

Mike Bauer Project Manager Marketing Business Unit Chevron Environmental Management Company 145 S. State College Blvd Brea, CA 92821 Tel (714) 671-3200 Fax (714) 671-3440 mbauer@chevron.com

December 12, 2011

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 RECEIVED

9:14 am, Dec 14, 2011

Alameda County Environmental Health

Re: Former Signal Oil Marine Storage and Distribution Facility

(Former Chevron Bulk Plant 20-6127)

2301-2311 Blanding Avenue

Alameda, California LOP Case RO0002466

Dear Mr. Wickham:

The purpose of this letter is to verify that as a representative for Chevron Environmental Management Company (Chevron), I reviewed, and concur with, the comments in the *Fourth Quarter 2011 Groundwater Monitoring and Sampling Report* for the referenced facility, prepared on behalf of Chevron by Conestoga-Rovers & Associates. I declare under penalty of perjury that the foregoing is true and correct.

Please feel free to contact me at (714) 671-3207 if you have any questions.

Sincerely,

Mike Bauer Project Manager

10969 Trade Center Drive Rancho Cordova, California 95670

Telephone: (916) 889-8900 Fax: (916) 889-8999

http://www.craworld.com

December 12, 2011

Reference No. 631916

Mr. Jerry Wickham Alameda County Environmental Health (ACEH) 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Fourth Quarter 2011

Groundwater Monitoring and Sampling Report

Former Signal Oil Marine Storage and Distribution Facility

(Chevron Bulk Plant 20-6127) 2301-2311 Blanding Avenue

Alameda, California ACEH Case RO0002466

Dear Mr. Wickham:

Conestoga-Rovers & Associates (CRA) is submitting this *Fourth Quarter 2011 Groundwater Monitoring and Sampling Report* for the site referenced above (Figure 1) on behalf of Chevron Environmental Management Company. Groundwater monitoring and sampling was performed by Gettler-Ryan, Inc. (G-R) of Dublin, California. G-R's October 24, 2011 *Groundwater Monitoring and Sampling Data Package* is included as Attachment A. Current groundwater monitoring and sampling data are presented in Table 1 and well construction specifications are summarized in Table 2. Lancaster Laboratories' November 1, 2011 *Analytical Results* is included as Attachment B. Historical groundwater monitoring and sampling data are included as Attachment C.

RESULTS OF FOURTH QUARTER 2011 EVENT

On October 14, 2011, G-R monitored and sampled the site wells per the established schedule.

Results of the current monitoring event indicate the following:

Groundwater Flow Direction
 North/Northeast

• Hydraulic Gradient 0.01

• Depth to Water 3.52 to 12.14 feet below grade

Equal Employment Opportunity Employer

December 12, 2011 Reference No. 631916

Results of the current sampling event are presented below in Table A.

	TABLE A GROUNDWATER ANALYTICAL DATA										
Well ID	TPHd¹ (µg/L)										
ESLs	100	100	1	40	30	20					
MW-1RA	6,900/360	6,800	1,300	19	51	14					
MW-1RB	4,000/ 57	300	15	<0.5	<0.5	<0.5					
MW-2	160/ <50	<50	<0.5	<0.5	<0.5	<0.5					
MW-3	1,800/< 50	88	<0.5	<0.5	<0.5	<0.5					
MW-4	440/ <50	<50	<0.5	<0.5	<0.5	<0.5					
MW-5	4,600/ 89	2,300	76	5	1	5					
MW-6	1,700/< 50	510	10	<0.5	<0.5	< 0.5					

ESL Environmental screening level

CONCLUSIONS AND RECOMMENDATIONS

Results of this current quarterly monitoring and sampling of wells MW-1RA through MW-6 are consistent with results from past quarters and indicate the following:

- The highest TPHd, TPHg, and benzene concentrations in groundwater are in the area of the former fuel pumps, and north of the former aboveground storage tanks (Figures 3 through 5).
- Analysis of TPHd using a 10 gram silica gel column cleanup resulted in a significant reduction in dissolved TPHd concentrations; only the sample from MW-1RA was above the ESL.
- Concentrations are generally stable in site wells where concentrations are detected above groundwater ESLs.

CRA recommends continuing quarterly monitoring and sampling of current wells to verify concentration trends over time.

¹ TPHd without and with 10 gram silica gel cleanup

Concentrations in **Bold** exceed their respective ESL

December 12, 2011

Reference No. 631916

- 3 -

ANTICIPATED FUTURE ACTIVITIES

Groundwater Monitoring

G-R will monitor and sample site wells per the established schedule. CRA will submit a groundwater monitoring and sampling report.

Additional Activity

CRA submitted a Draft Corrective Action Plan (CAP) to address residual petroleum impacts at the site on August 18, 2011. Chevron and CRA are currently awaiting comment on and/or approval of the Draft CAP by ACEH.

Please contact Brian Silva at (916) 889-8908 if you have any questions or require additional information.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Greg Barclay, PG 6260

BS/cw/23 Encl.

Brian Silva

December 12, 2011 Reference No. 631916

-4-

Figure 1	Vicinity Map
Figure 2	Groundwater Elevation Contour Map - October 14, 2011
Figure 3	TPHd Concentrations in Groundwater - October 14, 2011
Figure 4	TPHg Concentrations in Groundwater - October 14, 2011
Figure 5	Benzene Concentrations in Groundwater - October 14, 2011
Table 1	Groundwater Monitoring and Sampling Data
Table 2	Well Construction Specifications
Attachment A	Monitoring Data Package
Attachment B	Laboratory Analytical Report
Attachment C	Historical Groundwater Monitoring and Sampling Data

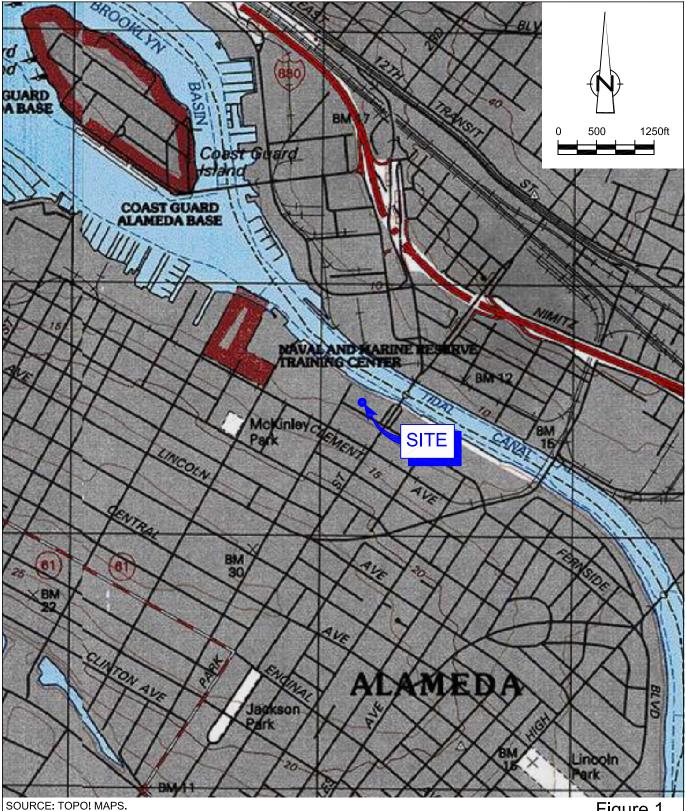
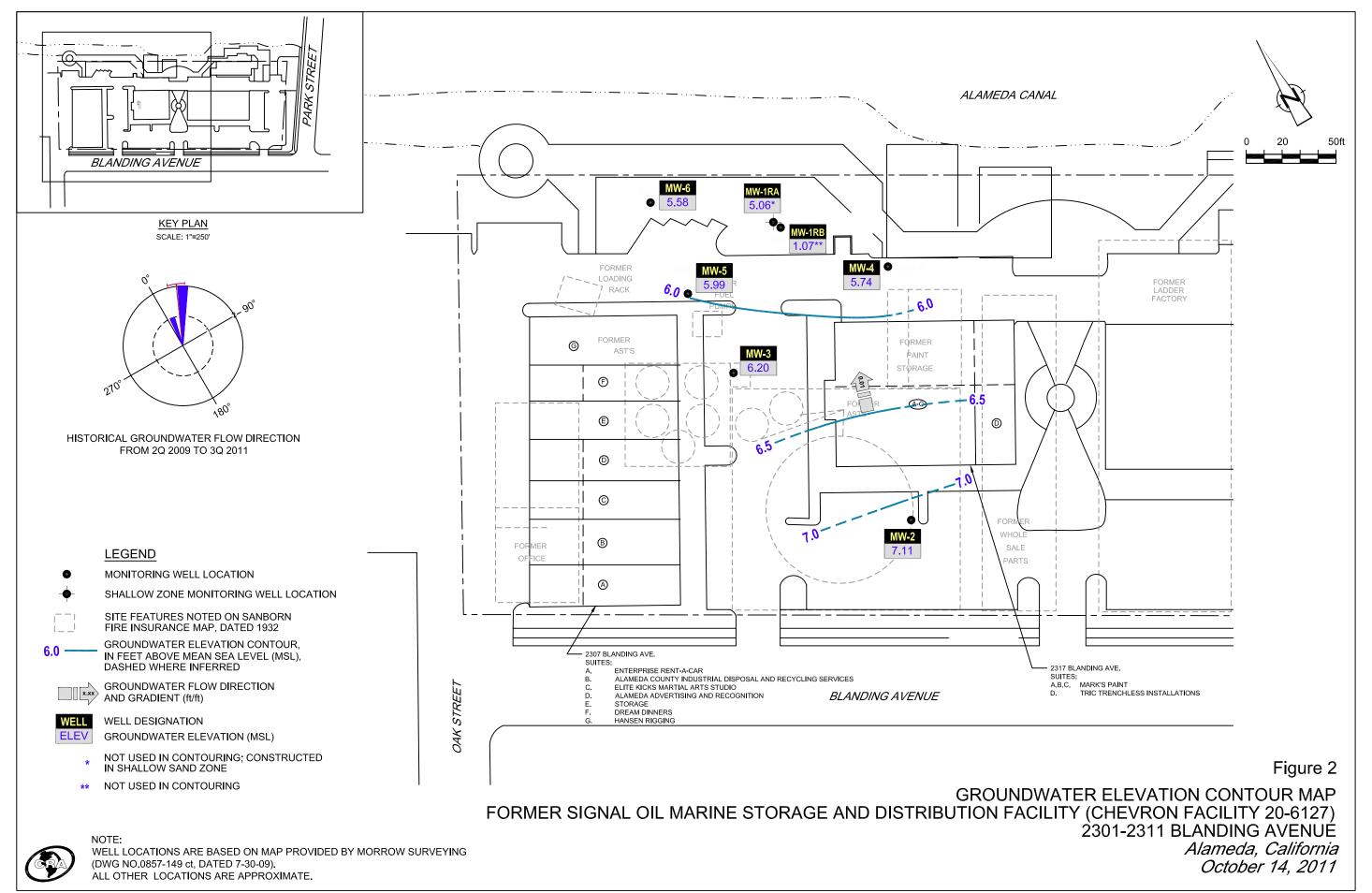
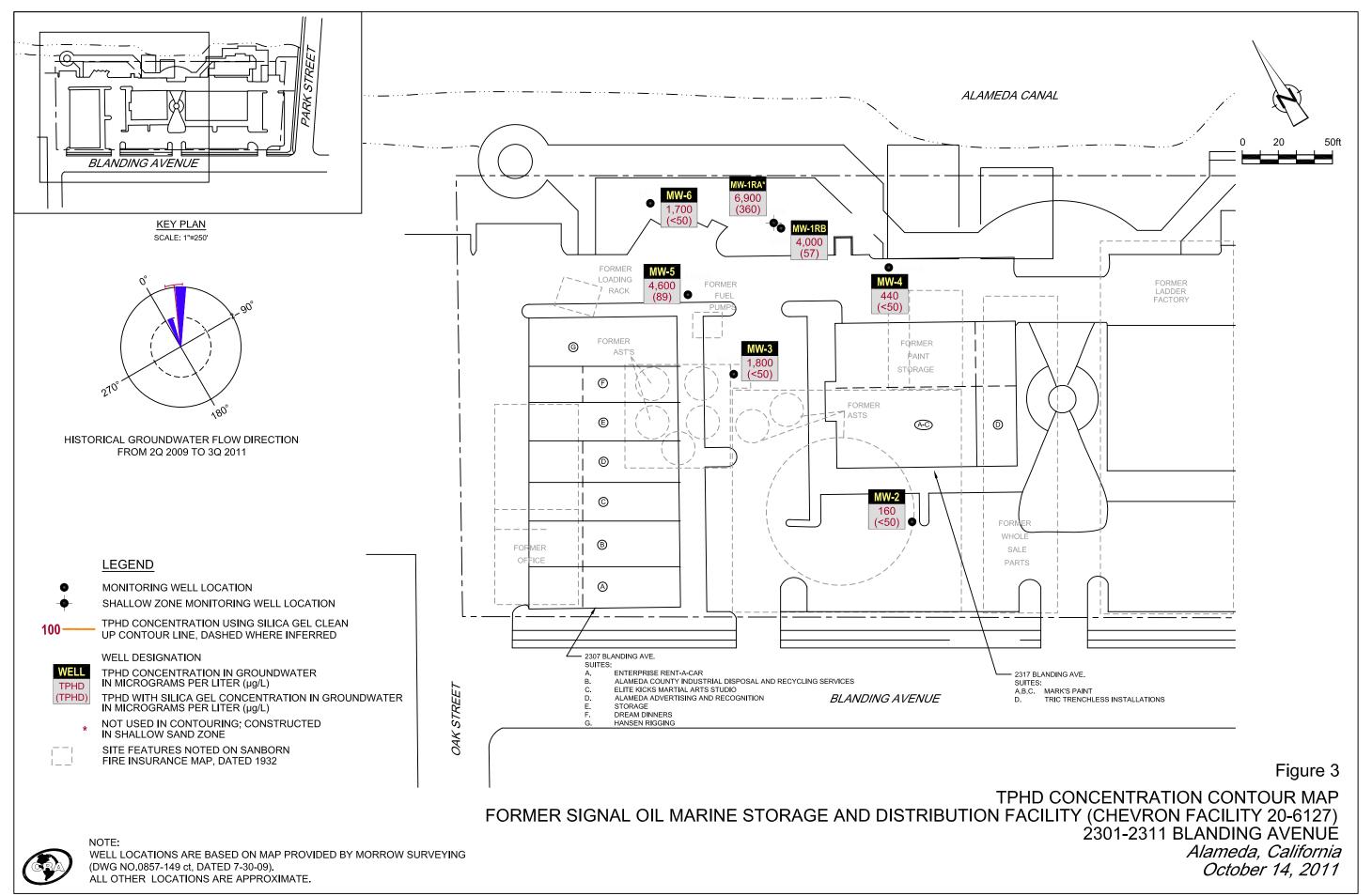
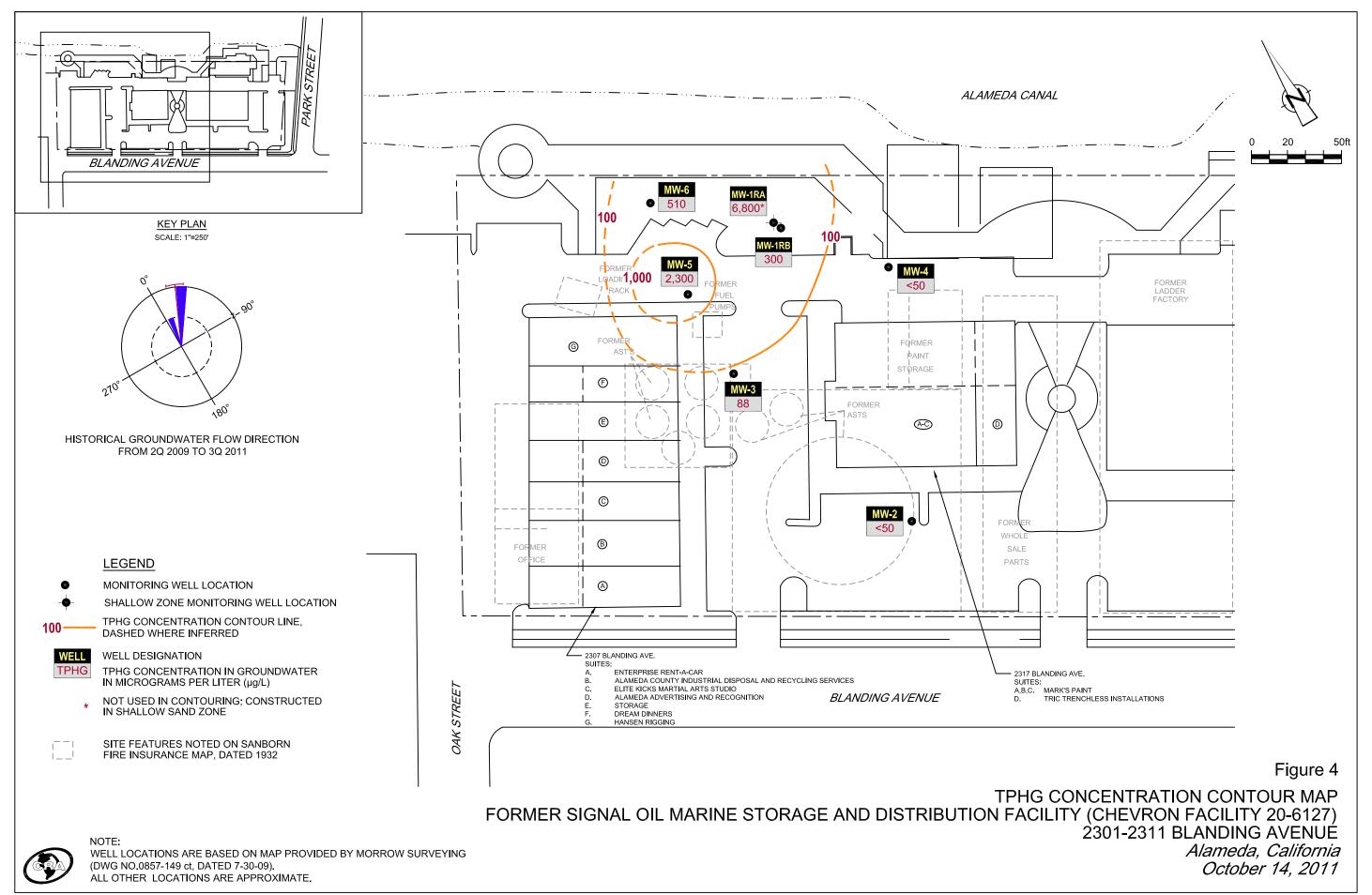
cc: Mr. Mike Bauer, Chevron (electronic only)

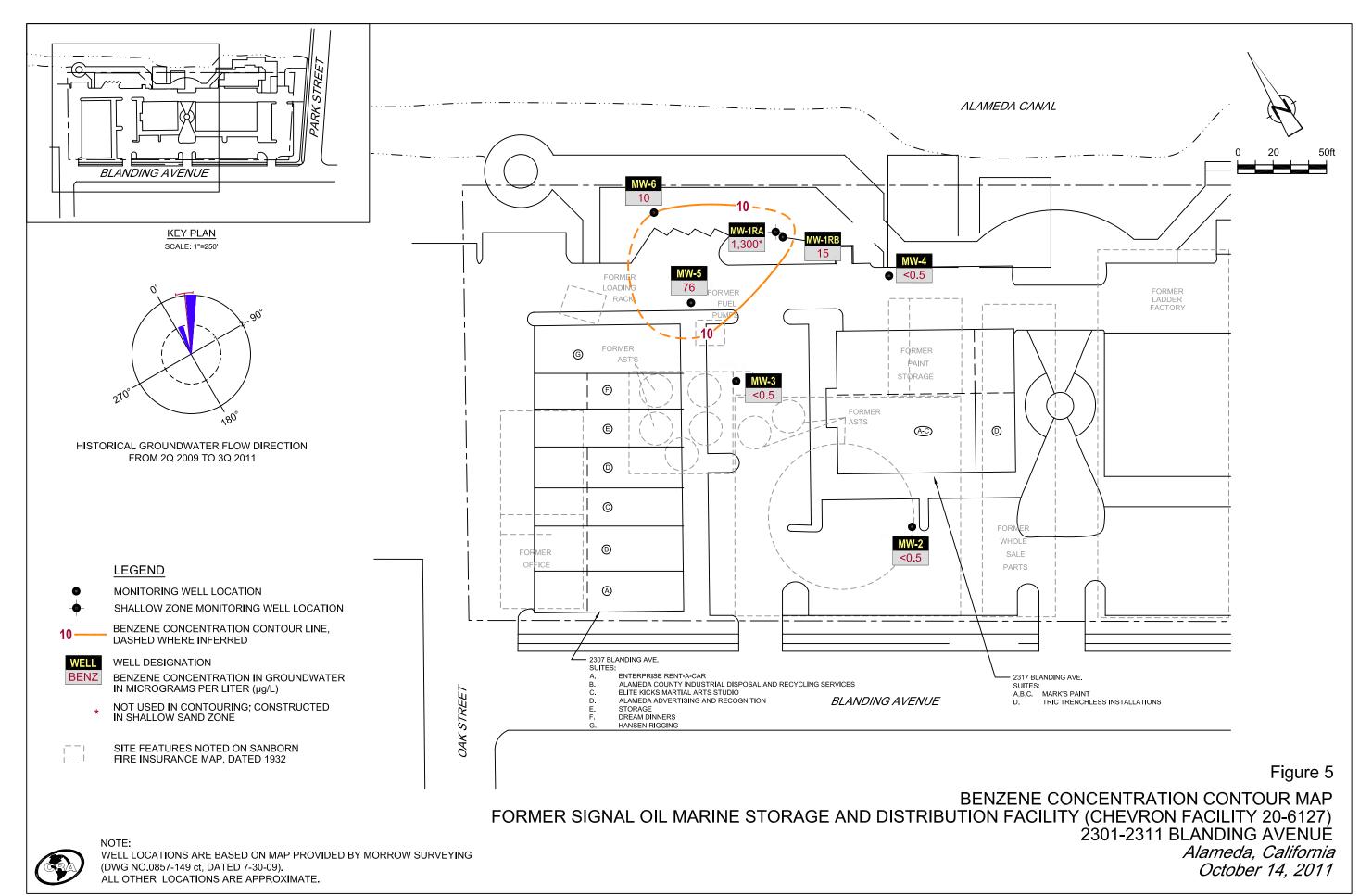
Ms. Julie Beck Ball

Mr. Peter Reinhold Beck Mr. Monroe Wingate

Mr. Tom Foley

FIGURES


Figure 1
VICINITY MAP

FORMER SIGNAL OIL MARINE STORAGE AND DISTRIBUTION FACILITY (CHEVRON FACILITY 20-6127)
2301-2311 BLANDING AVENUE
Alameda, California

TABLES

TABLE 1
GROUNDWATER MONITORING AND SAMPLING DATA
FORMER CHEVRON FACILITY 20-6127
2307 BLANDING AVENUE, ALAMEDA, CALIFORNIA

				2 00, 22		· · · · · · · · · · · · · · · · · · ·		1		•				
	1		1		I	HYDROCARBON	IS		PRIMARY VOCS					
Location	Date	тос	DTW	GWE	TPH-DRO	TPH-DRO w/ Si Gel	TPH-GRO	В	T	E	X	MTBE by SW8260		
	Units	ft	ft	ft-amsl	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
_														
MW-1	07/21/2010	13.49	9.47	4.02	440	-	65 J	<0.5	<0.5	<0.5	<0.5	<0.5		
MW-1	10/22/2010	13.49	-	-	-	-	-	-	-	-	-	-		
MW-1RA	10/28/2010	13.02	9.23	3.79	-	4,000	6,400	830	22	65	20	-		
MW-1RA	01/14/2011	13.02	7.20	5.82	-	1,500	790	160	2	1	1	-		
MW-1RA	04/19/2011	13.02	7.42	5.60	-	3,000	3,800	600	9	18	9	-		
MW-1RA	06/30/2011	13.02	7.51	5.51	-	3,700	6,800	780	13	36	13	-		
MW-1RA	10/14/2011	13.02	7.96	5.06	6,900	360	6,800	1,300	19	51	14	-		
MW-1RB	10/28/2010	13.21	9.00	4.21	-	1,600	650	3	<0.5	0.8	< 0.5	-		
MW-1RB	01/14/2011	13.21	10.97	2.24	-	960	150	1	<0.5	<0.5	< 0.5	-		
MW-1RB	04/19/2011	13.21	12.11	1.10	-	1,200	190	6	<0.5	<0.5	<0.5	-		
MW-1RB	06/30/2011	13.21	11.86	1.35	-	1,900	310	9	<0.5	<0.5	< 0.5	-		
MW-1RB	10/14/2011	13.21	12.14	1.07	4,000	57	300	15	<0.5	<0.5	<0.5	-		
MW-2	07/21/2010	10.63	4.12	6.51	65 J	-	<50	<0.5	<0.5	<0.5	< 0.5	-		
MW-2	10/22/2010	10.63	4.31	6.32	-	58	<50	<0.5	<0.5	<0.5	< 0.5	-		
MW-2	$10/28/2010^2$	10.63	3.65	6.98	-	-	-	-	-	-	-	-		
MW-2	01/14/2011	10.63	3.12	7.51	-	68	<50	<0.5	<0.5	<0.5	< 0.5	-		
MW-2	04/19/2011	10.63	3.51	7.12	-	<50	<50	<0.5	<0.5	<0.5	< 0.5	-		
MW-2	06/30/2011	10.63	3.74	6.89	-	120	<50	<0.5	<0.5	<0.5	< 0.5	-		
MW-2	10/14/2011	10.63	3.52	7.11	160	<50	<50	<0.5	<0.5	<0.5	<0.5	-		
MW-3	07/21/2010	10.72	5.09	5.63	640	-	65 J	0.6 J	<0.5	<0.5	< 0.5	-		
MW-3	10/22/2010	10.72	5.32	5.40	-	570	73	<0.5	<0.5	<0.5	< 0.5	-		
MW-3	$10/28/2010^2$	10.72	4.74	5.98	-	-	-	-	-	-	-	-		
MW-3	01/14/2011	10.72	4.11	6.61	-	1,000	91	<0.5	<0.5	<0.5	<0.5	-		

TABLE 1 GROUNDWATER MONITORING AND SAMPLING DATA FORMER CHEVRON FACILITY 20-6127 2307 BLANDING AVENUE, ALAMEDA, CALIFORNIA

					I	HYDROCARBON	IS			PR	IMARY	(VOCS
Location	Date	тос	DTW	GWE	трн-рко	TPH-DRO w/ Si Gel	TPH-GRO	В	T	E	X	MTBE by SW8260
	Units	ft	ft	ft-amsl	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-3	04/19/2011	10.72	5.03	5.69	-	1,200	180	<0.5	<0.5	<0.5	<0.5	-
MW-3	06/30/2011	10.72	4.97	5.75	-	740	<50	<0.5	<0.5	<0.5	< 0.5	-
MW-3	10/14/2011	10.72	4.52	6.20	1,800	<50	88	<0.5	<0.5	<0.5	<0.5	-
MW-4	07/21/2010	11.40	6.72	4.68	<50	-	<50	<0.5	<0.5	<0.5	<0.5	-
MW-4	10/22/2010	11.40	6.87	4.53	_	91	<50	<0.5	<0.5	<0.5	<0.5	-
MW-4	$10/28/2010^2$	11.40	6.38	5.02	-	-	_	-	_	_	_	-
MW-4	01/14/2011	11.40	5.32	6.08	-	<50	<50	<0.5	<0.5	<0.5	<0.5	-
MW-4	04/19/2011	11.40	7.65	3.75	-	<50	<50	<0.5	<0.5	<0.5	<0.5	-
MW-4	06/30/2011	11.40	6.93	4.47	-	<50	<50	<0.5	<0.5	<0.5	< 0.5	-
MW-4	10/14/2011	11.40	5.66	5.74	440	<50	<50	<0.5	<0.5	<0.5	<0.5	-
MW-5	07/21/2010	10.50	5.76	4.74	2,000		1,500	80	2	1	2	
MW-5	10/22/2010	10.50	5.94	4.56	-	1,500	830	47	<0.5	1	<0.5	-
MW-5	$10/28/2010^2$	10.50	5.17	5.33	_	-	-		-0.5	_	-0.5	_
MW-5	01/14/2011	10.50	4.40	6.10	_	1,800	2,100	61	4	1	6	_
MW-5	04/19/2011	10.50	5.69	4.81	_	2,000	2,200	73	4	1	6	-
MW-5	06/30/2011	10.50	5.82	4.68	_	3,200	2,900	99	6	1	7	-
MW-5	10/14/2011	10.50	4.51	5.99	4,600	89	2,300	76	5	1	5	-
MW-6	10/28/2010	12.98	8.35	4.63	-	300	620	7	<0.5	1	2	-
MW-6	01/14/2011	12.98	7.58	5.40	-	560	120	3	<0.5	<0.5	<0.5	-
MW-6	04/19/2011	12.98	9.90	3.08	-	590	240	7	<0.5	<0.5	<0.5	-
MW-6	06/30/2011	12.98	9.97	3.01	-	640	200	3	<0.5	<0.5	<0.5	-
MW-6	10/14/2011	12.98	7.40	5.58	1,700	<50	510	10	<0.5	<0.5	<0.5	-
QA	07/21/2010	-	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	<0.5

TABLE 1 GROUNDWATER MONITORING AND SAMPLING DATA FORMER CHEVRON FACILITY 20-6127 2307 BLANDING AVENUE, ALAMEDA, CALIFORNIA

					Н	YDROCARBON	IS		PRIMARY VOCS					
Location	Date	тос	DTW	GWE	TPH-DRO	TPH-DRO w/ Si Gel	TPH-GRO	В	T	E	X	MTBE by SW8260		
	Units	ft	ft	ft-amsl	μg/L	μg/L	μg/L	μ <i>g</i> /L	μg/L	μg/L	μ <i>g/</i> L	μg/L		
QA	10/22/2010	-	-	-	-	-	<50	< 0.5	<0.5	<0.5	<0.5	<0.5		
QA	10/28/2010	-	-	-	-	-	<50	< 0.5	<0.5	<0.5	< 0.5	-		
QA	01/14/2011	-	-	-	-	-	<50	< 0.5	<0.5	<0.5	< 0.5	-		
QA	04/19/2011	-	-	-	-	-	<50	< 0.5	<0.5	<0.5	<0.5	-		
QA	06/30/2011	-	-	-	-	-	<50	< 0.5	<0.5	<0.5	<0.5	-		
QA	10/14/2011	-	-	-	-	_	<50	<0.5	<0.5	<0.5	<0.5	-		

TABLE 1 GROUNDWATER MONITORING AND SAMPLING DATA FORMER CHEVRON FACILITY 20-6127 2307 BLANDING AVENUE, ALAMEDA, CALIFORNIA

					Н	YDROCARBON	S	PRIMARY VOCS				
Location	Date	тос	DTW	GWE	TPH-DRO	TPH-DRO w/ Si Gel	TPH-GRO	В	T	E	X	MTBE by SW8260
	Units	ft	ft	ft-amsl	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	µg∕L

Abbreviations and Notes:

TOC = Top of Casing

DTW = Depth to Water

GWE = Groundwater elevation

(ft-amsl) = Feet Above Mean sea level

ft = Feet

 μ g/L = Micrograms per Liter

TPH-DRO = Total Petroleum Hydrocarbons - Diesel Range Organics

TPH-GRO = Total Petroleum Hydrocarbons - Gasoline Range Organics

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylene

MTBE = Methyl tert butyl ether

-- = Not available / not applicable

<x = Not detected above laboratory method detection limit</p>

J = Estimated concentration

- * TOC elevations for all wells were surveyed on July 30, 2009, by Morrow Surveying. Vertical Datum is NAVD 88 from GPS observations. TOC elevations were surveyed on January 25, 2001, by Virgil Chacez Land Surveying. The benchmark used for the survey was a City of Alameda benchmark being a cut square at the centerline return, south corner of Oak and Blanding, (Benchmark Elevation = 8.236 feet, NGVD 29).
- Destroyed and re-installed as MW-1RB.
- $^{2}\,$ Monitored only for the 10/28/10 Special Event

TABLE 2 Page 1 of 1

WELL CONSTRUCTION SPECIFICATIONS FORMER SIGNAL OIL MARINE STORAGE AND DISTRIBUTION FACILITY (CHEVRON BULK PLANT 20-6127) 2301-2311 BLANDING AVENUE ALAMEDA, CALIFORNIA

Well ID	Date Installed	ТОС	Total Depth (fbg)	Casing Diameter ¹ (inches)	Slot Size (inches)	Screen Interval (fbg)	Filter Pack (fbg)	Status
Monitoring	Wells							
MW-1	8/15/1990	13.49	19.5	2	0.020	4-19	3-19.5	Replaced w/MW-1RB
MW-1RA	8/4/2010	13.02	13	2	0.020	8-13	7-13	Active
MW-1RB	8/4/2010	13.21	20	2	0.020	16.5-20	15.5-20	Active
MW-2	6/19/2009	10.63	18	2	0.020	10.5-15.5	10-16	Active
MW-3	6/19/2009	10.72	18.5	2	0.020	13.5-18.5	12.5-18.5	Active
MW-4	6/19/2009	11.40	20.5	2	0.020	15.5-20.5	14.5-20.5	Active
MW-5	6/23/2009	10.50	18	2	0.020	13-18	12-18	Active
MW-6	8/4/2010	12.98	20	2	0.020	16.5-20	15.5-20	Active
Vapor Wells	<u>s</u>							
VP-1	7/9/2008	NS	4.25	1	0.020	3.75-4.25	3.5-4.5	Vapor only
VP-2	7/9/2008	NS	4.75	1	0.020	4.25-4.75	4-5	Vapor only
VP-3	7/14/2008	NS	5.75	1	0.020	5.25-5.75	5-6	Vapor only
VP-4	7/14/2008	NS	5.75	1	0.020	5.25-5.75	5-6	Vapor only
VP-5	7/14/2008	NS	5.75	1	0.020	5.25-5.75	5-6	Vapor only
VP-6	7/9/2008	NS	5.75	1	0.020	5.25-5.75	5-6	Vapor only
Sub-Slab V	apor Probes							
VP-7	7/17/2009	NS	0.5	0.25	NA	NA	NA	Vapor only
VP-8	7/17/2009	NS	0.5	0.25	NA	NA	NA	Vapor only
VP-9	7/22/2009	NS	0.5	0.25	NA	NA	NA	Vapor only
VP-10	7/22/2009	NS	0.5	0.25	NA	NA	NA	Destroyed
VP-11	7/17/2009	NS	0.5	0.25	NA	NA	NA	Destroyed
VP-12	7/22/2009	NS	0.5	0.25	NA	NA	NA	Destroyed
VP-13	7/22/2009	NS	0.5	0.25	NA	NA	NA	Vapor only

Abbreviations / Notes

TOC = Top of casing elevation (feet above mean sea level)

fbg = Feet below grade

NA = Not applicable

NS = Not surveyed

¹ = Schedule 40 PVC casing material

ATTACHMENT A

MONITORING DATA PACKAGE

TRANSMITTAL

October 24, 2011 G-R #386498

TO:

Mr. Brian Silva

Conestoga-Rovers & Associates 10969 Trade Center Drive, Suite 107 Rancho Cordova, California 95670

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 **RE:** Chevron #206127

2301-2337 Blanding Avenue

Alameda, California

(Former Signal Oil Marine Terminal)

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DESCRIPTION
VIA PDF	Groundwater Monitoring and Sampling Data Package Fourth Quarter Event of October 14, 2011

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/206127

WELL CONDITION STATUS SHEET

Client/Facility #: Site Address: City:		37 Blandir	ng Avenue			-	Job# Event Date: Sampler:	ivent Date: lolid/u					- -	
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Boit Fianges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)		LACE CK N	REPLACE CAP Y/N	AAEI	LL VAULT re/Size/ # of Bolts		ures Taken 'es / No
MW-IRA	0K						->	1		1	8 mo	rius —		1~
MW-IRD	Olc								(1				/ I
mw-2	Ok						2				12" en	160		
Inn-)	OL											1		
	olc						7							
194-4 MW-5	داد						9						1	
MW6	OL						>	4		4	8" more	714	-	31
										<u></u>			1	
										·				
Comments						·								

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hills, California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

	Chevron #20	6127		Job Number:	386498	
Site Address:	2301-2337 B	anding Av	enue	Event Date:	10/14/11	(inclusive)
City:	Alameda, CA			Sampler:	317	(moldolve)
Well ID	MW-IR	A	D	ate Monitored:	10/14/11	
Well Diameter	2		Volume	3/4"= 0.02	2 1"= 0.04 2"= 0.17	3"= 0.38
Total Depth	12.70 ft.	•	Factor			
Depth to Water	7.96 ft.		k if water column	n is less then 0.50) ft	
	4.74				Estimated Purge Volume	2.4/ gal.
Denth to Water	w/ 80% Recharge					yaı.
Depth to Water	W 00 / Nechaige	[(Fleight of vvale	r Column x 0.20) +	DIVVJ. 0 170	Time Started:	(2400 hrs)
Purge Equipment:		Samr	ling Equipment:			(2400 hrs)
Disposable Bailer	~		sable Bailer	×	Depth to Product:_	ft
Stainless Steel Baile	er	•	ure Bailer		Depth to Water:	ft
Stack Pump			Filters		Hydrocarbon Thick	ness:ft
Suction Pump			altic Pump		Visual Confirmation	/Description:
Grundfos			Bladder Pump		Chimnes as / Ab a sub a	-4 O1- (-i1)
Peristaltic Pump			:			nt Sock (circle one) Skimmer: gal
QED Bladder Pump						Well:gal
Other:						
Sample Time/Da Approx. Flow Ra Did well de-wate Time (2400 hr.) 1403		gpm. yes, Time:	Water Color: Sediment De Volun Conductivity mhos/cm (IS)	scription:	gal. DTW @ Sampli	ng: \$.76 ORP (mV)
1411	2.5	7.51	920	23.8		
	V =					
			BORATORY IN			
SAMPLE ID	(#) CONTAINER	REFRIG. F	RESERV. TYPE	LABORATORY		LYSES
SAMPLE ID	6 x voa vial	REFRIG. F	PRESERV. TYPE HCL	LABORATORY LANCASTER	TPH-GRO(8015)/BTEX(
	x voa vial x 1 liter ambers	REFRIG. F YES YES	PRESERV. TYPE HCL NP	LABORATORY LANCASTER LANCASTER	TPH-GRO(8015)/BTEX(TPH-DRO (8015)	3260)
	x voa vial x 1 liter ambers x 1 liter ambers	REFRIG. F YES YES YES	PRESERV. TYPE HCL NP NP	LANCASTER LANCASTER LANCASTER	TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	3260) IN
	x voa vial x 1 liter ambers	REFRIG. F YES YES	PRESERV. TYPE HCL NP	LABORATORY LANCASTER LANCASTER	TPH-GRO(8015)/BTEX(TPH-DRO (8015)	3260) IN
	x voa vial x 1 liter ambers x 1 liter ambers	REFRIG. F YES YES YES	PRESERV. TYPE HCL NP NP	LANCASTER LANCASTER LANCASTER	TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	3260) IN
	x voa vial x 1 liter ambers x 1 liter ambers	REFRIG. F YES YES YES	PRESERV. TYPE HCL NP NP	LANCASTER LANCASTER LANCASTER	TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	3260) IN
	x voa vial x 1 liter ambers x 1 liter ambers	REFRIG. F YES YES YES	PRESERV. TYPE HCL NP NP	LANCASTER LANCASTER LANCASTER	TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	3260) IN
	x voa vial x 1 liter ambers x 1 liter ambers	REFRIG. F YES YES YES	PRESERV. TYPE HCL NP NP	LANCASTER LANCASTER LANCASTER	TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	3260) IN
	x voa vial x 1 liter ambers x 1 liter ambers	REFRIG. F YES YES YES	PRESERV. TYPE HCL NP NP	LANCASTER LANCASTER LANCASTER	TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	3260) IN
MW- 2	x voa vial x 1 liter ambers x 1 liter ambers	REFRIG. F YES YES YES	PRESERV. TYPE HCL NP NP	LANCASTER LANCASTER LANCASTER	TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	3260) IN
MW- 2	x voa vial x 1 liter ambers x 1 liter ambers	REFRIG. F YES YES YES	PRESERV. TYPE HCL NP NP	LANCASTER LANCASTER LANCASTER	TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	3260) IN

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #20	6127		Job Number:	386498			
Site Address:	2301-2337 BI	anding A	Avenue	Event Date:	16 14 in (inclus			
City:	Alameda, CA			Sampler:	211	(
Well ID	MW-1R	B		ate Monitored:	10 14 4			
Well Diameter	2	_	Volume	e 3/4"= 0.02	2 1"= 0.04 2"= 0.1	17 3"= 0.38		
Total Depth	19.96 ft.	_	Factor					
Depth to Water	12.14 ft.	c	heck if water column	n is less then 0.50) ft.	- Co.		
	7.82	xVF	7 = 1-32	x3 case volume =	Estimated Purge Volum	e: 3.78 gal.		
Depth to Water	w/ 80% Recharge	[(Height of W	Vater Column x 0.20) +	DTW]: 13 . 70				
					Time Started:	(2400 hrs) (2400 hrs)		
Purge Equipment:	~		ampling Equipment:	~		(2400 ilis)		
Disposable Bailer			isposable Bailer	<u>×</u>		ft		
Stainless Steel Baile Stack Pump			ressure Bailer etal Filters			kness:ft		
Suction Pump			eristaltic Pump		Visual Confirmation	on/Description:		
Grundfos			ED Bladder Pump		Olimon or (About			
Peristaltic Pump			ther:			pant Sock (circle one) m Skimmer: gal		
QED Bladder Pump						m Well:gal		
Other:								
Start Time (purge): 1300		Weather Cor	nditions:	Clear			
Sample Time/Da	ite: 1340 //	0/14/4	Water Color:	Cley	Odor: Y / (N)	***************************************		
Approx. Flow Ra		gpm.	Sediment De		CISHI			
Did well de-wate			Volur	· · · · —	gal. DTW @ Samp	olina: 13.50		
		•			J	, ,		
Time (2400 hr.)	Volume (gal.)	рН	Conductivity (µmhos/cm / µS)	Temperature / F)	D.O.	ORP		
	1	7.61	6 8 2	•	(mg/L)	(mV)		
1303				23.2		- 		
1307	2.5	7.50	654	23.1				
1311	4.0	7.33		22.7				
	·							
			LABORATORY IN					
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	1.	ALYSES		
MVV- ISEB	x voa vial x 1 liter ambers	YES YES	HCL NP	LANCASTER LANCASTER	TPH-GRO(8015)/BTEX TPH-DRO (8015)	(8260)		
	> x 1 liter ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLU	JMN		
) x 1 liter ambers	YES	NP	CHEVRON RTC	CHEVRON PFI STUDY			
				ļ				
				. 1				
COMMENTS:								
O SIMILATO.	***************************************				· · · · · · · · · · · · · · · · · · ·			
						·		
Add/Replaced	Lock:	Add/	Replaced Plug:		Add/Replaced Bol	t:		

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #20	6127		Job Number:	386498	
Site Address:	2301-2337 BI	anding A	Avenue	Event Date:	10/14/11	(inclusive)
City:	Alameda, CA			Sampler:	311	
Well ID	MW- 2			Date Monitored:	10/14/11	
Well Diameter	2	•	Volum	e 3/4"= 0.02	3 4"-0.04 2"-0.47	211-0.20
Total Depth	15.60 ft.	•	Volum Factor			
Depth to Water	3.52 ft.		heck if water colum	n is less then 0.50) ft	
- i	12.08	xVF . /	7 = 2.05	x3 case volume =	Estimated Purge Volume	6.16 gal.
Depth to Water	w/ 80% Recharge	(Height of V	Vater Column x 0.20) +	DTWI: 5.93	Estimated Farge Volume	gai.
_ 0,000	oo /o i iooa. go	[(.o.g o	vator Goldmin x 0.20)	51W ₁ . <u>5713</u>	Time Started:	(2400 hrs)
Purge Equipment:		S	ampling Equipment:		Time Completed:	
Disposable Bailer	_×	D	isposable Bailer	*		ft
Stainless Steel Baile	er	Pi	ressure Bailer	N	III.	ft
Stack Pump		M	etal Filters	-	Visual Confirmation	ness:ft
Suction Pump			eristaltic Pump		visual Committation	Description.
Grundfos			ED Bladder Pump	_	Skimmer / Absorba	nt Sock (circle one)
Peristaltic Pump		0	ther:			Skimmer: gal
QED Bladder Pump	· · ·					Well:gal
Other:					Water Removed:	
Sample Time/Da Approx. Flow Ra Did well de-wate Time (2400 hr.) 0836 0842 0849		gpm.	Sediment De	· —	gal. DTW @ Sampli	ng: <u>4.86</u> ORP (mV)
			LABORATORY IN			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY		LYSES
MW- 2	x voa vial x 1 liter ambers	YES YES	HCL NP		TPH-GRO(8015)/BTEX(TPH-DRO (8015)	8260)
	2 x 1 liter ambers	YES	NP NP	LANCASTER LANCASTER	TPH-DRO (8015)	AN
	x 1 liter ambers	YES	NP NP		CHEVRON PFI STUDY	
COMMENTS:					I	
Add/Replaced	Lock:	Δdd/	Replaced Plug.		Add/Replaced Bolt:	

WELL MONITORING/SAMPLING FIELD DATA SHEET

•	Chevron #20	0121		Job Number:	386498	В		
Site Address:	2301-2337 BI	anding A	Avenue	Event Date:	10/14/11	(inclusive)		
City:	Alameda, CA	\		Sampler:	SH	,		
Well ID	MW3	_		ate Monitored:	10/14/11			
Well Diameter	2	_	Volume	e 3/4"= 0.02	2 1"= 0.04 2"= 0.17	3"= 0.38		
Total Depth	17.91 ft.	_	Factor	(VF) 4"= 0.66	5 5"= 1.02 6"= 1.50	12"= 5.80		
Depth to Water	4.52 ft.		heck if water columi			1.50		
	13.39	-			Estimated Purge Volume	<u>6.82</u> gal.		
Depth to Water	w/ 80% Recharge	[(Height of W	/ater Column x 0.20) +	DTW]: 7.19	Time Started:	(2400 hrs)		
Purge Equipment:		9:	ampling Equipment:			(2400 hrs)		
Disposable Bailer				~		ft		
Stainless Steel Baile			essure Bailer	X	Depth to Water:	ft		
Stack Pump	·		etal Filters			ness:ft		
Suction Pump			eristaltic Pump	******	Visual Confirmation	n/Description:		
Grundfos			ED Bladder Pump		China and Abanda	at Oa als (classes)		
Peristaltic Pump			her:			nt Sock (circle one) Skimmer: gal		
QED Bladder Pump						Well:gal		
Other:					Water Removed:			
Start Time (purge	2): 0740		Weather Cor	ditions:	Clear			
Sample Time/Da		0/19/11	Water Color:	_	Odor: Y / (N)			
oumple time/bu	10. 0010 / j	7/13/11	vvatci odidi.		Ouoi. 1 /(14)			
Approx Flow Po	to:		Sadiment De					
Approx. Flow Ra		gpm.	Sediment De	scription:	6.040	4 51		
Approx. Flow Ra Did well de-water		gpm.	Sediment De	scription:		ng: 4.56		
Did well de-water	r? If	gpm. yes, Time:	Volur	scription: ne: Temperature	6.040	ng: <u>4. 96</u>		
Did well de-water		gpm.	Volur	scription:	gal. DTW @ Sampli			
Did well de-water	r? If	gpm. yes, Time:	Volur	re: Temperature (/ F)	gal. DTW @ Sampli	ORP		
Did well de-water Time (2400 hr.)	r? If	gpm. yes, Time:	Conductivity (µmhos/cm - µS)	scription: ne: Temperature	gal. DTW @ Sampli	ORP		
Time (2400 hr.)	r? If	gpm. yes, Time:	Conductivity (µmhos/cm - (µS)	Temperature (0 / F)	gal. DTW @ Sampli	ORP		
Time (2400 hr.) 0746 0752	r? If	gpm. yes, Time:	Conductivity (µmhos/cm -{µS})	Temperature (O / F) 20.9	gal. DTW @ Sampli	ORP		
Time (2400 hr.) 0746 0752	r? If	gpm. yes, Time: pH 7.37 7.32 7.25	Conductivity (µmhos/cm - (µS) 874 860 871	Temperature (Ø / F) 20.9 20.1	gal. DTW @ Sampli	ORP		
Time (2400 hr.) 0746 0752 0759	Volume (gal.) 2 4 7	gpm. yes, Time: pH 7.37 7.32 7.25	Conductivity (µmhos/cm - (µS) 874 860 871	Temperature (O / F) 20.9 20.1	gal. DTW @ Sampli	ORP (mV)		
Time (2400 hr.) 0796 0752 0759	Volume (gal.) 2 4 7 (#) CONTAINER	gpm. yes, Time: pH 7.37 7.32 7.25	Conductivity (µmhos/cm - µS) 860 871 ABORATORY IN PRESERV. TYPE	Temperature (O / F) 20.9 20.1 FORMATION LABORATORY	gal. DTW @ Sampli	ORP (mV)		
Time (2400 hr.) 0746 0752 0759	Volume (gal.) 2 4 7 (#) CONTAINER x voa vial	gpm. yes, Time: pH 7.37 7.32 7.25 REFRIG. YES	Conductivity (µmhos/cm - µS) 860 871 ABORATORY IN PRESERV. TYPE HCL	Temperature (O / F) 20.9 20.1 FORMATION LABORATORY LANCASTER	gal. DTW @ Sampli D.O. (mg/L) ANA TPH-GRO(8015)/BTEX(ORP (mV)		
Time (2400 hr.) 0796 0752 0759	Volume (gal.) 2 4 7 (#) CONTAINER x voa vial x 1 liter ambers	gpm. yes, Time: pH 7.37 7.32 7.25 REFRIG. YES YES	Conductivity (µmhos/cm - µS) 860 871 ABORATORY IN PRESERV. TYPE	Temperature (O / F) 20.9 20.1 FORMATION LABORATORY LANCASTER LANCASTER	gal. DTW @ Sampli D.O. (mg/L) ANA TPH-GRO(8015)/BTEX(TPH-DRO (8015)	ORP (mV)		
Time (2400 hr.) 0796 0752 0759	Volume (gal.) 2 4 7 (#) CONTAINER x voa vial	gpm. yes, Time: pH 7.37 7.32 7.25 REFRIG. YES	Conductivity (µmhos/cm - uS) 87.4 860 87.1 ABORATORY IN PRESERV. TYPE HCL NP	Temperature (O / F) 20.9 20.1 FORMATION LABORATORY LANCASTER	gal. DTW @ Sampli D.O. (mg/L) ANA TPH-GRO(8015)/BTEX(ORP (mV)		
Time (2400 hr.) 0796 0752 0759	Volume (gal.) 2 4 7 (#) CONTAINER x voa vial x 1 liter ambers x 1 liter ambers	gpm. yes, Time: pH 7.37 7.32 7.25 REFRIG. YES YES YES	Conductivity (µmhos/cm - uS) 874 870 871 ABORATORY IN PRESERV. TYPE HCL NP NP	Temperature (O / F) 20.9 20.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	gal. DTW @ Sampli D.O. (mg/L) ANA TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	ORP (mV)		
Time (2400 hr.) 0796 0752 0759	Volume (gal.) 2 4 7 (#) CONTAINER x voa vial x 1 liter ambers x 1 liter ambers	gpm. yes, Time: pH 7.37 7.32 7.25 REFRIG. YES YES YES	Conductivity (µmhos/cm - uS) 874 870 871 ABORATORY IN PRESERV. TYPE HCL NP NP	Temperature (O / F) 20.9 20.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	gal. DTW @ Sampli D.O. (mg/L) ANA TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	ORP (mV)		
Time (2400 hr.) 0796 0752 0759	Volume (gal.) 2 4 7 (#) CONTAINER x voa vial x 1 liter ambers x 1 liter ambers	gpm. yes, Time: pH 7.37 7.32 7.25 REFRIG. YES YES YES	Conductivity (µmhos/cm - uS) 874 870 871 ABORATORY IN PRESERV. TYPE HCL NP NP	Temperature (O / F) 20.9 20.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	gal. DTW @ Sampli D.O. (mg/L) ANA TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	ORP (mV)		
Time (2400 hr.) 0796 0752 0759	Volume (gal.) 2 4 7 (#) CONTAINER x voa vial x 1 liter ambers x 1 liter ambers	gpm. yes, Time: pH 7.37 7.32 7.25 REFRIG. YES YES YES	Conductivity (µmhos/cm - uS) 874 870 871 ABORATORY IN PRESERV. TYPE HCL NP NP	Temperature (O / F) 20.9 20.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	gal. DTW @ Sampli D.O. (mg/L) ANA TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	ORP (mV)		
Time (2400 hr.) 0796 0752 0759 SAMPLE ID MW- 3	Volume (gal.) 2 4 7 (#) CONTAINER x voa vial x 1 liter ambers x 1 liter ambers	gpm. yes, Time: pH 7.37 7.32 7.25 REFRIG. YES YES YES	Conductivity (µmhos/cm - uS) 874 870 871 ABORATORY IN PRESERV. TYPE HCL NP NP	Temperature (O / F) 20.9 20.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	gal. DTW @ Sampli D.O. (mg/L) ANA TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	ORP (mV)		
Time (2400 hr.) 0796 0752 0759	Volume (gal.) 2 4 7 (#) CONTAINER x voa vial x 1 liter ambers x 1 liter ambers	gpm. yes, Time: pH 7.37 7.32 7.25 REFRIG. YES YES YES	Conductivity (µmhos/cm - uS) 874 870 871 ABORATORY IN PRESERV. TYPE HCL NP NP	Temperature (O / F) 20.9 20.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	gal. DTW @ Sampli D.O. (mg/L) ANA TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	ORP (mV)		
Time (2400 hr.) 0796 0752 0759 SAMPLE ID MW- 3	Volume (gal.) 2 4 7 (#) CONTAINER x voa vial x 1 liter ambers x 1 liter ambers	gpm. yes, Time: pH 7.37 7.32 7.25 REFRIG. YES YES YES	Conductivity (µmhos/cm - uS) 874 870 871 ABORATORY IN PRESERV. TYPE HCL NP NP	Temperature (O / F) 20.9 20.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	gal. DTW @ Sampli D.O. (mg/L) ANA TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	ORP (mV)		
Time (2400 hr.) 0796 0752 0759 SAMPLE ID MW- 3	Volume (gal.) 2 4 7 (#) CONTAINER x voa vial x 1 liter ambers x 1 liter ambers	gpm. yes, Time: pH 7.37 7.32 7.25 REFRIG. YES YES YES	Conductivity (µmhos/cm - uS) 874 870 871 ABORATORY IN PRESERV. TYPE HCL NP NP	Temperature (O / F) 20.9 20.1 FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	gal. DTW @ Sampli D.O. (mg/L) ANA TPH-GRO(8015)/BTEX(TPH-DRO (8015) TPH-DRO w/sgc COLUM	ORP (mV)		

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility	#: Chevron #2	06127		Job Number:	386498	
Site Address:	2301-2337 E	landing	Avenue	Event Date:	10/14/11	(inclusive)
City:	Alameda, C	4		Sampler:	711	
Well ID	MW- Y			Date Monitored:	10/14/11	
Well Diamete			Vo	lume 3/4"= 0.02	2 1"= 0.04 2"= 0.	17 3"= 0.38
Total Depth	20.23 ft	<u>. </u>	Fac	ctor (VF) 4"= 0.66	5 5"= 1.02 6"= 1.	.50 12"= 5.80
Depth to Wat	er <u>5.66</u> ft	_		umn is less then 0.50		
	14.57	_xVF1	7 = 2.47	x3 case volume =	Estimated Purge Volun	ne: 7.43 gal.
Depth to Water	er w/ 80% Recharge	- ∃ [(Height of	Water Column x 0.2	0) + DTWJ: <u> </u>		
					Time Started:	(2400 hrs)
Purge Equipmen		•	Sampling Equipme	nt:		:(2400 hrs)
Disposable Bailer	<u> </u>	[Disposable Bailer	<u> </u>		t:ft
Stainless Steel Ba	ailer	F	Pressure Bailer			ft
Stack Pump		ľ	Metal Filters		Visual Confirmat	ckness:ft
Suction Pump		F	Peristaltic Pump		Visual Collillina	ion/Description.
Grundfos			QED Bladder Pump		Skimmer / Absor	bant Sock (circle one)
Peristaltic Pump		(Other:			om Skimmer: gal
QED Bladder Pur						om Well:gai
Other:					Water Removed:	
Time (2400 hr.) O 9 50 1000	Volume (gal.)	pH 7.64 7.39 7.25	Conductivity (µmhos/cm - 18) 791 806 834	Temperature	D.O. (mg/L)	
			LABORATORY	INFORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYP		AN	IALYSES
MW- 4	x voa via	YES	HCL	LANCASTER	TPH-GRO(8015)/BTE	
	2 x 1 liter ambers		NP	LANCASTER	TPH-DRO (8015)	
	2 x 1 liter ambers		NP	LANCASTER	TPH-DRO w/sgc COLI	
	x 1 liter ambers	YES	NP	CHEVRON RTC	CHEVRON PFI STUD	Y SAMPLES
				- 		· · · · · · · · · · · · · · · · · · ·
			<u> </u>			The state of the s
COMMENTS:	·					
Add/Danlage	ed Lock:	Add	/Replaced Plug:		Add/Replaced Bo	

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #20	6127		Job Number:	386498	
Site Address:	2301-2337 B	anding A	Avenue	Event Date:	10 /14/n	(inclusive)
City:	Alameda, CA			Sampler:	711	
Well ID Well Diameter Total Depth Depth to Water	MW- 5 2 17.53 ft. 4.51 ft. 13.42 w/ 80% Recharge	XVF C XVF Sa [(Height of W Di Pr Mo	Volume Factor	Pate Monitored: 9 3/4"= 0.02 (VF) 4"= 0.66 1 is less then 0.50 x3 case volume =	2 1"= 0.04 2"= 0.17 3 5 5"= 1.02 6"= 1.50 12 0 ft. Estimated Purge Volume: 6.8	(2400 hrs)(2400 hrs)ftftft cription: ck (circle one) mer: galgal
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-water Time (2400 hr.)	te: 1130 //	gpm. yes, Time: pH 7.66 7.60	Weather Con Water Color: Sediment De Volun Conductivity (µmhos/cm - 45) 575	scription:	Odor: Y / N	6.28
SAMPLE ID	7-0	7.29	ABORATORY IN	FORMATION LABORATORY	ANALYSE	s
MW- 3	6 x voa vial	YES	HCL		TPH-GRO(8015)/BTEX(8260)	
	x 1 liter ambers x 1 liter ambers x 1 liter ambers	YES YES YES	NP NP NP	LANCASTER LANCASTER CHEVRON RTC	TPH-DRO (8015) TPH-DRO w/sgc COLUMN CHEVRON PFI STUDY SAMP	LES
COMMENTS:						
Add/Replaced I	Lock:	Δ 4 Α/	Replaced Plug		Add/Replaced Rolt:	

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #20	6127		Job Number:	386498	
Site Address:	2301-2337 B	landing A	Avenue	Event Date:	10/14/11	(inclusive)
City:	Alameda, CA			Sampler:	SH	·
	/				101.11	
Well ID	<u>mw- 6</u>	-		ate Monitored:	10/14/11	
Well Diameter	2	_	Volum			3"= 0.38
Total Depth	20,04 ft.		Factor	(VF) 4"= 0.66	5 5"= 1.02 6"= 1.50	12"= 5.80
Depth to Water	7.40 ft.	_ 🔲 🤉	heck if water colum	n is less then 0.50) ft.	1 44
Donth to Meton	<u> </u>	xVF	<u> </u>	x3 case volume =	Estimated Purge Volume:_	gal.
Deptil to water	w/ 60% Recharge	(Height of V	/ater Column x 0.20) ₹	- DIW]:	Time Started:	(2400 hrs)
Purge Equipment:		Sa	ampling Equipment:			(2400 hrs
Disposable Bailer	_×		sposable Bailer	×		ft
Stainless Steel Baile			essure Bailer			ft
Stack Pump		M	etal Filters	-	Hydrocarbon Thickne	
Suction Pump		Pe	eristaltic Pump		Visual Confirmation/D	Description:
Grundfos			ED Bladder Pump		Skimmer / Absorbant	Cook (sinds and)
Peristaltic Pump		Ot	her:			kimmer:gal
QED Bladder Pump					III	Vell:gal
Other:					Water Removed:	
Stort Time (nume	س <i>ورا</i> ا		Machar Co.	adition o	Cla	
Start Time (purge		 .	Weather Cor		Clear	
	ate: <u>1240</u> / 1		Water Color:		Odor: (Y) (🚯	المولاد.
Approx. Flow Ra		gpm.	Sediment De		LUHT	
Did well de-wate	r?	yes, Time:	Volum	me:	gal. DTW @ Sampling	g: <u>8.67</u>
Time (2400 hr.)	Volume (gal.)	pН	Conductivity (µmhos/cm - µc)	Temperature (/ F)		ORP
` _	•	7/0		,	(mg/L)	(mV)
1201		7.62	962	23.6		
1207	- 4	7.54	950	23.2		
1214	6.5	7.35	939	23.1		
		i	_ABORATORY IN	IFORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANAL	
MW- 6	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(82	60)
	x 1 liter ambers	YES	NP	LANCASTER	TPH-DRO (8015)	
	2 x 1 liter ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN	
	x 1 liter ambers	YES	NP	CHEVRON RTC	CHEVRON PFI STUDY SA	AMPLES
				-		
	I				<u> </u>	
COMMENTS:						
			 			
Add/D==!=== !	Lask	A .1.1	Danlage d Divi		Add/Davie to 15 ft	
Add/Replaced	LOCK:	Add/	Replaced Plug: _	 	Add/Replaced Bolt: _	

Chevron California Region Analysis Request/Chain of Custody

Lancaster 1017/1-03 eas Laboratories lits directly to the Lead Consultant and cc:							:				ampl	e#_					s use (only Group #:	008	172
SS#206127 OML C P#38640								lyses						- and stand to find	Marine Marine Marine					
Facility #: 2301 2337 BLANDING AVENU				_	Matrix	.		1.1	1.		Pre	serva	ation	Co	des				ative Co	
Site Address: MB			Silva				ł	-/-	#	9						+	_	H = HCI N = HNO ₃	T = Thic B = Nac	
Chevron PM: G-R, Inc., 6747 Sierral Card Consultant; Dublin, CA 9456					1	П				Sean								S = H ₂ SO ₄		
Consultant/Office: Deanna L. Harding (de				-	Potable NPDES		Containers			Silica Gel Cleanup								☐ J value repo	rting neede	d
					Potable NPDES		ontai	№ 8021		Silica	2							Must meet I possible for		
Consultant Prj. Mgr. 925-551-7555 Consultant Phone #:								A				De la	Method					8021 MTBE C		Surius
Sampler:				╡			Ser (8260	D GR	TONO OF		Method						☐ Confirm high		3260
oumpion.	- FIC 2 2 31d		1.5			Air	Ē	E E	5 MO	5 MO		Oxygenates ead Met	Leac					☐ Confirm all I		
Comple Identification	Date Collected C	Time	Grab	Soil	Water	□ liō	Total Number of	BTEX + CATEBE	TPH 8015 MOD GRO	TPH 8015 MOD DROX		Total Lead	Dissolved Lead					☐ Run o. ☐ Run o.		
Sample Identification	To Living	Collected		0	>		5		Y	F 8	5)		۵				+	Comments /		
MU-IRA		1475	×	1	5		10	>	7	\d\s	<								nemai ka	
)	71/0	>		×		10	>	X	XX								TOU 000 14		0.51
p)(2		915	>		×)0	5	~ X	$\times \times$								TPH-DRO W	TH SILICA ING 10 GR	
mw-?	_	7810	X	╄	X		16	×	X	XX								COLUMN C		
mu-4		025	X	╀	X		10	\geq	\times	\times	4	-			\dashv	_	-		ROGATE	
mw.		130	7	+	X	-	0	*	X	XX		+			\dashv	-	-	-		
7×71.7-6	4	2.70	7	$^{+}$	1			×	X	XX		+			\dashv	+	+-	1		
					<u> </u>						1				\perp					
	,		_	+	-	\vdash	-	_	_				\dashv		_					
		Relinquis	shed h	<i>,</i> ,			_			Date		Time	I R	eceiv	ed by	<u></u>			Data	Time
Turnaround Time Requested (TAT) (please cires STD. TAT 72 hour 48 hours 72 hour 72 hour 48 hours 72 hours 72 hours 72 hours 73 hours 74 hours 75 hours 75 hours 75 hours 75 hours 76 ho	•	Tromriquit			//	7				Juliu	1,,	1700	Ğ	7	TIL	EK.	-84	LAN FRIDE	Date (2-1	Time
24 hour 4 day 5 day		Relinquis	shed by	1/1	1	1	>			Date		Time	R	eceiy	ed by	r:	1		Date	Time
		Relinquis	shed by)		The same		1	<u> </u>	/7 - / , Date		Time		ese	ed by	1	1		Date	Time
Data Package Options (please circle if required) QC Summary Type I - Full	EDF/EDD													0					Juis	
Type VI (Raw Data)	ded	Relinquis											R	eceiv	ed by	<i>'</i> :			Date	Time
WIP (RWQCB)		UPS		FedE			ther_	18/7		-										
Disk		Tempera	ature U	pon R	leceipt.							C	C	usto	dy Sea	als In	tact?	Yes No		

ATTACHMENT B

LABORATORY ANALYTICAL REPORT

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

November 01, 2011

Project: 206127

Submittal Date: 10/19/2011 Group Number: 1271976 PO Number: 0015074462 Release Number: BAUER State of Sample Origin: CA

Client Sample Description	<u>Lancaster Labs (LLI) #</u>
QA-T-111014 NA Water	6441886
MW-1RA-W-111014 Grab Water	6441887
MW-1RB-W-111014 Grab Water	6441888
MW-2-W-111014 Grab Water	6441889
MW-3-W-111014 Grab Water	6441890
MW-4-W-111014 Grab Water	6441891
MW-5-W-111014 Grab Water	6441892
MW-6-W-111014 Grab Water	6441893

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO	CRA c/o Gettler-Ryan	Attn: Rachelle Munoz
ELECTRONIC COPY TO	Chevron c/o CRA	Attn: Report Contact
ELECTRONIC COPY TO	Chevron	Attn: Anna Avina
ELECTRONIC COPY TO	CRA	Attn: Brian Silva

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300 Ext. 1241

Respectfully Submitted,

Valerie L. Tomayko Principal Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: QA-T-111014 NA Water

Facility# 206127 Job# 386498 GRD

2301-2337 Blanding-Alameda T06019744728 QA

LLI Group # 1271976 Account # 10904

LLI Sample # WW 6441886

Project Name: 206127

Collected: 10/14/2011 Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 10/19/2011 08:20 Reported: 11/01/2011 20:54

6127Q

CAT No. Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS Volatiles	SW-846	8260B	ug/l	ug/l	
10943 Benzene		71-43-2	N.D.	0.5	1
10943 Ethylbenzene		100-41-4	N.D.	0.5	1
10943 Toluene		108-88-3	N.D.	0.5	1
10943 Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Volatiles 01728 TPH-GRO N. CA water	SW-846 C6-C12	8015B	ug/1 N.D.	ug/1 50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	D112932AA	10/20/2011 16:42	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D112932AA	10/20/2011 16:42	Daniel H Heller	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11293A07A	10/20/2011 22:48	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	11293A07A	10/20/2011 22:48	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-1RA-W-111014 Grab Water

Facility# 206127 Job# 386498 GRD

2301-2337 Blanding-Alameda T06019744728 MW-1RA

LLI Group # 1271976 Account # 10904

LLI Sample # WW 6441887

Project Name: 206127

Collected: 10/14/2011 14:35 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 10/19/2011 08:20 Reported: 11/01/2011 20:54

1271A

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	1,300	25	50
10943	Ethylbenzene		100-41-4	51	3	5
10943	Toluene		108-88-3	19	3	5
10943	Xylene (Total)		1330-20-7	14	3	5
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	6,800	250	5
GC Pet	troleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons					
08269	TPH-DRO water C10-C	28	n.a.	6,900	50	1
	The surrogate data evident in the samp			to unresolvable mat	crix problems	
02216	TPH-DRO water C10-C	28 w/Si G	el n.a.	360	50	1
	The reverse surroga	te, capri	c acid, was present	at 1%.		

The recovery for a target analyte and surrogate in the Laboratory Control Spikes is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

The recovery for the method blank surrogate and sample surrogate is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Tim	ne .		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	F112942AA	10/21/2011	14:58	Nicholas R Rossi	5
10943	BTEX 8260B Water	SW-846 8260B	1	F112942AA	10/21/2011	15:19	Nicholas R Rossi	50
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F112942AA	10/21/2011	14:58	Nicholas R Rossi	5
01163	GC/MS VOA Water Prep	SW-846 5030B	2	F112942AA	10/21/2011	15:19	Nicholas R Rossi	50
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11293A07A	10/21/2011	06:06	Marie D John	5
01146	GC VOA Water Prep	SW-846 5030B	1	11293A07A	10/21/2011	06:06	Marie D John	5
08269	TPH-DRO water C10-C28	SW-846 8015B	1	112920024A	10/22/2011	16:34	Anita M Dale	1
02216	TPH-DRO water C10-C28 w/Si Gel	SW-846 8015B	1	112920020A	10/28/2011	20:19	Michele D Hamilton	. 1
11172	DRO by 8015 w/ Silica Gel Ext	SW-846 3510C	1	112920020A	10/20/2011	09:45	Cynthia J Salvatori	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	112920024A	10/20/2011	09:45	Catherine R Wiker	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-1RB-W-111014 Grab Water

Facility# 206127 Job# 386498 GRD

2301-2337 Blanding-Alameda T06019744728 MW-1RB

LLI Group # 1271976 Account # 10904

LLI Sample # WW 6441888

Project Name: 206127

Collected: 10/14/2011 13:40 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 10/19/2011 08:20 Reported: 11/01/2011 20:54

1271B

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	15	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	300	50	1
GC Pet	troleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons					
08269	TPH-DRO water C10-C	28	n.a.	4,000	50	1
02216	TPH-DRO water C10-C	28 w/Si G	el n.a.	57	50	1
	The reverse surroga	te, capri	c acid, was present	at 1%.		

The recovery for a target analyte and surrogate in the Laboratory Control Spikes is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

The recovery for the method blank surrogate and sample surrogate is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	F112941AA	10/21/2011 14:47	Nicholas R Rossi	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F112941AA	10/21/2011 14:47	Nicholas R Rossi	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11293A07A	10/20/2011 23:40	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	11293A07A	10/20/2011 23:40	Marie D John	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	112920024A	10/22/2011 14:56	Anita M Dale	1
02216	TPH-DRO water C10-C28 w/Si	SW-846 8015B	1	112920020A	10/28/2011 20:35	Michele D Hamiltor	1
	Gel						
11172	DRO by 8015 w/ Silica Gel	SW-846 3510C	1	112920020A	10/20/2011 09:45	Cynthia J	1
	Ext					Salvatori	
07003	Extraction - DRO (Waters)	SW-846 3510C	1	112920024A	10/20/2011 09:45	Catherine R Wiker	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-2-W-111014 Grab Water

Facility# 206127 Job# 386498 GRD

2301-2337 Blanding-Alameda T06019744728 MW-2

LLI Group # 1271976 Account # 10904

LLI Sample # WW 6441889

Project Name: 206127

Collected: 10/14/2011 09:15 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 10/19/2011 08:20 Reported: 11/01/2011 20:54

61272

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l		
10943	Benzene		71-43-2	N.D.	0.5	1	
10943	Ethylbenzene		100-41-4	N.D.	0.5	1	
10943	Toluene		108-88-3	N.D.	0.5	1	
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1	
GC Volatiles SW-846 8015B		8015B	ug/l	ug/l			
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1	
GC Petroleum SW-846 8015B		8015B	ug/l	ug/l			
Hydrocarbons							
08269	TPH-DRO water C10-C	28	n.a.	160	50	1	
02216	TPH-DRO water C10-C	28 w/Si G	el n.a.	N.D.	50	1	
The reverse surrogate, capric acid, was present at 1%.							

The recovery for a target analyte and surrogate in the Laboratory Control Spikes is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

The recovery for the method blank surrogate and sample surrogate is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	F112941AA	10/21/2011 15:52	Nicholas R Rossi	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F112941AA	10/21/2011 15:52	Nicholas R Rossi	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11293A07A	10/21/2011 00:05	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	11293A07A	10/21/2011 00:05	Marie D John	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	112920024A	10/22/2011 15:12	Anita M Dale	1
02216	TPH-DRO water C10-C28 w/Si	SW-846 8015B	1	112920020A	10/28/2011 20:52	Michele D Hamiltor	1 1
	Gel						
11172	DRO by 8015 w/ Silica Gel	SW-846 3510C	1	112920020A	10/20/2011 09:45	Cynthia J	1
	Ext					Salvatori	
07003	Extraction - DRO (Waters)	SW-846 3510C	1	112920024A	10/20/2011 09:45	Catherine R Wiker	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-3-W-111014 Grab Water

Facility# 206127 Job# 386498 GRD

2301-2337 Blanding-Alameda T06019744728 MW-3

LLI Sample # WW 6441890 LLI Group # 1271976 Account # 10904

Project Name: 206127

Collected: 10/14/2011 08:10 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 10/19/2011 08:20 Reported: 11/01/2011 20:54

61273

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	88	50	1
GC Pet	troleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons					
08269	TPH-DRO water C10-C	28	n.a.	1,800	50	1
02216	TPH-DRO water C10-C	28 w/Si G	el n.a.	N.D.	50	1
	The reverse surroga	te, capri	c acid, was presen	t at 1%.		

The recovery for a target analyte and surrogate in the Laboratory Control Spikes is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

The recovery for the method blank surrogate and sample surrogate is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	D112932AA	10/20/2011 17:05	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D112932AA	10/20/2011 17:05	Daniel H Heller	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11293A07A	10/21/2011 00:31	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	11293A07A	10/21/2011 00:31	Marie D John	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	112920024A	10/22/2011 15:29	Anita M Dale	1
02216	TPH-DRO water C10-C28 w/Si	SW-846 8015B	1	112920020A	10/28/2011 21:09	Michele D Hamiltor	1 1
	Gel						
11172	DRO by 8015 w/ Silica Gel	SW-846 3510C	1	112920020A	10/20/2011 09:45	Cynthia J	1
	Ext					Salvatori	
07003	Extraction - DRO (Waters)	SW-846 3510C	1	112920024A	10/20/2011 09:45	Catherine R Wiker	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-4-W-111014 Grab Water

Facility# 206127 Job# 386498 GRD

2301-2337 Blanding-Alameda T06019744728 MW-4

LLI Group # 1271976 Account # 10904

LLI Sample # WW 6441891

Project Name: 206127

Collected: 10/14/2011 10:25 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 10/19/2011 08:20 Reported: 11/01/2011 20:54

61274

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Pet	troleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons					
08269	TPH-DRO water C10-C	28	n.a.	440	50	1
02216	TPH-DRO water C10-C	28 w/Si G	el n.a.	N.D.	50	1
	The reverse surroga	te, capri	c acid, was presen	t at 1%.		

The recovery for a target analyte and surrogate in the Laboratory Control Spikes is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

The recovery for the method blank surrogate and sample surrogate is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	D112932AA	10/20/2011 17:28	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D112932AA	10/20/2011 17:28	Daniel H Heller	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11293A07A	10/21/2011 00:57	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	11293A07A	10/21/2011 00:57	Marie D John	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	112920024A	10/22/2011 15:45	Anita M Dale	1
02216	TPH-DRO water C10-C28 w/Si	SW-846 8015B	1	112920020A	10/28/2011 21:25	Michele D Hamiltor	1 1
	Gel						
11172	DRO by 8015 w/ Silica Gel	SW-846 3510C	1	112920020A	10/20/2011 09:45	Cynthia J	1
	Ext					Salvatori	
07003	Extraction - DRO (Waters)	SW-846 3510C	1	112920024A	10/20/2011 09:45	Catherine R Wiker	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-5-W-111014 Grab Water

Facility# 206127 Job# 386498 GRD

2301-2337 Blanding-Alameda T06019744728 MW-5

LLI Sample # WW 6441892

LLI Group # 1271976 Account # 10904

Project Name: 206127

Collected: 10/14/2011 11:30 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 10/19/2011 08:20 Reported: 11/01/2011 20:54

61275

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	76	0.5	1
10943	Ethylbenzene		100-41-4	1	0.5	1
10943	Toluene		108-88-3	5	0.5	1
10943	Xylene (Total)		1330-20-7	5	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	2,300	50	1
GC Pet	troleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons					
08269	TPH-DRO water C10-C	28	n.a.	4,600	50	1
02216	TPH-DRO water C10-C	28 w/Si G	el n.a.	89	50	1
	The reverse surroga	te, capri	c acid, was present	t at 1%.		

The recovery for a target analyte and surrogate in the Laboratory Control Spikes is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

The recovery for the method blank surrogate and sample surrogate is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX 8260B Water	SW-846 8260B	1	F112942AA	10/21/2011 15:4	1 Nicholas R Rossi	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F112942AA	10/21/2011 15:4	1 Nicholas R Rossi	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11293A07A	10/21/2011 01:2	3 Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	11293A07A	10/21/2011 01:2	3 Marie D John	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	112920024A	10/22/2011 16:0	1 Anita M Dale	1
02216	TPH-DRO water C10-C28 w/Si Gel	SW-846 8015B	1	112920020A	10/28/2011 21:4	2 Michele D Hamilton	n 1
11172	DRO by 8015 w/ Silica Gel Ext	SW-846 3510C	1	112920020A	10/20/2011 09:4	5 Cynthia J Salvatori	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	112920024A	10/20/2011 09:4	5 Catherine R Wiker	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-6-W-111014 Grab Water

Facility# 206127 Job# 386498 GRD

2301-2337 Blanding-Alameda T06019744728 MW-6

LLI Sample # WW 6441893

LLI Group # 1271976 Account # 10904

Project Name: 206127

Collected: 10/14/2011 12:40 by JH Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 10/19/2011 08:20 Reported: 11/01/2011 20:54

61276

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	10	0.5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	510	50	1
GC Petroleum SW-846 8015B			8015B	ug/l	ug/l	
Hydrod	carbons					
08269	TPH-DRO water C10-C		n.a.	1,700	50	1
02216	TPH-DRO water C10-C	28 w/Si G	el n.a.	N.D.	50	1
	The reverse surroga	te, capri	c acid, was present	at 0%.		

The recovery for a target analyte and surrogate in the Laboratory Control Spikes is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

The recovery for the method blank surrogate and sample surrogate is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	D112932AA	10/20/2011	17:51	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D112932AA	10/20/2011	17:51	Daniel H Heller	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11293A07A	10/21/2011	01:49	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	11293A07A	10/21/2011	01:49	Marie D John	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	112920024A	10/22/2011	16:18	Anita M Dale	1
02216	TPH-DRO water C10-C28 w/Si	SW-846 8015B	1	112920020A	10/28/2011	21:59	Michele D Hamilton	1
	Gel							
11172	DRO by 8015 w/ Silica Gel	SW-846 3510C	1	112920020A	10/20/2011	09:45	Cynthia J	1
	Ext						Salvatori	
07003	Extraction - DRO (Waters)	SW-846 3510C	1	112920024A	10/20/2011	09:45	Catherine R Wiker	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 4

Quality Control Summary

Client Name: Chevron Group Number: 1271976

Reported: 11/01/11 at 08:54 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: D112932AA Benzene	Sample number	er(s): 644 0.5		890-644189 99	91,6441893	79-120		
	N.D.	0.5	ug/1	99 87		79-120		
Ethylbenzene Toluene	N.D.	0.5	ug/l ug/l	89		79-120		
	N.D.	0.5		87		80-120		
Xylene (Total)	N.D.	0.5	ug/l	0 /		80-120		
Batch number: F112941AA	Sample numbe							
Benzene	N.D.	0.5	ug/l	90		79-120		
Ethylbenzene	N.D.	0.5	ug/l	91		79-120		
Toluene	N.D.	0.5	ug/l	91		79-120		
Xylene (Total)	N.D.	0.5	ug/l	86		80-120		
Batch number: F112942AA	Sample numbe	or(a). 644	11007 6111	000				
Benzene	N.D.	0.5	uq/l	89		79-120		
Ethylbenzene	N.D.	0.5		92		79-120		
Toluene	N.D.	0.5	ug/1	91		79-120		
		0.5	ug/1	91 87		80-120		
Xylene (Total)	N.D.	0.5	ug/l	8 /		80-120		
Batch number: 11293A07A	Sample numbe	er(s): 644	1886-6441	893				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	100	109	75-135	9	30
D-t		() 644	11005 6441	0.00				
Batch number: 112920020A	Sample number				0.04	F.C. 100	0.0	0.0
TPH-DRO water C10-C28 w/Si Gel	N.D.	32.	ug/l	34*	28*	56-122	20	20
Batch number: 112920024A	Sample numbe	er(s): 644	1887-6441	893				
TPH-DRO water C10-C28	N.D.	32.	ug/1	100	96	56-122	4	20
000			37				_	

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD %REC	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: D112932AA	Sample	number(s)	: 6441886	,644189	90-6441	.891,6441893	UNSPK:	P442152	
Benzene	94	105	80-126	11	30				
Ethylbenzene	83	95	71-134	14	30				
Toluene	84	96	80-125	13	30				
Xylene (Total)	83	94	79-125	13	30				
Batch number: F112941AA	Sample	number(s)	: 6441888	-644188	39 UNSP	K: 6441888			
Benzene	100	99	80-126	1	30				

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 4

Quality Control Summary

Client Name: Chevron Group Number: 1271976

Reported: 11/01/11 at 08:54 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	Limits	RPD	MAX	Conc	Conc	RPD	Max
Ethylbenzene	93	95	71-134	2	30				
Toluene	96	96	80-125	0	30				
Xylene (Total)	86	87	79-125	2	30				
Batch number: F112942AA	Sample	number(s	s): 6441887	7,64418	92 UNSI	PK: P442488			
Benzene	95	95	80-126	0	30				
Ethylbenzene	99	99	71-134	1	30				
Toluene	99	97	80-125	1	30				
Xylene (Total)	93	92	79-125	1	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water

Batch number:	D112932AA
---------------	-----------

Batch nur	mber: D112932AA 1			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
6441886	106	99	94	93
6441890	105	101	92	99
6441891	105	100	92	94
6441893	106	100	93	99
Blank	107	104	94	93
LCS	103	105	93	100
MS	105	101	92	100
MSD	102	103	92	101
Limits:	80-116	77-113	80-113	78-113
	Name: UST VOCs by mber: F112941AA	8260B - Water		
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
6441888	94	99	103	101
6441889	97	99	103	96
Blank	95	97	104	96
LCS	95	100	104	100
MS	95	100	104	102
MSD	95	100	102	105
Limits:	80-116	77-113	80-113	78-113
	Name: UST VOCs by mber: F112942AA	8260B - Water		
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
6441887	95	97	104	100
6441887 6441892	95 96	97 98	104 103	100 99

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 4

Quality Control Summary

	Name: Chevron		Group	Number:	1271976
Reporte	ed: 11/01/11 at	08:54 PM			
			Surrogate	Quality	Control
LCS	96	98	102	99	
MS	96	100	103	101	
MSD	95	98	103	98	
Limits:	80-116	77-113	80-113	78-113	
Analysis	Name: TPH-GRO N.	CA water C6-C12			
	mber: 11293A07A				
	Trifluorotoluene-F				
6441886	95				
6441887	115				
6441888	104				
6441889	97				
6441890	96 94				
6441891 6441892	121				
6441893	108				
Blank	94				
LCS	107				
LCSD	107				
Limits:	63-135				
7	Name - EDII DDO	010 000/04 0-	. 7		
	Name: TPH-DRO wat mber: 112920020A	er C10-C28 W/S1 Ge	ξŢ		
baccii iiui	Orthoterphenyl				
	Orthotorphonyi				
6441887	18*				
6441888	23*				
6441889	24*				
6441890	31*				
6441891 6441892	20* 23*				
6441893	14*				
Blank	21*				
LCS	21*				
LCSD	24*				
Limits:	54-127				
	Name: TPH-DRO wat	er C10-C28			
Batch nu	mber: 112920024A				
	Orthoterphenyl				
6441887	173*				
6441888	127				
6441889	113				
6441890	115				
6441891	115				
6441892 6441893	125 122				
Blank	115				
LCS	113				
LCSD	110				
Limits:	54-127				
TITULUS:	J=-14/				

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 4

Quality Control Summary

Client Name: Chevron Group Number: 1271976

Reported: 11/01/11 at 08:54 PM

Surrogate Quality Control

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

Lancaster 10 eas Laboratories ults directly	1711-0	3 Consultan	t and	cc: G	Ac	ct. #:/	109	04		Sam	npie #	6	441	४८१	o ~-'	98 use	Group #:			
										A	naly	ses l	Requ	ested			7 1271976			
	8 Global ID		4728		Matrix		٦.,					rvati	vation Codes				Preserva	tive Cod	es	
Facility #: 2301-2337 BLANDING AVENU	E, ALAMEL	A, CA					TI.	H				_	_			_		T = Thios		
Site Address: MB			Silva		1 1	_		ŀ	and a	25							N = HNO ₃ S = H ₂ SO ₄	B = NaO O = Othe		
Chevron PM: G-R, Inc., 6747 Sierra CS	ingosultent; E	lublin, CA	9 456 8	}-	စ္တ	<u> </u>			Silica Gel Cleanup	(Poss)							☐ J value reporti			
Consultant/Office: Deanna L. Harding (de	_	Potable NPDES	Containers	8260 😘 8021	'	3 8	3							☐ Must meet low	_					
Consultant Prj. Mgr.: 925-551-7555	_		5	18		IS N	7011-De		1	븳				possible for 82	60 compo	ounds				
Concultant Phone #			ģ	8	2	8	a		Method	Method				8021 MTBE Con	firmation					
Sampler: 3	0		ļģ.	88	<u>5</u>	<u>ā</u>	1	nates						☐ Confirm highe	st hit by 82	260				
	:	Composite		Oil □ Air Total Number of	P	TPH 8015 MOD GRO	TPH 8015 MOD DRO	3	Oxygenates	교	Dissolved Lead				☐ Confirm all hit		- 1			
	Date	Time	e g	ബ =	Water	□	×	竇	180	1	위	Total Lead	8				☐ Run oxy			
Sample Identification	Collected	Collected	Grab		×××××××××××××××××××××××××××××××××××××××	_	_	Ē	횬	3)	_	흔	8				☐ Run oxy		s	
OA	10/14/m	1112	X		1	3		X						1			Comments / R	emarks		
MW-IRA		1435	X		וא	10	1	X	X	<u> </u>	_		\perp	<u> </u>			_			
mw-irb		1340	X		X	10		X	X	\mathcal{O}		_					TPH-DRO WIT	TL CII ICA	CE;	
mu-2		0915	X	╬	X	10		< X	X	X		_					REQUESTIN			
mw-3			2810 X 025 X			lo	_	X	X	$[\mathcal{K}]$		_	\bot	\perp			COLUMN CL			
						16		X	X	\mathcal{X}				+				DGATE	·	
		1130	X		13	0		X	(V)	X		+								
	<u> </u>	1240	X	+	1	10	Τ.	X	X	X		+	<u>.</u>	 						
	-			+-	++	-		\vdash						+	\dashv		_			
				-	++		+					\dashv		+			-			
				+	+-+		+				_	_	_	1						
				1			_					_		++						
Turneround Time Democrated /TATV/sleeper		Relingu	ished b	y:	اا		<u></u>	I .	Т	Qate	Ti	me	Rece	eived t	y:		\sim	Date	Time	
Turnaround Time Requested (TAT) (please of 72 hour 48 hours			1/2				10	/14 h	17	700	Gë	.772	ϵ	<u> </u>	YAD FRIDGE	OP-17-11	OFFIDO			
24 hour 4 day 5 day	işhed t	1/0		1			الما	Date		me	Réce	eived b	y:	10	•	Pate	Time			
		Relinqu						19	•	7/_ Date		7/ <u>5</u> me	Bee	ved t	<u>A</u>	12	DAMA	ر <i>دارد (</i> 2/ Date	/3/5 Time	
Data Package Options (please circle if required)	EDEIEDD		Arx	loc	_			170	oki	711	16	356	''''	Fi	<u>"</u> .	لربهت	DAMAJI.	Date	FILITO	
QC Summary Type I - Full	EDF/EDD	·	ished b	y Con	nmercial	Carrie	r:			· ·	, ' '		Reçe	eived t			- · · · · · · · · · · · · · · · · · · ·	Date	Time	
Type VI (Raw Data) Coelt Deliverable not nee WIP (RWQCB)	eded	UPS	•	Teds.	3	CAFATP	er					_	- Juhn				11	//9/#	0620	
Disk		Receipt_							_ C°	מדיי			ntact?	(es) No						
	-								-											

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL N.D.	Reporting Limit none detected	BMQL MPN	Below Minimum Quantitation Level Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	I	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Increasie Ovelifiere

ppb parts per billion

Dry weightbasis
Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Е	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Ε	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Ormania Ovalitiana

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ATTACHMENT C

HISTORICAL GROUNDWATER MONITORING AND SAMPLING DATA

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron #206127 (Former Signal Oil Marine Terminal)
2301-2337 Blanding Avenue
Alameda, California

WELL ID/	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(fl.)	(fL)	(msl)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-1										
01/23/01		7.16		$1,100^{2,3}$	5,210 ⁴	868	<50.0	<50.0	<50.0	<250
04/09/01	10.62	8.12	2.50	1,200 ⁶	3,000 ⁵	920	<20	<20	<20	<100
07/30/01	10.62	9.15	1.47	550 ^{3,8}	2,0007	730	13	<5.0	<5.0	<25
10/08/01	10.62	7.86	2.76	2,200°	1,200	120	2.4	5.9	6.4	<2.5
01/13/02	10.62	7.02	3.60	$3,300^3$	930	320	0.78	0.87	3.8	<2.5
04/08/02	10.62	9.60	1.02	1,200 ³	960	50	1.4	2.6	9.0	<2.5
07/31/02	10.62	9.27	1.35	$2,800^3$	930	64	1.4	1.9	11	<5.0
10/15/02	10.62	8.00	2.62	1,000 ³	620	25	0.78	1.4	4.3	<2.5
01/14/03	10.62	7.05	3.57	960 ³	1,600	20	1.3	1.3	<1.5	<2.5
04/15/03	10.62	8.02	2.60	920 ³	870	56	1	1.4	3.1	<2.5
07/16/03 ¹⁰	10.62	10.08	0.54	1,400 ³	780	85	1	0.8	0.7	<0.5
10/18/03 ¹⁰	10.62	8.51	2.11	1,200 ³	640	42	0.8	<0.5	0.5	<0.5
01/22/04 ¹⁰	10.62	8.95	1.67	1,500 ³	440	18	<0.5	<0.5	<0.5	<0.5
04/23/04 ¹⁰	10.62	8.95	1.67	2,200³	410	10	<0.5	<0.5	<0.5	<0.5
07/23/04 ¹⁰	10.62	9.21	1.41	1,800 ³	400	6	<0.5	<0.5	<0.5	<0.5
10/22/04 ¹⁰	10.62	8.36	2.26	$2,200^3$	150	2	<0.5	<0.5	<0.5	<0.5
01/28/05 ¹⁰	10.62	7.09	3.53	1,200 ³	55	8	<0.5	<0.5	<0.5	<0.5
04/26/05 ¹⁰	10.62	7.84	2.78	480 ³	<50	5	<0.5	<0.5	<0.5	<0.5
07/15/05 ¹⁰	10.62	8.12	2.50	610 ^{3,11}	<50	<0.5	<0.5	<0.5	<0.5	<0.5
10/14/05 ¹⁰	10.62	8.07	2.55	9203,12	<50	10	<0.5	<0.5	<0.5	<0.5
01/12/06 ¹⁰	10.62	6.98	3.64	960 ^{3,12}	<50	6	<0.5	<0.5	<0.5	<0.5
04/13/06 ¹⁰	10.62	7.04	3.58	$1,200^3$	<50	<0.5	<0.5	<0.5	<0.5	<0.5
07/13/06 ¹⁰	10.62	7.13	3.49	$1,200^3$	92	14	<0.5	<0.5	<0.5	<0.5
10/17/06 ¹⁰	10.62	7.64	2.98	990³	<50	3	<0.5	<0.5	<0.5	<0.5
)1/16/07 ¹⁰	10.62	7.09	3.53	840 ³	83	4	<0.5	<0.5	<0.5	<0.5
04/17/07 ¹⁰	10.62	7.11	3.51	$1,200^3$	57	<0.5	<0.5	<0.5	<0.5	<0.5
)7/17/07 ¹⁰	10.62	7.41	3.21	1,100 ³	120	8	<0.5	<0.5	<0.5	<0.5
10/16/07 ¹⁰	10.62	7.55	3.07	750 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/16/08 ¹⁰	10.62	6.98	3.64	1,700 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/16/08 ¹⁰	10.62	7.36	3.26	1,100 ³	62	<0.5	<0.5	<0.5	<0.5	<0.5
07/16/08 ¹⁰	10.62	7.89	2.73	580 ³	93	3	<0.5	<0.5	<0.5	<0.5
10/15/08 ¹⁰	10.62	7.46	3.16	740 ³	56	0.7	<0.5	<0.5	0.8	<0.5

Table 1 Groundwater Monitoring Data and Analytical Results Chevron #206127 (Former Signal Oil Marine Terminal)

2301-2337 Blanding Avenue Alameda, California

	Thankou, Camornia													
WELL ID/	TQC*	DTW	GWE	TPH-DRO	TPH-GRO	В	T	E	X	MTBE				
DATE	(fl.)	(ft.)	(msl)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)				
MW-1 (cont)										-5/5/7///				
01/21/0910	10.62	7.19	3.43	390 ³	<50	< 0.5	< 0.5	<0.5	<0.5	< 0.5				
04/15/0910	10.62	6.93	3.69	1,4003	80	0.7	<0.5	<0.5	<0.5	<0.5				
07/03/0910	13.49	8.08	5.41	1,3003	51	< 0.5	<0.5	<0.5	<0.5	<0.5				
10/01/0910	13.49	9.52	3.97	1,5003	86	<0.5	<0.5	<0.5	<0.5	<0.5				
01/19/1010	13.49	7.64	5.85	3403,15	<50	<0.5	<0.5	<0.5	<0.5	<0.5				
04/26/1010	13.49	9.20	4.29	8203	66	<0.5	<0.5	<0.5	<0.5	<0.5				
				139000-3000			1000000000							
MW-2														
06/30/09 ¹	10.63	3.80	6.83	••		**	••	***		22				
07/03/0914	10.63	3.91	6.72	<50 ³	<50	<0.5	<0.5	<0.5	<0.5					
10/01/09 ¹⁴	10.63	4.11	6.52	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	65 55				
01/19/10 ¹⁴	10.63	3.90	6.73	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	2.44				
04/26/10 ¹⁴	10.63	4.08	6.55	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	22				
MW-3														
)6/30/09 ¹	10.72	4.61	6.11		84					-				
)7/03/09 ¹⁴	10.72	4.57	6.15	170 ³	310	1	< 0.5	2	< 0.5	-				
10/01/09 ¹⁴	10.72	5.22	5.50	$1,000^3$	52	< 0.5	< 0.5	< 0.5	<0.5	1000				
)1/19/10 ¹⁴	10.72	4.84	5.88	1,800 ³	120	2	< 0.5	< 0.5	< 0.5	875				
)4/26/10 ¹⁴	10.72	4.86	5.86	1,700 ³	170	2	<0.5	<0.5	<0.5	-				
MW-4														
	11.40		* 00											
06/30/09 ¹	11.40	6.02	5.38							722				
07/03/09 ¹⁴	11.40	5.85	5.55	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	**				
0/01/09 ¹⁴	11.40	6.95	4.45	370 ³	<50	<0.5	<0.5	<0.5	<0.5	-				
1/19/10 ¹⁴	11.40	6.22	5.18	1103	<50	<0.5	<0.5	<0.5	< 0.5	**				
)4/26/10 ¹⁴	11.40	6.61	4.79	210 ^{5,17}	<50	< 0.5	<0.5	< 0.5	<0.5					

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron #206127 (Former Signal Oil Marine Terminal) 2301-2337 Blanding Avenue Alameda, California

	VELL TO STATE CONTROL OF THE S													
WELL ID/	TQC*	DTW	GWE	TPH-DRO	TPH-GRO	В	T	E	X	МТВЕ				
DATE	(fi.)	(fl.)	(msl)	(µg/L)	(ng/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)				
MW-5														
06/30/091	10.50	5.20	5.30	H-13	***			-	822					
07/03/0914	10.50	5.17	5.33	110 ³	930	33	2	0.6	3					
10/01/0914	10.50	5.66	4.84	2,500 ³	1,800	57	3	0.9	5	***				
01/19/1014	10.50	5.48	5.02	$2,600^3$	2,200	74	4	1	5	===				
04/26/1014	10.50	5.91	4.59	1,7003	2,200	94	4	2	5	= 75				
CS-2														
07/30/01	(42)		-	140 ^{3,5}	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5				
10/08/01		(55.0)		53°	<50	<0.50	<0.50	<0.50	<1.5	<2.5				
01/13/02		***		<50 ³	<50	< 0.50	<0.50	< 0.50	<1.5	<2.5				
04/08/02	**		44	77 ³	<50	< 0.50	<0.50	<0.50	<1.5	<2.5				
07/31/02	-	970		<50 ³	<50	< 0.50	< 0.50	<0.50	<1.5	<2.5				
10/15/02		***		<50 ³	<50	< 0.50	<0.50	<0.50	<1.5	<2.5				
01/14/03	**		-	<50 ³	<50	< 0.50	< 0.50	<0.50	<1.5	<2.5				
04/15/03	**	-	(-0.)	<50 ³	<50	< 0.5	<0.5	<0.5	<1.5	<2.5				
07/16/0310	-	75.0	-	<50 ³	<50	< 0.5	0.7	<0.5	0.6	<0.5				
10/18/0310	-	11 8	**	<50 ³	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5				
01/22/0410	-	200	-	<50 ³	<50	< 0.5	<0.5	< 0.5	<0.5	<0.5				
04/23/0410		375.0	**	<50 ³	<50	< 0.5	<0.5	<0.5	<0.5	<0.5				
07/23/0410	-		**	<50 ³	<50	< 0.5	<0.5	<0.5	<0.5	<0.5				
10/22/0410			-	<50 ³	<50	<0.5	< 0.5	<0.5	<0.5	<0.5				
01/28/0510	-	75.0	** 10	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5				
04/26/0510	111 1	***	-	<50 ³	<50	<0.5	< 0.5	<0.5	<0.5	<0.5				
07/15/05 ¹⁰	-	**	229	<50 ³	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5				
10/14/0510	-	==	57. 0	<50 ³	<50	<0.5	< 0.5	<0.5	<0.5	<0.5				
01/12/06 ¹⁰	-	-	***	<50 ³	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5				
04/13/06 ¹⁰	21 24	22		<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5				
07/13/0610			-	140 ³	<50	< 0.5	<0.5	<0.5	<0.5	<0.5				
10/17/06 ¹⁰	558	3.44	**	<50 ³	<50	< 0.5	< 0.5	< 0.5	<0.5	<0.5				
01/16/07 ¹⁰	**	1044	200	<50 ³	<50	<0.5	< 0.5	< 0.5	<0.5	<0.5				
04/17/07 ¹⁰	25		22 75	<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5				

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron #206127 (Former Signal Oil Marine Terminal)
2301-2337 Blanding Avenue
Alameda, California

	Alameda, California													
WELL ID/	TQC*	DTW	GWE	TPH-DRO	TPH-GRO	В	T	E	X	MTBE				
DATE	(fl.)	(fl.)	(nsl)	(µg/L)	(ng/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)				
CS-2 (cont)														
07/17/07 ¹⁰		••		<50 ³	<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5				
10/16/07 ¹⁰		••	••	<50 ³	<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5				
01/16/08 ¹⁰	••	••		85 ³	<50	< 0.5	<0.5	<0.5	<0.5	<0.5				
04/16/08 ¹⁰	••			<50 ³	<50	<0.5	< 0.5	<0.5	< 0.5	<0.5				
07/16/08 ¹⁰				<50 ³	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5				
10/15/08 ¹⁰				<50 ³	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5				
)1/21/09 ¹⁰				<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5				
04/15/09 ¹⁰				86³	<50	< 0.5	<0.5	<0.5	<0.5	<0.5				
07/03/09 ¹⁰		••		<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5				
10/01/09 ¹⁰	••			<50 ³	<50	<0.5	<0.5	<0.5	<0.5	<0.5				
01/19/10 ¹⁰	••			210 ^{3,16}	<50	<0.5	<0.5	<0.5	<0.5	<0.5				
ΓRIP BLANK ΓB-LB														
01/23/01					-20.0	-0.500	.0.000							
04/09/01		1500	2 71 3	200	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50				
7/30/01		_	()	**************************************	<50	<0.50	<0.50	<0.50	< 0.50	<2.5				
QA				-	<50	< 0.50	<0.50	<0.50	< 0.50	<2.5				
0/08/01					-20	-0.50	~~ **	770.50						
1/13/02	-		_	1600 1600	<50	<0.50	<0.50	<0.50	<1.5	<2.5				
4/08/02	_				<50	<0.50	<0.50	<0.50	<1.5	<2.5				
7/31/02	·**		57/ 000	2000 2000	<50	<0.50	<0.50	<0.50	<1.5	<2.5				
0/15/02		-	-	***	<50	<0.50	<0.50	<0.50	<1.5	<2.5				
1/14/03				-	<50	<0.50	<0.50	<0.50	<1.5	<2.5				
4/15/03	-		0758	550	<50	<0.50	<0.50	<0.50	<1.5	<2.5				
7/16/03 ¹⁰	-	375 S	D## ()	##D? 076=	<50	<0.5	<0.5	<0.5	<1.5	<2.5				
0/18/03 ¹⁰	22				<50	<0.5	<0.5	<0.5	<0.5	<0.5				
1/22/04 ¹⁰		-	-	70.1	<50	<0.5	<0.5	<0.5	<0.5	<0.5				
4/23/04 ¹⁰	92 <u>7</u> 8	51 55	(*** **)	-	<50	<0.5	<0.5	<0.5	<0.5	< 0.5				
7/23/04 ¹⁰		##G	***	-	<50	<0.5	<0.5	<0.5	<0.5	<0.5				
0/22/04 ¹⁰	255		=	-	<50	<0.5	<0.5	<0.5	<0.5	< 0.5				
U/22/U4	**		550	***	<50	<0.5	<0.5	< 0.5	< 0.5	< 0.5				

Table 1 Groundwater Monitoring Data and Analytical Results Chevron #206127 (Former Signal Oil Marine Terminal)

2301-2337 Blanding Avenue Alameda, California

WELL ID/ DATE	TOC*	DTW (fl.)	GWE (msl)	TPH-DRO (µg/L)	TPH-GRO (µg/L)	B (µg/L)	Τ (μg/L)	E (pg/L)	X (µg/L)	MTBE (μg/L)
QA (cont)										
)1/28/05 ¹⁰	••	••	**	••	<50	<0.5	<0.5	<0.5	< 0.5	<0.5
4/26/0510		**		••	<50	<0.5	<0.5	<0.5	<0.5	<0.5
7/15/05 ¹⁰			••		<50	< 0.5	< 0.5	<0.5	<0.5	<0.5
0/14/0510		••		••	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
1/12/06 ¹⁰					<50	< 0.5	<0.5	<0.5	<0.5	<0.5
4/13/06 ¹⁰					<50	< 0.5	<0.5	<0.5	<0.5	<0.5
7/13/06 ¹⁰					<50	< 0.5	<0.5	<0.5	<0.5	<0.5
0/17/06 ¹⁰			••		<50	<0.5	<0.5	< 0.5	<0.5	<0.5
1/16/07 ¹⁰		••			<50	< 0.5	<0.5	< 0.5	<0.5	< 0.5
4/17/07 ¹⁰					<50	< 0.5	<0.5	< 0.5	<0.5	< 0.5
7/17/07 ¹⁰			••		<50	< 0.5	<0.5	<0.5	<0.5	< 0.5
0/ 16/07¹⁰				••	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
1/16/0810			••	**	<50	<0.5	< 0.5	<0.5	<0.5	< 0.5
4/16/08 ¹⁰			••	••	<50	< 0.5	<0.5	<0.5	< 0.5	<0.5
7/16/08 ¹⁰			••		<50	<0.5	<0.5	<0.5	<0.5	<0.5
0/15/08 ¹⁰	••				<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
1/21/09 ¹⁰	••		••	••	<50 ¹³	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
4/15/09 ¹⁰				••	<50	< 0.5	<0.5	< 0.5	<0.5	<0.5
7/03/09 ¹⁰	**	40.00			<50	< 0.5	<0.5	<0.5	<0.5	< 0.5
0/01/09 ¹⁰	***	••		••	<50	< 0.5	< 0.5	< 0.5	<0.5	<0.5
1/19/10 ¹⁰	••			••	<50	<0.5	<0.5	<0.5	<0.5	< 0.5
4/2 6/10 ¹⁰				***	<50	<0.5	<0.5	< 0.5	<0.5	<0.5

Table 1

Groundwater Monitoring Data and Analytical Results

Chevron #206127 (Former Signal Oil Marine Terminal) 2301-2337 Blanding Avenue Alameda, California

EXPLANATIONS:

TOC = Top of Casing

DRO = Diesel Range Organics

MTBE = Methyl Tertiary Butyl Ether

(ft.) = Feet

GRO = Gasoline Range Organics

 $(\mu g/L)$ = Micrograms per liter

DTW = Depth to Water

B = Benzene

-- = Not Measured/Not Analyzed

GWE = Groundwater Elevation

T = Toluene

CS-2 = Creek Sample

(msl) = Mean sea level

E = Ethylbenzene

QA = Quality Assurance/Trip Blank

TPH = Total Petroleum Hydrocarbons

X = Xylenes

- * TOC elevations for all wells were surveyed on July 30, 2009, by Morrow Surveying. Vertical Datum is NAVD 88 from GPS observations.

 TOC elevations were surveyed on January 25, 2001, by Virgil Chavez Land Surveying. The benchmark used for the survey was a City of Alameda benchmark being a cut square at the centerline return, south corner of Oak and Blanding, (Benchmark Elevation = 8.236 feet, NGVD 29).
- Well development performed.
- Laboratory report indicates unidentified hydrocarbons <C16.</p>
- Analyzed with silica gel cleanup.
- Laboratory report indicates weathered gasoline C6-C12.
- 5 Laboratory report indicates discrete peaks.
- Laboratory report indicates diesel C9-C24 + unidentified hydrocarbons <C16.</p>
- Laboratory report indicates gasoline C6-C12.
- Laboratory report indicates unidentified hydrocarbons C9-C24.
- Analysis performed without silica gel cleanup although was requested on the Chain of Custody.
- 10 BTEX and MTBE by EPA Method 8260.
- Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It elutes in the DRO range later than #2 fuel.
- Laboratory report indicates the observed sample pattern includes #2 fuel/diesel and an additional pattern which elutes later in the DRO range.
- Laboratory report indicates the original analysis was performed on an instrument where the ending calibration standard failed the method criteria. The sample was originally analyzed approximately 60 minutes after the LCS/LCSD. The LCS/LCSD showed good GRO recovery and the surrogate recovery for this sample was 85%. The sample was reanalyzed from a vial with headspace since only 1 vial was submitted. The results for the original and the reanalysis were similar. The reanalysis was reported.
- BTEX by EPA Method 8260.
- Laboratory report indicates DRO was detected in the method blank at a concentration of 38 μg/L. Results from the reextraction are within limits. The hold time had expired prior to the reextraction therefore, all results are reported from the original extract. Similar results were obtained in both extracts.
- Laboratory report indicates DRO was detected in the method blank at a concentration of 38 μg/L. Results from the reextraction are within limits. The hold time had expired prior to the reextraction therefore, all results are reported from the original extract. The DRO result for the reextract is 96 μg/L.
- Laboratory report indicates DRO was detected in the method blank at a concentration of 47 μg/L. Results from the reextraction are within limits. The hold time had expired prior to the reextraction therefore, all results are reported from the original extract. Similar results were obtained in both extracts.

Table 2

Groundwater Analytical Results - Metals

Chevron #206127 (Former Signal Oil Marine Terminal)

2301-2337 Blanding Avenue

Alameda, California

The second second	Physical Designation and Control of the Control of																
WELL ID/ DATE	(Lg/L)	y Arsenic	Barrium (ng/L)	(7/80)	Codmins (1/84)	Chromium	(L/ga)	Copper	(Lead	Molybdenum	Nickel	Selenium	Janiks (Jug/L)	(ng/L)	Vanadium	Zinc	(J/g/L)
MW-2 07/03/09	<9.7	<7.2	28.1	<1.4	<2.0	14.6	<2.1	<2.7	<6.9	<4.9	10.6	<8.9	<2.3	<14.0	12.6	11.6	<0.056
MW-3 07/03/09	<9.7	<7.2	143	<1.4	<2.0	8.5	<2.1	3.3	<6.9	<4.9	7.8	<8.9	<2.3	<14.0	13.8	18.8	<0.056
MW-4 07/03/09	<9.7	<7.2	83.5	<1.4	<2.0	10.0	<2.1	<2.7	<6.9	<4.9	4.5	<8.9	<2.3	<14.0	6.3	15.8	<0.056
MW-5 07/03/09	<9.7	32.7	148	<1.4	<2.0	<3.4	<2.1	3.1	<6.9	<4.9	3.6	<8.9	<2.3	<14.0	<2.5	19.2	<0.056

EXPLANATIONS

 $(\mu g/L)$ = Micrograms per liter

ANALYTICAL METHODS:

Metals analyzed by EPA Method SW-846 6010B Mercury analyzed by Method SW-7470A