ALAMEDA COUNTY HEALTH CARE SERVICES

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH DEPARTMENT ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

September 19, 2014

Dignity Housing West Inc. c/o Community Housing Dev. & c/o Oakland Com Housing 1535A Fred Jackson Way Richmond, CA 94801-1525

City of Oakland c/o Odili Ojukwu 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, CA 94612

Oakland Properties Castro Street c/o Ernie Muir 5885 Harbord Dr. Oakland, CA 94611-3122

Subject: Case Closure for Fuel Leak Case No. RO0002456 and GeoTracker Global ID T0600100987, City of Oakland / Dignity Housing West, 690 15th Street, Oakland, CA 94612

Dear Responsible Parties:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25296.10[g]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Environmental Health (ACEH) is required to use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed. This case closure letter and the case closure summary can also be viewed on the State Water Resources Control Board's Geotracker website (<u>http://geotracker.waterboards.ca.gov</u>) and the Alameda County Environmental Health website (<u>http://www.acgov.org/aceh/index.htm</u>).

If you have any questions, please call Matthew Soby at (510) 567-6725. Thank you.

Sincerely,

Une

Dilan Roe, P.E. LOP and SCP Program Manager

1.

2.

Enclosures:

Remedial Action Completion Certification Case Closure Summary

Cc w/enc.:

Cherie McCaulou, San Francisco Bay Regional Water Quality Control Board, 1515 Clay Street, Suite 1400, Oakland, CA 94612 (sent via e-mail to <u>cmccaulou@waterboards.co.gov</u>)

Leroy Griffin, Oakland Fire Department, 150 Frank H. Ogawa Plaza, Suite 3354, Oakland, CA 94612-2032 (sent via electronic mail to <u>lgriffin@oaklandnet.com</u>)

Gopakumar Nair, Oakland Public Works, 250 Frank H. Ogawa Plaza, Suite 4314, Oakland, CA 94612 (sent via e-mail to gnair@oaklandnet.com)

Kwablah Attiogbe, Alameda County Public Works Agency, Environmental and Clean Water Program, 399 Elmhurst Street, Hayward, CA 94544 (sent via e-mail to <u>kwablah@acpwa.org</u>)

Sandra Rivera, Alameda County Planning Dept., Community Development Agency, 224 West Winton Ave, Room 111, Hayward, CA 94544 (sent via e-mail to <u>sandra.rivera@acgov.org</u>)

Ken Minn, East Bay Municipal Utility District, PO Box 24055, Oakland, CA 94623 (sent via e-mail to <u>kminn@ebmud.com</u>)

Subsurface Consultants, Inc. (acquired by Fugro West Inc.), 1000 Broadway, Oakland, CA 94607

Case Worker (sent via electronic mail to matthew.soby@acgov.org)

e-File, GeoTracker

ALAMEDA COUNTY HEALTH CARE SERVICES

DEPARTMENT OF ENVIRONMENTAL HEALTH OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502 (510) 567-6777 FAX (510) 337-9135

ALEX BRISCOE, Agency Director

AGENCY

REMEDIAL ACTION COMPLETION CERTIFICATION

September 19, 2014

Dignity Housing West Inc. c/o Community Housing Dev. & c/o Oakland Com Housing 1535A Fred Jackson Way Richmond, CA 94801-1525

City of Oakland c/o Odili Ojukwu 250 Frank Ogawa Plaza, Suite 5301 Oakland, CA 94612

Oakland Properties Castro Street c/o Ernie Muir 5885 Harbord Dr. Oakland, CA 94611-3122

Subject: Case Closure for Fuel Leak Case No. RO0002456 and GeoTracker Global ID T0600100987, City of Oakland / Dignity Housing West, 690 15th Street, Oakland, CA 94612

Dear Responsible Parties:

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

Please be aware that claims for reimbursement of corrective action costs submitted to the Underground Storage Tank Cleanup Fund more than 365 days after the date of this letter or issuance or activation of the Fund's Letter of Commitment, whichever occurs later, will not be reimbursed unless one of the following exceptions applies:

- Claims are submitted pursuant to Section 25299.57, subdivision (k) (reopened UST case); or
- Submission within the timeframe was beyond the claimant's reasonable control, ongoing work is required for closure that will result in the submission of claims beyond that time period, or that under the circumstances of the case, it would be unreasonable or inequitable to impose the 365-day time period.

This notice is issued pursuant to subdivision (g) of Section 25296.10 of the Health and Safety Code. Please contact our office if you have any questions regarding this matter.

Sincerel

Ariu Levi Director

UST Case Closure Summary Form

Agency Information	Date: 19 September 2014
Agency Name: Alameda County Environmental	Address: 1131 Harbor Bay Parkway
Health	
City/State/Zip: Alameda, CA 94502-6577	Phone: 510-567-6725
Staff Person: Matthew Soby	Title: Hazardous Materials Technician
·	

Case Information

Facility Name: City of Oakland / Dignity Housing West					
Facility Address: 690 15 th Street, C	Dakland, CA 94612				
RB LUSTIS Case No:	Local Case No.:	LOP Case No.: RO0002456			
URF Filing Date:	GeoTracker Global ID: T06001009	987			
APN: 3-73-6	Current Land Use: Residential				
Responsible Party(s):	Address:	Phone:			
Dignity Housing West Inc. c/o Community Housing Dev. & c/o Oakland Com Housing	1535A Fred Jackson Way Richmond, CA 94801-1525				
City of Oakland c/o Odili Ojukwu	250 Frank Ogawa Plaza, Suite 5301 Oakland, CA 94612				
Oakland Properties Castro Street c/o Ernie Muir	5885 Harbord Dr. Oakland, CA 94611-3122				

Tank Information

Tank No.	Size (gal)	Contents	Closed in-Place/ Removed/Active	Date
	500	Gasoline	Removed	November 1987
	1,000	Gasoline	Removed	November 1987

Conceptual Site Model (Attachment 1, 2 pages) (GeoTracker CSM Report)

Closure Criteria Met (Attachment 2, 1 pages) (GeoTracker LTCP Checklist)

LTCP Groundwater Specific Criteria (Attachment 3, 1 page)

LTCP Vapor Specific Criteria (Attachment 4, 1 page)

LTCP Direct Contact and Outdoor Air Exposure Criteria (Attachment 5, 1 page)

Site maps (Attachment 6, 11 pages)

RO0002456

Analytical Data (Attachment 7, 21 pages)

Soil Bore Logs (Attachment 8, 19 pages)

Additional Information:

Water Supply Wells in Vicinity:

There are zero (0) California Dept. of Public Health (CDPH) groundwater supply wells within 0.5 mile radius of this site.

There are zero (0) domestic and/or irrigation use groundwater supply wells within a 2,000 foot radius of the site per Alameda County Public Works (ACPWA) and GeoTracker Groundwater Ambient Monitoring & Assessment (GAMA) website.

Site Monitoring and Supply Wells:

Per ACPWA, the site has (or had) four monitoring wells on site, listed by State Well Number below. Historical site maps, site assessments, and boring logs note only three (3) monitoring wells (named MW-1, MW-2, or MW-3, all 2-inch wells, screened to total depths between 32 to 35 feet) were installed with site investigation activities in May 1991. A potential correlation appears between two of the four State Well Number wells (noted as drilled in April and May 1991) and two of three site monitoring wells. ACPWA has no well permits, no well logs, and no information for destruction of any of the monitoring wells in their database.

- <u>1S/4W-26N</u> has a total depth of 33 feet, diameter = 2 inch (may possibly be well MW-3)
- <u>1S/4W-26N 1</u> has a total depth of 22 feet, diameter = 4 inch
- <u>1S/4W-26N2</u> has a total depth of 14 feet, diameter = 4 inch
- <u>1S/4W-26N3</u> has a total depth of 35 feet, diameter = 2 inch (may possibly be well MW-1)

Monitoring wells MW-1, MW-2, and MW-3 were attempted to be located by Arcadis in January and March 2011. Arcadis found no evidence of the three wells; they are assumed abandoned or destroyed during previous site and street improvement activities.

- *MW-1* and *MW-2*: Per historic site maps, these wells were located in or along 15th Street and are now considered lost due to street and site redevelopment.
- *MW-3:* Per historic maps, this well may have been located in the current courtyard or may be covered by the current building. This is well is considered lost due to redevelopment.

6-inch Hand Dug Well

A 6-inch hand dug water supply well (total depth unknown) was destroyed in June 1991 per Zone 7 requirements. Per historic site maps, this well was located on the northeast portion of the site and is likely covered by the current building. The well destruction report names the well with State Well Number <u>1S/4W-26N 4</u>.

Site Management Requirements:

NO RESTRICTIONS

This fuel leak case has been evaluated for closure consistent with the State Water Resource Control Board Low-Threat Underground Storage Tank Closure Policy (LTCP). Based on this evaluation, no site management requirements appear to be necessary. However, excavation or construction activities in areas of residual contamination require planning and implementation of appropriate health and safety procedures by the responsible party prior to and during excavation and construction activities.

RWQCB Notification	Notification Date: 19 December 2013
RWQCB Staff Name: Cherie McCaulou	Title: Engineering Geologist

Local Agency Representative

Prepared by: Matthew Soby	Title: Hazardous Materials Technician
Signature: MARA &	Date: 19 September 2014
Approved by: Dilan Roe	Title: LOP and SCP Program Manager
Signature: Dulin Rol	Date: 9/18/2014

This Case Closure Summary along with the Case Closure Transmittal letter and the Remedial Action Completion Certification provides documentation of the case closure. This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions. The Conceptual Site Model may not contain all available data. Additional information on the case can be viewed in the online case file. The entire case file can be viewed over the Internet on the Alameda County Environmental Health (ACEH) website (http://www.acgov.org/aceh/lop/ust.htm) the State of California Water or Resources Control Board GeoTracker website (http://geotracker.waterboards.ca.gov). Not all historic documents for the fuel leak case may be available on GeoTracker. A more complete historic case file for this site is located on the ACEH website.

SM Report				► Go			<u>GEOTRA</u>	CKER H		ANAGE	PROJECTS	REPORTS SE	ARCH LOGOL
ITY OF OA	KLAN	D / DIG	NITY I	HOUSIN	g we	ST (T0600	0100987)) - <u>MAP</u>	THIS S	ITE	OPEN	- ELIGIBLE FC	R CLOSURE
90 15TH ST)AKLAND , (LAMEDA C(<u>IEW PRINTABLI</u>	REET CA 9461 OUNTY E CASE S	2 UMMARY	<u>/</u> FOR THIS	ACTIVITIES PUBLIC W <u>SITE</u>	<u>S REP</u>	<u>ORT</u> . <u>GE</u>	CLEA Alan C San I	NUP ON IEDA CO ASEWO FRANCIS ASEWO	VERSIGI DUNTY L DRKER: SCO BA' DRKER:	HT AGEN LOP (LEA MATTHE Y RWQCI Cherie M	<u>CIES</u> D) - CASE #: <u>W SOBY</u> - S B (REGION 2 <u>CCaulou</u> - S	RO0002456 SUPERVISOR: 1 ?) - CASE #: 01- UPERVISOR: C	DILAN ROE 1070 'heryl L. Prowell
		THIS PR	ROJECT V	VAS LAST N	10DIFII	ED BY <u>MATT</u>	HEW SOB	<mark>Y</mark> ON 9/ ⁻	18/2014	3:10:38	PM - <u>HISTO</u>	<u>RY</u>	
CSM REPO	RT - <u>VI</u>	EW PUBL		ING VERSIC	ON OF	THIS REPOR	I						
UST CLEAN	IUP FU	ND CLA		ORMATIO	N (DA			I SCU	FIIS)				
									FIVE	YEAR RE		MATION	
<u>Claim</u> <u>Prioi</u> <u>No</u>	<u>RITY</u> CL	<u>AIMANT</u>	<u>SITE</u> ADDRES	<u>AMT</u> <u>REIMB</u> <u>S</u> <u>TO</u> <u>DATE</u>	<u>AGE</u> OF LOC	IMPACTED WELLS?	<u>REVIEW</u> <u>NUM</u>	REVIE	WER	ECOMN	<u>JND</u> IENDATION	<u>TO</u> OVERSIGHT DATE	<u>TO</u> CLAIMANT DATE
PROJECT II	NFORM	IATION	(DATA I	PULLED I	ROM	GEOTRA	CKER) -	MAP ⁻	THIS S	<u>SITE</u>			
SITE NAME / A	DDRESS			<u>STATUS</u>		STATUS DATE	REL REPOF	<u>EASE</u> RT DATE	AGI	<u>E OF</u> C	LEANUP OV	ERSIGHT AGE	NCIES
CITY OF O/ HOUSING \ T060010098 690 15TH S OAKLAND,	AKLANI WEST (87) STREET CA 946	D / DIGN Global II ;12	IITY D:	Open - Eligible fo Closure	r	8/11/2013	11/12	2/1987	2	27 A # S 2 M F	LAMEDA CO : RO000245 CASEWO :OBY - SUF AN FRANCI) - CASE #: 0 CASEWO (CCaulou Prowell	DUNTY LOP (L 6 DRKER: <u>MATT</u> PERVISOR: DI SCO BAY RW 01-1070 DRKER: <u>Cherie</u> SUPERVISOR	EAD) - CASE HEW LAN ROE QCB (REGION Cheryl L.
SITE HISTORY Two USTs we contaminated of 25 ft bgs a during 1991 a The closure c water supply	ere remo I soil had nd remo and 1992 condition well was	ved from been lef ved from 2. The site of the thi	the site i the site i t in place the site ir had thre ree monit ed per Zo	were detern n Novembe following t n 1991. Gro ee groundw oring wells ne 7 criteria	mined er 1987 he initi oundwa vater m is not a.	to be laborat 7. In 1990, a al UST remo ater monitori nonitoring we known, but p	prelimina prelimina ovals. App ng wells v ills and a presumed	minant ry site a proxima vere ins 6-inch o to be lo	s; PCE assessi tely 430 stalled a diamete ost or d	detection ment wa 0 cubic y and qua er water lestroyed	ons determi as performe yards of soi rterly grour supply well d during rea	ned to be from ed which disco il was excava ndwater samp I prior to rede development.	m off-site overed that ted to depths ling followed velopment. The 6-inch
RESPONSIBL	E PARTI	ES											
<u>NAME</u> ERNIE MUIR ODILI OJUKW n/a	0 0 U C Di	RGANIZAT AKLAND F ITY OF OA	TION PROPERT AKLAND sing West	IES CASTR Inc.	O STRI	EET	<u>ADDRES</u> 5885 HA 250 FRA 1535A F	i s RBORD NK OG/ red Jack) DR AWA PL (son Wa	.Z SUITE	5301	<u>CITY</u> OAKLAND OAKLAND Richmond	<u>EMAIL</u>
CLEANUP AC	TION INF	0											
ACTION TYPE EXCAVATION		<u>BEGIN</u> 6/27/ ⁻	<u>DATE</u> 1991	<u>END D</u> 6/27/19	<u>ATE</u> 991	<u>PHASE</u> Soil		<u>CONTA</u>	MINANT	MASS R	<u>EMOVED</u>	DESCRI	PTION
RISK INFORM	IATION		VIEW		KLIST		VIEW PAT	<u>н то с</u>	LOSUR	E PLAN		VIEW CA	
<u>CONTAMINAN</u> Tetrachloroe Chloroform, Gasoline	ITS OF CO thylene * Chloro	DNCERN (PCE), * [,] form,	<u>Cl</u>	JRRENT AND USE	BENE GW and I Supp	EFICIAL USE - Municipal Domestic Dly	DISC SOUF	HARGE RCE	<u>RI</u> 11	<u>DATE</u> EPORTEI 1/12/198	<u>STOP</u> <u>METHO</u> Close a 7 Remov Tank	<u>N</u> <u>IM</u> and /e	EARBY / IPACTED WELLS
FREE PRODUCT NO	<u>O</u> CONS	<u>Ther</u> Tituents NO	NAME WATER SYSTE EBMU	of 3 <u>M</u> JD	LAST R <u>A</u> 12/	REGULATORY CTIVITY (19/2013	<u>LAST I</u> UPLO	<u>esi</u> Ad	<u>LAST E</u> UPLOA	<u>DF</u> <u>\D C</u>	EXPECTED	<u>MOST</u> TE <u>CLOSUR</u>	<u>RECENT</u> E REQUEST
CDPH WELL	S WITHIN	1500 FE	ET OF TH	IS SITE									
NONE													
CALCULATE	D FIELDS	(BASED	ON LATIT	UDE / LON	GITUDE	E)							

APN 003 007300600	<u>GW BASIN NAME</u> Santa Clara Valley - East Bay Plain (2-9.04)	<u>watershed name</u> South Bay - East Bay Cities (20420)
<u>county</u> Alameda	PUBLIC WATER SYSTEM(S) • EAST BAY MUD - 375 ELEVENTH STREET,	OAKLAND, CA 94607
MOST RECENT CON	ENTRATIONS OF PETROLEUM CONSTITUENTS IN GI	ROUNDWATER - HIDE VIEW ESI SUBMITTALS
NO GROUNDWATER	DATA HAS BEEN SUBMITTED TO GEOTRACKER ESI F	OR THIS SITE
MOST RECENT CON	CENTRATIONS OF PETROLEUM CONSTITUENTS IN SC	DIL - <u>HIDE</u> <u>VIEW ESI SUBMITTALS</u>
NO SOIL DATA HAS E	3EEN SUBMITTED TO GEOTRACKER ESI FOR THIS SI	ſE
MOST RECENT GEO	WELL DATA - <u>HIDE</u>	VIEW ESI SUBMITTALS
NO GEO_WELL DATA	HAS BEEN SUBMITTED TO GEOTRACKER ESI FOR T	'HIS SITE

LOGGED IN AS MATTSOBY

CONTACT GEOTRACKER HELP

LTCP Checklist	GEOTRACKER HOME MANAGE PROJECTS REPORTS SEARC	CH LOGOUT
CITY OF OAKLAND / DIGNITY HOUSING WEST (T0600100987) - MAP THIS SITE	OPEN - ELIGIBLE FOR CL	.OSURE
690 15TH STREET ACTIVITIES REPORT OAKLAND, CA 94612 PUBLIC WEBPAGE ALAMEDA COUNTY PUBLIC WEBPAGE VIEW PRINTABLE CASE SUMMARY FOR THIS SITE	CLEANUP OVERSIGHT AGENCIES ALAMEDA COUNTY LOP (LEAD) - CASE #: R00002456 CASEWORKER: MATTHEW SOBY - SUPERVISOR: DILAN ROE SAN FRANCISCO BAY RWQCB (REGION 2) - CASE #: 01-1070 CASEWORKER: Cherie McCaulou - SUPERVISOR: Cheryl L. Prowell	
THIS PROJECT WAS LAST MODIFIED BY <u>MATTHEW SOBY</u>	DN 9/18/2014 3:20:46 PM - <u>HISTORY</u>	
CLOSURE POLICY THIS VERSION IS FINAL AS OF 9/18/2014	CHECKLIST INITIATED ON 5/17/2013 CLOSURE POLICY	HISTORY
General Criteria - The site satisfies the policy general criteria - CLEAR SECTION ANSWERS	YES	
a. Is the unauthorized release located within the service area of a public water system? Name of Water System : EBMUD	• YES	0 NO
b. The unauthorized release consists only of petroleum <u>(info)</u> .	• YES	
c. The unauthorized ("primary") release from the UST system has been stopped.	• YES	
d. Free product has been removed to the maximum extent practicable (info).	FP Not Encountered YES	
e. A conceptual site model that assesses the nature, extent, and mobility of the release has been deve	eloped <u>(info)</u> . • YES	
f. Secondary source has been removed to the extent practicable (info).	• YES	
g. Soil or groundwater has been tested for MTBE and results reported in accordance with Health and 25296.15.	Safety Code Section O Not Required VES	
h. Does a nuisance exist, as defined by Water Code section 13050.	⊖ yes	● NO
1. Media-Specific Criteria: Groundwater - The contaminant plume that exceeds water qua meets all of the additional characteristics of one of the five classes of sites listed below CLI	lity objectives is stable or decreasing in areal extent, and	YES
EXEMPTION - Soil Only Case (Release has not Affected Groundwater - Info)	• YES	O NO
2. Media Specific Criteria: Petroleum Vapor Intrusion to Indoor Air - The site is consider site-specific conditions satisfy items 2a, 2b, or 2c - <u>CLEAR SECTION ANSWERS</u>	red low-threat for the vapor-intrusion-to-air pathway if	ES
EXEMPTION - Active Commercial Petroleum Fueling Facility	O yes	● NO
Does the site meet any of the Petroleum Vapor Intrusion to Indoor Air specific criteria scenario	s?	
2a - Scenario 3 (example): Dissolved Phase Benzene Concentrations Only in Groundwater (Low conc measurements must satisfy one i, ii, or iii):	entration groundwater scenarios with or without O2]
i. For bioattenuation zone without oxygen measurements or oxygen <4% and benzene concentration continuous zone that provides a separation of at least 5 feet vertically between the dissolved phase building; and contain total TPH <100 mg/kg throughout the entire depth of the bioattenuation zone.	on are <100 $\mu g/L,$ the bioattenuation zone: Is a benzene and the foundation of existing or potential $$\odot$$ YES	0 NO
ii. For bioattenuation zone without oxygen measurements or oxygen <4% and benzene concentration zone: Is a continuous zone that provides a separation of at least 10 feet vertically between the dissipation building, and contain total TPH <100 mg/kg throughout the entire depth of the bioattenuation and the second s	on are >100 μ g/L but <1,000 μ g/L, the bioattenuation olved phase benzene and the foundation of existing or $$\bigcirc$$ YES on zone.	0 NO
iii. For bioattenuation zone with oxygen ≥ 4% and benzene concentration are <1,000 µg/L, the bioat separation of at least 5 feet vertically between the dissolved phase benzene and the foundation of e <100 mg/kg throughout the entire depth of the bioattenuation zone.	ttenuation zone: Is a continuous zone that provides a existing or potential building, and contain total TPH O YES	О NO
3. Media Specific Criteria: Direct Contact and Outdoor Air Exposure - The site is considing if it meets 1, 2, or 3 below <u>CLEAR SECTION ANSWERS</u>	lered low-threat for direct contact and outdoor air exposure	YES
EXEMPTION - The upper 10 feet of soil is free of petroleum contamination	O yes	NO
Does the site meet any of the Direct Contact and Outdoor Air Exposure criteria scenarios?	• YES	
3.1 - Maximum concentrations of petroleum constituents in soil are less than or equal to those listed in below ground surface.	the following table (LINK) for the specified depth YES	O NO
Additional Information		
This case should be kept OPEN in spite of meeting policy criteria.	⊖ yes	● NO
Has this LTCP Checklist been updated for FY 14/15?	• YES	
SPELL CHECK]
Save Form as Partially Completed Sa	ve Form as Complete	
LOGGED IN AS MATTSOBY	CONTACT GEOTR/	ACKER HELP

	ATTACHMENT 3 LTCP GROUNDWATER SPECIFIC CRITERIA							
LTCP Groundwater Specific S	cenario under	which case wa	s closed:					
Site has not affected ground	lwater.							
			LTCP	LTCP	LTCP	LTCP		
Site Data			Scenario 1	Scenario 2	Scenario 3	Scenario 4		
			Criteria (ppb)	Criteria (ppb)	Criteria (ppb)	Criteria (ppb)		
Plume Length			<100 feet	<250 feet	<250 feet	<1,000 feet		
Free Product	No free	product	No free product	No free product	Removed to maximum extent practicable	No free product		
Diuma Stable or			Stable or	Stable or	Stable or	Stable or		
					for minimum	decreasing		
Decreasing			decreasing	decreasing	of 5 Years	decreasing		
Distance to Nearest	1.00		050 (a at	1.000 (a at	1.000 feet	1.000 fast		
Water Supply Well	> 1,00	0 feet	>250 reet	>1,000 feet	>1,000 feet	>1,000 reet		
Distance to Nearest Surface Water and	Site groundwater flow direction varies to the west (predominantly) and north Lake Merritt: 3 700		>250 feet	>1,000 feet	>1,000 feet	>1,000 feet		
Direction	feet east, up-gradient; San Francisco Bay: 2.3 miles west, down-gradient							
Property Owner Willing to Accept a Land Use Restriction?			Not applicable	Not applicable	Yes	Not applicable		
	GRC	JUNDWATER	CONCENTRAT	IONS				
	Historic Site	Current Site	LTCP	LTCP	LTCP	LTCP		
Constituent	Maximum	Maximum	Scenario 1	Scenario 2	Scenario 3	Scenario 4		
	(ppb)	(ppb)	Criteria (ppb)	Criteria (ppb)	Criteria (ppb)	Criteria (ppb)		
Benzene ^a	< 0.5	< 0.5	No criteria	3,000	No criteria	1,000		
MTBE ^b	< 0.5	< 0.5	No criteria	1,000	No criteria	1,000		
Scenario 5: If the site does no determination been made that future scenarios, the contamin health and safety and to the e be achieved within a reasonat	, has a y expected to human objectives will							
COMMENTS:								

The site groundwater was analyzed for total volatile hydrocarbons (TVH), total extractable hydrocarbons (TEH), benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl-tertiary-butyl-ether (MTBE). Concentrations in groundwater were not detected above their respective laboratory reporting limits for all compounds.

Tetrachloroethylene (PCE) was detected in all three site monitoring wells circa 1991 and 1992 at a maximum concentration of 3.3 ug/L from well MW-3. PCE was detected in all site wells and is suspected to be from an up-gradient source as PCE was not used on-site (gasoline USTs). Additionally, the PCE detection is below the Regional Water Quality Control Board Environmental Screening Level of 5.0 ug/L (December 2013, Table F-1a, groundwater is a current

or potential drinking water resource).

Chloroform was detected in down-gradient well MW-1 circa 1991 and 1992 at a maximum concentration of 1.4 ug/L. The laboratory Method Blank reported a similar concentration of 1.2 ug/L. The chloroform detection is likely laboratory contamination.

^a Benzene concentrations from circa 1991 and 1992 groundwater monitoring from wells MW-1, MW-2, and MW-3.

^b MTBE concentrations from circa 2011 groundwater monitoring via direct push rig with temporary well screened from 20 to 30 feet below ground surface.

		ATTACHMENT 4 LTCP VAPOR SPECIFIC CRITERIA							
LTCP Vapor Specific Scena Scenario 3A	rio under which	case was closed	d:						
Not active fueling station	Active as of N	lot applicable							
		LTCP	LTCP	LTCP	LTCP		LTCP	LTCP	
Site Data		Scenario 1 Criteria	Scenario 2 Criteria	Scenario 3A Criteria	Scenario Criteria) 3B	Scenario 3 Criteria	Criteria	
Unweathered NAPL	No NAPL	LNAPL in groundwater	LNAPL in soil	No NAPL	No NAF	۲L	No NAPL	No criteria	
Thickness of Bioattenuation Zone Beneath Foundation	> 10 feet	≥30 feet	≥30 feet	≥5 feet	≥10 fee	et	≥5 feet	≥5 feet	
Total TPH in Bioattenuation Zone	< 100 mg/kg	<100 ppm	<100 ppm	<100 ppm	<100 pp	m	<100 ppm	<100 ppm	
Maximum Current Benzene Concentration in Groundwater	< 0.5 ug/L	No criteria	No criteria	<100 ppb	≥100 ar <1,000 ppb	nd)	<1,000 ppb	No criteria	
Oxygen Data within Bioattenuation Zone	No oxygen data	No criteria	No criteria	No oxygenNo oxygen≥4% atdata ordata orlower end<4%		≥4% at lower end of zone			
Depth of soil vapor measurement beneath foundation		No criteria	No criteria	No criteria	No criteria		No criteria	a ≥5 feet	
SCE	NARIO 4 DIRE(CT MEASUREM	ENT OF SOII	L VAPOR COI	NCENTRA		NS		
Site Soil '	Vapor Data		No Bioat	No Bioattenuation Zone Bioattenuation Zone				ation Zone	
Constituent	Historic Maximum (µg/m ³)	Current Maximum (µg/m ³)	Residential	Commer	Commercial Reside		dential	Commercial	
Benzene			<85	<280		<85	5,000	<280,000	
Ethylbenzene			<1,100	<3,600) .	<1,1	00,000	<3,600,000	
Naphthalene			<93	<310		<93	3,000	<310,000	
If the site does not meet scenarios 1 through 4, does a site-specific risk assessment for the vapor intrusion pathway demonstrate that human health is protected?						-			
If the site does not meet scenarios 1 through 4, has a determination been made that petroleum vapors from soil or groundwater will have no significant risk of adversely affecting human health?				1		-			
COMMENTS:				I					

Approximately 430 cubic yards of soil were excavated from the former UST pit in June 1991. Confirmatory soil borings show the depth of fill extends approximately 6.5 to 12 feet below ground surface (bgs). Maximum soil concentrations were obtained from soil bore 8 between 13 to 19 feet bgs: benzene (0.055 mg/kg) and ethylbenzene (14 mg/kg).

	ATTACHMENT 5 LTCP DIRECT CONTACT AND OUTDOOR AIR EXPOSURE CRITERIA							
LTCP Direct Co Maximum cond	LTCP Direct Contact and Outdoor Air Exposure Specific Scenario under which case was closed: Maximum concentrations of petroleum hydrocarbons are less than or equal to those in Table 1 below.							
Are maximum c	oncentrations les	s than those in T	Table 1 below?	Yes, No, or				
		Resid	dential	Commerci	Commercial/Industrial Utility V			
Const	ituent	0 to 5 feet bgs (ppm) ^a	Volatilization to outdoor air (5 to 10 feet bgs) ppm ^a	0 to 5 feet bgs (ppm) ª	Volatilization to outdoor air (5 to 10 feet bgs) ppm ^a	0 to 10 feet bgs (ppm) ^a		
Site Maximum	Benzene	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
LTCP Criteria	Benzene	≤1.9	≤2.8	≤8.2	≤12	≤14		
Site Maximum	Ethylbenzene	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
LTCP Criteria	Ethylbenzene	≤21 ≤32		≤89	≤134	≤314		
Site Maximum	Naphthalene ^b							
LTCP Criteria	Naphthalene	≤9.7	≤9.7	≤45	≤45	≤219		
Site Maximum	PAHs ^b							
LTCP Criteria	PAHs	≤0.063	NA	≤0.68	NA	≤4.5		
If maximum con are they less that	centrations are gr an levels from a s	reater than those ite-specific risk a						
If maximum con has a determina petroleum in soi affecting humar through the use institutional con	centrations are gr ation been made t il will have no sigr health as a resul of mitigation mea trols?	reater than those hat the concentr nificant risk of ad It of controlling e asures or throug						

COMMENTS:

^a Concentrations based on soil confirmation samples (one sample per 50 cubic yards) and soil stockpile samples from maximum excavation depths 23 to 25 feet bgs.

^b Naphthalene and PAHs not sampled. Based on: 1) below reporting limit concentrations for TVH and TEH in overexcavated soils (exception being sample 18 from 22 feet bgs which had elevated concentrations of TVH, toluene, ethylbenzene, and total xylenes and noted as "removed by subsequent excavation"), and 2) Phase II soil bore 9 (all COCs reported below laboratory reporting limits (RLs)) and soil bore 10 (one detection of TVH at 2.4 mg/kg) concentrations, these semi-volatiles are not like present is sufficient quantities to present a vapor intrusion risk.

Soils from 0 to 5 feet bgs and 5 to 10 feet bgs within the UST excavation and former source area had historically high concentrations of petroleum hydrocarbons circa 1987 (maximum 5,600 mg/kg total petroleum hydrocarbons (TPH)). Over-excavation in 1988 reduced TPH concentrations to 960 mg/kg. These impacted soils have been remediated via excavation to depths of 23 to 25 feet bgs circa 1991.

During the Phase II site investigation in February and May 1991, maximum soil concentrations of benzene (0.055 mg/kg) and ethylbenzene (14 mg/kg) were obtained from soil bore 8 between 13 to 19 feet bgs. Soil bore 8 maximum concentrations of TVH and TEH were 750 mg/kg and 720 mg/kg, respectively. Soil contamination lateral and vertical extents were delineated via soil bores 5 (to 7.5 feet bgs), 9 (to 26 feet bgs), 12 (to 31 feet bgs), and 13

(to 26 feet bgs) where concentrations did not exceed their respective laboratory reporting limits for TVH, TEH, and BTEX. Soil bore 10 (to 26 feet bgs) had a maximum TVH detection of 2.4 mg/kg.

In June 1991, remediation efforts consisted of excavating approximately 430 cubic yards of soil from the former UST pit. The resulting excavation measured approximately 20 by 25 feet in plan to approximately 23 to 25 feet deep. During the remediation efforts, soils excavated were in the location of former soil bores 5, 6, 7, 8, 12 and 13 advanced as part of the Phase II site investigation. Post-remediation soil concentrations showed no detections of TVH, benzene, and ethylbenzene above laboratory RLs. Toluene and xylenes were detected in two samples from 15 to 22 feet bgs at maximum concentrations of 7.4 mg/kg and 7.3 mg/kg, respectively,

Google earth meters

100

500

Google earth

feet meters

Google earth

10

6

Google earth

and the second second

HORIZONTAL SCALE: 1" = 10"

Subsurface Consultants

3	
ZONE OF CONTAMINATED SOIL	
TEST BORING/MONITORING WELL	
SAMPLE LOCATION	
50,720) L TEH TVH	
ND NONE DETECTED	
/ APPROXIMATE LIMIT	
CROSS SECTIONS A-A' & B-B'	
DIGNITY HOUSING WEST - PHASE II	
OB NUMBERDATEAPPROVED615.0025/10/91JVB	

Table 4.						
Concentrations	of	Organic	Chem	icals	in	Water
During	Fou	r Monito	ring	Event	S	

<u>Well</u>	Sample Date	TVH ug/1	Teh Ug/1	B ug/l	Т <u>ug/1</u>	X <u>ug/1</u>	E <u>ug/l</u>	Chloro- form _ug/1	PCE ug/1	Other EPA 8010 Chemicals ug/l
MW-1	05/08/91	<50	<50	<1	<1	<1	<1	1.2	2.5	<1
	08/13/91	<50	<50	<1	<1	<1	<1	<1	<1	<1
	11/08/91	<50	<50	<0.5	<0.5	<0.5	<0.5	1.4	3.3	<1
	02/13/92	<50	<50	<0.5	<0.5	<0.5	<0.5	<1	2.6	<1
MW-2	05/08/91	<50	<50	<1	<1	<1	<1	<1	<1	<1
	08/13/91	<50	<50	<1	<1	<1	<1	<1	<1	<1
	11/08/91	<50	<50	<0.5	<0.5	<0.5	<0.5	<1	1.3	<1
	02/13/92	<50						<1	<1	<1
MW-3	05/08/91	<50	<50	<1	<1	<1	<1	<1	1.1	<1
	08/13/91	<50	<50	<1	<1	<1	<1	<1	<1	<1
	11/08/91	<50	<50	<0.5	<0.5	<0.5	<0.5	<1	<1	<1
	02/13/92	<50	<50	<0.5	<0.5	<0.5	<0.5	<1	<1	<1

TVH = Total Volatile Hydrocarbons

TEH = Total Extractable Hydrocarbons

- BTXE = benzene, toluene, xylene and ethylbenzene
- PCE = Tetrachloroethylene
- ug/l = micrograms per liter or parts per billion (ppb)
 < = Contaminant not present at a concentration in excess of the detection limit shown.</pre>

Table 5. Groundwater Elevations

	Top of	Depth to	Groundwater		
Date	Casing Elevation	<u>Groundwater (ft)</u>	<u>Elevation (ft)</u>		
05/08/91	27.62	26.82	0.80		
08/13/91		27.06	0.56		
11/08/91		27.05	0.57		
02/13/92		26.58	1.04		
05/08/91	27.97	26.88	1.09		
08/13/91		27.11	0.86		
11/08/91		27.11	0.86		
02/13/92		26.85	1.12		
05/08/91	29,90	28.54	1.31		
08/13/91		28.82	1.08		
11/08/91		28.88	1.02		
02/13/92		28.92	0.98		
	Date 05/08/91 08/13/91 11/08/91 02/13/92 05/08/91 08/13/91 11/08/91 02/13/92 05/08/91 08/13/91 11/08/91 02/13/92	Top of Casing Elevation05/08/9127.6208/13/9127.6208/13/9127.9705/08/9127.9708/13/9127.9702/13/9229.9005/08/9129.9008/13/9111/08/9102/13/9229.90	Top of DateDepth to Groundwater (ft)05/08/9127.6226.8208/13/9127.0611/08/9127.0502/13/9226.5805/08/9127.9726.8808/13/9127.1111/08/9127.1102/13/9226.8505/08/9129.9028.5408/13/9128.8211/08/9128.8802/13/9228.92		

Elevations are referenced to project datum established by Bates and Bailey on the Land Survey and Topographic Plan dated February 25, 1991.

Laboratory Job Number 231520 ANALYTICAL REPORT

<u>Lab ID</u>
231520-001
231520-002
231520-003
231520-004
231520-005
231520-006
231520-007

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

They Bobyon

Signature:

Project Manager

Date: <u>10/21/2011</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number:231520Client:ArcadisProject:LC010060.0014.00001Location:690 15th St. OaklandRequest Date:10/04/11Samples Received:10/03/11

This data package contains sample and QC results for six water samples and one four-point soil composite, requested for the above referenced project on 10/04/11. The samples were received cold and intact. All data were e-mailed to Daren Roth on 10/21/11.

TPH-Purgeables and/or BTXE by GC (EPA 8015B) Water:

No analytical problems were encountered.

TPH-Purgeables and/or BTXE by GC (EPA 8015B) Soil:

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B) Water:

Low surrogate recovery was observed for o-terphenyl in the MS for batch 179687; the parent sample was not a project sample. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B) Soil:

SOIL DRUM (lab # 231520-005) was diluted due to the dark and viscous nature of the sample extract. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B) Water:

SB-1 (lab # 231520-002) had multiple vials combined due to sediment. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B) Soil:

Matrix spikes were not performed for this analysis in batch 179679 due to insufficient sample amount. No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7470A) Water:

No analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A) Soil:

High recoveries were observed for copper and zinc in the MS for batch 179761; the parent sample was not a project sample, the BS/BSD were within limits, and the associated RPDs were within limits. No other analytical problems were encountered.

44.0

		Total	Volatil	e Hydrocar	bons	
Lab #:	231520			Location:		690 15th St. Oakland
Client:	Arcadis			Prep:		EPA 5030B
Project#:	LC010060.0014	1.00001		Analysis:		EPA 8015B
Field ID:	DECON-DRUM			Batch#:		179886
Matrix:	Water			Sampled:		10/04/11
Units:	ug/L			Received:		10/03/11
Diln Fac:	1.000					
Type: Lab ID:	SAMPLE 231520-007			Analyzed:		10/11/11
An	alyte		Result		RL	
Gasoline C7-C	:12		59 Y 2	2	50	
Sur	rogate	%REC	Limits			
Bromofluorobe	nzene (FID)	93	78-123			
Type:	BLANK			Analyzed:		10/10/11
Lab ID:	0C612912			initial y loa		10, 10, 11
	QUUIDII					
An	alyte		Result		RL	
Gasoline C7-C	12	NI)		50	
Sur	rogate	%REC	Limits			
Bromofluorobe	enzene (FID)	95	78-123			

Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 1 of 1

	•	Iotal	Volatil	e Hydrocarl	oons	
Lab #:	231520			Location:	690 15th St. Oakland	
Client:	Arcadis			Prep:	EPA 5030B	
Project#:	LC010060.0014.	00001		Analysis:	EPA 8015B	
Field ID:	SOIL DRUM			Batch#:	180049	
Matrix:	Soil			Sampled:	10/03/11	
Units:	mg/Kg			Received:	10/03/11	
Basis:	as received			Analyzed:	10/13/11	
Diln Fac:	1.000					
Туре:	SAMPLE			Lab ID:	231520-005	
Analy	/te		Result		RL	
Gasoline C7-C12		NE)		0.92	
Surrog	jate	%REC	Limite			
Bromofluorobenze			DIMICS			
	ene (FID)	88	74-132			
Туре:	ene (FID) BLANK	88	74-132	Lab ID:	QC613600	
Type: Analy	ene (FID) BLANK /te	88	74-132 Result	Lab ID:	QC613600 RL	
Type: Analy Gasoline C7-C12	ene (FID) BLANK /te	88 NL	Result	Lab ID:	QC613600 RL 0.20	
Type: Analy Gasoline C7-C12 Surrog	ene (FID) BLANK 7te	88 NE %REC	Result Limits	Lab ID:	QC613600 RL 0.20	

ND= Not Detected RL= Reporting Limit Page 1 of 1

		Total I	Extracta	ble Hydroc	arbo	ns
Lab #:	231520			Location:		690 15th St. Oakland
Client:	Arcadis			Prep:		EPA 3520C
Project#:	LC010060.001	4.00001		Analysis:		EPA 8015B
Field ID:	DECON-DRUM			Batch#:		179687
Matrix:	Water			Sampled:		10/04/11
Units:	ug/L			Received:		10/03/11
Diln Fac:	1.000			Prepared:		10/05/11
Type:	SAMPLE			Analyzed:		10/08/11
Lab ID:	231520-007			1		
1	Analyte		Result		RL	
Kerosene C10)-C16		260 Y		50	
Diesel C10-C	224		1,000 Y		50	
Motor Oil C2	24-C36		790		300	
Sı	ırrogate	%REC	Limits			
o-Terphenyl	-	83	68-120			
Type:	BLANK			Analvzed:		10/06/11
Lab ID:	0C612089			111017200		_0,00,
200 22	20012000					
1	Analyte		Result		RL	
Kerosene Cl(D-C16	NE)		50	
Diesel C10-C	224	NE)		50	
Motor Oil C2	24-C36	ND)		300	
Su	urrogate	%REC	Limits			
o-Terphenyl		96	68-120			

		Total Ex	tractal	ole Hydroc	carbons
Lab #:	231520			Location:	690 15th St. Oakland
Client:	Arcadis			Prep:	SHAKER TABLE
Project#:	LC010060.001	4.00001		Analysis:	EPA 8015B
Field ID:	SOIL DRUM			Batch#:	179684
Matrix:	Soil			Sampled:	10/03/11
Units:	mg/Kg			Received:	10/03/11
Basis:	as received			Prepared:	10/05/11
Diln Fac:	1.000			Analyzed:	10/12/11
Type:	SAMPLE			Lab ID:	231520-005
	Analyte	Re	esult		RL
Kerosene C	10-C16	ND			1.0
Diesel Cl0	-C24	ND			1.0
Motor Oil	C24-C36	ND			5.0
	Surrogate	%REC I	Limits		
o-Terpheny	1	93 6	52-120		
Туре:	BLANK			Lab ID:	QC612077
	Analyte	Re	esult		RL
Kerosene C	10-C16	ND			1.0
Diesel C10	-C24	ND			1.0
Motor Oil	C24-C36	ND			5.0
	Surrogate	%REC 1	Limits		

97

62-120

o-Terphenyl

			MTBE b	by GC/MS		
Lab #:	231520			Location:	6	90 15th St. Oakland
Client:	Arcadis			Prep:	E	PA 5030B
Project#:	LC010060.001	4.00001		Analysis:	E	PA 8260B
Matrix:	Water			Sampled:	1	0/03/11
Units:	ug/L			Received:	1	0/03/11
Diln Fac:	1.000			Analyzed:	1	0/06/11
Batch#:	179721			111012/200	-	.,
Field ID: Type:	EB100311 SAMPLE			Lab ID:	2.	31520-001
Ar	nalyte		Result		RL	
MTBE		NI)		0.5	
Sur	rogate	%REC	Limits			
Field ID: Type:	SB-1 SAMPLE	101	00-127	Lab ID:	2	31520-002
Ar	nalvte		Result		RL	
MTBE	· · ·	NI)		0.5	
Sur	rogate	%REC	Limits			
Dibromofluoro	omethane	101	80-127			
Field ID:	SB-2			Lab ID:	2	31520-003
Type:	SAMPLE				2	
Ar	alyte		Result		RL	
MTBE		NE)		0.5	
Sur	rogate	%REC	Limits			
Dibromofluoro	omethane	101	80-127			

			MTBE 1	by GC/MS		
Lab #: Client: Project#:	231520 Arcadis LC010060.00	14.00001		Location: Prep: Analysis:	690 15th St. EPA 5030B EPA 8260B	. Oakland
Matrix: Units: Diln Fac: Batch#:	Water ug/L 1.000 179721			Sampled: Received: Analyzed:	10/03/11 10/03/11 10/06/11	
Field ID: Type:	SB-3 SAMPLE			Lab ID:	231520-004	
An	alyte		Result		RL	
MTBE		NI)		0.5	
Sur	rogate	%REC	Limits			
Field ID: Type:	TB100311 SAMPLE	102	00 127	Lab ID:	231520-006	
An	alyte		Result		RL	
MTBE		NL)		0.5	
Sur Dibromofluoro	rogate methane	%REC 101	Limits 80-127			
Type:	BLANK			Lab ID:	QC612237	
An	alyte		Result		RL	
MTBE		NI)		0.5	
Sur	rogate	%REC	Limits			
Dibromofluoro	methane	100	80-127			

Dibromofluoromethane

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS

Lab #:	231520	Location:	690 15th St. Oakland
Client:	Arcadis	Prep:	EPA 5030B
Project#:	LC010060.0014.00001	Analysis:	EPA 8260B
Field ID:	DECON-DRUM	Diln Fac:	1.000
Lab ID:	231520-007	Sampled:	10/04/11
Matrix:	Water	Received:	10/03/11
Units:	ug/L		

Analyte	Result	RL	Batch# Analyzed
Dibromochloromethane	ND	0.5	179765 10/07/11
1,2-Dibromoethane	ND	0.5	179765 10/07/11
Chlorobenzene	ND	0.5	179765 10/07/11
1,1,1,2-Tetrachloroethane	ND	0.5	179765 10/07/11
Ethylbenzene	ND	0.5	179765 10/07/11
m,p-Xylenes	ND	0.5	179765 10/07/11
o-Xylene	ND	0.5	179765 10/07/11
Styrene	ND	0.5	179765 10/07/11
Bromoform	ND	1.0	179721 10/06/11
Isopropylbenzene	ND	0.5	179765 10/07/11
1,1,2,2-Tetrachloroethane	ND	0.5	179765 10/07/11
1,2,3-Trichloropropane	ND	0.5	179765 10/07/11
Propylbenzene	ND	0.5	179765 10/07/11
Bromobenzene	ND	0.5	179765 10/07/11
1,3,5-Trimethylbenzene	ND	0.5	179765 10/07/11
2-Chlorotoluene	ND	0.5	179765 10/07/11
4-Chlorotoluene	ND	0.5	179765 10/07/11
tert-Butylbenzene	ND	0.5	179765 10/07/11
1,2,4-Trimethylbenzene	ND	0.5	179765 10/07/11
sec-Butylbenzene	ND	0.5	179765 10/07/11
para-Isopropyl Toluene	ND	0.5	179765 10/07/11
1,3-Dichlorobenzene	ND	0.5	179765 10/07/11
1,4-Dichlorobenzene	ND	0.5	179765 10/07/11
n-Butylbenzene	ND	0.5	179765 10/07/11
1,2-Dichlorobenzene	ND	0.5	179765 10/07/11
1,2-Dibromo-3-Chloropropane	ND	2.0	179765 10/07/11
1,2,4-Trichlorobenzene	ND	0.5	179765 10/07/11
Hexachlorobutadiene	ND	2.0	179765 10/07/11
Naphthalene	ND	2.0	179765 10/07/11
1,2,3-Trichlorobenzene	ND	0.5	179765 10/07/11

Surrogate	%REC	Limits	Batch#	Analyzed
Dibromofluoromethane	105	80-127	179765	10/07/11
1,2-Dichloroethane-d4	93	73-145	179765	10/07/11
Toluene-d8	98	80-120	179765	10/07/11
Bromofluorobenzene	97	80-120	179765	10/07/11

J= Estimated value ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS					
Lab #:	231520	Location:	690 15th St. Oakland		
Client:	Arcadis	Prep:	EPA 5035		
Project#:	LC010060.0014.00001	Analysis:	EPA 8260B		
Field ID:	SOIL DRUM	Diln Fac:	0.8489		
Lab ID:	231520-005	Batch#:	179679		
Matrix:	Soil	Sampled:	10/03/11		
Units:	ug/Kg	Received:	10/03/11		
Basis:	as received	Analyzed:	10/05/11		

Analyte	Result	RL	
Freon 12	ND	8.5	
Chloromethane	ND	8.5	
Vinyl Chloride	ND	8.5	
Bromomethane	ND	8.5	
Chloroethane	ND	8.5	
Trichlorofluoromethane	ND	4.2	
Acetone	ND	17	
Freon 113	ND	4.2	
1,1-Dichloroethene	ND	4.2	
Methylene Chloride	ND	17	
Carbon Disulfide	ND	4.2	
MTBE	ND	4.2	
trans-1,2-Dichloroethene	ND	4.2	
Vinyl Acetate	ND	42	
1,1-Dichloroethane	ND	4.2	
2-Butanone	ND	8.5	
cis-1,2-Dichloroethene	ND	4.2	
2,2-Dichloropropane	ND	4.2	
Chloroform	ND	4.2	
Bromochloromethane	ND	4.2	
1,1,1-Trichloroethane	ND	4.2	
1,1-Dichloropropene	ND	4.2	
Carbon Tetrachloride	ND	4.2	
1,2-Dichloroethane	ND	4.2	
Benzene	ND	4.2	
Trichloroethene	ND	4.2	
1,2-Dichloropropane	ND	4.2	
Bromodichloromethane	ND	4.2	
Dibromomethane	ND	4.2	
4-Methyl-2-Pentanone	ND	8.5	
cis-1,3-Dichloropropene	ND	4.2	
Toluene	ND	4.2	
trans-1,3-Dichloropropene	ND	4.2	
1,1,2-Trichloroethane	ND	4.2	
2-Hexanone	ND	8.5	
1,3-Dichloropropane	ND	4.2	
Tetrachloroethene	ND	4.2	

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS						
Lab #:	231520	Location:	690 15th St. Oakland			
Client:	Arcadis	Prep:	EPA 5035			
Project#:	LC010060.0014.00001	Analysis:	EPA 8260B			
Field ID:	SOIL DRUM	Diln Fac:	0.8489			
Lab ID:	231520-005	Batch#:	179679			
Matrix:	Soil	Sampled:	10/03/11			
Units:	ug/Kg	Received:	10/03/11			
Basis:	as received	Analyzed:	10/05/11			

Analyte	Result	RL
Dibromochloromethane	ND	4.2
1,2-Dibromoethane	ND	4.2
Chlorobenzene	ND	4.2
1,1,1,2-Tetrachloroethane	ND	4.2
Ethylbenzene	ND	4.2
m,p-Xylenes	ND	4.2
o-Xylene	ND	4.2
Styrene	ND	4.2
Bromoform	ND	4.2
Isopropylbenzene	ND	4.2
1,1,2,2-Tetrachloroethane	ND	4.2
1,2,3-Trichloropropane	ND	4.2
Propylbenzene	ND	4.2
Bromobenzene	ND	4.2
1,3,5-Trimethylbenzene	ND	4.2
2-Chlorotoluene	ND	4.2
4-Chlorotoluene	ND	4.2
tert-Butylbenzene	ND	4.2
1,2,4-Trimethylbenzene	ND	4.2
sec-Butylbenzene	ND	4.2
para-Isopropyl Toluene	ND	4.2
1,3-Dichlorobenzene	ND	4.2
1,4-Dichlorobenzene	ND	4.2
n-Butylbenzene	ND	4.2
1,2-Dichlorobenzene	ND	4.2
1,2-Dibromo-3-Chloropropane	ND	4.2
1,2,4-Trichlorobenzene	ND	4.2
Hexachlorobutadiene	ND	4.2
Naphthalene	ND	4.2
1,2,3-Trichlorobenzene	ND	4.2

Surrogate	%REC	Limits
Dibromofluoromethane	113	71-126
1,2-Dichloroethane-d4	113	74-130
Toluene-d8	88	80-120
Bromofluorobenzene	97	76-131

ND= Not Detected RL= Reporting Limit Page 2 of 2

EPA 7470A

EPA 6010B

		Califor	rnia Title 22 1	Metals		
Lab #:	231520		Project#:	LC010	060.001	4.00001
Client:	Arcadis		Location:	690 1	5th St.	Oakland
Field ID:	DECON-DRUM		Diln Fac:	1.000		
Lab ID:	231520-007		Sampled:	10/04	/11	
Matrix:	Water		Received:	10/03	/11	
Units:	ug/L					
3						
Analyte	Result	RL	Batch# Prepared	Analyzed	Prep	Analysis
Antimony	Result ND	10	Batch# Prepared 179639 10/04/11	Analyzed	Prep 3010A	Analysis EPA 6010B
Antimony Arsenic	ND ND	10 7.1	Batch# Prepared 179639 10/04/11 179639 10/04/11	Analyzed 10/16/11 EPA 10/16/11 EPA	Prep 3010A 3010A	Analysis EPA 6010B EPA 6010B
Antimony Arsenic Barium	ND ND 190	RL 10 7.1 5.0	Batch# Prepared 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11	Analyzed 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA	Prep 3010A 3010A 3010A	Analysis EPA 6010B EPA 6010B EPA 6010B
Antimony Arsenic Barium Beryllium	ND ND 190 ND	RL 10 7.1 5.0 2.0	Batch# Prepared 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11	Analyzed 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA	Prep 3010A 3010A 3010A 3010A 3010A	Analysis EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B
Analyte Antimony Arsenic Barium Beryllium Cadmium	ND ND 190 ND ND	RL 10 7.1 5.0 2.0 5.0	Batch# Prepared 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11	Analyzed 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA	Prep 3010A 3010A 3010A 3010A 3010A 3010A	Analysis EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B
Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium	ND ND 190 ND ND 69	RL 10 7.1 5.0 2.0 5.0 5.0	Batch# Prepared 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11	Analyzed 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA	Prep 3010A 3010A 3010A 3010A 3010A 3010A 3010A 3010A	Analysis EPA 6010B
Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	Result ND ND ND ND ND 69 9.3	RL 10 7.1 5.0 2.0 5.0 5.0 5.0 5.0	Batch# Prepared 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11	Analyzed 10/16/11 EPA 10/16/11 EPA	Prep 3010A	Analysis EPA 6010B
Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	Result ND ND ND ND ND 9.3 28	RL 10 7.1 5.0 2.0 5.0 5.0 5.0 5.0 5.0	Batch# Prepared 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11 179639 10/04/11	Analyzed 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA 10/16/11 EPA	Prep 3010A 3010A	Analysis EPA 6010B EPA 6010B

179776 10/07/11 10/07/11 METHOD

179639 10/04/11 10/16/11 EPA 3010A

179639 10/04/11 10/20/11 EPA 3010A

179639 10/04/11 10/16/11 EPA 3010A

179639 10/04/11 10/16/11 EPA 3010A

0.20

5.0

5.0

5.0

5.0

10

10

20

ND= Not Detected RL= Reporting Limit Page 1 of 1

Mercury

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Molybdenum

ND

ND

ND

ND

24

23

9.0

97

		Califor	nia Tit	tle 22 M	letals		
Lab #:	231520		I	Project#:	LC	010060.0014.	00001
Client:	Arcadis		I	Location:	69	0 15th St. C	akland
Field ID:	SOIL DRUM		H	Basis:	as	received	
Lab ID:	231520-005		Ι	Diln Fac:	1.	000	
Matrix:	Soil		S	Sampled:	10	/03/11	
Units:	mg/Kg		I	Received:	10	/03/11	
Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Arsenic	3.1	0.25	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Barium	44	0.25	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Beryllium	0.18	0.10	179761	10/06/11	10/20/11	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Chromium	42	0.25	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Cobalt	5.3	0.25	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Copper	6.0	0.25	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Lead	1.8	0.25	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Mercury	ND	0.020	179848	10/10/11	10/10/11	METHOD	EPA 7471A
Molybdenum	ND	0.25	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Nickel	39	0.25	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Selenium	ND	0.50	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Silver	ND	0.25	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Thallium	ND	0.50	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Vanadium	28	0.25	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B
Zinc	21	1.0	179761	10/06/11	10/19/11	EPA 3050B	EPA 6010B

ND= Not Detected RL= Reporting Limit Page 1 of 1

Hydrocarbon Concentrations in Soil Prior to Remediation

Sample Location	Sampling Date	TPH ¹ (mg/kg)
Pit - West End	11/12/87	2400
Pit - East End	11/12/87	5600
Pit - North End	01/15/88	<50
Pit - South End	01/15/88	<50
Pit - East End	01/15/88	<50
Pit - West End	01/15/88	<50
Pit - Bottom	01/15/88	760
Pit - North End	02/12/88	960
Pit - South End	02/12/88	490
Pit - East End	03/15/88	<50
Pit - West End	03/15/88	89

Soil Samples Taken by Others Following Tank Removal

Soil Samples Taken During SCI Investigation

Boring	Depth [<u>(ft.)</u>	TVH (mg/kg)	TEH <u>(mk/kg)</u>	Benzene <u>(ug/kg)</u>	Toluene <u>(ug/kg)</u>	Ethyl Benzene <u>(ug/kg)</u>	Total Xylenes <u>(ug/kg)</u>	Oil & Grease <u>(ng/kg)</u>
5	7.5	<1	<1	<5	<5	<5	<5	<50
8	13.0	750	720	55	1.300	14,000	38,000	<50
8	19.5	24	58	40	110	170	910	<50
9	26.0	<1	<1	<5	<5	<5	<5	
10	26.0	2.4	<1	<5	<5	<5	<5	
12	26.0	2.4	<1	<5	<5	<5	<5	
12	31.0	<1	<1	<5	<5	<5	12	
13	26.0	<1	<1	<5	<5	<5	<5	
TPH TVH TFH	= Total = Total = Total	l petrolo l volati	eum hydro le hydrod	carbons	quantif:	ied as ga	asoline	d Solvent
150	- IULA	e exclact	lable nyo	in these	ns, quant a analye:	ieliieu a:	s scoudi	u sorvenc
mg/kg	= milli	igrams p	er kilogi	ram	e anarys.	101		

ug/kg = micrograms per kilogram

ND = None detected, chemicals not present at concentrations above detection limits

-- = Test not requested

.

< = Contaminant not present at a concentration in excess of the detection limit shown</p>

Table 3. Hydrocarbon Concentrations in Confirmation Soil Samples Following Remediation

Sample Designation	TVH (mg/kg)	TEH (mg/kg)	Benzene (ug/kg)	Toluene (ug/kg)	Ethyl- Benzene <u>(ug/kg)</u>	Total Xylenes <u>(ug/kg)</u>
13 @ 15 ft	<1	<1	<5	<5	<5	<5
14 @ 15 ft	<1	<1	<5	<5	<5	<5
15 @ 18 ft	<1	<1	<5	<5	<5	<5
16 @ 15 ft	<1	<1	<5	7.4	<5	<5
17 @ 22 ft	<1	<1	<5	5.8	<5	7.3
44 @ 25 ft	<1	<1	<5	<5	<5	<5

TVH

.

= Total volatile hydrocarbons (as gasoline)
= Total extractable hydrocarbons (kerosene and diesel range) TEH

mg/kg

ug/kg

= milligrams per kilogram = parts per million = ppm = micrograms per kilogram = parts per billion = ppb = Contaminant not present at a concentration in excess of < the detectin limit shown.

Dignity Housing West July 2, 1991 SCI 615.003 Page 2

44 @ 25 ft

samples during our contamination assessment are also presented on Plate 3. The test boring samples shown on Plate 3 which were not analytically tested contained very low OVM readings.

The samples obtained during remediation were collected from a All loose soil and approximately 3 inches of backhoe bucket. intact material was scraped away from the sampling location. A clean brass liner was then pushed into the material using a rubber The liner was withdrawn and its ends were covered with mallet. Teflon sheets and plastic caps and then sealed with duct tape. The samples were placed in an ice filled cooler and remained refrigerated until delivery to Curtis and Tompkins, Ltd., a laboratory certified by the California DHS to conduct the analyses The analytical program included analysis for total requested. volatile hydrocarbons (TVH) (EPA 5030/8015 modified), total extractable hydrocarbons (TEH) (EPA 3550/8015 modified), and BTXE (EPA 5030/8020). The analytical results are summarized in Table 1.

S Des	San	nple	e tion	TVH^{1} $(mg/kg)^{3}$	TEH ² mg/kg	Benzene (ug/kg) ⁴	Toluene (ug/kg)	Ethyl- Benzene (ug/kg)	Total Xylenes (ug/kg)
13	0	15	ft	<1	<1	<5	<5	<5	<5
14	0	15	ft	<1	<1	<5	<5	<5	<5
15	0	18	ft	<1	<1	<5	<5	<5	<5
16	0	15	ft	<1	<1	<5	7.4	<5	<5
17	9	22	ft	<1	<1	<5	5.8	<5	7.3
18	0	22	ft5	210	<1	<80	280	960	5,400

Table 1. Hydrocarbon Concentrations in Confirmation Soil Samples

¹ TVH = Total volatile hydrocarbons (as gasoline)

<1

<1 <5

<5

<5

<5

- ³ mg/kg = milligrams per kilogram = parts per million = ppm
- ⁴ ug/kg = micrograms per kilogram = parts per billion = ppb
- ⁵ Contaminated soil was removed by subsequent excavation

² TEH = Total extractable hydrocarbons (kerosene and diesel range)

Dignity Housing West July 2, 1991 SCI 615.003 Page 3

Soil Remediation

Excavation activities generated approximately 430 cubic yards evaluate contaminated soil. In order to (loose) of treatment/disposal options, 4 soil samples were obtained for every 50 cubic yards (cy) of excavated soil. The 4 samples were composited by the analytical laboratory to form one sample for analysis. Each composite sample was analyzed for TVH, TEH, BTXE, total lead and soluble (TCLP) lead. One of the composites was also analyzed for reactivity, corrosivity and igniteability.

One 120 cy stockpile of clean soil has been created. One soil sample (#43) from this stockpile was obtained and analyzed for TVH, TEH and BTEX. The results of the analyses are presented in Tables 2 and 3.

Table 2. Hydrocarbons and Lead in Soil Stockpiles

Sample Designation	TVH ¹ (mg/kg) ⁵	TEH ² (mg/kg)	B ³ (ug/kg) ⁶	T ³ (ug/kg)	E ³ (ug/kg)	X ³ (ug/kg)	Total Lead <u>(mg/kg)</u>	TCLP [*] Lead (ug/1) ⁷
1,2,3,4	6.3	<1	<5	<5	6.1	28	6	<60
5,6,7,8	1.3	<1	<5	<5	<5	<5	<3	<60
9,10,11,12	<1	<1	<5	<5	<5	<5	<3	<60
19,20,21,22	39	<1	<5	<5	130	810	<3	<60
23,24,25,26	38	<1	<5	<5	<5	520	<3	<60
27,28,29,30	<1	<1	<5	<5	<5	<5	5	<60
31,32,33,34	1.7	<1	<5	8.0	<5	37	<3	<60
35,36,37,38	<1	<1	<5	<5	<5	<5	<3	<60
39,40,41,42	<1	<1	<5	<5	<5	<5	<3	<60
43	<1	<1	<5	<5	<5	<5	8	~~

1 TVH = Total volatile hydrocarbons (as gasoline)

2 TEH = Total extractable hydrocarbons (kerosene and diesel range) 3

- BTEX = Benzene, toluene, ethylbenzene and total xylenes,
- 4 TCLP = Soluble lead in TCLP leachate
- 5 mg/kg = milligrams per kilogram = parts per million = ppm
- 6 ug/kg = micrograms per kilogram = parts per billion = ppb 7
- ug/1 = micrograms per liter = parts per billion = ppb 8
 - -- = test not requested

Dignity Housing West Mr. Willie Pettus Pyatok Associates SCI 615.001 March 12, 1991 Page 3

> Table 2. Petroleum Hydrocarbons and BTXE Concentrations in Soil

Boring	Depth (feet)	TVH ¹ (mg/kg) ³	TEH ² (mg/kg)	Benzene (ug/kg) ⁴	Toluene (ug/kg)	Ethyl Benzene (ug/kg)	Total Xylenes (ug/kg)	Oil & Grease (mg/kg)
-5.4	7.5	ND ⁵	ND	ND	ND	ND	ND	ND
8	13	750	720	55	1,300	14,000	38,000	. ND
.8	19.5	25	58	40	110	170	910	ND

TVH * Total volatile hydrocarbons, quantified as gasoline TEH * Total extractable hydrocarbons, quantified as Stoddard Solvent

mg/kg = milligrams per kilogram

ug/kg = micrograms per kilogram

ND = None detected, chemicals not present at concentrations above the detection limits

Discussion and Conclusions

The analytical test results indicate that gasoline, BTXE and stoddard solvent are present in the soil beneath the previous tanks at concentrations exceeding regulatory criteria. Currently, the horizontal and vertical extent of soil contamination, and whether or not groundwater has been impacted, are unknown. The analytical test results from SCI's Boring 8 suggest that contaminant concentrations decrease repidly with depth. This may indicate that the extent of contamination is relatively limited. However, given that the site is underlain by relatively permeable sand, it is also possible that contamination has migrated vertically downward to greater depths. If this is the case, it is possible that the contamination has impacted a significant amount of soil as well as groundwater quality in the area. As a result, we judge that a more detailed investigation should be conducted to determine the vertical and lateral extent of soil contamination, and its impact on groundwater quality.

Table 4 Petroleum Hydrocarbons and BTXE Concentrations in Soil

<u>Boring</u>	Depth (ft.)	TVH ¹ (ppm) ³	TEH ² (ppm)	Benzene (ppb) ⁴	Toluene (ppb)	Ethyl Benzene (ppb)	Total Xylenes ((ppb)	Oil & Grease (ppm)
5	7.5	ND^5	ND	ND	ND	ND	ND	ND
8	13.0	750	720	55	1,300	14,000	38,000	ND
8	19.5	25	58	40	110	170	910	ND
9	26.0	ND	ND	ND	ND	ND	ND	⁶
10	26.0	2.4	ND	ND	ND	ND	ND	
12	26.0	ND	ND	ND	ND	ND	ND	
12	31.0	ND	ND	ND	ND	ND	12	
13	26	ND	ND	ND	ND	ND	ND	

 $\frac{1}{2}$ TVH = Total volatile hydrocarbons, quantified as gasoline

² TEH = Total extractable hydrocarbons, quantified as Stoddard Solvent (diesel not detected in these analysis)

3 ppm = mg/kg = milligrams per kilogram
4 ppb = ug/kg = micrograms per kilogram
5 ND = None detected, chemicals not present at concentrations above detection limits

6 -- = Test not requested

ATTACHMENT 8

Legal Sp. (PD)Dota (brite) (Point Point Poin								690	15th St.							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R	ogged By: OM	Dates Drilled:	Drilling Contractor Project Name: Method/Equipment:							Ba	$\overline{\zeta} - /$				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	See Un Systen classifi metho	nified Soil Cla n for samplin ications and l ds.	assification g method, laboratory testing	I	Borin am.(i	ıg n.):	E	Surface Groundwater Depth (ft): Total Drive Elev.(ft.): First Water ∑ Z/L Depth (ft.): wt.(lbs Static Water ∑ Z/L 30 NA): Drop Dist.(in.): NA		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Feet (bgs)	Boring or	Well Completion	Depth, (ft.)	Sample Recovery	Blows/6"	Classification Letter	(classificatio	Descr on, color w/code using ASTM st other,	iption andard, grain odor)	shape, consistency, moisture,	PID/FID (ppm)	Sample Name	513-1 2345	Feet (bgs)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1110-	-concrete		-			7.5"	Concrete		۲ı	+		//2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-5-					56	5	1 fitte	1	to ve VA			000		
3 3 3 3 3 3 3 3 3 3 3 4 5 5 4 5	2			HA			5-	Jan	la VII My	lays ((OTP (17)			N B	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	>						dai	h Tellowish	own	molst			Val	3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	2						Mr, 6	Almse, 7-14	gmil	\			N O	4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	- 5													5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	4			5			SAA				6.0			6	
1 1	-	4			2										7	
8 7 8 9 7 6 10 7 Neat 11 7 Centert 12 7 5 13 7 5 14 7 5 15 7 5 16 7 5 17 7 7 18 7 5 19 7 7 18 7 5 19 7 7 19 7 7 20 7 7 21 7 7 22 7 7 23 7 7 24 7 7 25 7 7 26 7 7 27 7 7 28 7 7 29 7 7 20 7 7 21 7 7 22 7 7 23 7		- 4		51	Z											
9 10 Neat 9 11 11 11 11 12 11 11 11 12 11 11 11 12 11 12 11 13 11 12 11 11 14 14 14 14 14 15 14 14 14 14 15 16 16 16 17 16 17 17 17 16 17 18 19 10 10 10 11 19 14 14 14 14 14 16 16 16 16 16 16 17 17 17 17 17 17 18 19 10 10 10 11 19 10 10 10 11 11 19 17 16 16 17 17 17 18 19 10 10 10 <td< td=""><td>8</td><td>5</td><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8</td></td<>	8	5			5										8	
$\begin{array}{c cccc} 10 & & & & & & & & & & & & & & & & & & $	9	6			5							0.0			9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	6	AL		$\sum_{i=1}^{n}$										10	
127Centre5Sand and Clay (5 YK 3/3) dank0.01213755Sand and Clay (5 YK 3/3) dank0.013147910101014157955Sand and Clay (5 YK 3/3) dank0.01314799141414157955Sand and Clay (and more stresses)13167991014141774914141879991018795516171879991819799918197999192079991021799910229999102399991024999912257999232499999257999257999	11	K	IVEAL		5										11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	-7	Cenen	1	5			1	1 1 1 1	1-20	3/2) [[12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	4		5	5		SC	Sana	and clay (3110	15) dark	0.0			13	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	4			ζ			pedd	tish bown, w	t d	correctes					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	-4			$\left\{ \right\}$			C d	1 mil D	1,00	i fim	4			14	
16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 17 18 17 18 17 18 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 10 110 <	15				4			1	Trace	(COLAN	the residence	80			15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	17			5			molen	se, moist, le	SYR 4	14) dark	0.0			16	
18 4 5	17	9		y	2			yeru	ansh brown;	4-11	1 grin				17	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	6			2		SC -	#5(in	It moisture i	ucheas	se (lore sty	0.0			18	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	4			$\langle $			yell	avish brown	() t	He day,				19	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4		-	/	L		- F-1	1 grain							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	-1			7				Kun La GA	n lin	Via III	0.0			20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21			4	\sum		SC	Sand	where set	A (10	(K 1/4)				21	
23 / SC SAA (loth S/3) nescries 23 24 / 25 / 21 / 21 / 21 / 22 / 22 / 22 / 22	22				5			- darh	yellowigh bu			 			22	
24 7 24 24 25 7 25 25	23	1			7		SC_	SAA	- lora st	s)re:	strues				23	
25 7 25	24	4		74	4							0,0			24	
		5		d	1										25	
	25		1)								II			23	

Project No. $\frac{100060,0014.0000}{0014.0000}$ Date $\frac{6/3/11}{100000}$ Page 1 of $\frac{7}{100000}$

1	ogged By:	Dates Drilled:	D	rillin	ig Contra	ctor	Project Name:	Method/Equipment:		Bo	ring Number:	
R	REM 10/3/11		Pe	Me	e Con	e	City of Oakland	F-550 DP Fig		51	3-1	
Feet (bgs)	Boring or Well Completion			Sample Recovery	Blows/6"	Classification Letter	Desci (classification, color w/code using ASTM st other	ription tandard, grain shape, consistency, moisture, , odor)	PID/FID (ppm)	Sample Name		Feet (bgs)
26	2	Neat	2.5	5	*	5C 5C	SAA but Brown (10712 3/3) + wet	0.0			26
28	3	cernent	_	1	-	4		5 1 1				28
29	2		2.5'	ζ			SAA botdarkgi (10 HRY	reylsh been	0.0			29
30	-2-			1								30
31							TD = 30' 60	<u>з</u> ,				31
32							Temp well of	to Scheen				32
33							(20-30') Used	to collect				33
35							ground water.					35
36												36
37												37
38												38
39												39
40												40
41												41
43												43
44								-				44
45												45
46												46
47												47
48												48
49 50												49 50

Project No. 100/0060.0014.0000/

Page 2 of Z Date 10/3/11

I	Logged By: Dates Drilled:		Drilling Contractor			actor	Project Name: Method/Equipment:					Boring Number:		
YC	-EM	10/3/11	P	ler	neco	ne	LOI	010060.0014 F-550 DP Mg (Peneare	SI	SB-2	
See U Syste	Inified Soil Cl m for samplin	lassification '	Di	Bori iam.	ing (in.):	Surface Groundwater Depth (ft): Total Elev.(ft.): Eiret Water $\nabla 7$ 7 5 Depth (ft.):		Drive wt.(lbs.):	Drop Dist.(in.):					
classi meth	fications and ods.	laboratory testing	2					Static Water T	.5	30	NA		NA	
Feet (bgs)	Boring or Well Completion			Sample Recovery	Blows/6"	Classification Letter	Description (classification, color w/code using ASTM standard, grain shape, consistency, moisture, other, odor)			(mqq)	Sam ple Name	28-2 21210	Feet (bgs)	
	111.	- Concrete				Ť	7.5	11 Concrete		N				
1	15			-		SD		of trace clay	ž .					1
2						=1	Sone	nd (107R 84/6) dar	k Yellowish bion	2			2
3	17		HA	-			dou	mp. Ectay belo	w plas	tu limit)		A		3
	ζ						f-	in graine de	nse			g		
4	6											2		4
5	6			0	-		S.A.	^			_	A		5
6				3							0.0	E E		6
7	4			5	-							- ip		7
			5	3								2		
0	7			5								- Va		8
9	7	1		2							0.0	00		9
10	7	NOST		5								5		10
11	17	- +		5			SAA	5			12.0	2		11
10	4	Cement		3							0.0	5		
12	5		et	5								4		12
13	4		0	2							6.0			13
14	5			5							0.0	<u> </u>		14
15	4			4								B		15
				C			SAA	hit dille	100	nt stat		N		
16				2			yell	wish brown.	med	dense)	0.0			16
17	7		41	ζ			0	1				N		17
18	5		U	5								J		18
19	6			t							0-0			19
	6			3	•									
20				5-	Hug									20
21	-7		if	2	×I,				~					21
22	7			7		SU	SAA	a/ Little c	lay.		0.1			22
23	1			7-		200 			l					23
	1			1	<u>.</u>									
24	9			-										24
25	1				V									25
Proje	ect No.	100/001	60.0	Û	14.0	000		Date <u>(</u> °	13/11	/	Page_	<u>1</u> of	Z]

Logged By: fem		Dates Drilled:	Pe	rillin Mc	g Contra	ctor	Project Name: Method/Equipment: Gity of Oakland F-550 DP Rig			Boring Number:			
Feet (bgs)	(Store) Boring or Well Completion			Sample Recovery	Blowste	Classification Letter	Descr (classification, color w/code using ASTM st other	ription landard, grain shape, consistency, moisture, , odor)	PID/FID (ppm)	Sample Name	Feet (bgs)		
26	ÿ					SC	SAA but wet @	25/	0.0		26		
27	3	Neat		1	V				6.0		27		
28	3-	Ceinent					SAA				28		
29	2										29		
30	4								0.0		30		
31							$\overline{70} = 30$	595			31		
32								J			32		
33							Temp well of	to Scheen			33		
34							(20-30') Use	ed to collect			34		
35							good water				35		
36											36		
37											37		
38											38		
39											39		
40											40		
41											41		
42											42		
43											43		
44											44		
45											45		
46											46		
47											47		
48											48		
49											49		
50				_							50		
Proje	ect No.	LCOI	00	60	.00	014.	0000 Date (0/30/11	Page	2 of	2		

10/30/11 Ablany

L	Logged By: Dates Drilled:		Drilling Contractor				Project Name: Method/Equipment:	B	Boring Number:		
Rom 10/3/11		Per	ne	cone		City of Oakland F-550 DP Rig (Pa LC010060,0014 F-550 DP Rig (Pa	evic core)	SB	-3		
See U Syster classif	nified Soil Cl n for samplir ications and	assification 1g method, laboratory testing	Boring Diam.(in.):			E	SurfaceGroundwater Depth (ft):Totallev.(ft.):First Water $\sum 22, 5$ Depth (ft.):	Drive wt.(lbs.):		Drop Dist.(in.):	
methods.			X				Static Water 💆 27'	NA		NA	-
Feet (bgs)	(Boring or Well Completion		Depth, (ft.)	Depth, (ft.) Sample Recovery Blows(6" 'lassification Letter		Classification Letter	Description (classification, color w/code using ASTM standard, grain shape, consistency, moisture, other, odor)	PID/FID (ppm)	Sam ple Name	88-3 @ 1100	Feet (bgs)
		concrete					Asphalt		2		\square
1	4	Spined.		-			Boulders		é		1
2	3	Black to		\vdash		SC	Sand (7.5 184/4) Brown w/ Little Chay		17		2
	2	March	UA	K			f in quation moist loose		Ge 5	2	
3	-4-	asphalt	1104	7			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4,2		3
4	12								66		4
5	2							0.0	-2-		5
5	4			7					+ 3		5
6	6			4					34		6
7				4	-				.00		7
	7		51	n	n				5	5	
8	-7-			4				0.0	10		8
9	7	Met		4					WE		9
10	7	- pular		4			1		240		10
10	1	Cement		4	V		Ree the on time, but the Not the		Sil		
11	-12-			4			water (10.5 to (2.5)	0.0	24		11
12			11	1	0-				3CE		12
12	-7-		9	ti			- I law / 540 4/2 within				12
-15	7			4		SC	barrie and clary (SITE IS) heading	0.0	2		15
14	- 2		-	4	∇_{-}		hart ===		34		14
15	-9-			4			Stall (ith days soon as		3		15
	7			Z		SC	Sand w/ after they resomes,	0.0	A		
16	4		5	19 ha			The masture, and pot amore				16
17	9			4					S.		17
18	3			4		SC	SAA but (10TR S/4) fellantish burn		T		18
10	4			2			+ dense.	0.0	2		10
19	7			6	-				-		19
20	9			3					3		20
21	7			3		50	SAA w/ they clay		Q		21
21	-7-		4	5	alla	1		0.0	5		
22	7			5	Ar				T		22
23	2			5	X				X		23
	9			-		SP	Soud med quin (tork 4/3)	0.1	M		
24	4		T	2			wet (very little outer)		V		24
25	4		7	t			-1				25
Proje	ect No.	LCODO	60.0	20	14.0	1000)	Date <u>10/3/11</u>	Page_	<u>1</u> of	2	

Logged By:		Dates Drilled:	Drilling Contractor			Drilling Contractor Project Name: Method/Equipment:			Boring Number:			
P	EM	10/3/11	Pe	en	econ	e	City of Oakland	F-550 DPrig		SB	-3	
Feet (bgs)	Boring or Well Completion		Depth, (ft.)	Sample Recovery	Blows/6"	Classification Letter	Description (classification, color w/code using ASTM standard, grain shape, consistency, moisture, other, odor)		PID/FID (ppm)	Sample Name		Feet (bgs)
26	3			-		SÞ						26
27	9	Neat				1						27
21	3	- cement					Sund (10 YR 4/4)	dartz yellouish				21
28	5						brown trace fine	s, wet, free water	0.1			28
29	3						m dense					29
30	3			-					0.0			30
31	4					1						31
32							TD = 3/4	2J <i>S</i>				32
33												33
34												34
35												35
36												36
37												37
38												38
39												39
40												40
41												41
41												41
42												42
43							1					43
44												44
45												45
46												46
47												47
48												48
49												49
50												50

Project No.

Date <u>10/3/11</u> Page <u>2</u> of <u>2</u>

