Groundwater Monitoring Results First Semi-Annual 2006 Monitoring Period Cargill Salt – Alameda Facility Alameda, California

November 8, 2006

Jerry Wickham Hazardous Materials Specialist Alameda County Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RE: Groundwater Monitoring Results, First Semi-Annual 2006 Monitoring Períod, Cargill Salt – Alameda Facility, Alameda, California, SLIC Case No. RO0002480

Dear Mr. Wickham,

The attached report presents the groundwater monitoring results for the First Semi-Annual 2006 Monitoring Period for the Cargill Salt Alameda facility. This report presents the results of groundwater monitoring data collected during the first and second quarters of 2006. For each quarterly period, groundwater levels in the site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report are true and correct to the best of my knowledge.

Should you have any questions concerning the report, please don't hesitate to call me at (510) 790-8625.

Sincerely

Teri Peterson Environmental Manager

7220 Central Avenue Newark, CA 94560 Tel 510-797-1820 www.cargill.com

Groundwater Monitoring Results First Semi-Annual 2006 Monitoring Period Cargill Salt – Alameda Facility Alameda, California

Prepared for: Cargill Salt 7220 Central Avenue Newark, California 94560

Prepared by: Crawford Consulting, Inc. 2 North First Street, 4th Floor San Jose, CA 95113 (408) 287-9934

> Project No. CS1605 November 8, 2006

Contents

1	Introduction	1
	1.1 Background Information	1
	1.1.1 Site Description	1
	1.1.2 Summary of Investigative and Remedial Activities	2
	1.1.3 Source of VOC Impact	3
	1.2 Reporting Period Activities	3
2	Groundwater Flow Analysis	4
	2.1 Water-Level Measurement	
	2.2 Groundwater Flow Direction and Gradient	4
	2.3 Groundwater Velocity	5
3	Groundwater Sampling and Analysis	
	3.1 Sample Collection and Analysis	
	3.2 Analytical Results	6
	3.2.1 Quality Control	6
	3.2.2 Groundwater Results	
	3.3 Discussion	9
4	Phytoremediation Project Status Update	11

Professional Certification References Limitations

Tables

- Table 1.Groundwater Level Data
- Table 2.
 Relative Percent Difference Based on Duplicate Samples
- Table 3.
 Summary of Groundwater Monitoring Well Data

Illustrations

- Figure 1. Site Location
- Figure 2. Groundwater Monitoring Well Locations
- Figure 3. Graphical Summary of Groundwater Elevations
- Figure 4. Groundwater Elevation Contours March 2006
- Figure 5. Groundwater Elevation Contours June 2006
- Figure 6. VOC Concentrations in Groundwater March through June 2006
- Figure 7. Graphical Summary of PCE Concentrations
- Figure 8. PCE Concentrations vs. Groundwater Elevation

Appendices

(presented in electronic format only)

- Appendix A. Field Data Sheets
- Appendix B. Groundwater Velocity Calculations
- Appendix C. Certified Analytical Reports and Chain-of-Custody Documentation

Electronic File

Entire report presented in electronic file format (pdf) on CD-ROM inside back cover.

1 Introduction

Crawford Consulting, Inc. (Crawford) has prepared this report on behalf of Cargill Salt for the Cargill Salt Dispensing Systems Division facility (hereafter, the Site) in Alameda, California.

Results of groundwater transect sampling and the initial sampling of three groundwater monitoring wells installed in November 1999 were presented in the January 31, 2000 report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW). The purpose of the groundwater transect sampling and the monitoring well installation and sampling was to help characterize and monitor the occurrence of volatile organic compounds (VOCs), primarily tetrachloroethene (PCE) and its breakdown product, trichloroethene (TCE), previously detected in groundwater at the Site.

One of the recommendations in the report was to confirm the groundwater analytical results of the newly installed monitoring wells (wells MW-1, MW-2, and MW-3) and the groundwater flow direction and gradient via quarterly monitoring. Cargill Salt began groundwater monitoring on a quarterly basis after the initial groundwater monitoring well sampling event in November 1999. For 2000 through 2005, reporting was performed on an annual basis. Reporting is now being performed on a semi-annual basis.

Cargill Salt conducted additional characterization activities in November and December 2001 to evaluate the off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue.

1.1 Background Information

A description of the Site, a summary of the development of characterization and monitoring programs for the Site, and a summary of the groundwater monitoring activities for the first and second quarters of 2006 are presented in this section.

1.1.1 Site Description

Alameda is an island on the east side of San Francisco Bay, separated from Oakland by a tidal canal (Figure 1). The Cargill Salt Dispensing Systems Division facility is located on a rectangular lot in an industrial and residential neighborhood. The facility building occupies approximately one-third of the Site and is separated from the vacant, unpaved side of the lot by an asphalt driveway (Figure 2). The Site is bordered by a sheet-metal shop and a residential lot to the northwest, an apartment complex to the southwest, and a residential lot to the southeast.

From 1951 to 1978, the Alameda facility produced salt-dispensing units, which required casting and milling aluminum parts.

Constituents of concern associated with site operations have included casting sands with elevated concentrations of metals, and solvents, machine oils, and grease used in casting and milling operations. As discussed below, previous investigations and remedial activities have investigated and remediated metals and solvents (VOCs) in vadose-zone soil.

1.1.2 Summary of Investigative and Remedial Activities

Cargill Salt initiated site investigative activities in 1993 to determine if facility operations had impacted site soils. Cargill Salt submitted the results of the soil sampling investigation to the Alameda County Environmental Health Services (ACEHS) in October 1993 along with a workplan for excavation and disposal of impacted soils and assessment of potential impact to groundwater (Groundworks Environmental, Inc. [Groundworks], 1993).

After approval of the workplan by ACEHS, Cargill Salt conducted several phases of soil remediation and groundwater characterization. Surficial soils impacted by metals were excavated for disposal off site. Vadose-zone soils with the highest degree of impact by VOCs were also excavated for off-site disposal (see "Soil excavation area" on Figure 2).

The results of these activities were submitted to the ACEHS in a report, *Soil and Groundwater Investigations and Remedial Activities, July 1993 – September 1994, Cargill Salt – Alameda Facility, Alameda, California* (Groundworks, 1995). Recommendations for additional work to further delineate the lateral and vertical extent of VOCs in groundwater beneath the Site were presented in the report.

A workplan for the additional delineation of VOCs in groundwater, *Workplan for Groundwater Characterization and Monitoring Well Installation, 2016 Clement Avenue, Alameda, California* (CCI), was submitted to the ACEHS in July 1999.

After approval of the workplan by the ACEHS, Cargill Salt conducted groundwater sampling and well installation activities during August and November of 1999. The results of these activities were submitted to the ACEHS in a report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW, dated January 31, 2000). After the initial groundwater monitoring well sampling event in November 1999, Cargill Salt began groundwater monitoring on a quarterly basis.

A work plan for remedial investigation activities, *Workplan for Off-Site Characterization, Cargill Salt – Alameda Facility, Alameda, California* (Conor Pacific/EFW), was submitted to the ACEHS in June 2001. After approval of the workplan by the ACEHS, Cargill Salt conducted characterization activities in November and December 2001 to evaluate off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue. The results of these activities were submitted to the ACEHS in the August 21, 2002 submittal *Off-Site Groundwater Characterization, Cargill Salt – Alameda Facility, Alameda, California*, prepared by Conor Pacific/EFW.

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid of 24 rows. The rows are generally 6 feet apart with trees on 7-foot centers on each row. Selection of the phytoremediation approach and implementation of the project were described in the October 20, 2006 report, *Groundwater Monitoring Results, First through*

Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California prepared by Crawford Consulting, Inc.

1.1.3 Source of VOC Impact

As discussed in the 1995 report, the occurrence of VOCs in soils and groundwater at the Site appears to be the result of a discharge or spill to surficial soils at a location near the rear property line at the southwestern corner of the property. The area with the highest degree of chemical impact was delineated prior to excavation and was then excavated using a backhoe and transported off-site for appropriate disposal. It is possible that the VOCs detected in soils and groundwater at this location were associated with waste products from facility operations. The VOCs may be associated with solvents previously used for degreasing operations at the facility, although there are no records indicating use of PCE. Site records indicate that the solvents used for degreasing operations were not PCE-based solvents.

It is also possible that the VOCs and oil and grease are associated with waste products discarded from neighboring properties. There is an apartment complex next to the rear property line of the facility, and the laundry room for this complex is in the utility shed immediately adjacent to the rear property line. This laundry room is only 4 feet away from the area of highest impact to soil. If PCE associated with laundry cleaning products were spilled in this laundry room, it is possible that it could have drained onto the Cargill Salt property.

1.2 Reporting Period Activities

This report presents the results of groundwater monitoring data collected during the first and second quarters of 2006. For each quarterly period, groundwater levels in the Site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined. The quarterly monitoring schedule for the first semi-annual 2006 monitoring period is shown below.

Quarter of 2006	Field Dates
First	March 10, 2006
Second	June 9, 2006

Supervision of the quarterly monitoring events was conducted for Cargill Salt by Crawford. Groundwater level measurements and collection of groundwater samples were conducted by Field Solutions, Inc. The groundwater samples for the first through second quarters of 2006 were analyzed by STL Chromalab, Inc., a state-certified laboratory in Pleasanton, California.

2 Groundwater Flow Analysis

Groundwater levels were measured quarterly and groundwater contour maps were prepared for the first through second quarter 2006 reporting period.

2.1 Water-Level Measurement

Water levels in groundwater monitoring wells (MW-1, MW-2, MW-3, and MW-4) were measured each quarter, before any of the groundwater monitoring wells were purged for sampling for the quarterly monitoring event. The groundwater monitoring well locations are shown on Figure 2. The water levels were measured with an electric sounder. The depth to water at each well was recorded on a *Water Level Field Data* sheet (see Appendix A).

The water-level data through the second quarter of 2006 are shown on Table 1. The data in Table 1 include the date and time of measurement, the well casing elevation, the measured depth to groundwater, the groundwater elevation, and the change in elevation from the previous measurement. A plot of historical groundwater elevations is shown in Figure 3.

The Site groundwater monitoring wells were re-surveyed in September 2006 by CSS Environmental Services in order to provide Geotracker-compliant survey data. Results of the casing elevation survey indicate that each well is approximately 6.4 feet higher than the previous survey conducted in 1999. This difference is due to the use of different datum for the 2006 and 1999 surveys. The casing elevations from the September 2006 survey are shown on Table 1.

Groundwater levels in the on-site monitoring wells (MW-1, MW-2, and MW-3) showed a similar seasonal pattern in the first semi-annual period of 2006 as in the previous six years (see Figure 3). Groundwater levels rose across the Site between the fourth quarter 2005 and first quarter 2006 measurements, reflecting winter-season recharge. Groundwater levels fell between the first and second quarter 2006 measurements, reflecting dissipation of winter-season discharge.

2.2 Groundwater Flow Direction and Gradient

Groundwater contour maps for the first and second quarters of 2006 based on the March and June, 2006 water-level data are shown on Figures 4 and 5.

The groundwater flow direction determined for the first and second quarters of 2006 was to the northeast, consistent with the groundwater flow direction determined previously for the Site. The horizontal hydraulic gradients measured for the first and second quarters of 2006 were 0.030 and 0.016, respectively.

2.3 Groundwater Velocity

Average linear groundwater flow velocities (V) were calculated using a form of Darcy's Law,

$$V = Ki/n$$
,

where "K" is the hydraulic conductivity, "i" is the horizontal hydraulic gradient, and "n" is the effective porosity. The groundwater velocity calculations for the first and second quarters of 2006 groundwater data are presented in Appendix B.

Using hydraulic conductivity and porosity values determined for saturated native materials at the Site [based on slug tests and laboratory soil testing, respectively (Conor Pacific/EFW, 2002)], and the horizontal hydraulic gradients determined from the first and second quarters 2006 groundwater contour maps, groundwater flow velocities beneath the Site are calculated to range from 1 to 2 feet per year (ft/yr).

3 Groundwater Sampling and Analysis

This section summarizes the sample collection and analytical methods, presents an evaluation of quality control data, and summarizes the results of the sampling events.

3.1 Sample Collection and Analysis

Groundwater samples were collected March 10, 2006 and June 9, 2006 from groundwater monitoring wells MW-1, MW-2, MW-3, and MW-4. Dedicated tubing was installed in wells MW-1, MW-2, and MW-3 prior to the first quarter 2000 sampling event and on December 17, 2001 in well MW-4 to facilitate sampling with a peristaltic pump. Dedicated fluorinated ethylene propylene resin (FEP)-lined polyethylene tubing was installed in each monitoring well. The tubing intake was placed about one foot above the well bottom in each of the wells. Viton[®] dedicated check valves were installed on the tubing intakes to prevent back-flow of water into the well. A short length of dedicated Viton[®] tubing was installed at the well head for use in a peristaltic pump head. Prior to sample collection for each quarterly monitoring event, the wells were purged using a peristaltic pump. Field parameters (pH, electrical conductivity, temperature, and turbidity) were measured in purged groundwater from each well prior to sampling; these data are recorded on the Sample Collection Field Data sheets presented in Appendix A. After purging, groundwater samples were collected using the peristaltic pump and the dedicated Viton[®] pump head discharge tubing.

The groundwater samples were analyzed for VOCs using U.S. Environmental Protection Agency (USEPA) Method 8021B. Results for all Method 8010 analytes were reported. The groundwater samples for first through second quarter 2006 were delivered with appropriate chain-of-custody documentation to STL Chromalab, Inc., a state-certified laboratory in Pleasanton, California, for chemical analysis.

3.2 Analytical Results

The results of field and laboratory quality control measures and the results of the groundwater monitoring well samples are reviewed in this section. The certified analytical reports and chain-of-custody documentation are presented in Appendix C.

3.2.1 Quality Control

Quality control (QC) samples were analyzed as part of the sampling and analysis program to evaluate the precision and accuracy of the reported groundwater chemistry data. QC samples included both field and laboratory samples. Descriptions of the purpose of specific field and laboratory QC samples used during the sampling and analysis program and an evaluation of field and laboratory QC results are presented below.

Field Quality Control Samples

A field duplicate was used during the first through second quarter 2006 sampling program for the Site. A field duplicate is used to assess sampling and analytical precision. The duplicate is collected at a selected well (MW-2 [first and second quarters 2006]) and then submitted "blind" to the laboratory for analysis with the same batch as the regular sample for the selected well. An estimate of precision is obtained by calculating the relative percent difference (RPD) between the regular sample and the duplicate sample using the following formula:

$$RPD = \frac{[x - y] 100}{0.5 (x + y)}$$

where:
$$[x - y] = the absolute value of the difference in concentrationbetween the regular sample (x) and the duplicate sample (y).$$

Laboratory Quality Control Samples

The following types of laboratory QC samples were used during the first through second quarter 2006 analytical program for the Site:

- surrogate spikes
- matrix spikes/duplicate matrix spikes

A surrogate spike is a check standard added to a sample in a known amount prior to analysis. Surrogate spikes consist of analytes not normally found in environmental samples and not targeted by the analytical procedure. Surrogate spikes provide information on recovery efficiency by comparing the percent recovery of specific surrogate analyses to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis exhibits an acceptable recovery efficiency. Recoveries that fall outside the acceptance limits indicate a potential problem with the recovery efficiency of analytes, which in turn indicates a potential bias with respect to the reported concentration of the environmental samples analyzed in the same batch.

Matrix spikes and duplicate matrix spikes are analyzed by the laboratory for the purpose of providing a quantitative measure of accuracy and precision, and to document the effect that the sample matrix has on the analysis. A selected sample is spiked in duplicate with known concentrations of analytes. The recoveries of the spiked analytes are compared to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analysis, the analysis has no statistically significant bias (i.e., the analysis is accurate). Recoveries that fall outside of the acceptance limits have a positive or negative bias, depending on whether the recovery is greater or less than the upper or lower acceptance limit, respectively. Analyses where analyte recoveries fall outside the acceptance limits should be regarded as estimates only.

Precision for matrix spikes is measured by calculating the relative percent differences (RPDs) between the measured concentration of analytes in the matrix and the duplicate matrix spike. The following equation is used for matrix spikes:

$$RPD = \frac{[MS - MSD] 100}{0.5 (MS + MSD)}$$

where:
$$[MS - MSD] = the absolute value of the difference in concentration between the matrix spike (MS) and the matrix spike duplicate (MSD)$$

First Quarter 2006 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the first quarter 2006 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8021B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). Of the two parameters for which RPDs could be calculated (see Table 2), both parameters (TCE and PCE) exhibit low RPD values (i.e., less than 10%) indicative of good precision.

Second Quarter 2006 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the second quarter 2006 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8021B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). The one parameter (PCE) for which the RPD could be calculated (see Table 2) exhibits a low RPD value (i.e., less than 10%) indicative of good precision.

First through Second Quarter 2006 Laboratory QC Results

A review of the first through second quarter 2006 field data sheets and laboratory reports (presented in Appendices A and C, respectively) indicates that all analyses were performed within USEPA or California Department of Health Services (DHS) recommended maximum sample holding times.

QC data on surrogate spike recoveries and matrix spike recoveries are presented in the laboratory reports. These data indicate: (1) no surrogate spike recoveries were outside of the laboratory's acceptance limits; (2) no matrix spike or duplicate matrix spike recoveries were outside of the laboratory's control limits; and (3) RPD values for the matrix spikes and duplicate matrix spikes indicate a high overall degree of analytical precision. The laboratory QC data indicate that the results reported herein are of adequate quality for evaluation of site groundwater conditions.

3.2.2 Groundwater Results

The results of VOC analyses for each quarter for 2000 through second quarter 2006 are summarized in Table 3, which also shows the VOC results for the initial sampling event for monitoring wells MW-1, MW-2, and MW-3 in November 1999. The results for the first and second quarter 2006 monitoring events are also shown on Figure 7.

The following VOCs were detected in Site groundwater samples from the first and second quarter 2006 monitoring events: PCE, its breakdown products TCE, 1,1-dichloroethene (DCE), and 1,2-dichloroethane (DCA), 1,1,1-trichloroethane (TCA), and chloroform. TCA was only detected in the duplicate samples from MW-2, as shown on Table 2 and as footnoted on Figure 6.

For the first and second quarters of 2006, the concentrations of PCE detected were 39 and 140 μ g/L in monitoring well MW-1, 5,200 and 1,600 in MW-2, and 0.79 and 0.64 μ g/L in MW-4. PCE was not detected in monitoring well MW-3.

The concentrations of TCE detected were 3.4 and 22 μ g/L in monitoring well MW-1. For monitoring well MW-2, TCE was detected at 59 μ g/L for the first quarter of 2006. For the second quarter 2006 results for MW-2, TCE was not detected in the primary sample but was detected at 9.7 μ g/L in the duplicate sample. TCE was not detected in MW-3 or MW-4.

DCE was detected in monitoring well MW-3 at 0.86 and 4.3 μ g/L for the first and second quarter 2006 events. For MW-2, DCE was not detected in the primary sample but was detected in the duplicate sample at 0.76 μ g/L for the first quarter 2006 event. For the second quarter 2006 event, DCE was not detected in the either the primary or duplicate sample from MW-2. DCE was not detected in MW-1 or MW-4.

TCA was detected at 7.0 μ g/L in the duplicate sample but was not detected in the primary sample from MW-2 in the first quarter 2006 event. For the second quarter 2006 event, TCA was detected at 0.90 μ g/L in the duplicate sample but was not detected in the primary sample from MW-2. TCA was not detected in MW-1, MW-3, or MW-4.

DCA was reported for the second quarter 2006 sample from MW-3 at a concentration of 0.50 μ g/L, but was not detected in any other samples this reporting period.

Chloroform was reported at 1.4 μ g/L for MW-1 for the first quarter 2006 event, but was not detected in any other samples this reporting period.

It should be noted that the laboratory was able to obtain lower reporting limits for the duplicate samples than for the primary samples collected from MW-2 during both monitoring events because different dilutions were used for the primary vs. duplicate samples. Detection of DCE, TCA, and TCE in the duplicate samples but not in the primary samples is due to the difference in reporting limits obtained by the laboratory. The laboratory has indicated they will try to obtain more consistent reporting limits for future monitoring events.

3.3 Discussion

The results for the first through second quarter 2006 quarterly monitoring events are generally similar to the results reported for the years 2000 through 2005 quarterly monitoring programs (see Figure 7). Variations in VOC concentrations at monitoring well MW-2, the well with the highest reported PCE concentrations at the site, correlate with variations in groundwater elevations at the Site. An increase in VOC concentration generally follows a rise in groundwater elevations, and a decrease in VOC concentrations in YOC concentrations at fall in groundwater levels (see Figure 8). The variations in VOC concentrations in groundwater elevations in groundwater elevation.

The concentration of PCE reported for groundwater monitoring well MW-2 for the June 2006 sampling event was the lowest PCE concentration reported for the well since the initial sampling event in November 1999. The PCE concentration reported for MW-2 for June 2006 may be an indication that the phytoremediation project is beginning to be effective at reducing VOC concentrations in groundwater at the site. However, it may be premature to correlate this PCE concentration to the

effectiveness of the phytoremediation project as the trees have only been growing for one year (see Section 4). Continued monitoring will be required before a definitive correlation can be made.

As shown on Figure 7, the concentrations of PCE reported for groundwater monitoring well MW-1 show an overall decreasing trend for the last several years.

4 Phytoremediation Project Status Update

A phytoremediation project was implemented at the Site in June 2005. The project involved planting 96 bare-root hybrid poplar trees in a grid on the unpaved portion of the site. Selection of the phytoremediation approach and implementation of the project were described in the report, *Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc., October 20, 2006).

A tree monitoring and maintenance program is being conducted by a landscaping contractor. This program involves monthly inspection of the trees, inspection and maintenance of the drip irrigation system, and weed control.

The end of the first semi-annual monitoring period of 2006 marks the end of the first year of the phytoremediation project. The trees were 4-ft-tall, bare-root poles with no foliage when planted in June 2005. During the first year of growth, the trees developed foliage and grew several feet in height.

It is expected that it will take two to three years after planting for the trees and root systems to become well established and for the trees to start having a significant effect on VOC concentrations in groundwater at the Site. Tree growth and VOC concentrations will be monitored and evaluated to determine the effectiveness of the phytoremediation project.

Professional Certification

Groundwater Monitoring Results First Semi-Annual 2006 Monitoring Period Cargill Salt – Alameda Facility Alameda, California

This report has been prepared by CRAWFORD CONSULTING, INC. with the professional certification of the California professional geologist whose signature appears below.

Jana C. Johnm

Dana C. Johnston Project Manager

Mark C. Wheeler Principal Geologist P.G. 4563

References

- Alameda County Environmental Health Services, 1999. Letter to Cargill Salt: Groundwater Monitoring Well Installation at 2016 Clement Avenue, Alameda, CA, May 7, 1999.
- Conor Pacific/EFW, 2001. Workplan for Off-Site Characterization, Cargill Salt Alameda Facility, June 18, 2001.
 - _____, 2002. Off-Site Groundwater Characterization, Cargill Salt Alameda Facility, Alameda, California, August 21, 2002.
- Crawford Consulting, Inc., 1999. Workplan for Groundwater Characterization and Monitoring Well Installation, 2016 Clement Avenue, Alameda, California, July 7, 1999.
 - _____, 2001. Groundwater Monitoring Results, First through Fourth Quarter 2000, Cargill Salt Alameda Facility, Alameda, California, April 11, 2001.
 - _____, 2002. Groundwater Monitoring Results, First through Fourth Quarter 2001, Cargill Salt Alameda Facility, Alameda, California, August 14, 2002.
 - _____, 2003. Groundwater Monitoring Results, First through Fourth Quarter 2002, Cargill Salt Alameda Facility, Alameda, California, August 13, 2003.
 - _____, 2004. Groundwater Monitoring Results, First through Fourth Quarter 2003, Cargill Salt Alameda Facility, Alameda, California, February 27, 2004.
 - _____, 2005. Groundwater Monitoring Results, First through Fourth Quarter 2004, Cargill Salt Alameda Facility, Alameda, California, November 7, 2005.
 - _____, 2006. Groundwater Monitoring Results, First through Fourth Quarter 2005, Cargill Salt Alameda Facility, Alameda, California, October 20, 2006.
- Crawford Consulting, Inc. and Conor Pacific/EFW, 2000. Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California, January 31, 2000.
- Groundworks Environmental, Inc. (Groundworks), 1993. Results of Soil Sampling and Workplan for Remedial Activities, Alameda facility, October 19, 1993.
- _____, 1995. Soil and Groundwater Investigations and Remedial Activities, July 1993 September 1994, Cargill Salt Alameda Facility, Alameda, California, July 31, 1995.
- Hickenbottom, K. S., and Muir, K.S., 1988. Geohydrology and Groundwater-Quality Overview of the East Bay Plain Area, Alameda County, California, 205 (j) Report, prepared for the California Regional Water Quality Control Board, San Francisco Bay Region, by the Alameda County Flood Control and Water Conservation District, June 1988.
- Green, C. and Hoffnagle, A., 2004, Phytoremediation Field Studies Database for Chlorinated Solvents, Pesticides, Explosives, and Metals, Prepared for U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation Washington, DC, August 2004.
- U.S. Environmental Protection Agency, 2001, Brownfields Technology Primer: Selecting and Using Phytoremediation for Site Cleanup, U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC 20460 EPA 542-R-01-006, July 2001.

Limitations

This report and the evaluations presented herein have been prepared in accordance with generally accepted professional standards and is based solely on the scope of work and services described herein. This report has been prepared solely for the use of Cargill Salt for the purposes noted herein. Any use of this report, in whole or in part, by a third party for other than the purposes noted herein is at such party's sole risk.

Well/			Casing Elevation	Depth to Water	Water Elevation	Elev. Change from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-1	11/16/1999	09:56	13.16	3.75	9.41	NA
MW-1	3/30/2000	10:09	13.16	2.81	10.35	0.94
MW-1	5/16/2000	09:43	13.16	3.32	9.84	-0.51
MW-1	7/28/2000	09:11	13.16	3.58	9.58	-0.26
MW-1	11/30/2000	08:36	13.16	3.52	9.64	0.06
MW-1	3/26/2001	08:47	13.16	3.15	10.01	0.37
MW-1	6/25/2001	10:19	13.16	3.53	9.63	-0.38
MW-1	9/28/2001	09:32	13.16	3.96	9.20	-0.43
MW-1	12/17/2001	10:47	13.16	3.23	9.93	0.73
MW-1	3/21/2002	07:28	13.16	2.89	10.27	0.34
MW-1	6/6/2002	08:03	13.16	3.50	9.66	-0.61
MW-1	9/20/2002	08:30	13.16	3.86	9.30	-0.36
MW-1	12/19/2002	08:38	13.16	3.13	10.03	0.73
MW-1	3/4/2003	10:31	13.16	3.08	10.08	0.05
MW-1	6/9/2003	08:32	13.16	3.29	9.87	-0.21
MW-1	9/8/2003	10:02	13.16	3.79	9.37	-0.50
MW-1	12/1/2003	10:16	13.16	3.78	9.38	0.01
MW-1	3/4/2004	09:31	13.16	2.88	10.28	0.90
MW-1	6/2/2004	08:42	13.16	3.45	9.71	-0.57
MW-1	9/14/2004	08:01	13.16	3.87	9.29	-0.42
MW-1	12/8/2004	07:44	13.16	3.23	9.93	0.64
MW-1	3/3/2005	08:07	13.16	2.01	11.15	1.22
MW-1	6/10/2005	07:05	13.16	2.90	10.26	-0.89
MW-1	9/16/2005	08:00	13.16	3.62	9.54	-0.72
MW-1	12/6/2005	08:00	13.16	3.28	9.88	0.34
MW-1	3/10/2006	07:40	13.16	2.28	10.88	1.00
MW-1	6/9/2006	09:45	13.16	3.09	10.07	-0.81
MW-2	11/16/1999	11:15	16.22	5.22	11.00	NA
MW-2	3/30/2000	10:05	16.22	2.80	13.42	2.42
MW-2	5/16/2000	09:35	16.22	4.13	12.09	-1.33
MW-2	7/28/2000	09:17	16.22	4.85	11.37	-0.72
MW-2	11/30/2000	08:32	16.22	4.75	11.47	0.10
MW-2	3/26/2001	08:40	16.22	3.28	12.94	1.47
MW-2	6/25/2001	12:12	16.22	4.75	11.47	-1.47
MW-2	9/28/2001	12:20	16.22	5.41	10.81	-0.66
MW-2	12/17/2001	10:44	16.22	4.07	12.15	1.34
MW-2	3/28/2002	09:37	16.22	3.40	12.82	0.67
MW-2	6/6/2002	08:11	16.22	4.70	11.52	-1.30
MW-2	9/20/2002	08:34	16.22	5.28	10.94	-0.58
MW-2	12/19/2002	08:45	16.22	3.37	12.85	1.91
MW-2	3/4/2003	10:26	16.22	3.11	13.11	0.26
MW-2	6/9/2003	08:31	16.22	4.16	12.06	-1.05
MW-2	9/8/2003	10:08	16.22	5.26	10.96	-1.10
MW-2	12/1/2003	10:20	16.22	5.05	11.17	0.21
MW-2	3/4/2004	09:34	16.22	2.86	13.36	2.19
MW-2	6/2/2004	08:53	16.22	4.47	11.75	-1.61
MW-2	9/14/2004	07:59	16.22	5.26	10.96	-0.79
MW-2	12/8/2004	08:00	16.22	4.20	12.02	1.06
MW-2	3/3/2005	08:04	16.22	1.90	14.32	2.30
MW-2	6/10/2005	07:09	16.22	3.74	12.48	-1.84

Table 1. Groundwater Level Data

Well/			Casing Elevation	Depth to Water	Water Elevation	Elev. Change from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-2	9/16/2005	08:08	16.22	4.92	11.30	-1.18
MW-2 MW-2	12/6/2005	10:58	16.22	4.92	11.30	0.53
MW-2 MW-2	3/10/2005	07:47	16.22	2.13	14.09	2.26
MW-2 MW-2	6/9/2006	10:03	16.22	3.75	12.47	-1.62
101 00 -2	0/9/2000	10.05	10.22	5.75	12.47	-1.02
MW-3	11/16/1999	15:43	13.34	4.34	9.00	NA
MW-3	3/30/2000	10:01	13.34	2.77	10.57	1.57
MW-3	5/16/2000	09:46	13.34	3.44	9.90	-0.67
MW-3	7/28/2000	09:05	13.34	3.72	9.62	-0.28
MW-3	11/30/2000	08:34	13.34	3.73	9.61	-0.01
MW-3	3/26/2001	08:54	13.34	3.51	9.83	0.22
MW-3	6/25/2001	10:21	13.34	3.65	9.69	-0.14
MW-3	9/28/2001	09:30	13.34	3.96	9.38	-0.31
MW-3	12/17/2001	10:38	13.34	3.28	10.06	0.68
MW-3	3/21/2002	07:28	13.34	3.10	10.24	0.18
MW-3	6/6/2002	08:07	13.34	3.63	9.71	-0.53
MW-3	9/20/2002	08:25	13.34	3.82	9.52	-0.19
MW-3	12/19/2002	08:42	13.34	3.10	10.24	0.72
MW-3	3/4/2003	10:36	13.34	3.29	10.05	-0.19
MW-3	6/9/2003	08:28	13.34	3.41	9.93	-0.12
MW-3	9/8/2003	10:00	13.34	3.85	9.49	-0.44
MW-3	12/1/2003	10:30	13.34	3.90	9.44	-0.05
MW-3	3/4/2004	09:22	13.34	3.11	10.23	0.79
MW-3	6/2/2004	08:46	13.34	3.53	9.81	-0.42
MW-3	9/14/2004	08:05	13.34	4.07	9.27	-0.54
MW-3	12/8/2004	07:40	13.34	3.73	9.61	0.34
MW-3	3/3/2005	07:53	13.34	2.36	10.98	1.37
MW-3	6/10/2005	07:14	13.34	3.15	10.19	-0.79
MW-3	9/16/2005	08:04	13.34	3.90	9.44	-0.75
MW-3	12/6/2005	08:04	13.34	3.35	9.99	0.55
MW-3	3/10/2006	07:43	13.34	2.89	10.45	0.46
MW-3	6/9/2006	09:33	13.34	3.26	10.08	-0.37
	12/17/2001	10.40	10.42	0.55	0.89	NT A
MW-4	12/17/2001	10:40	12.43	2.55	9.88	NA
MW-4	3/28/2002 6/6/2002	08:05 07:57	12.43	3.06	9.37	-0.51
MW-4			12.43	2.85	9.58	0.21 -0.36
MW-4	9/20/2002 12/19/2002	08:28 08:53	12.43	3.21	9.22	
MW-4			12.43	3.70	8.73	-0.49
MW-4 MW-4	3/4/2003 6/9/2003	10:34 08:29	12.43 12.43	3.14 2.82	9.29 9.61	0.56 0.32
MW-4 MW-4	9/8/2003	10:04	12.43	3.43	9.00	-0.61
MW-4 MW-4	12/1/2003 3/4/2004	10:14 09:27	12.43 12.43	3.12 2.81	9.31 9.62	0.31 0.31
MW-4 MW-4	5/4/2004 6/2/2004	09:27	12.43	3.34	9.02	-0.53
MW-4 MW-4	9/14/2004	08:44	12.43	3.34 3.51	9.09 8.92	-0.33 -0.17
MW-4 MW-4	9/14/2004 12/8/2004	08:03	12.43	3.10	9.33	-0.17 0.41
MW-4 MW-4	3/3/2004	07:30	12.43	2.48	9.95	0.62
MW-4 MW-4	6/10/2005	07:02	12.43	2.48	9.95	0.02
MW-4	9/16/2005	07:02	12.43	3.23	9.90	-0.76
MW-4	12/6/2005	07:50	12.43	3.17	9.20	0.06
101 00 -4	12/0/2003	07.50	12.43	5.17	9.20	0.00

Table 1. Groundwater Level Data

Table 1. Groundwater Level Data

			Casing	Depth to	Water	Elev. Change
Well/			Elevation	Water	Elevation	from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-4	3/10/2006	07:37	12.43	3.77	8.66	-0.60
MW-4	6/9/2006	07:30	12.43	2.49	9.94	1.28

Key:

NA = Not available

feet, MSL = feet, relative to Mean Sea Level

Casing elevations for all wells were resurveyed on September 6, 2006 by CSS Environmental Services for Geotracker compliance.

Table 2.Relative Percent Difference Based on Duplicate Samples

	First (Quarter 200)6	Second	Quarter 20)06
Analysis	Well MW-2 Results	Duplicate (DUP-1) Results	RPD ¹ (%)	Well MW-2 Results	Duplicate (DUP-1) Results	RPD ¹ (%)
Organic Compounds (µg/L)						
1,1-Dichloroethene (DCE)	<25	0.76	NM^2	< 20	< 0.5	NM
1,1,1-Trichloroethane (TCA)	<25	7.0	NM	< 20	0.90	NM
Trichloroethene (TCE)	59	60	1.7	< 20	9.7	NM
Tetrachloroethene (PCE)	5,200	5,600	7.4	1,600	1,500	6.4
 ¹ RPD = relative percent difference ² NM = not meaningful; RPD cannot below the method reporting limit. 	t be accurat	tely calculated	where o	ne or both	values are	
All other 8010 analytes not detected (by 8021B).					

Well No.														MW-1														
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/21/02	6/6/02	9/20/02	12/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	MCL ¹
DCE ²	< 50.0	13	<10	15	14	<13	14	15	<13	<13	<13	<13	<13	< 10	12	5.2	8.4	< 5.0	5.8	6.6	< 5.0	< 5.0	<2.0	< 5.0	<2.0	< 0.5	<2.0	6
CFC 113 ³	na ⁴	1.4	<10	<10	< 8.3	<50	< 50	< 50	< 50	<13	<13	<13	<13	< 10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<2.0	< 5.0	<2.0	< 0.5	< 2.0	ne ⁵
DCA^6	< 50.0	0.8	< 10	<10	<4.2	<13	<13	<13	<13	<13	<13	<13	<13	< 10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	<2.0	5
Chloroform	< 50.0	0.6*	<10	<10	< 8.3	<13	<13	<13	<13	<13	<13	<13	<13	< 10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<2.0	< 10	<4.0	1.4	<4.0	ne
TCA^7	< 50.0	1.6	<10	<10	<4.2	<13	<13	<13	<13	<13	<13	<13	<13	< 10	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 0.5	< 2.0	200
TCE ⁸	178	150	190	170	130	180	250	210	190	160	140	190	68	97	90	110	130	53	72	81	39	15	23	34	16	3.4	22	5
PCE ⁹	906	1,400	1,900	1,200	880	1,000	1,400	1,000	1,400	1,100	98 0	1,100	600	730	770	780	850	370	490	620	380	160	180	240	140	39	140	5
Other analytes ¹⁰	nd ¹¹	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Notes:

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L]$)

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane

 4 na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ TCA = 1,1,1-Trichloroethane

⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

¹⁰ All other Method 8010/8021B analytes

¹¹ nd = not detected above laboratory reporting limi * Chloroform detected in equipment blank at 1.6 μ g/L for 3/30/00 event.

Well No.														MW-2														
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/28/02	6/6/02	9/20/02	12/30/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	MCL^1
DCE ²	< 50.0	< 0.5	<25	<25	<8.3	<25	<25	<25	<25	<25	<25	<25	<25	< 20	<20	< 20	<20	< 20	<25	<25	<20	<50	<25	<20	<25	<25	< 20	6
CFC 113 ³	na	< 0.5	<25	<25	<17	<100	<100	< 100	<100	<25	<25	<25	<25	< 20	< 20	< 20	< 20	< 20	<25	<25	<20	< 50	<25	< 20	<25	<25	< 20	ne ⁵
DCA^{6}	< 50.0	< 0.5	<25	<25	< 8.3	<25	<25	<25	<25	<25	<25	<25	<25	< 20	< 20	< 20	< 20	< 20	<25	<25	<20	< 50	<25	< 20	<25	<25	< 20	5
Chloroform	< 50.0	< 0.5	<25	<25	<17	<25	<25	<25	<25	<25	<25	<25	<25	< 20	< 20	< 20	< 20	< 20	<25	<25	<20	< 50	<25	<40	< 50	< 50	<40	ne
TCA ⁷	< 50.0	5.0	<25	<25	<8.3	<25	<25	<25	<25	<25	<25	<25	<25	< 20	< 20	< 20	< 20	< 20	<25	<25	<20	< 50	<25	< 20	<25	<25	< 20	200
TCE ⁸	< 50	29	53	<25	20	40	78	<25	<25	49	52	32	<25	58	41	28	25	39	49	37	30	78	43	29	45	59	< 20	5
PCE ⁹	840	3,600	3,200	3,300	1,700	2,200	4,400	1,700	1,700	3,500	3,800	2,100	1,800	3,900	3,800	2,500	2,500	3,000	4,100	3,800	2,800	7,300	3,600	2,500	3,300	5,200	1,600	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Notes:

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L]$)

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane

 4 na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ TCA = 1, 1, 1-Trichloroethane

⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

¹⁰ All other Method 8010/8021B analytes

¹¹ nd = not detected above laboratory reporting limit

Well No.														MW-3														
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/21/02	6/6/02	9/20/02	12/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	MCL^1
DCE ²	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.51	< 0.5	0.81	< 0.5	< 0.5	0.68	2.4	1.5	1.1	0.86	4.3	6
CFC 113 ³	na	< 0.5	< 0.5	< 0.5	<1.0	<2.0	<2.0	<2.0	< 2.0	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.50	5
Chloroform	< 0.500	< 0.5	< 0.5	< 0.5	<1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	< 1.0	< 1.0	ne
TCA ⁷	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁸	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ⁹	< 0.500	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	0.81	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.90	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Notes:

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L]$)

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane

 4 na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ TCA = 1, 1, 1-Trichloroethane

⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

¹⁰ All other Method 8010/8021B analytes

¹¹ nd = not detected above laboratory reporting limit

Well No.	MW-4																			
Field Date	12/17/01	3/28/02	6/6/02	9/20/02	12/19/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	3/10/06	6/9/06	MCL^1
DCE^2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
CFC 113 ³	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	ne
TCA ⁷	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁸	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ⁹	2.6	2.8	2.0	2.5	1.1	2.1	2.1	1.6	1.6	1.7	1.4	1.3	1.2	0.93	0.98	0.8	1.1	0.79	0.64	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

Notes:

¹ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L]$)

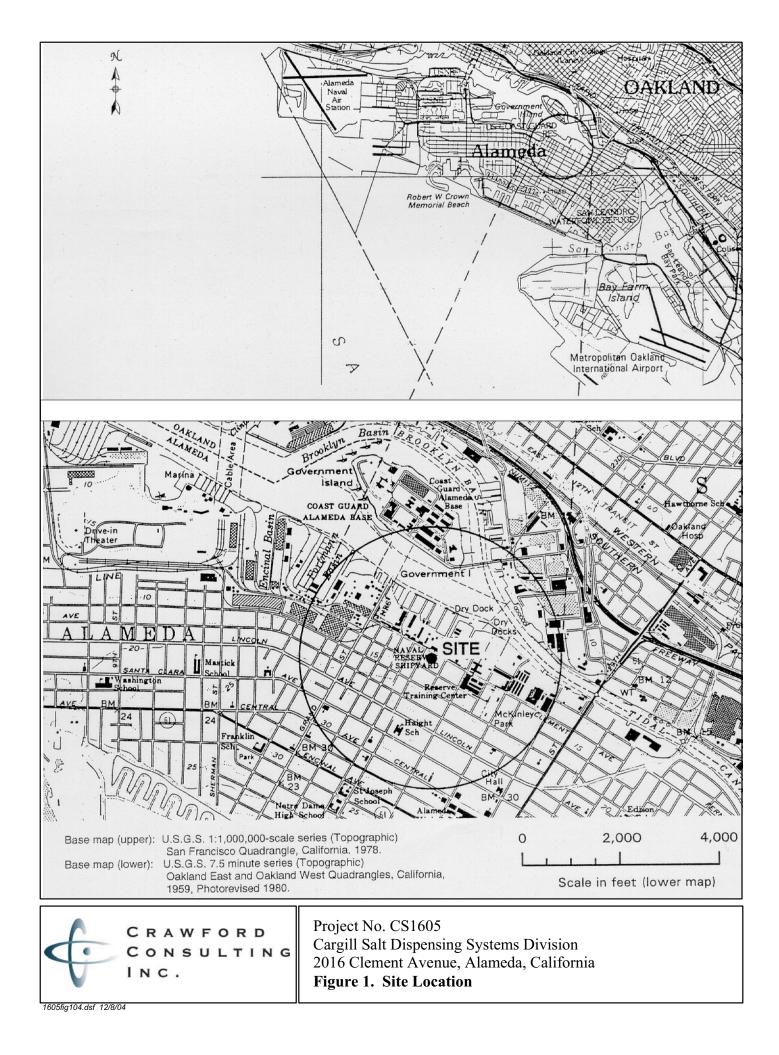
² DCE = 1,1-Dichloroethene

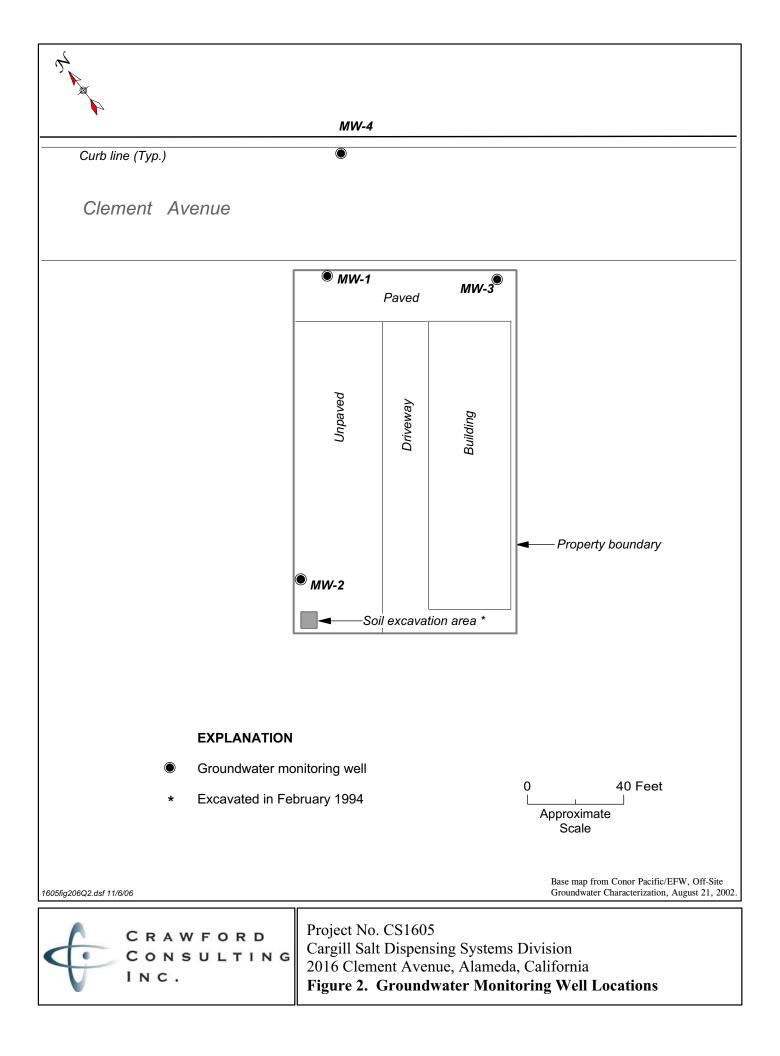
³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane

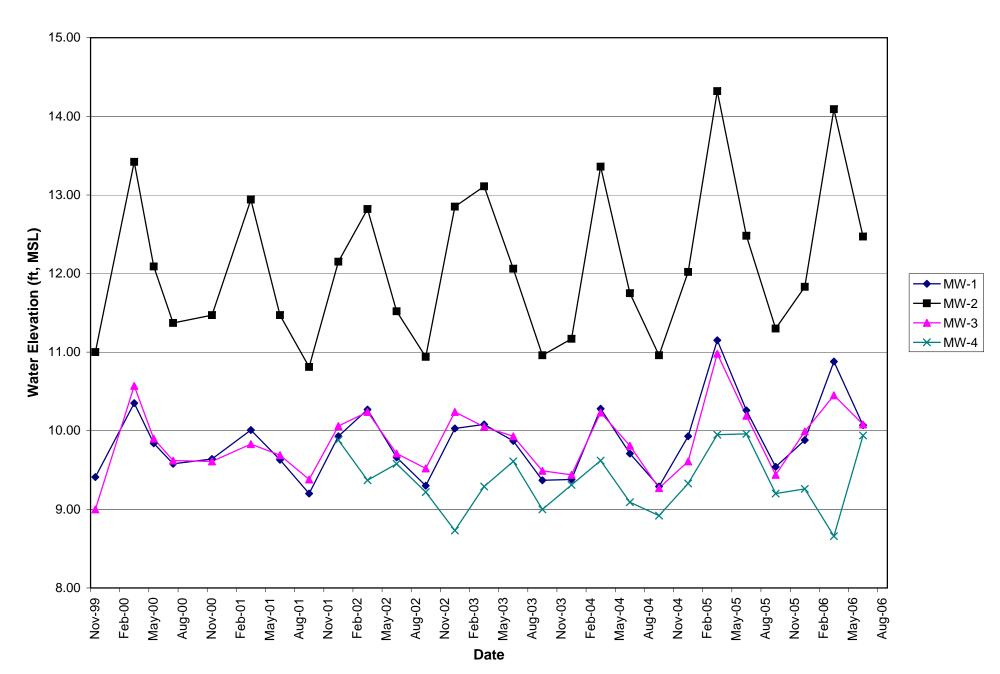
 4 na = not analyzed

⁵ ne = not established or none applicable

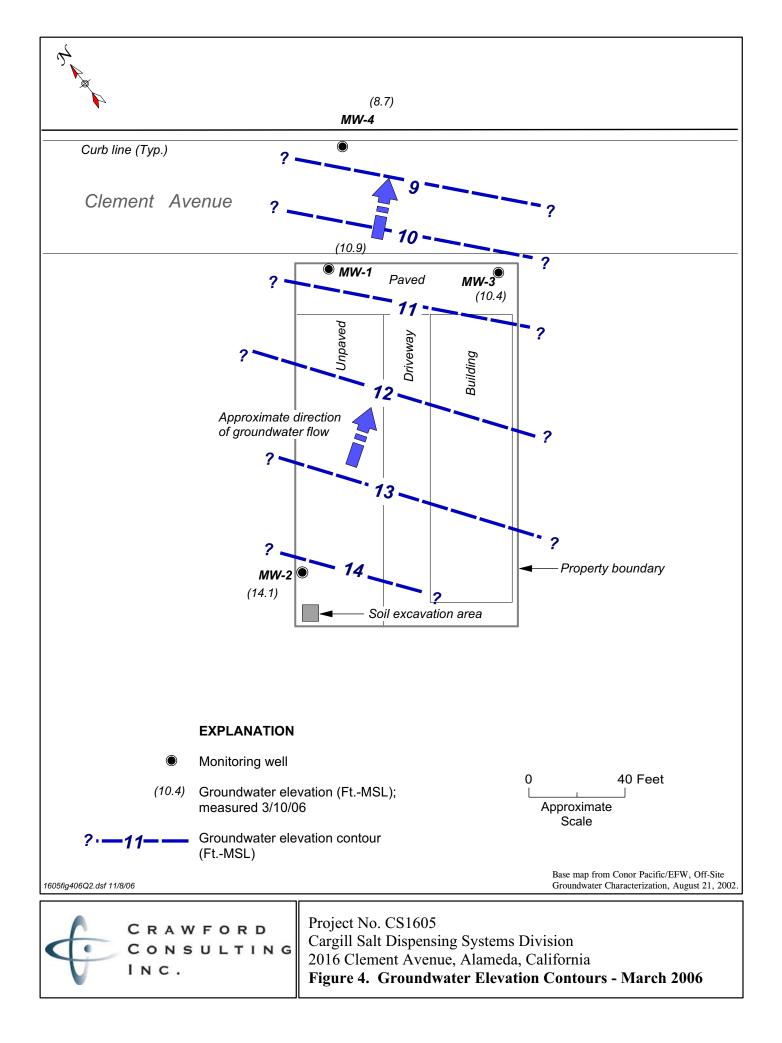
⁶ DCA = 1,1-Dichloroethane

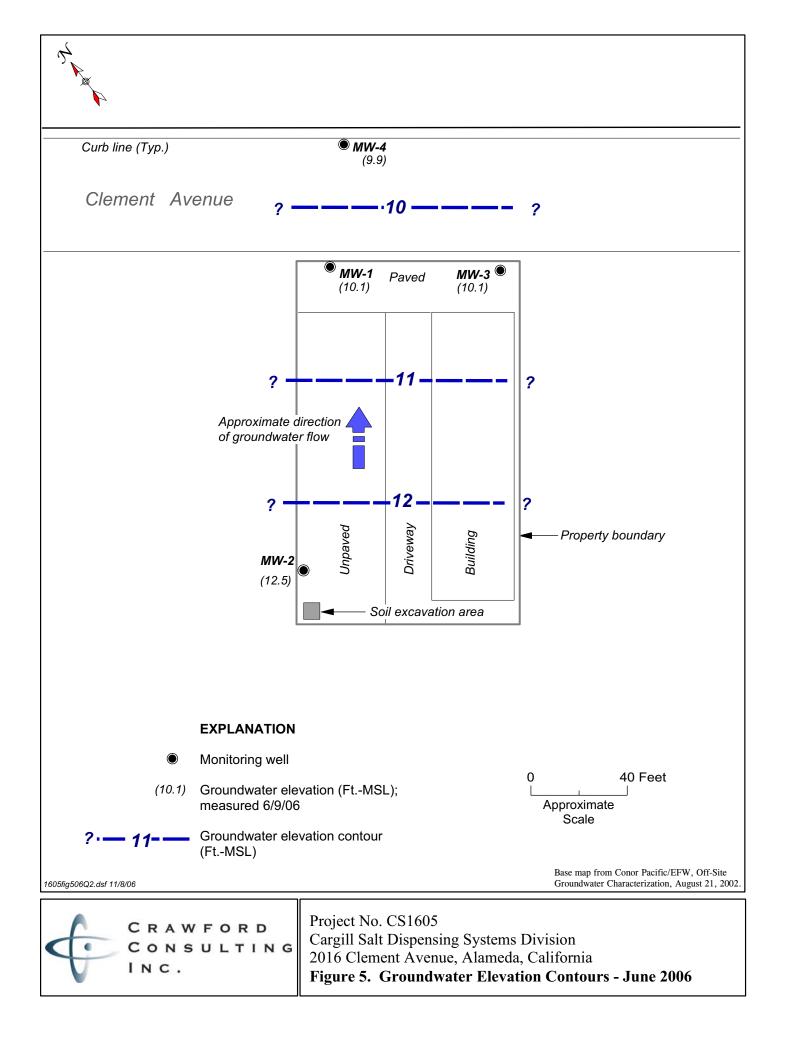

⁷ TCA = 1,1,1-Trichloroethane

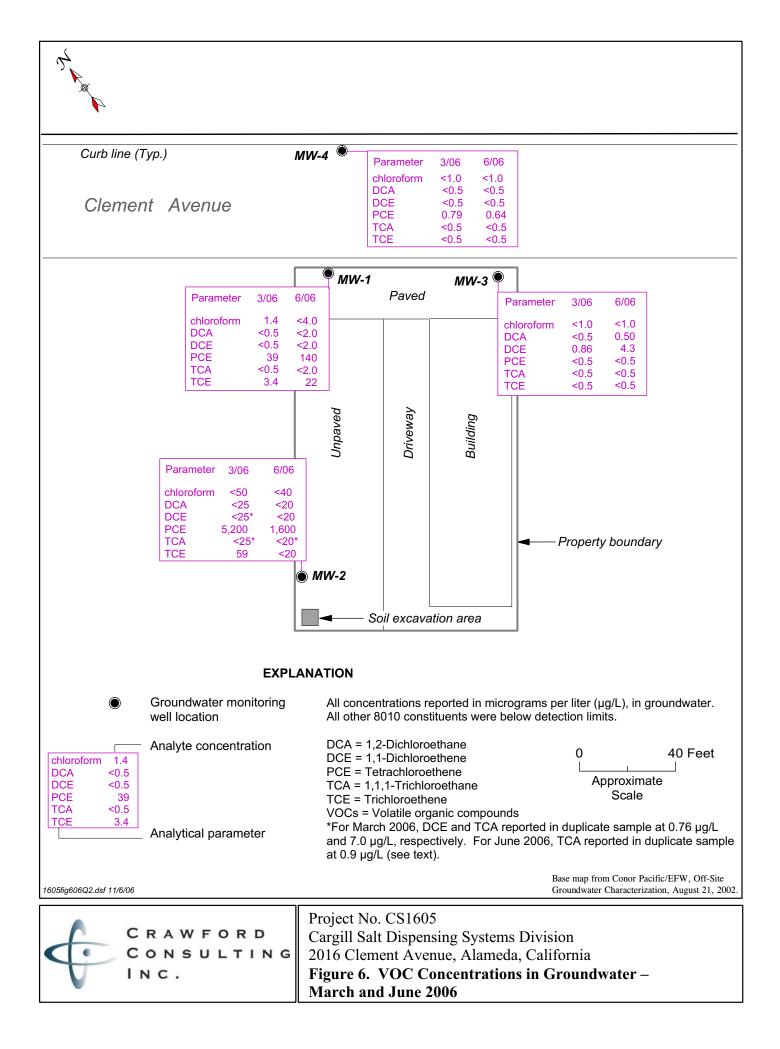

⁸ TCE = Trichloroethene


⁹ PCE = Tetrachloroethene

¹⁰ All other Method 8010/8021B analytes


¹¹ nd = not detected above laboratory reporting limit





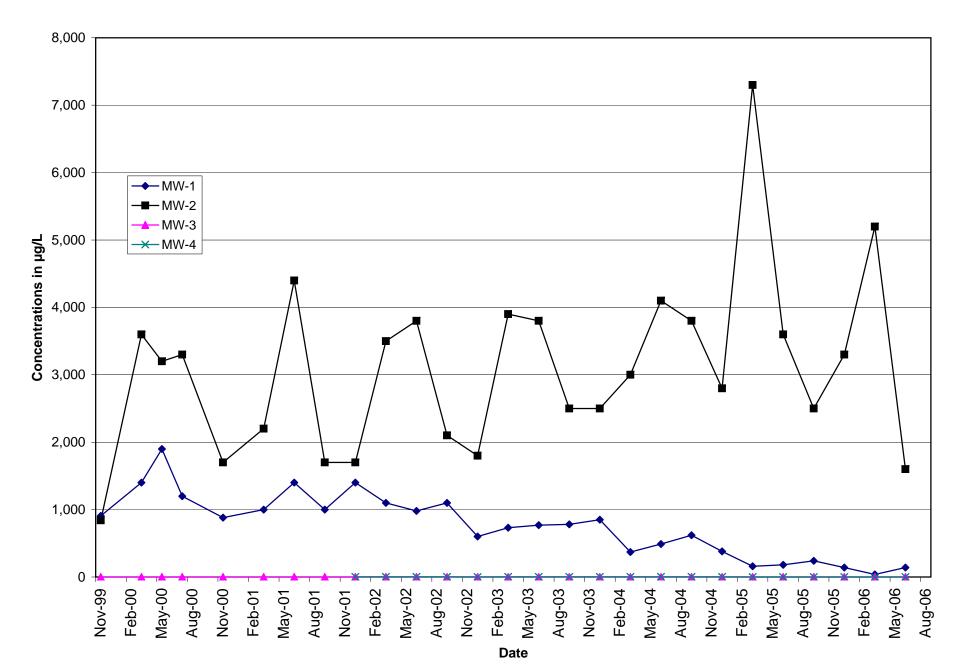


Figure 3. Graphical Summary of Groundwater Elevations

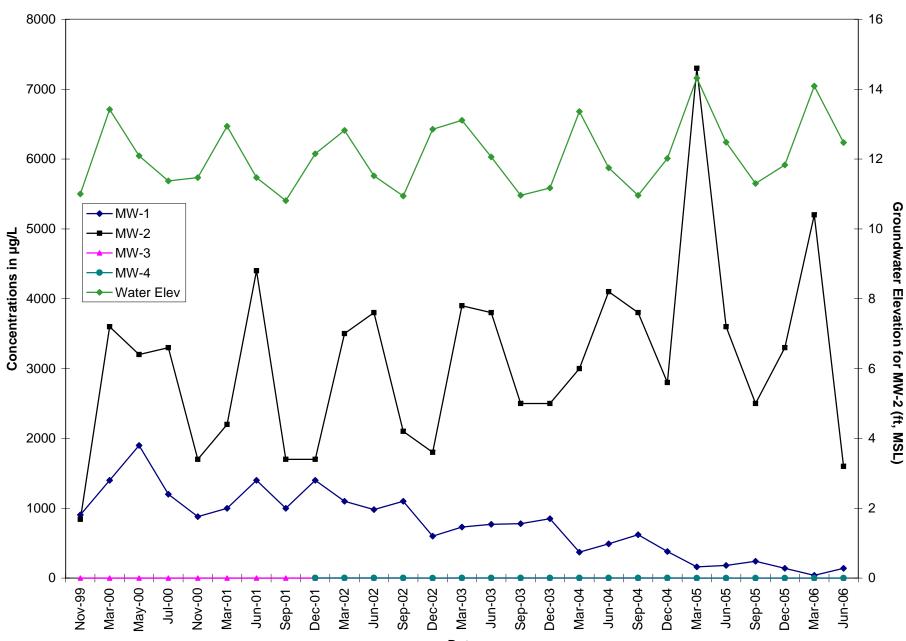


Figure 7. Graphical Summary of PCE Concentrations

Figure 8. PCE Concentrations vs. Groundwater Elevation

Crawford Consulting, Inc

Appendix A

Field Data Sheets

First Quarter 2006

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

Well ID	Date	Time	Depth to Water (1st Msmt.) (feet)	Depth to Water (2nd Msmt.) (feet)	Comments
MW-1	3/10/06	0740	2,28	2.78	water in 1000
MW-2	31.0/02	0247	2113	2.13	Water 1450x.
MW-3	3/10/02	0743	2.89	2,85	Water in box
MW-4	3/10/06	0737	3,77	3,77	Water in box

۰.

Data Collection

Field measurements by:	Reviewed by:
Print: Manuel L. Gallages	Print: J, Bite M
Signature: 11 0 1 1	Signature: Butter
Date: 3-10-04	Date: 0 3/15/06

	SAM	PLE COLL	ECTION FI	ELD DATA	I	Page 1 of 4
				Well II Sample Start D Finish I	ID: NIV ate: 3 /	
One casing volume Gallons per linear fi		Calculated purg (in.) $x \ 1 \ ft/12$ is of: $1'' = 0.041$	the volume (gal.) $n.]^2 x$ [well dep 2'' = 0.16	f(f) - depth to w4." = 0.65 5"	$\begin{array}{l} \text{me}): \\ \text{water (ft)] x 7.48} \\ = 1.0 6'' = 1. \end{array}$	$1.97_{gal/ft^3}$ 5 8" = 2.6
WELL PURGING Date purged:	$3 - 10 - 0C_i$ Submersible PVC bailer 0, 27 d: $0, 0$	pump Teflon	0915 Bladder pump bailer Well yield (H/L	Other	OG1// Peristaltic pump_	X
Time (2400 hr) 09.22 093 094	Cumulative Vol. Purged	pH (units) 7.65 7.03 7.11	EC (μS/cm) 353 344 344	T (°C) 12.7 14.3 14.2	Color (Visual) Clece + Clece + Clece +	Turbidity (Visual or NTU) 16.2 16.2 5.62
Total Purged (gal.): WELL SAMPLINC						
Date sampled:		pump 🗡	Dej Bladder pump	oth to water (ft) b	efore sampling:	3.75
Weather conditions Well condition/Rem	$\frac{5}{\mu}$	ич 50-агр	les 1	Ambient tempe	rature (° F):	60
	EC Dy Temperature d by (print): Ma Signature:	sell MW		Turbidity	$\frown h$	

,

Project No.: Project Name: Location: Client:	CS1605 Alameda Facility Alameda, CA Cargill Salt	Well ID: <u>[/]</u> Sample ID: Start Date: Finish Date:	1W-2 MW-2- 3-10-06 3-10-06
One casing vol One casing vol Gallons per lin	MATION ar (in.): Depth to water (ft): 2,13 ume (gal.): O.63 calculated purge volume (gal.) (3 x of ume = π x [casing radius (in.) x 1 ft/12 in.] ² x [well depth (ft)] ear ft for casing diameter of: 1" = 0.041 2" = 0.16 4." = ct thickness (ft): N> Method for checking: Inte	casing volume) : - depth to water (ft)] = 0.65 5" = 1.0	x 7.48 gal/ft ³
WELL PURGI Date purged: Purging equipm Purge rate: Purge water di	3-10 04 Start time: 0453 nent: Submersible pump Bladder pump PVC bailer Teflon bailer Other 0.15 Ama Well yield (H/L): Image: Comparison of the second se	End time: 107 Peristaltic	
	r) (gat. (Litex5) (units) (μS/cm)	T Cold (° C) (Visu 14.0 (·lec.) 14.7 (·lec.) 14.8 Clec.	$\frac{(\text{Visual or NTU})}{72.4}$
Total Purged (
WELL SAMP Date sampled: Sampling equip	3,10.04 Start time: 172 Depth to	water (ft) before sam	pling: 3,74
Weather condi Well condition	SUM Am /Remarks: Am	bient temperature (°	F): 60
Meter calibrat	Temperature Turb	pH idity	
Purged and sai	signature:	eviewed by:	73

	2	2
Page		[]

Project No.:	CS1605				Well I	D: MU	2 - 3
Project Name:	t Name: Alameda Facility				Sample	eID: MAN	1.7
Location:	Alameda,	CA			Start D	Date: 3 /	0-06
Client:	Cargill Sa	lt			Finish	Date: 3	10.06
One casing vol	MATION er (in.): ume (gal.): ume = πx ear ft for controls ct thickness NG	$\begin{array}{c} 1, 3 \\ 0, 4 \\ 0, 4 \\ 0 \\ 0, 4 \\ 0, 5 $	Calculated purg (in.) x 1 ft/12 in f: 1" = 0.041 () Method Start time: \swarrow pump	e volume (gal.) ($n.J^2 x$ [well depth 2'' = 0.16 4 for checking: $a_1 = 0.16$ 4 $b_2 = 0.16$ 4 Bladder pump	$\begin{array}{l} 3 \ x \ casing \ volu \\ h \ (ft) - depth \ to \\ t \ " = 0.65 \ 5 \ " \\ \hline \\ Interface \ probe \\ \hline \\ \hline \\ End \ time: \\ \end{array}$	epth (ft): 1 me): 2 water (ft)] x 7.48 t = 1.0 $6'' = 1.$	$\int \frac{1}{\sqrt{3}}$ gal/ft^{3} $5 8'' = 2.6$ ailer
_		PVC bailer	Teflon		Other		
Purge rate:		0.22		Vell yield (H/L):	Low		
Purge water di	sposal:	Drum	on s	i fi			
Time (2400 h		Cumulative Vol. Purged	pH (units)	EC (µS/cm)	T (° C)	Color (Visual)	Turbidity (Visual or NTU)
0%	35	2.3	7,74	533	12.4	Char	14.9
03	47	4.6	7.74	591	12.6	Clein	11.1
09	01	4.9	7.50	584	12,7	Cher	531
Total Purged (gal.):	6.9 110-19					
WELL SAMP Date sampled:		0-04	Start time: 2			070 ·5 before sampling:	1.64.59
Sampling equi	pment:			Bladder pump_			
Weather condi Well condition	tions: /Remarks:	SUMAY PII	56,1:1	ples f	Ambient tempe	erature (° F):	60
Meter calibrat	Temp	erature	well M	l j	pH Furbidity		
Purged and sa	mpled by (j Sig	nature	ul L, A Cf Alex	alluges	Reviewed by	: Ars	

1

					44
	SAMPLE COL	LECTION FIE	LD DATA		Page of
Project No.:CS1605Project Name:AlamedaLocation:AlamedaClient:Cargill S	i, CA	-	Well IE Sample Start Da Finish I	ID: M ate: $3 - 1$	- 4 16- 6/ 0. 0 6 10. 0 6
One casing volume = π	Depth to wate 0.2 Depth to wate Calculated pu x [casing radius (in.) x 1 ft/12 casing diameter of: 1" = 0.04 ss (ft): Method	t in.] ² x [well depth	f(ft) - depth to v f(t) = 0.65 5''	$\begin{array}{l} \text{vater (ft)} \ x \ 7.48 \\ = \ 1.0 6'' = 1 \end{array}$.5 8" = 2.6
WELL PURGING Date purged: <u>3-//</u> Purging equipment: Purge rate: Purge water disposal:	Submersible pump	on bailer Well yield (H/L):	Other	OS/G eristaltic pump	×
Time (2400 hr) 0801 (0609 08/4	Cumulative Vol. Purged pH (units) L, L $J, 2L/J, 4$ $J, 59L, 8$ $J, 57$	EC (μS/cm) (σ54 (σ30 (σ44)	T (° C) 15,4 15.5 16.1	Color (Visual) Olic V Olic V Cluc V Cluc V	Turbidity (Visual or NTU) 20.0 9.83 5.5.4
Total Purged (gal.):	6. 8 1i4-5.				
WELL SAMPLING Date sampled: <u>3-</u> / Sampling equipment:	N(Bladder pump	h to water (ft) be		jz.//
Weather conditions: Well condition/Remarks		s falc			60
Purged and sampled by	EC 15.78955 aperature 6.55 (print): $M_{GalleGa}$ ignature: 77	5 0 00 T	pH 703- urbidity Reviewed by	700/1006 1.12-1.00 MB	-1000 / LPZ-4

Crawford Consulting, Inc.

Second Quarter 2006

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

			Depth to	Depth to	
			Water	Water	
Well ID	Date	Time	(1st Msmt.)	(2nd Msmt.)	Comments
			(feet)	(feet)	
					ok
MW-1	6/9/04	0945	3.09	3.09	
					ok
MW-2	6/0/04	1003	3,75	3.75	
					OK
MW-3	6/9/06	B.933	3,20	3,26	,
	l ·				0E
MW-4	6/9/04	0730	2.49	2.49	

Data Collection

Field measurements by:	Reviewed by:
Print: Manuel L. Gallegos	Print: J. BULENG
Signature: M. Man	Signature: AButtern
Date: 4/9/06	Date: C/13/06

Page	ĺ	of	1

Project No.:	CS1605				Well II	D:	Min-	1
Project Name:		Facility			Sample	e ID:	mu-	1
Location:	Alameda,				Start D	ate:	18-9	-06
Client:	Cargill Sa				Finish	Date:	1.5	206
WELL INFOR	RMATION	j,0						
Casing diamete	er (in.):	_ ·	Depth to wate	er (ft): 30	9 Well d	epth (ft)	: 18.	3
One casing vol	lume (gal.):	0.62	Calculated pu	rge volume (g	al.) (3 x casing	volume)	: 1,	87
One casing vol						-		A compared to the second se
-								= 1.5 8'' = 2.6
Floating produ	ict thicknes	s (ft):	\ Metho	d for checking	gInterface probe	: 🖌	Clear ba	iler
						·A		
WELL PURG	ING							
Date purged:	19-0	04	Start time: 1	017	End time:	100	14	
Purging equipr		Submersible p				Peristalti	c pump X	
		DVC hoiler	Teflon		Other		•••	
Purge rate:	0	.15 Ipm	<i></i> /		L): High	1		
Purge water di		Dru.	n on	5,	fe			
		Cumulative		50	-	~		-
Time (2400 h		Vol. Purged	(units)	EC (µS/cm)	T (°C)		olor sual)	Turbidity (Visual of NTU)
1020	···	2.3	7.57	346	183	Cla		555
103		4.4	7/3	332	18.4	Qui		5.15
10น์นี้	Í	6.9	707	331	18:7	Clein		244
ll	1					un		
		<u> </u>	•			<u> </u>		
						.		
						-		
Total Purged ((gal.):	691:4205						
WELL SAMP	PLING	<u>.</u>						
Date sampled:		.04	Start time:	1045	End time:	104	7-	
				 Dept	h to water (ft) b	efore sa	moling:	4.46
Sampling equi	ipment:	Peristaltic 1	oump 📈 B	ladder pump	Teflo	n bailer		
	•	PVC bailer	Other	· · -				
Weather condi	itions:	Sunny			Ambient tempe	rature (°	'F):	65
Well condition	n/Remarks:	#A	Samp	oks far	ter			
		· · · · · · · · · · · · · · · · ·					<u> </u>	
Meter calibrat	ion:	EC			pН			
	Tempe				Furbidity			
Purged and sa	mpled by 6	print): MAR.						
i urged and sa	mpied by (ргши). <u>/////</u>	mill.	191129.2	Reviewed by	XX	•	
	Sigi	nature: An	THE		Reviewed by	71-		
		-				V		

•

.

		, L	SAMPLE	COLLECT	ION FIEL	D DATA		Р	age _	<u>/ _{of 1}</u>
Project No.: Project Name: Location: Client:	CS1605 Alameda H Alameda, Cargill Sal	CA			Sa: Sta	ell ID: mple ID: art Date: nish Date:	MW- MW- 6-9			
WELL INFOR Casing diameter One casing vol One casing vol Gallons per lin Floating produ	er (in.): lume (gal.): lume = πx near ft for co	0-54 [casing radiasing diameter	Calculated p fus (in.) $x \ 1 \ ft$ er of: $1'' = 0$	purge volume $2/12 \text{ in.} J^2 x [w]$ 2.041 2'' = 0	(gal.) (3 x ca. eell depth (ft) 0.16 4." =	sing volume - depth to w 0.65 5"	e): ////////////////////////////////////	<u>(</u> 7 7.48 gall = 1.5	′fr ³ 8" =	2.6
WELL PURG Date purged: Purging equip Purge rate: Purge water d Time (2400 t []0] []1]2 []12 []2 []2 []2 []2 []2 []2 []2 []2 []2 []	Lo-G- ment: lisposal: e hr)		$\frac{pump}{Teflor}$ $\frac{f}{f}$ $\frac{f}{f}$ $\frac{f}{f}$ $\frac{f}{f}$	Bladder pump n bailer Well yield (I 27 S EC $(\mu S/cm)$ 305 296 309	Other H/L):	1:9h. () () () () () () () ()	23 Itic pump _k Color Visual) Color Visual) Color Color Visual) Color Color Visual) Color Color Visual) Color Color Visual) Color Color Visual) Color	Turbic (Visual c 59. 21.	× ×	
WELL SAMI Date sampled Sampling equ	:	Peristalti	c pump X	/ L Y Da Bladder pumy r	p 1	(II) Delore s	samping:	4.63		
Weather cond Well conditio	litions: n/Remarks:	<u> </u>	n¥ SGinf	ols fa	Ambient te	emperature	(°F):	45		-
Meter calibra	tion: Tempe	erature	an al h. I		Turbidity					- - -
Purged and sa	Sigr	nature:	I.K	/	Reviewe	d by	bite	\sim		-

۰.

.

		S	SAMPLE C	OLLECTIO	N FIELD DA	ATA	Page $_ /$ of $_ /$
Project No.: Project Name: Location: Client:	CS1605 Alameda Alameda, Cargill Sa	CA			Well ID: Sample I Start Da Finish D	ID: <u>MU</u> te: <u>6-</u>	1-3 1-3 9-04 -9-06
One casing vol One casing vol Gallons per lin	er (in.): ume (gal.) ume = π . une = ft for c	: 0:55 x [casing radiu rasing diameter	Calculated put us (in.) $x \ 1 \ ft/2$ r of: $1'' = 0$.	arge volume (ga $12 \text{ in.} J^2 x \text{ [well]}$ 041 2'' = 0.1	Well dep 1.) (3 x casing v depth (ft) - depth 6 4." = 0.65 nterface probe	olume): h to water (ft)] 5" = 1.0	$\frac{1}{2} \frac{1}{7} \frac{1}{6} \frac{1}$
Purge rate:	<u>(</u>	PVC bailer	Teflon	bailer (Well yield (H/L): Low	ァックを eristaltic pump	<u>×</u>
Purge water di Time (2400 h OGU iOGE	ر بر بر بر	Cumulative Vol. Purged		S: L EC (µS/cm) 578 555.4 568	T (° C) /7./ /7.2 /7.1	Color (Visual) Clicar Clicar Clicar	Turbidity (Visual of NTU) 555 444.5 39.9
Total Purged (WELL SAMP Date sampled: Sampling equi	LING	Peristaltic	pump 🗡 I	Depth Bladder pump	End time: to water (ft) be Teflon	fore sampling: bailer	13.76
Weather condition	itions: n/Remarks:	Sunni A	ی [ا	amples	Ambient tempera falce	ature (° F):	<u> </u>
Meter calibrat Purged and sa	Temp		nul L. May	T	pH urbidity Reviewed by	B	

4

.

-

,

		S	SAMPLE C	OLLECTIC	N FIELD DA	TA	Page of
Project No.: Project Name: Location: Client:	CS1605 Alameda I Alameda, Cargill Sa	CA			Well ID: Sample II Start Date Finish Da	D: <u>MW</u> e: <u>4-5</u>	
Gallons per li	er (in.): lume (gal.): lume = π : near fi for c	() (S (casing radii asing diamete	Calculated put us (in.) $x \ 1 \ ft/$ r of: $I'' = 0$.	urge volume (ga 12 in.] ² x [well 041 2" = 0.1	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} $	blume): [. to water (ft)] 5" = 1.0 6	$\frac{G}{x} \frac{G}{7.48} \frac{gal/ft^3}{gal}$ 5'' = 1.5 8'' = 2.6
WELL PURG Date purged: Purging equip Purge rate: Purge water d Tim (2400) O 747 Q 400 O 517	lisposal: e	Submersible PVC bailer O, 5 Df UM Cumulative Vol. Purged	pump I Teflon	$\frac{2736}{\text{Bladder pump}}{\text{bailer}}$ Well yield (H/I Structure EC (μ S/cm) 636 595 612	Other	Color (Visual) Clear Clear Clear	Turbidity (Visual of NTU) $O_{i} \otimes 9$ $\overline{C}_{i} 3 \otimes 9$ $\overline{C}_{i} 3 \otimes 9$
Total Purged	(gal.):	7.2.4	4-13				
WELL SAMI Date sampled Sampling equ	: <u>le-9</u> -	Peristaltic	pump 🔶 🛛	Depti Bladder pump	End time: _ (n to water (ft) bef Teflon 1	ore sampling: bailer	10.43
Weather cond Well conditio		Clouby	Sample		Ambient tempera Glan		<u>u</u> ð
Meter calibra Purged and sa	Tempe ampled by (erature	5,340-13 14.4 14.4 14.4	T	pH <u>(4,99</u> Jurbidity <u>7.0</u> Reviewed <u>69</u> :	700/9. 1: M3	8

Appendix B

Groundwater Velocity Calculations

APPENDIX B GROUNDWATER VELOCITY CALCULATIONS

FOR CARGILL ALAMEDA SITE, 2006 DATA

GROUNDWATER VELOCITY FORMULA

V = Ki/n where:

V = average linear groundwater velocity	i = hydraulic gradient
K = hydraulic conductivity	n = effective porosity

PARAMETERS

Range of hydraulic conductivity values (K) from slug tests:

Material	Well	K (cm/sec)
Silty sand (SM) and Clayey sand (SC)	MW-1	0.00002
Silty sand (SM) and Clayey sand (SC)	MW-2	0.00002
Silty sand (SM) and Clayey sand (SC)	MW-3	0.000003

Highest measured K = 0.00002

Porosity (n) = 33% (from laboratory analysis of boring B21 soil sample)

Hydraulic gradient (i) calculated from groundwater contours:

March 2006	0.03
June 2006	0.016

UNIT CONVERSIONS

1 day =	86,400 sec	1 cm/sec =	2,834.65 ft/day
1 foot =	30.48 cm	1 cm/sec =	1,034,645.67 ft/yr

CALCULATED VELOCITIES

	Flow	K	i	n	V
Measurement Event	Direction	(cm/sec)	(ft/ft)		(ft/yr)
March 2006 June 2006	NE NE	$0.00002 \\ 0.00002$	0.030 0.016	0.33 0.33	2 1

Calculations and assumptions prepared by:

plante (. wheele

Date: 11/8/2006

Appendix C

Certified Analytical Reports and Chain-of-Custody Documentation

First Quarter 2006

ANALYTICAL REPORT

Job Number: 720-2508-1

Job Description: Alameda Facility CS 1605

For: Crawford Consulting Inc 2 North First Street 4th Floor San Jose, CA 95113-1212

Attention: Mark Wheeler

Shar

Dimple Sharma Project Manager I dsharma@stl-inc.com 03/17/2006

cc: Dana Johnston

Project Manager: Dimple Sharma

METHOD SUMMARY

Client: Crawford Consulting Inc

Job Number: 720-2508-1

Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level)	STL-SF	SW846 8260B	
Purge-and-Trap	STL-SF		SW846 5030B

LAB REFERENCES:

STL-SF = STL-San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Crawford Consulting Inc

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-2508-1	MW-1	Water	03/10/2006 0942	03/10/2006 1125
720-2508-2	MW-2	Water	03/10/2006 1022	03/10/2006 1125
720-2508-3	MW-3	Water	03/10/2006 0902	03/10/2006 1125
720-2508-4	MW-4	Water	03/10/2006 0817	03/10/2006 1125
720-2508-5	DUP-1	Water	03/10/2006 0000	03/10/2006 1125
720-2508-6	TB-1	Water	03/10/2006 0000	03/10/2006 1125

Client: Crawford Consulting Inc

Client Sample ID:

Lab Sample ID:

Job Number: 720-2508-1

 Date Sampled:
 03/10/2006
 0942

 Date Received:
 03/10/2006
 1125

Client Matrix:	Water
	8260B Volatile Organic Co

720-2508-1

MW-1

8260B Volatile Organic Compounds by GC/MS (Low Level)						
Method:	8260B	Analysis Batch: 720-6566	Instrument ID:	Varian 3900F		
Preparation:	5030B		Lab File ID:	c:\saturnws\data\200603\03		
Dilution:	1.0		Initial Weight/Volu	ıme: 40 mL		
Date Analyzed:	03/15/2006 1429		Final Weight/Volu	me: 40 mL		
Date Prepared:	03/15/2006 1429					

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	1.4		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	3.4		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	39		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8	93		77 - 121
4-Bromofluorobenzene	102		79 - 118
1,2-Dichloroethane-d4	104		78 - 117

Client: Crawford Consulting Inc

720-2508-2

Water

Job Number: 720-2508-1

Client Sample ID: MW-2

Lab Sample ID:

Client Matrix:

 Date Sampled:
 03/10/2006
 1022

 Date Received:
 03/10/2006
 1125

Method: Preparation: Dilution:	8260B 5030B 50	Analysis Batch: 720-6527	Instrument ID: Lab File ID: Initial Weight/Vol	Saturn 2K3 d:\data\200603\ ume: 40 ml	
Date Analyzed: Date Prepared:	03/14/2006 1530 03/14/2006 1530		Final Weight/Vol		

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		25
1,1-Dichloroethane	ND		25
Dichlorodifluoromethane	ND		25
Vinyl chloride	ND		25
Chloroethane	ND		50
Trichlorofluoromethane	ND		50
Methylene Chloride	ND		250
trans-1,2-Dichloroethene	ND		25
cis-1,2-Dichloroethene	ND		25
Chloroform	ND		50
1,1,1-Trichloroethane	ND		25
Carbon tetrachloride	ND		25
1,2-Dichloroethane	ND		25
Trichloroethene	59		25
1,2-Dichloropropane	ND		25
Dichlorobromomethane	ND		25
trans-1,3-Dichloropropene	ND		25
cis-1,3-Dichloropropene	ND		25
1,1,2-Trichloroethane	ND		25
Chlorodibromomethane	ND		25
Chlorobenzene	ND		25
Bromoform	ND		50
1,1,2,2-Tetrachloroethane	ND		25
1,3-Dichlorobenzene	ND		25
1,4-Dichlorobenzene	ND		25
1,2-Dichlorobenzene	ND		25
Chloromethane	ND		50
Bromomethane	ND		50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		25
EDB	ND		25
1,2,4-Trichlorobenzene	ND		50
Surrogate	%Rec		Acceptance Limits
Toluene-d8	91		77 - 121
4-Bromofluorobenzene	101		79 - 118
1,2-Dichloroethane-d4	88		78 - 117

Client: Crawford Consulting Inc Job Number: 720-2508-1 Client Sample ID: MW-2 Lab Sample ID: 720-2508-2 Date Sampled: 03/10/2006 1022 Client Matrix: Water Date Received: 03/10/2006 1125 8260B Volatile Organic Compounds by GC/MS (Low Level) Instrument ID: Method: 8260B Analysis Batch: 720-6566 Varian 3900F Preparation: 5030B Lab File ID: c:\saturnws\data\200603\03 Dilution: 100 Initial Weight/Volume: 40 mL Date Analyzed: 03/15/2006 1610 Final Weight/Volume: 40 mL Date Prepared: 03/15/2006 1610 Qualifier RL Analyte Result (ug/L) Tetrachloroethene 5200 50

Client: Crawford Consulting Inc

Job Number: 720-2508-1

Client Sample ID: MW-3

Lab Sample ID: 720-2508-3 Client Matrix: Water

Date Sampled: 03/10/2006 0902 Date Received: 03/10/2006 1125

Method: Preparation: Dilution: Date Analyzed:	8260B 5030B 1.0 03/15/2006 1503	Analysis Batch: 720-6566	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol	lume:	nws\o 40	F data\200603\03 mL mL
Date Prepared:	03/15/2006 1503					

Analyte	Result (ug/L)	Qualifier RL	
1,1-Dichloroethene	0.86	0.50	
1,1-Dichloroethane	ND	0.50	
Dichlorodifluoromethane	ND	0.50	
Vinyl chloride	ND	0.50	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Methylene Chloride	ND	5.0	
trans-1,2-Dichloroethene	ND	0.50	
cis-1,2-Dichloroethene	ND	0.50	
Chloroform	ND	1.0	
1,1,1-Trichloroethane	ND	0.50	
Carbon tetrachloride	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Trichloroethene	ND	0.50	
1,2-Dichloropropane	ND	0.50	
Dichlorobromomethane	ND	0.50	
trans-1,3-Dichloropropene	ND	0.50	
cis-1,3-Dichloropropene	ND	0.50	
1,1,2-Trichloroethane	ND	0.50	
Tetrachloroethene	ND	0.50	
Chlorodibromomethane	ND	0.50	
Chlorobenzene	ND	0.50	
Bromoform	ND	1.0	
1,1,2,2-Tetrachloroethane	ND	0.50	
1,3-Dichlorobenzene	ND	0.50	
1,4-Dichlorobenzene	ND	0.50	
1,2-Dichlorobenzene	ND	0.50	
Chloromethane	ND	1.0	
Bromomethane	ND	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	
EDB	ND	0.50	
1,2,4-Trichlorobenzene	ND	1.0	
Surrogate	%Rec	Acceptance Limits	
Toluene-d8	94	77 - 121	
4-Bromofluorobenzene	94	79 - 118	
1,2-Dichloroethane-d4	108	78 - 117	

Client: Crawford Consulting Inc

MW-4

Water

720-2508-4

Client Sample ID:

Lab Sample ID:

Client Matrix:

Job Number: 720-2508-1

Date Sampled: 03/10/2006 0817

Date Received: 03/10/2006 1125

Method: 8260B Analysis Batch: 720-6527 Preparation: 5030B	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol	lume: 4	3 0603\031406\720-) mL) mL
---	---	---------	---------------------------------------

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	0.79		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec	Acce	ptance Limits
Toluene-d8	90		- 121
4-Bromofluorobenzene	103	79 -	- 118
1,2-Dichloroethane-d4	86	78 -	· 117

Job Number: 720-2508-1

Client: Crawford Consulting Inc

Client Sample ID: DUP-1

Lab Sample ID: 720-2508-5 Client Matrix: Water

Date Sampled: 03/10/2006 0000 Date Received: 03/10/2006 1125

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	0.76		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	7.0		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	60		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8	91		77 - 121
4-Bromofluorobenzene	102		79 - 118
1,2-Dichloroethane-d4	86		78 - 117

Client: Crawford Consulting Inc

Job Number: 720-2508-1

50

Client Sample ID): DUP-1			
Lab Sample ID:	720-2508-5		Date Sampled:	03/10/2006 0000
Client Matrix:	Water		Date Received:	03/10/2006 1125
	8260B Volati	le Organic Compounds by GC/N	IS (Low Level)	
Method:	8260B	Analysis Batch: 720-6566	Instrument ID: Varia	an 3900F
Preparation:	5030B		Lab File ID: c:\sa	turnws\data\200603\03
Dilution:	100		Initial Weight/Volume:	40 mL
Date Analyzed:	03/15/2006 1643		Final Weight/Volume:	40 mL
Date Prepared:	03/15/2006 1643		-	
Analyte		Result (ua/L)	Qualifier	RL

5600

Tetrachloroethene

Client: Crawford Consulting Inc

Client Sample ID: TB-1

Lab Sample ID: 720-2508-6 Client Matrix: Water

Client Matrix:	Water		Date Received: 03/10/2006 1125
	8260B Volatil	e Organic Compounds by GC/N	IS (Low Level)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 03/14/2006 1033 03/14/2006 1033	Analysis Batch: 720-6528	Instrument ID: Varian 3900F Lab File ID: c:\saturnws\data\200603\0 Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL
Analyte		Result (ug/L)	Qualifier RL
1,1-Dichloroether	ne	ND	0.50
1,1-Dichloroethar	ne	ND	0.50
Dichlorodifluorom	lethane	ND	0.50
Vinyl chloride		ND	0.50
Chloroethane		ND	1.0
Trichlorofluorome		ND	1.0
Methylene Chlorid	de	ND	5.0
trans-1,2-Dichloro		ND	0.50
cis-1,2-Dichloroet	thene	ND	0.50
Chloroform		ND	1.0
1,1,1-Trichloroeth		ND	0.50
Carbon tetrachlor		ND	0.50
1,2-Dichloroethar	le	ND	0.50
Trichloroethene		ND	0.50
1,2-Dichloropropa	ane	ND	0.50

.,.,.		0.00
Carbon tetrachloride	ND	0.50
1,2-Dichloroethane	ND	0.50
Trichloroethene	ND	0.50
1,2-Dichloropropane	ND	0.50
Dichlorobromomethane	ND	0.50
trans-1,3-Dichloropropene	ND	0.50
cis-1,3-Dichloropropene	ND	0.50
1,1,2-Trichloroethane	ND	0.50
Tetrachloroethene	ND	0.50
Chlorodibromomethane	ND	0.50
Chlorobenzene	ND	0.50
Bromoform	ND	1.0
1,1,2,2-Tetrachloroethane	ND	0.50
1,3-Dichlorobenzene	ND	0.50
1,4-Dichlorobenzene	ND	0.50
1,2-Dichlorobenzene	ND	0.50
Chloromethane	ND	1.0
Bromomethane	ND	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50
EDB	ND	0.50
1,2,4-Trichlorobenzene	ND	1.0
Surrogate	%Rec	Acceptance Limits
Toluene-d8	99	77 - 121
4-Bromofluorobenzene	100	79 - 118
1,2-Dichloroethane-d4	99	78 - 117

Date Sampled: 03/10/2006 0000

DATA REPORTING QUALIFIERS

Lab Section

Qualifier

Description

Client: Crawford Consulting Inc

Job Number: 720-2508-1

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC/MS VOA				
Analysis Batch:720-6	527			
LCS 720-6527/9	Lab Control Spike	Water	8260B	
MB 720-6527/10	Method Blank	Water	8260B	
720-2508-2	MW-2	Water	8260B	
720-2508-4	MW-4	Water	8260B	
720-2508-5	DUP-1	Water	8260B	
720-2548-B-4 MS	Matrix Spike	Water	8260B	
720-2548-B-4 MSD	Matrix Spike Duplicate	Water	8260B	
Analysis Batch:720-6	528			
LCS 720-6528/7	Lab Control Spike	Water	8260B	
MB 720-6528/8	Method Blank	Water	8260B	
720-2508-6	TB-1	Water	8260B	
720-2524-D-7 MS	Matrix Spike	Water	8260B	
720-2524-E-7 MSD	Matrix Spike Duplicate	Water	8260B	
Analysis Batch:720-6	5566			
LCS 720-6566/8	Lab Control Spike	Water	8260B	
MB 720-6566/9	Method Blank	Water	8260B	
720-2508-1	MW-1	Water	8260B	
720-2508-2	MW-2	Water	8260B	
720-2508-3	MW-3	Water	8260B	
720-2508-5	DUP-1	Water	8260B	
720-2560-D-1 MS	Matrix Spike	Water	8260B	
720-2560-B-1 MSD	Matrix Spike Duplicate	Water	8260B	

Calculations are performed before rounding to avoid round-off errors in calculated results. Page 14 of 20

Client: Crawford Consulting Inc

Method Blank - Batch: 720-6527

Lab Sample ID: MB 720-6527/10 Client Matrix: Water Dilution: 1.0 Date Analyzed: 03/14/2006 0959 Date Prepared: 03/14/2006 0959 Analysis Batch: 720-6527 Prep Batch: N/A Units: ug/L

Quality Control Results

Job Number: 720-2508-1

Method: 8260B Preparation: 5030B

Instrument ID: Saturn 2K3 Lab File ID: d:\data\200603\031406\MB Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8	92	77 - 121	
4-Bromofluorobenzene	103	79 - 118	
1,2-Dichloroethane-d4	88	78 - 117	

STL San Francisco

Quality Control Results

Job Number: 720-2508-1

Client: Crawford Consulting Inc

Lab Sample ID: LCS 720-6527/9

1.0 Date Analyzed: 03/14/2006 0926

Date Prepared: 03/14/2006 0926

Client Matrix: Water

Dilution:

Laboratory Control Sample - Batch: 720-6527

Method: 8260B Preparation: 5030B

Instrument ID: Saturn 2K3 Lab File ID: d:\data\200603\031406\LC Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amoun	t Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	17	84	65 - 125	
Trichloroethene	20.0	17	84	74 - 134	
Chlorobenzene	20.0	19	95	61 - 121	
Surrogate	9	6 Rec	Ac	ceptance Limits	
Toluene-d8		91		77 - 121	
4-Bromofluorobenzene		102		79 - 118	
1,2-Dichloroethane-d4		85		78 - 117	

Analysis Batch: 720-6527

Prep Batch: N/A

Units:ug/L

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 720-6527

Method: 8260B Preparation: 5030B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	720-2548-B-4 MS Water 20 03/14/2006 1138 03/14/2006 1138	Analysis Batch: Prep Batch: N/A	720-6527	Instrument ID: Saturn 2K3 Lab File ID: d:\data\200603\031406\72 Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	720-2548-B-4 MSD Water 20 03/14/2006 1211 03/14/2006 1211	Analysis Batch: Prep Batch: N/A	720-6527	Instrument ID: Saturn 2K3 Lab File ID: d:\data\200603\031406\72(Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
1,1-Dichloroethene	81	84	65 - 125	3	20	
Trichloroethene	84	84	74 - 134	1	20	
Chlorobenzene	96	97	61 - 121	1	20	
Surrogate		MS % Rec	MSD 9	% Rec	Acce	ptance Limits
Toluene-d8		93	91		77	7 - 121
4-Bromofluorobenzene		101	103		79	9 - 118
1,2-Dichloroethane-d4		92	89		78	3 - 117

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Crawford Consulting Inc

Method Blank - Batch: 720-6528

Lab Sample ID:MB 720-6528/8Client Matrix:WaterDilution:1.0Date Analyzed:03/14/20061000Date Prepared:03/14/20061000

Analysis Batch: 720-6528 Prep Batch: N/A Units: ug/L

Quality Control Results

Job Number: 720-2508-1

Method: 8260B Preparation: 5030B

Instrument ID: Varian 3900F Lab File ID: c:\saturnws\data\200603\03 Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8	98	77 - 121	
4-Bromofluorobenzene	94	79 - 118	
1,2-Dichloroethane-d4	104	78 - 117	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Crawford Consulting Inc

Laboratory Control Sample - Batch: 720-6528

Lab Sample ID:LCS 720-6528/7Client Matrix:WaterDilution:1.0Date Analyzed:03/14/2006Date Prepared:03/14/20060927

Method: 8260B	
Preparation: 5030B	

Instrument ID: Varian 3900F Lab File ID: c:\saturnws\data\200603\03 Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	17	86	65 - 125	
Trichloroethene	20.0	17	86	74 - 134	
Chlorobenzene	20.0	19	97	61 - 121	
Surrogate	% R	ec	Aco	ceptance Limits	
Toluene-d8	10	0		77 - 121	
4-Bromofluorobenzene	97			79 - 118	
1,2-Dichloroethane-d4	96	96		78 - 117	

Analysis Batch: 720-6528

Prep Batch: N/A

Units:ug/L

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 720-6528

Method: 8260B Preparation: 5030B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	720-2524-D-7 MS Water 1.0 03/14/2006 1352 03/14/2006 1352	Analysis Batch: Prep Batch: N/A	Instrument ID: Varian 3900F Lab File ID: c:\saturnws\data\200603\(Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	720-2524-E-7 MSD Water 1.0 03/14/2006 1426 03/14/2006 1426	Analysis Batch: Prep Batch: N/A	Instrument ID: Varian 3900F Lab File ID: c:\saturnws\data\200603\0 Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
1,1-Dichloroethene	91	88	65 - 125	2	20	
Trichloroethene	83	81	74 - 134	3	20	
Chlorobenzene	100	96	61 - 121	5	20	

Quality Control Results

Job Number: 720-2508-1

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Crawford Consulting Inc

Method Blank - Batch: 720-6566

Lab Sample ID: MB 720-6566/9 Client Matrix: Water Dilution: 1.0 Date Analyzed: 03/15/2006 1004 Date Prepared: 03/15/2006 1004

Analysis Batch: 720-6566 Prep Batch: N/A Units: ug/L

Quality Control Results

Job Number: 720-2508-1

Method: 8260B Preparation: 5030B

Instrument ID: Varian 3900F Lab File ID: c:\saturnws\data\200603\03 Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8	95	77 - 121	
4-Bromofluorobenzene	102	79 - 118	
1,2-Dichloroethane-d4	100	78 - 117	

Page 18 of 20

STL San Francisco

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Crawford Consulting Inc

Date Analyzed: 03/15/2006 0931 Date Prepared: 03/15/2006 0931

Laboratory Control Sample - Batch: 7	20-6566
--------------------------------------	---------

Lab Sample ID:	LCS 720-6566/8	Analysis Batch: 720-6566
Client Matrix:	Water	Prep Batch: N/A
Dilution:	1.0	Units:ug/L

Preparation: 5030B

Method: 8260B

Instrument ID: Varian 3900F Lab File ID: c:\saturnws\data\200603\03 Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount Result		% Rec.	Limit	Qual
1,1-Dichloroethene 20.0		17	87	65 - 125	
Trichloroethene	20.0	18	90	74 - 134	
Chlorobenzene	20.0	20	100	61 - 121	
Surrogate	% R	ec	Acc		
Toluene-d8	10	100		77 - 121	
4-Bromofluorobenzene	99			79 - 118	
1,2-Dichloroethane-d4	97	97		78 - 117	

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 720-6566

Method: 8260B Preparation: 5030B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	720-2560-D-1 MS Water 2.0 03/15/2006 1536 03/15/2006 1536	Analysis Batch: Prep Batch: N/A	Instrument ID: Varian 3900F Lab File ID: c:\saturnws\data\200603\(Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	720-2560-B-1 MSD Water 2.0 03/15/2006 1322 03/15/2006 1322	Analysis Batch: Prep Batch: N/A	Instrument ID: Varian 3900F Lab File ID: c:\saturnws\data\200603\03 Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

	<u>%</u>	Rec.				
Analyte	MS MSD Limit		Limit	RPD	RPD Limit	MS Qual MSD Qual
1,1-Dichloroethene	89	95 65 - 125		6	20	
Trichloroethene	79	79	74 - 134	0	20	
Chlorobenzene	96	100	61 - 121	4	20	
Surrogate		MS % Rec	MSD %	% Rec	Acce	ptance Limits
Toluene-d8		96	95		77	7 - 121
4-Bromofluorobenzene		100	98		79	9 - 118
1,2-Dichloroethane-d4		106	104		78	3 - 117

Quality Control Results

Job Number: 720-2508-1

CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM

1220 Quarry Lane, Pleasa (925) 484-1919 FAX (9	-	5				Sei	vice R	eque	st:									Date:	110/26
	ameda Facility 1605					Analysis Requested													
Project Manager: Da Company/Address: Cra 2 1 Sa Phone: (40 Fax: (40 Sampler's Signature:	na Johnston wford Consultin North First St, 4tl n Jose, CA 9511. 8) 287-9934 08) 287-9937	n Floor 3			Number of Containers Volatile Organics (VOCs) (EPA 8021B) Pb (7421); As (7060) Same as Metals COD, TKN 500 ml plastic H ₂ SO ₄ Chloride, Nitrate 500 ml plastic NP pH, Conductivity 500 ml plastic NP 70tal Phenols 70tal Phenols 2 x 500 ml glass H ₂ SO ₄ Volatile Organics (8010) 3 x 40 ml vial TPHgBTEX 2 x 40 ml vial HCl														
Sample	$M \mathcal{P}$		LAB	Sample	Nu	Vol (EP	Pp	Sar	<u>200</u>	CF	500	PH 500	To1 2 x	<u>^</u>		2 x			REMARKS
I.D.	Date	7 Time	I.D.	Matrix															
MW-1	3/12/04	0942		Water	3									X					
MW-2	3/10/04	022		water	3									X					
MW-3	3/10/06	0907		Water	3									X					
MW-4	3/10/04	0717		water	N)									x		<u></u>			
DUP-1	3/10/06			Water	[m]									X					
TB-1	3/10/04	,		Water	Į									x					
Man Relinguist			Received	i By		IRNAROUN		IREM	ENTS	I.	Routic	REQUIRE			DICE I	NFORM	ATION		SAMPLE RECEIPT
Signature Contract L.	Coullig=	Printed Na	Joanth		x	24 hr Standard (5 w Provide Verb		ys)	day sulta		MSD,	t (includes E as required, ed as sample	may be	P.O. #				Shipping VIA: Shipping #: Condition:	
Fim2-10-04		Firm	JOANM	ullen	x	Provide pdf R				III.	Data V (includ	Validation R des All Raw	eport						
Date/Time 112>		Date/Time	3-10-06	1125	Due Date						VQCB DLs/P(QLs/TRACE	#)						
^r Relinquish Signature	ned By	Signature	Received	Ву	-	I Instruct			ents: File for d	etection	n lim	uits and a	most MP	Loophy					
Printed Name Printed Name					Please pd				Johnsto		nto all'O D	por MR	LS UNIY						
Firm		Firm										consulti	ng.com						
Date/Time		Date/Time															•		

STL ChromaLab

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Crawford Consulting Inc

Job Number: 720-2508-1

Login Number: 2508

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

Second Quarter 2006

ANALYTICAL REPORT

Job Number: 720-3999-1

Job Description: Alameda Facility CS 1605

For: Crawford Consulting Inc 2 North First Street 4th Floor San Jose, CA 95113-1212

Attention: Mark Wheeler

Shar 1

Dimple Sharma Project Manager I dsharma@stl-inc.com 06/16/2006

cc: Dana Johnston

Project Manager: Dimple Sharma

Severn Trent Laboratories, Inc. STL San Francisco 1220 Quarry Lane, Pleasanton, CA 94566 Tel (925) 484-1919 Fax (925) 484-1096 www.stl-inc.com

METHOD SUMMARY

Client: Crawford Consulting Inc

Job Number: 720-3999-1

Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level)	STL-SF S	SW846 8260B	
Purge-and-Trap S	STL-SF		SW846 5030B

LAB REFERENCES:

STL-SF = STL-San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Crawford Consulting Inc

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-3999-1	MW-1	Water	06/09/2006 1045	06/09/2006 1215
720-3999-2	MW-2	Water	06/09/2006 1124	06/09/2006 1215
720-3999-3	MW-3	Water	06/09/2006 1009	06/09/2006 1215
720-3999-4	MW-4	Water	06/09/2006 0816	06/09/2006 1215
720-3999-5	DUP-1	Water	06/09/2006 0000	06/09/2006 1215
720-3999-6TB	TB-1	Water	06/09/2006 0000	06/09/2006 1215

Client: Crawford Consulting Inc

Job Number: 720-3999-1

MW-1 720-3999-1

Lab Sample ID: 720-39 Client Matrix: Water

Client Sample ID:

 Date Sampled:
 06/09/2006
 1045

 Date Received:
 06/09/2006
 1215

Method: Preparation:	8260B 5030B	Analysis Batch: 720-9866	Instrument ID: Lab File ID:	Saturn 2 d:\data\2	K3 00606\061206\720-
Dilution:	4.0		Initial Weight/Vol	lume:	40 mL
Date Analyzed:	06/12/2006 1855		Final Weight/Vol	ume:	40 mL
Date Prepared:	06/12/2006 1855				

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		2.0
1,1-Dichloroethane	ND		2.0
Dichlorodifluoromethane	ND		2.0
Vinyl chloride	ND		2.0
Chloroethane	ND		4.0
Trichlorofluoromethane	ND		4.0
Methylene Chloride	ND		20
trans-1,2-Dichloroethene	ND		2.0
cis-1,2-Dichloroethene	ND		2.0
Chloroform	ND		4.0
1,1,1-Trichloroethane	ND		2.0
Carbon tetrachloride	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	22		2.0
1,2-Dichloropropane	ND		2.0
Dichlorobromomethane	ND		2.0
trans-1,3-Dichloropropene	ND		2.0
cis-1,3-Dichloropropene	ND		2.0
1,1,2-Trichloroethane	ND		2.0
Tetrachloroethene	140		2.0
Chlorodibromomethane	ND		2.0
Chlorobenzene	ND		2.0
Bromoform	ND		4.0
1,1,2,2-Tetrachloroethane	ND		2.0
1,3-Dichlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
1,2-Dichlorobenzene	ND		2.0
Chloromethane	ND		4.0
Bromomethane	ND		4.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0
EDB	ND		2.0
1,2,4-Trichlorobenzene	ND		4.0
Surrogate	%Rec	Acceptance	Limits
Toluene-d8	100	77 - 121	
4-Bromofluorobenzene	109	79 - 118	
1,2-Dichloroethane-d4	105	78 - 117	

Client: Crawford Consulting Inc

Job Number: 720-3999-1

Client Sample ID: MW-2 720-3999-2

Lab Sample ID: Client

Lab Sample ID: Client Matrix:	720-3999-2 Water		Date Sampled: Date Received:	06/09/2006 1124 06/09/2006 1215
	8260B Volatile	e Organic Compounds by GC/MS (L	_ow Level)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 40 06/12/2006 1929 06/12/2006 1929	Analysis Batch: 720-9866		

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		20
1,1-Dichloroethane	ND		20
Dichlorodifluoromethane	ND		20
Vinyl chloride	ND		20
Chloroethane	ND		40
Trichlorofluoromethane	ND		40
Methylene Chloride	ND		200
trans-1,2-Dichloroethene	ND		20
cis-1,2-Dichloroethene	ND		20
Chloroform	ND		40
1,1,1-Trichloroethane	ND		20
Carbon tetrachloride	ND		20
1,2-Dichloroethane	ND		20
Trichloroethene	ND		20
1,2-Dichloropropane	ND		20
Dichlorobromomethane	ND		20
trans-1,3-Dichloropropene	ND		20
cis-1,3-Dichloropropene	ND		20
1,1,2-Trichloroethane	ND		20
Tetrachloroethene	1600		20
Chlorodibromomethane	ND		20
Chlorobenzene	ND		20
Bromoform	ND		40
1,1,2,2-Tetrachloroethane	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,2-Dichlorobenzene	ND		20
Chloromethane	ND		40
Bromomethane	ND		40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
EDB	ND		20
1,2,4-Trichlorobenzene	ND		40
Surrogate	%Rec		Acceptance Limits
Toluene-d8	99		77 - 121
4-Bromofluorobenzene	107		79 - 118
1,2-Dichloroethane-d4	113		78 - 117

Client: Crawford Consulting Inc

Job Number: 720-3999-1

Client Sample ID: MW-3

Lab Sample ID: 720-3999-3

Client Matrix: Water

Date Sampled:	06/09/2006	1009
Date Received:	06/09/2006	1215

Method: Preparation: Dilution:	8260B 5030B 1.0	Analysis Batch: 720-9929	Instrument ID: Lab File ID: Initial Weight/Vo	606\061306\720- mL
Date Analyzed: Date Prepared:	06/13/2006 1638 06/13/2006 1638		Final Weight/Vol	mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	4.3		0.50
1,1-Dichloroethane	0.50		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8	98		77 - 121
4-Bromofluorobenzene	109		79 - 118
1,2-Dichloroethane-d4	110		78 - 117

Client: Crawford Consulting Inc

MW-4

Water

720-3999-4

Client Sample ID:

Lab Sample ID:

Client Matrix:

Job Number: 720-3999-1

Date Sampled:06/09/20060816Date Received:06/09/20061215

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	0.64		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec	Acceptance	e Limits
Toluene-d8	94	77 - 121	
4-Bromofluorobenzene	94	79 - 118	
1,2-Dichloroethane-d4	94	78 - 117	

Client: Crawford Consulting Inc

Job Number: 720-3999-1

Client Sample ID: DUP-1

Lab Sample ID: 720-3999-5 Client Matrix: Water
 Date Sampled:
 06/09/2006
 0000

 Date Received:
 06/09/2006
 1215

Method: Preparation: Dilution:	8260B 5030B 1.0	Analysis Batch: 720-9865	Instrument ID: Lab File ID: Initial Weight/Vo	lume:	nws\data\200606\06 40 mL
Date Analyzed: Date Prepared:	06/12/2006 1832 06/12/2006 1832		Final Weight/Vol	ume:	40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	0.90		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	9.7		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8	94		77 - 121
4-Bromofluorobenzene	100		79 - 118
1,2-Dichloroethane-d4	98		78 - 117

Client: Crawford Consulting Inc

Job Number: 720-3999-1

Client Sample ID): DUP-1		
Lab Sample ID:	720-3999-5		Date Sampled: 06/09/2006 0000
Client Matrix:	Water		Date Received: 06/09/2006 1215
	8260B Volati	le Organic Compounds by GC/N	IS (Low Level)
Method:	8260B	Analysis Batch: 720-9929	Instrument ID: Saturn 2K3
Preparation:	5030B		Lab File ID: d:\data\200606\061306\7
Dilution:	40		Initial Weight/Volume: 40 mL
Date Analyzed:	06/13/2006 1458		Final Weight/Volume: 40 mL
Date Prepared:	06/13/2006 1458		
Analyte		Result (ug/L)	Qualifier RL
Tetrachloroethene	9	1500	20

Job Number: 720-3999-1

06/09/2006 0000

0.50

1.0

0.50

0.50

0.50

0.50

1.0

1.0

0.50

0.50

Date Sampled:

Client: Crawford Consulting Inc

Client Sample ID: TB-1

Lab Sample ID: 720-3999-6TB Client Matrix: Water

Client Matrix:	Water		Date Received: 06	/09/2006 1215			
8260B Volatile Organic Compounds by GC/MS (Low Level)							
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 06/12/2006 1111 06/12/2006 1111	Analysis Batch: 720-9865	Instrument ID: Varian Lab File ID: c:\satur Initial Weight/Volume: Final Weight/Volume:	3900G mws\data\200606\06 40 mL 40 mL			
Analyte		Result (ug/L)	Qualifier	RL			
1,1-Dichloroethen	ie	ND		0.50			
1,1-Dichloroethan	e	ND		0.50			
Dichlorodifluorom	ethane	ND		0.50			
Vinyl chloride		ND		0.50			
Chloroethane		ND		1.0			
Trichlorofluorome		ND		1.0			
Methylene Chloric		ND		5.0			
trans-1,2-Dichloro		ND		0.50			
cis-1,2-Dichloroet	hene	ND		0.50			
Chloroform		ND		1.0			
1,1,1-Trichloroeth		ND		0.50			
Carbon tetrachlor		ND		0.50			
1,2-Dichloroethan	ie	ND		0.50			
Trichloroethene		ND		0.50			
1,2-Dichloropropa		ND		0.50			
Dichlorobromome		ND		0.50			
trans-1,3-Dichloro		ND		0.50			
cis-1,3-Dichloropr		ND		0.50			
1,1,2-Trichloroeth		ND		0.50			
Tetrachloroethene		ND		0.50			
Chlorodibromome	emane	ND		0.50			

1,2,4-Trichlorobenzene	ND	1.0
Surrogate	%Rec	Acceptance Limits
Toluene-d8	91	77 - 121
4-Bromofluorobenzene	100	79 - 118
1,2-Dichloroethane-d4	96	78 - 117

ND

Chlorobenzene

1,1,2,2-Tetrachloroethane

1,1,2-Trichloro-1,2,2-trifluoroethane

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Chloromethane

Bromomethane

EDB

Bromoform

DATA REPORTING QUALIFIERS

Lab Section

Qualifier

Description

Client: Crawford Consulting Inc

Job Number: 720-3999-1

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC/MS VOA				
Analysis Batch:720-9	865			
LCS 720-9865/7	Lab Control Spike	Water	8260B	
MB 720-9865/8	Method Blank	Water	8260B	
720-3987-B-4 MS	Matrix Spike	Water	8260B	
720-3987-B-4 MSD	Matrix Spike Duplicate	Water	8260B	
720-3999-4	MW-4	Water	8260B	
720-3999-5	DUP-1	Water	8260B	
720-3999-6TB	TB-1	Water	8260B	
Analysis Batch:720-9	866			
LCS 720-9866/7	Lab Control Spike	Water	8260B	
MB 720-9866/8	Method Blank	Water	8260B	
720-3993-B-1 MS	Matrix Spike	Water	8260B	
720-3993-C-1 MSD	Matrix Spike Duplicate	Water	8260B	
720-3999-1	MW-1	Water	8260B	
720-3999-2	MW-2	Water	8260B	
Analysis Batch:720-9	929			
LCS 720-9929/7	Lab Control Spike	Water	8260B	
MB 720-9929/8	Method Blank	Water	8260B	
720-3999-3	MW-3	Water	8260B	
720-3999-5	DUP-1	Water	8260B	
720-3999-5MS	Matrix Spike	Water	8260B	
720-3999-5MSD	Matrix Spike Duplicate	Water	8260B	

Client: Crawford Consulting Inc

Method Blank - Batch: 720-9865

Lab Sample ID:MB 720-9865/8Client Matrix:WaterDilution:1.0Date Analyzed:06/12/20061037Date Prepared:06/12/20061037

Analysis Batch: 720-9865 Prep Batch: N/A Units: ug/L

Quality Control Results

Job Number: 720-3999-1

Method: 8260B Preparation: 5030B

Instrument ID: Varian 3900G Lab File ID: c:\saturnws\data\200606\06 Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8	92	77 - 121	
4-Bromofluorobenzene	96	79 - 118	
1,2-Dichloroethane-d4	108	78 - 117	

STL San Francisco

1,1-Dichloroethene

4-Bromofluorobenzene

1,2-Dichloroethane-d4

Trichloroethene

Chlorobenzene

Surrogate

Toluene-d8

Page 14 of 20

65 - 125

74 - 134

61 - 121

94

96

98

6

3

5

MSD % Rec

20

20

20

Acceptance Limits

77 - 121

79 - 118

78 - 117

93

89

Calculations are performed before rounding to avoid round-off errors in calculated results.

110

88

86

94

95

95

105

MS % Rec

				Prepa	iration: 5030B	
Lab Sample ID: LCS Client Matrix: Wate Dilution: 1.0 Date Analyzed: 06/12 Date Prepared: 06/12	er 2/2006 1003	Analysis Batch: Prep Batch: N/A Units:ug/L	720-9865	Lab Fi Initial \	nent ID: Varian 3900 le ID: c:\saturnws' Neight/Volume: 40 Veight/Volume: 40	data\200606\0€ mL
Analyte		Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethene Trichloroethene Chlorobenzene		20.0 20.0 20.0	18 18 21	89 90 106	65 - 125 74 - 134 61 - 121	
Surrogate		% Re	ec	Acc	eptance Limits	
Toluene-d8 4-Bromofluorobenzen 1,2-Dichloroethane-d4 Matrix Spike/ Matrix Spike Dupli		95 96 97 ort - Batch: 720-9	865		77 - 121 79 - 118 78 - 117 od: 8260B tration: 5030B	
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	720-3987-B-4 MS Water 10 06/12/2006 1400 06/12/2006 1400	Analysis Batch: Prep Batch: N/A	720-9865	Lab Fi Initial V	nent ID: Varian 390 le ID: c:\saturnw Weight/Volume: 40 Veight/Volume: 40	s\data\200606\(mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	720-3987-B-4 MSD Water 10 06/12/2006 1434 06/12/2006 1434	Analysis Batch: Prep Batch: N/A	720-9865	Lab Fi Initial \	nent ID: Varian 3900 le ID: c:\saturnws\ Weight/Volume: 40 Veight/Volume: 40	data\200606\0€ mL
Analyte		<u>% Rec.</u> MS MSD	Limit	RPD R	PD Limit MS Qu	al MSD Qual

Client: Crawford Consulting Inc

Laboratory Control Sample - Batch: 720-9865

Quality Control Results

Job Number: 720-3999-1

Method: 8260B Preparation: 5030B

Client: Crawford Consulting Inc

Method Blank - Batch: 720-9866

Lab Sample ID:MB 720-9866/8Client Matrix:WaterDilution:1.0Date Analyzed:06/12/20061109Date Prepared:06/12/20061109

Analysis Batch: 720-9866 Prep Batch: N/A Units: ug/L

Quality Control Results

Job Number: 720-3999-1

Method: 8260B Preparation: 5030B

Instrument ID: Saturn 2K3 Lab File ID: d:\data\200606\061206\MB Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8	100	77 - 121	
4-Bromofluorobenzene	109	79 - 118	
1,2-Dichloroethane-d4	108	78 - 117	

STL San Francisco

Quality Control Results

Job Number: 720-3999-1

Client: Crawford Consulting Inc

Lab Sample ID: LCS 720-9866/7

1.0 Date Analyzed: 06/12/2006 1035

Date Prepared: 06/12/2006 1035

Client Matrix: Water

Dilution:

Laboratory Control Sample - Batch: 720-9866

Method: 8260B Preparation: 5030B

Instrument ID: Saturn 2K3 Lab File ID: d:\data\200606\061206\LC Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	19	96	65 - 125	
Trichloroethene	20.0	18	91	74 - 134	
Chlorobenzene	20.0	20	102	61 - 121	
Surrogate	% R	lec	Acc	ceptance Limits	
Toluene-d8	10	0		77 - 121	
4-Bromofluorobenzene	10	8		79 - 118	
1.2-Dichloroethane-d4	10	3	78 - 117		

Analysis Batch: 720-9866

Prep Batch: N/A

Units:ug/L

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 720-9866

Method: 8260B Preparation: 5030B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	720-3993-B-1 MS Water 1.0 06/12/2006 1355 06/12/2006 1355	Analysis Batch: Prep Batch: N/A	Instrument ID: Saturn 2K3 Lab File ID: d:\data\200606\061206\7 Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	720-3993-C-1 MSD Water 1.0 06/12/2006 1429 06/12/2006 1429	Analysis Batch: Prep Batch: N/A	Instrument ID: Saturn 2K3 Lab File ID: d:\data\200606\061206\72(Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
1,1-Dichloroethene	84	91	65 - 125	9	20	
Trichloroethene	86	91	74 - 134	5	20	
Chlorobenzene	97	104	61 - 121	7	20	
Surrogate		MS % Rec	MSD 9	% Rec	Acce	ptance Limits
Toluene-d8		100	100		77	7 - 121
4-Bromofluorobenzene		108	111		79	9 - 118
1,2-Dichloroethane-d4		99	106		78	3 - 117

Client: Crawford Consulting Inc

Method Blank - Batch: 720-9929

Lab Sample ID:MB 720-9929/8Client Matrix:WaterDilution:1.0Date Analyzed:06/13/20061045Date Prepared:06/13/20061045

Analysis Batch: 720-9929 Prep Batch: N/A Units: ug/L

Quality Control Results

Job Number: 720-3999-1

Method: 8260B Preparation: 5030B

Instrument ID: Saturn 2K3 Lab File ID: d:\data\200606\061306\MB Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8	101	77 - 121	
4-Bromofluorobenzene	108	79 - 118	
1,2-Dichloroethane-d4	109	78 - 117	

Laboratory Control Sample - Batch: 720-9929

Lab Sample ID: LCS 720-9929/7 Client Matrix: Water Dilution: 1.0 Date Analyzed: 06/13/2006 1011 Date Prepared: 06/13/2006 1011

Analyte

1,1-Dichloroethene

Trichloroethene

Chlorobenzene

Surrogate

Toluene-d8 101 4-Bromofluorobenzene 111 1,2-Dichloroethane-d4

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 720-9929

Method: 8260B Preparation: 5030B

Acceptance Limits

77 - 121

79 - 118

78 - 117

Method: 8260B Preparation: 5030B

Instrument ID: Saturn 2K3

Initial Weight/Volume: 40 mL

Final Weight/Volume: 40 mL

Limit

65 - 125

74 - 134

61 - 121

Lab File ID: d:\data\200606\061306\LC

MS Lab Sample ID:	720-3999-5	Analysis Batch: 720-9	929 Instrument ID: Saturn 2K3
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: d:\data\200606\061306\72
Dilution:	40		Initial Weight/Volume: 40 mL
Date Analyzed:	06/13/2006 1531		Final Weight/Volume: 40 mL
Date Prepared:	06/13/2006 1531		
MSD Lab Sample ID:	720-3999-5	Analysis Batch: 720-9	929 Instrument ID: Saturn 2K3
MSD Lab Sample ID: Client Matrix:	720-3999-5 Water	Analysis Batch: 720-9 Prep Batch: N/A	929 Instrument ID: Saturn 2K3 Lab File ID: d:\data\200606\061306\720
1		,	
Client Matrix:	Water	,	Lab File ID: d:\data\200606\061306\720

Analysis Batch: 720-9929

Result

18

18

20

% Rec

101

% Rec.

92

90

101

Prep Batch: N/A

Spike Amount

20.0

20.0

20.0

Units:ug/L

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
1,1-Dichloroethene	86	87	65 - 125	2	20	
Trichloroethene	84	85	74 - 134	1	20	
Chlorobenzene	98	99	61 - 121	2	20	
Surrogate		MS % Rec	MSD %	Rec	Acce	ptance Limits
Toluene-d8		99	99		77	7 - 121
4-Bromofluorobenzene		109	105		79	9 - 118
1,2-Dichloroethane-d4		107	105		78	3 - 117

Calculations are performed before rounding to avoid round-off errors in calculated results.

Quality Control Results

Job Number: 720-3999-1

Qual

STL San Francisco

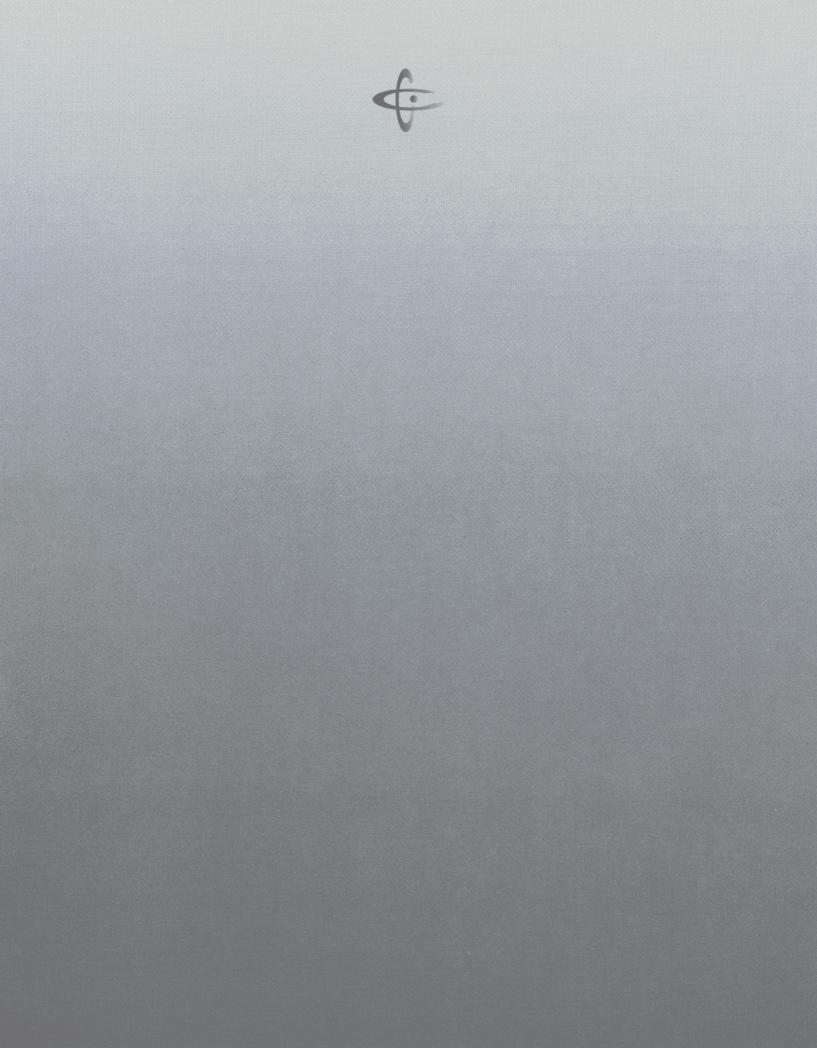
Chain of Custody

1220 Quarry Lane • Pleasanton CA 94566-4756 Phone: (925) 484-1919 • Fax: (925) 484-1096

Date (

Reference #: <u>41≥%</u> <u>19/04</u> Page <u>(</u>of <u>)</u>

From													Ar	alysis	s requ	est									
	Wheeler																		ô	<u>A</u>					
Company Crawfo	ord Cons	-	-		21) MTBE		Silica	A, EDB	21)		<u> </u>	Petroleum I Total	81)	8310					for H ₂	Alkalinity TDS	°on D	15.1)			
Address 2 Nort	h First S	treet,	4 th Fle	oor	20/80	S.		260B	oons 10/802	B)	8270	l Petro 1 Tota	PA 80 (082)		471)	7420)		6	Chrom			arbon (4			ners
San Jo Sampler (Signature)	ose, CA	9511	3		15, 80 18TE	o20)	015M	ties (8	A 80	nics 8021	(EPA	e e	les (E EPA 8	□ 8270	ls 470/7-	.20) 6010/		(STLC	alent (Cond.	0 0	c Cart			Contai
M					N _ 10	ole Arc EPA 8	EPA 8	ygena DFull	ole Ha	Orgal (EPA	latiles	Greas 364)	Pesticides (EPA 8081) PCBs (EPA 8082)		. Meta 010/7-)10/74 nese (ead	W.E.T (STLC) TCLP	Hexavalent Chromium pH (24h hold time for H ₂ O)	Spec C TSS		Jrgani			er of (
Prope (408) 287-9934	Fax/Em (408) 28	ail 87-9937			TPH (EPA 8015, 8020/8021) D Gas w/ DBTEX DMTBE	Purgeable Aromatics BTEX (EPA 8020)	TEPH (EPA 8015M) Gel	Fuel Oxygenates (8260B) MTBE DFull List DDCA,	Purgeable Halocarbons (HVOCs) (EPA 8010/8021)	Volatile Organics (VOCs) (EPA 8021B)	Semivolatiles (EPA 8270)	Oil and Grease (EPA 1664)		PNAs by	CAM17 Metals (EPA 6010/7470/7471)	Iron (6010/7420) Manganese (6010/7420)	Total Lead				Anions : F	Тоtal Organic Carbon (415.1)			Number of Containers
Sample ID	Date	Time	Mat	Pres		4.8	۳Ō١	. ແ∑ι	ц.Т.	ļ	Ň	0.		<u> </u>	0 UU	52	<u> </u>				<u>ч</u> ш				3
MW-1	49/06	1047	_H2O	HCI						X			<u> </u>												3
MW-2	Clajor	1124	H2O	HCI						X															3
MW-3	6/0/4	1009	H2O	HCI						X															3
MW-4	6/2/04	0814	H2O	HCI						X															
DUP-1	6506		H2O	HCI						X															
TB-1	4 94	-	H2O	нсі						X															Pade 19 of 20
																									+
							1) P4	elinguist	ed by:		, ,		2) F	Relinqui	shed by				3	Reling	uished	by:			<u></u>
Project In	fo.		mple Contair		pt			1 D p		/	1	215		toniqui	unea by										
Project Name: Alameda Facility						_//	Sign	ature ,	<u>aj e</u>	·			Sig	nature			T	ime	s	ignature	e			Time	
Project#: CS1605	-	Hea	ad Spac	e:				kAU (Gal	4505	6/0													<u>D-t-</u>	
PO#:		Ten	np:				Print	ed Nam	e		Da	ate	Prir	nted Na	me		[Date	P	rinted N	lame			Date	
		Cor	nforms to	o record	:		1	Field Solutions Inc. (408) 281-2322				Company					- c	Company							
		Oth	er				Company 1) Received by:				1	2) Received by:					3	3) Received by (Laboratory):							
	48h 24h							loa	\mathcal{M}	wl i	Ly	1710	_												
		_evel 3	□Level	4 🗆 E (DD		Sign	ature	<u>v v</u>	بر ت م	Tìn /	ne	Sig	nature			T	ime	S	ignatur	e			Time	
Please provide fax	prelimina	ry resi	ults to	Crawfo	rd			DAN	<u>λ</u> μ	rller	<u>16</u>	9-06 ate		nted Na	me			Date	— -	rinted N	Jame	<u> </u>		Date	
Consulting at the nu	umber liste	d abov	/e.					ed Nam ST	SF	<u>`</u>	U.			NGU IND			•								
Please refer to Proj only.	ect File for	- detec	tion lim	its and	report	MRLs	Company			Cor	Company					Company									


LOGIN SAMPLE RECEIPT CHECK LIST

Client: Crawford Consulting Inc

Job Number: 720-3999-1

Login Number: 3999

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

