

Mike Bauer Project Manager Marketing Business Unit Chevron Environmental Management Company 145 S. State College Blvd

Brea, CA 92821 Tel (714) 671-3200 Fax (714) 671-3440 mbauer@chevron.com

March 20, 2015

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RECEIVED

By Alameda County Environmental Health at 10:50 am, Mar 23, 2015

Re: Former Signal Oil Marine Storage and Distribution Facility (Former Chevron Bulk Plant 206127) 2301-2311 Blanding Avenue Alameda, California LOP Case RO0002466

Dear Mr. Wickham:

The purpose of this letter is to verify that as a representative for Chevron Environmental Management Company (Chevron), I reviewed, and concur with, the comments in the *First Semi-Annual 2015 Groundwater Monitoring and Sampling Report* for the referenced facility, prepared on behalf of Chevron by Conestoga-Rovers & Associates. I declare under penalty of perjury that the foregoing is true and correct.

Please feel free to contact me at (714) 671-3207 if you have any questions.

Sincerely,

Bauer

Mike Bauer Project Manager

10969 Trade Center Drive Rancho Cordova, California 95670 Telephone: (916) 889-8900 Fax: (916) 889-8999 http://www.craworld.com

March 20, 2015

Reference No. 631916

Mr. Jerry Wickham Alameda County Environmental Health (ACEH) 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: First Semi-Annual 2015 Groundwater Monitoring and Sampling Report Former Signal Oil Marine Storage and Distribution Facility (Chevron Bulk Plant 206127) 2301-2311 Blanding Avenue Alameda, California ACEH Case RO0002466

Dear Mr. Wickham:

Conestoga-Rovers & Associates (CRA) is submitting this *First Semi-Annual 2015 Groundwater Monitoring and Sampling Report* for the site referenced above (Figure 1) on behalf of Chevron Environmental Management Company. Groundwater monitoring and sampling was performed by Gettler-Ryan Inc. (G-R) of Dublin, California. G-R's *Groundwater Monitoring and Sampling Data Package* is included as Attachment A. Current groundwater monitoring and sampling data are presented in Table 1 and shown on Figures 2 through 5. Well construction specifications are summarized in Table 2. Eurofins Lancaster Laboratory Environmental LLCs' *Analytical Results* report is included as Attachment B. Historical groundwater monitoring and sampling data are included as Attachment C.

RESULTS OF FIRST SEMI-ANNUAL 2015 EVENT

On January 29, 2015, G-R monitored and sampled site wells per the established schedule. Results of the current monitoring event indicate the following:

- Groundwater Flow Direction
- Hydraulic Gradient

Approximate Depth to Water

North-Northeast 0.005 3.5 to 7.5 feet below grade

> Equal Employment Opportunity Employer

March 20, 2015

TABLE A - GROUNDWATER ANALYTICAL DATA										
Well ID	TPHd ¹ (µg/L)	TPHg (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)				
ESLs	100	100	1	40	30	20				
MW-1RA	1,700/87 J ¹	170	0.5 J	< 0.5	< 0.5	< 0.5				
MW-1RB	5,100 /95 J ¹	960	30	< 0.5	0.5 J	< 0.5				
MW-2 <50/<50 ¹ <50 <0.5 <0.5 <0.5 <0.5										
MW-3	1,700 /<501	<50	< 0.5	< 0.5	< 0.5	< 0.5				
MW-4	340/ <501	<50	< 0.5	< 0.5	< 0.5	< 0.5				
MW-5	2,300/390 ¹	2,900	93	7	2	10				
MW-6	990/ <50 ¹	480	6	<0.5	< 0.5	<0.5				
ESL Environmental screening level										
J Estimate	d value									
¹ TPHd wi	ithout and with 1	0-gram silica g	el cleanup							
Bold Concentrations exceed their respective ESL										

- 2 -

Results of the current sampling event are presented below in Table A.

CONCLUSIONS AND RECOMMENDATIONS

Results of this current semi-annual monitoring and sampling are consistent with results from past monitoring events and indicate the following:

- The highest total petroleum hydrocarbons as diesel (TPHd), TPH as gasoline (TPHg), and benzene concentrations in groundwater are in the area of the former fuel pumps, and north of the former aboveground storage tanks (Figures 3 through 5).
- Analysis of TPHd using a 10-gram silica gel column cleanup (SGC) resulted in a significant reduction in dissolved TPHd concentrations as compared to samples analyzed without SGC. Only the sample from MW-5 was above the TPHd ESL using SGC. This suggests that samples not analyzed using SGC contain polar non-hydrocarbons and/or non-dissolved petroleum components.
- Hydrocarbons are generally stable in site wells where concentrations are detected above groundwater ESLs.

CRA recommends continuing monitoring and sampling to verify concentration trends over time. CRA is currently awaiting ACEH comment on the February 10, 2015 *Site Conceptual Model and Low Threat Closure Request.*

March 20, 2015

Reference No. 631916

- 3 -

ANTICIPATED FUTURE ACTIVITIES

Groundwater Monitoring

G-R will monitor and sample site wells per the established semi-annual schedule. CRA will submit a groundwater monitoring and sampling report.

March 20, 2015

Reference No. 631916

- 4 -

Please contact Brian Silva at (916) 889-8908 if you have any questions or require additional information.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Brian Silva

Jugh

Greg Barclay, PG 6260

BS/aa/35 Encl.

Figure 1	Vicinity Map
Figure 2	Groundwater Elevation Contour Map
Figure 3	TPHd Concentration Contour Map
Figure 4	TPHg Concentration Contour Map
Figure 5	Benzene Concentration Contour Map
Table 1	Groundwater Monitoring and Sampling Data
Table 2	Well Construction Specifications
Attachment A	Groundwater Monitoring and Sampling Data Package
Attachment B	Laboratory Analytical Report
Attachment C	Historical Groundwater Monitoring and Sampling Data
cc: Mr. Mike	Bauer, Chevron (electronic only)
Ms. Julie I	Beck Ball

cc: Mr. Mike Bauer, Chevron (electronic only) Ms. Julie Beck Ball Mr. Peter Reinhold Beck Mr. Monroe Wingate Ms. Amanda Monroe FIGURES

631916-95(035)GN-EM001 FEB 25/2015

631916-95(035)GN-EM002 MAR 16/2015

631916-95(035)GN-EM003 MAR 19/2015

631916-95(035)GN-EM004 MAR 16/2015

631916-95(035)GN-EM005 MAR 19/2015

					HYDROCARBONS			PRIMARY VOCS					
Location	Date	ТОС	DTW	GWE	ONG-H4T	TPH-DRO w/ Si Gel	TPH-GRO	В	Т	Ε	X	MTBE by SW8260	
	Units	ft	ft	ft-amsl	µg∕L	µg∕L	µg∕L	µg∕L	µg∕L	µg∕L	µg∕L	µg/L	
MW-1 MW-1	07/21/2010 10/22/2010 ¹	13.49 13.49	9.47	4.02	440 -	-	65 J -	<0.5	<0.5 -	<0.5	<0.5	<0.5	
MW-1RA	10/28/2010	13.02	9.23 7.20	3.79	-	4,000	6,400	830	22	65	20	-	
MW 1RA	01/14/2011	13.02	7.20	5.60	-	3,000	790 3.800	600	2	1	1	-	
MW-1RA	04/19/2011	13.02	7.42	5.50	-	3,000	6 800	780	13	36	13		
MW-1RA	10/14/2011	13.02	7.96	5.06	6.900	360	6.800	1.300	19	50	13	-	
MW-1RA	01/18/2012	13.02	7.34	5.68	4.300	1.400	6,400	1,300	17	38	12	-	
MW-1RA	04/19/2012	13.02	5.23	7.79	3,700	400	3,100	120	<5	<5	<5	-	
MW-1RA	07/23/2012	13.02	7.92	5.10	6,000	1,000	-	-	-	-	-	-	
MW-1RA	$07/27/2012^4$	13.02	8.50	4.52	-	-	4,800	640	9	20	7	-	
MW-1RA	01/19/2013	13.02	7.30	5.72	3,000	270	1,500	180	<5	<5	<5	-	
MW-1RA	07/15/2013	13.02	8.09	4.93	4,200	630	3,700	430	8	5	2	-	
MW-1RA	01/09/2014	13.02	7.05	5.97	3,300	150	910	130	2	3	4	-	
MW-1RA	07/25/2014	13.02	8.04	4.98	2,500	390	1,100	17	< 0.5	<0.5	< 0.5	-	
MW-1RA	01/29/2015	13.02	7.28	5.74	1,700	87 J	170	0.5 J	<0.5	<0.5	<0.5	-	
MM 1DP	10/28/2010	12 01	0.00	4 21		1.600	650	3	<0.5	0.8	<0.5		
	10/20/2010	13.21	9.00	4.21	-	1,000	150	5	<0.5	0.0	<0.5	-	
MW-1RB	01/14/2011 04/19/2011	13.21	10.97	2.2 4 1.10	-	1 200	190	1	<0.5	<0.5	<0.5	-	
MW-1RB	06/30/2011	13.21	11.86	1.10	-	1,200	310	9	<0.5	<0.5	<0.5	-	
MW-1RB	10/14/2011	13.21	12.14	1.07	4,000	57	300	15	<0.5	<0.5	<0.5	-	

					HYDROCARBONS			PRIMARY VOCS					
Location	Date	тос	DTW	GWE	TPH-DRO	TPH-DRO w/ Si Gel	TPH-GRO	В	Т	Е	X	MTBE by SW8260	
	Units	ft	ft	ft-amsl	µg∕L	µg∕L	µg∕L	µg∕L	µ g/L	µg∕L	µg∕L	µg∕L	
MW-1RB	01/18/2012	13.21	14.71	-1.50	2,400	260	340	11	< 0.5	< 0.5	< 0.5	-	
MW-1RB	04/19/2012	13.21	8.33	4.88	2,800	53	180	1	< 0.5	< 0.5	< 0.5	-	
MW-1RB	07/23/2012	13.21	8.96	4.25	2,700	<50	-	-	-	-	-	-	
MW-1RB	$07/27/2012^4$	13.21	8.45	4.76	-	-	990	89	1	0.8	0.7	-	
MW-1RB	01/19/2013	13.21	8.65	4.56	2,000	62	200	2	< 0.5	< 0.5	< 0.5	-	
MW-1RB	07/15/2013	13.21	8.18	5.03	2,000	<50	230	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-1RB	01/09/2014	13.21	7.78	5.43	1,400	<50	150	< 0.5	<0.5	< 0.5	< 0.5	-	
MW-1RB	07/25/2014	13.21	9.96	3.25	2,300	57	270	1	<0.5	< 0.5	< 0.5	-	
MW-1RB	01/29/2015	13.21	6.87	6.34	5,100	95 J	960	30	<0.5	0.5 J	<0.5	-	
MW-2	07/21/2010	10.63	4.12	6.51	65 J	-	<50	< 0.5	<0.5	< 0.5	< 0.5	-	
MW-2	10/22/2010	10.63	4.31	6.32	-	58	<50	< 0.5	<0.5	< 0.5	< 0.5	-	
MW-2	$10/28/2010^2$	10.63	3.65	6.98	-	-	-	-	-	-	-	-	
MW-2	01/14/2011	10.63	3.12	7.51	-	68	<50	< 0.5	<0.5	<0.5	< 0.5	-	
MW-2	04/19/2011	10.63	3.51	7.12	-	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-2	06/30/2011	10.63	3.74	6.89	-	120	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-2	10/14/2011	10.63	3.52	7.11	160	<50	<50	< 0.5	<0.5	<0.5	< 0.5	-	
MW-2	01/18/2012	10.63	3.85	6.78	140	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-2	04/19/2012	10.63	3.16	7.47	<50	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-2	07/23/2012 ³	10.63	-	-	-	-	-	-	-	-	-	-	
MW-2	07/27/2012	10.63	3.40	7.23	-	-	<50	< 0.5	<0.5	< 0.5	< 0.5	-	
MW-2	01/19/2013	10.63	3.45	7.18	<50	<50	<50	< 0.5	<0.5	< 0.5	< 0.5	-	
MW-2	07/15/2013	10.63	3.75	6.88	150	<50	<50	< 0.5	<0.5	< 0.5	< 0.5	-	

					HYDROCARBONS			PRIMARY VOCS					
Location	Date	тос	DTW	GWE	TPH-DRO	TPH-DRO w/ Si Gel	TPH-GRO	В	Т	Е	X	MTBE by SW8260	
	Units	ft	ft	ft-amsl	µg/L	µ g/L	µg∕L	µg∕L	µ g/L	µg∕L	µg∕L	µg∕L	
MW-2 MW-2 MW-2	01/09/2014 ³ 07/25/2014 01/29/2015	10.63 10.63	- 3.96 3.51	- 6.67 712	- <50 <50	- <50 < 50	- <50 <50	- <0.5	- <0.5	- <0.5	- <0.5	- -	
MW-3	07/21/2010	10.72	5.09	5.63	640	-	65 J	0.6 J	<0.5	<0.5	<0.5	-	
MW-3	10/22/2010 $10/28/2010^2$	10.72	5.32 4.74	5.40 5.98	-	-	-	-	-		-	-	
MW-3	01/14/2011	10.72	4.11	6.61	-	1,000	91	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-3	04/19/2011	10.72	5.03	5.69	-	1,200	180	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-3	06/30/2011	10.72	4.97	5.75	-	740	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-3	10/14/2011	10.72	4.52	6.20	1,800	<50	88	< 0.5	<0.5	< 0.5	< 0.5	-	
MW-3	01/18/2012	10.72	5.22	5.50	1,700	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-3	04/19/2012	10.72	4.63	6.09	3,000	50	260	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-3	07/23/2012	10.72	4.89	5.83	1,200	<50	-	-	-	-	-	-	
MW-3	$07/27/2012^4$	10.72	4.58	6.14	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-3	01/19/2013	10.72	4.52	6.20	1,600	<50	69	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-3	$07/15/2013^5$	10.72	4.54	6.18	1,500	<50	110	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-3	01/09/2014	10.72	4.21	6.51	1,500	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-3	07/25/2014	10.72	4.95	5.77	1,700	<50	120	< 0.5	< 0.5	< 0.5	< 0.5	-	
MW-3	01/29/2015	10.72	4.15	6.57	1,700	<50	<50	<0.5	<0.5	<0.5	<0.5	-	
MW-4	07/21/2010	11.40	6.72	4.68	<50	-	<50	<0.5	<0.5	<0.5	<0.5	-	
MW-4	10/22/2010	11.40	6.87	4.53	-	91	<50	< 0.5	<0.5	< 0.5	< 0.5	-	
MW-4	$10/28/2010^2$	11.40	6.38	5.02	-	-	-	-	-	-	-	-	

					HYDROCARBONS			PRIMARY VOCS					
Location	Date	тос	DTW	GWE	OND-H4T	TPH-DRO w/ Si Gel	TPH-GRO	В	Т	Е	X	MTBE by SW8260	
	Units	ft	ft	ft-amsl	µg∕L	µg∕L	µ g/L	µ g/L	µ g/L	µ g/L	µg∕L	µg∕L	
MW-4	01/14/2011	11.40	5.32	6.08	-	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	-	
MW-4	04/19/2011	11.40	7.65	3.75	-	<50	<50	< 0.5	<0.5	<0.5	< 0.5	-	
MW-4	06/30/2011	11.40	6.93	4.47	-	<50	<50	<0.5	<0.5	<0.5	< 0.5	-	
MW-4	10/14/2011	11.40	5.66	5.74	440	<50	<50	<0.5	<0.5	<0.5	< 0.5	-	
MW-4	01/18/2012	11.40	8.36	3.04	330	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	-	
MW-4	04/19/2012	11.40	6.40	5.00	360	<50	<50	< 0.5	0.5	< 0.5	< 0.5	-	
MW-4	$07/23/2012^3$	11.40	-	-	-	-	-	-	-	-	-	-	
MW-4	07/27/2012	11.40	6.39	5.01	-	-	<50	< 0.5	< 0.5	<0.5	< 0.5	-	
MW-4	01/19/2013	11.40	6.78	4.62	380	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	-	
MW-4	07/15/2013	11.40	5.83	5.57	530	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	-	
MW-4	01/09/2014	11.40	5.19	6.21	240	<50	<50	< 0.5	<0.5	< 0.5	< 0.5	-	
MW-4	07/25/2014	11.40	7.80	3.60	250	<50	<50	< 0.5	<0.5	< 0.5	< 0.5	-	
MW-4	01/29/2015	11.40	5.28	6.12	340	<50	<50	<0.5	<0.5	<0.5	<0.5	-	
MW-5	07/21/2010	10.50	5.76	4.74	2,000	-	1,500	80	2	1	2	-	
MW-5	10/22/2010	10.50	5.94	4.56	-	1,500	830	47	< 0.5	1	< 0.5	-	
MW-5	$10/28/2010^2$	10.50	5.17	5.33	-	-	-	-	-	-	-	-	
MW-5	01/14/2011	10.50	4.40	6.10	-	1,800	2,100	61	4	1	6	-	
MW-5	04/19/2011	10.50	5.69	4.81	-	2,000	2,200	73	4	1	6	-	
MW-5	06/30/2011	10.50	5.82	4.68	-	3,200	2,900	99	6	1	7	-	
MW-5	10/14/2011	10.50	4.51	5.99	4,600	89	2,300	76	5	1	5	-	
MW-5	01/18/2012	10.50	5.98	4.52	3,700	460	3,500	140	7	2	10	-	
MW-5	04/19/2012	10.50	5.40	5.10	3,600	310	2,000	87	5	1	5	-	

					HYDROCARBONS			PRIMARY VOCS					
Location	Date	тос	DTW	GWE	TPH-DRO	TPH-DRO w/ Si Gel	TPH-GRO	В	Т	E	X	MTBE by SW8260	
	Units	ft	ft	ft-amsl	µg∕L	µg/L	µg∕L	µg∕L	µg∕L	µg∕L	µg∕L	µg∕L	
MW-5 MW-5	07/23/2012 07/27/2012 ⁴	10.50 10.50	5.29 5.08	5.21 5.42	4,300 -	380 -	- 1,800	- 48	- 3	- 0.7	- 4	-	
MW-5	01/19/2013	10.50	5.38	5.12	4,200	400	3,500	100	7	<5	7	-	
MW-5	07/15/2013	10.50	5.78	4.72	3,800	850	3,900	130	8	2	11	-	
MW-5	01/09/2014	10.50	4.20	6.30	4,000	670	3,600	130	9	2	13	-	
MW-5	07/25/2014	10.50	6.20	4.30	3,200	720	3,400	130	9	2	14	-	
MW-5	01/29/2015	10.50	4.08	6.42	2,300	390	2,900	93	7	2	10	-	
MW-6	10/28/2010	12.98	8.35	4.63	-	300	620	7	<0.5	1	2	-	
MW-6	01/14/2011	12.98	7.58	5.40	-	560	120	3	<0.5	<0.5	< 0.5	-	
MW-6	04/19/2011	12.98	9.90	3.08	-	590	240	7	<0.5	< 0.5	<0.5	-	
MW-6	06/30/2011	12.98	9.97	3.01	-	640	200	3	<0.5	<0.5	< 0.5	-	
MW-6	10/14/2011	12.98	7.40	5.58	1,700	<50	510	10	<0.5	<0.5	< 0.5	-	
MW-6	01/18/2012	12.98	9.82	3.16	1,300	<50	300	7	<0.5	<0.5	< 0.5	-	
MW-6	04/19/2012	12.98	8.02	4.96	1,600	<50	290	7	0.6	<0.5	< 0.5	-	
MW-6	07/23/2012	12.98	9.69	3.29	1,600	73	-	-	-	-	-	-	
MW-6	$07/27/2012^4$	12.98	8.39	4.59	-	-	450	9	< 0.5	<0.5	0.6	-	
MW-6	01/19/2013	12.98	8.92	4.06	830	<50	250	3	< 0.5	<0.5	<0.5	-	
MW-6	07/15/2013	12.98	7.70	5.28	2,400	<50	660	13	<0.5	<0.5	< 0.5	-	
MW-6	01/09/2014	12.98	6.85	6.13	1,400	<50	490	10	<0.5	<0.5	< 0.5	-	
MW-6	07/25/2014	12.98	9.85	3.13	1,500	<50	460	12	<0.5	<0.5	< 0.5	-	
MW-6	01/29/2015	12.98	6.83	6.15	990	<50	480	6	<0.5	<0.5	<0.5	-	

GROUNDWATER MONITORING AND SAMPLING DATA FORMER SIGNAL OIL MARINE STORAGE AND DISTRIBUTION FACILITY CHEVRON BULK PLANT 206127 2301-2311 BLANDING AVENUE ALAMEDA, CALIFORNIA

					HYDROCARBONS			PRIMARY VOCS					
Location	Date	тос	DTW	GWE	TPH-DRO	TPH-DRO w/ Si Gel	TPH-GRO	В	Т	Ε	X	MTBE by SW8260	
	Units	ft	ft	ft-amsl	µg/L	µg/L	µg∕L	µg∕L	µg/L	µg/L	µg∕L	µg/L	
QA QA QA QA QA QA QA	07/21/2010 10/22/2010 10/28/2010 01/14/2011 04/19/2011 06/30/2011 10/14/2011 01/18/2012	- - - - - - - - - -	- - - - - - - - - - -	- - - - - - - - - - -			>32 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 - - - - - - - - - -	
QA	04/19/2012	-	-	-	-	-	<50	<0.5	< 0.5	<0.5	< 0.5	-	
QA	07/23/2012	-	-	-	-	-	<50	< 0.5	<0.5	<0.5	<0.5	-	
QA	01/19/2013	-	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	-	
QA	07/15/2013	-	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	-	
QA	01/09/2014	-	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	-	
QA	07/25/2014	-	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	-	
QA	01/29/2015	-	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	-	

Abbreviations and Notes:

TOC = Top of casing

DTW = Depth to water

GWE = Groundwater elevation

(ft-amsl) = Feet above mean sea level

ft = Feet

 $\mu g/L$ = Micrograms per liter

GROUNDWATER MONITORING AND SAMPLING DATA FORMER SIGNAL OIL MARINE STORAGE AND DISTRIBUTION FACILITY CHEVRON BULK PLANT 206127 2301-2311 BLANDING AVENUE ALAMEDA, CALIFORNIA

					Н	YDROCARBO	NS		1	PRIMARY VOC	S	
Location	Date	тос	DTW	GWE	TPH-DRO	TPH-DRO w/ Si Gel	TPH-GRO	В	Т	Е	X	MTBE by SW8260
	Units	ft	ft	ft-amsl	µg/L	µg∕L	µg∕L	µg/L	µg∕L	µg/L	µg∕L	µg∕L

TPH-DRO = Total petroleum hydrocarbons - diesel range organics

TPH-GRO = Total petroleum hydrocarbons - gasoline range organics

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes (Total)

MTBE = Methyl tert butyl ether

-- = Not available / not applicable

<x = Not detected above laboratory method detection limit

J = Estimated concentration

- TOC elevations for all wells were surveyed on July 30, 2009, by Morrow Surveying. Vertical Datum is NAVD 88 from GPS observations. TOC elevations were surveyed on January 25, 2001, by Virgil Chacez Land Surveying. The benchmark used for the survey was a City of Alameda benchmark being a cut square at the centerline return, south corner of Oak and Blanding, (Benchmark Elevation = 8.236 feet, NGVD 29).
 Destroyed and re-installed as MW-1RB.
 Monitored only for the 10/28/10 Special Event
 Inaccessible.
 Due to laboratory error, a second set of samples had to be collected for TPHg and BTEX on 7/27/12 for wells MW1RA, MW1RB, MW-3, MW-5 and MW-6.
- ⁵ No purge sample collected due to limited access.

WELL CONSTRUCTION SPECIFICATIONS FORMER SIGNAL OIL MARINE STORAGE AND DISTRIBUTION FACILITY (CHEVRON BULK PLANT 206127) 2301-2311 BLANDING AVENUE ALAMEDA, CALIFORNIA

				Casing				
Well ID	Date Installed	тос	Total Depth (fhg)	Diameter ¹ (inches)	Slot Size (inches)	Screen Interval (fho)	Filter Pack (fbg)	Status
Monitoring	Wells		108/	(menes)	(menes)	0.8/	108/	
MW-1	8/15/1990	13.49	19.5	2	0.020	4-19	3-19.5	Replaced w/MW-1RB
MW-1RA	8/4/2010	13.02	13	2	0.020	8-13	7-13	Active
MW-1RB	8/4/2010	13.21	20	2	0.020	16.5-20	15.5-20	Active
MW-2	6/19/2009	10.63	18	2	0.020	10.5-15.5	10-16	Active
MW-3	6/19/2009	10.72	18.5	2	0.020	13.5-18.5	12.5-18.5	Active
MW-4	6/19/2009	11.40	20.5	2	0.020	15.5-20.5	14.5-20.5	Active
MW-5	6/23/2009	10.50	18	2	0.020	13-18	12-18	Active
MW-6	8/4/2010	12.98	20	2	0.020	16.5-20	15.5-20	Active
Vapor Wells	<u>8</u>							
VP-1	7/9/2008	NS	4.25	1	0.020	3.75-4.25	3.5-4.5	Vapor only
VP-2	7/9/2008	NS	4.75	1	0.020	4.25-4.75	4-5	Vapor only
VP-3	7/14/2008	NS	5.75	1	0.020	5.25-5.75	5-6	Vapor only
VP-4	7/14/2008	NS	5.75	1	0.020	5.25-5.75	5-6	Vapor only
VP-5	7/14/2008	NS	5.75	1	0.020	5.25-5.75	5-6	Vapor only
VP-6	7/9/2008	NS	5.75	1	0.020	5.25-5.75	5-6	Vapor only
Sub-Slab Va	apor Probes							
VP-7	7/17/2009	NS	0.5	0.25	NA	NA	NA	Vapor only
VP-8	7/17/2009	NS	0.5	0.25	NA	NA	NA	Vapor only
VP-9	7/22/2009	NS	0.5	0.25	NA	NA	NA	Vapor only
VP-10	7/22/2009	NS	0.5	0.25	NA	NA	NA	Destroyed
VP-11	7/17/2009	NS	0.5	0.25	NA	NA	NA	Destroyed
VP-12	7/22/2009	NS	0.5	0.25	NA	NA	NA	Destroyed
VP-13	7/22/2009	NS	0.5	0.25	NA	NA	NA	Vapor only

Abbreviations / Notes

TOC = Top of casing elevation (feet above mean sea level)

¹ = Schedule 40 PVC casing material

fbg = Feet below grade

NA = Not applicable

NS = Not surveyed

ATTACHMENT A

MONITORING DATA PACKAGE

TRANSMITTAL

February 6, 2015 G-R #386498 TO: Mr. Brian Silva Conestoga-Rovers & Associates 10969 Trade Center Drive, Suite 107 Rancho Cordova, California 95670

FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6805 Sierra Court, Suite G Dublin, California 94568 RE: Chevron #206127 2301-2337 Blanding Avenue Alameda, California (Former Signal Oil Marine Terminal)

WE HAVE ENCLOSED THE FOLLOWING:

COPIES

DESCRIPTION

VIA PDF

Groundwater Monitoring and Sampling Data Package First Semi-Annual Event of January 29, 2015

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/206127

WELL CONDITION STATUS SHEET

Site Address: 2301-2337 Blanc	ing Avenue			-			_					
				Event Date:	1.29.15							
City: Alameda, CA				•	Sampler:			-	FI			
WELL ID Vault Frame Gasket/O-R Condition (R) Missir (R) Replac	ing BOLTS g (M) Missing d (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPI LO Y	LACE CK	REPLACE CAP Y /	Mar	WELL Notestand	VAULT ize/ # of Bolts	Pictures Taken Y 😰
MULIES OK					->				Mouriso	2 8'	1/2	
MW-IRB DK -									1.*	1	· · · · · · · · · · · · · · · · · · ·	
MW.2 OK -					\rightarrow				Emile		12	
MW-3 DK -					\rightarrow				1			
MW- 4 BK					\rightarrow			\top				
MW-5 OIL .					\rightarrow	\square		1	Englal	1241	2.	
Mu-lo Or Or	MZ2	B=2	DIL		->	4		V	Monu	Sec / 8	1* /2	
								•				
								· · · · · · · · · · · · · · · · · · ·				
										····	· · · · · · · · · · · · · · · · · · ·	
Comments												

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California.

N; California forms chevron-SOP- 2013

Client/Facility#: Chevron #206127 Job Numbe	er: 386498
Site Address: 2301-2337 Blanding Avenue Event Date:	inclusive)
City: Alameda, CA Sampler:	F
Well ID MW- IRA Date Monitored	d:1.29.15
Well Diameter 2 in. Total Depth 19.90 ft. Volume 3/4"-	'= 0.02 1"= 0.04 2"= 0.17 3"= 0.38 '= 0.66 5"= 1.02 6"= 1.50 12"= 5.80
Depth to Water 7.28 ft. Check if water column is less then 0).50 tt.
Depth to Water w/ 80% Recharge [(Height of Water Column x 0.20) + DTW]: 8.34	e = Estimated Purge Volume: <u>6.0</u> gal.
Purge Equipment: Sampling Equipment: Disposable Bailer Disposable Bailer Stainless Steel Bailer Pressure Bailer Stack Pump Metal Filters Peristaltic Pump Peristaltic Pump QED Bladder Pump QED Bladder Pump Other: Other:	Time Started: (2400 hrs) Time Completed: (2400 hrs) Depth to Product: ft Depth to Water: ft Hydrocarbon Thickness: ft Visual Confirmation/Description: ft Skimmer / Absorbant Sock (circle one) Amt Removed from Skimmer: Amt Removed from Well: Itr Water Removed: Itr
Start Time (purge): 12.5 Weather Conditions:	Synny
Sample Time/Date: 1345 / 1.29.15 Water Color: 6mg.	Odor: O/N STRONG
Approx. Flow Rate:gpm. Sediment Description:	S. SILTY
Did well de-water? <u>YES</u> If yes, Time: <u>1212</u> Volume: <u>3.0</u>	>gal. DTW @ Sampling: %.3 o
Time Volume (gal.) pH Conductivity Temperature (2400 hr.) Volume (gal.) pH (µS) mS (C) / F)	D.O. ORP (mg/L) (mV)
1209 2.0 7.95 1875 17.2	

	LABORATORY INFORMATION								
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES				
MW-1RA	🖉 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8260)				
	2 x 1 liter ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN/TPH-DRO(8015)				
					1				
İ									

COMMENTS:

-

TOTAL DEPTH IS CONNECT

Add/Replaced Gasket: _____ Add/Replaced Bolt: _____ Add/Replaced Lock: _____ Add/Replaced Plug: _____

Client/Facility#:	Chevron #206127		Job Number:	386498	
Site Address:	2301-2337 Blanding	Avenue	Event Date:	1.29.15	(inclusive)
City:	Alameda, CA		Sampler:	FT	······································
Well ID	MW-IRB	[Date Monitored:	1.29.15	
Well Diameter	2 in.	Volu	ime 3/4"= 0.0	2 1"= 0.04 2"= 0.17	3"= 0.38
Total Depth	12.68 ft.	Fac	tor (VF) 4"= 0.6	6 5"= 1.02 6"= 1.50	12"= 5.80
Depth to Water	<u>6.87 ft.</u>	Check if water colum	n is less then 0.50 t	t.	
	XVF	<u> </u>	x3 case volume = E	Estimated Purge Volume: 3	gal.
Depth to Water w	w/ 80% Recharge [(Height of)	Water Column x 0.20)	- DTW]: 9.4 7	- Time Started	(0.400)
Purge Equipment:		Sampling Equipment		Time Completed:	(2400 hrs) (2400 hrs)
Disposable Bailer		Disnosable Bailer		Depth to Product:	ft
Stainless Steel Baile	r	Pressure Bailer		Depth to Water:	ft
Stack Pump		Metal Filters		Hydrocarbon Thicknes	s:ft
Peristaltic Pump		Peristaltic Pump		Visual Confirmation/De	Scription:
QED Bladder Pump	(QED Bladder Pump		Skimmer / Absorbant S	lock (circle one)
Other:	(Other:		Amt Removed from Ski	immer: ltr
				Amt Removed from We	ell:ltr
				Water Removed:	ltr
Start Time (purge	1222	Weather Cor	ditions:	C	
Sample Time/Dat	te: 1420 /1.2.5.15	. Water Color:		Odor: Q/N CC	*u
Approx. Flow Rat	te: apm.	Sediment De	scription.		A .NC
Did well de-water	? Yes If yes, Ti	me: <u>1234</u> Vo	lume: 2.0	gal. DTW @ Sampling	8.26
Time (2400 hr.)	Volume (gal.) pH	Conductivity () mS µmhos/cm)	Temperature (D.O. OR (mg/L) (m\	P /)
1230	1.0 8.10	1918	_17.1		
1234	2.0 7.99	1927	16.8		
				$-\!\!\!/$	= 100

	LABORATORY INFORMATION									
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES					
MW-IPB	🖌 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8260)					
	2 x 1 liter ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN/TPH-DRO(8015)					
	· · · · · · · · · · · · · · · · · · ·									

COMMENTS:

_

TOTAL DEPTH IS CONNECT

Client/Facility#:	Chevron #206	127	Job Nur	nber: 🕄	386498			
Site Address:	2301-2337 Bla	nding Avenue	Event D	ate:	1.2	9.15		(inclusive)
City:	Alameda, CA		Sample	r:	FT			()
Well ID	MW- 2_		Date Monit	ored:	1.2	9.15		
Well Diameter	2 in.		Volume	3/4"= 0.02	1"= 0.04	2"= 0.17	3"= 0.38	3
I otal Depth	13.38 ft.		Factor (VF)	4"= 0.66	5"= 1.02	6"= 1.50	12"= 5.80	<u> </u>
Depth to water	<u> </u>		column is less the	en 0.50 ft.				
Depth to Water	w/ 80% Recharge (()	Height of Water Column x (0.20) + DTW1: 5	oume = Es 5- 9 2∕	timated Purge	e volume:	9.0	gal.
Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Peristaltic Pump QED Bladder Pump Other:		Sampling Equip Disposable Bailer Pressure Bailer Metal Filters Peristaltic Pump QED Bladder Pun Other:	ment:		Time Sta Time Co Depth to Depth to Hydrocar Visual Co Skimmer Amt Rem Amt Rem Water Re	arted: Product: Water: rbon Thickne onfirmation/I / Absorbant noved from S oved from V emoved:	ess: Description Sock (circi Skimmer: Vell:	(2400 hrs) (2400 hrs) ft
Start Time (purge	e): 0935	Weathe	r Conditions:		Syun	vy	*******************	
Sample Time/Da	te: 1010 /1.2	9.15 Water C	Color: _ long	0	dor: Y /	D'		
Approx. Flow Ra	te:g	om. Sedimei	nt Description:		51	LAY		
Did well de-water	r? <u>No</u> li	yes, Time:	Volume:	Q	gal. DTW (② Samplin	ng: <u>5</u>	.86
Time (2400 hr.)	Volume (gal.)	pH Conductivity mS µmhos/cm)	Temperat	ure ;)	D.O. (mg/L)	0 (n	RP nV)	
0939	2.0 8	21 1752	<u> </u>					
0943	40 8	17 1744				<	<u> </u>	
	<u> </u>		 		/			∴ *

	LABORATORY INFORMATION								
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES				
MW- 2	🖌 🖌 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8260)				
	2 x 1 liter ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN/TPH-DRO(8015)				
			15						
		·							
				_					

COMMENTS:

_

Add/Replaced Plug: _____

Client/Facility#:	Chevron #2061	27	Job N	umber:	386498				
Site Address:	2301-2337 Blan	ding Avenue	Event	Date:	1.29	.15		- (inclusive)	
City:	Alameda, CA	·	Samp	ler: _	FT				
Well ID	MW- 3		Date Mo	nitored:	1.29	.15			
Well Diameter	<u>2</u> in.		Volume	3/4"= 0.02	1"= 0.04	2"= 0.17	3"= 0.3	8	
Depth to Water	4115 ft.	Check if water c	column is less	4 = 0.66 then 0.50 ft.	5"= 1.02	6"= 1.50	12"= 5.8)	
Depth to Water	XVF N/ 80% Recharge I(He	ight of Water Column x 0	3 2 x3 case	volume = Es	stimated Purge	Volume:	1.0	_gal.	
Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Peristaltic Pump QED Bladder Pump Other:	r	Sampling Equipm Disposable Bailer Pressure Bailer Metal Filters Peristaltic Pump QED Bladder Pum Other:	nent:		Time Sta Time Cor Depth to Hydrocar Visual Co Skimmer Amt Rem Water Re	rted: npleted: Product: Water: bon Thickne nfirmation/E / Absorbant oved from S oved from W moved:	ess: Desemption Sock (circ skimmer: Vell:	(2400 hrs) (2400 hrs) ft	
Start Time (purge): 1025	Weather	Conditions:		SUNI	<u>ام</u>			
Sample Time/Da	te: 1055 /1.29	Water C	olor: Lan	م 0)dor: 🕜 / N		LIGHT	-	
Did well de-water	ie:gpn	n. Sedimen	t Description): ⁻	5. SILT	Jone III		<u> </u>	
Time (2400 hr.)	Volume (gal.) p	Conductivity H (@)/mS µmhos/cm) 99 1656	Tempe (0)/	rature F)	D.O. (mg/L)	oampiin O (n	ny(RP nV)	<u>p. 0 /-</u>	
1040	7.0 7.	11 1671	,,	<u>-</u>	/	$ \ge$		2	

	LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES			
MW- 3	💪 🗴 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8260)			
	2 x 1 liter ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN/TPH-DRO(8015)			
	а. -							
			1					

COMMENTS:

-

Add/Replaced Plug: _____

Onentri acinty#.	Cilevion #200	5127	Job Number:	386498	
Site Address:	2301-2337 Bla	anding Avenue	Event Date:	1.29.15	(inclusive)
City:	Alameda, CA		Sampler:	FT	
Well ID	мw- 4		Date Monitored:	1.29.15	
Well Diameter	2 in.		Volume 3/4"= 0.02	2 1"= 0.04 2"= 0.17	3"= 0.38
Total Depth	20.15 ft.	,	Factor (VF) 4"= 0.66	5 5"= 1.02 6"= 1.50	2"= 5.80
Depth to Water	<u>5.28</u> ft. 14.87	Check if water $13 = 2.5$	column is less then 0.50 f	stimated Purge Volume: 🖇	
Depth to Water v	v/ 80% Recharge (Height of Water Column x (0.20) + DTWI: 8.25	samateur arge volume.	yaı.
Come Environmente	,		······	Time Started:	(2400 hrs)
Disposable Bailer		Sampling Equip	ment:	Depth to Product:	ft
Stainless Steel Baile	rV	Disposable Baller Pressure Bailer		Depth to Water:	ft
Stack Pump		Metal Filters		Hydrocarbon Thickness	ft
Peristaltic Pump		Peristaltic Pump	•••••	Visual Confirmation/Des	scription:
QED Bladder Pump		QED Bladder Pun	np	Skimmer / Khsorbant S	ock (circle and)
Other:		Other:		Amt Removed from Skir	nmer: Itr
				Amt Removed from We	l: ltr
				Water Removed:	ltr
Start Time (purge): 1110	Weathe	r Conditions:	SUNNE	
			2		
Sample Time/Dat	te: 1150 /1.	Z9.15 Water C	Color: DC-N (odor: Y / KD	
Sample Time/Dat Approx. Flow Rat	te: 1150 / 1. e:	29.15 Water C	color: Drz C	Ddor: Y / 🔂 '	
Sample Time/Dat Approx. Flow Rat Did well de-water	ie: 1150 / 1. e:g ?	29.15 Water Component Sediment If yes, Time:	Color:COLOR:COL	Ddor: Y / 🕜 ' عا. DTW @ Sampling:	8.17
Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.)	te: <u>1150 / 1.</u> e: <u> </u>	29.15 Water C pm. Sedimen If yes, Time: pH Conductivity umhos/cm)	Color:C nt Description:C Volume: Temperature (Ddor: Y / 🕑 ' gal. DTW @ Sampling: D.O. ORF (mg/L) (mV	<u></u>
Sample Time/Dan Approx. Flow Rat Did well de-water Time (2400 hr.)	te: <u>1150 / 1-</u> e: <u> </u>	29.15 Water C Ipm. Sediment If yes, Time:	Color: <u>Dれよい</u> nt Description: Volume: (の/ F) 」て、S	Ddor: Y / 😡 ' gal. DTW @ Sampling: D.O. ORF (mg/L) (mV	<u>୫.</u>)ๅ
Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.)	te: $150 / 1$. e: $200 / 1$. Volume (gal.) 25 / 50 / 1.	29.15 Water C Ipm. Sedimer If yes, Time: pH Conductivity pH @>/mS ymhos/cm) 1719 1.65 1727	Color:(nt Description:(Volume: Temperature (の/ F) 」フ. (Ddor: Y / O ' gal. DTW @ Sampling: D.O. ORF (mg/L) (mV	<u>8.)]</u>
Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.) 1120 1126	te: $150 / 1$. e: g $? _{NO} / 1$ Volume (gal.) 25 / 1 50 / 1	29.15 Water C Ipm. Sedimer If yes, Time:	Color:C nt Description:C Volume: Temperature (O / F) _ _ _	Ddor: Y / 🚱 ' gal. DTW @ Sampling: D.O. ORF (mg/L) (mV	<u>8.)]</u>

	LABORATORY INFORMATION								
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES				
MW- 4-		YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8260)				
	2_x 1 liter ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN/TPH-DRO(8015)				
			2						
				······································					

COMMENTS:

Client/Facility#:	Chevron #206127		Job Number:	386498	
Site Address:	2301-2337 Blanding Av	venue	Event Date:	1.29.15	— (inclusive)
City:	Alameda, CA		Sampler:	FT	
Well ID	MW-5	D	ate Monitored:	1.29.15	
Total Depth	<u>2</u> In.	Volur	ne 3/4"= 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.38
Depth to Water	4.08 ft [] Che	ck if water column	4 = 0.0	4	
	13.79 xVF .11	= 2.34	x3 case volume = E	Estimated Purce Volume: 7.0	gal
Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Peristaltic Pump QED Bladder Pump Other:	/ 80% Recharge [(Height of Wate 	er Column x 0.20) + pling Equipment: bosable Bailer sure Bailer I Filters taltic Pump Bladder Pump r:		Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Descripti Skimmer / Absorbant Sock (c Amt Removed from Skimmer Amt Removed from Well: Water Removed:	(2400 hrs) (2400 hrs) ft
Start Time (purge)	1317	Weather Con	ditions:	Sunn	
Sample Time/Date	= 1410 / 1.29.15	Water Color:	long.	Odor: 0 / N STRO	J &
Approx. Flow Rate	e:gpm.	Sediment Des	cription:	SILTY	
Did well de-water	it yes, time.	VOI	ume:	gal. DTW @ Sampling:	6.30
Time (2400 hr.)	Volume (gal.) pH	(US/mS µmhos/cm)	Temperature (D.O. ORP (mg/L) (mV)	
<u> 322</u> 327 332	<u>2.5</u> <u>5.0</u> <u>7.76</u> <u>7.0</u> <u>7.72</u>	2102	17.9 17.5 17.2	$\neq \neq$	-
<u></u>	<u> </u>				-

	LABORATORY INFORMATION								
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES				
MW- 5	🖌 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8260)				
	2 x 1 liter ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN/TPH-DRO(8015)				
	1								

COMMENTS:

Add/Replaced Plug: ____

Client/Facility#:	Chevron #2	06127		Job Number:	386498		
Site Address:	2301-2337 B	landing	Avenue	Event Date:	1-2	9.15	(inclusive)
City:	Alameda, C	4		Sampler:	F1	r	_ (
Well ID	MW- 6		[Date Monitored:	1.2	.9.15	
Well Diameter	2 ir	<u>ı.</u>	Volu	me 3/4"= 0	.02 1"= 0.04	2"= 0.17 3"= 0.	38
Total Depth	20.00 ft	<u>.</u>	Fact	or (VF) 4"= 0	.66 5"= 1.02	6"= 1.50 12"= 5.	80
Depth to Water	<u>6.83</u> ft 13.17	C	Check if water colum	n is less then 0.50 x3 case volume =	0 ft. = Estimated Purge	Volume: 7,0	cal.
Depth to Water	w/ 80% Recharge	E [(Height of W	/ater Column x 0.20) +	DTW]: 9.46	Time Sta	rted:	(2400 hrs)
Purge Equipment:		S	ampling Equipment:		Time Co	mpleted:	(2400 hrs)
Disposable Bailer		D	isposable Bailer		Depth to	Product:	ft
Stainless Steel Baile	er	Р	ressure Bailer		Depth to	Water:	ft
Stack Pump	<u></u>	М	letal Filters		Hydrocar	bon Thickness:	ft
Peristaltic Pump		P	eristaltic Pump		Visual Co	onfirmation/Description	on:
QED Bladder Pump		Q	ED Bladder Pump		Skimmer	/ Absorbant Sock (ci	
Other:		0	ther:		Amt Rem	oved from Skimmer	ltr
					Amt Rem	oved from Well:	ltr
					Water Re	moved:	ltr
					L		
Start Time (purge	=): 1250		Weather Cor	nditions:	<u></u>	NNy	
Sample Time/Da	ite: 1400 /1	.29.15	Water Color:	LT. Guy	_Odor: 🖉 / N	MoDe	utz
Approx. Flow Ra	te:	gpm.	Sediment De	scription:	S. 51	UT.	
Did well de-wate	r? <u>No</u>	If yes, Tin	ne: <u>1302</u> Vo	lume: <u>5,0</u>	_gal. DTW @	Sampling:	.08
Time (2400 hr.)	Volume (gal.)	рН	Conductivity (mS µmhos/cm)	Temperature	D.O. (mg/L)	ORP (mV)	
1255	2.5	8.17	1930	17.5			_
1302	5.0	8.14	1941	17.0			
			<u> </u>				2.83
	-						-
		l	ABORATORY IN	FORMATION	······································	·····	
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY		ANALYSES	
MW- 6	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8260)	
	>-x 1 liter ambers	YES	NP	LANCASTER	TPH-DRO w/sgo	COLUMN/TPH-DRC	D(8015)
<u></u>		<u>_</u>			<u> </u>		
						<u></u>	51
	<u> </u>				<u> </u>		

COMMENTS:

Add/Replaced Bolt:

Mounison

8" (28F)

Add/Replaced Plug: ____

			VIUI	100					<u> </u>						10	15			14		30		1 1 C			siduy
Ø12	eurofins .915-Ø5	Lancaste	r ries		Ac	cct. #				_ Gro	For oup #_ Instru	Euro	ofins i	Lanc rerse s	aster ide corr	Labor Sar	ratorie mple # I with cir	S USE	only	•						
		Client In	formatio	n	tist:			(4)	Matr	ix	Т	(5)			Ar	nalys	es F	lequ	Jest	ed				COD #1	
Facility	S#206127-OML	G-R#386	498 Glo	D#PID#T	0601974	14728	3					Γ													SCR #:	
Site Ad	891-2337 BLAN	DING AVEI	NUE, AL	AMEDA	, CA											Ø									Results in Dry We	right needed
Chevror CRASB Lead Strivitant								limen	, ound	Пасе					Cleanu	anup									Must meet lowest	detection 8260
Consulte	efter-Ryan, Inc.	, 6805 Sier	ra Courl	t, Suite (3, Dublii	n, CA	945	9 8	ς Ω	ק ק	o io		826	826	ca Gel	Gel Cle									compounds	rmation
Consult	Benina ^{Mer.} Hardiı	ng, deanna	@grinc.	com										2	out Sili	Silica (ŝ	Metho	Method					Confirm highest h	it by 8260 98260
Consulta	925) 551-7444 x	180							otable		A		80	80	15 with	15 with	c	genate		q					Run oxy's	on highest hit on all hits
Sampler	Fasik -	Eminic	NI.			3	osite		۲ ۲	2 C				õ	RO 80	RO 80	uti Sca	0×V	ead	ed Lea						
2	Sample Identific	ation	Soil Depth	Colle Date	ected Time	Grab	Comp	Soil	Wate	1			BTEX	D-H-G	O-H4T	IDH-D	8260 F		Total L	Dissolv					(6) Rema	rks
		QA		1.29.15					W		0	2	$\langle \rangle$	\times								Î			TPH_DA	OWITH
																									SILIC	A GEL
	M	W-IRA			1345	X					2	32	\leq	\ge	X	\mathbf{X}									REQUES	STING 10
	M	W-IRB			1420	$\left \right>$					8	2	\leq	X	\ge	X						$ \downarrow$			GRAMO	
	M	W-2			1010	$\left \times\right $					8		×¥	X]	X	ХJ									CAPRI	CACID
	K	112-3			1055	X	_				8	1	X.	\ge	X	X	$ \rightarrow $					$ \rightarrow$			REV	ERSE
· · · ·	M	1W-4			1150		_		·		8	-2	<u>Σ</u> μ	X	X	ХI						$ \rightarrow $			SURR	OGATE
	Ł	1W-5			1410	X	_		-		- 8	\mathbb{P}	×Į'	\leq	\leq	Д						\rightarrow				
	N	1W-6		4	1400	\times			-		8	2	\times	\times	X	\times										
							,				+	+	_			_										
										-	+	╈	+						_							
7 TI	urnaround Time R	lequested (1	AT) (pleas	se circle)		Relinqu	uished	by				Da	ate		1	Time			Receiv	ved by					Date	Time 9
	Standard	5 day		4 day		A		1			-	1.	. 24	9.1	5	15	34		a Ranah		fer	4	L		295AN 15	1534
72 hour 48 hour 24 hou EDF/EDD					0191160	Jy					alo						I I O C BI	vad by					Date	i me		
8 D	Data Package (circle if required) EDD (circle if required) Relinqui					quishe	ed by	Comme	ercial	Carrie	r:							Receiv	ved by					Date	Time	
Type I - Full UPS						UPS FedEx Other																				
Type VI (Raw Data) Other:						empe	erature	e Upo	on Re	ecei	pt _			°	C		Cu	istoc	ly Sea	als l	ntac	t?	Yes	No		

Chavron California Region Analysis Reguest/Chain of Custody

Eurofins Lancaster Laboratories, Inc. • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

The white copy should accompany samples to Eurofins Lancaster Laboratories. The yellow copy should be retained by the client.

ATTACHMENT B

LABORATORY ANALYTICAL REPORT

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Chevron L4310 6001 Bollinger Canyon Rd. San Ramon CA 94583

February 10, 2015

Project: 206127

Submittal Date: 01/30/2015 Group Number: 1534845 PO Number: 0015165444 Release Number: BAUER State of Sample Origin: CA

Client Sample Description QA-T-150129 NA Water MW-1RA-W-150129 Grab Groundwater MW-1RB-W-150129 Grab Groundwater MW-2-W-150129 Grab Groundwater MW-3-W-150129 Grab Groundwater MW-4-W-150129 Grab Groundwater MW-5-W-150129 Grab Groundwater

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at <u>http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/</u>.

ELECTRONIC COPY TO	Gettler-Ryan Inc.	Attn: Gettler Ryan
ELECTRONIC COPY TO	Chevron c/o CRA	Attn: Report Contact
ELECTRONIC COPY TO	Chevron	Attn: Anna Avina
ELECTRONIC COPY TO	CRA	Attn: Brian Silva

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Amek Carts

Amek Carter

Specialist

(717) 556-7252

Analysis Report

LL Sample # WW 7755673

LL Group # 1534845

Account # 10904

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: QA-T-150129 NA Water Facility# 206127 Job# 386498 GRD 2301-2337 Blanding-Alameda T06019744728

Project Name: 206127

Collected: 01/29/2015

Submitted: 01/30/2015 10:00 Reported: 02/10/2015 10:54

BAAQA

Chevron L4310 6001 Bollinger Canyon Rd. San Ramon CA 94583

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	atiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX 8260B Water	SW-846 8260B	1	P150352AA	02/04/2015 08:	46 Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P150352AA	02/04/2015 08:	46 Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	15033B20A	02/02/2015 13:	19 Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	15033B20A	02/02/2015 13:	19 Brett W Kenyon	1

Analysis Report

Account

LL Sample # WW 7755674

10904

LL Group # 1534845

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1RA-W-150129 Grab Groundwater Facility# 206127 Job# 386498 GRD 2301-2337 Blanding-Alameda T06019744728

Project Name: 206127

Collected:	01/29/2015	13:45	by FT	Chevron
				L4310
Submitted:	01/30/2015	10:00		6001 Bollinger Canyon Rd
Reported:	02/10/2015	10:54		San Ramon CA 94583

BAA1A

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	0.5 J	0.5	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	atiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	170	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydrod	arbons					
08269	TPH-DRO water C10-C2	28	n.a.	1,700	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydrod	arbons w/Si					
02216	TPH-DRO water C10-C2 The reverse surrogat	28 w/Si G	el n.a. c acid, is present	87 J at <1%.	50	1

General Sample Comments

CA ELAP Lab Certification No. 2792

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method		Trial#	Batch#	Analysis Date and Tim	me	Analyst	Dilution Factor	
10945	BTEX 8260B Water	SW-846	8260B	1	P150351AA	02/04/2015	09:00	Anita M Dale	1	
01163	GC/MS VOA Water Prep	SW-846	5030B	1	P150351AA	02/04/2015	09:00	Anita M Dale	1	
01728	TPH-GRO N. CA water C6-C12	SW-846	8015B	1	15033B20A	02/02/2015	19:17	Brett W Kenyon	1	
01146	GC VOA Water Prep	SW-846	5030B	1	15033B20A	02/02/2015	19:17	Brett W Kenyon	1	
08269	TPH-DRO water C10-C28	SW-846	8015B	1	150300023A	02/02/2015	22:28	Christine E Dolman	1	
02216	TPH-DRO water C10-C28 w/Si Gel	SW-846	8015B	1	150300024A	02/03/2015	12:32	Christine E Dolman	1	
11172	DRO by 8015 w/ Silica Gel Ext	SW-846	3510C	1	150300024A	02/02/2015	10:10	Denise L Trimby	1	
07003	Extraction - DRO (Waters)	SW-846	3510C	1	150300023A	02/02/2015	10:10	Denise L Trimby	1	

Analysis Report

Account

LL Sample # WW 7755675

10904

LL Group # 1534845

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1RB-W-150129 Grab Groundwater Facility# 206127 Job# 386498 GRD 2301-2337 Blanding-Alameda T06019744728

Project Name: 206127

Collected:	01/29/2015	14:20	by FT	Chevron
				L4310
Submitted:	01/30/2015	10:00		6001 Bollinger Canyon Rd
Reported:	02/10/2015	10:54		San Ramon CA 94583

BAA1B

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	30	0.5	1
10945	Ethylbenzene		100-41-4	0.5 J	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	atiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	960	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons					
08269	TPH-DRO water C10-C2	28	n.a.	5,100	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons w/Si					
02216	TPH-DRO water C10-C2 The reverse surrogat	28 w/Si G	el n.a. c.acid, is present	95 J at <1%.	50	1

General Sample Comments

CA ELAP Lab Certification No. 2792

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method		Trial#	Batch#	Analysis Date and Tim	me	Analyst	Dilution Factor	
10945	BTEX 8260B Water	SW-846	8260B	1	P150352AA	02/04/2015	09:14	Anita M Dale	1	
01163	GC/MS VOA Water Prep	SW-846	5030B	1	P150352AA	02/04/2015	09:14	Anita M Dale	1	
01728	TPH-GRO N. CA water C6-C12	SW-846	8015B	1	15033B20A	02/02/2015	19:44	Brett W Kenyon	1	
01146	GC VOA Water Prep	SW-846	5030B	1	15033B20A	02/02/2015	19:44	Brett W Kenyon	1	
08269	TPH-DRO water C10-C28	SW-846	8015B	1	150300023A	02/02/2015	23:53	Christine E Dolman	1	
02216	TPH-DRO water C10-C28 w/Si Gel	SW-846	8015B	1	150300024A	02/03/2015	12:54	Christine E Dolman	1	
11172	DRO by 8015 w/ Silica Gel Ext	SW-846	3510C	1	150300024A	02/02/2015	10:10	Denise L Trimby	1	
07003	Extraction - DRO (Waters)	SW-846	3510C	1	150300023A	02/02/2015	10:10	Denise L Trimby	1	

Analysis Report

Account

LL Sample # WW 7755676

10904

LL Group # 1534845

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-2-W-150129 Grab Groundwater Facility# 206127 Job# 386498 GRD 2301-2337 Blanding-Alameda T06019744728

Project Name: 206127

Collected:	01/29/2015	10:10	by FT	Chevron
				L4310
Submitted:	01/30/2015	10:00		6001 Bollinger Canyon Rd
Reported:	02/10/2015	10:54		San Ramon CA 94583

BAAM2

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	atiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons					
08269	TPH-DRO water C10-C2	28	n.a.	N.D.	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons w/Si					
02216	TPH-DRO water C10-C2 The reverse surrogat	28 w/Si G te, capri	el n.a. c acid, is present	N.D. t at <1%.	50	1

General Sample Comments

CA ELAP Lab Certification No. 2792

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method		Trial#	Batch#	Analysis Date and Tim	me	Analyst	Dilution Factor		
10945	BTEX 8260B Water	SW-846	8260B	1	P150352AA	02/04/2015	12:07	Anita M Dale	1		
01163	GC/MS VOA Water Prep	SW-846	5030B	1	P150352AA	02/04/2015	12:07	Anita M Dale	1		
01728	TPH-GRO N. CA water C6-C12	SW-846	8015B	1	15033B20A	02/02/2015	20:11	Brett W Kenyon	1		
01146	GC VOA Water Prep	SW-846	5030B	1	15033B20A	02/02/2015	20:11	Brett W Kenyon	1		
08269	TPH-DRO water C10-C28	SW-846	8015B	1	150300023A	02/02/2015	21:02	Christine E Dolman	1		
02216	TPH-DRO water C10-C28 w/Si Gel	SW-846	8015B	1	150300024A	02/03/2015	13:15	Christine E Dolman	1		
11172	DRO by 8015 w/ Silica Gel Ext	SW-846	3510C	1	150300024A	02/02/2015	10:10	Denise L Trimby	1		
07003	Extraction - DRO (Waters)	SW-846	3510C	1	150300023A	02/02/2015	10:10	Denise L Trimby	1		

Analysis Report

Account

LL Sample # WW 7755677

10904

LL Group # 1534845

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-150129 Grab Groundwater Facility# 206127 Job# 386498 GRD 2301-2337 Blanding-Alameda T06019744728

Project Name: 206127

Collected:	01/29/2015	10:55	by FT	Chevron
				L4310
Submitted:	01/30/2015	10:00		6001 Bollinger Canyon Rd.
Reported:	02/10/2015	10:54		San Ramon CA 94583

ВААМЗ

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	atiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons					
08269	TPH-DRO water C10-C2	28	n.a.	1,700	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons w/Si					
02216	TPH-DRO water C10-C2 The reverse surrogat	28 w/Si G ce, capri	el n.a. c acid, is present	N.D. . at <1%.	50	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record Method CAT Analysis Name Trial# Batch# Analysis Analyst Dilution No. Date and Time Factor 10945 BTEX 8260B Water SW-846 8260B P150352AA 02/04/2015 12:36 Anita M Dale 1 1 01163 GC/MS VOA Water Prep SW-846 5030B P150352AA Anita M Dale 1 02/04/2015 12:36 1 01728 TPH-GRO N. CA water SW-846 8015B 1 15033B20A 02/02/2015 20:39 Brett W Kenyon 1 C6-C12 01146 GC VOA Water Prep SW-846 5030B 1 15033B20A 02/02/2015 20:39 Brett W Kenyon 1 08269 TPH-DRO water C10-C28 02/03/2015 08:52 SW-846 8015B 150300023A Lisa A Reinert 1 1 02216 TPH-DRO water C10-C28 SW-846 8015B 1 150300024A 02/03/2015 13:37 Christine E Dolman 1 w/Si Gel 11172 DRO by 8015 w/ Silica Gel SW-846 3510C 1 150300024A 02/02/2015 10:10 Denise L Trimby 1 Ext 07003 Extraction - DRO (Waters) SW-846 3510C 1 150300023A 02/02/2015 10:10 Denise L Trimby 1

Analysis Report

Account

LL Sample # WW 7755678

10904

LL Group # 1534845

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4-W-150129 Grab Groundwater Facility# 206127 Job# 386498 GRD 2301-2337 Blanding-Alameda T06019744728

Project Name: 206127

Collected:	01/29/2015	11:50	by FT	Chevron
				L4310
Submitted:	01/30/2015	10:00		6001 Bollinger Canyon Rd
Reported:	02/10/2015	10:54		San Ramon CA 94583

BAAM4

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	atiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons					
08269	TPH-DRO water C10-C2	28	n.a.	340	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons w/Si					
02216	TPH-DRO water C10-C2 The reverse surrogat	28 w/Si G ce, capri	el n.a. c acid, is present	N.D. t at <1%.	50	1

General Sample Comments

CA ELAP Lab Certification No. 2792

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method		Trial#	Batch#	Analysis Date and Tim	me	Analyst	Dilution Factor		
10945	BTEX 8260B Water	SW-846	8260B	1	P150352AA	02/04/2015	13:05	Anita M Dale	1		
01163	GC/MS VOA Water Prep	SW-846	5030B	1	P150352AA	02/04/2015	13:05	Anita M Dale	1		
01728	TPH-GRO N. CA water C6-C12	SW-846	8015B	1	15033B20A	02/02/2015	21:06	Brett W Kenyon	1		
01146	GC VOA Water Prep	SW-846	5030B	1	15033B20A	02/02/2015	21:06	Brett W Kenyon	1		
08269	TPH-DRO water C10-C28	SW-846	8015B	1	150300023A	02/02/2015	21:45	Christine E Dolman	1		
02216	TPH-DRO water C10-C28 w/Si Gel	SW-846	8015B	1	150300024A	02/03/2015	13:58	Christine E Dolman	1		
11172	DRO by 8015 w/ Silica Gel Ext	SW-846	3510C	1	150300024A	02/02/2015	10:10	Denise L Trimby	1		
07003	Extraction - DRO (Waters)	SW-846	3510C	1	150300023A	02/02/2015	10:10	Denise L Trimby	1		

Analysis Report

Account

LL Sample # WW 7755679

10904

LL Group # 1534845

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5-W-150129 Grab Groundwater Facility# 206127 Job# 386498 GRD 2301-2337 Blanding-Alameda T06019744728

Project Name: 206127

Collected:	01/29/2015	14:10	by FT	Chevron
				L4310
Submitted:	01/30/2015	10:00		6001 Bollinger Canyon Rd.
Reported:	02/10/2015	10:54		San Ramon CA 94583

BAAM5

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l		
10945	Benzene		71-43-2	93	0.5	1	
10945	Ethylbenzene		100-41-4	2	0.5	1	
10945	Toluene		108-88-3	7	0.5	1	
10945	Xylene (Total)		1330-20-7	10	0.5	1	
GC Vol	atiles	SW-846	8015B	ug/l	ug/l		
01728	TPH-GRO N. CA water	C6-C12	n.a.	2,900	250	5	
GC Pet	roleum	SW-846	8015B	ug/l	ug/l		
Hydrod	arbons						
08269	TPH-DRO water C10-C2	28	n.a.	2,300	50	1	
	The surrogate data : matrix problems evic	is outsid dent durin	e the QC limits du ng the sample prep	e to unresolvable aration.			
GC Pet	roleum	SW-846	8015B	ug/l	ug/l		
Hydrod	arbons w/Si						
02216	TPH-DRO water C10-C2	28 w/Si G	el n.a.	390	50	1	
	The reverse surrogat	ce, capri	c acid, is present	at <1%.			

General Sample Comments

CA ELAP Lab Certification No. 2792

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method		Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor		
10945	BTEX 8260B Water	SW-846 8	8260B	1	P150352AA	02/04/2015	13:34	Anita M Dale	1		
01163	GC/MS VOA Water Prep	SW-846 5	5030B	1	P150352AA	02/04/2015	13:34	Anita M Dale	1		
01728	TPH-GRO N. CA water C6-C12	SW-846 8	3015B	1	15035B20A	02/04/2015	21:29	Laura M Krieger	5		
01146	GC VOA Water Prep	SW-846 5	5030B	1	15035B20A	02/04/2015	21:29	Laura M Krieger	5		
08269	TPH-DRO water C10-C28	SW-846 8	8015B	1	150300023A	02/02/2015	22:06	Christine E Dolman	1		
02216	TPH-DRO water C10-C28 w/Si Gel	SW-846 8	8015B	1	150300024A	02/09/2015	10:39	Christine E Dolman	1		
11172	DRO by 8015 w/ Silica Gel Ext	SW-846 3	3510C	1	150300024A	02/02/2015	10:10	Denise L Trimby	1		
07003	Extraction - DRO (Waters)	SW-846 3	3510C	1	150300023A	02/02/2015	10:10	Denise L Trimby	1		

Analysis Report

Account

LL Sample # WW 7755680

10904

LL Group # 1534845

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-6-W-150129 Grab Groundwater Facility# 206127 Job# 386498 GRD 2301-2337 Blanding-Alameda T06019744728

Project Name: 206127

Collected:	01/29/2015	14:00	by FT	Chevron
				L4310
Submitted:	01/30/2015	10:00		6001 Bollinger Canyon Rd.
Reported:	02/10/2015	10:54		San Ramon CA 94583

BAAM6

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	6	0.5	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	atiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	480	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons					
08269	TPH-DRO water C10-C2	28	n.a.	990	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons w/Si					
02216	TPH-DRO water C10-C2 The reverse surrogat	28 w/Si G te, capri	el n.a. c acid, is present	N.D. t at <1%.	50	1

General Sample Comments

CA ELAP Lab Certification No. 2792

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method		Trial#	Batch#	Analysis Date and Tim	me	Analyst	Dilution Factor		
10945	BTEX 8260B Water	SW-846	8260B	1	P150352AA	02/04/2015	14:02	Anita M Dale	1		
01163	GC/MS VOA Water Prep	SW-846	5030B	1	P150352AA	02/04/2015	14:02	Anita M Dale	1		
01728	TPH-GRO N. CA water C6-C12	SW-846	8015B	1	15035B20A	02/04/2015	14:36	Laura M Krieger	1		
01146	GC VOA Water Prep	SW-846	5030B	1	15035B20A	02/04/2015	14:36	Laura M Krieger	1		
08269	TPH-DRO water C10-C28	SW-846	8015B	1	150300023A	02/02/2015	21:23	Christine E Dolman	1		
02216	TPH-DRO water C10-C28 w/Si Gel	SW-846	8015B	1	150300024A	02/03/2015	14:41	Christine E Dolman	1		
11172	DRO by 8015 w/ Silica Gel Ext	SW-846	3510C	1	150300024A	02/02/2015	10:10	Denise L Trimby	1		
07003	Extraction - DRO (Waters)	SW-846	3510C	1	150300023A	02/02/2015	10:10	Denise L Trimby	1		

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Reported: 02/10/15 at 10:54 AM Group Number: 1534845

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	RPD <u>Max</u>
Batch number: P150351AA	Sample numbe	r(s): 7755	674					
Benzene	N.D.	0.5	ug/l	86		78-120		
Ethylbenzene	N.D.	0.5	ug/l	93		79-120		
Toluene	N.D.	0.5	ug/l	96		80-120		
Xylene (Total)	N.D.	0.5	ug/l	99		80-120		
Batch number: P150352AA	Sample numbe	r(s): 7755	673,77556	75-775568()			
Benzene	N.D.	0.5	ug/l	101		78-120		
Ethylbenzene	N.D.	0.5	ug/l	89		79-120		
Toluene	N.D.	0.5	ug/l	91		80-120		
Xylene (Total)	N.D.	0.5	ug/l	96		80-120		
Batch number: 15033B20A	Sample numbe	r(s): 7755	673-77556	78				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	122	121	80-139	1	30
Batch number: 15035B20A	Sample numbe	r(s): 7755	679-77556	80				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	117	116	80-139	2	30
Batch number: 150300023A	Sample numbe	r(s): 7755	674-77556	80				
TPH-DRO water C10-C28	N.D.	50.	ug/l	81	85	60-115	4	20
Batch number: 150300024A	Sample numbe	r(s): 7755	674-77556	80				
TPH-DRO water C10-C28 w/Si Gel	N.D.	50.	ug/l	71	71	43-120	0	20

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u>	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: P150351AA	Sample	number(s	s): 7755674	UNSPK	C: 77550	574			
Benzene	88	84	72-134	6	30				
Ethylbenzene	94	89	71-134	5	30				
Toluene	97	93	80-125	5	30				
Xylene (Total)	100	95	79-125	5	30				
Batch number: P150352AA	Sample	number(s	s): 7755673	,77556	575-7755	5680 UNSPK	C: 7755675		
Benzene	102	106	72-134	1	30				
Ethylbenzene	93	93	71-134	0	30				
Toluene	96	96	80-125	1	30				

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Reported: 02/10/15 at 10:54 AM Group Number: 1534845

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	%REC	%REC	<u>Limits</u>	<u>RPD</u>	<u>MAX</u>	Conc	Conc	<u>RPD</u>	Max
Xylene (Total)	99	100	79-125	1	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis	Name: BTEX 8260B	Water		
Batch nu	mber: P150351AA		T 1 10	
	Dibromofluoromethane	1,2-Dichloroethane-d4	l oluene-d8	4-Bromofluorobenzene
7755674	99	99	101	94
Blank	99	99	102	93
LCS	100	103	103	94
MS	100	100	102	95
MSD	99	101	101	95
Limits:	80-116	77-113	80-113	78-113
Analysis	Name: BTEX 8260B	Water		
Batch nu	mber: P150352AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	l oluene-d8	4-Bromofluorobenzene
7755673	104	101	93	96
7755675	104	101	92	98
7755676	105	98	93	96
7755677	105	99	93	97
7755678	105	100	93	96
7755679	104	99	92	99
7755680	107	100	92	98
Blank	104	100	92	95
LCS	103	104	94	99
MS	106	104	92	101
MSD	106	103	92	101
Limits:	80-116	77-113	80-113	78-113
Analysis	Name: TPH-GRO N.	CA water C6-C12		
Batch nu	mber: 15033B20A			
	Trifluorotoluene-F			
7755673	91			
7755674	90			
7755675	100			
7755676	86			
7755677	89			
7755678	88			
Blank	90			

94 95 Limits: 63-135

LCS

LCSD

Analysis Name: TPH-GRO N. CA water C6-C12

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Reported: 02/10/15 at 10:54 AM Group Number: 1534845

Surrogate Quality Control Batch number: 15035B20A Trifluorotoluene-F 7755679 104 7755680 102 Blank 86

Analysis Name: TPH-DRO water C10-C28 Batch number: 150300023A Orthoterphonyl

Datter Hu	MBC1. 190900025A
	Orthoterphenyl
7755674	88
7755675	76
7755676	80
7755677	79
7755678	75
7755679	45*
7755680	77
Blank	76
LCS	87
LCSD	89
Limits:	58-137
Analysis	Name: TPH-DRO water C10-C28 w/Si Gel
Batch nu	mber: 150300024A
	Orthoterphenyl
7755674	80
7755675	59
7755676	74
7755677	73
7755678	74
7755679	44
7755680	69
Blank	72
LCS	77
LCSD	79

Limits: 42-126

LCS

LCSD

Limits:

96

93

63-135

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Che	vroi	n Cá	alifo	rn	ia	R	eg	gic	D'n		In	al	ys	sis	8 F.	?e	qı	le	st	/C	ha	nin	0	^F Cu	sta	ody
 eurofins レントレン レン <li< td=""><td>er ries</td><td>1</td><td>A</td><td>cct. # _</td><td>10</td><td>90</td><td>Ч</td><td> G</td><td>F àroup In</td><td>or Eu #_L structio</td><td>Irofins 53</td><td>everse</td><td>side co</td><td>Labo 2 Sa rrespon</td><td>ratori mple d with c</td><td>es us # ircled n</td><td></td><td>550</td><td>67</td><td>3-</td><td>80</td><td>></td><td></td><td></td><td></td><td></td></li<>	er ries	1	A	cct. # _	10	90	Ч	G	F àroup In	or Eu #_ L structio	Irofins 53	everse	side co	Labo 2 Sa rrespon	ratori mple d with c	es us # ircled n		550	67	3-	80	>				
1) Client In	formatio	n				4	Ma	trix			5			Ar	naly	ses	Requ	uest	ed				SCB	μ.		
acility \$\$#206127-OML G-R#386	498 Glo	balad#1	060197	4472	8																	ļ	0011	π		
Site Ad 2301-2337 BLANDING AVE	NUE, AL	AMEDA	, CA				X						Ø	Ø									🗌 Res	ults in Dry lue reportir	Weight 1a needed	
CRASB		Lead Sna	ltant a			dimen	puno.	Irface		s			Cleanu	anup									Mu: Iimi	st meet low	est detecti for 8260	on
Consultant/Office-Ryan, Inc., 6805 Sier	ra Court	t, Suite (3, Dubli	n, CA	\ 94	68	Ū	พี		iner	82(82(a Gel										con	pounds	ofirmation	
Consultant Project Mgr. Deanna L. Harding, deanna	@grinc.	com								Conte		X	out Silic	Silica G		(0	Method	Method						firm highes	t hit by 82	60
Consultant Phone # (925) 551-7444 x180	(925) 551-7444 x180							DES	Air	ber of	802	801	5 withc	5 with		genates	-	q						· 0>	y's on high y's on all l	hest hit hits
FRALL TENNING	FRANK TENNINONI									Numb		В В	RO 801	RO 801	ull Scar	Оху	ead	ed Lea	-1		1					
2	Soil	Colle	ected	rab	dmo	oil	/atel			otal	EX	D-H	П-H	Ю-Н	60 F		tal Le	ssolv					_		-	
Sample Identification	Depth	Date	Time	Ū	Ŭ	Ň	3		ō	Ĕ	BT		Ē	Ē	82		To	Dis				{(6)	Rem	arks	
		1.29.15			ļ		W			8	X	\bowtie												TPH-I	RO WI	TH
HAW-10 A		1	1345	∇			1			8	X	X	$\boldsymbol{\chi}$	$\overline{\mathbf{v}}$										SILI	CA GEI	L 2 4 0
MW-18B			1420	쉱			+			8	Ŕ		$\widehat{\mathbf{X}}$	\Diamond										GRAN	COLU	MN
Mw_ 2			1010	忆			1			8	\mathbf{X}	$\overline{\mathbf{X}}$	$\hat{\mathbf{X}}$	$\mathbf{\hat{X}}$										CLEAI	I-UP W	ITH
MW-3			1055	X						8	$\overline{\mathbf{X}}$	$\overline{\mathbf{X}}$	X	\mathbf{X}										CAP		ID
Mw-4			1150	R						8	X	\mathbf{X}	X	\boldsymbol{X}										SUR	VERSE ROGAI	re
MW-5			1410	\mathbb{X}						8	\times	\mathbf{X}	X	X												-
Mw-b		4	1400	X			4	-		8	Х	Х	X	$\boldsymbol{\prec}$												
compa - C. I. C. I				<u> </u>																						
7) Turnaround Time Requested (1	AT) (pleas	se circle)		Relind	quishec	l by	2011/01/02/201				Date			Time			Receiv	ved by			l		Date	9	Time	(9
Standard 5 day		4 day		R		<u>(</u>	, 		ì		1.2	.9.1	5	15	39	\$	Ce	- , <u> </u>	fa	4	L	-	29.	TAN 15	15	34
72 hour 48 hour		24 hour	DF/EDI			R	lf	R		2		ANI	5	иле ИG.	39	{	rieceiv		\mathcal{D}^{μ}	Ex	/		Date	3	lime	
8 Data Package (circle if required)	EDD	(circle if re	equired)	Relin	quish	ed by	Comr	nercia	l Car	rier:	,. ,.			_			Receiv	/ed by	1	`	,,		Date	9	Time	2.01
Type I - Full	EDFI	=LAT (defa	ult)	U	IPS _			Feo	dEx			Otł	ner_				4		2	> []		2	í	30.15	10	~~
Type VI (Raw Data)	Othe	r:			Te	empe	ratu	re Up	oon	Rec	eipt	છન	(<u>ہ ک</u>	°C		Сι	istoc	ly Se	als I	ntact	?		Yes		No

The white copy should accompany samples to Eurofins Lancaster age are real about the vellow copy should be retained by the client.

Į.

🔅 eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

	Reporting Limit		Below Minimum Quantitation Level
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	na	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
mea	millieguivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mĽ	milliliter(s)	Ľ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter
<	less than		
>	greater than		
ppm	parts per million - One ppm is equivalent to one aqueous liquids, ppm is usually taken to be equivery close to a kilogram. For gases or vapors,	e milligram per H ivalent to millig one ppm is equ	kilogram (mg/kg) or one gram per million grams. For rams per liter (mg/l), because one liter of water has a weight ivalent to one microliter per liter of gas.
ppb	parts per billion		
Dry weight basis	Results printed under this heading have been a concentration to approximate the value present	djusted for moi	sture content. This increases the analyte weight nple without moisture. All other results are reported on an

Laboratory Data Qualifiers:

- B Analyte detected in the blank
- C Result confirmed by reanalysis

as-received basis.

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ATTACHMENT C

HISTORICAL GROUNDWATER MONITORING AND SAMPLING DATA

Table 1 Groundwater Monitoring Data and Analytical Results Chevron #206127 (Former Signal Oil Marine Terminal) 2301-2337 Blanding Avenue Alameda, California

WELL ID/	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	B	T	E.	x	MTBE
DATE	(fl.)	(fL)	(msl)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1										
01/23/01		7.16		1,100 ^{2,3}	5.210 ⁴	868	<50.0	<50.0	<50.0	<250
04/09/01	10.62	8.12	2.50	1.200 ⁶	3.0005	920	<20	<20	<20	<100
07/30/01	10.62	9.15	1.47	550 ^{3,8}	2.0007	730	13	<5.0	<5.0	<25
10/08/01	10.62	7.86	2.76	2,200 ⁹	1,200	120	2.4	5.9	6.4	<2.5
01/13/02	10.62	7.02	3.60	3,300 ³	930	320	0.78	0.87	3.8	<2.5
04/08/02	10.62	9.60	1.02	1,200 ³	960	50	1.4	2.6	9.0	<2.5
07/31/02	10.62	9.27	1.35	2,800 ³	930	64	1.4	1.9	H	<5.0
10/15/02	10.62	8.00	2.62	1,0003	620	25	0.78	1.4	4.3	<2.5
01/14/03	10.62	7.05	3.57	960 ³	1,600	20	1.3	1.3	<1.5	<2.5
04/15/03	10.62	8.02	2.60	920 ³	870	56	1	1.4	3.1	<2.5
07/16/03 ¹⁰	10.62	10.08	0.54	1,400 ³	780	85	1	0.8	0.7	<0.5
10/18/03 ¹⁰	10.62	8.51	2.11	1,200 ³	640	42	0.8	<0.5	0.5	<0.5
01/22/04 ¹⁰	10.62	8.95	1.67	1,500 ³	440	18	<0.5	<0.5	<0.5	<0.5
04/23/04 ¹⁰	10.62	8.95	1.67	2,200 ³	410	10	<0.5	<0.5	<0.5	<0.5
07/23/04 ¹⁰	10.62	9.21	1.41	1,800 ³	400	6	<0.5	<0.5	<0.5	<0.5
10/22/0410	10.62	8.36	2.26	$2,200^{3}$	150	2	<0.5	<0.5	<0.5	<0.5
01/28/05 ¹⁰	10.62	7.09	3.53	1,200 ³	55	8	<0.5	<0.5	<0.5	<0.5
04/26/05 ¹⁰	10.62	7.84	2.78	480 ³	<50	5	<0.5	<0.5	<0.5	<0.5
07/15/05 ¹⁰	10.62	8.12	2.50	610 ^{3,11}	<50	<0.5	<0.5	<0.5	<0.5	<0.5
10/14/05 ¹⁰	10.62	8.07	2.55	920 ^{3,12}	<50	10	<0.5	<0.5	<0.5	<0.5
01/12/06 ¹⁰	10.62	6.98	3.64	960 ^{3,12}	<50	6	<0.5	<0.5	<0.5	<0.5
04/13/06 ¹⁰	10.62	7.04	3.58	1,200 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
07/13/06 ¹⁰	10.62	7.13	3.49	1,200 ³	92	14	<0.5	<0.5	<0.5	<0.5
10/17/06 ¹⁰	10.62	7.64	2.98	990 ³	<50	3	<0.5	<0.5	<0.5	<0.5
01/16/07 ¹⁰	10.62	7.09	3.53	840 ³	83	4	<0.5	<0.5	<0.5	<0.5
04/17/07 ¹⁰	10.62	7.11	3.51	1,200 ³	57	<0.5	<0.5	<0.5	<0.5	<0.5
07/17/07 ¹⁰	10.62	7.41	3.21	1,100 ³	120	8	<0.5	<0.5	<0.5	< 0.5
10/16/07 ¹⁰	10.62	7.55	3.07	750 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/16/08 ¹⁰	10.62	6.98	3.64	1,700 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/16/08 ¹⁰	10.62	7.36	3.26	1,100 ³	62	<0.5	<0.5	<0.5	<0.5	<0.5
07/16/08 ¹⁰	10.62	7.89	2.73	580 ³	93	3	<0.5	<0.5	<0.5	<0.5
10/15/08 ¹⁰	10.62	7.46	3.16	740 ³	56	0.7	<0.5	<0.5	0.8	<0.5

Table 1 Groundwater Monitoring Data and Analytical Results Chevron #206127 (Former Signal Oil Marine Terminal) 2301-2337 Blanding Avenue Alameda, California

WELL ID/	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	B	T	E	x	MTBE
DATE	(f1.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1 (cont)										
01/21/0910	10.62	7.19	3.43	3005	<50	<0.5	-0.5	-0.5	-0.5	-0.5
04/15/0910	10.62	6.93	3.69	1 4003	80	0.7	<0.5	<0.5	-0.5	<0.5
07/03/0910	13.49	8.08	5.41	1,400	51	<0.5	<0.5	20.5	-0.5	0.5
10/01/0910	13.49	9.52	3.97	1,5003	86	<0.5	=0.5	<0.5	<0.5	<0.5
01/19/1010	13.49	7.64	5.85	3403,15	<50	<0.5	=0.5	<0.5	-0.5	-0.5
04/26/1010	13.49	9.20	4.29	8203	66	<0.5	<0.5	<0.5	<0.5	<0.5
				0.00			-015	-910	-013	-0.5
MW-2										
06/30/09 ¹	10.63	3.80	6.83	54						
07/03/0914	10.63	3.91	6.72	<503	<50	<0.5	<0.5	<0.5	<0.5	
10/01/09 ¹⁴	10.63	4.11	6.52	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	
01/19/1014	10.63	3.90	6.73	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	2
04/26/10 ¹⁴	10.63	4.08	6.55	< 50 ³	<50	<0.5	<0.5	<0.5	< 0.5	12
MW-3	10.50									
06/30/09*	10.72	4.61	6.11							
07/03/09**	10.72	4.57	6.15	1703	310	1	<0.5	2	<0.5	-
10/01/09**	10.72	5.22	5.50	1,0003	52	<0.5	<0.5	<0.5	<0.5	
01/19/10**	10.72	4.84	5.88	1,800'	120	2	<0.5	<0.5	<0.5	
04/26/10**	10.72	4.86	5.86	1,700 ³	170	2	<0.5	<0.5	<0.5	
MW-4										
06/30/09 ¹	11.40	6.02	5.38							
07/03/09 ¹⁴	11.40	5.85	5.55	<503	<50	<0.5	<0.5			(a.e.)
10/01/0914	11.40	6.95	4.45	3703	<50	<0.5	<0.5	<0.5	<0.5	-
01/19/10 ¹⁴	11.40	6.22	5.18	570 110 ³	<50	<0.5	<0.5 <0.5	<0.5	<0.5	-
04/26/10 ¹⁴	11.40	6.61	4 79	210517	~50	∼ 0.5	<u.3< td=""><td><0.5</td><td><0.5</td><td>**</td></u.3<>	<0.5	<0.5	**

Table 1 Groundwater Monitoring Data and Analytical Results Chevron #206127 (Former Signal Oil Marine Terminal) 2301-2337 Blanding Avenue Alameda, California

WELL ID/	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	T	E	X	мтве
DATE	(fi.)	(61)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ng/L)	(ug/L)	(uz/L)
MW-5										
06/30/091	10.50	5.20	5 30	-		1.00				
07/03/0914	10.50	5.17	5 33	1103	030	22		0.6	-	
10/01/0914	10.50	5.66	4.84	2 5003	1.800	57	1	0.0	5	-
01/19/1014	10.50	5.48	5.02	2,500	2 200	74	4	0.9	5	
04/26/1014	10.50	5.91	4.50	1,7003	2,200	04	4		3	<u> </u>
		0.74	4	1,700	2,200	34	•	4	2	· · · ·
CS-2										
07/30/01	-	-	~	140 ^{3,5}	<50	<0.50	<0.50	<0.50	<0.50	<25
10/08/01		-	-	53 ⁹	<50	<0.50	<0.50	<0.50	<1.5	<2.5
01/13/02	-	-	-	<50 ³	<50	<0.50	<0.50	<0.50	<1.5	<2.5
04/08/02		-	-	773	<50	<0.50	<0.50	<0.50	<1.5	<2.5
07/31/02		- A-		<50 ³	<50	<0.50	<0.50	<0.50	<1.5	<2.5
10/15/02	-	-		< 5 0 ³	<50	<0.50	<0.50	<0.50	<1.5	<2.5
01/14/03	-			<50 ³	<50	<0.50	<0.50	<0.50	<1.5	<2.5
04/15/03			-	<50 ³	<50	<0.5	<0.5	<0.5	<1.5	<2.5
07/16/0310	-		-	<50 ³	<50	<0.5	0.7	<0.5	0.6	<0.5
10/18/0310	-	()	-	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/22/0410	-			<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/23/0410	- A-	-		<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
07/23/0410	-	+		<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
10/22/0410	-		-	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/28/0510	-			<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/26/0510	-	+	-	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
07/15/05 ¹⁰	-		-	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
10/14/05 ¹⁰				<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/12/0610	-	-	14	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/13/0610		-		<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
07/13/06 ¹⁰	- e>	+	-	140 ³	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
10/17/06 ¹⁰	-			<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/16/07 ¹⁰	-	-		< 5 0 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/17/07 ¹⁰	-	-	-4-	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5

Table 1 Groundwater Monitoring Data and Analytical Results Chevron #206127 (Former Signal Oil Marine Terminal) 2301-2337 Blanding Avenue Alameda, California

WELL ID/	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	T		x	МТВЕ
DATE	(fl.)	(ft.)	(msl)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
CS-2 (cont)										
07/17/07 ¹⁰				<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
10/16/07 ¹⁰		**		<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/16/0810				85 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/16/08 ¹⁰				<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
07/16/08 ¹⁰				<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
10/15/08 ¹⁰				<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/21/0910				<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/15/09 ¹⁰				86 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
07/03/09 ¹⁰				<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
10/01/09 ¹⁰				<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/19/10 ¹⁰				210 ^{3,16}	<50	<0.5	<0.5	<0.5	<0.5	<0.5
TDID DI ANIZ										
TRIP DLANK										
1 D-LD										
01/23/01		-	-	27	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50
04/03/01				-	<50	<0.50	<0.50	<0.50	<0.50	<2.5
0//30/01		-			<50	<0.50	<0.50	<0.50	<0.50	<2.5
QA 10/08/01							and the second s			
01/12/02	-		-	-	<50	<0.50	<0.50	<0.50	<1.5	<2.5
01/15/02	-	-			<50	<0.50	<0.50	< 0.50	<1.5	<2.5
04/06/02	-	-		-	<50	<0.50	<0.50	<0.50	<1.5	<2.5
10/15/02		-	-		<50	<0.50	<0.50	<0.50	<1.5	<2.5
01/14/02		-	-	**	<50	<0.50	<0.50	<0.50	<1.5	<2.5
01/14/03					<50	<0.50	<0.50	<0.50	<1.5	<2.5
04/15/05		-			<50	<0.5	<0.5	<0.5	<1.5	<2.5
07/16/03	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	<0.5
10/18/03	-	-	-		<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/22/04		-	-	-	<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/23/04	-		-	-	<50	<0.5	<0.5	<0.5	<0.5	<0.5
07/23/0410			-	-	<50	<0.5	<0.5	<0.5	<0.5	<0.5
10/22/04**	-	-			<50	<0.5	<0.5	<0.5	<0.5	<0.5

Table 1 Groundwater Monitoring Data and Analytical Results Chevron #206127 (Former Signal Oil Marine Terminal) 2301-2337 Blanding Avenue Alameda, California

WELL ID/	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	T	<u>B</u>	x	MTBE
DATE	(fl.)	(fl.)	(msl)	(µg/L)	(<i>pg/L</i>)	(µg/L)	(µg/L)	(pg/L)	(µg/L)	(µg/L)
QA (cont)										
01/28/0510					<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/26/0510					<50	<0.5	<0.5	<0.5	<0.5	< 0.5
07/15/0510					<50	<0.5	<0.5	<0.5	<0.5	< 0.5
10/14/05 ¹⁰					<50	<0.5	<0.5	< 0.5	< 0.5	<0.5
01/12/06 ¹⁰					<50	<0.5	<0.5	<0.5	< 0.5	<0.5
04/13/06 ¹⁰					<50	<0.5	<0.5	<0.5	< 0.5	<0.5
07/13/06 ¹⁰					<50	<0.5	<0.5	<0.5	< 0.5	<0.5
10/17/06 ¹⁰					<50	<0.5	<0.5	<0.5	< 0.5	<0.5
01/16/07 ¹⁰					<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/17/07 ¹⁰					<50	<0.5	<0.5	<0.5	< 0.5	<0.5
07/17/07 ¹⁰					<50	<0.5	<0.5	<0.5	<0.5	<0.5
10/16/07 ¹⁰					<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/16/0810					<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/16/08 ¹⁰					<50	<0.5	<0.5	<0.5	<0.5	<0.5
07/16/08 ¹⁰					<50	<0.5	<0.5	<0.5	<0.5	<0.5
10/15/08 ¹⁰					<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/21/09 ¹⁰					<50 ¹³	<0.5	<0.5	<0.5	<0.5	<0.5
04/15/09 ¹⁰					<50	<0.5	<0.5	<0.5	<0.5	< 0.5
07/03/09 ¹⁰					<50	<0.5	<0.5	<0.5	<0.5	< 0.5
10/01/09 ¹⁰					<50	<0.5	<0.5	<0.5	<0.5	< 0.5
01/19/10 ¹⁰					<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/26/10 ¹⁰	~~				<50	<0.5	<0.5	<0.5	<0.5	<0.5

EXPLANATIONS:

TOC = Top of CasingDRO = Diesel Range OrganicsM(ft.) = FeetGRO = Gasoline Range Organics(DTW = Depth to WaterB = Benzene...GWE = Groundwater ElevationT = Toluene((msl) = Mean sea levelE = Ethylbenzene(TPH = Total Petroleum HydrocarbonsX = Xylenes

MTBE = Methyl Tertiary Butyl Ether (µg/L) = Micrograms per liter -- = Not Measured/Not Analyzed CS-2 = Creek Sample QA = Quality Assurance/Trip Blank

* TOC elevations for all wells were surveyed on July 30, 2009, by Morrow Surveying. Vertical Datum is NAVD 88 from GPS observations. TOC elevations were surveyed on January 25, 2001, by Virgil Chavez Land Surveying. The benchmark used for the survey was a City of Alameda benchmark being a cut square at the centerline return, south corner of Oak and Blanding, (Benchmark Elevation = 8.236 feet, NGVD 29).

¹ Well development performed.

- ² Laboratory report indicates unidentified hydrocarbons <C16.
- ³ Analyzed with silica gel cleanup.
- ⁴ Laboratory report indicates weathered gasoline C6-C12.
- 5 Laboratory report indicates discrete peaks.
- ⁶ Laboratory report indicates diesel C9-C24 + unidentified hydrocarbons <C16.
- ⁷ Laboratory report indicates gasoline C6-C12.
- ⁸ Laboratory report indicates unidentified hydrocarbons C9-C24.
- ⁹ Analysis performed without silica gel cleanup although was requested on the Chain of Custody.
- ¹⁰ BTEX and MTBE by EPA Method 8260.
- ¹¹ Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It elutes in the DRO range later than #2 fuel.
- ¹² Laboratory report indicates the observed sample pattern includes #2 fuel/diesel and an additional pattern which elutes later in the DRO range.
- ¹³ Laboratory report indicates the original analysis was performed on an instrument where the ending calibration standard failed the method criteria. The sample was originally analyzed approximately 60 minutes after the LCS/LCSD. The LCS/LCSD showed good GRO recovery and the surrogate recovery for this sample was 85%. The sample was reanalyzed from a vial with headspace since only 1 vial was submitted. The results for the original and the reanalysis were similar. The reanalysis was reported.
- ¹⁴ BTEX by EPA Method 8260.
- ¹⁵ Laboratory report indicates DRO was detected in the method blank at a concentration of 38 µg/L. Results from the reextraction are within limits. The hold time had expired prior to the reextraction therefore, all results are reported from the original extract. Similar results were obtained in both extracts.
- ¹⁶ Laboratory report indicates DRO was detected in the method blank at a concentration of 38 μ g/L. Results from the reextraction are within limits. The hold time had expired prior to the reextraction therefore, all results are reported from the original extract. The DRO result for the reextract is 96 μ g/L.
- ¹⁷ Laboratory report indicates DRO was detected in the method blank at a concentration of 47 μg/L. Results from the reextraction are within limits. The hold time had expired prior to the reextraction therefore, all results are reported from the original extract. Similar results were obtained in both extracts.

Table 2 Groundwater Analytical Results - Metals Chevron #206127 (Former Signal Oil Marine Terminal) 2301-2337 Blanding Avenue Alameda, California																	
WELL ID/ DATE	(нощ)нү (µg/L)	Arsenic (T ^{da})	(Lgar)	(7/ Beryllium	(hy/t)	(7/811) Chromium	(T/Se Cobult	Copper	(1/84)	(7, ⁶⁴) Melybdeaum	Nickel	(μg/L)	(L'84)	(Jpg(L)	(L) Vanadium	(1/ga)	(ug/L)
MW-2 07/03/09	<9.7	<7.2	28.1	<1.4	<2.0	14.6	<2.1	<2.7	<6.9	<4.9	10.6	<8.9	⊲2.3	<14.0	12.6	11.6	<0.056
MW-3 07/03/09	<9.7	<7.2	143	<1.4	<2.0	8.5	-2.1	3.3	<6.9	<4.9	7.8	<8.9	<2.3	<14.0	13.8	18.8	<0.056
MW-4 07/03/09	~9.7	<7.2	83,5	<1.4	<2.0	10.0	<2.1	<2.7	<6.9	<4.9	4.5	<8.9	<2.3	<14.0	6.3	15.8	<0.056
MW-5 07/03/09	<9.7	32.7	148	<1.4	<2.0	<3.4	<2.1	3.1	<6.9	<4.9	3.6	<8.9	<2.3	<14.0	<2.5	19.2	<0.056

EXPLANATIONS

 $(\mu g/L) = Micrograms per liter$

ANALYTICAL METHODS:

Metals analyzed by EPA Method SW-846 6010B Mercury analyzed by Method SW-7470A