RECEIVED

1:39 pm, Nov 05, 2008

Alameda County Environmental Health

September 25 2008

CONFIRMATION INVESTIGATION REPORT

Cruise America, Inc. 796 66th Avenue Oakland, California

Project No. 278361 ACEHS Toxics Case # RO0002449

Prepared On Behalf Of

Mr. Cory Kauffman Cruise America, Inc. 11 West Hampton Avenue Mesa, AZ 85210

Prepared By

AEI Consultants 2500 Camino Diablo Walnut Creek, CA 94597 (925) 944-2899

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE DESCRIPTION	
2.1 Initial Investigation	
2.2 Tank Removal	
2.4 Groundwater Treatment Activities	
3.0 GEOLOGY AND HYDROGEOLOGY	3
	c.
4.0 CONFIRMATION SAMPLING	4
4.1 Soil boring activities	
4.2 Groundwater Monitoring	
5.0 CONCLUSIONS	
6.0 COMPARATIVE RISK EVALUATION	
6.1 Contaminants of Concern	
6.2 ESL Comparison	
7.0 RECOMMENDATIONS	
8.0 CLOSING STATEMENT AND SIGNATURES	14

LIST OF FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	SITE PLAN

LIST OF TABLES

- TABLE 1 HISTORICAL SOIL ANALYTICAL DATA
- TABLE 2 SOIL ANALYTICAL DATA - LUFT METALS, HVOCS, AND PCBS,
- TABLE 3 HISTORICAL SOIL BORING GROUNDWATER ANALYTICAL DATA
- TABLE 4 HISTORICAL GROUNDWATER MONITORING ANALYTICAL DATA
- TABLE 5 HISTORICAL GROUNDWATER ELEVATION DATA SUMMARY

LIST OF APPENDICES

- APPENDIX A BORING PERMIT BORING LOGS APPENDIX B APPENDIX C **GROUNDWATER SAMPLING FIELD FORMS** SOIL LABORATORY ANALYSES APPENDIX D APPENDIX E
- SOIL BORING WATER LABORATORY ANALYSES
- APPENDIX F Groundwater LABORATORY ANALYSES

1.0 INTRODUCTION

AEI Consultants (AEI) has prepared this report on behalf of Cruise America Inc. (Cruise America), for the property located at 796 66th Avenue, Oakland, California (Figure 1: Site Location Map). AEI has been retained by Cruise America to provide environmental engineering and consulting services associated with the release of gasoline from a former UST on the property. Since 2002, the release has been investigated under the regulatory oversight of Alameda County Environmental Health Services (ACEHS) under Toxics case # RO0002449.

This report summarizes the Confirmation Investigation at the above referenced site, which was designed to evaluate this site for case closure.

2.0 SITE DESCRIPTION

The site is currently occupied by Cruise America, a recreational vehicle (RV) rental facility. The property is approximately five acres in size. Currently, two buildings exist on the site, surrounded by paved vehicle storage areas. The buildings consist of an office building located on the eastern side of the property and a service building located centrally on the property (Figure 2). Cruise America acquired the property from McGuire Hester, a construction company, in August 1988.

2.1 Initial Investigation

In July 2001, AEI performed a Phase II investigation on the site that included advancing six (6) soil borings (SB-1 through SB-6). The investigation was performed to assess whether the soil or groundwater beneath the site was impacted in the areas of two former UST holds that were utilized by McGuire Hester. Refer to historical documents and summary reference in the April 23, 2008 *Response to Comments* – Confirmation Investigation Work Plan for additional information pre-Cruise America site conditions. These USTs were removed prior to occupancy of the site by Cruise America. The former location of these UST holds are shown on Figure 2. Although low concentrations of Total Petroleum Hydrocarbons as gasoline (TPH-g) and diesel (TPH-d) were reported in the groundwater, high levels of Methyl tertiary-Butyl Ether (MTBE) were detected in boring SB-1.

In September of 2001, AEI advanced five (5) additional soil borings (SB-7 through SB-11) in order to determine the source of the high levels of MTBE found in SB-1. Samples collected from SB-7 and SB-8 did not contain MTBE above laboratory reporting limits. MTBE concentrations ranged from 630 micrograms per liter (μ g/L) in SB-9 to 13,000 μ g/L in SB-10. These data indicated a leak in the remaining 10,000-gallon gasoline UST on the southern portion of the property as the most likely source of the MTBE.

Soil and groundwater sample analytical data from the 2001 work is presented in Tables 1 and 3, respectively.

2.2 Tank Removal

AEI removed the 10,000-gallon gasoline UST in November of 2001. Concentrations of TPH-g in four of the five soil samples ranged from 4.1 milligrams per kilogram (mg/kg) to 280 mg/kg. Concentrations of MTBE and Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) were also detected in the five soil samples. The highest concentrations of MTBE and Benzene detected in the soil during the tank removal were 53 mg/kg and 13 mg/kg, respectively, detected along the southern and eastern sidewalls of the excavation at approximately 6.5 feet below ground surface (bgs). Elevated concentrations of TPH-g and MTBE were present in the groundwater sample at concentrations of 44,000 μ g/L and 42,000 μ g/L, respectively.

Soil and groundwater sample analytical data from the tank removal is presented in Tables 1 and 3, respectively.

2.3 Groundwater Investigation

Following removal of the tank, the Alameda County Health Care Services Agency (ACHCSA) requested further investigation of the release from the 10,000 gallon UST. On September 6, 2002, six (6) soil borings (SB-12 through SB-17) were advanced. The data from these soil borings was used to determine the locations of five (5) groundwater monitoring wells, which were installed on September 19, 2002. These five wells (MW-1 through MW-5) have been monitored on a quarterly basis since installation.

The locations of these borings and wells are shown on Figure 2. Soil and groundwater analytical data from the September 2002 investigation is presented in Tables 1 and 2, respectively. Historical groundwater monitoring data is presented in Table 4 and 5.

2.4 Groundwater Treatment Activities

Based on the findings of the investigation and monitoring activities, the ACHCSA required that corrective action be undertaken. AEI prepared and submitted an *Interim Corrective Action Plan*, dated April 5, 2004, outlining an evaluation and scope of work to implement ozone sparging technology to begin corrective action. The approach was selected to reduce contaminant concentrations, particularly MTBE and other gasoline contaminants, in the groundwater and capillary fringe soils. A KVA twelve-point ozone sparging system was installed around the release area during May – July, 2004. Implementation of the system was documented in the *Interim Corrective Action Progress Report*, dated February 11, 2005, to which the reader is referred for more detailed information.

The sparge wells were placed in and around the former tank hold, between the release area and the nearby Damon Slough, and in the areas of the most highly impacted groundwater. During the first several months of operation, selected monitoring wells were sampled on a monthly basis in addition to the regular quarterly monitoring,.

The sparging system operated through July, 2006, at which time an electrical switch overheated. Based on the significant reduction in contaminant concentrations, it was elected that several months of downtime be allowed to monitor for possible rebound.

On September 26, 2006 a *Site Summary Report* was submitted ACHCSA. This report summarized past investigative and remediation activities at the subject site and requested regulatory review of current site conditions to evaluate this site for case closure. In a letter dated January 28, 2007 the ACHCSA requested a workplan to address their technical comments.

AEI prepared a *Confirmation Investigation Workplan* dated March 27, 2007. The workplan outlined the proposed scope of work which included advancing five (5) soil borings for collection of soil and groundwater samples. Following the assignment of a new case worker the ACHCSA requested copies of the reports of several historical investigations and a modified work plan in a letter dated February 15, 2008.

On April 23, 2008 submitted *Response to Comments – Confirmation Investigation Work Plan* which included the requested reports and a response to the request to modify boring locations and sample analyses. The modifications to the workplan were approved by the ACHCSA in a letter dated June 5, 2008.

3.0 GEOLOGY AND HYDROGEOLOGY

The site is located at an elevation approximately 10 feet above mean sea level (msl). The Damon Slough is located approximately 150 feet south of the former UST location. The site is level, and the local topography slopes very gently to the southwest. The surface sediments at the front (north) half of the site are mapped as Holocene basin deposits (Qhb, OF 97-97, E.J. Helley and R.W. Graymer). The Basin Deposits (Holocene) are described as "Very fine silty clay to clay deposits occupying flat-floored basins at the distal edge of alluvial fans adjacent to the bay mud (Qhbm)". The back (south) half of the site along Damon slough is mapped as artificial fill (af).

The area included in this investigation is in the south half of the site on artificial fill along the slough. The upper 3 to 8 feet of soil consists of imported fill which is typically variable clayey gravels, gravelly clay, sand, and clay with scattered brick, wood and other debris. The fill ranges in color from yellowish brown to brown to olive to dark gray to black. The lower portions of the fill are commonly dark gravelly clay or gravelly fine clayey sands that appear to be a mixture of fill and fine grained native material. Beneath this fill, native sediments encountered have consisted of soft plastic silty clay and soft plastic clayey silty sand. Groundwater has been observed at the time of drilling soil borings at between approximately 5 and 13 feet bgs. Below approximately 16 feet bgs in boring SB-22, the sediments become less plastic with lower water content, becoming firm, moist silty clay at 19.5 feet bgs. Firm to hard wet gravel was encountered at a depth of 23 feet bgs in SB-22. The gravel was underlain to a depth of 27.5 feet bgs by fine grained poorly graded sand. Clayed was encountered at a depth of 27.5 feet bgs.

Water level measurements collected since monitoring began have indicated that the water table is present at between 4 to 6 feet bgs. Based on these measurements, it the groundwater beneath

the site generally flows in a southeasterly direction, with a hydraulic gradient of 10^{-2} to 10^{-3} feet/feet. This flow direction is consistent with information AEI reviewed for a site on the north side of 66th Avenue. Despite these flow direction measurements, the MTBE plume appears to have migrated primarily in a northerly direction from the former UST location. MW-2 and MW-3, located south and southeast of the UST hold (apparently down-gradient) have been relatively free of MTBE. Groundwater in these wells has been measured to have significantly higher conductivity, indicative of salt water, which may be acting to retard the spread of MTBE or inhibiting the flow of groundwater in the expected flow direction.

4.0 CONFIRMATION SAMPLING

Soil and groundwater samples were collected from five (5) soil borings and from the existing five (5) wells. A summary of the soil borings, rationale for their locations, and sample analyses is presented in the following exhibit. Refer to Figure 1 of this workplan for locations of the proposed borings.

ID	Location / Purpose	Depth	Sample Analyses
SB-18	Adjacent to SB-13, just north of former UST, to verify treatment of previous hotspot (per comment 1 and 2)	10	Soil from CF & groundwater: TPH-g, BTEX, MTBE & TBA
SB-19	South of former UST, near sidewall sample, to verify treatment of previous hotspot (per comment 1)	8	<u>Soil from CF</u> : TPH-g, BTEX, MTBE & TBA
SB-20	East end of former UST, near sidewall sample, to verify treatment of previous hotspot (per comment 1)	8	<u>Soil from CF</u> : TPH-g, BTEX, MTBE & TBA
SB-21	Adjacent to the existing waste oil UST to evaluate previous reports of possible hydrocarbon contamination reported at the time of the installation of the waste oil tank	11	Soil from CF & groundwater: TPH-g, BTEX, TPH-d/mo, VOCs, PCBs and Luft metals.
SB-22	At the northern edge of the boundary of the property, east of the previous boring SB-8 to assess whether the plume has intersected the sanitary sewer line trench as it deepens northward	28	<u>Soil & groundwater</u> : TPH-g, BTEX, MTBE & TBA

Exhibit 1: Soil Borings

CF = capillary fringe, approximately 4 to 6 feet bgs.

Detailed field procedures for the soil borings, sampling, and groundwater monitoring activities are presented in the following sections.

4.1 Soil boring activities

4.1.1 Permits and Clearances

Drilling permit W2008-0360 was obtained from Alameda County Public Works. Underground Service Alert was notified more than 48 hours prior to mobilization to identify public underground utilities in the area. All borings in the vicinity of onsite underground utilities were hand cleared with a hand auger to a depth of 5 feet prior to drilling with direct push equipment, except where shallow soil samples were collected above 5.0 feet bgs.

4.1.2 Drilling

Borings were advanced by ECA, a California C57 contractor, with a truck-mounted 6410 GeoprobeTM direct-push drilling rig.

4.1.3 Soil Sample Collection

Soil was continuously cored to the target depth in 1³/₄ inch diameter acrylic liners within an approximately 2-inch diameter sampling barrel and logged by the onsite geologist. A 5-inch long sample was retained at intervals of no more than 3.5 feet and at changes in soil types or at depths of suspected impact, and within the capillary fringe. The selected samples were cut from the liners and their ends sealed with Teflon film and plastic end caps. A photo-ionization device (PID) was used to screen soil samples in the field, and PID readings for each sample were included on boring logs.

4.1.4 Soil Boring Groundwater Sample Collection

Water samples from the shallow groundwater were collected from soil borings SB-18, and SB-21. Upon penetrating the groundwater a new ³/₄-inch diameter PVC casing was placed in the boring with 5 feet of 0.010 factory slotted casing at the bottom. A 1/4-inch polyethylene tube was extended to the bottom of the casing and then withdrawn approximately 1 foot. Approximately two liters of water were purged from the casing/Hydropunch[®] then a groundwater sample was collected using the peristaltic pump. Groundwater samples were collected into 40 ml volatile organic analysis (VOA) vials. The containers were sealed so that no head-space or air bubbles are visible within the containers. Samples for PCBs, metals and TPH-d were collected into appropriate containers.

The groundwater sample at boring SB-22 was collected by advancing a hydropunch[®] at a location approximately 24-inches from the original soil boring to a depth of 27 feet bgs. The Geoprobe rods were then withdrawn 4 feet to expose the screen over an approximate interval of 23 to 27 feet bgs. A ¹/₄-inch poly tube was extended to the total depth and a groundwater sample was collected using a peristaltic pump as described above.

4.1.5 Sample Storage

All samples were sealed and labeled immediately upon collection then entered on the chain of custody document. Samples were placed in a cooler on water ice pending transportation to a state certified laboratory.

4.1.6 Soil and Purge Water Storage and Disposal

Soil cores not retained for analysis were placed and sealed in an open top 55 gallon drum pending characterization and disposal at an appropriate disposal site. Water purged from the soil borings was temporarily stored in a 5-gallon bucket and used to mix grout to seal the borings.

4.1.7 Sample Analyses

The samples were delivered to a California DHS certified laboratory under chain of custody. The selected soil and groundwater samples were analyzed for the following:

- TPH-g, MBTEX by EPA Method 8021B/8015Cm
- MTBE and TBA by EPA method 8260
- Soil Samples from boring SB-21 were also analyzed for TPH-d by method 8015C, Luft metals, Halogenated VOCs by Method 8260B, and PCBs by Method 8080.
- Samples from soil borings SB-18, SB-19, SB-20 and SB-22 were analyzed for Total Lead by Method 6010.

The groundwater samples were analyzed for the following:

- All samples for TPH-g, MBTEX by EPA Method 8021B/8015Cm
- All samples for MTBE and TBA by EPA method 8260
- The water sample from boring SB-21 was also analyzed for TPH-d by method 8015C, Halogenated VOCs by Method 8260B, and PCBs by Method 8080.
- Analysis of sample SB-21-W for LUFT metals was not done due the bottle being broken during transportation to the Lab.

4.1.8 Analytical Results

Soil - Boring SB-18

Analysis of the soil sample from a depth of 3.5 bgs in soil boring SB-18, located north of MW-1 just outside of the former UST excavation, for TPH-g/MBTEX reported concentrations of 1,500 mg/kg, ND<5.0 mg/kg, ND<0.50 mg/kg, 6.5 mg/kg, 19 mg/kg, and 88 mg/kg, respectively. Analysis for MTBE and TBA reported concentrations of ND<0.25 mg/kg and 2.5 mg/kg, respectively. Total Lead was reported a concentration of 230 mg/kg.

Analysis of the soil sample from a depth of 5.0 bgs, in the transition zone, reported TPH-g/MBTEX in soil sample SB-18-3.5 at concentrations of 21 mg/kg, 13 mg/kg, 0.21 mg/kg, 0.22 mg/kg, 0.92 mg/kg, and 3.6 mg/kg, respectively. Analysis for MTBE and TBA reported concentrations of 12 mg/kg and ND<3.3 mg/kg, respectively. Lead was reported at a concentration of 17 mg/kg.

Soil - Boring SB-19

Analysis of the soil sample from a depth of 3.5 bgs in soil boring SB-19, located southwest of MW-1 just outside of the former UST excavation, reported TPH-g/MBTEX at concentrations of ND<1.0 mg/kg, ND<0.5 mg/kg, ND<0.005 mg/kg, ND<0.005 mg/kg, ND<0.005 mg/kg, and ND<0.005 mg/kg, respectively. Analysis by Method 8260 for MTBE and TBA reported concentrations of ND<0.024 mg/kg and ND<0.05 mg/kg, respectively. Lead was reported at a concentration of 16 mg/kg.

Analysis of the deeper soil sample from 6.0 bgs, from the transition zone, reported TPH-g/MBTEX at concentrations of 17 mg/kg, 6.8 mg/kg, 0.79 mg/kg, 0.31 mg/kg, 0.2 mg/kg, and 1.6 mg/kg,

respectively. Analysis by Method 8260 for MTBE and TBA reported concentrations of 6.5 mg/kg and ND<3.3 mg/kg, respectively. Lead was reported at a concentration of 190 mg/kg.

Soil - Boring SB-20

Analysis of the soil sample from a depth of 3.5 bgs in soil boring SB-20, located just outside of the east end of the former UST excavation, near earlier boring SB-15, reported TPH-g/MBTEX at concentrations of ND<1.0 mg/kg, ND<0.05 mg/kg, ND<0.005 mg/kg, ND<0.005 mg/kg, ND<0.005 mg/kg, ND<0.005 mg/kg, ND<0.005 mg/kg, and ND<0.05 mg/kg, respectively. Analysis by Method 8260 for MTBE and TBA reported concentrations of 0.023 mg/kg and ND<0.05 mg/kg, respectively. Lead was reported at a concentration of 9.7 mg/kg.

Analysis of the deeper soil sample from a depth of 5.5 bgs, from the transition zone, reported TPH-g/MBTEX at concentrations of ND<1.0 mg/kg, ND<0.05 mg/kg, ND<0.005 mg/kg, ND<0.005 mg/kg, ND<0.005 mg/kg, and ND<0.005 mg/kg, respectively. Analysis by Method 8260 for MTBE and TBA reported concentrations of ND<0.005 mg/kg and ND<0.05 mg/kg, respectively. Lead was reported at a concentration of 230 mg/kg.

Soil - Boring SB-21

Analysis of the soil sample from a depth of 3.5 bgs in soil boring SB-21, located just south of the waste oil tank reported TPH-g and TPH-d at concentrations of ND<1.0 mg/kg and ND<1.0 mg/kg, respectively. MTBE and BTEX was reported at concentrations of ND<0.5 mg/kg, ND<0.005 mg/kg, ND<0.005 mg/kg, and ND<0.005 mg/kg, respectively. Analysis by Method 8260 for MTBE and TBA reported concentrations of ND<0.005 and ND<0.05, respectively. Lead was reported at a concentration of ND<5.0 mg/kg. Analysis for HVOCs reported all analytes below standard detection limits. Analysis for LUFT metals, Cadmium, Chromium, Nickel, and Zinc, reported those metals at concentrations of ND<1.5 mg/kg, 7.2 mg/kg, ND<1.5 mg/kg, 85 mg/kg, respectively.

Analysis of soil sample from a depth of 6.0 bgs, in the transition zone, reported TPH-g and TPH-d at concentrations of ND<16 mg/kg and 180 mg/kg, respectively. MTBE and BTEX was reported at concentrations of ND<0.5 mg/kg, ND<0.005 mg/kg, ND<0.005 mg/kg, ND<0.005 mg/kg, and ND<0.041 mg/kg, respectively. Analysis by Method 8260 for MTBE and TBA reported concentrations of ND<0.005 and ND<0.05, respectively. Lead was reported at a concentration of 14 mg/kg. Analysis for HVOCs reported all analytes below standard detection limits. Analysis for LUFT metals, Cadmium, Chromium, Nickel, and Zinc, reported those metals at concentrations of ND<1.5 mg/kg, 54 mg/kg, 14 mg/kg, 83 mg/kg, 46 mg/kg, respectively.

Soil - Boring SB-22

Analysis of soil sample from a depth of 4.0 bgs in soil boring SB-22, located west of well MW-2 reported TPH-g/MBTEX at concentrations of ND<1.0 mg/kg, ND<0.05 mg/kg, ND<0.005 mg/kg, ND<0.005 mg/kg, and ND<0.05 mg/kg, respectively. Analysis by Method 8260 for MTBE and TBA reported concentrations of 0.005 mg/kg and ND<0.05 mg/kg, respectively.

Analysis of the soil sample from a depth of 23.5 bgs, reported TPH-g/MBTEX at concentrations of ND<1.0 mg/kg, ND<0.05 mg/kg, ND<0.005 mg/kg, ND<0.005 mg/kg, and

ND<0.005 mg/kg, respectively. Analysis by Method 8260 for MTBE and TBA reported concentrations of ND<0.005 mg/kg and ND<0.05 mg/kg, respectively.

Water - Boring SB-18

Analysis of the water sample from boring SB-18 reported TPH-g/MBTEX at concentrations of 8,500 μ g/L, 1,100 μ g/L, 44 μ g/L, 270 μ g/L, and 240 μ g/L, respectively. Analysis by Method 8260 for MTBE and TBA reported concentrations of 1,300 μ g/L and 6,800 μ g/L, respectively.

Water - Boring SB-21

Analysis of the water sample from boring SB-21 reported TPH-g and TPH-d at concentrations of ND<50 μ g/L, 180 μ g/L, and 1,000 μ g/L, respectively. MTBE and BTEX were reported at concentrations of 11 μ g/L, 40 μ g/L, 270 μ g/L, 240 μ g/L, and 1,000 μ g/L, respectively. Analysis by Method 8260 for MTBE and TBA reported concentrations of 11 μ g/L and 160 μ g/L, respectively. Analysis for PCBs and HVOCs reported all analytes below standard detection limits.

Water - Boring SB-22

Analysis of the water sample from boring SB-21 reported TPH-g at a concentration of ND<50 μ g/L. MTBE and BTEX were reported at concentrations of 8 μ g/L, ND <0.5 μ g/L, ND <0.5 μ g/L, ND <0.5 μ g/L, and ND <0.5 μ g/L, respectively. Analysis by Method 8260 for MTBE and TBA reported concentrations of ND <0.5 μ g/L and ND <2.0 μ g/L, respectively.

4.2 Groundwater Monitoring

4.2.1 Monitoring Activities

Groundwater monitoring wells MW-1 through MW-5 were sampled on March 13, 2008. Prior to sampling, the well cap was removed from each well and the water levels allowed to equilibrate for at least 15 minutes. Water levels were then measured to the nearest 0.001 foot in each well in each well prior to purging. Wells were purged of at least 3 well volumes of water prior to sample collection. During purging the water parameters of temperature, pH, specific conductivity, dissolved oxygen (DO) and oxidation-reduction potential (ORP) were recorded on field data sheets. Copies of the field data sheets are attached as Appendix C.

Groundwater samples were collected with new, unused disposable bailers into 40 ml volatile organic analysis (VOA) vials. All samples were sealed and labeled immediately upon collection then entered on the chain –of custody document. Samples were placed in a cooler on water ice pending transportation to a state certified laboratory.

4.2.2 Sample Analyses

The samples were delivered to a California DHS certified laboratory under chain of custody. The groundwater samples were analyzed for the following:

- TPH-g by EPA Method 8015
- BTEX and MTBE by EPA Method 8021B
- MTBE and TBA by EPA method 8260

4.2.3 Analytical Results

Analysis of all groundwater sampled from the monitoring wells reported TPH-g and BTEX by methods 8012B/8015Cm at concentrations of ND<1.0 μ g/L, ND<0.5 μ g/L, ND<0.5 μ g/L, ND<0.5 μ g/L, ND<0.5 μ g/L, nd ND<0.5 μ g/L, respectively. Analysis by Method 8260 for MTBE and TBA reported concentrations of 1,300 μ g/L and 6,800 μ g/L, respectively.

In well MW-1, analysis for MTBE by Method 8021B, MTBE and TBA by Method 8260B were reported concentrations of $5.5 \ \mu g/L$, ND<10 $\mu g/L$, and 780 $\mu g/L$, respectively.

In well MW-2, analysis for MTBE by Method 8021B, MTBE and TBA by Method 8260B were reported concentrations of ND<5.0 μ g/L, 3.0 μ g/L, and ND<2.0 μ g/L, respectively.

In well MW-3, analysis for MTBE by Method 8021B, MTBE and TBA by Method 8260B were reported concentrations of ND<5.0 μ g/L, 0.77 μ g/L, and ND<2.0 μ g/L, respectively.

In well MW-4, analysis for MTBE by Method 8021B, MTBE and TBA by Method 8260B were reported concentrations of 19 μ g/L, 22 μ g/L, and 69 μ g/L, respectively.

In well MW-5, analysis for MTBE by Method 8021B, MTBE and TBA by Method 8260B were reported concentrations of $10 \mu g/L$, $11 \mu g/L$, and 750 $\mu g/L$, respectively.

4.2.4 Waste Storage

Drill cuttings and other investigation-derived waste (IDW) generated during the soil boring and monitoring activities were stored onsite in sealed 55-gallon drums, pending the results of sample analyses. Equipment rinse water and well purge water was stored in 55-gallon drums. Upon receipt of necessary analytical results, the waste was profiled for disposal and transported from the site under appropriate manifest to approved disposal or recycling facility(s).

5.0 CONCLUSIONS

The results of groundwater monitoring confirm that MTBE and hydrocarbon concentrations have been reduced to below RWQCB ESLs for Commercial/Industrial with non-drinking water use.

Analysis of deeper zone water sample from a depth of 23 feet bgs in soil boring SB-22 reported MTBE at a concentration of 9.2 μ g/L, below the drinking water toxicity ESL of 13 μ g/L. This low concentration is not considered significant.

Analysis of soil samples from soil borings SB-19 and SB-20, on the south and east sides of the former UST excavation, found no significant residual hydrocarbons.

Soil samples from boring SB-18 located (near the previous location of a fuel dispenser) on the north side of the former UST excavation encountered significant residual hydrocarbons (1,500 mg/kg TPH-g) at a depth of 3.5 feet bgs in the vadose. At a depth of 5.0 feet bgs, in the transition zone, the TPH-g concentration decreased to 21 mg/kg. MTBE by method 8260 which was reported at a concentration of ND<0.25mg/kg at 3.5 bgs, increased to 13 mg/kg slightly above the commercial industrial ESL of 8.4 mg/kg. Based on the shallow depth of this soil, it is believed that is soil represents localized release related to the former dispenser.

Analysis of the groundwater sample (SB-18-W) collected from this boring reported significant hydrocarbon, BTEX and fuel oxygenates concentrations. Given the lack of impact in nearby monitoring well MW-1, this impacted groundwater appears to be localized and related to the overlying impacted soil in the vadose zone. It is likely that a significant percentage of the hydrocarbons seen in the soil boring water sample is due to mixing of soil from above the transition zone and the groundwater resulting from the advancement of the soil boring.

Soil samples from boring SB-21, located adjacent to the waste oil tank low concentrations of TPH and xylenes at or below the commercial/industrial non drinking water ESLs. Analysis for HVOCs, and PCBs reported all analytes as non-detectable. LUFT metals were reported in normal and acceptable ranges.

Analysis of groundwater sample SB-21-W reported low levels of TPH and fuel oxygenates. TPHmo was reported at 360 μ g/L slightly above the non drinking water ESL of 210 μ g/L. No HVOCs were reported in water sample SB-21-W

6.0 COMPARATIVE RISK EVALUATION

The following comparative risk evaluation has been made in an effort to help determine the potential risk posed by remaining contaminants in the groundwater. The most recent site specific analytical data is compared with environmental screening level (ESL) values presented in the RWQCB document *Screening for Environmental Concerns at Site with Contaminated Soil and Groundwater*, May 2008. The ESLs are risk-based values that have been prepared to evaluate whether a particular contaminant presents possible threat to human health or the environment.

The highest detected concentrations of contaminants of concern (COCs) in groundwater are compared against the screening levels for the following exposure routes: gross contamination ceiling values where groundwater is a current source of drinking water and not a drinking water source, aquatic toxicity, drinking water toxicity, and vapor intrusion from groundwater. A summary of the screening levels and site concentrations are presented below.

6.1 Contaminants of Concern

The primary remaining contaminants of concern detected in groundwater from existing groundwater monitoring wells are MTBE and TBA. Maximum concentrations of MTBE and TBA, as well as TPH-g and BTEX (benzene, toluene, ethylbenzene, and total xylenes), detected during the most recent monitoring event (07/11/2006) are summarized in the following table.

Contaminant	Well	Maximum Detected (3/13/06) (µg/L)
TPH-g	All	<50
Benzene	All	<0.5
Toluene	All	<0.5
Ethylbenzene	All	<0.5
Xylenes (Total)	All	<0.5
MTBE (by 8260B)	MW-4	22
TBA	MW-1	780

Maximum concentrations of TPH, BTEX, MTBE and TBA, detected in ground water from the confirmation sampling soil borings (07/01/2008) are summarized in the following table.

Contaminant	Soil Boring	Maximum Detected (7/1/08) (µg/L)
TPH-g	SB-18	8,500
TPH-d	SB-21	180
TPH-mo	SB-21	360
Benzene	SB-18	40
Toluene	SB-18	270
Ethylbenzene	SB-18	240
Xylenes (Total)	SB-18	1,000
MTBE (by 8260B)	SB-18	1,300
TBA	SB-18	6,800

6.2 ESL Comparison

The recent maximum concentrations of the detected contaminants in groundwater monitoring are presented in the following table along with the five ESL values for the exposure pathways outlined above.

Contaminant	Maximum Detected in wells	Volatilization ESL *	Ceiling Value (NDW) ***	Aquatic Toxicity **	Ceiling Value (DW) **	Drinking Water Toxicity **
MTBE	22	24,000	1,800	8,000	5.0	13
TBA	780	-	50,000	18,000	50,000	12

All values in micrograms per liter ($\mu g/l$)

All ESL from RWQCB (Feb 2005)

* From Table E-1 (residential)

** From Tables F-1a *** From Table F-1b

NDW = non-drinking water, DW = drinking water

ESL values shown in strikethrough (strikethrough) are from incomplete pathways.

ESL values shown in bold (**bold**) are the lowest for each contaminant, considering all potentially complete exposure pathways.

Significant concentrations of TPH-g and MBTWX were reported in soil boring SB-18 which is located immediately adjacent to MW-1. The only COCs reported in well MW-1 are low levels of MTBE and TBA. AEI believes that the COCs reported in boring SB-18 represent a localized impact associated with shall impacted soil and that is local impact can be remediated by removal of the impacted soil remediated by removal of the impacted soil remediated by removal of the impacted soil in that location.

The maximum concentrations of the detected contaminants in soil borings SB-21 are presented in the following table along with the five ESL values for the exposure pathways outlined above.

Contaminant	Maximum Detected Borings 21	Volatilization ESL *	Ceiling Value (NDW) ***	Aquatic Toxicity **	Ceiling Value (DW) **	Drinking Water Toxicity **
TPH-d	180	-	2,500	210	-100	210
TPH-mo	360	-	2,500	210	100	210
MTBE	11	24,000	1,800	8,000	5.0	13
TBA	160	-	50,000	18,000	50,000	12

All values in micrograms per liter (μ g/l)

All ESL from RWQCB (Feb 2005)

From Table E-1 (residential)

** From Tables F-1a

*** From Table F-1b

NDW = non-drinking water, DW = drinking water

ESL values shown in strikethrough (strikethrough) are from incomplete pathways.

ESL values shown in bold (**bold**) are the lowest for each contaminant, considering all potentially complete exposure pathways.

The maximum concentrations of the detected contaminants in soil borings SB-22 are presented in the following table along with the five ESL values for the exposure pathways outlined above.

Contaminant	Maximum Detected Borings 22	Volatilization ESL *	Ceiling Value (NDW) ***	Aquatic Toxicity **	Ceiling Value (DW) **	Drinking Water Toxicity **
MTBE	11	24,000	1,800	8,000	5.0	13

All values in micrograms per liter (µg/l) All ESL from RWQCB (Feb 2005) From Table E-1 (residential) ** From Tables F-1a *** From Tables F-1b NDW = non-drinking water, DW = drinking water ESL values shown in strikethrough (strikethrough) are from incomplete pathways.

ESL values shown in bold (**bold**) are the lowest for each contaminant, considering all potentially complete exposure pathways.

The groundwater in the area of the site is considered of beneficial use in accordance with the RWQCB Basin Plan and although not formally de-designated, the shallow impacted groundwater around the fuel release area is of low quality (brackish to saline) due to the proximity to the tidal slough and is not present in a high yielding formation. Based on this, the Drinking Water Toxicity and Drinking Water Ceiling Value ESLs are considered overly conservative for this site. Due to the proximity of the release to the Damon Slough, the aquatic toxicity ESL value would be protective of aquatic receptors. In addition, as is currently required, the volatilization ESL is considered potentially complete. The nondrinking water ceiling value will also be considered relevant as representative of nuisance conditions. The lowest ESL for each contaminant is shown in bold in the table above.

The residual contaminant concentrations do not exceed the lowest of the ESL values of the potentially complete exposure pathways. All site concentrations are over one to several orders of magnitude lower that these ESL values. Based on this, no indication of a potential for vapor intrusion from groundwater, of groundwater discharge to nearby aquatic habitat, or of exceeding gross contaminant levels for groundwater are present around the former release area.

7.0 **Recommendations**

AEI recommends the following actions:

- Area of SB-18 Excavate the shallow impacted soil in the area of boring SB-18 to a depth of five feet bgs, characterize and dispose of soil, then request case closure
- Waste Oil tank No immediate action necessary
- Following case closure, decommission groundwater and sparge wells.

AEI will prepare and submit a work plan to the ACEHS for the excavation of impacted soil adjacent to boring SB-18. The scope of work will include excavation to a depth of approximately 5 feet bgs, de-watering of the excavation, and confirmation sampling of the sides of the excavation and groundwater from the excavation.

8.0 CLOSING STATEMENT AND SIGNATURES

This report has been prepared by AEI on behalf of Cruise America relating to the release of petroleum hydrocarbons on the property located at 796 66th Avenue in the City of Oakland, Alameda County, California. The discussion rendered in this report was based on field investigations and laboratory testing of material samples. This report does not reflect subsurface variations that may exist between sampling points. These variations cannot be anticipated, nor could they be entirely accounted for, in spite of exhaustive additional testing. This report should not be regarded as a guarantee that no further contamination, beyond that which could have been detected within the scope of past investigations is present beneath the property or that all contamination present at the site were identified, treated, or removed. Undocumented, unauthorized releases of hazardous material(s), the remains of which are not readily identifiable by visual inspection and/or are of different chemical constituents, are difficult and often impossible to detect within the scope of a chemical specific investigation and may or may not become apparent at a later time. All specified work was performed in accordance with generally accepted practices in environmental engineering, geology, and hydrogeology and were performed under the direction of appropriate registered professional(s).

Should you need additional information, please contact me at (925) 944.2899 ext 122.

Sincerely, ONAL **AEI Consultants** No. 5825 Robert F. Flory Senior Geologi Peter J. McIntyre, PG, RI Senior Project Manager

Referenced Documents

- 1. *Underground Storage Tank Removal Report*, October 27, 1998, prepared by W.A. Craig, Inc.
- 2. Workplan, April 27, 2001, prepared by AEI Consultants
- 3. Phase II Subsurface Investigation, June 2001, prepared by AEI Consultants
- 4. Workplan, August 6, 2001, prepared by AEI Consultants
- 5. *Soil and Groundwater investigation*, December 20, 2001, prepared by AEI Consultants.
- 6. *Groundwater Monitoring Well Installation and Sampling Report*, May 7, 2002, prepared by AEI Consultants.
- 7. *Problem Assessment Report*, May 17, 2004, prepared by AEI
- 8. *Remedial Action Plan*, August 14, 2004, prepared by AEI
- 9. Maps showing the Quaternary Geology and Liquefaction Susceptibility, Napa, California, 1:100,000 Quadrangle, A Digital Database, 1998, Prepared by Janet Sowers, et al., USGS

Distribution:

ACHCSA

Mr. Cory Kauffman Cruise America, Inc. 11 West Hampton Avenue Mesa, AZ 85210

Mr. Jerry Wickham

Hard Copy

(submitted via email and to ACHCSA FTP site)

FIGURES

TABLES

Sample	Date	TPH-g	TPH-d	TPH-mo	MTBE	TBA	MTBE	Benzene	Toluene	Ethyl	Xylenes	Lead
ID		mg/kg	8015 mg/kg	mg/kg	82 mg/kg	60 mg/kg	mg/kg	mg/kg	8021B mg/kg	mg/kg	mg/kg	TTLC mg/kg
MW-1 4'	9/19/2002	<1.0	-	-	-	-	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	5.9
MW-2 4"	9/19/2002	<1.0	-	-	-	-	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	25
MW-3 4'	9/19/2002	<1.0	-	-	-	-	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	25
MW-4 4'	9/19/2002	6.2	-	-	-	-	< 0.05	< 0.005	0.0080	0.0078	0.021	160
MW-5 4'	9/19/2002	<1.0	-	-	-	-	2.0	0.0053	0.0088	< 0.005	0.010	190
SB-18-3.5	7/1/2008	1500	-	-	<0.25	<2.5	<5.0	< 0.50	6.5	19	88	230
SB-18-5	7/1/2008	21	-	-	12	<3.3	13	0.21	0.22	0.92	3.6	17
SB-19-3.5	7/1/2008	<1.0	-	-	0.024	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	16
SB-19-6	7/1/2008	17	-	-	6.5	<3.3	6.8	0.79	0.31	0.2	1.6	190
SB-20-3.5	7/1/2008	<1.0	-	-	0.023	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	9.7
SB-20-5.5	7/1/2008	<1.0	-	-	< 0.005	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	320
SB-21-3.5	7/1/2008	<1.0	<1.0	<1.0	< 0.005	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	<5.0
SB-21-6	7/1/2008	16	180	110	< 0.005	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005	0.041	14
SB-22-4	7/1/2008	<1.0	-	-	< 0.005	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	-
SB-22-23.5	7/1/2008	<1.0	-	-	< 0.005	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	-
RWQCB ESL	. May 2008	180	180	2500	8.4	110	8.4	0.27	9.3	47	11	720

Table 1 Historical Soil Analytical Data 796 66th Avenue, Oakland, California

Commercial/Industrial

Shallow soil, non drinking water

BOLD = Current soil analyticals that Exceed ESL

mg/kg = milligrams per kilogram (ppm) - = Sample not analyzed by this method

Sample ID	Date	Cadmium mg/kg	Chromium mg/kg	Lead mg/kg	Nickel mg/kg	Zinc mg/kg
SB-21-3.5	7/1/2008	<1.5	7.2	<5.0	6.1	85
SB-21-6	7/1/2008	<1.5	54	14	83	46
WQCB ESL May	2008	7.4	2500	750	1500	600
Commercial/Indust	rial					
hallow soil, non d	rinking water					

Table 2aSoil Analytical Data - Luft Metals - TTLC796 66th Avenue, Oakland, California

MDL = Method Detection Limit mg/kg = milligrams per kilogram (ppm)

Table 2bSoil Analytical Data - HVOCs amd PCBs

	HVOCs by 8260B	PCBs by SW8082A
SB-21-3.5	All ND	All ND
SB-21-6	All ND	All ND

Table 3
Historical Soil Boring Groundwater Sample Analytical Data
796 66 th Avenue, Oakland, California

Sample		TPH-g	TPH-d	TPH-mo	MTBE	TBA	MTBE	Benzene	Toluene	Ethyl	Xylenes	Lead
ID	D-4-					92(0)			(EDA 0031D)	benzene		
ID	Date	ug/L	ug/L		(EPA ug/L	δ20U) μσ/Ι	ug/L	μσ/ Ι .	(EPA 8021B) 110/L) 	ug/L	mg/L
		μg/12	μg/L		μg/L	μg/12	μg/12	μg/L	μg/L	μg/L	μg/12	ing/L
SB-1 W	7/17/2001	<50	-	-	-	-	650	0.63	< 0.5	< 0.5	< 0.5	-
SB-2 W	7/17/2001	<50	-	-	-	-	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
SB-3 W	7/17/2001	120	-	-	-	-	<5.0	< 0.5	4.6	< 0.5	< 0.5	-
SB-4 W	7/17/2001	<50	990	-	-	-	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
SB-5 W	7/17/2001	68	410	-	-	-	<5.0	< 0.5	0.66	< 0.5	<0.5	-
SB-6 W	7/17/2001	240	590	-	-	-	<5.0	< 0.5	2.9	< 0.5	<0.5	-
SB-7 W	9/28/2001	<50	-	-	< 0.5	-	<5.0	< 0.5	0.74	< 0.5	< 0.5	-
SB-9 W	9/28/2001	<50	-	-	630	-	670	< 0.5	1.0	< 0.5	< 0.5	-
SB-10 W	9/28/2001	<500	-	-	13,000	-	15,000	<2.0	<2.0	2.5	<2.0	-
SB-11 W	9/28/2001	58	-	-	1,700	-	1,900	2.4	1.8	< 0.5	0.79	-
GW*	11/30/2001	44,000	-	-	-	-	42,000	590	5100	640	3500	-
SB-12	9/6/2002	<1000	-	-	32,000	-	31,000	44	<10	<10	<10	< 0.005
SB-13	9/6/2002	13,000	-	-	49,000	-	51,000	300	1700	320	1,800	< 0.005
SB-14	9/6/2002	<500	-	-	9,500	-	11,000	<5.0	<5.0	< 5.0	<5.0	< 0.005
SB-15	9/6/2002	300	-	-	770	-	730	< 0.5	3.2	0.71	3.5	0.039
SB-16	9/6/2002	<200	-	-	2,700	-	3,900	<1	2.1	<1	2.5	< 0.005
SB-17	9/6/2002	<200	-	-	5,500	-	5,900	<1.7	3.8	<1.7	4.2	< 0.005
SB-17-W 47'	9/6/2002	90	-	-	120	-	150	1.7	3.5	1.9	3.5	-
SB-18-W	7/1/2008	8,500	-	-	1300	6,800	1,100	40	270	240	1,000	-
SB-21-W	7/1/2008	<50	180	360	11	160	11	<0.5	<0.5	<0.5	<0.5	-
SB-22-W	7/1/2008	<50	-	-	9.2	<2.0	8.3	<0.5	<0.5	<0.5	<0.5	-
RWQCB ESL	. May 2008	210	210	210	1,800	18,000	1,800	46	130	43	100	
Table F-1b C	ommercial/Inc	lustrial Non d	lrinking water									

Additional analyses

VOCs all ND, PCBs all ND, Metals bottle broken in transit, no analysis

MDL = Method Detection Limit

- = Sample not analyzed by this method

 $\mu g/L = micrograms per liter (ppb)$

* Sample GW was collected from standing water within the tank excavation

796 66 Avenue, Oakland, California												
Well ID (screen	Date	Well Elevation	Depth to Water	Water Table Elevation	TPH-g (8015Cm)	Benzene	Toluene (EPA me	Ethylbenzene thod 8021B)	Xylenes	MT (8021B)	BE (8260B)	TBA (8260B)
interval in	Sampled	(ft amsl)	(ft from TOC	(ft amsl)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-1	9/30/2002	10.88	5.41	5.47	1,800	50	15	16	18	19,000	13,000	<5,000
(4-14)	1/2/2003	10.88	4.77	6.11	660	24	6.4	<2.5	<2.5	7,800	8,900	-
	3/31/2003	10.88	4.95	5.93	660	11	6.4	<5.0	<5.0	16,000	20,000	-
	6/30/2003	10.88	4.54	6.34	830	<5.0	6.8	<5.0	<5.0	16,000	17,000	-
	10/1/2003	10.88	4.66	6.22	720	<5.0	< 5.0	<5.0	<5.0	14,000	13,000	-
	1/5/2004	10.88	4.07	6.81	<300	7.8	2.9	<3.0	<3.0	-	8,700	-
	4/5/2004	10.88	4.33	6.55	100	2.8	3.0	<1.0	<1.0	2,300	3,000	<500
	7/7/2004	10.88	4.97	5.91	190	<1.7	2.0	<1.7	<1.7	4,900	5,500	<1,000
	7/19/2004	10.88	5.12	5.76	340	<2.5	4.0	<2.5	<2.5	8,000	9,200	<1,700
	8/6/2004	10.88	5.13	5.75	280	< 0.5	5.6	< 0.5	< 0.5	7,200	5,900	<1,000
	8/20/2004	10.88	5.31	5.57	<250	<2.5	<2.5	<2.5	<2.5	4,600	-	-
	9/3/2004	10.88	5.22	5.66	<250	<2.5	<2.5	<2.5	<2.5	5,700	4,700	<1,000
	10/13/2004	10.88	5.23	5.65	170	< 0.5	4.8	< 0.5	< 0.5	3,700	4,400	-
	1/11/2005	10.88	4.69	6.19	110	8.8	4.2	< 0.5	< 0.5	880	990	910
	4/13/2005	10.88	5.02	5.86	230	< 0.5	9.0	< 0.5	< 0.5	140	100	2,600
	7/6/2005	10.88	5.06	5.82	200	< 0.5	8.3	< 0.5	< 0.5	<75	50	1,600
	10/6/2005	10.88	4.92	5.96	110	< 0.5	6.8	< 0.5	< 0.5	<20	8.4	640
	1/9/2006	10.88	3.90	6.98	<50	< 0.5	1.8	< 0.5	< 0.5	260	280	560
	4/10/2006	10.88	3.97	6.91	80	< 0.5	3.1	< 0.5	< 0.5	100	70	160
	7/11/2006	10.88	4.63	6.25	<50	< 0.5	2.8	< 0.5	< 0.5	<5.0	5.3	240
	10/18/2006	-	-	-	79	< 0.5	3.7	< 0.5	2.3	7.0	6.8	320
	3/13/2008	10.88	4.80	6.08	<50	<0.5	<0.5	<0.5	<0.5	5.5	<10	780
MW-2	9/30/2002	10.77	8.00	2.77	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0	0.84	<5.0
(4-14)	1/2/2003	10.77	5.91	4.86	<50	< 0.5	< 0.5	< 0.5	< 0.5	19	20	-
	3/31/2003	10.77	5.15	5.62	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	3.9	-
	6/30/2003	10.77	5.91	4.86	<50	< 0.5	< 0.5	< 0.5	< 0.5	7.0	9.6	-
	10/1/2003	10.77	6.69	4.08	<50	< 0.5	< 0.5	< 0.5	< 0.5	7.7	6.7	-
	1/5/2004	10.77	6.18	4.59	71	4.7	13	2.7	12	-	7.8	-
	4/5/2004	10.77	7.22	3.55	210	14	39	6.6	27	16	13	<5.0
	7/7/2004	10.77	6.83	3.94	<50	< 0.5	< 0.5	< 0.5	< 0.5	5.7	5.6	<5.0
	10/13/2004	10.77	7.18	3.59	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	2.6	-
	1/11/2005	10.77	7.27	3.50	74	2.6	11	2.1	10	<5.0	4.4	<5.0
	4/13/2005	10.77	6.66	4.11	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	< 0.5	<5.0
	7/6/2005	10.77	6.83	3.94	<50	<0.5	0.77	< 0.5	< 0.5	<5.0	2.9	<5.0
	10/6/2005	10.77	7.05	3.72	<50	< 0.5	0.81	< 0.5	0.54	<5.0	2.1	<5.0

Table 4	
Historical Groundwater Monitoring Analytical Data	
796 66 th Avenue, Oakland, California	

				19	o oo Ave	liue, Oakia	nu, Camo	rma				
Well ID (screen	Date Sampled	Well Elevation	Depth to Water	Water Table Elevation	TPH-g (8015Cm)	Benzene	Toluene (EPA me	Ethylbenzene thod 8021B)	Xylenes	MT (8021B)	BE (8260B)	TBA (8260B)
interval in	F	(ft amsl)	(ft from TOC	(ft amsl)	µg/L	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L
MW-2	1/9/2006	10.77	6.18	4.59	<50	< 0.5	< 0.5	< 0.5	< 0.5	6.1	7.6	<5.0
continued	4/10/2006	10.77	6.27	4.50	50	< 0.5	8.0	1.5	6.1	<5.0	1.1	<5.0
	7/11/2006	10.77	6.97	3.80	<50	< 0.5	0.72	< 0.5	< 0.5	<5.0	4.1	<5.0
	10/18/2006	-	-	-	53	< 0.5	2.6	1.2	4.3	<5.0	1.7	<5.0
	3/13/2008	10.77	6.66	4.11	<50	<0.5	<0.5	<0.5	<0.5	<5.0	3.0	<2.0
MW-3	9/30/2002	10.20	5.21	4,99	<50	<0.5	< 0.5	<0.5	<0.5	<5.0	<0.5	<5.0
(4-14)	1/2/2003	10.20	5.31	4.89	<50	0.89	0.50	<0.5	0.72	15	14	-
()	3/31/2003	10.20	4.58	5.62	<50	< 0.5	< 0.5	<0.5	< 0.5	< 5.0	0.62	-
	6/30/2003	10.20	3.83	6.37	<50	<0.5	< 0.5	<0.5	<0.5	<5.0	1.6	-
	10/1/2003	10.20	4.02	6.18	<50	< 0.5	< 0.5	<0.5	< 0.5	< 5.0	< 0.5	_
	1/5/2004	10.20	6.18	4.02	71	4.7	13	2.7	12	-	7.8	-
	4/5/2004	10.20	3.79	6.41	120	8.8	22	3.2	13	<5.0	<0.5	<5.0
	7/7/2004	10.20	3.76	6.44	<50	<0.5	< 0.5	<0.5	<0.5	<5.0	4.0	<5.0
	10/13/2004	10.20	4.45	5.75	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0	<0.5	-
	1/11/2005	10.20	5.21	4.99	68	2.2	9.0	1.7	8.5	<5.0	< 0.5	<5.0
	4/13/2005	10.20	4.44	5.76	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0	< 0.5	<5.0
	7/6/2005	10.20	3.91	6.29	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0	< 0.5	<5.0
	10/6/2005	10.20	4.16	6.04	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0	< 0.5	<5.0
	1/9/2006	10.20	4.44	5.76	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0	< 0.5	<5.0
	4/10/2006	10.20	4.02	6.18	<50	<0.5	4.0	0.78	3.3	<5.0	< 0.5	<5.0
	7/11/2006	10.20	3.53	6.67	<50	< 0.5	0.51	< 0.5	1.1	<5.0	0.67	<5.0
	10/18/2006	-	-	-	<50	< 0.5	2.2	0.76	3.1	<5.0	< 0.5	<5.0
	3/13/2008	10.20	4.45	5.75	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.77	<2.0
MW-4	9/30/2002	11.07	5.50	5.57	<100	<0.5	< 0.5	<0.5	<0.5	790	750	<100
(4-14)	1/2/2003	11.07	4.90	6.17	<50	<0.5	< 0.5	<0.5	< 0.5	420	460	_
()	3/31/2003	11.07	4.81	6.26	<50	<0.5	< 0.5	<0.5	< 0.5	1.500	1.400	-
	6/30/2003	11.07	4.61	6.46	<50	<0.5	< 0.5	<0.5	< 0.5	1.600	1.200	-
	10/1/2003	11.07	4.76	6.31	<50	<0.5	< 0.5	<0.5	< 0.5	1.800	1.400	-
	1/5/2004	11.07	4.32	6.75	<50	3.0	6.7	1.4	6.1	-	1.200	-
	4/5/2004	11.07	4.43	6.64	<50	0.79	2.0	<0.5	2.2	800	840	<250
	7/7/2004	11.07	5.08	5.99	<50	< 0.5	< 0.5	< 0.5	< 0.5	1,400	2,100	<250
	7/19/2004	11.07	5.19	5.88	<50	< 0.5	< 0.5	< 0.5	< 0.5	1,200	1,300	<500
	8/6/2004	8/6/2004 11.07 5.20 5.87		<50	0.76	< 0.5	<0.5	<0.5	1,300	1,200	<500	
	8/20/2004	11.07	5.37	5.70	<50	< 0.5	< 0.5	< 0.5	< 0.5	460	-	-
	9/3/2004	11.07	5.35	5.72	<50	<0.5	< 0.5	<0.5	<0.5	440	370	<50
	10/13/2004	11.07	5.35	5.72	<50	< 0.5	< 0.5	< 0.5	< 0.5	330	360	-
	1/11/2005	11.07	4.99	6.08	<50	1.0	2.1	< 0.5	1.8	450	430	<100

Table 4	
Historical Groundwater Monitoring Analytical Data	
796 66 th Avenue, Oakland, California	

Well ID	Date	Well	Depth to	Water Table	TPH-g	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE		TBA
(screen	Sampled	Elevation	Water	Elevation	(8015Cm)		(EPA me	thod 8021B)		(8021B)	(8260B)	(8260B)
interval in	···· ·	(ft amsl)	(ft from TOC)	(ft amsl)	µg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L
MW-4	4/13/2005	11.07	5.17	5.90	<50	< 0.5	< 0.5	< 0.5	< 0.5	340	200	<50
continued	7/6/2005	11.07	5.18	5.89	<50	< 0.5	< 0.5	< 0.5	< 0.5	300	290	330
	10/6/2005	11.07	5.03	6.04	<50	< 0.5	< 0.5	< 0.5	< 0.5	380	350	430
	1/9/2006	11.07	4.11	6.96	<50	< 0.5	< 0.5	< 0.5	< 0.5	140	150	200
	4/10/2006	11.07	4.13	6.94	<50	< 0.5	1.0	< 0.5	1.1	52	39	120
	7/11/2006	11.07	4.72	6.35	<50	< 0.5	< 0.5	< 0.5	< 0.5	56	66	120
	10/18/2006	-	-	-	<50	< 0.5	0.74	0.55	2.5	87	67	160
	3/13/2008	11.07	4.95	6.12	<50	<0.5	<0.5	<0.5	<0.5	19	22	69
MW-5	9/30/2002	11.18	5.62	5.56	<2,000	<5.0	< 5.0	<5.0	<5.0	19,000	18000	<2,500
(4-14)	1/2/2003	11.18	5.12	6.06	<50	< 0.5	< 0.5	< 0.5	< 0.5	7,000	7,000	-
	3/31/2003	11.18	4.93	6.25	<500	<5.0	< 5.0	<5.0	< 5.0	14,000	12,000	-
	6/30/2003	11.18	4.75	6.43	<500	<5.0	<5.0	<5.0	< 5.0	13,000	15,000	-
	10/1/2003	11.18	4.88	6.30	<500	<5.0	<5.0	<5.0	< 5.0	12,000	11,000	-
	1/5/2004	11.18	4.19	6.99	<1,000	<10	<10	<10	<10	-	11,000	-
	4/5/2004	11.18	4.57	6.61	<250	<2.5	<2.5	<2.5	<2.5	9,400	13,000	<2,500
	7/7/2004	11.18	5.19	5.99	<500	<5.0	< 5.0	<5.0	< 5.0	15,000	19,000	<2,000
	7/19/2004	11.18	5.32	5.86	<500	<5.0	< 5.0	<5.0	< 5.0	16,000	14,000	<2,500
	8/6/2004	11.18	5.33	5.85	110	< 0.5	< 0.5	< 0.5	< 0.5	12,000	11,000	<2,500
	8/20/2004	11.18	5.49	5.69	<500	<5.0	<5.0	<5.0	< 5.0	7,200	-	-
	9/3/2004	11.18	5.48	5.70	<500	<2.5	<2.5	<2.5	<2.5	8,500	7,200	<1,700
	10/13/2004	11.18	5.49	5.69	<250	<2.5	<2.5	<2.5	<2.5	6,700	7,700	-
	1/11/2005	11.18	5.08	6.10	<100	1.5	3.3	<1.0	2.3	3,000	4,800	1,200
	4/13/2005	11.18	5.24	5.94	<50	< 0.5	< 0.5	< 0.5	< 0.5	510	320	2,600
	7/6/2005	11.18	5.27	5.91	<50	< 0.5	< 0.5	< 0.5	< 0.5	43	51	4,900
	10/6/2005	11.18	5.14	6.04	<50	< 0.5	< 0.5	< 0.5	< 0.5	25	<25	1,900
	1/9/2006	11.18	4.23	6.95	<50	< 0.5	< 0.5	< 0.5	< 0.5	70	84	2,000
	4/10/2006	11.18	4.24	6.94	<50	< 0.5	0.59	< 0.5	< 0.5	13	11	860
	7/11/2006	11.18	4.85	6.33	<50	< 0.5	< 0.5	< 0.5	< 0.5	20	24	1,200
	10/18/2006	-	-	-	<50	< 0.5	1.6	0.51	1.8	17	12	1,300
	3/13/2008	11.18	5.04	6.14	<50	<0.5	<0.5	<0.5	<0.5	10	11	750
RWQCB ES	L May 2008				210	46	130	43	100	1,800	1,800	18,000

Table 4
Historical Groundwater Monitoring Analytical Data
796 66 th Avenue, Oakland, California

Commercial/Industrial - Non drinking water

Notes:

bgs = below ground surface

ft amsl = feet above mean sea level

TOC = Top of Casing; all well elevations and depths to water are measured from TOC

TPH-g = Total Petroleum Hydrocarbons as gasoline

 $\mu g/L = micrograms per liter$

MTBE = Methyl tertiary-Butyl Ether

TBA = tertiary-Butyl Alcohol

- = Sample not analyzed by this method

Episode	Date Sampled	Average Water Table Elevation*	Change From Previous Episode	Gradient (direction)
1	9/30/2002	4.87	-	0.005 (S)
2	1/2/2003	5.62	0.75	0.022 (SSE)
3	3/31/2003	5.94	0.32	0.006 (SSE)
4	6/30/2003	6.09	0.16	0.020 (SE)
5	10/1/2003	5.82	-0.27	0.029-0.001 (SE)
6	1/5/2004	6.06	0.24	0.03 (SE)
7	4/5/2004	5.95	-0.11	0.02 (E)
8	7/7/2004	5.65	-0.30	0.02 (E)
9	7/19/2004	5.83	0.18	nc
10	8/6/2004	5.82	-0.01	nc
11	8/20/2004	5.65	-0.17	nc
12	9/3/2004	5.69	0.04	nc
13	10/13/2004	5.28	-0.41	0.02 (E)
14	1/11/2005	5.37	0.09	0.02 (E)
15	4/13/2005	5.51	0.14	0.02 (E)
16	7/6/2005	5.57	0.06	0.024 (E)
17	10/6/2005	5.56	-0.01	0.03 (E)
18	1/9/2006	6.25	0.69	0.04 (ESE)
19	4/10/2006	6.29	0.05	0.03 (ESE)
20	7/11/2006	5.88	-0.41	0.03 (ESE)
21	3/13/2008	5.64	-0.24	0.03 (ESE)

Table 5Groundwater Elevation Data Summary796 66th Avenue, Oakland, California

Notes:

*Average Water Table Elevation value calculated in Microsoft Excel

nc = not calculated

APPENDIX A

Soil Boring Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/17/2008 By jamesy

Permit Numbers: W2008-0360 Permits Valid from 07/01/2008 to 07/01/2008

Application Id: Site Location:	1213658373636 Cruise America	City of Project Site: Oakland
	796 66th Avenue	
Project Start Date: Requested Inspection Scheduled Inspection	Oakland, CA 94621 07/01/2008 on:07/01/2008 on:07/01/2008 at 2:00 PM (Contact your inspector, \	Completion Date: 07/01/2008 Vicky Hamlin at (510) 670-5443, to confirm.)
Applicant:	AEI Consultants - Robert Flory	Phone: 925-944-2899
Property Owner:	Cruise America	Phone: 480-464-7300
Client:	Cory Kauffman	Phone: 480-464-7300
Contact:	Robert Flory	Phone: 925-944-2899 Cell: 925-457-7517
		Total Due: \$200.00

Receipt Number: WR2008-0212 Total Amount Paid: \$200.00 Payer Name : Robert F Flory Paid By: VISA PAID IN FULL

Works Requesting Permits:

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 6 Boreholes Driller: ECA - Lic #: 695970 - Method: DP

Work Total: \$200.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2008-	06/17/2008	09/29/2008	6	2.00 in.	30.00 ft
0360					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five
(5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

Alameda County Public Works Agency - Water Resources Well Permit

5. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

PROGRAMS AND SERVICES

Well Standards Program

The Alameda County Public Works Agency, Water Resources is located at: 399 Elmhurst Street Hayward, CA 94544 For Driving Directions or General Info, Please Contact 510-670-5480 or wells@acpwa.org For Drilling Permit information and process contact James Yoo at Phone: 510-670-6633 FAX: 510-782-1939 Email: Jamesy@acpwa.org

Alameda County Public Works is the administering agency of General Ordinance Code, Chapter 6.88. The purpose of this chapter is to provide for the regulation of groundwater wells and exploratory holes as required by California Water Code. The provisions of these laws are administered and enforced by Alameda County Public Works Agency through its Well Standards Program.

Drilling Permit Jurisdictions in Alameda County: There are four jurisdictions in Alameda County.

Location: Agency with Jurisdiction Contact Number

Berkeley City of Berkeley Ph: 510-981-7460 Fax: 510-540-5672

Fremont, Newark, Union City Alameda County Water District Ph: 510-668-4460 Fax: 510-651-1760

Pleasanton, Dublin, Livermore, Sunol Zone 7 Water Agency Ph: 925-454-5000 Fax: 510-454-5728

The Alameda County Public Works Agency, Water Resources has the responsibility and authority to issue drilling permits and to enforce the County Water Well Ordinance 73-68. This jurisdiction covers the western Alameda County area of Oakland, Alameda, Piedmont, Emeryville, Albany, San Leandro, San Lorenzo, Castro Valley, and Hayward. The purpose of the drilling permits are to ensure that any new well or the destruction of wells, including geotechnical investigations and environmental sampling within the above jurisdiction and within Alameda County will not cause pollution or contamination of ground water or otherwise jeopardize the health, safety or welfare of the people of Alameda County.

Permits are required for all work pertaining to wells and exploratory holes at any depth within the jurisdiction of the Well Standards Program. A completed permit application (30 Kb)*, along with a site map, should be submitted at least **ten (10) working days prior to the planned start of work**. Submittals should be sent to the address or fax number provided on the application form. When submitting an application via fax, please use a high resolution scan to retain legibility.

Fees

Beginning April 11, 2005, the following fees shall apply:

A permit to construct, rehabilitate, or destroy wells, including cathodic protection wells, but excluding dewatering wells (*Horizontal hillside dewatering and dewatering for construction period only), shall cost \$300.00 per well.

A permit to bore exploratory holes, including temporary test wells, shall cost \$200 per site. A site includes the project parcel as well as any adjoining parcels.

Please make checks payable to: Treasurer, County of Alameda

Permit Fees are exempt to State & Federal Projects

Applicants shall submit a letter from the agency requesting the fee exemption.

Scheduling Work/Inspections:

Alameda County Public Works Agency (ACPWA), Water Resources Section requires scheduling and inspection of permitted work. All drilling activities must be scheduled in advance. Availability of inspections will vary from week to week and will come on a first come, first served bases. To ensure inspection availability on your desired or driller scheduled date, the following procedures are required:

Please contact **James Yoo at 510-670-6633** to schedule the inspection date and time (You must have drilling permit approved prior to scheduling).

Schedule the work as far in advance as possible (at least 5 days in advance); and confirm the scheduled drilling date(s) at least 24 hours prior to drilling.

Once the work has been scheduled, an ACPWA Inspector will coordinate the inspection requirements as well as how the Inspector can be reached if they are not at the site when Inspection is required. Expect for special circumstances given, all work will require the inspection to be conducted during the working hours of 8:30am to 2:30pm., Monday to Friday, excluding holidays.

Request for Permit Extension:

Permits are only valid from the start date to the completion date as stated on the drilling permit application and Conditions of Approval. To request an extension of a drilling permit application, applicants must request in writing prior to the completion date as set forth in the Conditions of Approval of the drilling permit application. Please send fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. There are no additional fees for permit extensions or for re-scheduling inspection dates. You may not extend your drilling permit dates beyond 90 days from the approval date of the permit application. **NO refunds** shall be given back after 90 days and the permit shall be deemed voided.

Cancel a Drilling Permit:

Applicants may cancel a drilling permit only in writing by mail, fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. If you do not cancel your drilling permit application before the drilling completion date or notify in writing within 90 days, Alameda County Public Works Agency, Water Resources Section may void the permit and No refunds may be given back.

Refunds/Service Charge:

A service charge of \$25.00 dollars for the first check returned and \$35.00 dollars for each subsequent check returned.

Applicants who cancel a drilling permit application **before** we issue the approved permit(s), will receive a **FULL** refund (at any amount) and will be mailed back within two weeks.

Applicants who cancel a drilling permit application **after** a permit has been issued will then be charged a service fee of \$50.00 (fifty Dollars).

To collect the remaining funds will be determined by the amount of the refund to be refunded (see process below).

Board of Supervisors Minute Order, File No. 9763, dated January 9, 1996, gives blanket authority to the Auditor-Controller to process claims, from all County departments for the refund of fees which do not exceed \$500 (Five Hundred Dollars)(with the exception of the County Clerk whose limit is \$1,500).

Refunds over the amounts must be authorized by the Board of Supervisors Minute Order, File No. 9763 require specific approval by the Board of Supervisors. The forms to request for refunds under \$500.00 (Five Hundred Dollars) are available at this office or any County Offices. If the amount is exceeded, a Board letter and Minute Order must accompany the claim. Applicant shall fill out the request form and the County Fiscal department will process the request.

Enforcement

Penalty. Any person who does any work for which a permit is required by this chapter and who fails to obtain a permit shall be guilty of a misdemeanor punishable by fine not exceeding Five Hundred Dollars (\$500.00) or by imprisonment not exceeding six months, or by both such fine and imprisonment, and such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any such

violation is committed, continued, or permitted, and shall be subject to the same punishment as for the original offense. (Prior gen. code §3-160.6)

Enforcement actions will be determined by this office on a case-by-case basis

Drilling without a permit shall be the cost of the permit(s) and a fine of \$500.00 (Five Hundred Dollars).

Well Completion Reports (State DWR-188 forms) must be filed with the Well Standards Program within 60 days of completing work. Staff will review the report, assign a state well number, and then forward it to the California Department of Water Resources (DWR). Drillers should not send completed reports to DWR directly. Failure to file a Well Completion Report or deliberate falsification of the information is a misdemeanor; it is also grounds for disciplinary action by the Contractors' State License Board. Also note that filed Well Completion Reports are considered private record protected by state law and can only be released to the well owner or those specifically authorized by government agencies.

See our website (www.acgov.org/pwa/wells/index.shtml) for links to additional forms.

APPENDIX B

Boring Logs

Project: Cruise America Project Location: 796 66th Ave., Oakland, CA Project Number: 278361

Log of Boring SB-18

Sheet 1 of 1

Date(s) Drilled July 1, 2008	Logged By Robert F. Flory	Checked By Leah Levine-Goldberg
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 10 feet bgs
Drill Rig Type GeoProbe 5410	Drilling Contractor ECA	Approximate Surface Elevation 11 feet MSL
Groundwater Level and Date Measured 4.1 feet ATD	Sampling Method(s) Tube	Permit # W2008-0360
Borehole Backfill Cement Slurry	Location	

Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
- -			GP GC-CL		Crushed Rock, gray 6N/, underlain by geotextile sheet Clayey Gravel- Gravelly Clay, dark yellowish brown - dark grayish brown 10YR 4/4 - 4/2, moderately firm, slightly moist (FILL)		
_ 5—		SB-18-3.5 SB-18-5 SB-18-6	CL		Gravelly Clay, very dark gray 10YR 3/1, moderately firm, moist, gasoline odor (FILL) (ATD) 	95	-
_	X	SB-18-7	GC-CL		Clayey Gravel- Gravelly Clay, grayish green 5G 4/2 - dark greenish gray 5GY 4/1, wood fragments, moderately firm, very moist (FILL)		
 10					moderately soft, wet (FILL) Silty Clay, very dark greenish gray 5GY 3/1 - black N 2.5/, moderately soft, wet (FILL) Bottom of Boring at 10 feet bgs		
_				-			
				-			
_				-			
- - 20							
					AFI		Figure

Log of Boring SB-19

Sheet 1 of 1

Date(s) Drilled July 1, 2008	Logged By Robert F. Flory	Checked By Leah Levine-Goldberg
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 8 feet bgs
Drill Rig Type GeoProbe 5410	Drilling Contractor ECA	Approximate Surface Elevation 11 feet MSL
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) Tube	Permit # W2008-0360
Borehole Backfill Cement Slurry	Location	

Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
-	-		<u>Asphalt</u> GC-CL		Asphalt, 3" Clayey Gravel- Gravelly Clay, dark gray - dark grayish brown 10YR 4/1 - 4/2, moderately firm, slightly moist (FILL) No odor		
-		SB-19-3.5	CL		Gravelly Clay, dark greenish gray 5G 4/1, moderately firm, moist, no odor (FILL)		
5		SB-19-6	GM-GC		Sandy Gravel, dark greenish gray 5G 4/1, clayey, moderately firm, moist, no odor (FILL)	-	
-	Ê				No recovery	_	
-							-
_					Bottom of Boring at 8 feet bgs	_	
10							
10							
-							
-					-	-	
-						-	
-						-	
15—						-	
-						_	
-						-	
-					-	-	
-					-	_	
20							
					AFI		Figure

CONSULTANTS ENVIRONMENTAL& CIVIL ENGINEERING

Log of Boring SB-20

Sheet 1 of 1

Date(s) Drilled July 1, 2008	Logged By Robert F. Flory	Checked By Leah Levine-Goldberg
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 8 feet bgs
Drill Rig Type GeoProbe 5410	Drilling Contractor ECA	Approximate Surface Elevation 11 feet MSL
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) Tube	Permit # W2008-0360
Borehole Backfill Cement Slurry	Location	

Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
-	-		Asphalt GC-CL		Asphalt, 3" Clayey Gravel- Gravelly Clay, dark gray - dark grayish brown 10YR 4/1 - 4/2, moderately firm, slightly moist (FILL) No odor		
-	\ge	SB-20-3.5	CL		Gravelly Clay, brown 10YR 4/3, moderately firm, moist, no odor (FILL)		
5		SB-20-5.5	GC-CL		Sandy Gravelly Clay, black 10YR 2/1, abundant wood fragments, firm, moist, no odor		
-					No recovery		
-					Bottom of Boring at 8 feet bgs		
-				-			
10							
-							
-							
-							
15	1			-			
-							
-	1						
-	1						
-	1						
20					AEI		Figure

CONSULTANTS ENVIRONMENTAL& CIVIL ENGINEERING

Log of Boring SB-22

Sheet 1 of 2

Date(s) Drilled July 1, 2008	Logged By Robert F. Flory	Checked By Leah Levine-Goldberg
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 28 feet bgs
Drill Rig Type GeoProbe 5410	Drilling Contractor ECA	Approximate Surface Elevation 11 feet MSL
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) Tube	Permit # W2008-0360
Borehole Backfill Cement Slurry	Location	

Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHEF TESTS
0			Asphalt GC-CL		Asphalt, 3"		
_					Clayey Gravel- Gravelly Clay, brown - yellowish btrown 10YR 4/3 - 5/4, moderately firm, slightly moist (FILL)		
-			CL		 Gravelly Clay, olive 5Y 5/3 - 5/4, moderately firm, slightly moist (FILL) 		
	\times	SB-22-4	CL	//////	∑ Peat, Black 7		
5 - -					Sandy Clay, dark olive gray - olive gray 5Y 3/2 - 5/2 - grayish brown 10YR - 5/2, streaks gravelly, firm, moist, no odor		
- - - -	X	SB-22-9.5	SC-CL		Clayey Sand - Sandy Clay, very dark greenish gray 5G 3/1, soft, plastic, wet		
_			SC		Very Clayey Sand, dark greenish gray - very dark greenish gray 10GY 4/1 - 3/1, soft, plastic, wet		
			SC CI	(17)X///	Peat, black, woody, interbedded with clay partings		
5					 Very Clayey Sand - Sandy Clay, very dark greenish gray 10GY 3/1, soft, – plastic, wet 		
_	X	BS-22-15.5	S&PCL		Oyster Sand, light gray 10YR 7/1, 1/4" streak, clayey, soft		
			CL		Very Clayey Sand - Sandy Clay, very dark greenish gray 10GY 3/1, soft, plastic, wet		
Ē			65		Sandy Clay, very dark greenish gray 10GY 3/1, soft, plastic, wet		
_					Clayey Gravel streak /		
			CL		Silty Clay, grayish green 5G 5/2 - 4/2, firm, moist		
20			1		and the second s	1	Figure

Log of Boring SB-22

Sheet 2 of 2

Depth, feet	Sample Type Sample	Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
20			CL		Silty Clay, grayish green 5G 5/2 - 4/2, firm, moist (cont.)		
_			CL		Silty Clay, grayish green 5G 5/2 - 4/2, becoming sandy, firm, moist		
-			ML		Sandy Silt, olive 5Y 5/6 - grenish gray 5G 5/1 mottled, firm, moist		
_	SB-2	2-23.5	SW	Ĩ	Sandy Gravel - Gravelly Sand, dark brown - very dark brown 10YR 3/3 - 3/2, slightly clayey, firm - hard, wet		
25			SÞ		Sand, very dark gray - very dark grayish brown 10YR 3/1 - 3/1, fine grained, poorly graded, firm, wet		
_			SP		Sand, very dark gray - very dark grayish brown 10YR 3/1 - 3/2, clayey, fine grained, poorly graded, firm, wet clay increasing downward	-	
_	SB-2	2-27.5	CL		Clay, very dark grayish brown 10YR 3/2, firm, wet slightly sandy at top		
_					Bottom of Boring at 28 feet bgs		
30—						-	
_							
-							
_						_	
35—						_	
_						-	
_						-	
_						-	
40						_	
-							
_						-	
	<u> </u>				AFI		Figure

CONSULTANTS ENVIRONMENTAL& CIVIL ENGINEERING

Log of Boring SB-21

Sheet 1 of 1

Date(s) Drilled July 1, 2008	Logged By Robert F. Flory	Checked By Leah Levine-Goldberg
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 11 feet bgs
Drill Rig Type GeoProbe 5410	Drilling Contractor ECA	Approximate Surface Elevation 11 feet MSL
Groundwater Level and Date Measured 6.3 feet ATD	Sampling Method(s) Tube	Permit # W2008-0360
Borehole Backfill Cement Slurry	Location	

Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
			Asphalt GC		Asphalt, 3" Clayey Gravel, brown - dark brown 10YR 4/4-4/3, moderately firm, slightly moist (FILL) No odor		
-	X	SB-21-3.5	GC		Clayey Gravel, very dark greenish gray - dark greenish gray 5G 3/1-4/1, moderately firm, moist, ? trace odor (FILL)		
			GC-CL		Sandy Gravel - Gravelly Clay, black N 2.5/, sandy, firm, moist - wet, slight oily odor		
	\ge	SB-21-6			(ATD) <u></u>		
_			GC	(J) J) J) p)	Clayey Gravel, black N 2.5/, sandy, firm, wet, slight oily odor		
- - 10—		SB-21-7.5	CL		Very Clayey Sand, dark greenish gray - grayish green 10GY 4/1 - 5G 4/2, soft, wet		Boring caved to 9.7',
-					Bottom of Boring at 11 feet bgs		
- - 15							
-							
-							
20—		<u> </u>		I	AEI	<u> </u>	Figure

CONSULTANTS ENVIRONMENTAL& CIVIL ENGINEERING

APPENDIX C

Groundwater Sampling Field Sampling Forms

APPENDIX D

Soil Laboratory Analyses with Chain of Custody Documentation

When Ouality	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: n one: 877-252-9262 Fax:	CA 94565-1701 nain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #27836	1; Cruise America,	Date Sampled:	07/01/08
2500 Camino Diablo, Ste. #200	790 oolii Ave, Oakland		Date Received:	07/03/08
Walnut Creek, CA 94597	Client Contact: Robert Flo	ory	Date Reported:	07/11/08
	Client P.O.:		Date Completed:	07/11/08

WorkOrder: 0807101

July 11, 2008

Dear Robert:

Enclosed within are:

- 1) The results of the 10 analyzed samples from your project: #278361; Cruise America, 796 66th
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

0807101

															0	8	0	7	10	21	ſ									1/2	1	~	
	Me	Campb	ell Ana	lytica	al, Iı	nc.								Т					CI	IA	IN	0	F	CU	ST	ro	D	YI	RE	COF	D		
		1534 WH PITTSRI	LLOW PAS	S RO.	AD 701										TU	RN	A	RO	UN	D	ΓIN	1E)					
Telepho	ne: (925) 25	2-9262	no, en s		F	ax:	(92	5) 2	52-9	926	59									_			_	R	USH	1	24 1	IR	4	48 HR		72 HR	5 DAY
								5							Geo	Tra	icke	r El	DF	\boxtimes		PD	F	\ge		Exc	el]	Writ	e O	n (DW	
Report To: Rober	rt Flory		B	Bill To	: Sai	me													An	alys	sis F	lequ	lest							Other	-	Com	ments
Company: AEI C	Consultants															E																Filte	r
2500	Camino Dia	blo									_			TRF	105	B&								-			5	X				Sam	ples for
Waln	ut Creek, C	A 94597	E	C-Mai	l: rfl	ory	Dae	icon	Isult	tan	its.c	om	-	1	A	E&F								8310			13					Anal	IS
Tel: (925) 944-28	899, extensio	on 122	F	ax: (925)	94	4-28	95				_	_	108	Onl	5201	18.1	ist				es		10/			R	7				Ana	ysis.
Project #: 278361	Tor eath t	0.11	P	rojec	t Nai	me:	Cri	iise	Am	ier	ica			#	BA	e (5	ns (4	isic l	20)			enat		82			-	3				Yes	/ No
Project Location:	796 66"" Av	e, Oakla	nd						_		_	_	_	8021	T 3	reas	rbor	0 ba	/ 80	0		xyg		525			010	T					
Sampler Signatur	e:	•				-		_	_	-	MI	2711	OD	- 09	BE	0.8	roca	801	602	808	0	uel o		PA (0.276	0					
		SAME	PLING	2	iners		MA	TR	IX	4	PRES	SER	VED	S Gas	LW 05	m Oil	m Hvd	8260-	(EPA	V 608 /	8 / 808	0 9 Fu	0	s by E	ls	89	21/239	1 cal					
SAMPLE ID	LOCATION (Field Point Name)	Date	Time	# Containe	Type Conta	Water	Soil	Air	Sludge	Uther	lce	IND	Other Other	BTEX & TPH	EPA 624 / 826	Total Petroleur	Total Petroleur	HVOCs EPA 8	BTEX ONLY	Pesticides EPA	PCBs EPA 608	EPA 624 / 826	EPA 625 / 827	PAH's / PNA'	CAM-17 Meta	LUFT 5 Metal	Lead (7240/74	015 x 191	4				
SA-21-3.5		1-1	0755	1	240		1		-	$^{+}$	-	1	-	4	LV	-		K	1	-	X			-		X		+			+	y f	illard
SB-21-7,5	-	1	OFER	i	2		1		-	+	-	-	-	1	7		-		-						16	1	+	`				0.07	T +PAJ
5B-21-6			0800	1	1		\uparrow		-	t		1			×	-	-	×			X	_			TIG	+		×			1	de	1
58-19-315	-		0820	1			\uparrow		-	1				X	(*		-									-	+	×				(Chr	/
513-19-6			0850	1			Π			T				Ý	LX		1	1									×	1					
56-27-35	-		0830	•						T				X	XX												+	4	N				
5B-20-5.5	-		0835	-	T					T				X	XX												+	+	11				
36-18-3.5			0945	-										X	X												+	Y	2				
5B-10-5		1	1003	1										X	X												+	L					
36-18-6		il/	1005	-																													
38-18-7		Y	1010		1																												
							1																										
10																																	
Relinquished By	1	Date:	Time:	Rece	ived B	y:	1																							1	1		
/new(T)	1/	12/08	420	cy	111	70	uy	1	his	Y		16	l		ICF	/t°	70	.2	2				p	RE	SER	VA	TIC	N V	OAS	0&G	P	IETALS	OTHER
Relinquished By: 1	h 8 .	Date: 7/2/08	Time:	Rece	ved B	y://	L	7	4	/				Î	GO HE	OD AD	CO		TIO ABS	N_	Г		A	PP	ROF	RL	ATE	2		-			
Relinquished By:	A	Date: 7/2/08	Time: 1840	Repe	yed B	y: 1	17-	8							DEO	CHI	OR	INA	TEI) IN	LA	B	_	PE	RSI	ERV	ED	IN	LAB	3	-		

.

																														7/-	2	~	
	Me	Campbo	ell Anal	ytica	al, Ir	ıc.			_	-		-			_			(CH	IA	IN	0	FC	U	ST	0	D١	R	EC	COL	RD)	
		1534 WIL PITTSRI	LOW PAS RG. CA 94	S RO/ 565-12	AD 701									T	U	RN	AR	101	UN	DT	TIN	1E		1				li i		Q			
Telepho	ne: (925) 25	2-9262			F	ax:	(925	5) 2	52-92	269	9									_			-	RU	SH		24 I	IR	48	BHR		72 HR	5 DAY
-														G	eoT	rac	ker	ED	F	\boxtimes		PDF		4	1	Exc	el			Writ	te (On (DW)	
Report To: Robe	rt Flory		B	ill To	: San	ne		_							_	_	_	_	Ana	lys	is R	equ	est			_		_	_	Othe	r	Com	ments
Company: AEI C	Consultants									_						(H)																Filter	
2500	Camino Dia	blo								_			_	TBE		:/B&								_								Samp	les for
Waln	ut Creek, C.	A 94597	E	-Mai	I: rflo	ory@	yaei	con	sulta	ant	ts.coi	m		S)/M	~	E&F	-							831(Analy	s reis
Tel: (925) 944-2	899, extensio	on 122	F	ax: (925)	944	4-28	95					-	801	10	5201	18.1	ist				8		20								-Analy	515.
Project #: 27836	1	<u>A</u>	P	rojec	t Nar	ne:	Cru	ise	Ame	eri	ca			+ m	BA	c (5	1S (4	sic 1	50)			cnat		82			~					Yes	/ NO
Project Location:	: 796 66 th Ay	e, Oaklar	nd C	1	1	1	0			_				8021	& T	reas	rboi	0 pa	/ 80	0		Nyg.		525			010						
Sampler Signatur	re:	Sel.	4	4	\leq	2	_			-	MET	110	D	602/	BE	& G	roca	801	602	808	0	licito	1	PA			9.2/6						
	1	SAMP	LING	LS.	ners		MA	TR	IX	P	RESE	ERV	ED	s Gas	LW 0	n Oil	n Hyd	3260 -	(EPA	4 608	3 / 808	0 9 F	0	s by E	Is	8	21/239						
SAMPLE ID	LOCATION (Field Point			taine	ontai									TPH a	4/826	troleur	troleur	EPA 8	NILY	es EPA	PA 608	4 / 826	5 / 827	PNA	7 Meta	Metal	240/74						
	Name)	Date	Time	# Cont	Type C	Water	Soil	Air .	Other		HCI	HNO3	Other	BTEX &	EPA 62	Total Pe	Total Pe	HVOCs	BTEX (Pesticid	PCBs El	EPA 62	EPA 62:	PAH's/	CAM-1	LUFT 5	Lead (72						
58-22-4		7-1	1040	1	225	-	1			t				4	4																		•
513-22-915	-	1	1045	-1																													
5A-> 2-15A	-		1050	1						Γ																							
56-72-196			1055	1			1			T																							
51-22-236	-		1100	-			ft	-		t				+	X	-															1		
10 22000			1105	-		·	+	+	-	t	-	-		-	1-							-	-	-					-	-	+		
10-22-27.9			1113	1			-																		_								
							_	-		$\left \right $				-												_							
									_	-														_				_			-		
1																																	
Relinquished By:	Th.	Date:	Time: 470	Rece	ived B	note	10		U.s.			10	22					_	2									ve	DAS	0&0	;	METALS	OTHER
Relinquished By:	1910	Date:	Time:	Rece	ived B	y: 1	7		M	1	4	14	-		CE	tº /	- ON	(DIT		N			P	RES	SER	VA	TIC	N_					
ENVIN-Tet	TA SK-	7218	185	XT	L_	1A	4	4	\$	5					HEA	DS	PAC	CE A	BS	ENT	r		C	ON	TAI	INE	RS	5	_				
Relinquished By:	1	Date: 7/2/08	Time: 18 40	Rece	ived B	y:/	al	4	0	-	-				DEC	HL	ORI	NA	TED	IN	LA	B		PE	RSI	CRV	ED	INI	LAB				

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	g, CA 94565-1701 52-9262					Work	Order	: 0807	101	(ClientC	ode: A	EL				
			WriteOr	n 🖌 EDF		Excel		Fax		🗸 Email		Hard	lCopy	Thir	dParty	J-	flag
Report to:							Bill to:						Req	uested	TAT:	5	days
Robert Flory AEI Consulta 2500 Camin Walnut Cree	, ants no Diablo, Ste. #200 ek, CA 94597	Email: cc: PO: ProjectNo:	rflory@aeicor #278361; Cru	nsultants.com uise America, 796	66th		De AE 25 Wa	enise M El Cons 00 Can alnut Cr	ockel ultants nino Dia reek, C	ablo, St A 94597	e. #200 7)	Dat Dat	e Rece e Print	ived: ted:	07/03/ 07/03/	'2008 '2008
(925) 944-289	99 FAX (925) 944-2895		Ave, Oakland				drr	nockel@	aeico	nsultan	ts.com						
						-	-	-	Req	uested	Tests	(See leg	gend b	elow)		T	T
Lab ID 0807101-001	SB-21-3.5		Soil	7/1/2008 7:55	Hold	1 A	A	A	A	A	6	A	A	9	10		12
0807101-003	SB-21-6		Soil	7/1/2008 8:00		А	А	А	Α	А			А			-	
0807101-004	SB-19-3.5		Soil	7/1/2008 8:20		А			Α		Α						
0807101-005	SB-19-6		Soil	7/1/2008 8:50		А			Α		Α						
0807101-006	SB-20-3.5		Soil	7/1/2008 8:30		Α			Α		Α						
0807101-007	SB-20-5.5		Soil	7/1/2008 8:35		Α			Α		Α						
0807101-008	SB-18-3.5		Soil	7/1/2008 9:45		Α			Α		Α						
0807101-009	SB-18-5		Soil	7/1/2008 10:03		Α			Α		Α						
0807101-012	SB-22-4		Soil	7/1/2008 10:40		А			А								
0807101-016	SB-22-23.5		Soil	7/1/2008 11:05		А			Α								

Test Legend:

1 5-OXYS_S	2 8010BMS_S	3 8082A_PCB_S 4 G-MBTEX_S	5 LUFT_S
6 PB_S	7 PREDF REPORT	8 TPH(D)WSG_S 9	10
11	12		

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	7/3/08 2:12	2:33 PM
Project Name:	#278361; Cruise	America, 796 66t	h Ave	, Oaklan	d Check	list completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0807101	Matrix <u>Soil</u>			Carrie	r: <u>Michael Herna</u>	ndez (MAI Co	<u>urier)</u>
		<u>Chain</u>	of Cu	stody (CO	OC) Informa	ition		
Chain of custody	/ present?		Yes	V	No 🗆			
Chain of custody	/ signed when relinqui	shed and received?	Yes	✓	No 🗆			
Chain of custody	agrees with sample	abels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	V	No 🗆			
Date and Time of	f collection noted by Cl	ient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes		No 🔽			
		<u>S</u>	ample	Receipt	Information	1		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good conc	lition?	Yes	✓	No 🗆			
Samples in prop	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	n and Hol	d Time (HT)) Information		
All samples rece	ived within holding tim	e?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	7.2°C		NA 🗆	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	nitted 🗹	
Sample labels cl	hecked for correct pre	servation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell Analyt "When Quality Counts"	ical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client Project ID:	#278361; Cruise	Date S	Sampled: 07/01/08					
2500 Camino Diablo Ste #200	America, 796 66th	Ave, Oakland	Date H	Received: 07/03/08					
	Client Contact: Ro	Client Contact: Robert Flory Date H			Extracted: 07/03/08				
Walnut Creek, CA 94597	Client P.O.:		Date A	Analyzed: 07/10/08-07/11/	08				
C	exygenated Volatile (Drganics by P&T and G	GC/MS*	: Work Ordon	0807101				
Lab ID Client ID	Matri	x Methyl-t-butyl ether ((MTBE)	t-Butyl alcohol (TBA)	DF	% SS			
0807101-001A SB-21-3.5	S	ND		ND	1	98			
0807101-003A SB-21-6	S	ND		ND	1	96			
0807101-004A SB-19-3.5	S	0.024		ND	1	94			
0807101-005A SB-19-6	S	6.5		ND<3.3	67	102			
0807101-006A SB-20-3.5	S	0.023		ND	1	94			
0807101-007A SB-20-5.5	S	ND		ND	1	94			
0807101-008A SB-18-3.5	S	ND<0.25,a3		ND<2.5	50	95			
0807101-009A SB-18-5	S	12		ND<3.3	67	102			
0807101-012A SB-22-4	S	ND		ND	1	92			
0807101-016A SB-22-23.5	S	ND		ND	1	94			
Reporting Limit for DF =1; ND means not detected at or above the repo	w rting limit S	NA 0.005		NA 0.05	N mo	A /kg			

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

a3) sample diluted due to high organic content

Angela Rydelius, Lab Manager

McCampbell An "When Ouality"	alyti _{Counts"}	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
AEI Consultants		Client Pr	oject ID:	#27836	1; Cruise	Date Sampled:	07/01/08					
		America	, 796 66th	Ave, O	akland	Date Received:	07/03/08					
2500 Camino Diablo, Ste. #200		Client C	ontact: Ro	obert Fl	ory	Date Extracted:	07/03/08					
Walnut Creek, CA 94597		Client P.	D.:			Date Analyzed	07/11/08					
Halogenated	Volatil	e Organio	s by P&T	' and G	C-MS (8010 Ba	sic Target List)*						
Extraction Method: SW5030B		Anal	v tical Method	: SW826	0B	<i>b ,</i>	Work Order:	0807101				
Lab ID	08071	7101-001A 0807101-003A										
Client ID	SB-	21-3.5	SB-21	-6			Reporting DF	Limit for				
Matrix		S	S				c					
DF		1	1				3	w				
Compound				Conce	entration		mg/kg	μg/L				
Bromodichloromethane	ו	ND	ND				0.005	NA				
Bromoform	1	ND	ND				0.005	NA				
Bromomethane	1	ND	ND				0.005	NA				
Carbon Tetrachloride	1	ND	ND				0.005	NA				
Chlorobenzene	1	ND	ND				0.005	NA				
Chloroethane	1	ND	ND				0.005	NA				
Chloroform	1	ND	ND				0.005	NA				
Chloromethane	1	ND VD	ND				0.005	NA				
1.2 Dibromochloromethane (EDP)	<u>ו</u>		ND				0.005	NA NA				
1.2-Dichlorobenzene	<u>ו</u> ז		ND				0.004	NA NA				
1.3-Dichlorobenzene	1	ND	ND				0.005	NA				
1.4-Dichlorobenzene	1	ND	ND				0.005	NA				
Dichlorodifluoromethane	1	ND	ND				0.005	NA				
1,1-Dichloroethane	1	ND	ND				0.005	NA				
1,2-Dichloroethane (1,2-DCA)	1	ND	ND				0.004	NA				
1,1-Dichloroethene	1	ND	ND				0.005	NA				
cis-1,2-Dichloroethene	1	ND	ND				0.005	NA				
trans-1,2-Dichloroethene	1	ND VD	ND				0.005	NA				
1,2-Dichloropropane	<u>ן</u> נ		ND				0.005	NA NA				
trans 1.3 Dichloropropene	<u>ו</u>		ND				0.005	NA NA				
Freon 113	<u>ו</u> ן	ND	ND				0.005	NA				
Methylene chloride	1	ND	ND				0.005	NA				
1,1,1,2-Tetrachloroethane	1	ND	ND				0.005	NA				
1,1,2,2-Tetrachloroethane	1	ND	ND				0.005	NA				
Tetrachloroethene	1	ND	ND				0.005	NA				
1,1,1-Trichloroethane	1	ND	ND				0.005	NA				
1,1,2-Trichloroethane	1	ND	ND				0.005	NA				
Trichloroethene	1		ND				0.005	NA				
Vinyl Chlorida	<u>ו</u>		ND				0.005	NA NA				
	1	<u>su</u>	rragete De	coverio	s (%)	<u> </u>	0.005	1974				
%\$\$1.		08		CUVEIIC	5 (/0)							
/////		70	90			+						
%552:		105	105									
%SS3:	1	19	110)								
Comments												
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample	μg/L, so es in μg/γ	il/sludge/so wipe.	water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP stracts are reported in mg/L, wipe samples in $\mu g/wipe$.									

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

McCampbell An "When Quality of	<mark>alytical, In</mark> Counts"	<u>.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client Pr	roject ID: #	278361	; Cruise	Date Sampled:	07/01/08				
2500 Comino Diablo, Sto. #200	America	, 796 66th A	Ave, Oal	kland	Date Received:	07/03/08				
2500 Camino Diabio, Stc. #200	Client C	ontact: Ro	bert Flor	ry	Date Extracted: 07/03/08					
Walnut Creek, CA 94597	Client P.	0.:			Date Analyzed	07/06/08				
Po	lychlorinated Bi	phenyls (P	CBs) Ar	oclors by GC-H	ECD*					
Extraction Method: SW3550C	Ana	lytical Method:	SW80824	A	1	Work Order:	0807101			
Lab ID	0807101-001A	0807101-0	003A			-				
Client ID	SB-21-3.5	SB-21-	-6			Reporting DF	Limit for =1			
Matrix	S	S								
DF	1	1				S	W			
Compound			Concer	ntration		mg/kg	ug/L			
PCBs, total, as DCB	ND	ND				0.025	NA			
Aroclor1016	ND	ND				0.025	NA			
Aroclor1221	ND	ND				0.025	NA			
Aroclor1232	ND	ND				0.025	NA			
Aroclor1242	ND	ND				0.025	NA			
Aroclor1248	ND	ND				0.025	NA			
Aroclor1254	ND	ND				0.025	NA			
Aroclor1260	ND	ND				0.025	NA			
	Surr	ogate Reco	overies	(%)						
%SS:	95	95								
Comments	Comments h4									
* water samples in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/$ wipe, filter samples in $\mu g/$ filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.										
ND means not detected above the reportir	ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.									
# surrogate diluted out of range or surroga	surrogate diluted out of range or surrogate coelutes with another peak.									

h4) sulfuric acid permanganate (EPA 3665) cleanup

Angela Rydelius, Lab Manager

	<u>McCamp</u>	bell	Analyti ality Counts"	<u>cal, l</u>	[<u>nc.</u>	We	1534 Willow l b: www.mccamp Telephone: 3	Pass Road, Pittsbu bell.com E-mai 877-252-9262 F	rg, CA 94565- l: main@mccam ax: 925-252-92	1701 pbell.com 69	
AEI C	Consultants	<u> </u>		Client	Project ID:	#278361; Cr Ave Oaklar	uise	Date Sampl	ed: 07/01/	08	
2500 0	Camino Diablo, Ste	. #200		Amen	ica, 790 0001	Ave, Oakiai	iu -	Date Receiv	ved: 07/03/	08	
				Client	Contact: Ro	obert Flory		Date Extrac	ted: 07/03/	08	
Walnu	t Creek, CA 94597	1		Client	P.O.:			Date Analy	zed 07/03/	08-07/1	0/08
	Gaso	line Rai	nge (C6-C1	2) Vola	ntile Hydroca	rbons as Ga	soline with	BTEX and M	ITBE*		
Extraction	method: SW5030B	N (<i>i</i>)	TDU	``	Analytical I	methods: SW80	21B/8015Cm	E 4 11	Work O	rder: 080	07101
Lab ID Client ID Matrix TPH(g) MTBE					Benzene	Toluene	Etnylbenzene	Xylenes	DF	% 55	
001A	SB-21-3.5	S	ND		ND	ND	ND	ND	ND	1	104
003A	SB-21-6	S	16,d7	,	ND	ND	ND	ND	0.041	1	91
004A	SB-19-3.5	S	ND		ND	ND	ND	ND	ND	1	109
005A	SB-19-6	S	17,d1		6.8	0.79	0.31	0.20	1.6	1	115
006A	SB-20-3.5	S	ND		ND	ND	ND	ND	ND	1	106
007A	SB-20-5.5	S	ND		ND	ND	ND	ND	ND	1	81
008A	SB-18-3.5	S	1500,d2	,d9	ND<5.0	ND<0.50	6.5	19	88	100	124
009A	SB-18-5	S	21,d1		13	0.21	0.22	0.92	3.6	1	103
012A	SB-22-4	S	ND		ND	ND	ND	ND	ND	1	92
016A	SB-22-23.5	S	ND		ND	ND	ND	ND	ND	1	90
Report	ing Limit for DF =1;	W	50		5.0	0.5	0.5	0.5	0.5	uį	g/L
ND me	eans not detected at or	S	1.0		0.05	0.005	0.005	0.005	0.005	mg	g/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d1) weakly modified or unmodified gasoline is significant

d2) heavier gasoline range compounds are significant (aged gasoline?)

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

d9) no recognizable pattern

	McCampbe	ell Ana en Ouality Co	lytical, Inc		1534 V Web: www. Tele	Villow Pass Ro mccampbell.com phone: 877-252	ad, Pittsburg, CA 945 n E-mail: main@mc 2-9262 Fax: 925-252	665-1701 ccampbell.com 2-9269				
AEI C	onsultants		Client Pro America.	ject ID: 🗄	#278361; Cruise Ave. Oakland	Dat	Date Sampled: 07/01/08					
2500 C	amino Diablo, Ste. #2	200				Dat	Date Received: 07/03/08					
			Client Co	ntact: Ro	obert Flory	Dat	e Extracted: 07	7/03/08				
Walnut	t Creek, CA 94597		Client P.O).:		Dat	e Analyzed: 07	7/07/08				
Extraction	method SW3050B				Work Order: 0	807101						
Lab ID	Client ID	Matrix	Extraction Type	Cadmiu	m Chromium	Lead	Nickel	Zinc	DF	% SS		
001A	SB-21-3.5	S	TOTAL	ND	7.2	ND	6.1	85	1	102		
003A	SB-21-6	S	TOTAL	ND	54	14	83	46	1	99		

Reporting Limit for DF =1;	W	TOTAL	NA	NA	NA	NA	NA	NA
ND means not detected at or above the reporting limit	S	TOTAL	1.5	1.5	5.0	1.5	5.0	mg/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion. WET = Waste Extraction Test (STLC). DI WET = Waste Extraction Test using de-ionized water.

	CCampbell Analyti	cal, Inc.	2	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
AEI Consulta	ints	Client Proje	ect ID: #	278361; Cruise		Date Sampled:	07/01/	08		
2500 Camino	Diablo. Ste. #200	/ incrica, /	70 00ui 1	ive, outland		Date Received: 07/03/08				
2500 Cullino	Dialo, De. #200	Client Con	tact: Ro	bert Flory		Date Extracted: 07/03/08				
Walnut Creek	, CA 94597	Client P.O.	Date Analyzed	07/07/	08-07/0	9/08				
			Lead by	ICP*						
Extraction method	SW3050B	nalytical me	ethods 6010C			Work Or	der: 080	07101		
Lab ID	Client ID	Matrix	Extraction Type		Lead		DF	% SS		
0807101-004A	SB-19-3.5	S	TOTAL		16		1	98		
0807101-005A	SB-19-6		S	TOTAL		190		1	101	
0807101-006A	SB-20-3.5		S	TOTAL		9.7		1	101	
0807101-007A	SB-20-5.5		S	TOTAL		320		1	102	
0807101-008A	SB-18-3.5		S	TOTAL		230		1	101	
0807101-009A	SB-18-5		S	TOTAL		17		1	99	

Reporting Limit for DF =1;	w	TOTAL	NA	µg/L
ND means not detected at or	S	TOTAL	5.0	mg/Kg
above the reporting limit				

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in $\mu g/kg$, wipe samples in $\mu g/kg$, filter samples in $\mu g/kg$.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion. WET = Waste Extraction Test (STLC). DI WET = Waste Extraction Test using de-ionized water.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	Campbell Analyt "When Ouality Counts"	ical, Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultar	nts	Client Project	ID: #2	278361; Cruise	Date Sampled: 07/	/01/08					
2500 Comino I	Diable Sta #200	America, 796	66th A	ve, Oakland	Date Received: 07/	Date Received: 07/03/08					
2500 Camino I	Jiabio, Sie. #200	Client Contac	t: Ro	bert Flory	Date Extracted: 07/	03/08					
Walnut Creek,	CA 94597	Client P.O.:			Date Analyzed: 07/	08/08					
	Total Extracta	ble Petroleum l	Hydroc	carbons with Silica (Gel Clean-Up*						
Extraction method:	SW3550C/3630C	Analytic	al method	ds: SW8015C	Wo	ork Order: 0	807101				
Lab ID	Client ID	Matrix		TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS				
0807101-001A	SB-21-3.5	S		ND	ND	1	118				
0807101-003A	SB-21-6	S		180,e1	110	1	117				

Reporting Limit for DF =1;	W	NA	NA	ug/L
ND means not detected at or above the reporting limit	S	1.0	5.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e1) unmodified or weakly modified diesel is significant

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0807101

EPA Method SW8260B	hod SW8260B Extraction SW5030B							Sp	Spiked Sample ID: 0807114-002A				
Analyte	Sample Spiked MS			MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	0.050	80.8	80.4	0.404	102	99.3	2.60	60 - 130	30	60 - 130	30	
t-Butyl alcohol (TBA)	ND	0.25	70.7	71.2	0.625	93.7	95.4	1.81	60 - 130	30	60 - 130	30	
Diisopropyl ether (DIPE)	ND	0.050	76.6	76.3	0.466	97.3	95.4	1.97	60 - 130	30	60 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	0.050	78.9	78.8	0.211	99.5	97.7	1.83	60 - 130	30	60 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	0.050	84.7	84.3	0.404	107	104	2.70	60 - 130	30	60 - 130	30	
%SS1:	99	0.12	95	95	0	94	95	1.06	70 - 130	30	70 - 130	30	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:													

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONE

BATCH 36729 SUMMARY

Lab ID	Date Sampled	Date Sampled Date Extracted		Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807101-001A	07/01/08 7:55 AM	07/03/08	07/11/08 12:19 AM	0807101-003A	07/01/08 8:00 AM	07/03/08	07/11/08 12:59 AM
0807101-004A	07/01/08 8:20 AM	07/03/08	07/11/08 1:37 AM	0807101-005A	07/01/08 8:50 AM	07/03/08	07/10/08 6:15 PM
0807101-006A	07/01/08 8:30 AM	07/03/08	07/11/08 2:15 AM	0807101-007A	07/01/08 8:35 AM	07/03/08	07/11/08 2:56 AM
0807101-008A	07/01/08 9:45 AM	07/03/08	07/11/08 3:34 AM	0807101-009A	07/01/08 10:03 AM	07/03/08	07/10/08 6:58 PM
0807101-012A	07/01/08 10:40 AM	07/03/08	07/11/08 4:13 AM	0807101-016A	07/01/08 11:05 AM	07/03/08	07/11/08 4:52 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

EPA Method SW8260B	Extra	ction SW	5030B		Bat	tchID: 36	729	Spiked Sample ID: 0807114-002A				
Analyte	Sample Spiked MS I				MS-MSD	LCS	LCSD	LCS-LCSD Acceptance Criteri)
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Chlorobenzene	ND	0.050	92.2	90.6	1.74	109	102	6.16	60 - 130	30	60 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	103	103	0	123	117	5.39	60 - 130	30	60 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	80.9	80.3	0.782	99.4	96.7	2.70	60 - 130	30	60 - 130	30
Trichloroethene	ND	0.050	98.9	97	1.93	117	109	7.04	60 - 130	30	60 - 130	30
%SS1:	99	0.12	95	95	0	94	95	1.06	70 - 130	30	70 - 130	30
%SS2:	105	0.12	99	98	0.543	98	97	0.556	70 - 130	30	70 - 130	30
%SS3:	110	0.12	100	99	1.37	97	96	0.299	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:			

BATCH 36729 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807101-001A	07/01/08 7:55 AM	07/03/08	07/11/08 12:19 AM	0807101-003A	07/01/08 8:00 AM	07/03/08	07/11/08 12:59 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

~ QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8082A

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0807101

EPA Method SW8082A		BatchID: 36643				Spiked Sample ID: 0807055-013A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	D LCS-LCSD Acceptance Criteria)
, mayte	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	ND	0.075	111	113	1.16	106	107	1.15	70 - 130	20	70 - 130	20
%SS:	123	0.050	117	116	0.481	115	115	0	70 - 130	20	70 - 130	20
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	L with th	ne following	exceptions:			

BATCH 36643 SUMMARY											
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed				
0807101-001A	07/01/08 7:55 AM	07/03/08	07/06/08 5:17 PM	0807101-003A	07/01/08 8:00 AM	07/03/08	07/06/08 4:19 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Web: www.mccampbel

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0807101

EPA Method SW8015C	Extraction SW3550C/3630C				Bat	chID: 36	692	Spiked Sample ID: 0807052-003A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%))	
7 110.910	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH-Diesel (C10-C23)	ND	20	92.4	90.5	2.09	91.6	90.2	1.57	70 - 130	30	70 - 130	30	
%SS:	116	50	90	90	0	90	90	0	70 - 130	30	70 - 130	30	
All target compounds in the Method E NONE	lank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:				

BATCH 36692 SUMMARY											
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed				
0807101-001A	07/01/08 7:55 AM	07/03/08	07/08/08 7:16 PM	0807101-003A	07/01/08 8:00 AM	07/03/08	07/08/08 8:25 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0807101

EPA Method SW8021B/8015Cm	Extrac	ction SW	5030B		Ba	tchID: 36	691	Sp	Spiked Sample ID: 0807052-003A				
Analyte	Sample Spiked MS			MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	1	
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex ^f)	ND	0.60	78.3	79.3	1.23	82.9	77.1	7.25	70 - 130	20	70 - 130	20	
MTBE	ND	0.10	93.4	95.3	2.03	92.6	98.2	5.84	70 - 130	20	70 - 130	20	
Benzene	ND	0.10	88	91.3	3.71	88.7	92.3	4.03	70 - 130	20	70 - 130	20	
Toluene	ND	0.10	75.9	76.9	1.31	78.1	81.3	3.96	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	0.10	88.3	90.7	2.70	88.1	89.5	1.64	70 - 130	20	70 - 130	20	
Xylenes	ND	0.30	82.2	83.5	1.52	81.4	78.8	3.28	70 - 130	20	70 - 130	20	
%SS:	101	0.10	93	95	1.57	85	94	9.83	70 - 130	20	70 - 130	20	
All target compounds in the Method E NONE	alank of this	extraction	batch we	ere ND les	ss than the	method R	L with th	e following	exceptions:				

BATCH 36691 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807101-001A	07/01/08 7:55 AM	07/03/08	07/04/08 5:42 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0807101

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ba	708	Sp	Spiked Sample ID: 0807114-001A				
Analyte	Sample Spiked MS			MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
, may to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	0.60	97	103	6.18	90.5	93.4	3.16	70 - 130	20	70 - 130	20
MTBE	ND	0.10	95.5	93.8	1.83	106	113	5.92	70 - 130	20	70 - 130	20
Benzene	ND	0.10	93.4	91.5	2.12	105	111	4.80	70 - 130	20	70 - 130	20
Toluene	ND	0.10	108	106	1.92	93.5	97.6	4.34	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	111	109	1.76	104	107	3.15	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	121	121	0	96.3	100	3.69	70 - 130	20	70 - 130	20
%SS:	110	0.10	97	94	3.08	80	83	4.12	70 - 130	20	70 - 130	20
All target compounds in the Method E	All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:											

NONE

BATCH 36708 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807101-003A	07/01/08 8:00 AM	07/03/08	07/04/08 6:12 AM	0807101-004A	07/01/08 8:20 AM	07/03/08	07/04/08 2:43 AM
0807101-005A	07/01/08 8:50 AM	07/03/08	07/09/08 8:23 AM	0807101-005A	07/01/08 8:50 AM	07/03/08	07/10/08 2:19 PM
0807101-006A	07/01/08 8:30 AM	07/03/08	07/04/08 1:13 AM	0807101-007A	07/01/08 8:35 AM	07/03/08	07/10/08 1:48 PM
0807101-008A	07/01/08 9:45 AM	07/03/08	07/09/08 6:41 AM	0807101-009A	07/01/08 10:03 AM	07/03/08	07/03/08 11:43 PM
0807101-009A	07/01/08 10:03 AM	07/03/08	07/07/08 8:03 PM	0807101-012A	07/01/08 10:40 AM	07/03/08	07/09/08 8:57 AM
0807101-016A	07/01/08 11:05 AM	07/03/08	07/03/08 11:47 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR 6010C

W.O. Sample Ma	D. Sample Matrix: Soil/Soil QC Matrix: Soil										WorkOrder 0807101					
EPA Method 60	010C			Extracti	on SW305	0B	В	atchID: 3	6734	Spiked Sa	mple	ID 0807097.	-004A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acce	eptanc	e Criteria (%	,)			
, and y to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
Cadmium	ND	50	99.4	99.6	0.151	10	98.2	98.9	0.634	75 - 125	20	80 - 120	20			
Chromium	32	50	93.3	92.6	0.443	10	103	99.4	3.12	75 - 125	20	80 - 120	20			
Lead	5.2	50	94.6	92.7	1.87	10	97.9	103	5.22	75 - 125	20	80 - 120	20			
Nickel	21	50	102	101	0.591	10	102	102	0	75 - 125	20	80 - 120	20			
Zinc	61	500	98.5	103	3.89	100	103	104	0.963	75 - 125	20	80 - 120	20			
%SS:	98	250	98	99	0.467	250	100	104	3.92	70 - 130	20	70 - 130	20			
All target compou NONE	nds in the M	lethod Bla	ank of thi	s extractio	on batch wer	e ND less	s than the r	nethod RL	with the fol	lowing exce	ptions:					

			BATCH 36734	<u>4 SUMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807101-001A	07/01/08 7:55 AM	A 07/03/08	07/07/08 8:30 PM	0807101-003A	07/01/08 8:00 AM	1 07/03/08 0	07/07/08 8:35 PM
0807101-004A	07/01/08 8:20 AM	A 07/03/08	07/07/08 4:54 PM	0807101-005A	07/01/08 8:50 AN	1 07/03/08 07	7/09/08 12:05 PM
0807101-006A	07/01/08 8:30 AM	A 07/03/08	07/07/08 4:56 PM	0807101-007A	07/01/08 8:35 AN	1 07/03/08 0	07/07/08 4:58 PM
0807101-008A	07/01/08 9:45 AM	A 07/03/08	07/07/08 5:01 PM	0807101-009A	07/01/08 10:03 AM	1 07/03/08 0	07/07/08 5:07 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

APPENDIX E

Soil Boring Water Laboratory Analyses with Chain of Custody Documentation

McCampbell Au "When Ouality	nalytical, Inc.	1534 Will Web: www.mc Telepho	ow Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 nain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #27836	1; Cruise America	Date Sampled:	07/01/08
2500 Camino Diablo, Ste. #200			Date Received:	07/02/08
Walnut Creek, CA 94597	Client Contact: Robert Flo	ory	Date Reported:	07/10/08
	Client P.O.:		Date Completed:	07/10/08

WorkOrder: 0807132

July 10, 2008

Dear Robert:

Enclosed within are:

- 1) The results of the **3** analyzed samples from your project: **#278361; Cruise America**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

						(0	8	0	7	13	3	0	2													1	/	1			
McCamp 1534 W PITTSI	bell Ana ILLOW PAS URG, CA 9	lytica SS ROA 4565-17	al, In D	ic.								т	UR	N	AR	01	CH	AI D T	N IM	OI E	F (CU	ST	0	DY	Y R	E	CØ	RI			
Telephone: (925) 252-9262			F	ax: (9	925)) 252	2-92	69				Ge	oTi	racl	ker	ED	F [\triangleleft	Р	PDF	[JSH	Exe	cel		4	Wr	ite (72 HI	W)]
Report To: Robert Flory	I	Bill To	: San	ne	-	_	_	_			+	_		_		1	Ana	lysi	s Re	eque	est					N		Oth	er	Co	mme	nt
Company: AEI Consultants														E												50	N			Fil	ter	
2500 Camino Diablo												BE		B&											(F	17	11			Sa	nples	fo
Walnut Creek, CA 94597	I	E-Mail	l: rflo	ry@a	aeic	const	ulta	nts.	com	1		MM	-	&F	_							3310			Ň	42	8			Me	tals	
Tel: (925) 944-2899, extension 122	F	ax: (925)	944-	289	5	_					2102	10	201	18.1	ISI				8		20/8			R	9to				An	alysis	**
Project #: 278361	1	roject	t Nan	ne: C	Crui	ise A	me	rica	4		-	+ 1	BA	s (55	1s (4	sic l	50)			enat		827			-	23				Ye	s /	N
Project Location: 796 66th Ave, Oak	and	A	1	4							- 3	8021	L 3	reas	rbor	0 pa	/ 800	X		xyB		525			010	2						
Sampler Signature:	10	19	1	1	/		_					700	BE	& C	roca	801	602	808	*	lelo		PA (9.2/6	20						
LOCATION	PLING	ers	ainers	M	IAT	RIX	(PRI	ESEF	RVE	D	as Gas	260 MI	um Oil	um Hyd	A 8260-	Y (EPA	PA 608 /	08 / 808	260 9 F	270	A's by E	stals	als	7421/239	Salo		•	1			
SAMPLE ID (Field Point Name) Date	Time	# Contain	Type Cont	Water	Air	Sludge	Other	lce	HCI	HNO	Other	BIEA & LP	EPA 624/8	Total Petrole	Total Petrole	HVOCs EP/	BTEX ONL	Pesticides El	PCBs EPA 6	EPA 624 / 8.	EPA 625 / 8	PAH's/PN/	CAM-17 Mc	LUFT 5 Met	Lead (7240/	8015-						
56-21-00 7-1-0	8 1000	6	2th	1							5	4	X			×			X					×		X				pe	X	M
3B-18-4) 7-1-0	8 1015	4	VOA								×	$\langle \cdot \rangle$	X																		L/X	1
77-22-40 71-0	8 1355	3	COA								+	42	X																	y	6	20
																															,	
					+	-			+	-	+	t	1								1		-									
	-				+	+			+	+	+	+	+	-	+	-	-	-	-	+			-		-					-		_
	-				+	+		-	+	-	+	+	+	-	-	-	-	-	-	-	-		-					-	+	-		_
					+			-	-	-	+	+	+	-	-	-	-	• •	-	+	-	-	-	_				-	-	-		-
	-				-	-			_	-	+	+	-	-	-	-	-	-	-	-	-	_						-	-	-		_
	_					_			_	_	-	-	-	_	_	-		_	-	_	_	_	_				_	-	-	-		-
																																_
1.01															+							-										8
Relinquished By: Date:	Time:	Recei	ived B	10	1	12			11	2				_	-		00	~				_				ve	OAS	0.8	G	META	us o	т
Relinquished By: Dolo Date:	Time:	Recei	ived B	v: /	~	-7		-	16	U	-	IC	E/t	0 -	1	0		-	1		P	RE	SEF	RVA	TIC	N_	V					_
ENJ10 - Tell 8K, 7/2/8	1822	Th	f.	1/	_	h	4	_		_		G	EAL	DCDSE	PAC	EA	BSE	IN	LAP)	A	CON	TA	INE	RS	IN	LAP)				
The Alter The The Alter	1840	Recei	yed B	1	¥1	R	~	-	_			DI	CU	ILC.	RI	141	ED	114.1	LAD		<u>()</u>	re	no.	CIU	ED	114	LAD	~				

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 080713	2 Client	Code: AEL		
		WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bil	l to:		Rec	uested TAT:	5 days
Robert Flory	Email:	rflory@aeiconsul	tants.com		Denise Moc	kel			
AEI Consultants	CC:				AEI Consult	ants			
2500 Camino Diablo, Ste. #200	PO:				2500 Camin	o Diablo, Ste. #20	DO Dat	te Received:	07/02/2008
Walnut Creek, CA 94597	ProjectNo:	#278361; Cruise	America		Walnut Cree	ek, CA 94597	Dat	te Printed:	07/07/2008
(925) 283-6000 FAX (925) 283-6121					dmockel@a	eiconsultants.con	n		

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
			-													
0807132-001	SB-21-W	Water	7/1/2008 10:00		В	С	D	А	А	Е						
0807132-002	SB-18-W	Water	7/1/2008 10:15		В			А								
0807132-003	SB-22-W	Water	7/1/2008 13:55		В			А								

Test Legend:

1	5-OXYS_W
6	TPH(D)WSG_W
11	

2	8010BMS_W
7	
12	

3	8082A_PCB_W	
8		

4	G-MBTEX_W
9	

5	PREDF REPORT
10	

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	ne: AEI Consultants						Date and Time Received: 7/2/2008 6:40:00 PM			
Project Name:	#278361; Cruise	Americ	a		Check	klist completed and re	eviewed by:	Samantha Arbuckle		
WorkOrder N°:	0807132	Matrix	Water			Carrie	er: <u>Michael Herna</u>	ndez (MAI Co	urier)	
			Chain	of Cu	stodv (C	OC) Informa	ation			
Chain of custody	v present?			Ves		No 🗌				
			d an e e i ve dO	Vee						
Chain of custody	v signea when relinqui	sned and	a received?	res						
Chain of custody	agrees with sample I	abels?		Yes		No 🗌				
Sample IDs noted	d by Client on COC?			Yes	\checkmark	No 🗆				
Date and Time of	f collection noted by Cl	ient on C	OC?	Yes	✓	No 🗆				
Sampler's name	noted on COC?			Yes	✓	No 🗆				
			S	amnle	Receipt	Information	1			
Quality is a set of the		••••	<u></u>	Vee		<u></u>	<u>-</u>			
Custody seals in	tact on shipping conta	iner/cool	ler?	Yes				NAL		
Shipping contain	er/cooler in good cond	lition?		Yes		No 🗌				
Samples in prop	er containers/bottles?			Yes	✓	No 🗆				
Sample containe	ers intact?			Yes	✓	No 🗆				
Sufficient sample	e volume for indicated	test?		Yes	\checkmark	No 🗌				
		Sa	mple Preser	vatio	n and Ho	ld Time (HT) Information			
	ived within helding tim		•	Vaa	V					
All samples lece	ived within holding tim	e :		165	<u> </u>			🗖		
Container/Temp	Blank temperature			Coole	er Temp:	7.6°C				
Water - VOA via	ls have zero headspa	ce / no b	ubbles?	Yes	✓	No 🗆	No VOA vials subm	itted		
Sample labels cl	necked for correct pre	servatior	ו?	Yes	✓	No 🗌				
TTLC Metal - pH	acceptable upon rece	ipt (pH<2	2)?	Yes		No 🗆		NA 🗹		

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI Consultan	ts	Client Projec	Client Project ID: #278361; Cruise			Date Sampled: 07/01/08			
2500 Camino Diablo, Ste. #200		America	America			Received: 07/02/08			
		Client Conta	act: Rob	ert Flory	Date	Extracted: 07/08/08-07/09/	08		
Walnut Creek, G	CA 94597	Client P.O.:			Date	Analyzed: 07/08/08-07/09/	08		
Extraction method S	W5030B	Volatile (Ana	Organics alytical meth	by P&T and GC/MS	*	Work Order:	0807132		
Lab ID	Client ID		Matrix	t-Butyl alcohol (T	BA)	Methyl-t-butyl ether (MTBE)	DF	% SS	
0807132-001B	SB-21-W		W	160		11	2.5	85	
0807132-002B	SB-18-W		W	6800,b1		1300	100	84	
0807132-003B	3B SB-22-W		W	ND		9.2	1	102	
	Reporting Limit for DF =1;		W	2.0		0.5	με	/L	
ND means no	t detected at or above the repor	ting limit	S	NA		NA	N	A	

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

b1) aqueous sample that contains greater than ~1 vol. % sediment

Angela Rydelius, Lab Manager

McCampbell An	alytical, In Counts"	<u>nc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
AEI Consultants	Client l	Project ID:	#278361	; Cruise	Date Sampled: 07/01/08				
	Americ	a			Date Received:	07/02/08			
2500 Camino Diablo, Ste. #200	Client	Contact: R	obert Flo	rs,	Data Extracted: 07/02/09				
Walnut Creek CA 94597	Client		00011110	I y	Date Analyzed	07/08/08			
	Clicht I	.0			Date Analyzed	07/08/08			
Halogenated	Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)*								
Extraction Method: SW5030B	Ar	alytical Method	d: SW82601	В		Work Order:	0807132		
Lab ID	0807132-001C					Bonorting	Limit for		
Client ID	SB-21-W					DF	=1		
							-		
Matrix	W					s	W		
DF	1								
Compound			Concer	ntration		µg/kg	μg/L		
Bromodichloromethane	ND					NA	0.5		
Bromoform	ND					NA	0.5		
Bromomethane	ND ND					NA	0.5		
Carbon Tetrachloride	ND					NA	0.5		
Chloroethane	ND					NA	0.5		
Chloroform	ND					NA	0.5		
Chloromethane	ND					NA	0.5		
Dibromochloromethane	ND					NA	0.5		
1,2-Dibromoethane (EDB)	ND	-				NA	0.5		
1,2-Dichlorobenzene	ND ND					NA	0.5		
1.5-Dichlorobenzene	ND					NA NA	0.5		
Dichlorodifluoromethane	ND					NA	0.5		
1,1-Dichloroethane	ND					NA	0.5		
1,2-Dichloroethane (1,2-DCA)	ND					NA	0.5		
1,1-Dichloroethene	ND	-				NA	0.5		
cis-1,2-Dichloroethene	ND ND					NA	0.5		
1 2-Dichloropropage	ND					NA NA	0.5		
cis-1,3-Dichloropropene	ND					NA	0.5		
trans-1,3-Dichloropropene	ND					NA	0.5		
Freon 113	ND					NA	10		
Methylene chloride	ND					NA	0.5		
1,1,1,2-Tetrachloroethane	ND				+	NA	0.5		
1,1,2,2-1etrachloroethane	<u>ND</u>					NA NA	0.5		
1.1.1-Trichloroethane	ND					NA	0.5		
1,1,2-Trichloroethane	ND					NA	0.5		
Trichloroethene	ND					NA	0.5		
Trichlorofluoromethane	ND					NA	0.5		
Vinyl Chloride	ND			(0.())		NA	0.5		
	S	urrogate Re	ecoveries	(%)					
%SS1:	100					+			
%SS2:	102								
%SS3:	105								
Comments									
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample ND means not detected above the reporti	μg/L, soil/sludge/ es in μg/wipe. ng limit; N/A mea	solid samples	in mg/kg,	product/oil/non-a	aqueous liquid sampl	es and all TC	LP & SPLP		

surrogate diluted out of range or surrogate coelutes with another peak.

When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI Consultants	(Client Project ID: #278361; Cruise			Date Sampled: 07/01/08				
2500 Comino Diablo Sta #200	I	America			Date Received: 07/02/08				
2500 Camino Diabio, Stc. #200	(Client Contact: Ro	bert Fl	ory	Date Extracted:	07/07/08			
Walnut Creek, CA 94597	(Client P.O.:			Date Analyzed	07/08/08			
Pe									
Extraction Method: SW3510C		Analytical Method	: SW808	2A	1	Work Order:	0807132		
Lab ID	0807132	2-001D				-			
Client ID	SB-2	1-W				Reporting DF	Limit for $r = 1$		
Matrix	W	V							
DF	1	L				S	W		
Compound	Compound			entration	ug/kg	µg/L			
Aroclor1016	NI	D				NA	0.5		
Aroclor1221	NI	D				NA	0.5		
Aroclor1232	NI	D				NA	0.5		
Aroclor1242	ND					NA	0.5		
Aroclor1248	ND					NA	0.5		
Aroclor1254	NI	ND				NA	0.5		
Aroclor1260	ND					NA	0.5		
PCBs, total	NI	D				NA	0.5		
		Surrogate Rec	overies	s (%)					
%SS:	12	27							
Comments									
* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.									
ND means not detected above the reporti	ing limit; N	N/A means analyte no	t applica	able to this analysi	S.				
# surrogate diluted out of range or surrogate coelutes with another peak.									

WcCampbell Analytical, Inc.						1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI C	Consultants			Client	Project ID:	#278361; Cruise Date Sampled: 07/01/08					
2500 Camino Diablo, Ste. #200				ca			Date Receiv	ved: 07/02	/08		
Client Contact:					Contact: Ro	obert Flory		Date Extrac	ted: 07/07	/08-07/1	4/08
Walnu	tt Creek, CA 94597	1		Client	P.O.:			Date Analy	zed 07/07	/08-07/1	4/08
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*										07132	
Lab ID	Client ID	Matrix	TPH(§	g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	SB-21-W	W	ND		11	ND	ND	ND	ND	1	99
002A	SB-18-W	W	8500,d1	,b1	1100	40	270	240	1000	10	102
003A	SB-22-W	W	ND		8.3	ND	ND	ND	ND	1	107
					<u> </u>	<u> </u>			<u> </u>		
Report	ing Limit for DF =1;	W	50		5.0	0.5	0.5	0.5	0.5	μ	g/L
ND m	eans not detected at or	S	1.0		0.05	0.005	0.005	0.005	0.005	mg	g/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

Angela Rydelius, Lab Manager

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sedimentd1) weakly modified or unmodified gasoline is significant

	cCampbell Analyti "When Ouality Counts"	ical, Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
AEI Consultar	nts	Client Project	ID: Ŧ	#278361; Cruise Date Sampled: 07/01/08				
2500 Camino I	Diablo Ste #200	America			Date Received:	07/02/08		
2500 Camino I	Jiaolo, Stc. #200	Client Contact	t: R	obert Flory	Date Extracted:	07/07/08		
Walnut Creek,	CA 94597	Client P.O.:			Date Analyzed:	07/08/08		
Extraction method:	Total Extracta SW3510C/3630C	ble Petroleum I Analytica	Hydro al meth	ocarbons with Silica (Gel Clean-Up*	Work Order:	0807132	
Lab ID	Client ID	Matrix		TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	
0807132-001E	SB-21-W	w		180,e7,e2	360	1	104	
-								

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or	S	NA	NA	mg/Kg
above the reporting limit				

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern e7) oil range compounds are significant

"When Quality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0807132

EPA Method: SW8260B	Extrac	ction: SW	5030B		Bat	chID: 36	752	Sp	oiked Samp	le ID:	0807174-00	2A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
, maryte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
t-Butyl alcohol (TBA)	ND	50	90.2	85.4	5.43	89.9	92.6	3.00	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	91	91.9	0.983	107	108	1.08	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	98.5	98.5	0	121	122	1.19	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	113	115	1.66	93.5	95.3	1.87	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	102	103	1.06	96.6	99.7	3.16	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	115	114	0.222	101	102	0.897	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	100	101	0.942	113	116	2.55	70 - 130	30	70 - 130	30
%SS1:	97	25	102	102	0	96	96	0	70 - 130	30	70 - 130	30
All target compounds in the Method Blan NONE	nk of this extr	action bate	h were NI	D less thar	the method	l RL with	the follow	ring exceptior	15:			

BATCH 36752 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807132-001B	07/01/08 10:00 AM	07/09/08	07/09/08 2:11 AM	0807132-001C	07/01/08 10:00 AM	07/08/08	07/08/08 5:30 AM
0807132-002B	07/01/08 10:15 AM	07/09/08	07/09/08 1:32 AM	0807132-003B	07/01/08 1:55 PM	07/08/08	07/08/08 6:54 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8082A

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0807132

EPA Method SW8082A	Extraction SW3510C Sample Spiked MS MSD µg/L µg/L % Rec. % Rec. N/A 3.75 N/A N/A N/A 2.5 N/A N/A Nd Blank of this extraction batch were ND le ND ND			Bat	chID: 36	619	Spiked Sample ID: N/A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)	1		
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
Aroclor1260	N/A	3.75	N/A	N/A	N/A	121	122	0.796	N/A	N/A	70 - 130	20		
%SS:	N/A	2.5	N/A	N/A	N/A	112	113	0.831	N/A	N/A	70 - 130	30		
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	L with th	ne following	exceptions:					

			<u>BATCH 36619 Sl</u>	<u>JMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807132-001D	07/01/08 10:00 AM	07/07/08	07/08/08 12:44 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

JK QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0807132

EPA Method SW8015C	Extra	ction SW	3510C/3	630C	Bat	chID: 36	636	Spiked Sample ID: N/A								
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))				
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD				
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	94.5	95.4	0.914	N/A	N/A	70 - 130	30				
%SS:	N/A	2500	N/A	N/A	N/A	106	107	0.723	N/A	N/A	70 - 130	30				
All target compounds in the Method E NONE	lank of this	extraction	batch we	re ND les	ss than the	method F	L with th	ne following	exceptions:							

			<u>BATCH 36636 SL</u>	<u>JMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807132-001E	07/01/08 10:00 AM	07/07/08	07/08/08 1:55 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

JK QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0807132

EPA Method SW8021B/8015Cm	m Extraction SW5030B Sample Spiked MS MSC μg/L μg/L % Rec. % Rec ND 60 95.6 92.4 ND 10 107 120 ND 10 95.5 108 ND 10 95.9 106 ND 10 95.9 106 ND 30 95.3 102				Bat	chID: 36	735	35 Spiked Sample ID: 0807109-003A									
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))					
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD					
TPH(btex)	ND	60	95.6	92.4	3.35	98	94.9	3.21	70 - 130	20	70 - 130	20					
MTBE	ND	10	107	120	11.4	110	99.4	9.65	70 - 130	20	70 - 130	20					
Benzene	ND	10	95.5	108	12.0	95	99.6	4.80	70 - 130	20	70 - 130	20					
Toluene	ND	10	86.9	95.8	9.79	95.5	97.1	1.63	70 - 130	20	70 - 130	20					
Ethylbenzene	ND	10	95.9	106	10.3	98.3	103	4.70	70 - 130	20	70 - 130	20					
Xylenes	ND	30	95.3	102	7.21	115	114	0.960	70 - 130	20	70 - 130	20					
%SS:	92	10	95	96	1.14	86	85	1.30	70 - 130	20	70 - 130	20					
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	L with th	ne following	exceptions:								

BATCH 36735 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807132-001A	07/01/08 10:00 AM	07/07/08	07/07/08 7:56 PM	0807132-002A	07/01/08 10:15 AM	07/09/08	07/09/08 12:29 AM
0807132-003A	07/01/08 1:55 PM	07/07/08	07/07/08 8:58 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0807132

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 36	735	Sp	iked Sam	ple ID:	0807109-00	3A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	95.6	92.4	3.35	98	94.9	3.21	70 - 130	20	70 - 130	20
MTBE	ND	10	107	120	11.4	110	99.4	9.65	70 - 130	20	70 - 130	20
Benzene	ND	10	95.5	108	12.0	95	99.6	4.80	70 - 130	20	70 - 130	20
Toluene	ND	10	86.9	95.8	9.79	95.5	97.1	1.63	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	95.9	106	10.3	98.3	103	4.70	70 - 130	20	70 - 130	20
Xylenes	ND	30	95.3	102	7.21	115	114	0.960	70 - 130	20	70 - 130	20
%SS:	92	10	95	96	1.14	86	85	1.30	70 - 130	20	70 - 130	20
All target compounds in the Method E	Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:			

BATCH 36735 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0807132-001A	07/01/08 10:00 AM	07/07/08	07/07/08 7:56 PM	0807132-001A	07/01/08 10:00 AM	07/14/08	07/14/08 3:33 PM
0807132-002A	07/01/08 10:15 AM	07/09/08	07/09/08 12:29 AM	0807132-003A	07/01/08 1:55 PM	07/07/08	07/07/08 8:58 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

APPENDIX F

Groundwater Laboratory Analyses with Chain of Custody Documentation

McCampbell Au "When Ouality	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: n one: 877-252-9262 Fax:	CA 94565-1701 aain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #11056	6; Cruise Am Q108	Date Sampled:	03/13/08
2500 Camino Diablo, Ste. #200			Date Received:	03/14/08
Walnut Creek, CA 94597	Client Contact: Peter Mc	Intyre	Date Reported:	03/24/08
	Client P.O.:		Date Completed:	03/24/08

WorkOrder: 0803373

March 24, 2008

Dear Peter:

Enclosed within are:

- 1) The results of the 5 analyzed samples from your project: #110566; Cruise Am Q108,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

			_				-			1	(08	D	33	, [.	5																	_
McCAl Telephone: (925) 7	MPBELJ 110 2 nd A PACHE 98-1620	L ANA) VENUE SO CO, CA 94	LYT DUTH 553-55	TCA , #D7 560	LI Fax:	NC. (925)) 791	8-16	22			I	TU	RN	AF	ed?			IN TIM Yes			RU No	ST SH	O Em			4 F Re	CO 8 HI spor		72 72	HR	50	5 AY
Report To: Peter McIntyre		I	Bill To	o: sar	ne			-	-			+			11		Ana	lysi	s R	equ	est		-	_	_			Oth	er	Т	Com	ment	5
Company: AEI Consultant	5																				T						-	T	T	+			-
2500 Camino Di	ablo, Suite	200												B&F	1												69						
Walnut Creek,	CA 94597		E-N	fail:	pmei	ntyre	aei	cons	ulta	nts.c	com	TRF		&F/I								30					2						
Tele: (925) 944-2899		F	ax:	(925)	94	4-289	5					N/VS	WVC	20 E	8.1)							0/8					3						
Project #: 110566		F	roje	et Na	me:	CH	et su	50	AM	1	QIQ	9	100	(55:	s (41		6	9				827(t						
Project Location: 796	66th	Avenew	6	Zak	140	nd.	60	21.				+ 00	1.09	case	pon	list)	802	-				52			6		Y						
Sampler Signature:	- 1	In-										08/20		- G	ocar	010	02./	808		0		A 6			2/6(D						
	SAMP	PLING		ers		MAT	RD	X	M PR	IET ESE	HOD	D Suit	12100	0il 8	Hydr	60 (8	SPA 6	/ 809	8080	/ 826		by EP			1/239		+						
SAMPLE ID (Field Point Name)	Date	Time	# Containers	Type Contain	Water	Soil	Sludge	Other	Ice	HCI	HNO ₃	Other RTEX & TPH as (Thur a firm of the	Total Petroleum	Total Petroleum	HVOCs EPA 82	BTEX ONLY (I	Pesticides EPA (PCBs EPA 608	VOCs EPA 624	EPA 625 / 8270	PAH's/PNA's	CAM-17 Metals	LUFT 5 Metals	Lead (7240/742)	RCI	MTBE						
MN-1	3/13/08	12:19	3								1>	<	1						1		1					\times	-	+	+			-	
MW-7.	1	12:20	1							x	+	1						-	+	Ť				X		-	+			-			
MALAR		1:12								Ť	è	-							+	+	-	-			X	+	+	+			_		
Much		1.90	++						k	-	-	-		-	-	-	+	+	+	-	-	-	X	+	+	+			-				
NO N		00		1/2	A		+	+	V	1		-	-		-	-		-	-	+	+	+	+	-	-	-	V	-	+	+			_
rvives	-	1.33	-	F	×	-	+	-	4	X		-1-	0	1	-	-		-		-	+	-	+	-	-	_	\wedge	-	-	+	_		_
			<u> </u>	-			-	-				+	+	_	-	_		_	-	-	-	-	-	-	_	_		_	-	+			_
	_	-		<u> </u>		_	_	-					-	_				_	_	_	_	_	_	_	_	_		_	_	+	_		_
	1																																_
																-																	
			2								4																						
				1				-				1	1			Yuk:	+ ży																_
			-					-				+	+	-	1	-		14				1		+			\vdash						-
							-	+				+	+	-	-			-		-	-	-	+	+	-	-	\vdash	+	-	+			_
Relinquished By:	Date: 3/13/08 Date:	Time: 5:50 Time:	Rec	eived I	Bya Maria	a	1	//		8		+	IC	E/t	2.	7		. \		_	P	RES	ER	VA	TIO	N_V	DAS	0&	G	ME	TALS	от	IE
Relinquished By:	Date:	Time:	Rec	eceived By:			GC HI DI	EAD S CHI	SPA OR	CE A	ABSI	ENT	LAI		C	PPF ON' PE	FAI RSE	NE	RS_ ED	IN	LAB		_										

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262	5-1701						WorkO	rder:	0803.	373	(ClientC	ode: Al	EL				
			WriteOr	n [EDF		Excel		Fax		🖌 Email		Hard	Сору	Third	Party	J-	flag
Report to:							В	ill to:						Req	uested 1	AT:	5 c	Jays
Peter McIntyre		Email:	pmcintyre@a	aeiconsu	ltants.com	ר		De	nise Mo	ockel								
AEI Consultants		TEL:	(925) 283-6000	0 FA	AX: (925) 2	283-612	21	AE	I Consu	ultants								
2500 Camino Diablo,	Ste. #200	PO:						25	00 Cam	nino Di	ablo, St	e. #200)	Date	e Recei	ved:	03/14/	2008
Walnut Creek, CA 945	597	ProjectNo	#110566; Cru	uise Am	Q108			Wa	alnut Cr	eek, C	A 94597	,		Dat	e Printe	ed:	03/14/	2008
								dm	nockel@	aeico	nsultant	s.com						
						[Rec	uested	Tests (See leg	end b	elow)			
Lab ID	Client ID		Matrix	Collec	tion Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12

				_								
0803373-001	MW-1	Water	3/13/2008 12:19		В	А	А					
0803373-002	MW-2	Water	3/13/2008 12:30		В	А						
0803373-003	MW-3	Water	3/13/2008 1:12		В	А						
0803373-004	MW-4	Water	3/13/2008 1:20		В	А						
0803373-005	MW-5	Water	3/13/2008 1:25		В	А						

Test Legend:

1	5-OXYS_W
6	
11	

2	G-MBTEX_W
7	
12	

3	PREDF REPORT
8	

4	
9	

5	
10	

Prepared by: Kimberly Burks

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	3/14/2008	6:34:14 PM
Project Name:	#110566; Cruise	Am Q108			Check	klist completed and r	eviewed by:	Kimberly Burks
WorkOrder N°:	0803373	Matrix <u>Water</u>			Carrie	r: <u>Client Drop-In</u>		
		Chain	of Cu	stodv (C	OC) Informa	ation		
	10	<u></u>	<u> </u>		<u></u> N. П	<u></u>		
Chain of custody	/ present?		Yes	•				
Chain of custody	/ signed when relinqui	shed and received?	Yes	\checkmark	No			
Chain of custody	agrees with sample	labels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by Cl	ient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		Q	amnlo	Pacaint	Information			
		<u></u>	ampie	Receipt		<u>.</u>		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No		NA 🔽	
Shipping contain	er/cooler in good conc	lition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Prese	vatio	and Ho	ld Time (HT) Information		
		<u>eample 11000</u>	Tutio		<u></u>	<u>/ Internation</u>		
All samples rece	ived within holding tim	e?	Yes	\checkmark	No			
Container/Temp	Blank temperature		Coole	er Temp:	5.7°C		NA 🗆	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels cl	hecked for correct pre	servation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

	Campbell Analyti	cal, Inc.		1534 Willow P Web: www.mccamp Telephone: 8	Pass Road, bell.com 877-252-92	Pittsburg, CA 94565-1701 E-mail: main@mccampbell.com 262 Fax: 925-252-9269			
AEI Consultan	ts	Client Project ID): #11	10566; Cruise Am	Date S	Sampled: 03/13/08			
2500 Camino D	biablo, Ste. #200	Q108			Date I	Received: 03/14/08			
Walnut Creek (CA 94597	Client Contact:	Peter	Extracted: 03/18/08					
		Client P.O.:			Date A	Analyzed: 03/18/08			
	Methy	l-t-butyl ether and	d t-Bu	ityl alcohol by P&T a	/MS*				
Lab ID	Client ID	Analytic	al metho	Methyl-t-butyl ether (MTBE)	t-Butyl alcohol (TBA)	0803373	% SS	
0803373-001B	MW-1		w	ND<10	/	780	20	107	
0803373-002B	MW-2		w	3.0		ND	1	107	
0803373-003B	MW-3		W	0.77		ND	1	110	
0803373-004B	MW-4		W	22		69	1	107	
0803373-005B	MW-5		W	11		750	10	107	
								<u> </u>	
								 	
ND means not	Reporting Limit for $DF = 1$;	ting limit	W S	0.5		2.0	2.0 µg/		
	i detected at of above the repor	ung mint	3	NA		INA	N	А	

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

DHS ELAP Certification Nº 1644

	McCampbell	Analy	tical, Inc.	Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269										
AEI C	Consultants		Client Proje	ect ID: #1	10566; Cruise Ar	n Q108	Date Sampled: 03/13/08							
2500	Camino Diablo, Ste. #200						Date Received: 03/14/08							
Walni	It Creek CA 9/597		Client Con	tact: Peter	r McIntyre	Date Extracted: 03/17/08-03/20/08								
vv ann	it Cluck, CA 94597		Client P.O.	Client P.O.: Date Analyzed 03/17/08-03/20										
Extracti	Gasolir on method SW5030B	ne Range (C 6-C12) Vola Analy	tile Hydro	carbons as Gaso SW8021B/8015Cm	EX and MTBE	* Work Order	:: 0803	373					
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS				
001A	MW-1	W	ND	5.5	ND	ND	ND	ND	1	116				
002A	MW-2	w	ND	ND	ND	ND	ND	ND	1	93				
003A	MW-3	w	ND	ND ND		ND	ND	ND	1	89				
004A	MW-4 W ND				ND	ND	ND	ND	1	92				
005A	05A MW-5 W		ND	10	ND	ND	ND	ND	1	90				
									<u> </u>					
									<u> </u>					
									<u> </u>					
									<u> </u>					
									<u> </u>					
Rej	porting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	µg/L				
at	ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg				

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

0803373-005B

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0803373

EPA Method SW8260B	Extra	5030B		Bat	chID: 34	390	iked Sample ID: 0803363-005B					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
t-Butyl alcohol (TBA)	ND	50	106	95.9	10.2	113	111	1.64	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	114	110	3.49	90.6	89.6	1.06	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	3lank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ie following	exceptions:			

BATCH 34390 SUMMARY Lab ID **Date Sampled** Date Extracted Date Analyzed Lab ID Date Sampled Date Extracted Date Analyzed 0803373-001B 03/13/08 12:19 PM 03/18/08 03/18/08 2:14 AM 0803373-002B 03/13/08 12:30 PM 03/18/08 03/18/08 3:41 PM 0803373-003B 03/13/08 1:12 AM 03/18/08 03/18/08 3:43 AM 0803373-004B 03/13/08 1:20 AM 03/18/08 03/18/08 4:25 PM

03/18/08 5:13 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

03/13/08 1:25 AM

03/18/08

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification Nº 1644

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0803373

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ba	tchID: 34	395	Sp	iked Sam	ple ID:	0803374-00	5A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	95.2	104	8.49	92.3	101	8.58	70 - 130	20	70 - 130	20
MTBE	ND	10	95.5	97.9	2.49	95.4	100	4.82	70 - 130	20	70 - 130	20
Benzene	ND	10	97.7	99.5	1.84	95.3	98.1	2.85	70 - 130	20	70 - 130	20
Toluene	ND	10	95.6	98.5	3.06	93.1	96.6	3.66	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	95.9	98.4	2.66	98.4	97.9	0.558	70 - 130	20	70 - 130	20
Xylenes	ND	30	89.4	92.3	3.25	87.8	90.8	3.41	70 - 130	20	70 - 130	20
%SS:	86	10	107	108	0.303	105	105	0	70 - 130	20	70 - 130	20
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method I	RL with th	ne following	exceptions:			

BATCH 34395 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0803373-001A	03/13/08 12:19 PM	03/20/08	03/20/08 9:25 PM	0803373-002A	03/13/08 12:30 PM	03/17/08	03/17/08 4:39 PM
0803373-003A	03/13/08 1:12 AM	03/17/08	03/17/08 5:14 PM	0803373-004A	03/13/08 1:20 AM	03/17/08	03/17/08 5:50 PM
0803373-005A	03/13/08 1:25 AM	03/17/08	03/17/08 6:25 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

