RECEIVED

By Alameda County Environmental Health 2:54 pm, Nov 04, 2015

2101 Williams Associates, LLC

2228 Livingston Street Oakland, CA 94606 Telephone (510) 261-5500

October 29, 2015

Mr. Mark Detterman Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT:

INDOOR AIR INVESTIGATION REPORT CERTIFICATION

County Case # RO 2468 James River Corporation 2101 Williams Street San Leandro, CA

Dear Mr. Detterman:

You will find enclosed one copy of the following document prepared by P&D Environmental, Inc. for the subject site.

• Indoor Air Investigation Report dated October 29, 2015.

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Please don't hesitate to call me if you have any questions.

Sincerely,

2101 Williams Associates, LLC

Carey Andre \

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

October 29, 2015 Report 0660.R2

Ms. Carey Andre 2101 Williams Associates, LLC 2228 Livingston Street Oakland, CA 94606

SUBJECT: INDOOR AIR INVESTIGATION REPORT (IA1 THROUGH IA3, AND AA1)

County Case # RO 2468

Former James River Corporation Site

2101 Williams Street San Leandro, California

Dear Ms. Andre:

P&D Environmental, Inc. (P&D) has prepared this report documenting the collection of three indoor air samples designated as IA1 through IA3, and collection of one ambient air sample designated as AA1 for evaluation of tetrachloroethene (PCE) concentrations in air at the subject site. The samples were collected using SIM-certified flow controllers and Summa canisters during a 24-hour period that ended on August 25, 2015. All activities were performed in accordance with procedures set forth in P&D's Indoor Air Investigation Work Plan (document 0660.W2) dated May 13, 2015. The work plan was conditionally approved in a letter from the Alameda County Department of Environmental Health (ACDEH) dated June 1, 2015.

A Site Location Map (Figure 1) and a Site Plan Aerial Photograph Showing PCE concentrations in indoor and outdoor ambient air (Figure 2) are attached with this report. All work was performed under the direct supervision of a California professional geologist.

BACKGROUND

PCE that originates from offsite and upgradient of the subject site has been detected in groundwater on the upgradient and downgradient sides of the subject site building. The presence of the PCE groundwater plume has been well-documented on the upgradient property and is recognized by the San Francisco Bay Regional Water Quality Control Board (SFRWQCB) to originate from some unknown upgradient location.

Vapor Pins VP1 through VP6 were installed on November 4, 2014 and were sampled on November 5, 2014. Based on the initial sample results Vapor Pins VP3 through VP6 were sampled a second time on December 10, 2014. Following discussions with the ACDEH regarding the sample results and approval from the ACDEH in an e-mail dated January 29, 2015 Vapor Pins VP7 through VP12 were installed on February 3, 2015 and sampled on

February 16 and 17, 2015. The historical Vapor Pin sub-slab soil gas sample results are summarized in Table 1 of this report and the Vapor Pin locations and the highest detected PCE concentrations at these locations are shown on Figure 2 of this report. Based on the results of the sub-slab soil gas results and groundwater sample results obtained during previous investigations by others, P&D prepared an Indoor Air Investigation Work Plan (document 0660.W2) dated May 13, 2015 and a Subsurface Investigation Work Plan (document 0660.W3) dated May 26, 2015. The work plans were conditionally approved in a letter from the ACDEH dated June 1, 2015.

Notification of the schedule for proposed tenant notification, chemical inventory, indoor air sampling, and subsurface investigation were provided to the ACDEH by the property owner on July 27, 2015. The notification confirmed that the ACDEH was not requiring a draft fact sheet at this time, and the absence of a HVAC system in the sampling area eliminated the requirement that sampling be conducted with the HVAC system on. In addition, the notification confirmed completion of actions requested by the ACDEH related to the posting of site data on GeoTracker. In an e-mail dated July 27, 2015 the ACDEH responded to the notification and approved an extension for submittal of the indoor air investigation report.

FIELD ACTIVITIES

No permits were required for the collection of indoor and ambient air samples. Prior to sample collection a health and safety plan was prepared, tenants were notified of the upcoming indoor air sampling, arrangements were made with the tenants for access to perform chemical inventories of the tenant spaces, and notification of the field dates was provided to the ACDEH.

Tenant Notification and Chemical Inventory

Prior to indoor air sampling, written notification of pending site investigation activities was provided to the tenants by the property owner, and access was scheduled with the tenants to perform chemical inventories. P&D personnel met on August 17, 2015 with the tenants of King's Asian Gourmet, Moore Newton Quality Hardwood and Sunlink, and conducted a chemical inventory of each tenant space to identify the presence of chemicals potentially containing volatile organic compounds (VOCs). The chemical inventory forms are attached with this report as Appendix A. Various commonly-available cleaning products and lubricants, including some containing VOCs were removed from the property on August 21, 2015 (three days prior to air sample collection). No PCE or PCE-containing products were identified as part of the chemical inventory.

<u>Indoor Air and Ambient Air Sample Collection</u>

Beginning on August 24, 2015 at approximately 08:30 am and ending on August 25, 2015 at approximately 09:30 am, indoor air samples designated as IA1 through IA3 were collected inside the warehouse tenant spaces as shown on Figure 2. In addition, at the same time one duplicate indoor air sample (designated as IA1-DUP) was collected at location

IA1 using a stainless steel sampling tee, and one ambient air sample designated AA1 was collected (see Figure 2). All of the samples were collected in SIM-certified 6-liter Summa canisters equipped with SIM-certified 24-hour flow controllers, a SIM-certified duplicate tee for the duplicate sample, and SIM-certified sampling canes that allowed the Summa canister intakes to be located at a height of approximately five feet above the building interior and ground surface. No HVAC system is present in the warehouse where sample collection occurred, and for this reason it was not necessary to distinguish if the HVAC system was operating or not.

After approximately 24 hours, the valves to the Summa canisters were closed, the sampling canes and mass flow controllers were removed from the top of the Summa canisters, and the Summa canisters were stored in a box and subsequently shipped to the laboratory for extraction and analysis. Chain of custody procedures were observed for all sample handling. Measurements of Summa canister initial and final vacuums, and beginning and ending sample collection times were recorded on an Air Sampling Data Sheet that is provided in Appendix B of this report.

WEATHER INFORMATION

Weather data, including precipitation and barometric pressure for the two weeks preceding and following the August 25, 2015 sampling event are provided with this report as Appendix C. Review of Appendix C shows that no precipitation occurred preceding, on, or following the days of sample collection.

The weather station used for the weather information is located near the northwest corner of the intersection of San Leandro Boulevard and Davis Street in San Leandro at an elevation of 59 feet above sea level, approximately 1.5 miles to the northeast of the subject site. The subject site is located at an elevation of approximately 25 feet above sea level. An internet link to the weather station information is provided with this report in Appendix C.

LABORATORY ANALYSIS

All of the indoor and outdoor ambient air samples were analyzed at Air Toxics Limited of Folsom for Volatile Organic Compounds (VOCs), including using EPA Method TO-15. The analyses were performed with detection limits that equal or are less than San Francisco Bay Regional Water Quality Control Board (RWQCB) December 2013 Table E soil gas commercial/industrial Environmental Screening Level (ESL) values.

The indoor and ambient air sample results are summarized in Table 2, and copies of the laboratory analytical reports are attached with this report as Appendix D.

PCE was the only analyte detected in any of the samples and was detected in samples IA1, the duplicate collected at IA1 (IA1 DUP), IA2, and IA3 at concentrations of 7.5, 7.9, 2.3, and 1.7 micrograms per cubic meter ($\mu g/m^3$), respectively. PCE was not detected in outdoor ambient air sample AA1.

RISK AND HAZARD EVALUATION

The incremental carcinogenic risk and hazard quotient were calculated for each detected compound for each of the indoor and ambient air samples using equations 12b and 12a, respectively, provided in the Interim Final December 2013 SFRWQCB User's Guide: Derivation and Application of Environmental Screening Levels (the User's Guide). The Inhalation Unit Risk factor (IUR) value used for risk calculation and the Reference Concentration (RfC) value used for hazard calculation were obtained from the most recent version of the Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO) Vapor Intrusion Screening Model for Soil Gas VLOOKUP Table (last updated December 2014). These values are consistent with the values provided in the most recent version of the DTSC HERO Human Health Risk Assessment Note Number 3 dated July 14, 2014. DTSC RfC values were converted from mg/m³ to ug/m³ for risk calculation. The User's Guide Table J-2 PCE RfC value of 270 ug/m³ was superseded by the subsequent DTSC PCE RfC value of 35 ug/m³ for risk calculation.

Default exposure parameter values provided in the User's Guide for a commercial/industrial exposure scenario (exposure time of 8 hours per day, exposure frequency of 250 days per year, exposure duration for 25 years, an averaging time for carcinogens of 70 years) were used for evaluation of all of the indoor and ambient air samples. In addition, the cumulative incremental carcinogenic risk (the total of the risks posed by all of the Chemicals of Potential Concern (COPCs) in a sample when all of the individual COPC risks are added together) and hazard indices (the total of the hazards posed by all of the COPCs in a sample when all of the individual COPC hazards are added together) were calculated for all detected compounds for each sample. Because PCE was the only analyte detected in any of the samples, the calculated individual compound incremental carcinogenic risk was calculated to be the same as the cumulative carcinogenic risk, and similarly the calculated individual compound hazard quotient was calculated to be the same as the hazard index.

The indoor and outdoor ambient air incremental risk calculation results are provided in Table 3A, and the indoor and outdoor ambient air hazard quotient calculation results are provided in Table 3B. The indoor and ambient air cumulative incremental carcinogenic risk and hazard index results are summarized in Table 3C.

Review of the Table 2 indoor and ambient air sample results shows that PCE was detected in samples IA1, IA1 DUP, and IA2 at concentrations exceeding the RWQCB December 2013 Table E-3 Ambient and Indoor Air Screening Levels for commercial/industrial land use. Review of Table 2 also shows that PCE was also detected in indoor air sample IA3, but not at a concentration exceeding the respective commercial/industrial air ESL value.

The cumulative incremental risk is calculated as the increased number of cases of cancer that might develop in a population of one million people in addition to the background risk of Americans developing cancer. In determining what is an acceptable level of risk, the DTSC has determined that lifetime incremental cumulative cancer risks posed by a site should not exceed 1 per million without further evaluation. The DTSC recommends that activities to reduce exposure to COPCs be evaluated when the cumulative risk exceeds 100

per million. The DTSC also recommends that further action be evaluated when the hazard quotient exceeds 1.

Review of the calculated risk and hazard for the indoor and ambient air samples in Tables 3A, 3B and 3C shows the following:

- No incremental risk was identified for the ambient air sample AA1 (no analytes were detected in the ambient air sample).
- The calculated hazard indices were less than 1 for all indoor air samples and no hazard was identified for the ambient air sample AA1 (no analytes were detected in the ambient air sample).
- The cumulative incremental risk associated two of the indoor air samples including the duplicate sample collected at location IA1 (IA1 DUP) exceeds 1 in a million, and are all less than 4 in a million.

DISCUSSION AND RECOMMENDATIONS

Review of Table 2 shows that the only compound detected in the indoor air samples was PCE at concentrations ranging from 1.7 to 7.5 ug/m³, and that no compounds were detected in the ambient outdoor air sample. Comparison of the detected PCE concentrations with the December 2013 RWQCB PCE commercial indoor air ESL shows that the detected PCE concentrations exceed the ESL at locations IA1 and IA2.

Review of Table 3C shows that the hazard index is less than 1.0 for all of the sample results (the highest hazard index for any of the indoor air sample results is 0.05), and for this reason the detected PCE concentrations do not pose a short term health concern. Review of Table 3C also shows that the highest calculated cumulative incremental carcinogenic risk for the air samples is 3.8 per million (3.8E-06) for sample IA1-DUP, with the calculated cumulative incremental carcinogenic risk for sample IA2 as 1.1 per million, and for IA3 as less than 1 per million. The area where indoor air PCE concentrations exceed PCE commercial ESL values appears to be limited to the central portion of the warehouse building (see Figure 2 and Table 3C).

Comparison of historical sub-slab soil gas sample results with the indoor air sample results shows a correlation of sub-slab soil gas and indoor air concentrations, with the highest indoor air concentrations detected where the highest sub-slab soil gas concentrations were detected, and similarly the lowest indoor air concentrations detected where the lowest sub-slab soil gas sample concentrations were detected (see Figure 2).

Based on the sample results P&D recommends that additional sub-slab soil gas investigation be performed to define the extent of elevated PCE sub-slab soil gas concentrations at proposed locations VP13, VP14 and VP15 shown on Figure 2. The recommended Vapor Pin samples will be collected in accordance with methods set forth in P&D's March 24, 2015 Sub-Slab Soil Gas Investigation Data Transmittal Report (document 0660.R1). The results of this investigation will be used to evaluate locations for additional soil investigation

to assess whether mitigation strategies, such as localized sub-slab depressurization or targeted soil excavation to reduce the potential for vapor intrusion over the long term are warranted.

LIMITATIONS

This report was prepared solely for the use of 2101 Williams Associates, LLC. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

October 29, 2015 Report 0660.R2

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King

Professional Geologist #5901

Expires: 12/31/15

Attachments:

Table 1 - Summary of Historical Vapor Pin Sub-Slab Soil Gas Sample Analytical Results

Table 2 - Summary of Indoor and Ambient Air Sample Analytical Results

Table 3A - Indoor and Ambient Air Risk Calculation Results

Table 3B - Indoor and Ambient Air Hazard Calculation Results

Table 3C - Indoor and Ambient Air Risk and Hazard Calculation Summary

Figure 1 - Site Location Map

Figure 2 - Site Plan Aerial Photograph Detail Showing PCE Concentrations in Indoor and Ambient Air

Appendix A - Chemical Inventory Forms

Appendix B - Air Sampling Data Sheet

Appendix C - Weather Information

Appendix D - Laboratory Analytical Results and Chain of Custody Documentation

PHK/mlbd/sjc

0660.R2

TABLES

					Summary of	of Historical Va	por Pin SUb-slab	Soil Gas Sample	Analytical Result	S			
Sample ID	Land Use	Sample Date	PID Reading (PPM)	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	1,1,1-TCA	Vinyl Chloride	Chloroform	Other VOCs by TO-15	DFA	Percent Shroud
VP1	Commercial	11/5/2014	0	180	ND<6.0	ND<4.4	ND<4.4	ND<6.1	ND<2.9	69	ND, except	49	0
VFI	Commerciai	11/3/2014		100	ND<0.0	ND(4.4	NDC4.4	ND<0.1	ND<2.9	09	Acetone = 96,	47	0
											Ethanol = 26,		
											2-Propanol = 20		
VP2	Commercial	11/5/2014	0.7	ND<6.6	ND<5.3	ND<3.9	610	ND<5.3	ND<2.5	ND<4.8	ND, except	3,000, a	0
	<u> </u>										Acetone = 34,		
											Toluene = 9.8,		
											Tetrahydrofuran = 6.3, Ethanol = 38,		
											2-Propanol = 11		
VP2-DUP	Commercial	11/5/2014	0.7	ND 47.7	ND 46.1	ND -4.5	740	ND -6-2	ND 40	ND 45.5	ND, except	29 000 -	0.2
VP2-DUP	Commerciai	11/5/2014	0.7	ND<7.7	ND<6.1	ND<4.5	740	ND<6.2	ND<2.9	ND<5.5	Acetone = 31,	38,000, a	0.2
											Toluene = 9.9,		
											Ethanol = 35		
VP3	Commercial	12/10/2014	70	320,000	ND<2,000	ND<1,400	ND<1,400	ND<2,000	ND<940	ND<1,800	ND, except	ND<4,000	0
											Toluene = 3,400,		
											Ethanol = 3,600,		
VP3-DUP	Commercial	12/10/2014	NA	310,000	ND<990	ND<730	ND<730	ND<1,000	ND<470	ND<900	ND, except	ND<2,000	0
											Toluene = 3,000		
VP3	Commercial	11/5/2014	119	320,000	ND<1,600	ND<1,200	ND<1,200	ND<1,600	ND<760	ND<1,400	ND, except	41,000	0.2
								1.2 .1,000			Toluene = 4,000	,	
VP4	Commercial	12/10/2014	0.5	6,600	ND<17	ND<13	ND<13	ND<18	ND<8.2	ND<16	ND, except	ND<35	0
											1,2,4-Trichlorobenzene = 140,		
											Hexachlorobutadiene = 240		
VP4	Commercial	11/5/2014	4	4,700	ND<21	ND<15	ND<15	ND<21	ND<9.9	ND<19	ND, except	190,000, a	0.95
				,							Ethanol = 40		
VP5	Commercial	12/10/2014	10.3	65,000	ND<130	ND<99	ND<99	ND<140	ND<64	ND<120	All ND	ND<270	0
VP5	Commercial	11/5/2014	18	67,000	ND<130	ND<97	ND<97	ND<130	ND<62	ND<120	All ND	320	0
VP6	Commercial	12/10/2014	2.9	18,000	ND<64	ND<47	ND<47	80	ND<30	ND<58	All ND	140	0
VP6	Commercial	11/5/2014	7	18,000	ND<52	ND<38	ND<38	76	ND<25	ND<47	ND, except	2,600	0
											Ethanol = 84		
VP7	Commercial	2/16/2015	68.4	520,000	ND<640	ND<470	ND<470	ND<650	ND<300	ND<580	All ND	ND<1,300	0
VP8	Commercial	2/16/2015	13	84,000	880	ND<56	ND<56	ND<77	ND<36	ND<69	ND, except	4,000	0
VIO	Commercial	2/10/2013	13	04,000	330	145<50	140-30	TAD /	140<50	TAD<07	1,2,4-Trimethylbenzene = 85	4,000	
VP9	Commercial	2/16/2015	2.1	3,700	ND<92	13,000	ND<68	ND<94	ND<44	ND<84	ND, except	ND<180	0
											Ethanol = 190		ļ
VP10	Commercial	2/16/2015	18.6	130,000	ND<130	ND<98	ND<98	ND<130	ND<63	ND<120	All ND	ND<260	0
VF 10	Commercial	2/10/2013	10.0	150,000	1415<130	1415<20	140<20	140<150	1412<05	140<120	All ND	140<200	
VP10- DUP	Commercial	2/16/2015	18.6	140,000	ND<130	ND<95	ND<95	ND<130	ND<61	ND<120	All ND	ND<260	0
VP11	Commercial	2/17/2015	43	250,000	ND<390	ND<280	ND<280	ND<390	ND<180	ND<350	All ND	ND<780	0
		211512015		450.000	NID ALC	NP 440	ND 440	NT 440	NID 400	NP NP 400	ANAMA	NTD 400	
VP12	Commercial	2/17/2015	23	150,000	ND<210	ND<160	ND<160	ND<220	ND<100	ND <nd<190< td=""><td>All ND</td><td>ND<430</td><td>0</td></nd<190<>	All ND	ND<430	0
													<u> </u>
ESL				2,100	3,000	31,000	260,000	22,000,000	160	2,300	Acetone = 140,000,000,	No Value	No Value
	ļ										Toluene = 1,300,000,		
											1,2,4-Trichlorobenzene = 18,000,		ļ
											Hexachlorobutadiene = No Value, Tetrahydrofuran = No Value,		-
											Ethanol = No Value,		
			 			<u> </u>					2-Propanol = No Value		†
Notes:													
PID = Photoionization													ļ
PPM = Parts Per Milli PCE = Tetrachloroeth			 				-						
TCE = Trichloroethen													
cis-1,2-DCE = cis-1,2						<u> </u>							
trans-1,2-DCE = trans	-1,2-Dichloroethen	e.											
1,1,1-TCA = 1,1,1-Tri													
VOCs = Volatile Orga			 				<u> </u>						ļ
DFA = 1,1-Difluoroet ND = Not Detected.	nane. (1 racer Gas)		-	-									1
NA = Not Analyzed.	<u> </u>		l						-				
a = Laboratory Note:		calibration ra	inge.										
Percent Shroud = The				the soil gas sa	mple to the trace	er gas concentra	tion detected in th	ne shroud air sam	ple, expressed as a	percentage.			
ESL = Environmental	Screening Level, b	y San Francis	sco Bay – Re	egional Water	Quality Control	Board , update							T
(Vapor Intrusion Cond	erns) Shallow Soil	Gas Screenii	ng Levels fo										T
Values in bold exceed				L									
Results and ESLs repo	orted in micrograms	s per cubic m	eter (µg/m3), unless other	rwise indicated.								

Table 2 Summary of Indoor and Ambient Air Sample Analytical Results

Sample ID	Land Use	Sample Date	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride
IA1	Commercial	8/25/2015	7.5	ND<0.19	ND<0.14	ND<0.72	ND<0.072	ND<0.046
IA1 DUP	Commercial	8/25/2015	7.9	ND<0.21	ND<0.15	ND<0.76	ND<0.076	ND<0.046
IA2	Commercial	8/25/2015	2.3	ND<0.16	ND<0.12	ND<0.60	ND<0.060	ND<0.039
IA3	Commercial	8/25/2015	1.7	ND<0.17	ND<0.12	ND<0.63	ND<0.063	ND<0.040
AA1	Commercial	8/25/2015	ND<0.21	ND<0.16	ND<0.12	ND<0.61	ND<0.061	ND<0.039
ESL			2.1	3.0	31	260	880	0.16
Notes:								
PCE = Tetrachloroethene								
TCE = Trichloroethene.								
cis-1,2-DCE = cis-1,2-Di	chloroethene.							
trans-1,2-DCE = trans-1,2		e.						
1,1-DCE = 1,1-Dichloroethene.								
ND = Not Detected.								
ESL = Environmental Scr	eening Level, by	y San Francisc	co Bay – Regio	onal Water Qual	ity Control Boa	rd , updated Decer	mber 2013 from	Table E3 –
Ambient and Indoor Air S			cal/Industrial	Land Use.				
Values in bold exceed th		1						
Results and ESLs reported	d in micrograms	per cubic me	ter (μg/m3), ι	unless otherwise	indicated.			

Report 0660.R2

Table 3A

Indoor and Ambient Air Risk Calculation Results

Equation		Concentration in Air	X Exposure Time	X Exposure Frequency	X Exposure Duration	X Inhalation Unit Risk Factor	all divided by	Averaging Time for Carcinogens	X	365	X	24	Calculated Individual Compound Incremental Carcinogenic Risk	Cumulative Carcinogenic Risk	Comments
Units		(ug/m3)	(hrs/day)	(days/yr)	(yrs)	(ug/m3)		(yrs)		(days/yr)		(hr/day)			
Location	Compound														
						Samples	Collected Au	gust 25, 2015							
IA1	PCE	7.50	8	250	25	5.90E-06		70		365		24	3.61E-06	3.6E-06	Commercial Exposure
IA1-DUP	PCE	7.9	8	250	25	5.90E-06		70		365		24	3.80E-06	3.8E-06	Commercial Exposure
IA2	PCE	2.30	8	250	25	5.90E-06		70		365		24	1.11E-06		Commercial Exposure
IA3	PCE	1.70	8	250	25	5.90E-06		70		365		24	8.18E-07	1.1E-06	Commercial Exposure
														8.2E-07	
Notes: PCE = Tetrac NA = Not Ap															

Report 0660.R2 Table 3B
Indoor and Ambient Air Hazard Calculation Results

		G	T Y		v 5 n.v.i	1 4	265	Y 24	***	D 6	0111	** 17 1	
Equation		Concentration in Air X	Exposure X Time	Exposure Frequency	X Exposure all divide by	d Averaging Time X for Non-cancer Toxic Effects	365	X 24	X	Reference Concentration (RfC)	Calculated Individual Compound Hazard Quotient	Hazard Index	Comments
Jnits		(ug/m3)	(hrs/day)	(days/yr)	(yrs)	(yrs)	(days/yr)	(hr/day)		(ug/m3)			
ocation	Compound												
					Samples 0	Collected August 25, 20	15						
A1	PCE	7.5	8	250	25	25	365	24		3.50E+01	4.89E-02		
												4.9E-02	
A1-DUP	PCE	7.9	8	250	25	25	365	24		3.50E+01	5.15E-02		
												5.2E-02	
A2	PCE	2.30	8	250	25	25	365	24		3.50E+01	1.50E-02		
												1.5E-02	
A3	PCE	1.70	8	250	25	25	365	24		3.50E+01	1.11E-02		
												1.1E-02	
									-				
Notes:													

Table 3C Indoor and Ambient Air Risk and Hazard Calculation Results Summary

	Calculated	Calculated	Calculated		
	Cumulative Incremental	Cumulative Incremental	Cumulative Incremental	Calculated	Recommendations Based on
A: C1-		Cumulative Incremental Carcinogenic Risk	Carcinogenic Risk		DTSC-Recommended
Air Sample	Carcinogenic			Hazard	
Designation	Risk	Alternate Description	Alternate Description	Index	Guidance for Action or Response
Location					
			Samples Collecte	ed August 25, 2015	
IA1	3.6E-06	0.0000036	3.6 in a million	0.05	Evaluate need for action - risk greater than 1 in a million.
IA1-DUP	3.8E-06	0.0000038	3.8 in a million	0.05	Evaluate need for action - risk greater than 1 in a million.
IA2	1.1E-06	0.0000011	1.1 in a million	0.02	Evaluate need for action - risk greater than 1 in a million.
IA3	8.2E-07	0.0000008	0.82 in a million	0.01	Evaluate need for action - risk greater than 1 in a million.
AA1	0.0E+00	0.0000000	0 in a million	0.0000	Not Applicable - Ambient Air.
Notes:					
	MATRIX FOR VAPOR INTRI	USION			
Risk	Response	Activities			
Less than 1 in a million	No Further Action	None			
1 to 100 in a million	Evaluate Need	Possible Actions			
	for Action	o Additional Data Collection			
		o Monitoring			
<u> </u>		o Additional Risk Characterizati	on	<u>-</u>	
		o Mitigation			
		o Source Remediation			
More than 100 in a million	n Response	o Vapor Intrusion Mitigation			
	Action Needed	o Source Remediation			

FIGURES

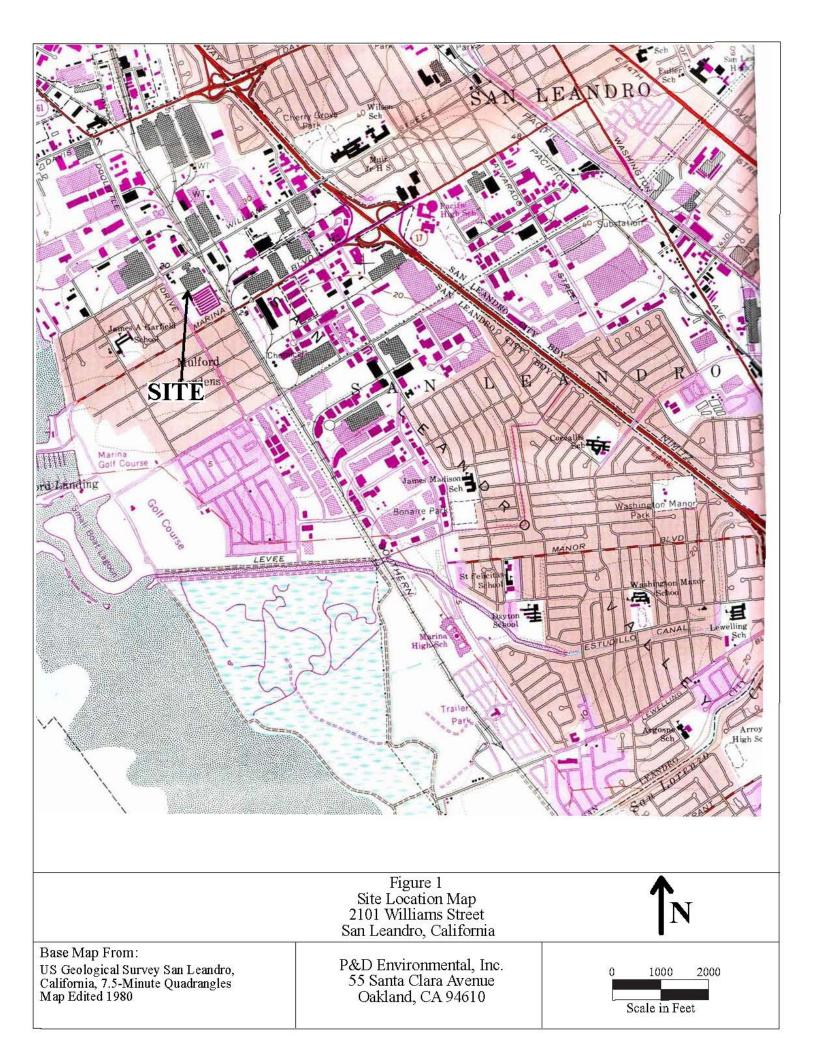


Figure 2
Site Plan Aerial Photograph Detail Showing PCE Concentrations in Indoor and Ambient Air 2101 Williams Street
San Leandro, California

Base Map from:

Google Earth, image dated August 28, 2012

P&D Environmental, Inc. 55 Santa Clara Avenue Oakland, CA 94610

APPENDIX A

Chemical Inventory Forms

October 2011 DTSC – Cal/EPA

og 1981

	ator Michael RASS-DESCHENES Date 8/	17/15
Field Instrument Reading	Measurement Location (Ambient Air, Foundation Opening, or Consumer Product)	If Consumer Product, Potential Volatile Ingredients
	HASA multi-chlor 12,5% Sodium by pochlorit	shydrachloric ace
	Chlor A Freu (Chlorinated alkali Deter gen	chlorinated all
14) 5 90	Calaim inloride natural solution (green	chloride
3) Igal	ZEP FS aming 2 Sanitizer	aninonium che
e) 50 lb.	Chem station (citric acid) powder	eitre and
2) Igal 3) 59a	GREEN BUER (BC 101-A)	phosphoric acid
1	it chemchlor	Sodium Hypochla
2) (54)	ADOX 3125/8125 water treatment chem	Sodium Charita

Biga

Field Investiga	ator Michael BASS-DESCHENES Date 8	117/15	
Field Instrument Reading	Measurement Location (Ambient Air, Foundation Opening, or Consumer Product)	If Consumer Product, Potential Volatile Ingredients	
3/4/900	Pas aluminum Brightener	sulfuric acid, aspensium Hydrogen Flyoride	
1 Quart	Klean trip laguer themen	actione Ethyl acetale. To	WO.
	3re Rubber + Vingl &O Spray adhorive	methyl acetate (79-70-9) d ather (115-10-6) tolurne (128 hydrotreated hopey next that 64 2 in oxyde (1344-(3-2)	line 8-2
1) 1903	34 Rubber & Vinyl Rust-oleum & uttra Grer	acatone, inflere	
	paint, primer (black)	4 11	
1) 1203	DAP tex multi Purpose from sealant	Sopropaud, ethyline gly dimethyl ether, Bopane n-butake, alipatic an and vinyl acetals.	co
1) 1809	Rust-deum inverted striping paint	tolerene + xylene	
2) 1103	Rust-Oleum specially fluorexest bright near	Toluene, acetore, desar and xyline.	ne
Vgal	allison transmission Transynd quel oyuthetic transmission flend	0	
	synthetic transmission flend		
1 Janet	Georel Pro Flex Rumulti-purpose brushable repair coating.		
	brushable repair coaling.		

P. 20/2

12/15	
If Consumer Product, Potential Volatile Ingredients	
alkyl proporods glydolethers, 1-ne	thyline
v <i>y</i>	
6 suply.	
	Potential Volatile Ingredients alkyl proporods glylolethers, 1-ns pyrrolidinone

p. 182

Occupant of E	BuildingSUNLINK.	
Address	2131 Williams St.	
City	N LEANDRO CA 94577	
Field Investiga	ator MICHAEL BASS-DESCHENES Date 8/	17/15
Field Instrument Reading	Measurement Location (Ambient Air, Foundation Opening, or Consumer Product)	If Consumer Product, Potential Volatile Ingredients
(1) 10 03	office depot cleaning duster	
(1) 3203	Rlean strip colertess mineral spirit	
(c) 2.5 gal	Klean Trip Resource 1-Khester Fuel.	Resosene
(1) 5 gol	Firestone altra Ply Banding ashesive	textile spirits acctone + tolune.
	W56-TP0-3005	
(1) 5gal	Firestone ustylased bonding adhesive	vinyl acetate
·	W 56-358-7035	
	chem link 7,5" 1-Part chemourt Ket	
(4) Igal	Firestone Quick primo Plus	to luene
	W56-358-7041	- A
1) 130l	Sekadus 31 Hi-modofel goxy pasteadhesis	& Lengyl alcohol
(2) 1803	3M Ai-Tack 76 spray alkesive	dimethy ether, mithyl
Igal	Safeway bleach	acitati oyclosoche, 1-i difluoro ethene petroleum mantitar distollar
3209	de paint theren.	
3) 2003	Pust-oleum coldgalvanizing compound	
(2) 1603	Outey #30757 purple ove primer	
(i) 160g.	Formy Welders anti-spatter	
Comments:		

P. 2012

Occupant of E	Building Sunline	·
Address	2131 Williams ST	
City	an Leandro CA 94577	
	ator Michael BASS DESCHENES Date 8	2/17/15
Field Instrument Reading	Measurement Location (Ambient Air, Foundation Opening, or Consumer Product)	If Consumer Product, Potential Volatile Ingredients
1) 1109	LPS 1 lubricant	petroleum distillate.
(3) 803	WD-40	
	The state of the s	
Comments:		

P. 1082

Occupant of Bu	uilding _ KINGS ASIAN COURNET	
Address/	920 DOOLITTLE DR	
City SA	s Leandro, CA 94577	
	torMichael Bass-Deschenes Date 8/1	1/15
Field Instrument Reading	Measurement Location (Ambient Air, Foundation Opening, or Consumer Product)	If Consumer Product, Potential Volatile Ingredients
(9) Igal :	2EP FS Formula 4089	
(2) 5 gal	11 11	
(5) I gal	ZEP FS arrino Z.	
14) Igal 6	chlorox bleach.	
(2) 8003	draino max gel uttra	
(1) 3209	no Konia drain magic	
(3) Igal	E yesterday Janitoria Supply Carpany	
V	X duty stripper (Floor	
(1) igal 1	= yesterday Jerritorial Supply congrany	
	Shield.	
(1) 1.3680	1 Pine-sol	
(D 1.36gal	Fabulose.	
(8) 32og	hysol toilet bowl cleaner.	
(1) 1.36gal	Winder	
() Igal	1-1-	
(V 3202	isomopie alcohol.	
Comments:		
-		
-		

P. 292

Occupant of E	Building King asian Cournet	
Address	1920 Doolittle Dr.	
City	our Leandro CA 94577	
Field Investiga	ator Michael BASS-DESCHENES Date	8/17/15
Field Instrument Reading	Measurement Location (Ambient Air, Foundation Opening, or Consumer Product)	If Consumer Product, Potential Volatile Ingredients
	work table fork lift area	
(3) 100	CRC contact cleaner + lubricant	
2) 1 gal	Sta-lube Hydraulic & Jack oil	
2) 3203	Sta-lube Hydraulic + Jack oil Sta-lube multipurpose zear oil	
	SAE 85 W90	
1) 160g		
1) 1703	real-Kill Ways Hornet Killer	
1) Igal	Prestone auti-freeze codant	
1) I qua	Eulf-lite Chercoal starter.	
1) 1103	43 Food grade machine orl	
Comments:		
		-

APPENDIX B

Air Sampling Data Sheet

AIR SAMPLI	NG DATA SHE	LANS ST. S	an lean de	20			
Job #	000	orro or.	AT MEND DE	•			
Date 8	14/15						
Sampler Nan	ne ALLIS	D			START DATE	END DATE	
					START DATE	8/25/15	
Sample		Start pump flow	End pump flow	Sample Canister Initial Vacuum	Begin sample collection	End sample collection	
Location Designation		rate (cc/min) and time	rate (cc/min) and time	Check (In. Hg) and time	vacuum (In. Hg) and time	Hg) and time	NOTES
TA1	35134	flow	flow	vac -30	vac - 30	vac -7	
		time	time	time 355	time090410	Otime 91234	Flaw controller
IA1	11822	flow	flow	vac - 30	vac -30	vac -10	24 Hour Certified
DUP		time	time	time 840	time090411	Otime 09 1234	1 (Sim certified
							0
TA2	611262	flow	flow	vac - 3	vac - 30	vac	
		time	time	time 0830	time 09091	8time091844	
IA3	33884	flow	flow	vac - 30	vac - 30	vac = 6	
		time	time	time 0820	vac - 30 time 09142	3 time 9 5246	
AAI	34273	flow	flow	vac -30	vac -30	vac -6	
		time *	time	time 0815	vac = 30 time 0 8 3 2 1 1	time292715	
		flow	flow	vac	vac	vac	
		time	time	time	time	time	
		flow	flow	vac	vac	vac	
		time	time	time	time	time	
		flow	flow	vac	vac	vac	
		time	time	time	time	time	
		flow	flow	lues .			
		time	flow time	time	time	time	
			unio	uno	umo		
		flow	flow	vac	vac	vac	
		time	time	time	time	time	
		flow	flow	vac	vac	vac	
		time	time	time	time	time	
		flow	flow	vac	vac	vac	
		time	time	time	time	time	
		flow	flour		was	luna.	
		flow time	flow	time	time	vac time	
NOTES							

APPENDIX C

Weather Information

http://www.wunderground.com/personal-weather-station/dashboard? ID=KCASANLE11 # history/s20150811/e20150908/mcustom. The property of the pro

About This Weather Station

Weather Station ID: KCASANLE11

Station Name: Davis Street

Latitude / Longitude: N 37 $^{\circ}$ 43 $^{\circ}$ 26 $^{\circ},$ W 122 $^{\circ}$ 9 $^{\circ}$ 43 $^{\circ}$

Elevation: 59 City: San Leandro State: CA

Hardware: Netatmo Weather Station

Software: Netatmo

Weather History Table

August 11, 2015 - September 8, 2015

2015	Tempera	ture		Dew Poir	nt		Humidit	y		Speed			Pressure	1		Precip.
Aug	High	Avg	Low	High	Avg	Low	High	Avg	Low	High	Avg	Gust	High	Avg	Low	Rate. Sum
11	77.4 °F	66 °F	58.6 °F	60.7 °F	57.2 °F	53.2 °F	92 %	75 %	54 %	0 mph	0 mph	0 mph	29.28 in	29.24 in	29.2 in	0 in
12	80.4 °F	65.9 °F	55.2 °F	60.2 °F	56.4 °F	53.5 °F	96 %	74 %	40 %	0 mph	0 mph	0 mph	29.37 in	29.33 in	29.28 in	0 in
13	77.7 °F	68.5 °F	61.7 °F	60.3 °F	58.3 °F	55.1 °F	88 %	71 %	48 %	0 mph	0 mph	0 mph	29.36 in	29.33 in	29.3 in	0 in
14	78.6 °F	67.9 °F	61.3 °F	61.1 °F	58.6 °F	55.9 °F	88 %	73 %	52 %	0 mph	0 mph	0 mph	29.39 in	29.34 in	29.3 in	0 in
15	93.4 °F	75.1 °F	60.8 °F	62.7 °F	55.2 °F	49.6 °F	87 %	53 %	27 %	0 mph	0 mph	0 mph	29.31 in	29.24 in	29.18 in	0 in
16	99.1 °F	81.6 °F	70 °F	62.1 °F	53.8 °F	48.8 °F	52 %	39 %	23 %	0 mph	0 mph	0 mph	29.21 in	29.17 in	29.12 in	0 in
17	90.3 °F	74.3 °F	58.8 °F	61.7 °F	55.5 °F	50.2 °F	83 %	53 %	29 %	0 mph	0 mph	0 mph	29.2 in	29.16 in	29.12 in	0 in
18	76.3 °F	65.3 °F	56.7 °F	59.7 °F	56.6 °F	53.4 °F	90 %	75 %	55 %	0 mph	0 mph	0 mph	29.25 in	29.21 in	29.17 in	0 in
19	74.8 °F	65 °F	59 °F	58.9 °F	56.4 °F	54.6 °F	86 %	74 %	57 %	0 mph	0 mph	0 mph	29.25 in	29.23 in	29.2 in	0 in
20	72.1 °F	64.7 °F	60.3 °F	57.3 °F	56 °F	54.1 °F	87 %	74 %	59 %	0 mph	0 mph	0 mph	29.24 in	29.2 in	29.16 in	0 in
21	71.1 °F	62.7 °F	59.4 °F	58.8 °F	56.5 °F	54.9 °F	88 %	80 %	62 %	0 mph	0 mph	0 mph	29.21 in	29.18 in	29.15 in	0 in
22	75.4 °F	65 °F	59.7 °F	60.6 °F	56.9 °F	55 °F	86 %	76 %	56 %	0 mph	0 mph	0 mph	29.25 in	29.22 in	29.18 in	0 in
23	74.5 °F	64.9 °F	58.8 °F	58.3 °F	56.1 °F	54.2 °F	86 %	74 %	56 %	0 mph	0 mph	0 mph	29.32 in	29.28 in	29.24 in	0 in
24	77.2 °F	65.4 °F	58.6 °F	58.4 °F	56.2 °F	54.2 °F	88 %	73 %	50 %	0 mph	0 mph	0 mph	29.36 in	29.32 in	29.27 in	0 in
25	80.6 °F	66.1 °F	57.4 °F	59.8 °F	56.5 °F	53.6 °F	90 %	73 %	42 %	0 mph	0 mph	0 mph	29.32 in	29.28 in	29.24 in	0 in
26	86.5 °F	67.4 °F	54.9 °F	61.2 °F	55.7 °F	51.9 °F	95 %	70 %	35 %	0 mph	0 mph	0 mph	29.34 in	29.31 in	29.27 in	0 in
27	91.6 °F	74.1 °F	61.9 °F	59.1 °F	54.3 °F	48.8 °F	71 %	52 %	28 %	0 mph	0 mph	0 mph	29.36 in	29.31 in	29.26 in	0 in
28	93.4 °F	75.4 °F	65.5 °F	61.5 °F	57.6 °F	53.2 °F	86 %	56 %	31 %	0 mph	0 mph	0 mph	29.27 in	29.22 in	29.16 in	0 in
29	75.7 °F	67 °F	59.9 °F	66 °F	60.4 °F	53.8 °F	94 %	80 %	54 %	0 mph	0 mph	0 mph	29.32 in	29.27 in	29.22 in	0 in
30	78.6 °F	67.1 °F	59.5 °F	61.3 °F	59.2 °F	56.9 °F	93 %	77 %	52 %	0 mph	0 mph	0 mph	29.36 in	29.3 in	29.24 in	0 in
31	82.2 °F	67.4 °F	57.4 °F	60.9 °F	57.7 °F	54.9 °F	96 %	73 %	46 %	0 mph	0 mph	0 mph	29.26 in	29.21 in	29.16 in	0 in
2015	Tempera	ture		Dew Poir	nt		Humidit	y		Speed			Pressure			Precip Rate.
Sep	High	Avg	Low	High	Avg	Low	High	Avg	Low	High	Avg	Gust	High	Avg	Low	Sum
1	77.4 °F	65.8 °F	57.4 °F	60.3 °F	57.1 °F	55 °F	94 %	75 %	51 %	0 mph	0 mph	0 mph	29.23 in	29.19 in	29.15 in	0 in
2	73 °F	64.9 °F	60.1 °F	59.6 °F	57 °F	55.3 °F	85 %	76 %	58 %	0 mph	0 mph	0 mph	29.26 in	29.23 in	29.2 in	0 in
3	71.8 °F	62.4 °F	55.8 °F	56.5 °F	54.3 °F	51.4 °F	92 %	76 %	53 %	0 mph	0 mph	0 mph	29.24 in	29.18 in	29.13 in	0 in
4	73.2 °F	61.2 °F	52 °F	53.2 °F	51.3 °F	49.6 °F	92 %	72 %	45 %	0 mph	0 mph	0 mph	29.2 in	29.17 in	29.13 in	0 in
5	79.3 °F	64.7 °F	52.3 °F	52.7 °F	47.4 °F	40 °F	91 %	58 %	31 %	0 mph	0 mph	0 mph	29.29 in	29.25 in	29.2 in	0 in
6	85.8 °F	70.3 °F	59 °F	50.2 °F	43.1 °F	33.5 °F	62 %	39 %	22 %	0 mph	0 mph	0 mph	29.29 in	29.25 in	29.2 in	0 in
7	92.5 °F	77.1 °F	63.7 °F	53.8 °F	40.2 °F	33 °F	37 %	27 %	16 %	0 mph	0 mph	0 mph	29.25 in	29.2 in	29.15 in	0 in
8	96.8 °F	79.9 °F	68.4 °F	53.3 °F	42.2 °F	36 °F	37 %	27 %	13 %	0 mph	0 mph	0 mph	29.21 in	29.16 in	29.11 in	0 in

APPENDIX D

Laboratory Analytical Reports and Chain of Custody Documentation

• Air Toxics W/O # 1508467 - IA1 Through IA3, and AA1 Air Results

9/8/2015 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: 2101 WILLIAMS ST SAN LEANDRO, CA

Project #: 0660

Workorder #: 1508467

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 8/25/2015 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 SIM are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kya Vych

WORK ORDER #: 1508467

Work Order Summary

CLIENT: Mr. Paul King BILL TO: Mr. Paul King

P & D Environmental
55 Santa Clara
Suite 240

P & D Environmental
55 Santa Clara
Suite 240

Suite 240

Oakland, CA 94610 Oakland, CA 94610

PHONE: 510-658-6916 P.O. #

FAX: 510-834-0772 PROJECT # 0660 2101 WILLIAMS ST SAN

DATE RECEIVED: 08/25/2015 CONTACT: LEANDRO, CA Kyle Vagadori 09/04/2015

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	IA1	Modified TO-15 SIM	8 "Hg	4.9 psi
02A	IA1DUP	Modified TO-15 SIM	9 "Hg	5.1 psi
03A	IA2	Modified TO-15 SIM	3.5 "Hg	5.1 psi
04A	IA3	Modified TO-15 SIM	4.5 "Hg	5 psi
05A	AA1	Modified TO-15 SIM	3.7 "Hg	5 psi
06A	Lab Blank	Modified TO-15 SIM	NA	NA
06B	Lab Blank	Modified TO-15 SIM	NA	NA
07A	CCV	Modified TO-15 SIM	NA	NA
07B	CCV	Modified TO-15 SIM	NA	NA
08A	LCS	Modified TO-15 SIM	NA	NA
08AA	LCSD	Modified TO-15 SIM	NA	NA
08B	LCS	Modified TO-15 SIM	NA	NA
08BB	LCSD	Modified TO-15 SIM	NA	NA

	1/4	eide Tayer		
CERTIFIED BY:			DATE: <u>09/08/15</u>	

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704343-14-7, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2014, Expiration date: 10/17/2015. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE Modified TO-15 SIM P & D Environmental Workorder# 1508467

Five 6 Liter Summa Canister (SIM Certified) samples were received on August 25, 2015. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the SIM acquisition mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: IA1 Lab ID#: 1508467-01A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	0.036	1.1	0.24	7.5	

Client Sample ID: IA1DUP

Lab ID#: 1508467-02A

Compound	Rpt. Limit (ppbv)	(ppbv)	Kpt. Limit (ug/m3)	(ug/m3)	
Tetrachloroethene	0.038	1.2	0.26	7.9	

Client Sample ID: IA2 Lab ID#: 1508467-03A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	0.030	0.34	0.21	2.3	

Client Sample ID: IA3 Lab ID#: 1508467-04A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	0.032	0.25	0.21	1.7	

Client Sample ID: AA1

Lab ID#: 1508467-05A

No Detections Were Found.

Client Sample ID: IA1 Lab ID#: 1508467-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	e082916sim	Date of Collection: 8/24/15 9:12:00 AM
Dil. Factor:	1.81	Date of Analysis: 8/29/15 08:04 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.018	Not Detected	0.046	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.072	Not Detected
cis-1,2-Dichloroethene	0.036	Not Detected	0.14	Not Detected
Trichloroethene	0.036	Not Detected	0.19	Not Detected
Tetrachloroethene	0.036	1.1	0.24	7.5
trans-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: IA1DUP Lab ID#: 1508467-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	e082917sim	Date of Collection: 8/24/15 9:12:00 AM
Dil. Factor:	1.92	Date of Analysis: 8/29/15 08:49 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.019	Not Detected	0.049	Not Detected
1,1-Dichloroethene	0.019	Not Detected	0.076	Not Detected
cis-1,2-Dichloroethene	0.038	Not Detected	0.15	Not Detected
Trichloroethene	0.038	Not Detected	0.21	Not Detected
Tetrachloroethene	0.038	1.2	0.26	7.9
trans-1,2-Dichloroethene	0.19	Not Detected	0.76	Not Detected

	· ·	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	93	70-130	

Client Sample ID: IA2 Lab ID#: 1508467-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	e082918sim	Date of Collection: 8/24/15 9:18:00 AM
Dil. Factor:	1.52	Date of Analysis: 8/29/15 09:30 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.015	Not Detected	0.039	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.060	Not Detected
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
Trichloroethene	0.030	Not Detected	0.16	Not Detected
Tetrachloroethene	0.030	0.34	0.21	2.3
trans-1.2-Dichloroethene	0.15	Not Detected	0.60	Not Detected

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: IA3 Lab ID#: 1508467-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	e083106sim	Date of Collection: 8/24/15 9:22:00 AM
Dil. Factor:	1.58	Date of Analysis: 8/31/15 10:52 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.063	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.12	Not Detected
Trichloroethene	0.032	Not Detected	0.17	Not Detected
Tetrachloroethene	0.032	0.25	0.21	1.7
trans-1.2-Dichloroethene	0.16	Not Detected	0.63	Not Detected

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	93	70-130	

Client Sample ID: AA1 Lab ID#: 1508467-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	e083107sim	Date of Collection: 8/24/15 9:27:00 AM
Dil. Factor:	1.53	Date of Analysis: 8/31/15 11:33 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.015	Not Detected	0.039	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.061	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.031	Not Detected	0.16	Not Detected
Tetrachloroethene	0.031	Not Detected	0.21	Not Detected
trans-1 2-Dichloroethene	0.15	Not Detected	0.61	Not Detected

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	93	70-130	

Client Sample ID: Lab Blank Lab ID#: 1508467-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	e082905sim 1.00	Date of Collection: NA Date of Analysis: 8/29/15 10:41 AM	
Dii. i actor.	Dot Limit	Amount Dat Limit Amount	

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
trans-1.2-Dichloroethene	0.10	Not Detected	0.40	Not Detected

,		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: Lab Blank Lab ID#: 1508467-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM

Dil. Factor:	1.00	Date of Analysis: 8/31/15 09:57 AM
File Name:	e083105sim	Date of Collection: NA

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected

,		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: CCV Lab ID#: 1508467-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File	Name: e082902sim	Date of Collection: NA
Dil.	Factor: 1.00	Date of Analysis: 8/29/15 08:19 AM

Compound	%Recovery	
Vinyl Chloride	100	
1,1-Dichloroethene	91	
cis-1,2-Dichloroethene	100	
Trichloroethene	85	
Tetrachloroethene	87	
trans-1.2-Dichloroethene	100	

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: CCV Lab ID#: 1508467-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: e083102sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/31/15 06:43 AM

Compound	%Recovery	
Vinyl Chloride	96	
1,1-Dichloroethene	82	
cis-1,2-Dichloroethene	91	
Trichloroethene	77	
Tetrachloroethene	79	
trans-1.2-Dichloroethene	90	

<i>,</i>		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: LCS Lab ID#: 1508467-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	e082903sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/29/15 09:05 AM

		Method Limits
Compound	%Recovery	
Vinyl Chloride	109	70-130
1,1-Dichloroethene	98	70-130
cis-1,2-Dichloroethene	117	70-130
Trichloroethene	92	70-130
Tetrachloroethene	94	70-130
trans-1.2-Dichloroethene	92	70-130

, P		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: LCSD Lab ID#: 1508467-08AA

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	e082904sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/29/15 09:49 AM

		Method Limits
Compound	%Recovery	
Vinyl Chloride	109	70-130
1,1-Dichloroethene	99	70-130
cis-1,2-Dichloroethene	118	70-130
Trichloroethene	92	70-130
Tetrachloroethene	95	70-130
trans-1.2-Dichloroethene	92	70-130

21.		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: LCS Lab ID#: 1508467-08B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	e083103sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/31/15 07:31 AM

		Method
Compound	%Recovery	Limits
Vinyl Chloride	110	70-130
1,1-Dichloroethene	97	70-130
cis-1,2-Dichloroethene	116	70-130
Trichloroethene	91	70-130
Tetrachloroethene	94	70-130
trans-1,2-Dichloroethene	91	70-130

21.		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: LCSD Lab ID#: 1508467-08BB

MODIFIED EPA METHOD TO-15 GC/MS SIM

ı	File Name:	e083104sim	Date of Collection: NA
L	Dil. Factor:	1.00	Date of Analysis: 8/31/15 08:59 AM

Compound	%Recovery	Limits
Vinyl Chloride	114	70-130
1,1-Dichloroethene	95	70-130
cis-1,2-Dichloroethene	115	70-130
Trichloroethene	89	70-130
Tetrachloroethene	91	70-130
trans-1.2-Dichloroethene	90	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	98	70-130	