/02	6/6/02	9/20/02	12/30/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06 12	2/15/06	MCL ¹
DCE ²	<50.0	< 0.5	<25	<25	<8.3	<25	<25	<25	<25	<25	<25	<25	<25	<20	<20	<20	<20	<20	<25	<25	<20	< 50	<25	<20	<25	<25	<20	<20	<20	6
CFC 113 ³	na	< 0.5	<25	<25	<17	<100	<100	<100	<100	<25	<25	<25	<25	< 20	<20	< 20	<20	<20	<25	<25	< 20	< 50	<25	<20	<25	<25	<20	<20	<20	ne ⁵
DCA ⁶	<50.0	< 0.5	<25	<25	<8.3	<25	<25	<25	<25	<25	<25	<25	<25	<20	< 20	< 20	< 20	< 20	<25	<25	< 20	< 50	<25	<20	<25	<25	< 20	<20	<20	5
Chloroform	<50.0	< 0.5	<25	<25	<17	<25	<25	<25	<25	<25	<25	<25	<25	<20	< 20	< 20	<20	< 20	<25	<25	< 20	< 50	<25	<40	< 50	< 50	<40	<20	<40	ne
TCA ⁷	<50.0	5.0	<25	<25	<8.3	<25	<25	<25	<25	<25	<25	<25	<25	<20	< 20	< 20	<20	< 20	<25	<25	< 20	< 50	<25	<20	<25	<25	< 20	<20	<20	200
TCE ⁸	<50	29	53	<25	20	40	78	<25	<25	49	52	32	<25	58	41	28	25	39	49	37	30	78	43	29	45	59	< 20	<20	<20	5
PCE ⁹	840	3,600	3,200	3,300	1,700	2,200	4,400	1,700	1,700	3,500	3,800	2,100	1,800	3,900	3,800	2,500	2,500	3,000	4,100	3,800	2,800	7,300	3,600	2,500	3,300	5,200	1,600	990	1,000	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Notes:

 $[\]label{eq:MCL} MCL = California \ Primary \ Drinking \ Water \ Standard - Maximum \ Contaminant \ Leve \ (in micrograms per liter [\mu g/L])$

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane

⁴ na = not analyzec

⁵ ne = not established or none applicabl

⁶ DCA = 1,1-Dichloroethane

⁷ TCA = 1,1,1-Trichloroethane

⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

¹⁰ All other Method 8010/8021B analytes

nd = not detected above laboratory reporting limit

^{*} Chloroform detected in equipment blank at 1.6 µg/L for 3/30/00 event.

Table 3. Summary of Groundwater Monitoring Well Data

Results measured in micrograms per liter (µg/L)

Well No.				•	, ,										MW-3															
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/21/02	6/6/02	9/20/02	2/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06 12	2/15/06	MCL ¹
DCE ²	<0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	0.51	< 0.5	0.81	< 0.5	< 0.5	0.68	2.4	1.5	1.1	0.86	4.3	2.8	1.6	6
CFC 113 ³	na	< 0.5	< 0.5	< 0.5	<1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.50	< 0.5	< 0.5	5
Chloroform	< 0.500	< 0.5	< 0.5	< 0.5	<1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ne
TCA^7	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE^8	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ⁹	< 0.500	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	0.81	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.90	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.56	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Well No.											MW-4											
Field Date	12/17/01	3/28/02	6/6/02	9/20/02	12/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	9/11/06	12/21/06	MCL ¹
DCE ²	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
CFC 113 ³	<2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ne
TCA ⁷	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁸	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ⁹	2.6	2.8	2.0	2.5	1.1	2.1	2.1	1.6	1.6	1.7	1.4	1.3	1.2	0.93	0.98	0.8	1.1	0.79	0.64	0.70	0.63	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Notes:

 $[\]label{eq:MCL} MCL = California \ Primary \ Drinking \ Water \ Standard - Maximum \ Contaminant \ Leve \ (in micrograms per liter [\mu g/L])$

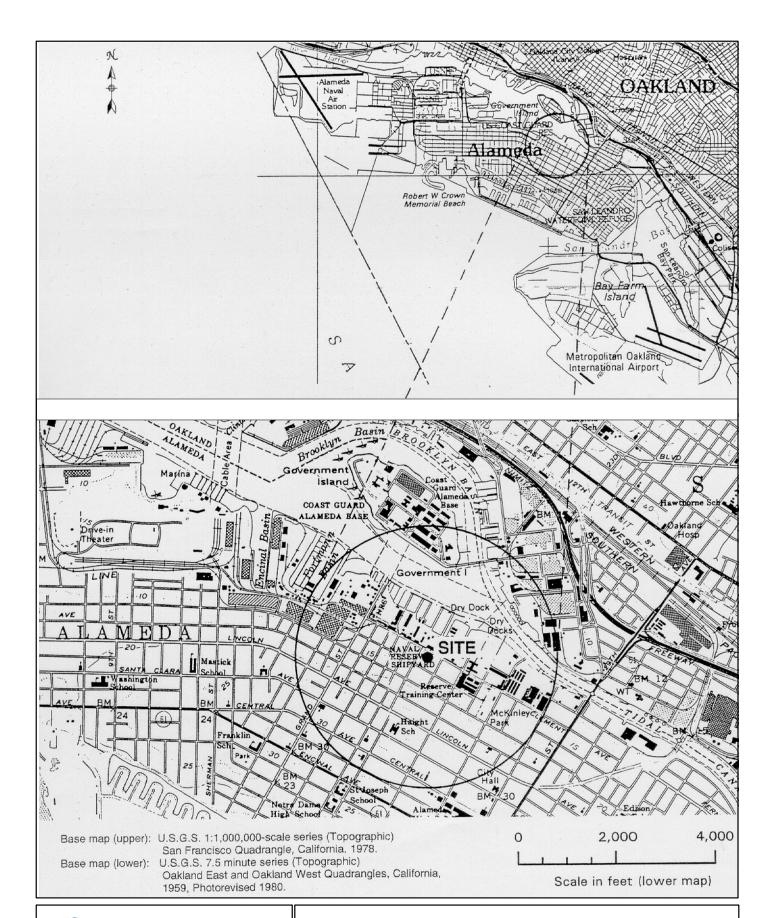
² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane

⁴ na = not analyzec

⁵ ne = not established or none applicabl

⁶ DCA = 1,1-Dichloroethane


⁷ TCA = 1,1,1-Trichloroethane

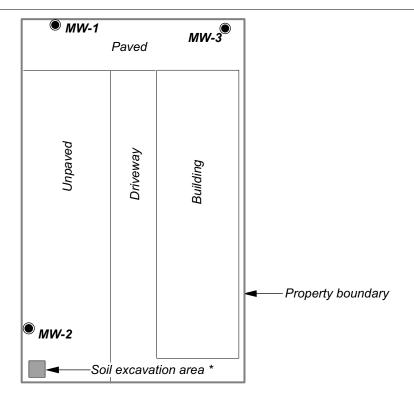
⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

¹⁰ All other Method 8010/8021B analytes

nd = not detected above laboratory reporting limit

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California


Figure 1. Site Location

MW-4

Curb line (Typ.)

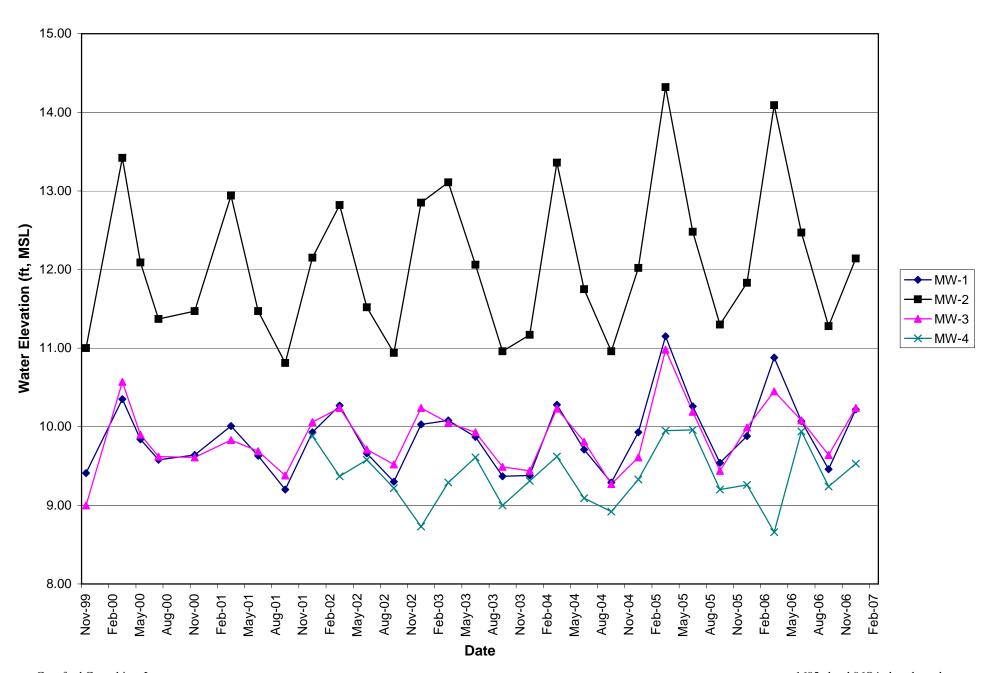
Clement Avenue

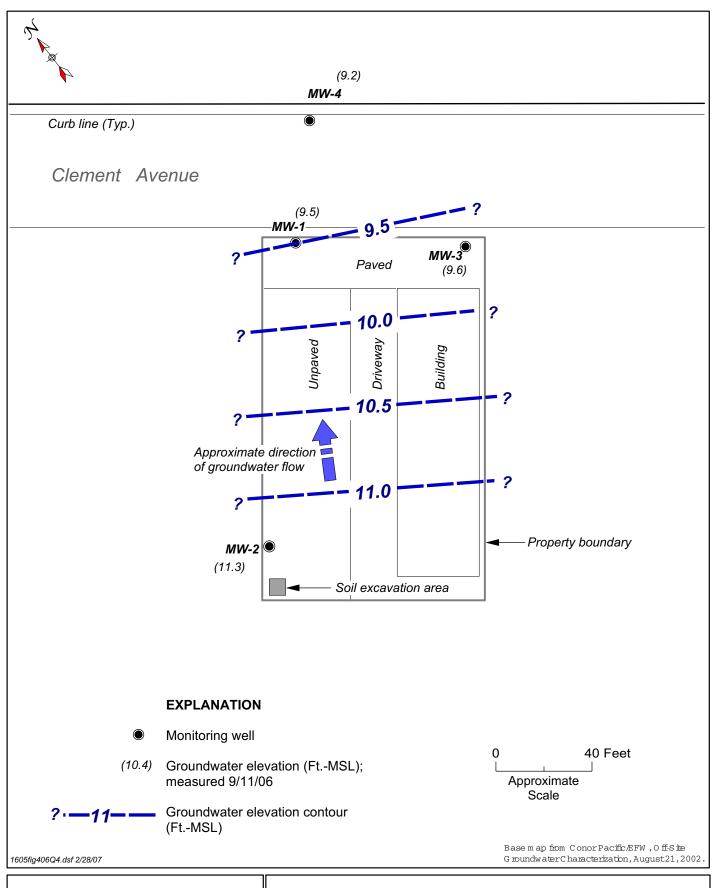
EXPLANATION

- Groundwater monitoring well
- * Excavated in February 1994

0 40 Feet
Approximate
Scale

Base map from ConorPacificÆFW, Off-Size GroundwaterCharacterization, August21, 2002

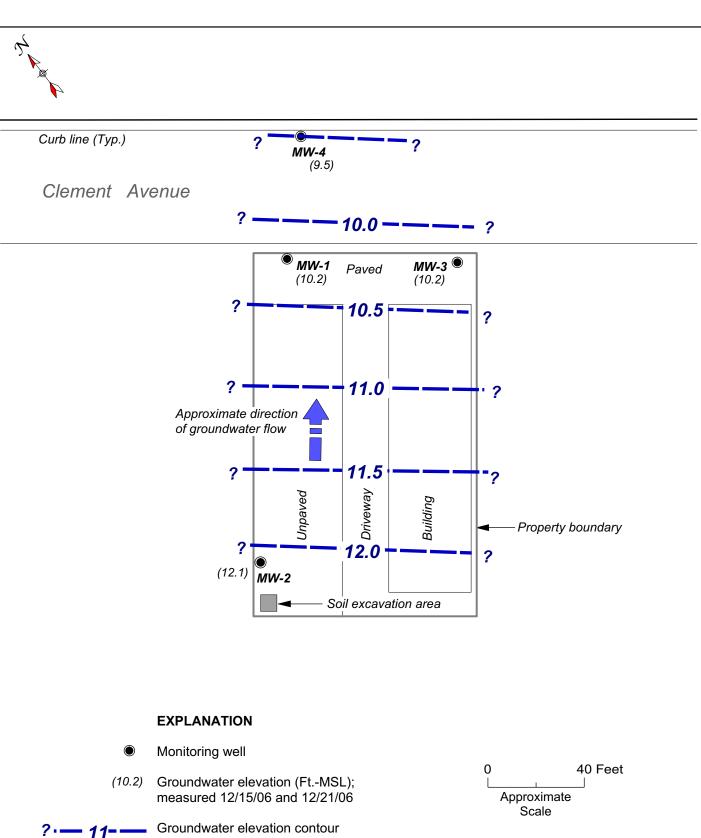

1605fig206Q4.dsf 2/6/07

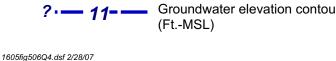


Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 2. Groundwater Monitoring Well Locations

Figure 3. Graphical Summary of Groundwater Elevations

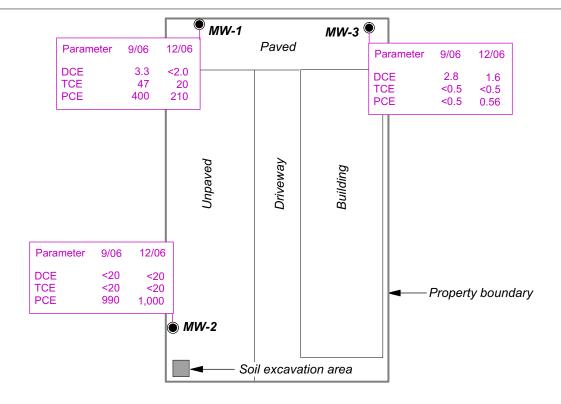




Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 4. Groundwater Elevation Contours - September 2006

Base map from ConorPacificÆFW, Off-Site GroundwaterCharacterization, August 21, 2002



Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 5. Groundwater Elevation Contours - December 2006

EXPLANATION

Groundwater monitoring well location

All concentrations reported in micrograms per liter (μ g/L), in groundwater. All other 8010 constituents were below detection limits.

DCE 3.3 TCE 47 PCE 400

1605fig606Q4.dsf 2/28/07

DCE = 1,1-Dichloroethene
PCE = Tetrachloroethene
TCE = Trichloroethene
VOCs = Volatile organic compounds

0 40 Feet
Approximate
Scale

Analytical parameter

Base m ap from ConorPacific/EFW, Off-Site GroundwaterCharacterization, August 21, 2002.

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 6. VOC Concentrations in Groundwater – September and December 2006

Figure 7. Graphical Summary of PCE Concentrations

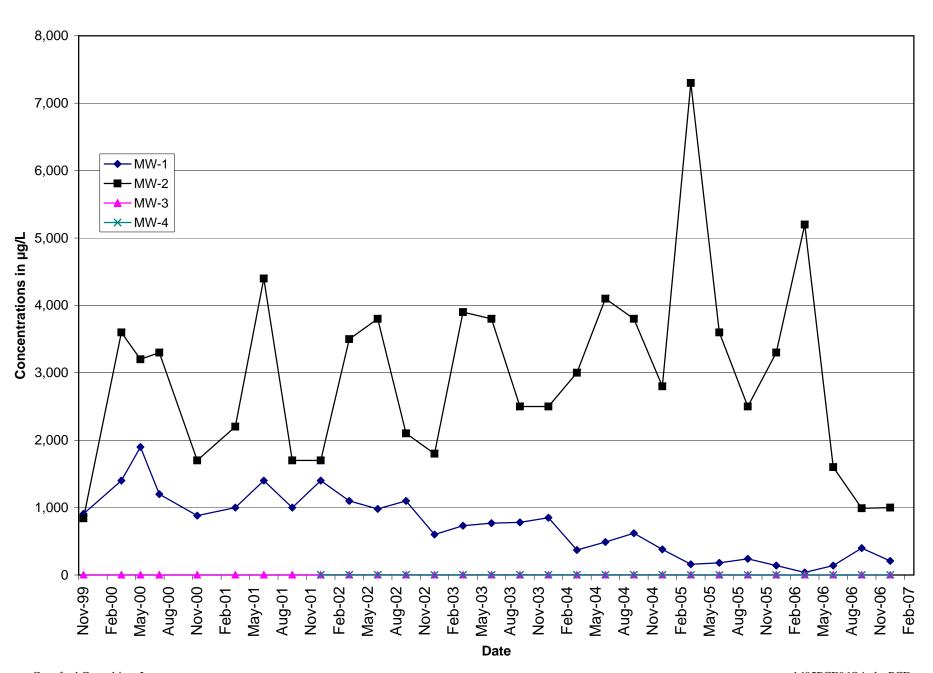
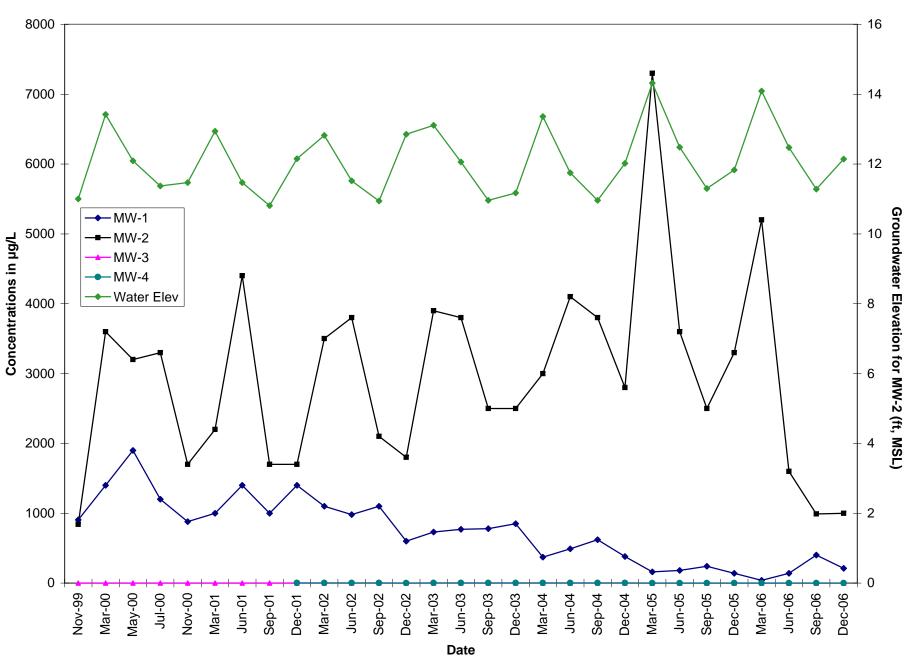
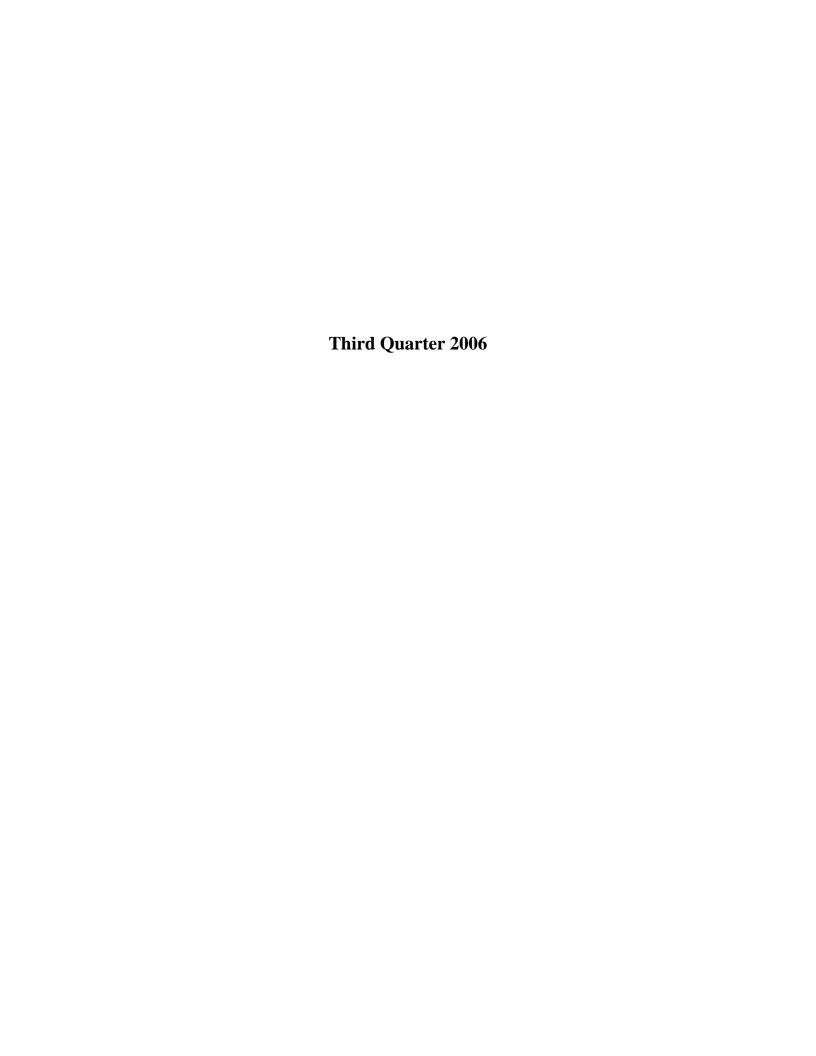




Figure 8. PCE Concentrations vs. Groundwater Elevation

Appendix A

Field Data Sheets

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

Well ID	Date	Time	Depth to Water (1st Msmt.) (feet)	Depth to Water (2nd Msmt.) (feet)	Comments
MW-1	9/11/04	10:24	3,70	3.70	
MW-2	9/11-6	10:22	4.94	4,94	
MW-3	9/11/06	10:19	3,70	3.70	
MW-4	9/11/04	P:A	3.19	3.19	

Data Collection

Reviewed by:
Print: J. Botevs
Signature: Suttee
Date:

SAMPLE COLLECTION FIELD DATA

Page / of /

Project No.:	CS1605	· ·			Well I	D: $\mu\mu\omega$	-
Project Name:	Alameda Facili	ty			Sample	e ID: Mu	<i>J-</i>
Location:	Alameda, CA	 -			Start D	Date: 9-	11-04
Client:	Cargill Salt	·			Finish	Date:	-11-09
WELL INFOR	RMATION /	10					
Casing diamete	^		Depth to water	(ft): 37	. O Well d	epth (ft): / 8	. 3
	lume (gal.):	<9			(3 x casing volu		79
One casing vol	$lume = \pi x \overline{[cas]}$	ing radius (oth (ft) - depth to		8 gal/ft ³
Gallons per lin	near ft for casing	diameter of	f: I'' = 0.04	1 2'' = 0.16	4." = 0.65 5"	$I = I_1 0 6" = I$	1.5 8" = 2.6
Floating produ	ct thickness (ft):	M	Metho	d for checking:	Interface probe	· 人 Clear	bailer
WELL PURG	G-11-C	06		12:00		177-	_
Date purged:			Start time:	12:00	End time:	1222	• • • • • • • • • • • • • • • • • • •
Purging equip		ibmersible p		Bladder pump		Peristaltic pump	<u> </u>
Dunga matas	PV	C bailer		n bailer Well yield (H/L	Other	···	-
Purge rate: Purge water di	ienosal:					<u> </u>	
ruige water ui	•	mulative	illon	bucke	+2	2.4-	
Time		. Purged	pН	EC	T	Color	Turbidity
(2400 1	hr)	(gal.) L	(units)	(μS/cm)	(° C)	(Visual)	(Visual or NTU)
	2009	-	4.45	759	21.78	Clear	5,7
l;;	L1 + 9	 	4,00	700	2d. 1	Clear	/.00
	$ll \ge -l$	1.4	1.04	<u>5</u> Y	22	('Var	1.00
							
	-				 -		
-							·
Total Purged ((gal.): [.]	1: Jers		<u> </u>	<u> </u>		
							
WELL SAMP	\sim \sim \sim	3 /				42.4	
Date sampled:	9-11-6		Start time:		End time:		
			/		oth to water (ft) t		5.12
Sampling equi	=			Bladder pump	Teflo	n bailer	ļ
	P\	/C bailer	Other				
Weather condi	itions:	Sunny	Icha		Ambient tempe	erature (° F):	2
Well condition	n/Remarks:	A11	Samo	rus tare	en		.F
					- 		
Meter calibrat	tion: E	C			рН		
	Temperatu			_	Turbidity		· · · · · · · · · · · · · · · · · · ·
Daniel S	•		1/11/	Cullings	<u> </u>		
Purged and sa	impled by (print)	wul	juy v	ianily of		$ \leftarrow $	II,
	Signatur		V X A		Reviewed by	Jerev	rathente


Page \perp of $\underline{\mathcal{Y}}$

Project No.:	CS1605	Well ID:	MW-2	
Project Name:	Alameda Facility	Sample ID:	MW-2	
Location:	Alameda, CA	Start Date:	9-11-04	
Client:	Cargill Salt	Finish Date:	9-11-0	C
WELL INFOR	. ~		<u> </u>	
Casing diameter			$\frac{1+2}{1+2}$	
One casing vol			<u></u>	
9	lume = πx [casing radius (in.) x 1 ft/12 in.] ² x [well depth (ft) - a			
1	near ft for casing diameter of: $1'' = 0.041$ $2'' = 0.16$ $4.'' = 0.16$. /		6
Floating produ	act thickness (ft):N Method for checking: Interface	ce probe X	Clear bailer	
WELL PURG	ING ,			
Date purged:	\sim 11 \sim 1.	d time: 12	57,	
Purging equip			tic pump	
	PVC bailer Teflon bailer Other	_	1 1	
Purge rate:	0.251; hu > Well yield (H/L):	14.91	1	
Purge water di		n sil	h	
Time	Cumulative ' e Vol. Purged pH EC 7	г	olor Turbidit	,
(2400 h	·		isual) (Visual or N	
17	-:43 1.9 6.99 382 2		lian 4.5	
12	50 3,8 699 393 20	2.1	har 1.1	
17	137 5.7 6.98 394 20	\mathcal{O}_{i} \mathcal{O}_{i}	$\omega = 0.55$	_
				
	······································	-	· · · · · · · · · · · · · · · · · · ·	
				= -·
Total Purged ((gal.): 5,7 1:40	·		
WELL SAMP		1		
Date sampled:		d time: $\frac{12}{2}$		
Sampling equi		ter (ft) before s Teflon bailer	ampling: 5.97	
Sampling equi	PVC bailer Other	_ renon baner	·	
	The building of the control of the c		······································	
Weather condi		nt temperature ((° F): 7 %	
Well condition	n/Remarks: Ali Samples taken			
	· · · · · · · · · · · · · · · · · · ·			
J*	JUP-1 @ this mil.			· -
Meter calibrat	ion: EC pF	· I		
	Temperature Turbidity	у		
Purged and sa	mpled by (print): Mayul L. Gall 1925 Signature: 2011-12 Mayul L. Bevie			
<u> </u>	Signature: And Review	ewed by:	evene 1. 5	12/1
	July 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>، ح</u>	···	
				`

Page \perp of $\underline{4}$

Project No.:	CS1605		Well ID:	MW-3	
-	Alameda Facility		Sample ID:	mw-3	
Location:	Alameda, CA		Start Date:	9-11-06	
Client:	Cargill Salt		Finish Date:	9-11-0	<u> </u>
WELL INFOR	RMATION				
Casing diamet	er (in.): Dept	th to water (ft):	7 Well depth (ft): 17.6	
One casing vo	lume (gal.): 0.57 Calc			1,7	
One casing vo	$lume = \pi x $ [casing radius (in.)	$) x 1 ft/12 in.]^2 x [well dep]$	th (ft) - depth to water	(ft)] $x 7.48 \text{ gal/ft}^3$	
Gallons per lir	near ft for casing diameter of: I	1" = 0.041 $2" = 0.16$	4." = 0.65 5" = 1.6	0 6" = 1.5 8"	= 2.6
Floating produ	ect thickness (ft):	Method for checking:	Interface probe	Clear bailer	
WELL DUDG	DIG.				
WELL PURG	~ \ ~ \	. 1117	- il d		
Date purged:		art time: 115	End time:	19	
Purging equip	ment: Submersible pum PVC bailer	np Bladder pump Teflon bailer	Other	altic pump X	
Purge rate:	12.17 1:			- <u> </u>	
Purge water d		1 1 -	on site		
range water a	Cumulative	(,) - 0	<u> </u>		
Time	e Vol. Purged	pH EC			bidity
(2400)	$\frac{\operatorname{nr}}{2}$	(units) (μS/cm)			al or NTU)
	25 110 -	1,54 5,83			<u>ဥ</u>
<u></u> i	55 4.4	7.53 585		Dry 11	40
↓	149 6.7	7.40 3.10	20,1 C	loudy 1	90
			· ·		
Total Purged ((gal.): (3) 1:tus	<u>></u>			
WELL SAMP	\sim 11 \sim				
Date sampled:	01-11-00, St	art time: 1149	End time: _// oth to water (ft) before		-22
Sampling equi	pment: Peristaltic pun				, 77
bampinig equi	PVC bailer		renon bank		1
Weather cond	itions: Sunny / C	Lev	Ambient temperature	(° F):	<u>S</u>
Well condition	n/Remarks: All'	Sampus Layar	ካ		
				-	
		 _			
Meter calibrat			pH		
	Temperature	- <u> </u>	Turbidity		
Purged and sa	mpled by (print): Manu	ul h (fallego))	∽ .	_
J	Signature:	01/	Reviewed by:	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1
	- //// ~	~ JNH	ROTIOTICA Dy.	ntna	NEV
	, · /	•			

		SAM	PLE COLLI	ECTION FIE	LD DATA		Page 1 of 4
Project Name: Location: Client:	Alameda, Cargill Salt	CA			Well II Sample Start D Finish	ID: Whate: S-1	- 4 1-04 11-04
One casing volu	r (in.): ume (gal.): ume = πx ear ft for ca	0.03 [casing radius sing diameter of	Calculated purg (in.) $x \ 1 \ \text{ft}/12 \ \text{in}$ of: $1'' = 0.041$		(3 x casing volume th (ft) - depth to 4." = 0.65 5"	water (ft)] x 7.48 = 1.0 6" = 1	8 gal/ft^3 .5 $8'' = 2.6$
WELL PURGII Date purged: Purging equipm Purge rate: Purge water dis	ent:	Submersible PVC bailer S Gall Cumulative	Teflon	Bladder pump bailer Well yield (H/L):	Other High	1054 Peristaltic pump	k .
Time (2400 hr	r) 344	Vol. Purged (gal.) 2,3 4,4 6.9	pH (units) 7.35 7.44 7.42	EC (µS/cm) (019 (008 (23	T (°C) 21.8 21.4 21.3	Color (Visual) Class Class	Turbidity (Visual (r NTU)
Total Purged (g	gal.):	6.9					<u>. </u>
WELL SAMPI Date sampled: Sampling equip	9-11-9	Peristaltic	pump $+$	Dept Dept Bladder pump	th to water (ft) b		11.42
Weather condition	tions: /Remarks:	Clas /S	Sample	s fake	Ambient tempe	erature (° F):	75
Meter calibration	Tempe	EC /4,87 erature rint): MON nature: M	19.5 19.5 My L (fal)	,0 16905	pH 709- Furbidity Reviewed by	700,95 Sgen	7-1000 /3440 Trentez

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

Well ID	Date	Time	Depth to Water (1st Msmt.) (feet)	Depth to Water (2nd Msmt.) (feet)	Comments
MW-1	12/5/06	0734	294	2.94	Water in box
MW-2	12/15/04	0732	40-6	408	water in box
MW-3	12/5/04	0737	3.10	3.10	Water in 40x
MW-4	12 15/06	MK	NR	WR	Car parked on Well.

Data	Call	ection
Dala		CLLIUII

Field measurements by:	Reviewed by:
Print: Manuel L. Galleges	Print: Serenatuentez
Signature: My Lall	Signature: Seperation
Date:	Date: 12/19/06

SAMPLE	COLI	ECTION	LILI D	DATA
SAWELE	CAMA	JEAU I IUJIN	FIFALI	DALA

Page \(\sum_{\text{of}} \)

Project No.: Project Name: Location: Client:	CS1605 Alameda F Alameda, Cargill Sal	CA			Well ID: Sample I Start Dat Finish Da	D: Mh e: 12-	1-1 15-04 -15-04
WELL INFOR Casing diamete One casing vol One casing vol	MATION er (in.): ume (gal.): $lume = \pi x$ the ar ft for co	1.7 0.42 Icasing radius	Calculated purp $f(in.) \times 1 \text{ ft/12 it}$ of: $1'' = 0.041$	ge volume (gal.) $in.J^2 x$ [well depth 2'' = 0.16	Well dep (3 x casing volume h (ft) - depth to we see $5 = 0.65 = 5$ = Interface probe	oth (ft): / 8; e): / enter (ft)] x 7.46; = 1.0 6" = 1.0	$8 \frac{8 \text{ gal/ft}^3}{1.5 8'' = 2.6}$
WELL PURGI Date purged: Purging equipn Purge rate: Purge water di	12-1 ment:	S-04 Submersible PVC bailer 0.72	Teflor	Bladder pump n bailer Well yield (H/L):	Other	O 9 179 ristaltic pump	
0		Cumulative Vol. Purged (gal.) 2.3 4.4	pH (units) 7.17 7.08 7.03	EC (μS/cm) 445 434	T (°C) /S, \ /S, \ /S, \text{\text{\text{\$\gamma}}}	Color (Visual) Checr Clear Clear	Turbidity (Visual or NTU)
Total Purged (gal.):	6.9 1. ters					
WELL SAMP Date sampled: Sampling equi	12-			Dept	End time: to water (ft) bef Teflon	ore sampling:	4.15
Weather condi		PVC bailer	Óther		Ambient tempera		60
Meter calibrat		EC			pH Furbidity		
Purged and sa	mpled by (p		mej L G		Reviewed by:	SMF	

Page A of

Project No.: CS1605 Project Name: Alameda Location: Alameda Client: Cargill Sa	CA			Well II Sample Start D Finish	ID: Mu	-2 N-2 15-06 -15-06
WELL INFORMATION Casing diameter (in.): One casing volume (gal.) One casing volume = π Gallons per linear ft for a Floating product thickness	x [casing radius (i casing diameter of:	alculated purpose $n.) \times 1 \text{ ft/12}$ $1'' = 0.041$	ge volume (gal. $in.J^2 x$ [well de] $in.J^2 = 0.16$) (3 x casing volur oth (ft) - depth to	ne): water (ft)] x 7. =	1.65 48 gal/ft ³
WELL PURGING Date purged: 12-15 Purging equipment: Purge rate: Purge water disposal: Time (2400 hr) 0949 0955	Submersible por PVC bailer O.24 Drums Cumulative Vol. Purged (gal.) 2.0 4.0	umpTeflor	Bladder pump n bailer Well yield (H/L C. EC (µS/cm) YG2 YG4 YG8	Other I	Color (Visual) Clicy Clicy Clicy	
Total Purged (gal.):	6.01.ks					
WELL SAMPLING Date sampled: 12-15 Sampling equipment:		Start time: ump	De Bladder pump	End time: pth to water (ft) b Teflor	= .	g: 5,/2
Weather conditions: Well condition/Remarks:	Bloody Suns	amples	Colle	Ambient tempe	rature (° F):	60
Meter calibration:	EC perature	<u> </u>		pH		
Purged and sampled by (print): Manul gnature: M.J.J	. I. Gallec L. Hull	ρ)	Reviewed by:	SMA	

Page $\frac{3}{2}$ of $\frac{4}{3}$

Project No.: CS1605 Project Name: Alameda Location: Alameda Client: Cargill S	, CA	· - -	Well ID: Sample II Start Date Finish Da	: 12-1	3 -3 5-04 15-84
One casing volume (gal.) One casing volume = π	Depth to wate Calculated put x [casing radius (in.) x 1 ft/12 casing diameter of: $1'' = 0.04$	rge volume (gal.) (in.] ² x [well depth	3 x casing volume (ft) - depth to wa $y'' = 0.65 ext{ } 5'' = 0.65$): ter (ft)] x 7.48	$ \begin{array}{ccc} & & \\$
WELL PURGING Date purged: 12-15 Purging equipment: Purge rate: Purge water disposal:	Submersible pump PVC bailer Teflo O.19	Bladder pump on bailer Well yield (H/L):	Per Other	SS istaltic pump	Х
Time (2400 hr) O F S 7 O 8 1 5 O 8 3 3	Cumulative Vol. Purged pH (hd.75/; Ls. (units) 7.49 4.4 L.4 7.66	EC (μS/cm) (4/4 (47 (43	T (° C) 15,5 15,4 15,3	Color (Visual) Clear Clear	Turbidity (Visual & NTU) 24 21
Total Purged (gal:):	6.6 1: fers				
WELL SAMPLING Date sampled: 12 - 1 Sampling equipment:	S-o-C Start time: Peristaltic pump PVC bailer Other	Bladder pump	to water (ft) before	ore sampling:	13.75
Weather conditions: Well condition/Remarks	Cloudy All Sam	ples co.	Ambient temperat	ure (° F):	2.8
Purged and sampled by	perature 13. 8 print): Manual f. G.	Tallies		200/9 9 8	7-1000 pag.400
Sı	gnature:		Reviewed by:	01241	

Page 4 of

	CS1605			Well	ID: MW-	4
Project Name: A				_	ole ID: K	A
	lameda, CA				Date: $12-1$	5-04
Client: C	Cargill Salt	· · · · · · · · · · · · · · · · · · ·		Finis	sh Date:	-
WELL INFORM Casing diameter ((in.): W.	+ 			depth (ft): Ms	
One casing volum				.) (3 x casing vo		L
		radius (in.) x 1 ft/12				
1		neter of: $1" = 0.04$				
Floating product	thickness (ft):	Metho	od for checking	: Interface prol	be My Clear b	ailer
WELL PURGING	G					
Date purged:		Start time:		End time	•	
Purging equipmen	nt: Subme	ersible pump	Bladder pum		Peristaltic pump	
	PVC ba		n bai <u>l</u> er	Other		
Purge rate:			Well vield (H/	L):		
Purge water dispo	osal:		, the			
	Cumula				<u> </u>	
Time (2400 hr)	Vol. Pur (gal.)		EC (μS/cm)	T (° C)	Color (Visual)	Turbidity (Visual or NTU)
100	- S. M. 10 la	- Acitan	<u>Car</u>	Orckil	D 1 200	o Evel
100		2 _ / <u>~ Pu</u>		fu ru		- 5 44 1.
	· · · · · · · · · · · · · · · · · ·					
					-	
						-
Total Purged (gal	1.): M	4				
WELL CAMPILI	NG					
WELL SAMPLII	NG	6 •				
Date sampled:		Start time:		End time	before sampling:	
Sampling equipm	ent. Der	istaltic pump	Bladder pum	-		
Sampring equipm	PVC b		•	P Ter		
Weather conditio	ns:			Ambient tem	perature (° F):	
Well condition/R	omortro.					
	· ·					
<u> </u>					-	
Meter calibration	n: EC			pН		
	Temperature	-	. ——	Turbidity	<u> </u>	
Dunged and		M 11	Puller.			
Purged and samp		20 West L	willes	Davis 11	On 15	
	Signature://	VH Le		Reviewed b	y: Orva	

Page \sum of \sum

Project No.: CS1605 Project Name: Alameda Location: Alameda Client: Cargill S	, CA	Well ID: $MW-4/$ Sample ID: $MW-4/$ Start Date: $12-21-04/$ Finish Date: $12-21-04/$	·
One casing volume (gal.) One casing volume = π	Depth to water (ft): 2.50 Calculated purge volume (gal.) (3 x x [casing radius (in.) x 1 ft/12 in.] x [well depth (gasing diameter of: $1'' = 0.041$ $2'' = 0.16$ 4.	(casing volume):	6
WELL PURGING Date purged: 12 2 Purging equipment: Purge rate: Purge water disposal: Time (2400 hr) 0738 0747 0758	Submersible pump Bladder pump PVC bailer Teflon bailer Ot O.23 Well yield (H/L): Drum On S, K. Cumulative Vol. Purged pH EC (gal M. (units) (µS/cm) 2.3 7.3/ (J/L) 4.4 7.50 (J/S) (0.9 7.54	Peristaltic pump X her T (° C) Visual) Visual or Visual or	
Total Purged (gal.):	0.9		
WELL SAMPLING Date sampled:		End time () SOO o water (ft) before sampling: //, 27 Teflon bailer	
Weather conditions: Well condition/Remarks:		mbient temperature (° F): 44 (c) Setth For 15 min 11/ Samples Feken	- U/LS
•	print): Phings L. Colleges	pH 703-700/594/5006/588-bidity 1.0-10	. 400

Appendix B

Groundwater Velocity Calculations

APPENDIX B GROUNDWATER VELOCITY CALCULATIONS

FOR CARGILL ALAMEDA SITE

GROUNDWATER VELOCITY FORMULA

V = Ki/n where:

V = average linear groundwater velocity i = hydraulic gradient K = hydraulic conductivity n = effective porosity

PARAMETERS

Range of hydraulic conductivity values (K) from slug tests:

Material	Well	K (cm/sec)
Silty sand (SM) and Clayey sand (SC)	MW-1	0.00002
Silty sand (SM) and Clayey sand (SC)	MW-2	0.00002
Silty sand (SM) and Clayey sand (SC)	MW-3	0.000003

Highest measured K = 0.00002

Porosity (n) = 33% (from laboratory analysis of boring B21 soil sample)

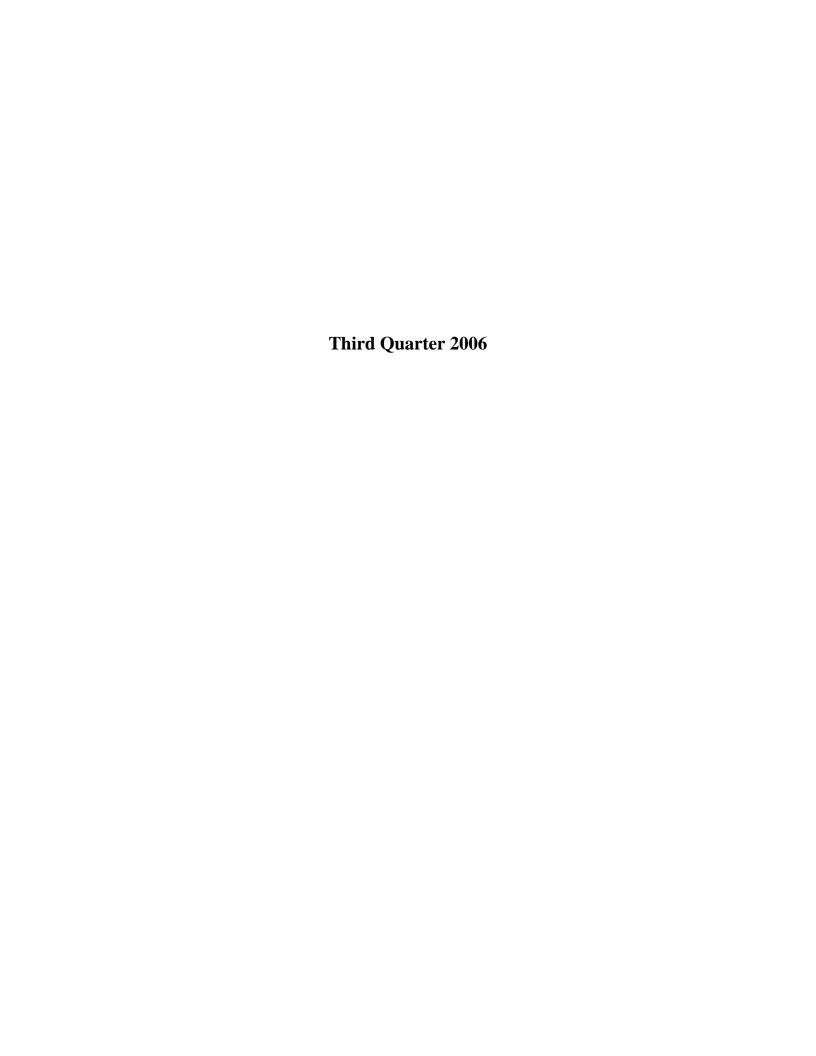
Hydraulic gradient (i) calculated from groundwater contours:

September 2006 0.014 December 2006 0.015

UNIT CONVERSIONS

1 day = 86,400 sec 1 cm/sec = 2,834.65 ft/day1 foot = 30.48 cm 1 cm/sec = 1,034,645.67 ft/yr

CALCULATED VELOCITIES


	Flow	K	i	n	V
Measurement Event	Direction	(cm/sec)	(ft/ft)		(ft/yr)
September 2006	NE	0.00002	0.014	0.33	1
December 2006	NE	0.00002	0.015	0.33	1

Calculations and assumptions prepared by:

Date: 2/27/2007

plante (. Wheeler

Appendix C Certified Analytical Reports and Chain-of-Custody Documentation

ANALYTICAL REPORT

Job Number: 720-5426-1

Job Description: Alameda Facility CS 1605

For:

Crawford Consulting Inc 2 North First Street 4th Floor San Jose, CA 95113-1212

Attention: Mark Wheeler

Dimple Sharma

Mar

Project Manager I dsharma@stl-inc.com

09/14/2006

cc: Dana Johnston

Project Manager: Dimple Sharma

METHOD SUMMARY

Client: Crawford Consulting Inc Job Number: 720-5426-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level)	STL SF	SW846 8260)B
Purge-and-Trap	STL SF		SW846 5030B

LAB REFERENCES:

STL SF = STL San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Crawford Consulting Inc Job Number: 720-5426-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-5426-1	MW-1	Water	09/11/2006 1225	09/11/2006 1400
720-5426-2	MW-2	Water	09/11/2006 1257	09/11/2006 1400
720-5426-3	MW-3	Water	09/11/2006 1149	09/11/2006 1400
720-5426-4	MW-4	Water	09/11/2006 1056	09/11/2006 1400
720-5426-5	DUP-1	Water	09/11/2006 0000	09/11/2006 1400
720-5426-6TB	TB-1	Water	09/11/2006 0000	09/11/2006 1400

Client: Crawford Consulting Inc Job Number: 720-5426-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-5426-1
 Date Sampled:
 09/11/2006
 1225

 Client Matrix:
 Water
 Date Received:
 09/11/2006
 1400

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-13073 Instrument ID: Saturn 2K3

Preparation: 5030B Lab File ID: d:\data\200609\091206\SA-

Dilution: 4.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/12/2006 1356 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	3.3		2.0
1,1-Dichloroethane	ND		2.0
Dichlorodifluoromethane	ND		2.0
Vinyl chloride	ND		2.0
Chloroethane	ND		4.0
Trichlorofluoromethane	ND		4.0
Methylene Chloride	ND		20
trans-1,2-Dichloroethene	ND		2.0
cis-1,2-Dichloroethene	ND		2.0
Chloroform	ND		4.0
1,1,1-Trichloroethane	ND		2.0
Carbon tetrachloride	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	47		2.0
1,2-Dichloropropane	ND		2.0
Dichlorobromomethane	ND		2.0
trans-1,3-Dichloropropene	ND		2.0
cis-1,3-Dichloropropene	ND		2.0
1,1,2-Trichloroethane	ND		2.0
Tetrachloroethene	400		2.0
Chlorodibromomethane	ND		2.0
Chlorobenzene	ND		2.0
Bromoform	ND		4.0
1,1,2,2-Tetrachloroethane	ND		2.0
1,3-Dichlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
1,2-Dichlorobenzene	ND		2.0
Chloromethane	ND		4.0
Bromomethane	ND		4.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0
EDB	ND		2.0
1,2,4-Trichlorobenzene	ND		4.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	104		77 - 121
4-Bromofluorobenzene	104		79 - 118
1,2-Dichloroethane-d4 (Surr)	109		78 - 117

Client: Crawford Consulting Inc Job Number: 720-5426-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-5426-2
 Date Sampled:
 09/11/2006
 1257

 Client Matrix:
 Water
 Date Received:
 09/11/2006
 1400

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-13073 Instrument ID: Saturn 2K3

Preparation: 5030B Lab File ID: d:\data\200609\091206\SA-

Dilution: 40 Initial Weight/Volume: 40 mL
Date Analyzed: 09/12/2006 1429 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		20
1,1-Dichloroethane	ND		20
Dichlorodifluoromethane	ND		20
Vinyl chloride	ND		20
Chloroethane	ND		40
Trichlorofluoromethane	ND		40
Methylene Chloride	ND		200
trans-1,2-Dichloroethene	ND		20
cis-1,2-Dichloroethene	ND		20
Chloroform	ND		40
1,1,1-Trichloroethane	ND		20
Carbon tetrachloride	ND		20
1,2-Dichloroethane	ND		20
Trichloroethene	ND		20
1,2-Dichloropropane	ND		20
Dichlorobromomethane	ND		20
trans-1,3-Dichloropropene	ND		20
cis-1,3-Dichloropropene	ND		20
1,1,2-Trichloroethane	ND		20
Tetrachloroethene	990		20
Chlorodibromomethane	ND		20
Chlorobenzene	ND		20
Bromoform	ND		40
1,1,2,2-Tetrachloroethane	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,2-Dichlorobenzene	ND		20
Chloromethane	ND		40
Bromomethane	ND		40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
EDB	ND		20
1,2,4-Trichlorobenzene	ND		40
Surrogate	%Rec	Acceptance	Limits
Toluene-d8 (Surr)	103	77 - 121	
4-Bromofluorobenzene	105	79 - 118	
1,2-Dichloroethane-d4 (Surr)	106	78 - 117	

Client: Crawford Consulting Inc Job Number: 720-5426-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-5426-3
 Date Sampled:
 09/11/2006
 1149

 Client Matrix:
 Water
 Date Received:
 09/11/2006
 1400

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-13095 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200609\09

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/13/2006 1110 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	2.8		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	107		77 - 121
4-Bromofluorobenzene	105		79 - 118
1,2-Dichloroethane-d4 (Surr)	104		78 - 117

Client: Crawford Consulting Inc Job Number: 720-5426-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-5426-4
 Date Sampled:
 09/11/2006
 1056

 Client Matrix:
 Water
 Date Received:
 09/11/2006
 1400

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-13073 Instrument ID: Saturn 2K3

Preparation: 5030B Lab File ID: d:\data\200609\091206\SA-

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/12/2006 1109 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	0.70		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	106		77 - 121
4-Bromofluorobenzene	108		79 - 118
1,2-Dichloroethane-d4 (Surr)	108		78 - 117

Client: Crawford Consulting Inc Job Number: 720-5426-1

Client Sample ID: DUP-1

 Lab Sample ID:
 720-5426-5
 Date Sampled:
 09/11/2006 0000

 Client Matrix:
 Water
 Date Received:
 09/11/2006 1400

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-13073 Instrument ID: Saturn 2K3

Preparation: 5030B Lab File ID: d:\data\200609\091206\SA-

Dilution: 40 Initial Weight/Volume: 40 mL
Date Analyzed: 09/12/2006 1643 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		20
1,1-Dichloroethane	ND		20
Dichlorodifluoromethane	ND		20
Vinyl chloride	ND		20
Chloroethane	ND		40
Trichlorofluoromethane	ND		40
Methylene Chloride	ND		200
trans-1,2-Dichloroethene	ND		20
cis-1,2-Dichloroethene	ND		20
Chloroform	ND		40
1,1,1-Trichloroethane	ND		20
Carbon tetrachloride	ND		20
1,2-Dichloroethane	ND		20
Trichloroethene	ND		20
1,2-Dichloropropane	ND		20
Dichlorobromomethane	ND		20
trans-1,3-Dichloropropene	ND		20
cis-1,3-Dichloropropene	ND		20
1,1,2-Trichloroethane	ND		20
Tetrachloroethene	950		20
Chlorodibromomethane	ND		20
Chlorobenzene	ND		20
Bromoform	ND		40
1,1,2,2-Tetrachloroethane	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,2-Dichlorobenzene	ND		20
Chloromethane	ND		40
Bromomethane	ND		40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
EDB	ND		20
1,2,4-Trichlorobenzene	ND		40
Surrogate	%Rec	Acceptance	Limits
Toluene-d8 (Surr)	105	77 - 121	
4-Bromofluorobenzene	111	79 - 118	
1,2-Dichloroethane-d4 (Surr)	112	78 - 117	

Client: Crawford Consulting Inc Job Number: 720-5426-1

Client Sample ID: TB-1

 Lab Sample ID:
 720-5426-6TB
 Date Sampled:
 09/11/2006
 0000

 Client Matrix:
 Water
 Date Received:
 09/11/2006
 1400

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-13073 Instrument ID: Saturn 2K3

Preparation: 5030B Lab File ID: d:\data\200609\091206\SA-

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/12/2006 1323 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	6.1		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	103		77 - 121
4-Bromofluorobenzene	103		79 - 118
1,2-Dichloroethane-d4 (Surr)	111		78 - 117

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: Crawford Consulting Inc Job Number: 720-5426-1

QC Association Summary

		Report	•		
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-13	3073				
LCS 720-13073/1	Lab Control Spike	T	Water	8260B	
MB 720-13073/2	Method Blank	Т	Water	8260B	
720-5426-1	MW-1	Т	Water	8260B	
720-5426-1MS	Matrix Spike	T	Water	8260B	
720-5426-1MSD	Matrix Spike Duplicate	Т	Water	8260B	
720-5426-2	MW-2	T	Water	8260B	
720-5426-4	MW-4	T	Water	8260B	
720-5426-5	DUP-1	T	Water	8260B	
720-5426-6TB	TB-1	Т	Water	8260B	
Analysis Batch:720-13	3095				
LCS 720-13095/1	Lab Control Spike	T	Water	8260B	
MB 720-13095/2	Method Blank	T	Water	8260B	
720-5426-3	MW-3	Т	Water	8260B	

Report Basis

T = Total

Client: Crawford Consulting Inc Job Number: 720-5426-1

Method Blank - Batch: 720-13073 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-13073/2 Analysis Batch: 720-13073 Instrument ID: Saturn 2K3

Client Matrix: Water Prep Batch: N/A Lab File ID: d:\data\200609\091206\MB

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 09/12/2006 1035 Final Weight/Volume: 40 mL Date Prepared: 09/12/2006 1035

1,1-Dichloroethene ND 0.50 1,1-Dichloroethane ND 0.50 Dichloroeffduoromethane ND 0.50 Vinyl chloride ND 0.50 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 0.50 Chloroform ND 0.50 Chloroform ND 0.50 Carbon tetrachloride ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropene ND 0.50 1,2-Dichloropropene ND 0.50 1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50	Analyte	Result	Qual	RL
Dichlorodifluoromethane ND 0.50 Vinyl chloride ND 0.50 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloropethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloropropane ND 0.50 Trichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorobenzene ND 0.50	1,1-Dichloroethene	ND		0.50
Vinyl chloride ND 0.50 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 0.50 Chloroform ND 0.50 1,1-1-Trichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropethane ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,2-Trichloroethane ND 0.50 Chlorodibromethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 0.50 Chlorobenzene ND 0.50	1,1-Dichloroethane	ND		0.50
Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 Chlorodibromethane ND 0.50 Tolloropenzene ND 0.50 Chlorodibromethane ND <	Dichlorodifluoromethane	ND		0.50
Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 0.50 L1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,2-Trichloroethane ND 0.50 chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodomomethane ND 0.50 Chlorobenzene ND 0.50 ND 0.50 0.50 <td>Vinyl chloride</td> <td>ND</td> <td></td> <td>0.50</td>	Vinyl chloride	ND		0.50
Methylene Chloride trans-1,2-Dichloroethene ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropthane ND 0.50 1,2-Dichloropropane ND 0.50 Tichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropenpene ND 0.50 trans-1,3-Dichloropenpene ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodenzene ND 0.50 Bromoform ND 0.50 I,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND <td>Chloroethane</td> <td>ND</td> <td></td> <td>1.0</td>	Chloroethane	ND		1.0
trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropene ND 0.50 1,2-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 Chlorodethane ND 0.50 Chlorodenzene ND 0.50 Chlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50	Trichlorofluoromethane	ND		1.0
cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 0.50 Bromoform ND 0.50 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50	Methylene Chloride	ND		5.0
Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 sis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 Ly-Z-Trichloro-1,2,2-trifluoroethane ND	trans-1,2-Dichloroethene	ND		0.50
1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 bichlorobromomethane ND 0.50 cis-1,3-Dichloropropene ND 0.50 sis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodenzene ND 0.50 Bromoform ND 0.50 1,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,0 0.50 0.50 1,2-Trichloro-1,2,2-trifluoroethane ND 0.50	cis-1,2-Dichloroethene	ND		0.50
Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodbenzene ND 0.50 Bromoform ND 0.50 Bromoform ND 0.50 1,2-2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50	Chloroform	ND		1.0
1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorodbenzene ND 0.50 Bromoform ND 0.50 I,2-2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 Bromomethane ND 0.50 EDB ND 0.50 L,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 <t< td=""><td>1,1,1-Trichloroethane</td><td>ND</td><td></td><td>0.50</td></t<>	1,1,1-Trichloroethane	ND		0.50
Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 0.50 Bromoform ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 Bromomethane ND 0.50 LDB ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate	Carbon tetrachloride	ND		0.50
1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 1,2,4-Trichlorobenzene ND 0.50 2urogate % Rec Acceptance Limits Toluene-d8 (Surr) 109	1,2-Dichloroethane	ND		0.50
Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,2-2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 79 - 118	Trichloroethene	ND		0.50
trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Tetrachloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 1,0 ND 1.0 Bromomethane ND 0.50 EDB ND 0.50 1,2,4-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrog	1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 Tolue,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	Dichlorobromomethane	ND		0.50
1,1,2-Trichloroethane ND 0.50 Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	trans-1,3-Dichloropropene	ND		0.50
Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	cis-1,3-Dichloropropene	ND		0.50
Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	1,1,2-Trichloroethane	ND		0.50
Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	Tetrachloroethene	ND		0.50
Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	Chlorodibromomethane	ND		0.50
1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	Chlorobenzene	ND		0.50
1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	Bromoform	ND		1.0
1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	1,1,2,2-Tetrachloroethane	ND		0.50
1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	1,3-Dichlorobenzene	ND		0.50
Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	1,4-Dichlorobenzene	ND		0.50
Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	1,2-Dichlorobenzene	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	Chloromethane	ND		1.0
EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	Bromomethane	ND		1.0
1,2,4-TrichlorobenzeneND1.0Surrogate% RecAcceptance LimitsToluene-d8 (Surr)10577 - 1214-Bromofluorobenzene10979 - 118	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	EDB	ND		0.50
Toluene-d8 (Surr) 105 77 - 121 4-Bromofluorobenzene 109 79 - 118	1,2,4-Trichlorobenzene	ND		1.0
4-Bromofluorobenzene 109 79 - 118	Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene 109 79 - 118	Toluene-d8 (Surr)	105	77 - 121	
1,2-Dichloroethane-d4 (Surr) 109 78 - 117		109	79 - 118	
	1,2-Dichloroethane-d4 (Surr)	109	78 - 117	

Client: Crawford Consulting Inc Job Number: 720-5426-1

Lab Control Spike - Batch: 720-13073

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-13073/1 Analysis Batch: 720-13073 Instrument ID: Saturn 2K3

Client Matrix: Water Prep Batch: N/A Lab File ID: d:\data\200609\091206\LS-

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 09/12/2006 1002 Final Weight/Volume: 40 mL Date Prepared: 09/12/2006 1002

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	20.6	103	65 - 125	
Trichloroethene	20.0	18.7	94	74 - 134	
Chlorobenzene	20.0	20.1	100	61 - 121	
Surrogate	% Rec		Ac	ceptance Limits	
Toluene-d8 (Surr)	1	108		77 - 121	
4-Bromofluorobenzene	1	107		79 - 118	
1,2-Dichloroethane-d4 (Surr)	107		78 - 117		

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 720-13073 Preparation: 5030B

MS Lab Sample ID: 720-5426-1 Analysis Batch: 720-13073 Instrument ID: Saturn 2K3

Client Matrix: Water Prep Batch: N/A Lab File ID: d:\data\200609\091206\S.

Dilution: 4.0 Initial Weight/Volume: 40 mL

Date Analyzed: 09/12/2006 1503 Final Weight/Volume: 40 mL

Date Prepared: 09/12/2006 1503

MSD Lab Sample ID: 720-5426-1 Analysis Batch: 720-13073 Instrument ID: Saturn 2K3

Client Matrix: Water Prep Batch: N/A Lab File ID: d:\data\200609\091206\SA-

Dilution: 4.0 Initial Weight/Volume: 40 mL

Date Analyzed: 09/12/2006 1536 Final Weight/Volume: 40 mL Date Prepared: 09/12/2006 1536

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
1,1-Dichloroethene	103	106	65 - 125	3	20	
Trichloroethene	97	100	74 - 134	2	20	
Chlorobenzene	96	98	61 - 121	2	20	
Surrogate		MS % Rec	MSD 9	% Rec	Acce	eptance Limits
Toluene-d8 (Surr)		108	104		77 - 121	
4-Bromofluorobenzene		111	105		79	9 - 118
1,2-Dichloroethane-d4 (Surr)		111	103		78	8 - 117

Client: Crawford Consulting Inc Job Number: 720-5426-1

Method Blank - Batch: 720-13095 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-13095/2 Analysis Batch: 720-13095 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200609\09

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 09/13/2006 1036 Final Weight/Volume: 40 mL Date Prepared: 09/13/2006 1036

1,1-Dichloroethane ND 0.50 1,1-Dichloroethane ND 0.50 Dichloroeffdioromethane ND 0.50 Vinyl chloride ND 0.50 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Cis-1,2-Dichloroethane ND 0.50 Carbon tetrachloride ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropene ND 0.50 1,2-Dichloropropene ND 0.50 1,2-Dichloropropene ND 0.50 1,2-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50	Analyte	Result	Qual	RL
Dichlorodifluoromethane ND 0.50 Vinyl chloride ND 0.50 Chloroethane ND 1.0 Chloroethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 Carbon tetrachloride ND 0.50 Carbon tetrachloride ND 0.50 Carbon tetrachloroethane ND 0.50 Tichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 Lichloropropane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 tetrachloroethane ND 0.50 Chlorobenzene ND 0.50	1,1-Dichloroethene	ND		0.50
Vinyl chloride ND 0.50 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 0.50 Chlorofethane ND 0.50 1,2-Dichloropthane ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropthane ND 0.50 Chlorodibromethane ND 0.50 Chlorodenzene ND 0.50 Chlorobenzene ND 0.50 Bromoform	1,1-Dichloroethane	ND		0.50
Chloroethane ND 1.0 Trichlorofluoromethane ND 5.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloroethane ND 0.50 Thorrodibromomethane ND 0.50 Chlorodibromomethane <	Dichlorodifluoromethane	ND		0.50
Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 0.50 L1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropthane ND 0.50 1,2-Dichloropthane ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,2-Trichloroethane ND 0.50 characteristane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodenzene ND 0.50 Chlorobenzene ND 0	Vinyl chloride	ND		0.50
Methylene Chloride trans-1,2-Dichloroethene ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropthane ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 Lip-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Bromoform ND 0.50 Bromoform ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND <td>Chloroethane</td> <td>ND</td> <td></td> <td>1.0</td>	Chloroethane	ND		1.0
trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroptenee ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropene ND 0.50 1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 Chloroditoremethane ND 0.50 Chlorodenzene ND 0.50 Chlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50	Trichlorofluoromethane	ND		1.0
cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 s-1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 0.50 I,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 </td <td>Methylene Chloride</td> <td>ND</td> <td></td> <td>5.0</td>	Methylene Chloride	ND		5.0
Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 bichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropenpene ND 0.50 1,1,2-Trichlorothane ND 0.50 Chlorodibromethane ND 0.50 Chlorodibromethane ND 0.50 Sprichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 Bromofluorobenzene ND <	trans-1,2-Dichloroethene	ND		0.50
1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Bromoform ND 0.50 I,3-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 Bromomethane ND 0.50 1,0 0.50 L,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate	cis-1,2-Dichloroethene	ND		0.50
Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Bromoform ND 0.50 Bromoform ND 0.50 1,2-2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 </td <td>Chloroform</td> <td>ND</td> <td></td> <td>1.0</td>	Chloroform	ND		1.0
1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 0.50 1,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 Bromomethane ND 0.50 EDB ND 0.50 1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,	1,1,1-Trichloroethane	ND		0.50
Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Sromoform ND 0.50 Bromoform ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 Bromomethane ND 0.50 LDB ND 0.50 EDB ND 0.50 1,2,4-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB<	Carbon tetrachloride	ND		0.50
1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50	1,2-Dichloroethane	ND		0.50
Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,3-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79	Trichloroethene	ND		0.50
trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Tetrachloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 DB ND 0.50 EDB ND 0.50 1,2,4-Trichloro-1,2,2-trifluoroethane ND 0.50 DU 0.50 0.50 1,2,4-Tr	1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 104 77 - 121 4-Bromofluorobenzene 104 79 - 118	Dichlorobromomethane	ND		0.50
1,1,2-Trichloroethane ND 0.50 Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	trans-1,3-Dichloropropene	ND		0.50
Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 Bromomethane ND 0.50 EDB ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	cis-1,3-Dichloropropene	ND		0.50
Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	1,1,2-Trichloroethane	ND		0.50
Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	Tetrachloroethene	ND		0.50
Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	Chlorodibromomethane	ND		0.50
1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	Chlorobenzene	ND		0.50
1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	Bromoform	ND		1.0
1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	1,1,2,2-Tetrachloroethane	ND		0.50
1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	1,3-Dichlorobenzene	ND		0.50
Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	1,4-Dichlorobenzene	ND		0.50
Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	1,2-Dichlorobenzene	ND		
1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	Chloromethane	ND		
EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	Bromomethane	ND		1.0
1,2,4-TrichlorobenzeneND1.0Surrogate% RecAcceptance LimitsToluene-d8 (Surr)10777 - 1214-Bromofluorobenzene10479 - 118	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	EDB	ND		0.50
Toluene-d8 (Surr) 107 77 - 121 4-Bromofluorobenzene 104 79 - 118	1,2,4-Trichlorobenzene	ND		1.0
4-Bromofluorobenzene 104 79 - 118	Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene 104 79 - 118	Toluene-d8 (Surr)	107	77 - 121	
1,2-Dichloroethane-d4 (Surr) 104 78 - 117		104	79 - 118	
	1,2-Dichloroethane-d4 (Surr)	104	78 - 117	

Client: Crawford Consulting Inc Job Number: 720-5426-1

Lab Control Spike - Batch: 720-13095

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-13095/1

Client Matrix: Water Dilution: 1.0

Date Analyzed: 09/13/2006 1002 Date Prepared: 09/13/2006 1002 Analysis Batch: 720-13095

Prep Batch: N/A

Units: ug/L

Instrument ID: Varian 3900F

Lab File ID: c:\saturnws\data\200609\09

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	19.3	97	65 - 125	
Trichloroethene	20.0	18.0	90	74 - 134	
Chlorobenzene	20.0	19.9	99	61 - 121	
Surrogate	% Rec		Acc	ceptance Limits	
Toluene-d8 (Surr)	10	106		77 - 121	
4-Bromofluorobenzene	102		79 - 118		
1,2-Dichloroethane-d4 (Surr)	98		78 - 117		


ige 16 of 17

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Crawford Consulting Inc Job Number: 720-5426-1

Login Number: 5426

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

ANALYTICAL REPORT

Job Number: 720-6977-1

Job Description: Alameda Facility CS 1605

For:

Crawford Consulting Inc 2 North First Street 4th Floor San Jose, CA 95113-1212

Attention: Dana Johnston

Dimple Sharma Project Manager I

Mhar

dsharma@stl-inc.com

12/22/2006

cc: Mark Wheeler

Project Manager: Dimple Sharma

EXECUTIVE SUMMARY - Detections

Client: Crawford Consulting Inc Job Number: 720-6977-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method	
720-6977-1	MW-1					
Trichloroethene Tetrachloroethene		20 210	2.0 2.0	ug/L ug/L	8260B 8260B	
720-6977-2	MW-2					
Tetrachloroethene		1000	20	ug/L	8260B	
720-6977-3	MW-3					
1,1-Dichloroethene Tetrachloroethene		1.6 0.56	0.50 0.50	ug/L ug/L	8260B 8260B	
720-6977-4FD	DUP-1					
Tetrachloroethene		910	20	ug/L	8260B	

METHOD SUMMARY

Client: Crawford Consulting Inc Job Number: 720-6977-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level)	STL SF	SW846 826	OB .
Purge-and-Trap	STL SF		SW846 5030B

LAB REFERENCES:

STL SF = STL San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Crawford Consulting Inc Job Number: 720-6977-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-6977-1	MW-1	Water	12/15/2006 0918	12/15/2006 1130
720-6977-2	MW-2	Water	12/15/2006 0956	12/15/2006 1130
720-6977-3	MW-3	Water	12/15/2006 0833	12/15/2006 1130
720-6977-4FD	DUP-1	Water	12/15/2006 0000	12/15/2006 1130
720-6977-5TB	TB-1	Water	12/15/2006 0000	12/15/2006 1130

Client: Crawford Consulting Inc Job Number: 720-6977-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-6977-1
 Date Sampled:
 12/15/2006 0918

 Client Matrix:
 Water
 Date Received:
 12/15/2006 1130

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-16578 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200612\12

Dilution: 4.0 Initial Weight/Volume: 40 mL

Date Analyzed: 12/20/2006 2127 Final Weight/Volume: 40 mL

Date Prepared: 12/20/2006 2127

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		2.0
1,1-Dichloroethane	ND		2.0
Dichlorodifluoromethane	ND		2.0
Vinyl chloride	ND		2.0
Chloroethane	ND		4.0
Trichlorofluoromethane	ND		4.0
Methylene Chloride	ND		20
trans-1,2-Dichloroethene	ND		2.0
cis-1,2-Dichloroethene	ND		2.0
Chloroform	ND		4.0
1,1,1-Trichloroethane	ND		2.0
Carbon tetrachloride	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	20		2.0
1,2-Dichloropropane	ND		2.0
Dichlorobromomethane	ND		2.0
trans-1,3-Dichloropropene	ND		2.0
cis-1,3-Dichloropropene	ND		2.0
1,1,2-Trichloroethane	ND		2.0
Tetrachloroethene	210		2.0
Chlorodibromomethane	ND		2.0
Chlorobenzene	ND		2.0
Bromoform	ND		4.0
1,1,2,2-Tetrachloroethane	ND		2.0
1,3-Dichlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
1,2-Dichlorobenzene	ND		2.0
Chloromethane	ND		4.0
Bromomethane	ND		4.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0
EDB	ND		2.0
1,2,4-Trichlorobenzene	ND		4.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	107		77 - 121
4-Bromofluorobenzene	104		79 - 118
1,2-Dichloroethane-d4 (Surr)	104		78 - 117

Client: Crawford Consulting Inc Job Number: 720-6977-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-6977-2
 Date Sampled:
 12/15/2006 0956

 Client Matrix:
 Water
 Date Received:
 12/15/2006 1130

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-16603 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200612\12

Dilution: 40 Initial Weight/Volume: 40 mL

Date Analyzed: 12/21/2006 1745 Final Weight/Volume: 40 mL

Date Prepared: 12/21/2006 1745

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		20
1,1-Dichloroethane	ND		20
Dichlorodifluoromethane	ND		20
Vinyl chloride	ND		20
Chloroethane	ND		40
Trichlorofluoromethane	ND		40
Methylene Chloride	ND		200
trans-1,2-Dichloroethene	ND		20
cis-1,2-Dichloroethene	ND		20
Chloroform	ND		40
1,1,1-Trichloroethane	ND		20
Carbon tetrachloride	ND		20
1,2-Dichloroethane	ND		20
Trichloroethene	ND		20
1,2-Dichloropropane	ND		20
Dichlorobromomethane	ND		20
trans-1,3-Dichloropropene	ND		20
cis-1,3-Dichloropropene	ND		20
1,1,2-Trichloroethane	ND		20
Tetrachloroethene	1000		20
Chlorodibromomethane	ND		20
Chlorobenzene	ND		20
Bromoform	ND		40
1,1,2,2-Tetrachloroethane	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,2-Dichlorobenzene	ND		20
Chloromethane	ND		40
Bromomethane	ND		40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
EDB	ND		20
1,2,4-Trichlorobenzene	ND		40
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	113		77 - 121
4-Bromofluorobenzene	106		79 - 118
1,2-Dichloroethane-d4 (Surr)	109		78 - 117

Client: Crawford Consulting Inc Job Number: 720-6977-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-6977-3
 Date Sampled:
 12/15/2006 0833

 Client Matrix:
 Water
 Date Received:
 12/15/2006 1130

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-16603 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200612\12

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 12/21/2006 1711 Final Weight/Volume: 40 mL

Date Prepared: 12/21/2006 1711

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	1.6		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	0.56		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	110		77 - 121
4-Bromofluorobenzene	104		79 - 118
1,2-Dichloroethane-d4 (Surr)	112		78 - 117

Client: Crawford Consulting Inc Job Number: 720-6977-1

Client Sample ID: DUP-1

 Lab Sample ID:
 720-6977-4FD
 Date Sampled:
 12/15/2006 0000

 Client Matrix:
 Water
 Date Received:
 12/15/2006 1130

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-16653 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\\data\200612\12

Dilution: 40 Initial Weight/Volume: 40 mL Date Analyzed: 12/22/2006 1255 Final Weight/Volume: 40 mL

Date Prepared: 12/22/2006 1255

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		20
1,1-Dichloroethane	ND		20
Dichlorodifluoromethane	ND		20
Vinyl chloride	ND		20
Chloroethane	ND		40
Trichlorofluoromethane	ND		40
Methylene Chloride	ND		200
trans-1,2-Dichloroethene	ND		20
cis-1,2-Dichloroethene	ND		20
Chloroform	ND		40
1,1,1-Trichloroethane	ND		20
Carbon tetrachloride	ND		20
1,2-Dichloroethane	ND		20
Trichloroethene	ND		20
1,2-Dichloropropane	ND		20
Dichlorobromomethane	ND		20
trans-1,3-Dichloropropene	ND		20
cis-1,3-Dichloropropene	ND		20
1,1,2-Trichloroethane	ND		20
Tetrachloroethene	910		20
Chlorodibromomethane	ND		20
Chlorobenzene	ND		20
Bromoform	ND		40
1,1,2,2-Tetrachloroethane	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,2-Dichlorobenzene	ND		20
Chloromethane	ND		40
Bromomethane	ND		40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
EDB	ND		20
1,2,4-Trichlorobenzene	ND		40
Surrogate	%Rec	Acceptance	Limits
Toluene-d8 (Surr)	106	77 - 121	
4-Bromofluorobenzene	113	79 - 118	
1,2-Dichloroethane-d4 (Surr)	114	78 - 117	

Client: Crawford Consulting Inc Job Number: 720-6977-1

Client Sample ID: TB-1

 Lab Sample ID:
 720-6977-5TB
 Date Sampled:
 12/15/2006 0000

 Client Matrix:
 Water
 Date Received:
 12/15/2006 1130

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-16603 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200612\12

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 12/21/2006 1638 Final Weight/Volume: 40 mL

Date Prepared: 12/21/2006 1638

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	111		77 - 121
4-Bromofluorobenzene	106		79 - 118
1,2-Dichloroethane-d4 (Surr)	107		78 - 117

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: Crawford Consulting Inc Job Number: 720-6977-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-	16578				
LCS 720-16578/1	Lab Control Spike	T	Water	8260B	
MB 720-16578/2	Method Blank	Т	Water	8260B	
720-6977-1	MW-1	Т	Water	8260B	
Analysis Batch:720-	16603				
LCS 720-16603/1	Lab Control Spike	Т	Water	8260B	
MB 720-16603/2	Method Blank	Т	Water	8260B	
720-6977-2	MW-2	Т	Water	8260B	
720-6977-3	MW-3	Т	Water	8260B	
720-6977-5TB	TB-1	Т	Water	8260B	
Analysis Batch:720-	16653				
LCS 720-16653/1	Lab Control Spike	Т	Water	8260B	
MB 720-16653/2	Method Blank	Т	Water	8260B	
720-6977-4FD	DUP-1	Т	Water	8260B	

Report Basis T = Total

Client: Crawford Consulting Inc Job Number: 720-6977-1

Method Blank - Batch: 720-16578 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-16578/2 Analysis Batch: 720-16578 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200612\12

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 12/20/2006 1130 Final Weight/Volume: 40 mL Date Prepared: 12/20/2006 1130

1,1-Dichloroethane ND 0.50 1,1-Dichloroethane ND 0.50 Dichlorodifloromethane ND 0.50 Vinyl chloride ND 0.50 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 0.50 Chloroform ND 0.50 Chloroform ND 0.50 Carbon tetrachloride ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropene ND 0.50 1,2-Dichloropropene ND 0.50 1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50	Analyte	Result	Qual	RL
Dichlorodifluoromethane ND 0.50 Vinyl chloride ND 0.50 Chloroethane ND 1.0 Chloroethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 Carbon tetrachloride ND 0.50 Carbon tetrachloride ND 0.50 Carbon tetrachloroethane ND 0.50 Tichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 Lichloroptopane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 tetrachloroethane ND 0.50 Chlorobenzene ND 0.50	1,1-Dichloroethene	ND		0.50
Vinyl chloride ND 0.50 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 0.50 Chlorofethane ND 0.50 1,2-Dichloropthane ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropthane ND 0.50 Chlorodibromethane ND 0.50 Chlorodenzene ND 0.50 Chlorobenzene ND 0.50 Bromoform	1,1-Dichloroethane	ND		0.50
Chloroethane ND 1.0 Trichlorofluoromethane ND 5.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 trans-1,3-Dichloropropene ND 0.50 Chlorodibromethane ND 0.50 Chlorodibromomethane <td< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td></td><td>0.50</td></td<>	Dichlorodifluoromethane	ND		0.50
Trichlorofluoromethane ND 1.0 Methylene Chloride ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 0.50 L1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropthane ND 0.50 1,2-Dichloropthane ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,2-Trichloroethane ND 0.50 characteristane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromethane ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.5	Vinyl chloride	ND		0.50
Methylene Chloride trans-1,2-Dichloroethene ND 5.0 trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropthane ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 Lip-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Bromoform ND 0.50 Bromoform ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND <td>Chloroethane</td> <td>ND</td> <td></td> <td>1.0</td>	Chloroethane	ND		1.0
trans-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloropteme ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 Chiorodethane ND 0.50 Chiorodenzene ND 0.50 Chlorobenzene ND 0.50 Romoform ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50	Trichlorofluoromethane	ND		1.0
cis-1,2-Dichloroethene ND 0.50 Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 s-1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 0.50 I,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 </td <td>Methylene Chloride</td> <td>ND</td> <td></td> <td>5.0</td>	Methylene Chloride	ND		5.0
Chloroform ND 1.0 1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 bichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 Bromofluorobenzene ND <t< td=""><td>trans-1,2-Dichloroethene</td><td>ND</td><td></td><td>0.50</td></t<>	trans-1,2-Dichloroethene	ND		0.50
1,1,1-Trichloroethane ND 0.50 Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodenzene ND 0.50 Bromoform ND 0.50 I,2-Tetrachloroethane ND 0.50 I,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 <t< td=""><td>cis-1,2-Dichloroethene</td><td>ND</td><td></td><td>0.50</td></t<>	cis-1,2-Dichloroethene	ND		0.50
Carbon tetrachloride ND 0.50 1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Bromoform ND 0.50 Bromoform ND 0.50 1,2-2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 </td <td>Chloroform</td> <td>ND</td> <td></td> <td>1.0</td>	Chloroform	ND		1.0
1,2-Dichloroethane ND 0.50 Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 0.50 Bromoform ND 0.50 1,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 Bromomethane ND 0.50 EDB ND 0.50 1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2-A-	1,1,1-Trichloroethane	ND		0.50
Trichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Sromoform ND 0.50 Bromoform ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 Bromomethane ND 0.50 LDB ND 0.50 EDB ND 0.50 1,2,4-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB<	Carbon tetrachloride	ND		0.50
1,2-Dichloropropane ND 0.50 Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50	1,2-Dichloroethane	ND		0.50
Dichlorobromomethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 1,1,2-Trichloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,2-2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 1,2-Dichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits </td <td>Trichloroethene</td> <td>ND</td> <td></td> <td>0.50</td>	Trichloroethene	ND		0.50
trans-1,3-Dichloropropene ND 0.50 cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Tetrachloroethane ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 0.50 DB ND 0.50 EDB ND 0.50 1,2,4-Trichloro-1,2,2-trifluoroethane ND 0.50 DI 0.50 0.50 1,2,4-Tr	1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene ND 0.50 1,1,2-Trichloroethane ND 0.50 Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	Dichlorobromomethane	ND		0.50
1,1,2-Trichloroethane ND 0.50 Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	trans-1,3-Dichloropropene	ND		0.50
Tetrachloroethene ND 0.50 Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 Bromomethane ND 0.50 EDB ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	cis-1,3-Dichloropropene	ND		0.50
Chlorodibromomethane ND 0.50 Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	1,1,2-Trichloroethane	ND		0.50
Chlorobenzene ND 0.50 Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	Tetrachloroethene	ND		0.50
Bromoform ND 1.0 1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	Chlorodibromomethane	ND		0.50
1,1,2,2-Tetrachloroethane ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	Chlorobenzene	ND		0.50
1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	Bromoform	ND		1.0
1,4-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	1,1,2,2-Tetrachloroethane	ND		0.50
1,2-Dichlorobenzene ND 0.50 Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	1,3-Dichlorobenzene	ND		0.50
Chloromethane ND 1.0 Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	1,4-Dichlorobenzene	ND		0.50
Bromomethane ND 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	1,2-Dichlorobenzene	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	Chloromethane	ND		1.0
EDB ND 0.50 1,2,4-Trichlorobenzene ND 1.0 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	Bromomethane	ND		1.0
1,2,4-TrichlorobenzeneND1.0Surrogate% RecAcceptance LimitsToluene-d8 (Surr)10977 - 1214-Bromofluorobenzene10979 - 118	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	EDB	ND		0.50
Toluene-d8 (Surr) 109 77 - 121 4-Bromofluorobenzene 109 79 - 118	1,2,4-Trichlorobenzene	ND		1.0
4-Bromofluorobenzene 109 79 - 118	Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene 109 79 - 118	Toluene-d8 (Surr)	109	77 - 121	
1,2-Dichloroethane-d4 (Surr) 101 78 - 117		109	79 - 118	
	1,2-Dichloroethane-d4 (Surr)	101	78 - 117	

Client: Crawford Consulting Inc Job Number: 720-6977-1

Lab Control Spike - Batch: 720-16578

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-16578/1

Client Matrix: Water Dilution: 1.0

Date Analyzed: 12/20/2006 1057 Date Prepared: 12/20/2006 1057 Analysis Batch: 720-16578

Prep Batch: N/A

Units: ug/L

Instrument ID: Varian 3900F

Lab File ID: c:\saturnws\data\200612\12

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	17.6	88	65 - 125	
Trichloroethene	20.0	17.6	88	74 - 134	
Chlorobenzene	20.0	18.7	94	61 - 121	
Surrogate	% F	Rec	Acc	ceptance Limits	
Toluene-d8 (Surr)	10)8		77 - 121	
4-Bromofluorobenzene	10)2		79 - 118	
1,2-Dichloroethane-d4 (Surr)	94	1		78 - 117	

Client: Crawford Consulting Inc Job Number: 720-6977-1

Method Blank - Batch: 720-16603 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-16603/2 Analysis Batch: 720-16603 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200612\12

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 12/21/2006 1034 Final Weight/Volume: 40 mL

Date Prepared: 12/21/2006 1034

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	103	77 - 121	
4-Bromofluorobenzene	103	79 - 118	
1,2-Dichloroethane-d4 (Surr)	100	78 - 117	

Client: Crawford Consulting Inc Job Number: 720-6977-1

Lab Control Spike - Batch: 720-16603

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-16603/1

Client Matrix: Water Dilution: 1.0

Date Analyzed: 12/21/2006 1001 Date Prepared: 12/21/2006 1001 Analysis Batch: 720-16603

Prep Batch: N/A

Units: ug/L

Instrument ID: Varian 3900F

Lab File ID: c:\saturnws\data\200612\12

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amou	nt Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	20.0	100	65 - 125	
Trichloroethene	20.0	18.7	94	74 - 134	
Chlorobenzene	20.0	21.5	107	61 - 121	
Surrogate		% Rec	A	cceptance Limits	
Toluene-d8 (Surr)		111		77 - 121	
4-Bromofluorobenzene		105		79 - 118	
1,2-Dichloroethane-d4 (Surr)		96		78 - 117	

Client: Crawford Consulting Inc Job Number: 720-6977-1

Method Blank - Batch: 720-16653 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-16653/2 Analysis Batch: 720-16653 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200612\12

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 12/22/2006 1041 Final Weight/Volume: 40 mL Date Prepared: 12/22/2006 1041

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	102	77 - 121	
4-Bromofluorobenzene	111	79 - 118	
1,2-Dichloroethane-d4 (Surr)	112	78 - 117	

Client: Crawford Consulting Inc Job Number: 720-6977-1

Lab Control Spike - Batch: 720-16653

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-16653/1

Client Matrix: Water Dilution: 1.0

Date Analyzed: 12/22/2006 1008 Date Prepared: 12/22/2006 1008 Analysis Batch: 720-16653

Prep Batch: N/A

Units: ug/L

Instrument ID: Varian 3900G

Lab File ID: c:\saturnws\data\200612\12

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	18.7	93	65 - 125	
Trichloroethene	20.0	17.0	85	74 - 134	
Chlorobenzene	20.0	20.0	100	61 - 121	
Surrogate	% R	ec	Acc	ceptance Limits	
Toluene-d8 (Surr)	10	3		77 - 121	
4-Bromofluorobenzene	11	5		79 - 118	
1,2-Dichloroethane-d4 (Surr)	11	6		78 - 117	

CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM

720-6977 Service Request: (925) 484-1919 FAX (925) 484-1096 Project Name: Alameda Facility Analysis Requested Project Number: CS1605 Dana Johnston Project Manager: Company/Address: Crawford Consulting, Inc. Volatile Organics (8010) Volatile Organies (VOC 2 x 500 ml glass H 2SO4 2 North First St. 4th Floor Number of Containers Pb (7421); As (7060) 500 ml plastic H2SO4 San Jose, CA 95113 2 x 40 ml vial HCl 500 ml plastic NP 500 ml plastic NP pH, Conductivity Phone: (408) 287-9934 Chloride, Nitrate Same as Metals Total Phenols 2 x 40 ml vial Fax: (408) 287-9937 TPHgBTEX COD, TKN Sampler's Signature; REMARKS Sample LAB Sample LD. Time LD. Matrix MW-1 X MW-2 X MW-3 X Res ked an MW-4 g DUP-1 X 19 TB-1 X Received By TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION SAMPLE RECEIPT 1. Routine Report Signature 24 hr 48 fix x II. Report (includes DUF, MS Shipping VIA Standard (5 working days) \$45D, as required, may be Frinted Name Provide Verbal Preliminary Regulta charged as samples) x Provide pdf Results. III. Data Validation Report (includes All Raw Data) Firm ItWoch Date/Time (MDLs/PQLs/TRACEN) Date/Limic Relinquished By Received By Special Instructions/Comments: LUNG Signature Please report MRLs only Please pdf results to: Dana Johnston at dana@crawfordconsulting.com Printed Name Pate Please provide EDF for Geotracker. Global ID is SL0600177511 Firm 11:30 12/15/06 Date/Time

STL ChromaLab

1220 Quarry Lane, Pleasanton, CA 94566

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Crawford Consulting Inc Job Number: 720-6977-1

Login Number: 6977

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	no time for DUP-1 or TB-1
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	False	BOTH TB'S
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

ANALYTICAL REPORT

Job Number: 720-7087-1

Job Description: Alameda Facility CS 1605

For:

Crawford Consulting Inc 2 North First Street 4th Floor San Jose, CA 95113-1212

Attention: Mark Wheeler

Dimple Sharma

Mhar

Project Manager I dsharma@stl-inc.com

01/02/2007

cc: Dana Johnston

Project Manager: Dimple Sharma

EXECUTIVE SUMMARY - Detections

Client: Crawford Consulting Inc Job Number: 720-7087-1

Lab Sample ID	Client Sample ID		Reporting		
Analyte		Result / Qualifier	Limit	Units	Method
720-7087-1	MW-4				
Tetrachloroethene		0.63	0.50	ug/L	8260B

METHOD SUMMARY

Client: Crawford Consulting Inc Job Number: 720-7087-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level)	STL SF	SW846 8260)B
Purge-and-Trap	STL SF		SW846 5030B

LAB REFERENCES:

STL SF = STL San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Crawford Consulting Inc Job Number: 720-7087-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
720-7087-1	MW-4	Water	12/21/2006 0758	12/22/2006 0750

Client: Crawford Consulting Inc Job Number: 720-7087-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-7087-1
 Date Sampled:
 12/21/2006 0758

 Client Matrix:
 Water
 Date Received:
 12/22/2006 0750

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-16821 Instrument ID: Varian 3900D

Preparation: 5030B Lab File ID: c:\saturnws\data\200612\12

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 12/28/2006 2301 Final Weight/Volume: 40 mL

Date Prepared: 12/28/2006 2301

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	0.63		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	100		77 - 121
4-Bromofluorobenzene	101		79 - 118
1,2-Dichloroethane-d4 (Surr)	99		78 - 117

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: Crawford Consulting Inc Job Number: 720-7087-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-	16821				
LCS 720-16821/1	Lab Control Spike	T	Water	8260B	
MB 720-16821/2	Method Blank	T	Water	8260B	
720-7087-1	MW-4	T	Water	8260B	

Report Basis

T = Total

Client: Crawford Consulting Inc Job Number: 720-7087-1

Method Blank - Batch: 720-16821 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-16821/2 Analysis Batch: 720-16821 Instrument ID: Varian 3900D

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200612\12

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 12/28/2006 1512 Final Weight/Volume: 40 mL Date Prepared: 12/28/2006 1512

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	102	77 - 121	
4-Bromofluorobenzene	107	79 - 118	
1,2-Dichloroethane-d4 (Surr)	100	78 - 117	

Client: Crawford Consulting Inc Job Number: 720-7087-1

Lab Control Spike - Batch: 720-16821

Date Prepared: 12/28/2006 1439

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-16821/1 Analysis Batch: 720-16821 Instrument ID: Varian 3900D

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200612\12

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 12/28/2006 1439 Final Weight/Volume: 40 mL

% Rec. Qual Analyte Spike Amount Result Limit 1,1-Dichloroethene 20.0 19.6 98 65 - 125 Trichloroethene 20.0 18.4 92 74 - 134 Chlorobenzene 20.0 21.0 105 61 - 121 Surrogate % Rec Acceptance Limits 99 77 - 121 Toluene-d8 (Surr) 4-Bromofluorobenzene 105 79 - 118 1,2-Dichloroethane-d4 (Surr) 94 78 - 117

Date/Time

Date/Time

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Crawford Consulting Inc Job Number: 720-7087-1

Login Number: 7087

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

