RECEIVED

5:01 pm, May 02, 2012

Alameda County Environmental Health

April 27, 2012

Jerry Wickham, CEG Senior Hazardous Materials Specialist Alameda County Environmental Health 1131Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject:

Sunol Tree Gas

3004 Andrade Road, Sunol Fuel Leak Case No. RO0002448

Dear Mr. Wickham:

Enclosed is the *Quarterly Groundwater Monitoring Report – First Quarter 2012* for the subject LUFT site. In compliance with state and local regulations, electronic submittals of this report have been uploaded to the Geotracker database and the Alameda County ftp website.

I declare under penalty of perjury that the information and/or recommendations contained in the attached report are true and correct to the best of my knowledge.

Please call Tim Cook at Cook Environmental Services at (925) 478-8390 if you have questions or comments in regards to the technical content of this report.

Very truly yours,

Khan Petroleum, Inc.

Obaid Abdullah President

cc: Jennifer Rice, Esq

Tim Cook, Cook Environmental Services, Inc.

Quarterly Groundwater Monitoring Report First Quarter 2012

PROJECT SITE:

Sunol Tree Gas Station 3004 Andrade Rd. Sunol, California 94586-9453 Fuel Leak Case No. RO0002448

PREPARED FOR:

Khan Petroleum Inc. 3004 Andrade Road Sunol, California 94586-9453

SUBMITTED TO:

Alameda County Department of Environmental Health Environmental Health Services, Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

PREPARED BY:

Cook Environmental Services, Inc. 1485 Treat Blvd, Suite 203A Walnut Creek, California 94597

Project No. 1024

April 27, 2012

TABLE OF CONTENTS

TABLE OF O	CONTENTSii
PROFESSIO	NAL CERTIFICATIONiii
INTRODUC	ΓΙΟΝ1
SCOPE OF V	VORK2
FIELD PRO	CEDURES2
GROUNDWA	ATER SAMPLE RESULTS3
CONCLUSIO	ONS5
	NDATIONS6
LIST OF TA	BLES:
Table 1	Groundwater Levels and Elevations
Table 2	Groundwater Analytical Results for Monitoring Wells
LIST OF FIG	GURES:
Figure 1	Site Location Map
Figure 2	Aerial Photograph
Figure 3	Site Map
Figure 4A	Shallow Groundwater Gradient Map
Figure 4B	Intermediate/Deep Groundwater Gradient Map
Figure 5A	MtBE Concentration Map - Shallow Water-Bearing Zone
Figure 5B	MtBE Concentration Map – Intermediate Water-Bearing Zone
Figure 5C	MtBE Concentration Map - Deep Water-Bearing Zone
Figure 6	Site Map with Transect A-A'
Figure 7	MtBE Concentrations on Transect A-A'
LIST OF AP	PENDICES:
Appendix A	Site Background
Appendix B	Field Procedures
Appendix C	Well Sampling Logs
Appendix D	Laboratory Analytical Reports

PROFESSIONAL CERTIFICATION

Quarterly Groundwater Monitoring Report First Quarter 2012

Sunol Tree Gas Station 3004 Andrade Rd. Sunol, California 94586-9453 Fuel Leak Case No. RO0002448

By: Cook Environmental Services, Inc.

Project No. 1024 April 27, 2012

Cook Environmental Services, Inc. prepared this document under the professional supervision of the person whose seal and signature appears hereon. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of said user.

Tim Cook, P.E.

Principle Engineer

INTRODUCTION

This report is part of an ongoing environmental investigation related to the release of hydrocarbons at the Sunol Tree Gas Station (Site) located at 3004 Andrade Road in Sunol, California. The owner, Kahn Petroleum, Inc., authorized Cook Environmental Services, Inc. (CES) to conduct this investigation. Alameda County Environmental Health (ACEH) is the local oversight program (LOP) agency for this investigation.

Background

A detailed Site background related to the hydrocarbon release is provided in **Appendix A.** This description is summarized from *Status of Active Fuel Leak Investigation*, dated May 6, 2009 (Weber Hayes & Associates). The Site location is shown on **Figure 1**. An annotated aerial photo of the Site is shown on **Figure 2**. A detailed site map, including the downgradient T Bear Ranch, is shown on **Figure 3**.

In a letter to the owner dated July 28, 2009, ACEH reduced the groundwater monitoring requirements to quarterly sampling of the wellhead carbon treatment system at the T Bear Water Supply Well.

CES conducted sampling at the Site on April 19, 2010 and submitted the results in the Quarterly Groundwater Monitoring Report, Second Quarter 2010, dated May 19, 2010. In that report CES proposed reducing the groundwater monitoring schedule to semi-annual sampling of wells CMT-1, CMT-3, CMT-6, CMT-10 and PZ-2 and annual sampling of wells CMT-2, CMT-4, CMT-5 and CMT-12. In a letter to the owner dated July 15, 2010, ACEH concurred with this reduced sampling schedule for the October 2010 monitoring event only and requested the submittal of a Draft Corrective Action Plan (CAP) meeting the requirements of section 2725 of the UST regulations. The Draft CAP was submitted to ACEH on December 15, 2010. The ACEH responded with comments to the Draft CAP in a letter to the owner dated January 26, 2011.

In response, CES prepared an Interim Remedial Action Plan (IRAP) dated March 15, 2011 proposing a pilot test to evaluate the effectiveness of ozone sparging. Ozone will be injected into the intermediate water-bearing zone using two new sparge wells. Two multi-chamber groundwater monitoring wells are to be installed downgradient of the sparge wells to monitor the progress of the pilot test. On March 30, 2011 ACEH conditionally approved the IRAP provided that monitoring of the two new wells includes potential toxic oxidized chemical species (e.g., hexavalent chromium and bromate) due to ozone sparging. Three cone penetrometer borings (CPT-1 through CPT-3) were advanced in the vicinity of the proposed ozone sparge wells on July 25, 2011. Water samples were collected from the shallow, intermediate and deep water bearing zones. MtBE was not detected in any of these water samples. After conferring with

ACEH, CES proposed to install the two ozone sparge wells approximately fifteen feet upgradient of the monitoring well transect on the T Bear Ranch. An Addendum to the Interim Remedial Action Plan, dated October 14, 2011 was submitted to ACEH. ACEH approved the addendum in a letter dated November 7, 2011 and requested submittal of the Pilot Test Report by March 10, 2012. CES obtained well permits and contacted the owners of the T Bear Ranch to obtain site access for the sparge well installations. The owners did not grant site access due to previous problems installing wells on their site during the wet winter months. They requested that the work be delayed until after the rainy season. Tim Cook of CES notified Jerry Wickham of ACEH of this situation in an email dated January 19, 2012. Mr. Wickham responded that an indefinite delay with installing the sparge wells was not an acceptable outcome. We are scheduled to meet with representatives of T-Bear Ranch on May 4, 2012 to discuss site access issues related to the ozone pilot test.

SCOPE OF WORK

The scope of work performed this quarter included the following:

- Measured the static water levels in wells PZ-1a, PZ-1b, PZ-2a, PZ-2b, PZ-3a and PZ-3b;
- Collected water samples from sampling points CMT-1-C1, CMT-1-C2, CMT-1-C3, CMT-3-C1, CMT-3-C2, CMT-3-C3, CMT-6-C1, CMT-6-C2, CMT-6-C3, CMT-7-C1, CMT-7-C2, CMT-7-C3, CMT-10-C1, CMT-10-C2, CMT-10-C3, PZ-2a, and PZ-2b;
- Groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) and benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX), methyl-tertiary butyl ether (MTBE), tert-amyl methyl ether (TAME), t-butyl alcohol (TBA), 1,2-dibromoethane (EDB), 1,2-dichloroethane (1,2-DCA), di-isopropyl ether (DIPE), ethanol, ethyl tert-butyl ether (ETBE), and methanol by EPA Method 8260B/5030B
- Completed data tables, plots of MtBE results maps by zone and MtBE results in cross-section;
- Prepared this groundwater monitoring report; and
- Updated the California State Water Resources Control Board (SWRCB) GeoTracker database and the Alameda County ftp website.

FIELD PROCEDURES

The following discussion describes field methods used to prepare for sampling and sampling techniques used to collect groundwater samples.

Each CMT well is a multiple completion well, consisting of three 0.375-inch diameter wells, denoted generally as CMT-X-C1 (shallow), CMT-X-C2 (medium) and CMT-X-C3 (deep). The purpose of the CMT well clusters is to sample the aquifer at three discrete depths. Each PZ well

is a multiple completion well, consisting of two 0.75-inch diameter wells, denoted generally as PZ-X-a (shallow) and PZ-X-b (deep). The purpose of the PZ well cluster is to sample the aquifer at two discrete depths.

The depth to water was measured and the total volume of each PZ well was calculated to determine the appropriate purge volume for these wells. Due to the small diameter of the CMT wells, it is not possible to measure water levels in these wells. Well sampling field procedures are described in **Appendix B**. Field data sheets are included in **Appendix C**.

CES collected 17 water samples from the sampling points described above on April 4, 2012. A peristaltic pump with clean silicone tubing for each well was used for purging and sample collection from each sampling point.

Depth to water and top of casing elevations from the three PZ wells were used to triangulate the shallow and deep groundwater flow direction and gradient. The shallow groundwater flow direction and gradient was N22⁰E at 0.015. The intermediate/deep groundwater flow direction and gradient was N87⁰W at 0.0011. The shallow groundwater gradient is depicted on **Figure 4A** and the deeper groundwater gradient is depicted on **Figure 4B**. Groundwater elevation data is summarized in **Table 1**. Depths to water measurements were recorded on field logs included in **Appendix C**.

GROUNDWATER SAMPLE RESULTS

Groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) and benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX), methyl-tertiary butyl ether (MtBE), tert-amyl methyl ether (TAME), t-butyl alcohol (tBA), 1,2-dibromoethane (EDB), 1,2-dichloroethane (1,2-DCA), di-isopropyl ether (DIPE), ethanol, ethyl tert-butyl ether (ETBE) and methanol by EPA Method 8260B/5030B. Results are summarized in **Table 2**. Results were compared with environmental screening levels (ESLs) established by the San Francisco Bay RWQCB. Laboratory analytical reports are included in **Appendix D**.

Twelve groundwater samples were collected from the multi-chamber (CMT) wells located along Transect A-A'. This transect is located approximately 150 feet downgradient (east) of the former USTs. Groundwater samples were also collected from CMT-10, located on the golf driving range property immediately south of the Sunol Tree Gas, and from piezometers PZ-2a and PZ-2b, which are located in close proximity to the T Bear Ranch water supply well.

MtBE and toluene were the only hydrocarbon constituents detected in groundwater samples this quarter.

Shallow Water Bearing Zone Groundwater Results

MtBE was detected in the shallow water-bearing zone at sampling points CMT-6-C1, CMT-7-C1 and PZ-2A at 64, 11, and 3.9 μ g/L, respectively. MtBE concentrations in the shallow water-bearing zone are shown on **Figure 4A**. tBA was not detected in any shallow sampling point.

Sampling point PZ-2a is located approximately 43 feet upgradient (west) of the T Bear Ranch water supply well and is considered to be a sentinel well for this water supply well. The MtBE concentration in this well (3.9 μ g/L) is below the ESL this quarter. In order to fully investigate the risk to the T Bear Ranch water supply well, refer to the wellhead sampling results for this well below.

Intermediate Water Bearing Zone Groundwater Results

MtBE was detected in the intermediate water-bearing zone in CMT-1-C2, CMT-3-C2, CMT-6-C2 and CMT-7-C2 at 0.54, 8.3, 18 and 130 μg/L, respectively. MtBE was most widespread in the intermediate water-bearing zone and likely represents the preferred pathway for MtBE contamination. CMT-7-C2 yielded the highest MtBE concentration this quarter. MtBE concentrations in the intermediate water-bearing zone are shown on **Figure 4B**. tBA was detected in CMT-1-C2 and CMT-3-C2 at 4.4 and 2.5 μg/L, respectively.

Deep Water Bearing Zone Groundwater Results

MtBE was detected in the deep water-bearing zone in CMT-3-C3, CMT-6-C3, CMT-7-C3 at 1.1, 21 and 10 μ g/L, respectively. MtBE concentrations in the deep water-bearing zone are shown on **Figure 4c**. tBA was detected in the deep water-bearing zone in CMT-7-C3 at 2.5 μ g/L.

Sampling point PZ-2b is located approximately 30 feet upgradient (west) of the T Bear Ranch water supply well and is considered to be a sentinel well for this water supply well. MtBE was not detected in this well this quarter. In order to fully investigate the risk to the T Bear Ranch water supply well, refer to the wellhead sampling results for this well below.

Treatment System Groundwater Results

MtBE was not detected above the laboratory detection (5 μ g/L) in the influent to the treatment system on the T-Bear Ranch water supply well on January 12, 2012, (Weber, Hayes & Associates, February 2011). MtBE was detected in the influent at 1.7 μ g/L during the previous sampling event on September 15, 2011.

The location of Transect A-A' which contains a line of sampling points downgradient of the source area is shown on **Figure 5**. The vertical cross-section of MtBE concentrations across Transect A-A' this quarter is shown on **Figure 6**.

CONCLUSIONS

There is a fairly well defined plume of dissolved MtBE migrating from the Site that remains at relatively low concentrations. MtBE concentrations have decreased in all sampling point except one when compared to the last time these wells were sampled on December 19, 2011. MtBE and tBA were the only constituents detected in groundwater samples this quarter and MtBE was the only constituent that exceeded its ESL. The highest MtBE concentration this quarter was 130 μ g/L in CMT-7-C2. Historically, this sampling point has yielded the highest MtBE concentration.

MtBE was detected in 10 of the 17 sampling points. MtBE concentrations decreased in 7 of these sampling points when compared to the previous sampling event. MtBE concentrations increased in CMT-3-C3 (from <0.5 to 1.1 μ g/L); CMT-6-C3 (from 16 to 21 μ g/L); and CMT-7-C3 (from <0.5 to 10 μ g/L).

tBA was detected in 4 of the 17 sampling points (CMT-1-C1, CMT-1-C2, CMT-3-C2 and CMT-7-C3). tBA concentrations increased in all 4 sampling points when compared to the previous sampling event. MtBE concentration also decreased in CMT-1-C2 and CMT-3-C2, which may be the result of natural attenuation. However, both MtBE and tBA concentrations increased in CMT-7-C3.

The decrease in MtBE concentrations this quarter may be caused by natural attenuation or dilution from recent groundwater recharge due to precipitation and infiltration during the wet winter months.

The MtBE plume is not delineated on the north by since MtBE was detected in CMT-7 and CMT-8 and CMT-9 were not sampled. The plume is delineated to the south since CMT-1, most southerly well, yielded only $0.54~\mu g/L$ in CMT-1-C2 and was below detection limits in the shallow and deep sampling points at this location. The plume is delineated on the west by wells CMT-11 and CMT-12. Although they were not sampled this quarter, MtBE was below detection limits for five consecutive sampling events prior to eliminating these points from the sampling plan. The plume is delineated to the east since by the most easterly well, PZ-2b (deep water-bearing zone).

The water quality risk posed to the T-Bear Ranch water supply well is very low as MtBE was below detection limits in the influent to the treatment system on the most recent sampling event (January 12, 2012). In addition, MtBE was below detection limits in PZ-2B and was $3.9 \,\mu g/L$ in PZ-2A. PZ-2B is approximately 30 feet upgradient and PZ-2A is approximately 43 feet upgradient of the T Bear water supply well. The ESL for MtBE is $5.0 \,\mu g/L$.

RECOMMENDATIONS

In general, MtBE concentrations decreased when compared to previous sampling results. We are currently planning to implement a pilot test to evaluate the effectiveness of an ozone sparge system. Two ozone sparge wells will be constructed in the intermediate zone, upgradient of the monitoring well transect, and a pilot test will be run for a period of three months. This scope of work is included in the IRAP, dated March 15, 2011, as amended in the October 14, 2011 Addendum to IRAP (CES). The pilot test will be implemented as soon as site access can be negotiated with the owners of the T Bear Ranch.

We recommend cessation of groundwater monitoring at the T-Bear Ranch wellhead treatment system based on the very low human health risk posed by dissolved MtBE in the proximity of the water supply well.

TABLES

Table 1 Groundwater Elevations Sunol Tree Gas Station 3004 Andrade Road, Sunol, California

Well ID	PZ	-1a	PZ	-1b	PZ	-2a	PZ	-2b	PZ	-3a	PZ	-3b
TOC Elev	274	1.50	274	1.62	267	7.94	267	7.94	271	1.40	27 1	1.16
Date	DTW	Elev	DTW	Elev	DTW	Elev	DTW	Elev	DTW	Elev	DTW	Elev
07/25/04	10.22	264.28	14.84	259.78	6.10	261.84	8.25	259.69	6.57	264.83	11.02	260.14
08/02/04	10.41	264.09	14.56	260.06	6.05	261.89	7.82	260.12	7.69	263.71	10.99	260.17
08/05/04	10.65	263.85	14.68	259.94	6.21	261.73	7.95	259.99	8.00	263.40	11.18	259.98
08/13/04	10.95	263.55	14.79	259.83	6.53	261.41	7.95	259.99	8.64	262.76	11.31	259.85
09/08/04	11.93	262.57	15.69	258.93	7.58	260.36	8.95	258.99	9.64	261.76	12.25	258.91
12/03/04	10.41	264.09	14.31	260.31	6.65	261.29	7.79	260.15	9.04	262.36	11.09	260.07
01/18/05	4.96	269.54	10.37	264.25	2.91	265.03	3.52	264.42	5.94	265.46	6.87	264.29
03/21/05	3.69	270.81	9.26	265.36	1.88	266.06	2.38	265.56	3.11	268.29	5.74	265.42
07/12/05	6.28	268.22	11.71	262.91	0.94	267.00	5.53	262.41	4.27	267.13	8.14	263.02
08/15/06	6.59	267.91	12.47	262.15	0.49	267.45	5.52	262.42	4.75	266.65	8.81	262.35
10/27/06	8.72	265.78	13.68	260.94	5.07	262.87	6.96	260.98	6.66	264.74	10.32	260.84
04/23/10	4.86	269.64	9.50	265.12	0.98	266.96	2.94	265.00	6.38	265.02	6.38	264.78
03/29/11	2.54	271.96	7.76	266.86	1.16	266.78	0.97	266.97	3.08	268.32	4.31	266.85
06/06/11	6.13	268.37	10.62	264.00	5.74	262.20	3.39	264.55	4.22	267.18	NM	NM
09/28/11	NM	NM	NM	NM	6.18	261.76	NM*	NM*	NM	NM	NM	NM
12/19/11	9.03	265.47	12.80	261.82	4.65	263.29	5.94	262.00	6.69	264.71	9.25	261.91
04/03/12	5.40	269.10	10.82	263.80	3.05	264.89	3.75	264.19	5.58	265.82	7.20	263.96
Δ		3.63		1.98		1.60		2.19		1.11		2.05
Maximum	11.93	271.96	15.69	266.86	7.58	267.45	8.95	266.97	9.64	268.32	12.25	266.85
Minimum	2.54	262.57	7.76	258.93	0.49	260.36	0.97	258.99	3.08	261.76	4.31	258.91

Notes: All measurements are in feet.

DTW = Depth to water below TOC Elevations are based on NAVD 88 datum

NM = Not measured this quarter

 Δ = The change in water level for the current quarter

TOC = Top of casing

Elev = Elevation above mean sea level

* Sounder probe hit obstruction in well and wouldn't reach water level

Well- ID	Date	Depth (feet, bgs)	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	TBA	ETBE	DIPE	TAME	Ethanol	Comments
	12/29/04		< 25	< 0.5	< 0.5	< 0.5	< 0.5	15 /14	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	08/15/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-1-1	10/16/10	21	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	Shallow
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	06/06/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	8.7	< 0.5	< 0.5	< 0.5	< 50	
	09/28/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	29	< 0.5	< 0.5	< 0.5	< 50	
	12/29/04		< 25	< 0.5	< 0.5	< 0.5	< 0.5	1.2	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		ND	ND	ND	ND	ND	2.7	ND	ND	ND	ND	ND	
	08/15/06		ND	ND	ND	ND	ND	6.5	ND	ND	ND	ND	ND	
	10/26/06		ND	ND	ND	ND	ND	7.9	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	12	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-1-2	10/16/10	41	< 50	< 0.5	< 0.5	< 0.5	< 0.5	14	< 2.0	< 0.5	< 0.5	< 0.5	< 50	Intermediate
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	12	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	06/06/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	17	6.9	< 0.5	< 0.5	< 0.5	< 50	
	09/28/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	14	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	11	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.54	4.4	< 0.5	< 0.5	< 0.5	< 50	
	12/29/04		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	08/15/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	_
CMT-1-3	10/16/10	51	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	Deep
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	06/06/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.8	< 0.5	< 0.5	< 0.5	< 50	
	09/28/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 50	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 50	
Environme	ntal Screening	Levels (ESLs)	100	1.0	40	30	20	5.0	12	NE	NE	NE	NE	

Well- ID	Date	Depth (feet, bgs)	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	TBA	ETBE	DIPE	TAME	Ethanol	Comments
	12/29/04		< 25	< 0.5	0.58 /< 0.5	< 0.5	< 0.5	13/14	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	
	08/15/06		ND	ND	ND	ND	ND	2.3	ND	ND	ND	ND	ND	
	10/26/06		ND	ND	ND	ND	ND	2.7	ND	ND	ND	ND	ND	
CMT-2-1	04/19/10	22	< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.61	< 2.0	< 0.5	< 0.5	< 0.5	< 50	Shallow
CW11-2-1	10/16/10	22	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Shanow
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/29/04		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		ND	ND	ND	ND	ND	4.6	ND	ND	ND	ND	ND	
	08/15/06		ND	ND	ND	ND	ND	14	ND	ND	ND	ND	ND	
	10/26/06		56	ND	0.70	ND	1.1	14	ND	ND	ND	ND	ND	
CMT-2-2	04/19/10	42	< 50	< 0.5	< 0.5	< 0.5	< 0.5	19	< 2.0	< 0.5	< 0.5	< 0.5	< 50	Intermediate
CN11-2-2	10/16/10	72	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	memediate
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/29/04		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	08/15/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		39	ND	0.52	ND	0.96	ND	ND	ND	ND	ND	ND	
CMT-2-3	04/19/10	52	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	Deep
CN11-2-3	10/16/10	32	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Беер
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
Environme	ntal Screening l	Levels (ESLs)	100	1.0	40	30	20	5.0	12	NE	NE	NE	NE	

Well- ID	Date	Depth (feet, bgs)	ТРН-д	benzene	toluene	ethyl- benzene	xylenes	MtBE	TBA	ETBE	DIPE	TAME	Ethanol	Comments
	01/18/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	15	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	08/16/06		ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	
	10/27/06		37	ND	1.2	0.53	2.9	1.5	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-3-1	10/16/10	22	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	3.1	< 0.5	< 0.5	< 0.5	< 50	Shallow
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.52	ND	< 0.5	< 0.5	< 0.5	< 50	
	06/06/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.7	< 0.5	< 0.5	< 0.5	< 50	
	09/28/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	01/18/05		190	< 2.5	< 2.5	< 2.5	< 2.5	190	< 50	< 25	< 25	< 25	< 500	
	07/13/05		55	ND	ND	ND	ND	69	ND	ND	ND	ND	ND	
	08/16/06		36	ND	ND	ND	ND	27	ND	ND	ND	ND	ND	
	10/27/06		39	ND	0.90	ND	2.4	28	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	19	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-3-2	10/16/10	42	< 50	< 0.5	< 0.5	< 0.5	< 0.5	23	2.8	< 0.5	< 0.5	< 0.5	< 50	Intermediate
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	18	ND	< 0.5	< 0.5	< 0.5	< 50	
	06/0611		< 50	< 0.5	< 0.5	< 0.5	< 0.5	15	3.8	< 0.5	< 0.5	< 0.5	< 50	
	09/28/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	16	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	15	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	8.3	2.5	< 0.5	< 0.5	< 0.5	< 50	
	01/18/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	4.9	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	08/16/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/27/06		ND	ND	ND	ND	1.8	ND	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-3-3	10/16/10	52	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	Deep
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	06/06/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.73	<2.0	< 0.5	< 0.5	< 0.5	< 50	
	09/28/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 50	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	1.1	<2.0	< 0.5	< 0.5	< 0.5	< 50	
Environme	ntal Screening l	Levels (ESLs)	100	1.0	40	30	20	5.0	12	NE	NE	NE	NE	

Well- ID	Date	Depth (feet, bgs)	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	TBA	ETBE	DIPE	TAME	Ethanol	Comments
	01/11/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	15	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/12/05		ND	ND	ND	ND	ND	5.3	ND	ND	ND	ND	ND	
	08/16/06		ND	ND	ND	ND	ND	2.0	ND	ND	ND	ND	ND	
	10/27/06		ND	ND	ND	ND	0.76	2.1	ND	ND	ND	ND	ND	
CMT-4-1	04/19/10	13.5	< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.54	< 2.0	< 0.5	< 0.5	< 0.5	< 50	Shallow
CW11-4-1	10/16/10	13.3	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Shanow
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	01/11/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	29	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/12/05		ND	ND	ND	ND	ND	66	ND	ND	ND	ND	ND	
	08/16/06		ND	ND	ND	ND	ND	110	ND	ND	ND	ND	ND	
	10/27/06		ND	< 1.0	< 1.0	< 1.0	< 1.0	140	< 20	< 10	< 10	< 10	< 200	
CMT-4-2	04/19/10	42	< 50	< 5.0	< 5.0	< 5.0	< 5.0	180	< 20	< 5.0	< 5.0	< 5.0	< 500	Intermediate
CW11-4-2	10/16/10	42	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	memediate
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	01/11/05		29	< 0.5	< 0.5	< 0.5	< 0.5	27	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/12/05		ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	
	08/16/06		ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	
	10/27/06		ND	ND	ND	ND	0.53	16	ND	ND	ND	ND	ND	
CMT-4-3	04/19/10	52	< 50	<1.0	<1.0	<1.0	<1.0	40	<4.0	<1.0	<1.0	<1.0	<100	Deep
CW11-4-3	10/16/10	32	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Бсер
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
Environme	ntal Screening l	Levels (ESLs)	100	1.0	40	30	20	5.0	12	NE	NE	NE	NE	

Well- ID	Date	Depth (feet, bgs)	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	TBA	ETBE	DIPE	TAME	Ethanol	Comments
	12/29/04		< 25	< 0.5	0.7	< 0.5	< 0.5	19	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/12/05		ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	
	08/16/06		ND	ND	ND	ND	ND	4.7	ND	ND	ND	ND	ND	
	10/27/06		46	ND	ND	ND	0.87	3.6	ND	ND	ND	ND	ND	
CMT-5-1	04/19/10	21	< 50	< 0.5	< 0.5	< 0.5	< 0.5	11	< 2.0	< 0.5	< 0.5	< 0.5	< 50	Shallow
CW11-5-1	10/16/10	21	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Shanow
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/29/04		< 25	< 0.5	0.54	< 0.5	< 0.5	3.5	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/12/05		31	ND	ND	ND	ND	37	ND	ND	ND	ND	ND	
	08/16/06		88	ND	ND	ND	ND	89	ND	ND	ND	ND	ND	
	10/27/06		130	< 1.0	< 1.0	< 1.0	< 1.0	92	< 20	< 10	< 10	< 10	< 200	
CMT-5-2	04/19/10	42	< 50	< 5.0	< 5.0	< 5.0	< 5.0	140	< 20	< 5.0	< 5.0	< 5.0	< 500	Intermediate
CW11-3-2	10/16/10	42	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	memediate
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/29/04		< 25	< 0.5	0.52	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/12/05		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	08/16/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/27/06		ND	ND	ND	ND	0.67	ND	ND	ND	ND	ND	ND	
CMT-5-3	04/19/10	52	< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.57	< 2.0	< 0.5	< 0.5	< 0.5	< 50	Deep
CW11-3-3	10/16/10	32	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Беер
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
Environme	ntal Screening	Levels (ESLs)	100	1.0	40	30	20	5.0	12	NE	NE	NE	NE	

Well- ID	Date	Depth (feet, bgs)	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	TBA	ETBE	DIPE	TAME	Ethanol	Comments
	01/11/05		40	< 0.5	< 0.5	< 0.5	< 0.5	41	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/12/05		64	ND	ND	ND	ND	79	ND	ND	ND	ND	ND	
	08/16/06		71	ND	ND	ND	ND	71	ND	ND	ND	ND	ND	
	10/27/06		110	< 1.0	< 1.0	< 1.0	1.3	84	< 20	< 10	< 10	< 10	< 200	
	04/19/10		< 50	< 2.5	< 2.5	< 2.5	< 2.5	88	<10	< 2.5	< 2.5	< 2.5	<250	
CMT-6-1	10/16/10	22	< 50	< 0.5	< 0.5	< 0.5	< 0.5	95	16	<1.7	<1.7	<1.7	<170	Shallow
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	79	< 6.7	<1.7	<1.7	<1.7	<170	
	06/06/11		< 50	<1.2	<1.2	<1.2	<1.2	79	< 5.0	<1.2	<1.2	<1.2	<120	
	09/28/11		< 50	<1.7	<1.7	<1.7	<1.7	71	< 6.7	<1.7	<1.7	<1.7	<170	
	12/19/11		< 50	<1.7	<1.7	<1.7	<1.7	85	< 6.7	<1.7	<1.7	<1.7	<170	
	04/03/12		< 50	<1.2	<1.2	<1.2	<1.2	64	< 5.0	<1.2	<1.2	<1.2	<120	
	01/11/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	8.7	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/12/05		ND	ND	ND	ND	ND	15	ND	ND	ND	ND	ND	
	08/16/06		ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	
	10/27/06		40	ND	ND	ND	0.76	19	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	18	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-6-2	10/16/10	43	< 50	< 0.5	< 0.5	< 0.5	< 0.5	28	2.3	< 0.5	< 0.5	< 0.5	< 50	Intermediate
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	24	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	06/06/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	18	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	09/28/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	21	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	27	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	18	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	01/11/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	4.5	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/12/05		ND	ND	ND	ND	ND	4.7	ND	ND	ND	ND	ND	
	08/16/06		25	ND	0.77	ND	ND	5.5	ND	ND	ND	ND	ND	
	10/27/06		38	ND	ND	ND	0.68	7.7	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	25	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-6-3	10/16/10	57	< 50	< 0.5	< 0.5	< 0.5	< 0.5	20	< 2.0	< 0.5	< 0.5	< 0.5	< 50	Deep
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	16	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	06/06/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	23	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	09/28/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	23	3.1	< 0.5	< 0.5	< 0.5	< 50	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	16	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	21	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
Environme	ntal Screening	Levels (ESLs)	100	1.0	40	30	20	5.0	12	NE	NE	NE	NE	

Well- ID	Date	Depth (feet, bgs)	ТРН-д	benzene	toluene	ethyl- benzene	xylenes	MtBE	TBA	ETBE	DIPE	TAME	Ethanol	Comments
	01/11/05		< 25	< 0.5	0.52	< 0.5	< 0.5	2.5	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		ND	ND	ND	ND	ND	3.7	ND	ND	ND	ND	ND	
	08/16/06		42	ND	ND	ND	ND	27	ND	ND	ND	ND	ND	
	10/27/06		50	ND	2.2	ND	2.7	37	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	13	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-7-1	10/16/10	13.5	< 50	< 0.5	< 0.5	< 0.5	< 0.5	11	2.6	< 0.5	< 0.5	< 0.5	< 50	Shallow
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	9	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	06/06/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	7.6	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	09/28/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	10	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	13	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	11	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	01/10/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	7.4	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		230	< 2.5	< 2.5	< 2.5	< 2.5	320	< 50	< 25	< 25	< 25	< 500	
	08/16/06		400	< 2.5	< 2.5	< 2.5	< 2.5	390	< 50	< 25	< 25	< 25	< 500	
	10/27/06		490	< 5.0	< 5.0	< 5.0	< 5.0	400	< 100	< 50	< 50	< 50	< 1,000	
	04/19/10		< 50	< 2.5	< 2.5	< 2.5	< 2.5	170	<10	< 2.5	< 2.5	< 2.5	<250	
CMT-7-2	10/16/10	43	< 50	< 0.5	< 0.5	< 0.5	< 0.5	180	< 20	< 5.0	< 5.0	< 5.0	< 500	Intermediate
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	140	< 20	< 5.0	< 5.0	< 5.0	< 500	
	06/06/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	140	<10	< 5.0	< 5.0	< 5.0	< 500	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		< 50	< 2.5	< 2.5	< 2.5	< 2.5	140	<10	< 2.5	< 2.5	< 2.5	<250	
	04/03/12		< 50	< 2.5	< 2.5	< 2.5	< 2.5	130	<10	< 2.5	< 2.5	< 2.5	<250	
	01/10/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	
	08/16/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/27/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-7-3	10/16/10	57	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	Deep
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	06/06/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	8.2	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	10	2.5	< 0.5	< 0.5	< 0.5	< 50	
Environme	ntal Screening l	Levels (ESLs)	100	1.0	40	30	20	5.0	12	NE	NE	NE	NE	

Well- ID	Date	Depth (feet, bgs)	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	TBA	ETBE	DIPE	TAME	Ethanol	Comments
	01/14/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	08/16/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		26	ND	0.78	ND	1.4	ND	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-8-1	10/16/10	22	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Shallow
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	01/14/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	08/16/06		ND	ND	ND	ND	ND	ND	80	ND	ND	ND	ND	
	10/26/06		ND	ND	0.81	ND	1.2	ND	80	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-8-2	10/16/10	43.5	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Intermediate
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	01/14/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	08/16/06		ND	ND	ND	ND	ND	< 1.0	80	ND	ND	ND	ND	
	10/26/06		ND	ND	0.70	ND	1.1	ND	80	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-8-3	10/16/10	52	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Deep
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	01/14/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	08/16/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		ND	ND	0.72	ND	1.0	ND	ND	ND	ND	ND	ND	
	04/19/10	_	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-9-1	10/16/10	22	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Shallow
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
Environme	ntal Screening	Levels (ESLs)	100	1.0	40	30	20	5.0	12	NE	NE	NE	NE	

Well- ID	Date	Depth (feet, bgs)	ТРН-д	benzene	toluene	ethyl- benzene	xylenes	MtBE	TBA	ETBE	DIPE	TAME	Ethanol	Comments
	01/14/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	08/16/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		ND	ND	0.77	ND	1.2	ND	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-9-2	10/16/10	43.5	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Intermediate
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	01/14/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	08/16/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		ND	ND	0.57	ND	0.94	ND	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-9-3	10/16/10	52	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Deep
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	01/14/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		ND	ND	ND	ND	ND	3.8	ND	ND	ND	ND	ND	
	08/15/06		ND	ND	ND	ND	ND	1.6	ND	ND	ND	ND	ND	
	10/26/06		ND	ND	0.8	ND	1.5	2.4	ND	ND	ND	ND	ND	
	04/19/10		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
CMT-10-1	10/16/10	22	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Shallow
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	<50	
	01/14/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	2.6	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		ND	ND	ND	ND	ND	4.8	ND	ND	ND	ND	ND	
	08/15/06		ND	ND	ND	ND	ND	1.6	ND	ND	ND	ND	ND	
	10/26/06		35	ND	1.2	ND	2.3	4.9	ND	ND	ND	ND	ND	
CD 475 10 2	04/19/10	40	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	T . 11 .
CMT-10-2	10/16/10	42	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Intermediate
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	1	< 2.0	< 0.5	< 0.5	< 0.5	<50	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0	< 0.5	< 0.5	< 0.5	<50	
Envi	04/03/12	L1- (EGL)	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	<50	
Environmei	ntal Screening I	Leveis (ESLs)	100	1.0	40	30	20	5.0	12	NE	NE	NE	NE	

Well- ID	Date	Depth (feet, bgs)	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	TBA	ETBE	DIPE	TAME	Ethanol	Comments
	01/14/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	07/13/05		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	08/15/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		ND	ND	0.9	ND	1.6	ND	ND	ND	ND	ND	ND	
	04/19/10		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
CMT-10-3	10/16/10	52	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Deep
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.9	< 2.0	< 0.5	< 0.5	< 0.5	< 50	•
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.85	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	01/10/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	08/15/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		25	ND	1.2	ND	1.8	ND	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-11-1	10/16/10	22.5	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Shallow
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	01/10/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	1.3	< 10	< 5.0	< 5.0	< 5.0	< 100	
	08/15/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		31	ND	0.83	ND	1.6	ND	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-11-2	10/16/10	32	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Intermediate
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	01/10/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	08/15/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		26	ND	0.64	ND	1.2	ND	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-11-3	10/16/10	53	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Deep
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
Environme	ntal Screening	Levels (ESLs)	100	1.0	40	30	20	5.0	12	NE	NE	NE	NE	

Well- ID	Date	Depth (feet, bgs)	ТРН-д	benzene	toluene	ethyl- benzene	xylenes	MtBE	TBA	ЕТВЕ	DIPE	TAME	Ethanol	Comments
CMT-12-1	01/10/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	Shallow
	08/15/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		ND	ND	0.56	ND	0.93	ND	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	10/16/10	22.75	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	01/10/05		< 25	< 0.5	< 0.5	< 0.5	< 0.5	1.4	< 10	< 5.0	< 5.0	< 5.0	< 100	
	08/15/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Intermediate
	10/26/06		ND	ND	1.0	ND	1.9	ND	ND	ND	ND	ND	ND	
CMT-12-2	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	23	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	10/16/10	38.25	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	01/10/05	57.25	< 25	< 0.5	< 0.5	< 0.5	< 0.5	1.7	< 10	< 5.0	< 5.0	< 5.0	< 100	Deep
	08/15/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
CMT-12-3	10/16/10		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/03/04	17	180	< 1.0	< 1.0	< 1.0	< 2	190	< 20	< 10	< 10	< 10	< 200	
	08/16/06		440	ND	ND	ND	ND	57	ND	ND	ND	ND	ND	
PZ-1a	10/27/06		130	ND	ND	ND	ND	52	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	23	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	10/16/10		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Shallow
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM]
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
Environmental Screening Levels (ESLs)			100	1.0	40	30	20	5.0	12	NE	NE	NE	NE	

Well- ID	Date	Depth (feet, bgs)	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	TBA	ETBE	DIPE	TAME	Ethanol	Comments
PZ-1b	12/03/04		38	< 0.5	< 0.5	< 0.5	< 1	28	< 10	< 5.0	< 5.0	< 5.0	< 100	Deep
	08/16/06		51	ND	ND	ND	ND	38	ND	ND	ND	ND	ND	
	10/27/06		58	ND	ND	ND	0.79	50	ND	ND	ND	ND	ND	
	04/19/10	1	< 50	< 2.5	< 2.5	< 2.5	< 2.5	63	<10	< 2.5	< 2.5	< 2.5	<250	
	10/16/10	46.5	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/03/04		270	< 2.5	< 2.5	< 2.5	< 5	280	< 50	< 25	< 25	< 25	< 500	Shallow
	07/12/05		120	< 1.0	< 1.0	< 1.0	< 1.0	110	< 20	< 10	< 10	< 10	< 200	
PZ-2a	08/15/06		100	ND	ND	ND	ND	92	ND	ND	ND	ND	ND	
	10/26/06	29	68	ND	ND	ND	ND	56	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	22	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	10/16/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	18	3.0	< 0.5	< 0.5	< 0.5	< 50	
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	7.5	2.9	< 0.5	< 0.5	< 0.5	< 50	
	06/06/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.4	2.9	< 0.5	< 0.5	< 0.5	< 50	
	09/28/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	5.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	12/19/11		< 50	< 0.5	0.94	< 0.5	< 0.5	5.8	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.9	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	12/03/04		160	< 1.0	< 1.0	< 1.0	< 2	150	< 20	< 10	< 10	< 10	< 200	
	07/12/05		ND	ND	ND	< 1.0	ND	15	ND	ND	ND	ND	ND	
	08/15/06		ND	ND	ND	ND	ND	17	ND	ND	ND	ND	ND	
	10/26/06		43	ND	ND	ND	ND	17	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
PZ-2b	10/16/10	49	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Deep
	03/30/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	3	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	06/06/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.8	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	09/28/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	12/19/11		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	04/03/12		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
Environme	ntal Screening	Levels (ESLs)	100	1.0	40	30	20	5.0	12	NE	NE	NE	NE	

Well- ID	Date	Depth (feet, bgs)	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	TBA	ЕТВЕ	DIPE	TAME	Ethanol	Comments
	12/03/04		29	< 0.5	< 0.5	< 0.5	< 1.0	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	Shallow
PZ-3a	08/16/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06		27	< 0.5	1.8	< 0.5	2.9	ND	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
	10/16/10	21	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11	1	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/03/04		< 25	< 0.5	< 0.5	< 0.5	< 1.0	< 1.0	< 10	< 5.0	< 5.0	< 5.0	< 100	
	08/16/06		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/26/06	49	ND	ND	0.54	ND	0.88	ND	ND	ND	ND	ND	ND	
	04/19/10		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 50	
PZ-3b	10/16/10		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	Deep
	03/30/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	06/06/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	09/28/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
	12/19/11		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	
Sunol Tree		153?	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	Deep
Environme	Environmental Screening Levels (ESLs)		100	1.0	40	30	20	5.0	12	NE	NE	NE	NE	

Notes:

BOLD = Bold Print indicates concentrations are above ESLs.

<#= Detection limit elevated due to sample dilution.</pre>

ND = Not detected at or above the lab's practical quantitation limit.

NS= Not sampled

MtBE detections are confirmed by EPA Method #8260.

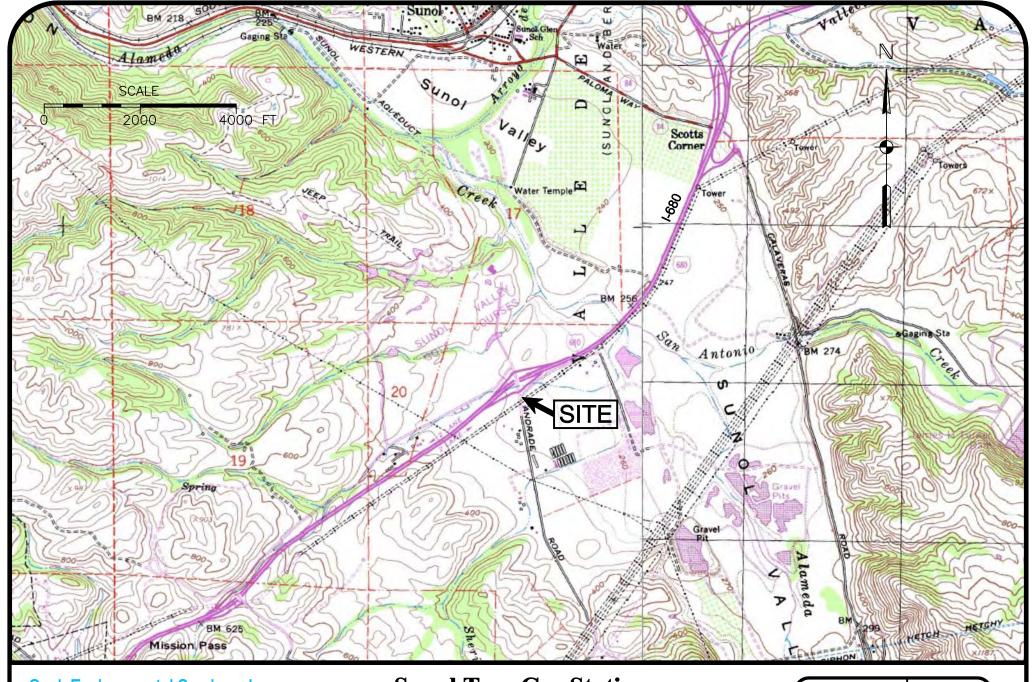
 $\mathbf{MTBE} = \mathbf{Methyl}\text{-tert-Butyl}$ ether

TAME = Tert-amyl methyl ether

ETBE = Ethyl tert-butyl ether

DIPE = Di-isopropyl either

tBA - tert butyl alcohol


TPH-g - total petroleum hydrocarbons as gasoline concentrations: micrograms per liter (ug/L)

ESLs are from San Francisco Bay RWQCB where

groundwater is a drinking water resource.

13/14 = dupicate sample results

FIGURES

Cook Environmental Services, Inc. 1485 Treat Blvd. Ste. 203A

1485 Treat Blvd. Ste. 203A Walnut Creek, CA (925) 478-8390 work (925) 787-6869 cell tcook@cookenvironmental.com Sunol Tree Gas Station Site Location Map 3004 Andrade Road Sunol, CA 94586

Project: 1024

Date: 4/30/12

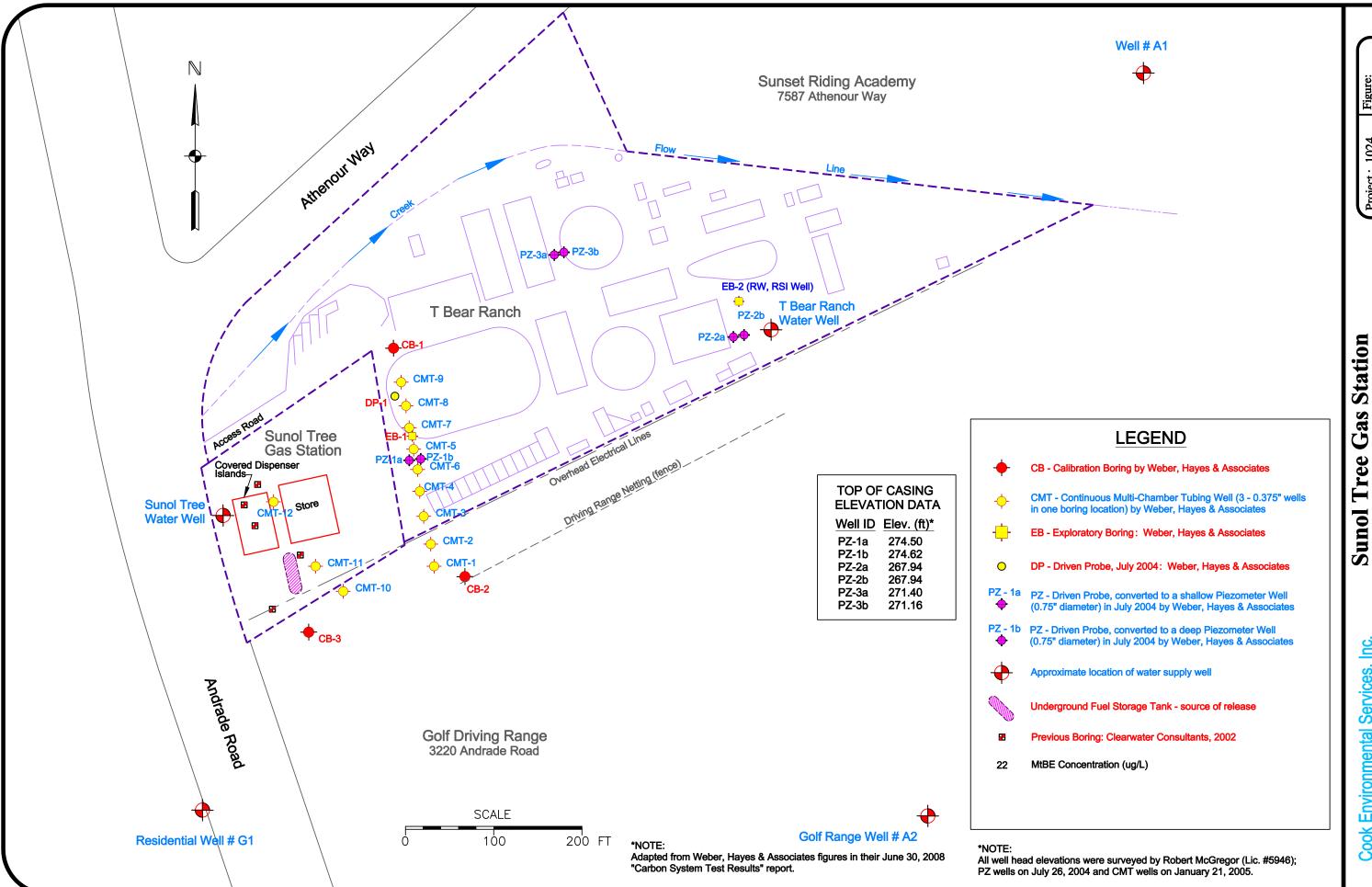
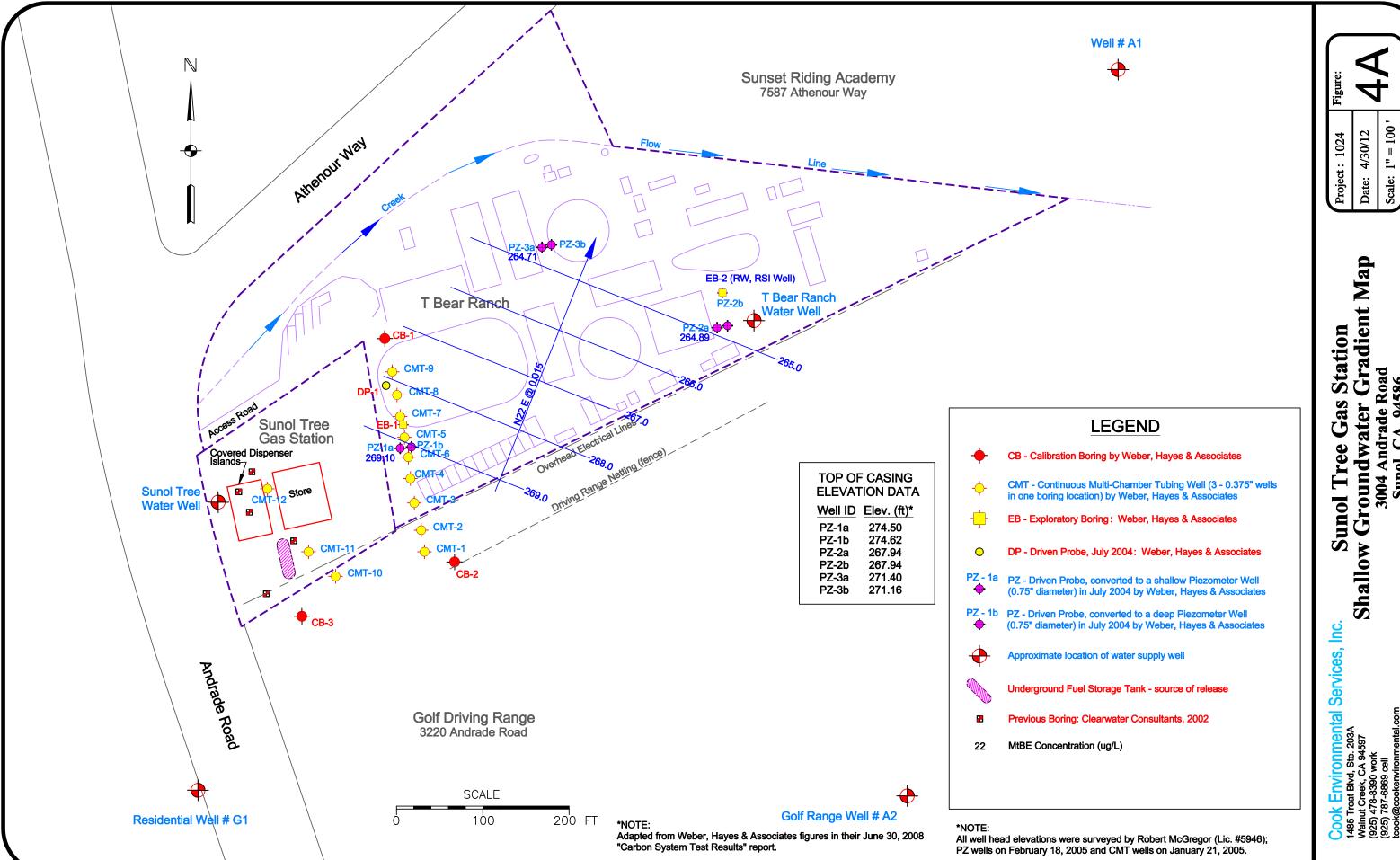

Scale: 1" = 2000 '

Figure:

Sunol Tree Gas Station Site Aerial Photograph 3400 Andrade Road Sunol, CA 94586

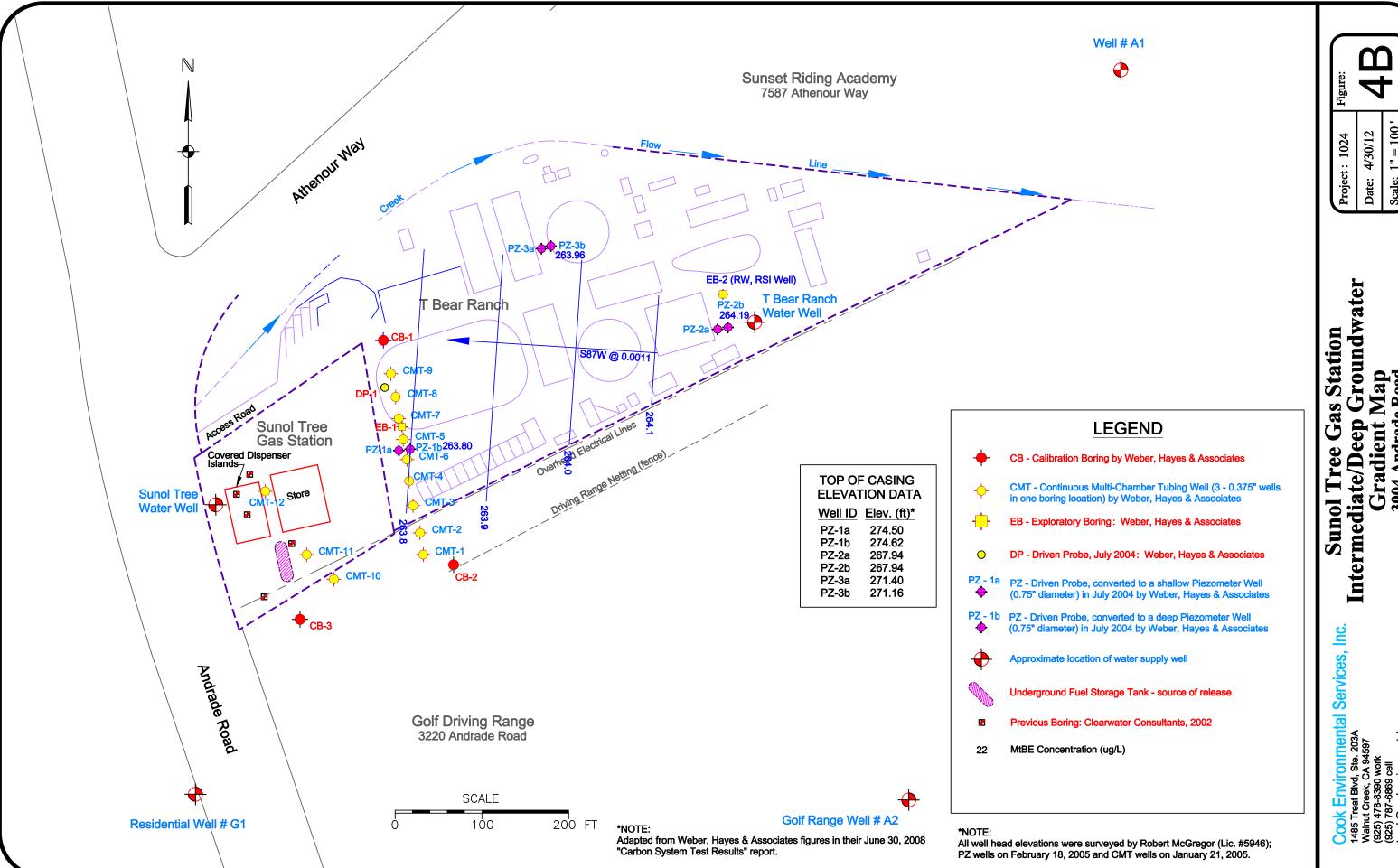
Date: 4/30/12 Scale: 1" = 50


Free Gas Station Well and Soil Boring Locations 3004 Andrade Road Sunol, CA 94586 Monitoring

1" = 100

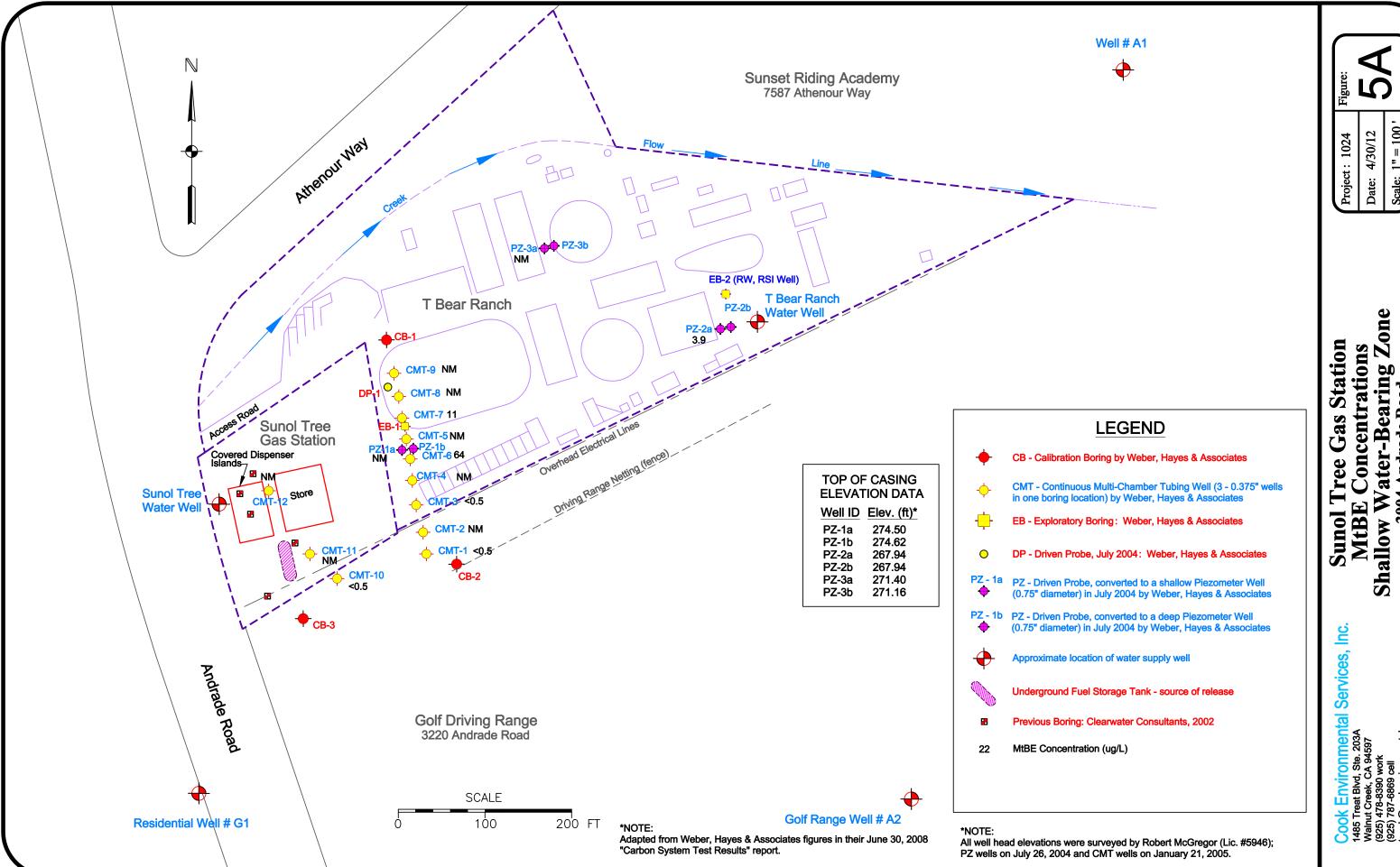
Date: 4/30/12

Services, Inc.


Cook Environmental S 1485 Treat Bivd, Ste. 203A Walnut Creek, CA 94597 (925) 478-8390 work (925) 787-6869 cell

Date: 4/30/12 Sunol Tree Gas Station

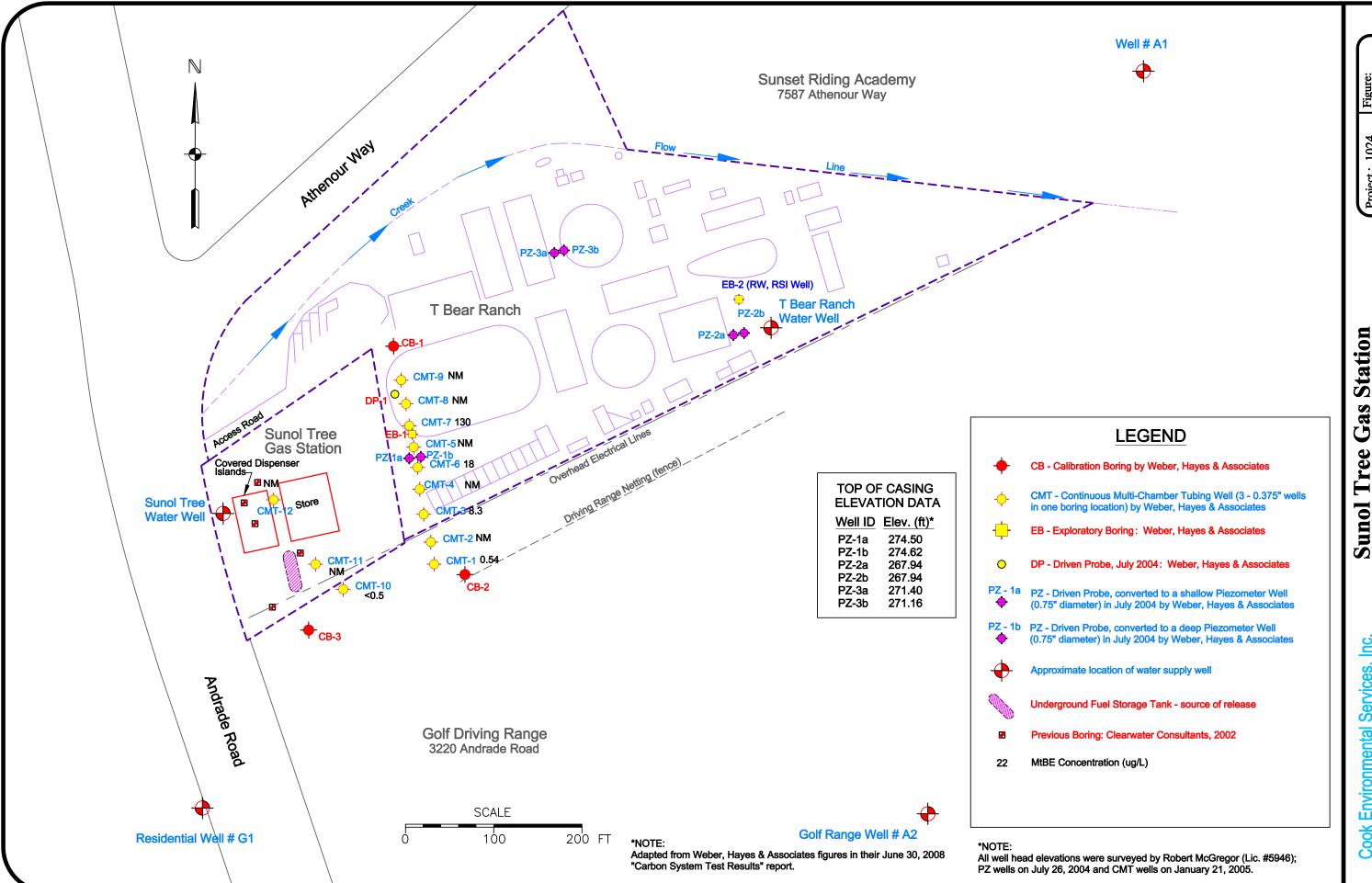
W Groundwater Gradient Map
3004 Andrade Road
Sunol, CA 94586 Shallow


= 100

Intermediate/Deep Groundwater Station Gradient Map 3004 Andrade Road Sunol, CA 94586 Sunol Tree

Date: 4/30/12

= 100

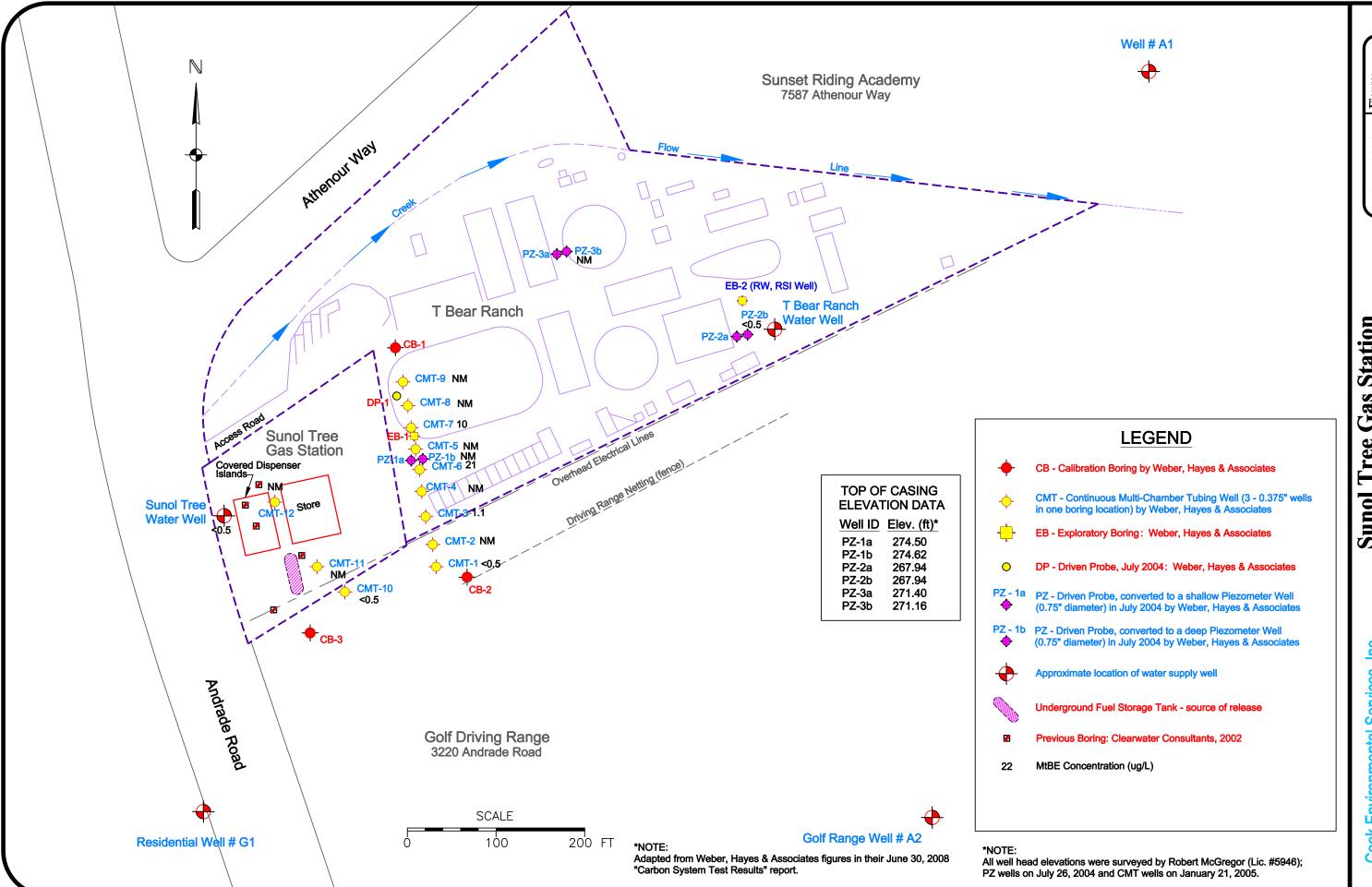


Concentrations

Dooring Zone Shallow Water-Bearing 3004 Andrade Road Sunol, CA 94586 Tree Sunol T MtBE

Date: 4/30/12

1" = 100

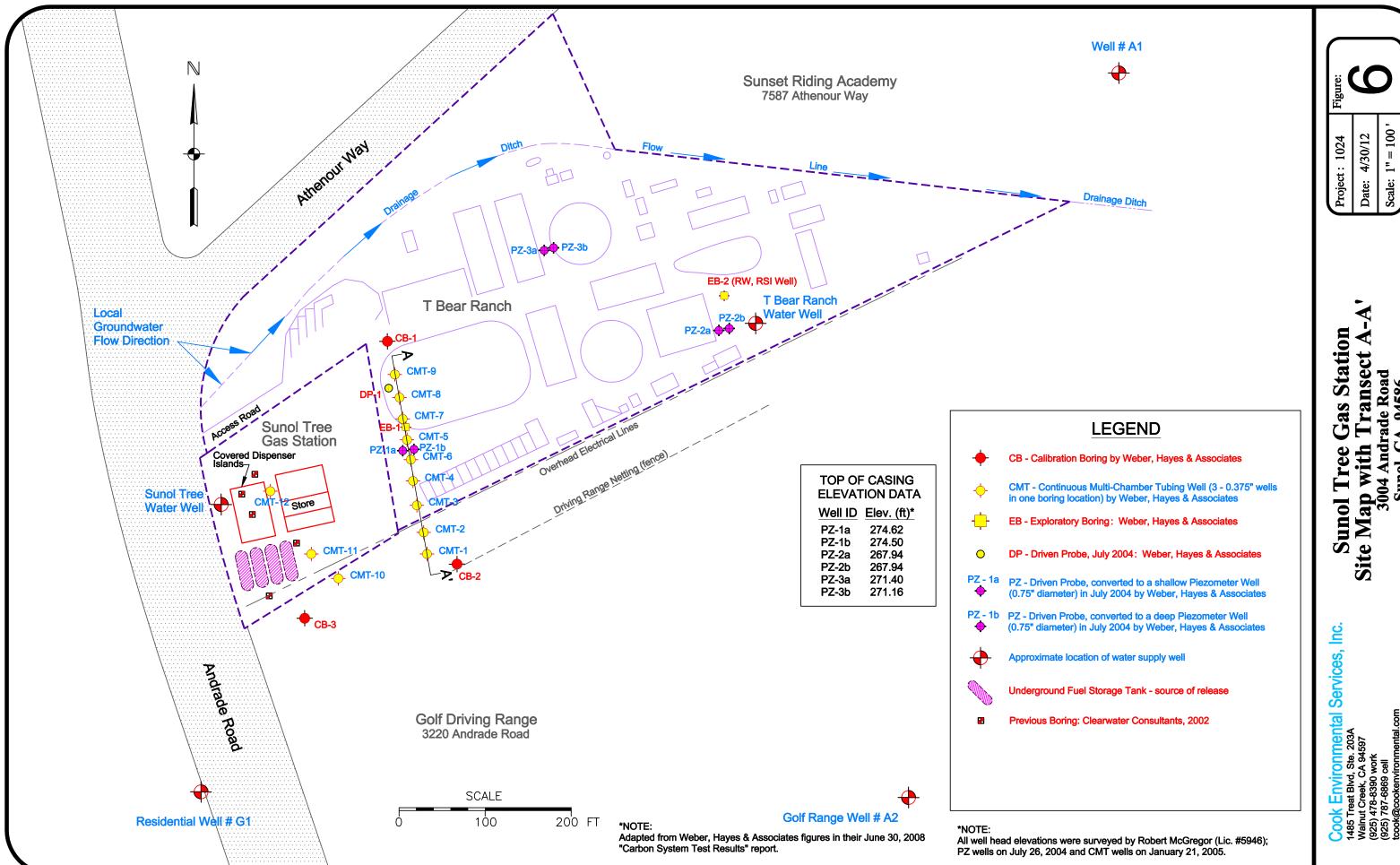

Zone Concentrations te Water-Bearing 704 Andrade Road Intermediate 3004 MtBE

Date: 4/30/12

= 100

Services, Inc.

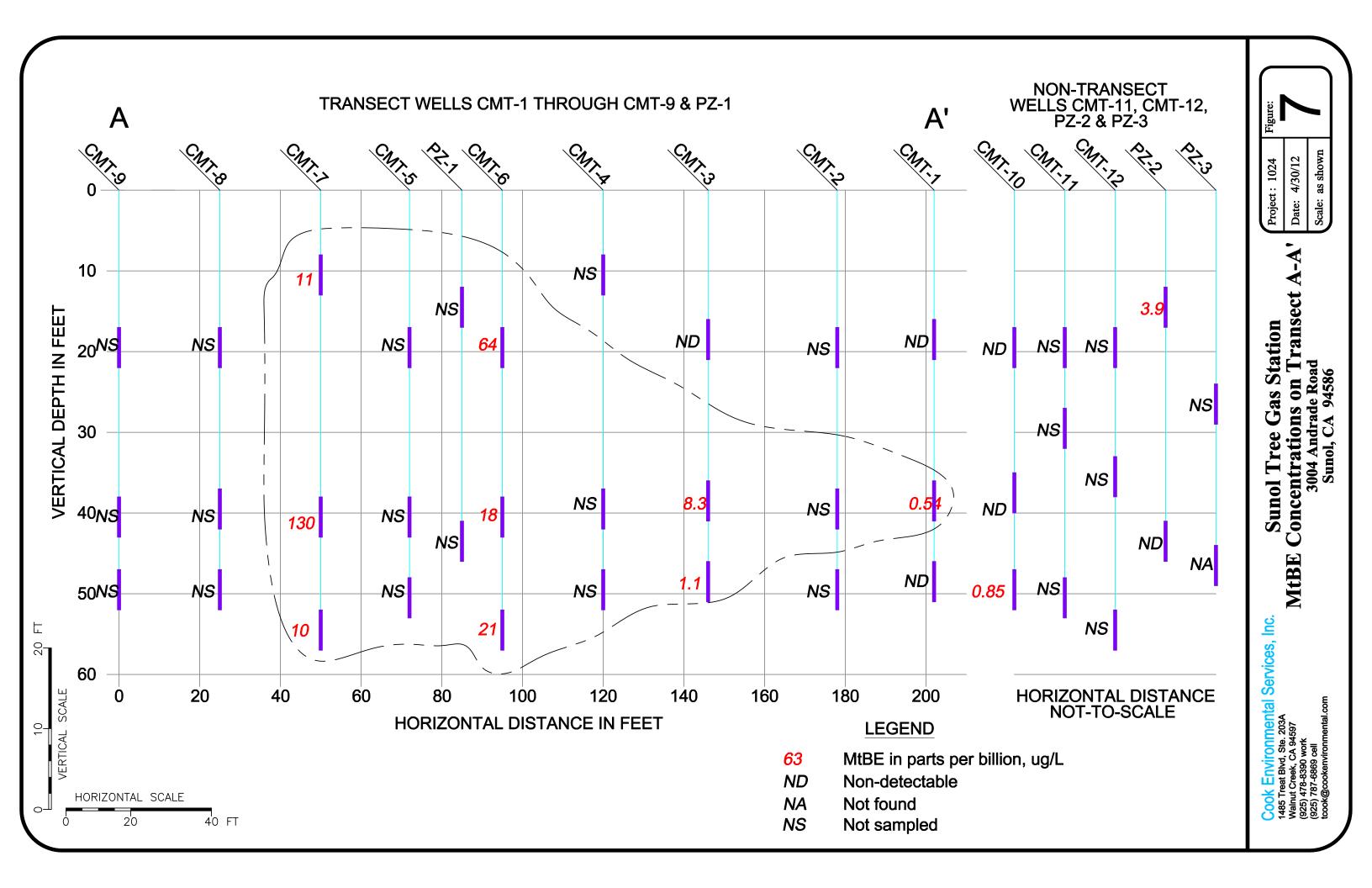
Cook Environmental S 1485 Treat Bivd, Ste. 203A Walnut Creek, CA 94597 (925) 478-8390 work (925) 787-6869 cell



Zone Gas Station Concentrations Water-Bearing 7 3004 Andrade Road Sunol, CA 94586 Sunol Tree MtBE Cond Deep

Date: 4/30/12

= 100


Cook Environmental Services, Inc. 1485 Treat Blvd, Ste. 203A Walnut Creek, CA 94597 (925) 478-8390 work (925) 787-6869 cell

Site Map with Transect A-A 3004 Andrade Road Sunol, CA 94586 Sunol Tree Gas Station

1" = 100

Date: 4/30/12

APPENDIX A Site Background

Regional Setting: The subject site is situated in the southwestern portion of the Sunol groundwater Basin (in a "subbasin" identified as the Sunol subbasin, see http://aceh.intranets.com/~docs/GroupDocuments/FIGURES/2-Topograph-

3D.pdf?id=28390&ord=040200 Figure 1)). The Sunol Valley is a structural trough surrounded by Diablo Range hills. Unconsolidated surface soils at the subject site have previously been mapped as water-bearing, alluvium deposits (Qal). Underlying the shallow alluvial deposits is the Livermore Formation (Tlo), significant water-bearing strata for the region. Non-water bearing, marine shale and sandstone deposits (JK) underlie the Livermore Formation. The Livermore and Sunol region is offset by a number of faults including the nearby Sinbad fault, which is buried beneath Alameda Creek-deposited alluvium, approximately 2,000 feet northwest of the site.

The general direction of regional groundwater movement is from the upland areas toward Alameda Creek and then westward toward the outlet of the basin (see Figure 1). The main surface water drainage in the Sunol subbasin is the northwest-flowing Alameda Creek located approximately 2,000 feet north of the subject site. Locally, groundwater is reported to be both confined and unconfined and generally flows to the northwest. Recharge occurs by infiltration of the surface water along Alameda Creek. The northwest trending Sinbad fault is likely to act as a barrier to the lateral movement of groundwater. Regional geologic cross-sections indicate the subject site is on the up-gradient side of the Sinbad fault where groundwater levels reportedly stand higher

The Sunol Valley contains two water-bearing geologic formations that are documented to yield adequate to large quantities of groundwater from production wells. They include Plio-Plesistocene sediments of the Livermore Formation (Tlo) and more recent Quaternary alluvium (Qal). These aquifer sediments are composed largely of sand and gravel with discontinuous layers of clay, and are underlain at a shallow depth by nonwater-bearing rocks that are exposed in the bordering highlands. Specifically, the total thickness of these water-bearing sediments is reported to be less than 200 feet in the vicinity of the site. Drillers logs completed during the drilling of two nearby water production wells indicate non-water bearing shale was logged at a depth of approximately 140' although, given soil descriptions of other borings in the area suggest it is likely to be blue clay.

Logs of local water wells installed in the vicinity of the fuel leak site suggests some continuity in the shallow aquifer containing upwards of 50 feet of sand and gravel with limited clay. The stratigraphy underlying the shallow aquifer is less consistent due to the logged description of shale in two well logs but discontinuous sand and gravel lenses appearing at varying depths could indicate aquifer connectivity by river channel deposition.

Drinking Water Well Testing: Testing was completed on the Sunol Tree Gas Station well and the 5 downgradient/sidegradient water wells in May 2003 following the discovery of MTBE in the T-Bear Ranch well. Off-site water production wells were located between approximately 550-1,700 feet downgradient from the former underground fuel storage tanks (USTs). Additional sampling was also completed on two upgradient water production wells (July 2004). The results indicate the T Bear Ranch was the only well that was significantly impacted (130 ppb MTBE).

Drinking Water Well Testing: Testing was completed on the Sunol Tree Gas Station well and the 5 downgradient/sidegradient water wells in May 2003 following the discovery of MTBE in the T-Bear Ranch well. Off-site water production wells were located between approximately 550-1,700 feet downgradient from the former underground fuel storage tanks (USTs). Additional sampling was also completed on two upgradient water production wells (July 2004). The results indicate: The T-Bear Ranch was the only well that was significantly impacted (130 ppb MTBE). No driller's log is available for this well although a video log is scheduled for June 29, 2004.

Preferential Pathways

Active/Abandoned Wells: A water well survey appears to have been completed based on DWR drilling logs and maps provided by Zone 7 Water District but it is unclear whether a detailed site reconnaissance was completed. A follow-up testing program included collection of water samples from a number of local wells but accurate mapping and sampling protocols have not been documented.

On-Site Water Well: The Sunol Tree Gas Station has a production well on the premises and the well construction is unclear, as no log exists. A video log was completed which has cryptic information on the well screen. Specifically, first screens appear at 60 feet, and "water movement was noted at 62', 67', 101', & 103') At this point we assume the well is perforated from 60' to 153 below ground surface.

T Bear Well: The MTBE-impacted T Bear Ranch well was fully characterized using video logging, geophysical & discrete testing. However, recent communication from a local driller indicates the PVC casing may be an insert to a deeper cable tool drilled well (metal cased), so unusual preferential flow paths may exist.

Utility Survey: No utility survey has yet been completed in the immediate vicinity of the fuel release site (i.e., utility trenches with gas, sewer, water, storm drain, telephone, and electric lines).

Site Setting: The fuel release occurred at Sunol Tree Gas Station, an operating facility selling gasoline and diesel. The site located at 3004 Andrade Road, in Sunol, California, near the northbound exit ramp of Highway 680. The relatively flat-lying site contains 6 USTs.

The fuel release was discovered on April 12, 2002, during the removal of five, 15,000-gallon underground fuel tanks (USTs) and piping at the Sunol Tree Gas Station. The USTs were reported to be in good condition having no observable holes or corrosion. The consultant on-site noted hydrocarbon odor and soil staining in excavated soils. Ten sidewall samples and a water sample were obtained from the tank pit. Trace to non-detectable levels of TPH(gas-diesel)+BTEX-MTBE were found in the sidewall samples (ND-to-0.25 mg/kg MTBE). The pit water sample contained 84 ug/L MTBE. Sampling beneath the dispensers (12 samples) and piping trenches (3 samples) revealed generally low concentrations of gas and BTEX. A single elevated diesel hit was detected beneath dispenser #7 (1,300 mg/kg) and trace to elevated MTBE concentrations were detected in nine of the 14 samples (0.0058 to 5.9 mg/kg).

Approximately 3-500-4,000 cubic yards of soil was excavated, stockpiled on-site, and covered with plastic sheeting. Stockpile screening (four composite samples) revealed only trace

concentrations of diesel/motor oil and no detections of gas-BTEX-MTBE. In addition, 160,000 gallons of contaminated water were pumped out during installation of replacement tanks. The containerized water samples had MTBE detections ranging from 73 to 190 ug/L.

Source Area: TPH and MTBE were detected in soil sidewalls during the UST closure operations in May 2002 when five, 15,000-gallon USTs were replaced. Pit sidewall and dispenser samples generally contained low concentrations of fuel contaminants (gas/diesel) and volatile constituent compounds. Specifically, soil concentrations ranged from non-detect to 150 ppm for gasoline, nondetect to 5.9 ppm for MTBE, trace TBA, and no DIPE, ETBE or TAME.

Groundwater samples were subsequently obtained from driven probe borings cored at 5 locations targeting the dispensers and USTs. Groundwater samples contained up to 17,000 ppb gasoline and 43 ppb MTBE (Nov-2002).

Dissolved plume: The dissolved plume appears to be fully characterized. During the May 2002 UST Closure Operations, collected pit water contained no detectable gasoline concentrations but did contain 84 ppb MTBE. Disposal acceptance testing of 160,000 gallons of fuel-impacted groundwater pumped from the open pit containerized in storage tanks contained up to 170 ppb gasoline and 190 ppb MTBE.

Chronology of the Sunol Tree Gas Station Fuel Release + Impact to the T-Bear Ranch Well

2002

- April 12, 2002: Contamination discovered during removal of 5 underground fuel tanks at the Sunol Tree Gas Station
 - 4,000 cubic yards of contaminated removed and stockpiled on-site.
 - 160,000 gallons of contaminated water were pumped out during installation of new tanks
- June 27, 2002: AC-HCSA directive requiring workplan.
- Aug-20, 2002: Clearwater Consultants sampled water from a faucet on the Kelso propertyresults came back clean.
- Aug-23, 2002: PRELIMINARY SITE ASSESSMENT (PSA) WORKPLAN submitted by Clearwater Consultants. PSA work tasks were completed in Aug-Dec, including:
 - Nov-27, 2002: Five borings were drilled on-site. Groundwater encountered at depths between 16-19' (approx). Relatively low soil contamination but elevated groundwater contamination.
 - Dec-12, 2002: Video log of Kelso well showed total depth to be 153 feet and "Mils Knife" perforations located at 60', 62', 67', 101', & 103'. The well pump was located at a depth 100'. Depth to water was at 20 feet. Apparently no discrete samples were obtained from within the well.
 - Mar-14, 2003: Summary Report concluded more delineation was necessary including placement of wells.
 - Aug-27, 2002: AC-HCSA approval of workplan.

 Feb-12, 2003: T-Bear property refinance rejected by Washington Mutual Bank due to perceived financial liability associated with the Kelsoe gasoline contamination. Washington termed the T-Bear Ranch "Unacceptable Collateral at the present time". The bank's environmental appraisal statement included the following rationale for rejection of the bank financing:

"The subject parcel (T-Bear Ranch) adjoins a chevron gas station. The underground tanks at the station have been identified as leaking per the EPA (really - AC-HCSA). The tanks and a significant amount of adjoining earth and soil have been removed.The subject parcel (T-Bear Ranch) derives it's water from two wells - obvious concerns regarding this........This could cost multiple thousands of dollars and dictate that the Owner of the parcel (i.e.. Hayes, Tovani, lender) clean and dispose of any contaminated soil. Phase II report might lead to a Phase III report if sufficient contaminants are found to be present........"

- Feb-13, 2003: T-Bear Ranch well water sampled and tested by RJ Lee Group, Inc (Pennsylvania). MTBE detected at a concentration of 73 parts per billion (ppb).
- Feb-27, 2003: T-Bear Ranch well water sampled from "Kitchen Sink" and tested by Cerco Analytical (Pleasanton). MTBE detected at a concentration of 87.3 ppb
- Mar-3, 2003: T-Bear Ranch well water re-sampled and tested by Zone 7 Water District. MTBE detected at a concentration of 130 ppb.
- Mar-14, 2003: Clearwater Consultants submitted *PRELIMINARY SITE ASSESSMENT* (PSA) *SUMMARY REPORT* to AC-HCSA. As noted above, the report summarized field work completed in Aug-Dec, 2002, and concluded that more delineation was necessary including placement of wells.
- Mar-20, 2003: AC-HCSA 1) response to the *PSA Summary Report*, and 2) directive requiring further expedited work. AC-HCSA directed Mr. Kelso to submit a *Soil and Water Investigation (SWI) Workplan* by April 4, 202 for completing an intensive subsurface investigation, which included the following tasks:
 - Collecting and testing water from domestic/commercial water wells in the vicinity of the Kelose gas station.
 - Removal of the 4,000 cubic yard stockpile at the Kelose gas station
 - Developing a full understanding of site conditions ("site conceptual model") by completing investigative work tasks including: on-site soil logging to at least 60 feet, installation of wells to characterize the full, 3-dimensional extent of contamination, survey of utilities and wells in the vicinity, video logging of the T-Bear well, and reporting.
- Apr-4, 2003: Request for extension of SWI Workplan submittal due date.
- Apr-7, 2003: AC-HCSA granted extension for the submittal of the of SWI Workplan to April 25th.
- Apr-11, 2003: T-Bear Ranch well water re-sampled by Clearwater Consultants. MTBE detected at a concentration of 120 ppb.
- May-6, 2003: WELL SAMPLING REPORT submitted by Clearwater Consultants. The report documents the sampling of 5 production wells located downgradient of the station, including the T-Bear Ranch well. Two of the wells had detections of MTBE including T-Bear Ranch well (120 ppb) and the adjacent golf driving range well (at the detection limit of 0.5 ppb, tested by Zone 7

- on 3-4-02). The adjacent golf range well was resampled on April 11, 2003 by Clearwater Consultants and no MTBE was detected by their lab.
 - May-8, 2003: WORK PLAN FOR SOIL AND WATER INVESTIGATION (SWI) submitted by Clearwater Consultants.
- May-12, 2003: State Underground Storage Tank Fund (State FUND) rejected Murray Kelsoe's application for acceptance on the grounds that he failed to comply with permit requirements. If accepted to the State FUND, Mr. Kelsoe would have been eligible for up to \$1.5 million dollars toward characterization and cleanup of the fuel release.
- Jun-13, 2003: AC-HCSA 1) rejection of the May-8 SWI Workplan (above) due to "substantial deficiencies" and required immediate re-submittal of an amended workplan.
 - AC-HCSA rejected the proposal to provide water to the T-Bear Ranch via the Kelsoe well, located at the gas station due to concerns of pulling the fuel release downward to the well screens.
 - · Deficiencies noted by AC-HCSA included:
 - inadequate presentation of site-specific subsurface conditions (i.e., "Site Conceptual Model") which is the rationale for initial installation of piezometers and subsequent installation of monitoring wells.
 - · nested wells construction problems;
 - · removal of the stockpile.
- Jul-3, 2003: Mr. Kelsoe's attorney submitted a letter appealing the State FUND's rejection.
- · Aug-2003: State FUND rejected the appeal.
- Nov-6, 2003: A non-standard, carbon filtration system was installed to remove MTBE from groundwater pumped at the T Bear Ranch well.
 - initial breakthrough of first set of carbon vessels occurred after 89 days (Jan-27th) = 0.63 ppb MTBE.
 - initial breakthrough of second set of carbon vessels occurred after 202 days (May-5th) @ 1.6 ppb.
 - Carbon Change-out of all vessels occurred after 221 days (May-25th).
- 2003 to present: Ongoing Carbon System Monitoring (trace MTBE influent into the system does not require significant carbon change outs see table for details).

APPENDIX B Field Procedures

APPENDIX B FIELD SAMPLING METHODOLOGY AND ELECTRONIC DATA DELIVERY

Cook Environmental Services, Inc. (CES) groundwater sampling methodology is based on procedures specified in the California State Water Resource Control Board *LUFT Field Manual*. Monitoring wells are exposed to atmospheric conditions for approximately 30 minutes prior to measurements to equalize barometric pressure in the well. If the well appears to be pressurized, or the groundwater level is fluctuating, measurements are collected until the level stabilizes.

CES uses an electronic well sounder to measure the static water levels in piezometer wells (e.g. PZ-1, PZ-2, PZ-3) to the nearest hundredth (0.01) of a foot. Depth-to-water measurements are subtracted from the top of casing elevations to obtain static water elevations.

Dedicated plastic tubing is stored in each sampling point is used to purge and sample each sampling point. During purging, physical parameters such as temperature, conductivity, pH and dissolved oxygen (DO) are monitored with field instruments to ensure that these parameters have stabilized to within a variation of fifteen percent prior to sampling. Field instruments are calibrated at the beginning of each sampling event. Purging is complete when field parameters have stabilized or after three well volumes are removed, whichever is greater.

A groundwater sample is collected from each well using the dedicated plastic tubing attached to a short length of clean silicone tubing. The silicone tubing is run through a peristaltic pump. The samples are collected from the effluent end of the silicone tubing after it passes through the peristaltic pump. Samples are collected directly into 40 milliliter volatile organic analysis (VOA) vials preserved with concentrated hydrochloric acid such that the pH of the sample drops to below 2.0. Samples are immediately placed in a cooler and chilled to 4 degrees Celsius until delivered to the laboratory. The samples are typically delivered to the lab the same day they are collected. Observations of groundwater conditions during purging, such as odor, volume of water purged, temperature, pH, specific conductivity, DO, and turbidity are recorded in the sampling logs. Groundwater samples are labeled with the project number, sample ID, and date collected. The same information is recorded on a chain-of-custody form. The samples are placed in an ice chest pending delivery to the ELAP certified laboratory.

Chemical analysis data are submitted electronically to the SWRCB Geographical Environmental Information Management System (GeoTracker) database, as required by AB2886 (Water Code Sections 13195-13198). The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) also require submission of reports in electronic form to the Alameda County FTP site. Electronic analytical reports (EDF files) are prepared and formatted by the laboratory and submitted to GeoTracker by CES. Along with the analytical results, well latitudes, longitudes (GEO_XY files), and elevations (GEO_Z files) are submitted to the database, as necessary. Submittal of a well status and usage report (GEO_WELL file) is required for each monitoring event. Current maps (GEO_MAP files) are also submitted when Site features are added or changed. Each report is submitted in pdf format (GEO_REPORT file) as they are completed.

APPENDIX C Well Sampling Logs

Site Name:	Sunol Tree	Gas			Job#	1024	
Date:	4/3/2012				Sampler:	T. Cook	
Well ID:	CMT-1-1		Well Diameter	0.375"		Column	ft
Well Depth	21.15	-	Depth to Water		ft		
			oz.			oz.	
	(0.375" well	= col heig	ht * 0.49 oz/ft, 0.7	5" well = 2.7	oz/ft)		
Purge Method:	peristaltic p	oump	Sar	mple Method	peristaltic	_pump	
Time	Ounces Purged	Temp C	рН	SC (uS)	TDS (mg/L)	DO (mg/L)	Purge Comments
							micropurge, no readings taken
						4	5.5
Well ID:	CMT-1-2	-	Well Diameter	0.375"	-	Column	ft
Well Depth	41.27	-	Depth to Water		ft		
Ca	sing Volume		oz.	3 Casi	ng Volumes	oz.	
			ht * 0.49 oz/ft, 0.7			-	
Purge Method:	peristaltic p	oump	Sar	mple Method	peristaltic	pump	
	Ounces				TDS	I DO I	
Time	Purged	Temp C	рН	SC (uS)	(mg/L)	(mg/L)	Purge Comments
							micropurge, no readings taken
			-				
14/-III ID	0117.4.0						
Well ID:	CMT-1-3		Well Diameter	0.375"			#
					-	Column	
Well Depth	51.37		Depth to Water		ft	Column	
Ca	sing Volume		Depth to Water	3 Casi	ng Volumes		
Ca	sing Volume (0.375" well	= col heigh	Depth to Wateroz_nt * 0.49 oz/ft, 0.79	3 Casi 5" well = 2.7	ng Volumes oz/ft)	02	
Ca	sing Volume (0.375" well	= col heigh	Depth to Wateroz_nt * 0.49 oz/ft, 0.79	3 Casi	ng Volumes oz/ft)	02	
Ca Purge Method:	osing Volume (0.375" well peristaltic p	= col heigh	Depth to Water _oz _nt * 0.49 oz/ft, 0.79	3 Casi 5" well = 2.7 mple Method	ng Volumes oz/ft) I peristaltic	pump	
Ca	sing Volume (0.375" well peristaltic p	= col heigh	Depth to Water _oz _nt * 0.49 oz/ft, 0.79	3 Casi 5" well = 2.7	ng Volumes oz/ft) I peristaltic	pump	
Ca Purge Method:	osing Volume (0.375" well peristaltic p	= col heigh	Depth to Water _oz _nt * 0.49 oz/ft, 0.79	3 Casi 5" well = 2.7 mple Method	ng Volumes oz/ft) I peristaltic	pump	Purge Comments

ite Name	Sunol Tree (705				1024	
		<u> </u>			Job # Sampler:	The second of	
Date	4/3/2012	-			Sampler.	1. COOK	
Well ID:	CMT-3-1		Well Diameter	0.375"	-	Column	ft
Well Depth	20.92		Depth to Water		ft		
С			_oz.			s	oz.
	(0.375" well	= col heigh	nt * 0.49 oz/ft, 0.7	5" well = 2.7	oz/ft)		
ırae Method	peristaltic p	ump	Sar	mple Method	peristaltic	amua	
arge metrica	periotatio	<u>-</u> ump		mple meane	poriotaitio		
	Ounces	2-1-12	dia	160 800	TDS	DO	
Time	Purged	Temp C	рН	SC (uS)	(mg/L)	(mg/L)	Purge Comments
							micropurge, no readings taken
	1						
Well ID	CMT-3-2		Well Diameter	0.375"	-	Column	ft
Mall Danth	10.01		D		4		
Well Depth	40.91		Depth to Water		ft		
							07
	asing Volume		_oz.	3 Casi	ng Volumes	3	_oz.
	asing Volume			3 Casi	ng Volumes		_oz.
С	asing Volume	= col heigl	_oz. nt * 0.49 oz/ft, 0.7	3 Casi	ng Volumes oz/ft)		_oz.
С	asing Volume (0.375" well	= col heigl	_oz. nt * 0.49 oz/ft, 0.7	3 Casi 5" well = 2.7	ng Volumes oz/ft)	pump	_oz.
C urge Method	asing Volume (0.375" well peristaltic p	= col heigh	_oz. nt * 0.49 oz/ft, 0.7 Sar	3 Casi 5" well = 2.7 mple Method	ng Volumes oz/ft) d peristaltic	pump	
С	asing Volume (0.375" well	= col heigl	_oz. nt * 0.49 oz/ft, 0.7 Sar	3 Casi 5" well = 2.7	ng Volumes oz/ft)	pump	Purge Comments
C urge Method	asing Volume (0.375" well peristaltic p	= col heigh	_oz. nt * 0.49 oz/ft, 0.7 Sar	3 Casi 5" well = 2.7 mple Method	ng Volumes oz/ft) d peristaltic	pump	
C urge Method	asing Volume (0.375" well peristaltic p	= col heigh	_oz. nt * 0.49 oz/ft, 0.7 Sar	3 Casi 5" well = 2.7 mple Method	ng Volumes oz/ft) d peristaltic	pump	Purge Comments
C urge Method	asing Volume (0.375" well peristaltic p	= col heigh	_oz. nt * 0.49 oz/ft, 0.7 Sar	3 Casi 5" well = 2.7 mple Method	ng Volumes oz/ft) d peristaltic	pump	Purge Comments
C urge Method Time	asing Volume (0.375" well peristaltic p Ounces Purged	= col heigh	_oz. nt * 0.49 oz/ft, 0.7 Sar pH	3 Casi 5" well = 2.7 mple Method SC (uS)	ng Volumes oz/ft) I peristaltic TDS (mg/L)	DO (mg/L)	Purge Comments micropurge, no readings taken
C urge Method Time	asing Volume (0.375" well peristaltic p Ounces Purged	= col heigh	_oz. nt * 0.49 oz/ft, 0.7	3 Casi 5" well = 2.7 mple Method SC (uS)	ng Volumes oz/ft) I peristaltic TDS (mg/L)	DO (mg/L)	Purge Comments
Curge Method Time Well ID:	ounces Purged CMT-3-3	= col heigh	_oz. nt * 0.49 oz/ft, 0.79 Sar pH Well Diameter	3 Casi 5" well = 2.7 mple Method SC (uS)	ng Volumes oz/ft) I peristaltic TDS (mg/L)	DO (mg/L)	Purge Comments micropurge, no readings taken
Curge Method Time Well ID:	asing Volume (0.375" well peristaltic p Ounces Purged	= col heigh	_oz. nt * 0.49 oz/ft, 0.7 Sar pH	3 Casi 5" well = 2.7 mple Method SC (uS)	ng Volumes oz/ft) I peristaltic TDS (mg/L)	DO (mg/L)	Purge Comments micropurge, no readings taken
Time Well ID:	ounces Purged CMT-3-3 50.93	= col heigh	_oz. nt * 0.49 oz/ft, 0.79 Sar pH Well Diameter Depth to Water oz	3 Casi 5" well = 2.7 mple Method SC (uS) 0.375"	ng Volumes oz/ft) I peristaltic TDS (mg/L) ft	DO (mg/L)	Purge Comments micropurge, no readings takenft
Time Well ID:	ounces Purged CMT-3-3 50.93	= col heigh	_oz. nt * 0.49 oz/ft, 0.79 Sar pH Well Diameter Depth to Water	3 Casi 5" well = 2.7 mple Method SC (uS) 0.375"	ng Volumes oz/ft) I peristaltic TDS (mg/L) ft	DO (mg/L)	Purge Comments micropurge, no readings takenft
Time Well ID: Well Depth	ounces Purged CMT-3-3 50.93 asing Volume (0.375" well	= col height	_oz. nt * 0.49 oz/ft, 0.79 Sar pH Well Diameter Depth to Water _oz nt * 0.49 oz/ft, 0.79	3 Casi 5" well = 2.7 mple Method SC (uS) 0.375" 3 Casi 5" well = 2.7	ng Volumes oz/ft) I peristaltic TDS (mg/L) ft ng Volumes oz/ft)	DO (mg/L) Column	Purge Comments micropurge, no readings takenft
Time Well ID: Well Depth	ounces Purged CMT-3-3 50.93	= col height	_oz. nt * 0.49 oz/ft, 0.79 Sar pH Well Diameter Depth to Water _oz nt * 0.49 oz/ft, 0.79	3 Casi 5" well = 2.7 mple Method SC (uS) 0.375"	ng Volumes oz/ft) I peristaltic TDS (mg/L) ft ng Volumes oz/ft)	DO (mg/L) Column	Purge Comments micropurge, no readings takenft
Time Well ID: Well Depth	common control of the	= col height	_oz. nt * 0.49 oz/ft, 0.79 Sar pH Well Diameter Depth to Water _oz nt * 0.49 oz/ft, 0.79	3 Casi 5" well = 2.7 mple Method SC (uS) 0.375" 3 Casi 5" well = 2.7	ng Volumes oz/ft) I peristaltic TDS (mg/L) ft ng Volumes oz/ft) I peristaltic	DO (mg/L) Column	Purge Comments micropurge, no readings takenft
Time Well ID: Well Depth C: urge Method	common co	= col height	_oz. nt * 0.49 oz/ft, 0.79 Sar pH Well Diameter Depth to Water _oz nt * 0.49 oz/ft, 0.79 Sar	3 Casi 5" well = 2.7 mple Method SC (uS) 0.375" 3 Casi 5" well = 2.7 mple Method	ng Volumes oz/ft) I peristaltic TDS (mg/L) ft ng Volumes oz/ft) I peristaltic	Column DO (mg/L) Column	Purge Comments micropurge, no readings taken ftoz
Time Well ID: Well Depth	common control of the	= col height	_oz. nt * 0.49 oz/ft, 0.79 Sar pH Well Diameter Depth to Water _oz nt * 0.49 oz/ft, 0.79	3 Casi 5" well = 2.7 mple Method SC (uS) 0.375" 3 Casi 5" well = 2.7	ng Volumes oz/ft) I peristaltic TDS (mg/L) ft ng Volumes oz/ft) I peristaltic	DO (mg/L) Column	Purge Comments micropurge, no readings takenft

Site Name:	Sunol Tree	Gas			Job#	1024	
Date:	4/3/2012				Sampler:	T. Cook	
Well ID:	CMT-6-1		Well Diameter	0.375"		Column _	ft
Well Depth	21.66		Depth to Water		ft		
Ca	asing Volume (0.375" well	= col heig	oz. ht * 0.49 oz/ft, 0.7	3 Casi 5" well = 2.7	ng Volumes oz/ft)	02	2.
Purge Method:	peristaltic p	oump	Sar	nple Method	peristaltic	pump	
Time	Ounces Purged	Temp C	рН	SC (uS)	TDS (mg/L)	DO (mg/L)	Purge Comments micropurge, no readings taken
Well Depth	42.68 asing Volume (0.375" well	= col heig	Well Diameter Depth to Water oz. ht * 0.49 oz/ft, 0.79	3 Casi	ft ng Volumes oz/ft)		
Time	Ounces Purged	Temp C	рН	SC (uS)	TDS (mg/L)	DO (mg/L)	Purge Comments micropurge, no readings taken
Well Depth	56.67 asing Volume (0.375" well	= col heig	ht * 0.49 oz/ft, 0.7	3 Casi	<u>ft</u> ng Volumes oz/ft)		ft _oz

te Name:	Sunol Tree	Gas			Job#	1024	
Date	4/3/2012				Sampler:	T. Cook	
Well ID	CMT-7-1		Well Diameter	0.375"	_	Column	ft
Well Depth	13.14 ft		Depth to Water		ft		
C	asing Volume	4	oz.	3 Casi	na Volumes		DZ.
			ht * 0.49 oz/ft, 0.7				
urge Method	peristaltic p	oump	Sai	mple Method	peristaltic	_pump	
	Ounces				TDS	I DO I	
Time	Purged	Temp C	рН	SC (uS)	(mg/L)	(mg/L)	Purge Comments
							micropurge, no readings taken
		_					
		1					
Well ID	CMT-7-2	_	Well Diameter	0.375"	_	Column	ft
Well Depth	42.72 .ft	_	Depth to Water		ft		
_				2.0	\ /- L		1
C			oz.				OZ.
	(0.375" well	= col heig	ht * 0.49 oz/ft, 0.7	5" well = 2.7	oz/ft)		
uraa Mathad	. norietaltic r	N I I PO P	Con	mala Mathae	l porietaltic	numn	
urge Metriod	peristaltic p	ump	Sai	mple Method	pensiallic	Dump	
	Ounces				TDS	DO	
Time	Purged	Temp C	pН	SC (uS)	(mg/L)	(mg/L)	Purge Comments
							micropurge, no readings taken
			2			4.4	
Well ID	CMT-7-3	-	Well Diameter	0.375"	-	Column	ft
Well Depth	56.72 ft		Depth to Water		ft		
C	asing Volume						_oz
	(0.375" well	= col heigh	ht * 0.49 oz/ft, 0.7	5" well = 2.7	oz/ft)		
urae Method	peristaltic p	umn	Sou	mple Method	nerietaltic	numn	
urge Metriou	pensiallic L	unp	Sar	Tible Metiloc	pensiallic	Dallib	
-	Ounces				TDS	DO	
Time	Ounces Purged	Temp C	рН	SC (uS)	TDS (mg/L)	DO (mg/L)	Purge Comments
Time		Temp C	рН	SC (uS)			Purge Comments micropurge, no readings taken
Time		Temp C	рН	SC (uS)			

Date: 4/3/2012 Sampler: T. Cook	
Well ID: CMT-10-1 Well Diameter 0.375" Column ft Well Depth 21.72 ft Depth to Water ft Casing Volume oz. 3 Casing Volumes oz. (0.375" well = col height * 0.49 oz/ft, 0.75" well = 2.7 oz/ft) oz. oz. Purge Method: peristaltic pump	
Well Depth	
Casing Volumeoz. 3 Casing Volumesoz. (0.375" well = col height * 0.49 oz/ft, 0.75" well = 2.7 oz/ft) Purge Method: peristaltic pump Sample Method peristaltic pump Ounces Time Purged Temp C pH SC (uS) (mg/L) (mg/L) Purge Comm	
Ourge Method: peristaltic pump Sample Method peristaltic pump Ounces Time Purged Temp C pH SC (uS) (mg/L) (mg/L) Purge Comr	
Ounces	
Time Purged Temp C pH SC (uS) (mg/L) (mg/L) Purge Comm	
micropurge, no rea	
	adings taken
Well ID:CMT-10-2	
Time Purged Temp C pH SC (uS) (mg/L) (mg/L) Purge Communicropurge, no real micropurge, no real	adiligo takell
Time Purged Temp C pH SC (uS) (mg/L) (mg/L) Purge Common micropurge, no real micropu	adings taxell
Time Purged Temp C pH SC (uS) (mg/L) (mg/L) Purge Common micropurge, no real micropu	adings takell
Time Purged Temp C pH SC (uS) (mg/L) (mg/L) Purge Common micropurge, no real micropu	adings takell
Time Purged Temp C pH SC (uS) (mg/L) (mg/L) Purge Commicropurge, no real micropurge,	ments

Site Name:	Sunol Tree	Gas			Job#	1024	
Date:	4/3/2012	_			Sampler:	T. Cook	
Well ID:	PZ-2-a	. 1. 8	Well Diameter	0.75"	_	Column _	ft
Well Depth	29.0 ft	- (Depth to Water		ft		
Ca Purge Method:	(0.375" well	= col heigh	_oz. nt * 0.49 oz/ft, 0.7 Sai	3 Casi 5" well = 2.7 mple Method	oz/ft)		z.
r urgo mourou.							
Time	Ounces Purged	Temp C	рН	SC (uS)	TDS (mg/L)	DO (mg/L)	Purge Comments micropurge, no readings taken
Well ID:	PZ-2-b	-	Well Diameter	0.75"		Column _	ft
Well Depth	48.77 ft		Depth to Water		ft		
O.					na vallime		
Purge Method:	(0.375" well	= col heigh		5" well = 2.7	oz/ft)		2.
Purge Method:	(0.375" well	= col heigh	nt * 0.49 oz/ft, 0.7 Sai	5" well = 2.7	oz/ft)		Purge Comments
	(0.375" well peristaltic p	= col heigh	nt * 0.49 oz/ft, 0.7 Sai	5" well = 2.7	oz/ft) I peristaltic	pump	
	(0.375" well peristaltic p	= col heigh	nt * 0.49 oz/ft, 0.7 Sai	5" well = 2.7	oz/ft) I peristaltic	pump	Purge Comments
Time	Ounces Purged	Temp C	nt * 0.49 oz/ft, 0.7 Sai	5" well = 2.7 mple Method SC (uS)	oz/ft) I peristaltic TDS (mg/L)	pump	Purge Comments
Time D Well ID:	Ounces Purged	Temp C	pH PEIZOMETERS	5" well = 2.7 mple Method SC (uS)	oz/ft) I peristaltic TDS (mg/L)	pump	Purge Comments
Time D Well ID:	Ounces Purged EPTH TO W PZ-1-a	Temp C	pH PEIZOMETERS Depth to Water	5" well = 2.7 mple Method SC (uS)	oz/ft) d peristaltic TDS (mg/L) ft	pump	Purge Comments

		MONITOR	ING WELI	SAMPL	ING LOG			
Site Name:	Sunol Tree Gas			Job#	1024			
Date	4/3/2012			Sampler:	T. Cook			
Well ID:	PZ-2-a	Well Diameter	0.75"		Column	25,95	_ft	
Well Depth	29.0 ft	Depth to Water	3.05	ft				
Ca	asing Volume	oz. height * 0.49 oz/ft, 0.7	3 Casi	ng Volumes	20	oz.		
Purge Method:	peristaltic pump							
r dige Method.	07	Sa	ample Method		pump			
Time		тр С рН	SC (uS)	TDS (mg/L)	DO (mg/L)	lie	Purge Comments	
1117	140 16	18 6,97	913	4	1.93	S.		
	20 6	7 7,22	916		1,30	74		
Well ID:	PZ-2-b	Well Diameter	0.75"		Column	45,62		
						- 2.5		
Well Depth	48.77 ft	Depth to Water	3,75	ft				
Well Depth	48.77 ft asing Volume		3,75 3 Casir	<u>ft</u> na Volumes				
Well Depth	48.77 ft asing Volume 12 (0.375" well = col	Depth to Water 55 oz. height * 0.49 oz/ft, 0.7	3,75 3 Casir	ft ng Volumes oz/ft)	364			
Well Depth Ca Purge Method:	48.77 ft asing Volume 2 (0.375" well = col peristaltic pump Gallons	Depth to Water 1.55 oz. height * 0.49 oz/ft, 0.7 Sal	3,75 3 Casir 5" well = 2.7 mple Method	ft ng Volumes oz/ft)	364			
Well Depth	48.77 ft asing Volume 2 (0.375" well = col peristaltic pump Gallons Purged Tem	Depth to Water 1.55 oz. height * 0.49 oz/ft, 0.7 San	3 Casir 5" well = 2.7 mple Method SC (uS)	ft ng Volumes oz/ft) peristaltic	364 c		Purge Comments	
Well Depth Ca Purge Method:	48.77 ft asing Volume 2 (0.375" well = col peristaltic pump Gallons Purged Tem 120 16	Depth to Water 1.55 oz. height * 0.49 oz/ft, 0.7 Sa	3,75 3 Casir 5" well = 2.7 mple Method	ng Volumes oz/ft) peristaltic	364 o		Purge Comments	
Well Depth Ca Purge Method:	48.77 ft asing Volume 2 (0.375" well = col peristaltic pump Gallens Purged Tem 120 10	Depth to Water 1.55 oz. height * 0.49 oz/ft, 0.7 San Depth to Water Depth to Water	3 Casir 5" well = 2.7 mple Method SC (uS)	ng Volumes oz/ft) peristaltic	364 c		Purge Comments	-
Well Depth Ca Purge Method: Time	48.77 ft asing Volume Z (0.375" well = col peristaltic pump Gallons Purged Ten 20 Gallons	Depth to Water oz. height * 0.49 oz/ft, 0.7 Sal	3,75 3 Casir 5" well = 2.7 mple Method SC (uS)	ng Volumes oz/ft) peristaltic	364 o		Purge Comments	-
Well Depth Ca Purge Method: Time	48.77 ft asing Volume Z (0.375" well = col peristaltic pump Gallons Purged Ten 20 Gallons	Depth to Water oz. height * 0.49 oz/ft, 0.7 Sal	3,75 3 Casir 5" well = 2.7 mple Method SC (uS)	ng Volumes oz/ft) peristaltic	364 o		Purge Comments	
Well Depth Ca Purge Method: Time	48.77 ft asing Volume Z (0.375" well = col peristaltic pump Gallons Purged Ten 20 Gallons	Depth to Water 0.55 0z. height * 0.49 oz/ft, 0.7 Sal	3,75 3 Casir 5" well = 2.7 mple Method SC (uS)	ng Volumes oz/ft) peristaltic	364 o	oz.	Purge Comments	
Well Depth Ca Purge Method: Time DE Well ID:	48.77 ft asing Volume Z (0.375" well = col peristaltic pump Gallons Purged Ten 20 Gallons Purged Ten 20 Gallons Purged Ten 20 Gallons Purged Ten 20 Gallons	Depth to Water oz. height * 0.49 oz/ft, 0.7 Sal	3,75 3 Casir 5" well = 2.7 mple Method SC (uS) 1047 1124	ng Volumes oz/ft) peristaltic TDS (mg/L)	364 o	oz.	Purge Comments	
Well Depth Ca Purge Method: Time DE Well ID:	48.77 ft asing Volume Z (0.375" well = col peristaltic pump Gallons Purged Tem 120 16 3 60 17 EPTH TO WATER PZ-1-a	Depth to Water OZ. height * 0.49 oz/ft, 0.7 Sal Depth to Water IN PEIZOMETERS Depth to Water	3,75 3 Casir 5" well = 2.7 mple Method SC (uS) 1047 1124	ng Volumes oz/ft) peristaltic TDS (mg/L)	364 o	oz.	Purge Comments	
Well Depth Ca Purge Method: Time DE Well ID: Well ID:	48.77 ft asing Volume Z (0.375" well = col peristaltic pump Gallons Purged Tem 120 16 3 60 17 EPTH TO WATER PZ-1-a	Depth to Water OZ. height * 0.49 oz/ft, 0.7 Sal Depth to Water IN PEIZOMETERS Depth to Water	3,75 3 Casir 5" well = 2.7 mple Method SC (uS) 1047 1124	ft ng Volumes oz/ft) peristaltic TDS (mg/L)	364 o	oz.	Purge Comments	

Depth to Water

Well ID: PZ-3-b

APPENDIX D Laboratory Analytical Reports

Analytical Report

Cook Environmental Services, Inc.	Client Project ID: #1024; Kahn Petroleum	Date Sampled: 04/03/12
1485 Treat Blvd, Ste. 203A		Date Received: 04/04/12
1405 Heat Biva, Stc. 20371	Client Contact: Tim Cook	Date Reported: 04/10/12
Walnut Creek, CA 94597	Client P.O.:	Date Completed: 04/09/12

WorkOrder: 1204088

April 10, 2012

Dear Tim:

Enclosed within are:

- 1) The results of the 17 analyzed samples from your project: #1024; Kahn Petroleum,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1204088

5/0.5		1534 Pitt	LL ANA Willow P sburg, CA	ass Rd										Т	UR	EN.	AR						C	US			Y	R	EC	0	RD		-
	w.mccampbel one: (877) 25				Email: 1	nain(x: (9)					m			121	O.E. I	2		19 (Sook	10	To man	- w		es l		24			48 H (W)		72 No	HR	5 DAY
Report To: Tim C		2-9202	P	ill To	: same	A+ (2,	43) 4	34.	920	,		_	\dashv	E	DF I	cequ	iire	urc			vsis		_	_) v	VIII	eo	II (L	744)	-	other		Comments
Company: Cook		tal Servi		111 10	. same																313	1000	ues								lile		
	Freat Blvd, S																																Filter
Waln	ut Creek, CA	94597	E-Ma	il: tco	ok@coo	keny	iron	me	ntal	.co	m															3310							Samples for Metals
Tele: (925) 478-8	390				925) 478												**									10/1							analysis:
Project #:1024				_	t Name:	Kal	nn P	etro	oleu	m				0	Imo		lene		(00)		>					/82	6	_					Yes / No
Project Location:		de Road.	Sunol, (CA									_	by 8260	TP		pths		1/80		INC			_		625	602	6020	6				
Sampler Name: T	. Cook					_				1	AET	НОН	D	ys by	5) &	Can	/I na	21	602		B's (only	0	PA	10/	10	109/				
		SAMI	LING	20	ners	N	TAI	RI	X			ERV		& 9 Oxys	(801	Full S	methy	08/0	(EPA	-	2 PC	41	51	oxys	/827	s by I	18 (60	09) si	500.9				
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Chidao	Other	ICE	HCL	HNO ₃	Other	TPH-g, BTEX &	TPH as Diesel (8015) & TPHmo	EPA 8260 - Full Scan	8310 Pluse 2-methyl napthalene	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's ONLY	EPA 8140 / 8141	EPA 8150 / 8151	EPA 8260 (9 oxys only)	EPA 525 / 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)	SPLC Leach	TTLC Leach		
CMT-1-C1		4/3/12		4	VOA	X	T	T	T		X			Х															П				
CMT-1-C2		4/3/12		4	VOA	X					X			X																			
CMT-1-C3		4/3/12		4	VOA	X		T		T	X			X																			
CMT-3-C1		4/3/12		4	VOA	Х		Ť			X			X																			
CMT-3-C2		4/3/12		4	VOA	X	T	T		T	X			X																			
CMT-3-C3		4/3/12		4	VOA	Х	1	t			X			Х																		П	
CMT-6-C1		4/3/12		4	VOA	Х		T			X			Х																			
CMT-6-C2		4/3/12		4	VOA	X		T		T	X			X																			
CMT-6-C3		4/3/12		4	VOA	X		T		T	X			X																			
CMT-7-C1		4/3/12		4	VOA	X		T		T	X			X																			
CMT-7-C2		4/3/12		4	VOA	Х		T			X			X																			
CMT-7-C3		4/3/12		4	VOA	X		T		t	X			X																			
Relinquished By	6	Date:	Time:	Rece	eived By:	2	Ve	Q	0					GC	E/t°_OOD	COL	DIT	TON		1	,							CON	MME	ENTS	:		
Relinquished By: Date: Time: Received By:											DE AP	PPRO RESE	LOR PRI	INAT ATE	CO	IN L		RS_															
Relinquished By:		Date:	Time:	Rece	rived By:									PF	RESE	RVA	TIO		DAS	Od	&G	ME pH<		s	отн	IER							

	McCampbel one: (877) 25	1534 Pitt	LL ANAI 4 Willow Pa sburg, CA	ass Rd.	Email: 1							1				UR OF R			ou	ND	TI	MI	E	-	US	H	24			48 H	IR		Н	5 DAY
Report To: Tim C	ook		В	ill To	: same															A	nal	ysis	Req	ues	t						(ther	r I	Comments
Company: Cook		tal Servi	ces, Inc.																									-						ETH.
	Freat Blvd, S																										_							Filter Samples
Walnu	ut Creek, CA	94597	E-Mai	l: tco	ok@coo	keny	viro	nm	ent	al.c	com																8310					Ш		for Metals
Tele: (925) 478-8	390		F	ax: (925) 478	-839)4																				10/							analysis:
Project #:1024			P	rojec	t Name:	Ka	hn i	Pet	role	um	1					mo		ene		(02		5					82	-						Yes / No
Project Location:	3004 Andrae	de Road,	Sunol, C	CA.											8260	PH		tha		80		Z					25	020	020	=				
Sampler Name: 7	r. Cook													ш.	è.	8	0.0	nap		200		s o			oly)		N.	0/6	9/0	109				
		SAMI	PLING	80	ers	1	MA	TR	ix				IOD RVE	D	9 0xys	(8015)	ull Sca	ethyl	/ 802	EPA		PCB	-	=	0 SÁX	8270	by El	109) s	109) \$	/ 6'00				
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Other	ICE	HCL	HNO		TPH-g, BTEX &	TPH as Diesel (8015) & TPHmo	EPA 8260 - Full Scan	8310 Pluse 2-methyl napthalene	EPA 601/8010/8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's ONLY	EPA 8140 / 8141	EPA 8150 / 8151	EPA 8260 (9 oxys only)	EPA 525 / 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)	SPLC Leach	TTLC Leach		
CMT-10-C1		4/3/12		4	VOA	Х				7		Х		Ť	X																			
CMT-10-C2		4/3/12		4	VOA	Х				1		X		1	X																			
CMT-10-C3		4/3/12		4	VOA	X		Ħ		+		X	+	1	X																			
PZ-2A		4/3/12		4	VOA	X			Ħ	+		X	+	1	Х														Н					
PZ-2B		4/3/12		4	VOA	X				1		X			X																			
Relinguished By:		Date:	Time:	Rece	eived By:			1						-	IC	E/t°_	20	200	,										CON	MMI	ENTS	S:		
Relinquished By:		11	350 _D		ceived By:							-	GO HE DE AP	CAD S CHI	CON SPA OR OPRI	CE A INAT ATE	TON BSE TED CO	IN L	_	RS_								-						
Relinquished By:		Date:	Time:	Rece	eived By:											RESE			ve	DAS	0.0	&G	ME pH<	ETAI	LS	отт	HER							

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

ClientCode: CESW

WorkOrder: 1204088

Page 1 of 2

	☐ WaterTra	x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	n F EDF	Г	Excel	ſ	∏Fax	[√ Email		∏Hard	Сору	Thir	dParty	□ J-1	flag
	_				_	,		·				_				_
Report to:						Bill to:						Requ	ested T	AT:	5	days
Tim Cook Cook Environmental Services, II 1485 Treat Blvd, Ste. 203A Walnut Creek, CA 94597 925-937-1759 FAX: 925-937-	PO: ProjectNo	#1024; Kahn	environmental.com	1		Co 148	85 Trea	t Blvd,	ntal Ser Ste. 20 A 94597	3A	Inc.		Receiv Printe		04/04/ 04/04/	
								Re	questec	d Tests	(See leg	gend bel	ow)			
Lab ID Clie	ent ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1204088-001 CM ⁻	T-1-C1	Water	4/3/2012		Α	Α									T	
1204088-002 CM	T-1-C2	Water	4/3/2012		Α										+	
1204088-003 CM	T-1-C3	Water	4/3/2012		Α											
1204088-004 CM	T-3-C1	Water	4/3/2012		Α											
1204088-005 CM	T-3-C2	Water	4/3/2012		Α											
1204088-006 CM	T-3-C3	Water	4/3/2012		Α											
1204088-007 CM	T-6-C1	Water	4/3/2012		Α											
1204088-008 CM7	T-6-C2	Water	4/3/2012		Α											
1204088-009 CM7	T-6-C3	Water	4/3/2012		Α											
1204088-010 CM	T-7-C1	Water	4/3/2012		Α											
1204088-011 CM	T-7-C2	Water	4/3/2012		Α											
1204088-012 CM	T-7-C3	Water	4/3/2012		Α											
1204088-013 CMT	⁻-10-C1	Water	4/3/2012		Α											
1204088-014 CMT	T-10-C2	Water	4/3/2012		Α											
Test Legend:																
1 9OXYBTEX-8260B_W	N 2 PREDF REPORT		3				4					Г	5			
6	7		8				9					Ī	10			
11	12							JI				L				

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A, 012A, 013A, 014A, 015A, 016A, 017A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Gabrielle Walker

McCampbell Analytical, Inc.

FAX: 925-937-1759

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

Report to:

925-937-1759

CHAIN-OF-CUSTODY RECORD

Cook Environmental Services, Inc.

Page 2 of 2

WaterTrax	WriteOn	✓ EDF	Excel	Fax	✓ Email	HardCopy	ThirdParty	J-flag
			Bill	to:		Requ	uested TAT:	5 days
Email:	tcook@cookenvironm	nental.com		Tim Cook				

WorkOrder: 1204088

Tim Cook Email: tcook@cookenvironmental.com
Cook Environmental Services, Inc.
1485 Treat Blvd, Ste. 203A PO:
Walnut Creek, CA 94597 ProjectNo: #1024; Kahn Petroleum

 1485 Treat Blvd, Ste. 203A
 Date Received:
 04/04/2012

 Walnut Creek, CA 94597
 Date Printed:
 04/04/2012

ClientCode: CESW

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1204088-015	CMT-10-C3	Water	4/3/2012		Α											
1204088-016	PZ-2A	Water	4/3/2012		Α											
1204088-017	PZ-2B	Water	4/3/2012		Α											

Test Legend:

1 90XYBTEX-8260B_W	2 PREDF REPORT	3	4	5
6	7	8	9	10
11	12			

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A, 012A, 013A, 014A, 015A, 016A, 017A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Gabrielle Walker

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	COOK ENVIRONME	ental Services, Inc.			Date an	a Time Received: 4/4/2012 6:	31:10 FW
Project Name:	#1024; Kahn Pe	etroleum			Checklis	st completed and reviewed by:	Melissa Valles
WorkOrder N°:	1204088	Matrix: Water			Carrier:	Client Drop-In	
		<u>Cha</u>	ain of Cı	ustody (COC) Information	<u>on</u>	
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when relir	nquished and received?	Yes	✓	No 🗌		
Chain of custody	agrees with samp	ole labels?	Yes	✓	No 🗆		
Sample IDs note	ed by Client on CO	C?	Yes	✓	No 🗌		
Date and Time o	of collection noted	by Client on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?		Yes	✓	No 🗆		
			Sample	e Receip	ot Information		
Custody seals in	tact on shipping co	ontainer/cooler?	Yes		No 🗌	NA 🗸	
Shipping contain	er/cooler in good	condition?	Yes	✓	No 🗌		
Samples in prope	er containers/bottl	es?	Yes	✓	No 🗌		
Sample containe	ers intact?		Yes	✓	No 🗆		
Sufficient sample	e volume for indica	ated test?	Yes	✓	No 🗆		
		Sample Pre	<u>servatio</u>	n and H	old Time (HT) Ir	<u>nformation</u>	
All samples rece	ived within holding	g time?	Yes	✓	No 🗌		
Container/Temp	Blank temperature	е	Coole	er Temp:	2°C	NA 🗌	
Water - VOA via	ls have zero head	space / no bubbles?	Yes	✓	No 🗆 🗈	No VOA vials submitted \Box	
Sample labels ch	necked for correct	preservation?	Yes	✓	No 🗌		
Metal - pH accep	otable upon receip	t (pH<2)?	Yes		No 🗆	NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆		
		(Ice Ty	pe: WE	T ICE)		
* NOTE: If the "N	No" box is checked	d, see comments below.					
						======	

Cook Environmental Services, Inc.	Client Project ID: #1024; Kahn Petroleum	Date Sampled: 04/03/12
1485 Treat Blvd, Ste. 203A	Petroleum	Date Received: 04/04/12
	Client Contact: Tim Cook	Date Extracted: 04/05/12-04/07/12
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed: 04/05/12-04/07/12

Oxygenates and BTEX by GC/MS*

Extraction Method: SW5030B	trraction Method: SW5030B Analytical Method: SW8260B						
Lab ID	1204088-001A	1204088-002A	1204088-003A	1204088-004A			
Client ID	CMT-1-C1	CMT-1-C2	CMT-1-C3	CMT-3-C1	Reporting DF	Limit for	
Matrix	W	W	W	W	. DI -1		
DF	1	1	1	1	S	W	
Compound		Conce	entration		ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND	ND	ND	ND	NA	0.5	
Benzene	ND	ND	ND	ND	NA	0.5	
t-Butyl alcohol (TBA)	29	4.4	ND	ND	NA	2.0	
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND	ND	NA	0.5	
Diisopropyl ether (DIPE)	ND	ND	ND	ND	NA	0.5	
Ethanol	ND	ND	ND	ND	NA	50	
Ethylbenzene	ND	ND	ND	ND	NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	ND	NA	0.5	
Methanol	ND	ND	ND	ND	NA	500	
Methyl-t-butyl ether (MTBE)	ND	0.54	ND	ND	NA	0.5	
Toluene	ND	ND	ND	ND	NA	0.5	
Xylenes, Total	ND	ND	ND	ND	NA	0.5	
	Surre	gate Recoveries	(%)	1			
%SS1:	101	100	101	103			
%SS2:	100	99	100	99			
Comments							
	/r ·1/1 1 / 1·1		1 ./ '1/	11 1 1	11 TECL D 0 CI		

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

[#] surrogate diluted out of range or surrogate coelutes with another peak.

Cook Environmental Services, Inc.	Client Project ID: #1024; Kahn Petroleum	Date Sampled: 04/03/12
1485 Treat Blvd, Ste. 203A	Petroleum	Date Received: 04/04/12
	Client Contact: Tim Cook	Date Extracted: 04/05/12-04/07/12
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed: 04/05/12-04/07/12

Oxygenates and BTEX by GC/MS*

Extraction Method: SW5030B	Ana	alytical Method: SW8260)B		Work Order:	1204088	
Lab ID	1204088-005A	1204088-006A	1204088-007A	1204088-008A			
Client ID	CMT-3-C2	CMT-3-C3	CMT-6-C1	CMT-6-C2	Reporting DF		
Matrix	W	w w w					
DF	1	1	2.5	1	S	W	
Compound		Conce	entration		ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND	ND	ND<1.2	ND	NA	0.5	
Benzene	ND	ND	ND<1.2	ND	NA	0.5	
t-Butyl alcohol (TBA)	2.5	ND	ND<5.0	ND	NA	2.0	
1,2-Dibromoethane (EDB)	ND	ND	ND<1.2	ND	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND<1.2	ND	NA	0.5	
Diisopropyl ether (DIPE)	ND	ND	ND<1.2	ND	NA	0.5	
Ethanol	ND	ND	ND<120	ND	NA	50	
Ethylbenzene	ND	ND	ND<1.2	ND	NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND	ND	ND<1.2	ND	NA	0.5	
Methanol	ND	ND	ND<1200	ND	NA	500	
Methyl-t-butyl ether (MTBE)	8.3	1.1	64	18	NA	0.5	
Toluene	ND	ND	ND<1.2	ND	NA	0.5	
Xylenes, Total	ND	ND	ND<1.2	ND	NA	0.5	
	Surre	gate Recoveries	(%)	ı		ı	
%SS1:	102	102	98	103			
%SS2:	99	98	95	98			
Comments							

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

[#] surrogate diluted out of range or surrogate coelutes with another peak.

Cook Environmental Services, Inc.	Client Project ID: #1024; Kahn Petroleum	Date Sampled: 04/03/12
1485 Treat Blvd, Ste. 203A	Petroleum	Date Received: 04/04/12
	Client Contact: Tim Cook	Date Extracted: 04/05/12-04/07/12
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed: 04/05/12-04/07/12

Oxygenates and BTEX by GC/MS*

Extraction Method: SW5030B	xtraction Method: SW5030B Analytical Method: SW8260B						
Lab ID	1204088-009A	1204088-010A	1204088-011A	1204088-012A			
Client ID	CMT-6-C3	CMT-7-C1	CMT-7-C2	CMT-7-C3	Reporting DF		
Matrix	W	W W W					
DF	1	1	5	1	S	W	
Compound		Conce	entration		ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND	ND	ND<2.5	ND	NA	0.5	
Benzene	ND	ND	ND<2.5	ND	NA	0.5	
t-Butyl alcohol (TBA)	ND	ND	ND<10	2.5	NA	2.0	
1,2-Dibromoethane (EDB)	ND	ND	ND<2.5	ND	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND<2.5	ND	NA	0.5	
Diisopropyl ether (DIPE)	ND	ND	ND<2.5	ND	NA	0.5	
Ethanol	ND	ND	ND<250	ND	NA	50	
Ethylbenzene	ND	ND	ND<2.5	ND	NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND	ND	ND<2.5	ND	NA	0.5	
Methanol	ND	ND	ND<2500	ND	NA	500	
Methyl-t-butyl ether (MTBE)	21	11	130	10	NA	0.5	
Toluene	ND	ND	ND<2.5	ND	NA	0.5	
Xylenes, Total	ND	ND	ND<2.5	ND	NA	0.5	
	Surre	gate Recoveries	(%)				
%SS1:	102	101	96	101			
%SS2:	98	98	95	100			
Comments							
	/r ·1/1 1 / 1·1		1 ./ '1/	11 1 1	11 TECL D 0 CI		

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

[#] surrogate diluted out of range or surrogate coelutes with another peak.

Cook Environmental Services, Inc.	Client Project ID: #1024; Kahn Petroleum	Date Sampled: 04/03/12
1485 Treat Blvd, Ste. 203A	Petroleum	Date Received: 04/04/12
	Client Contact: Tim Cook	Date Extracted: 04/05/12-04/07/12
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed: 04/05/12-04/07/12

Oxygenates and BTEX by GC/MS*

Extraction Method: Sw5050B Analytical Method: Sw8200B Work Order: 12040								
Lab ID	1204088-013A	1204088-014A	1204088-015A	1204088-016A				
Client ID	CMT-10-C1	CMT-10-C2	CMT-10-C3	PZ-2A	Reporting	Limit for		
Matrix	W	W	W	W				
DF	1	1	1	1	S W			
Compound		Conce	entration		ug/kg	μg/L		
tert-Amyl methyl ether (TAME)	ND	ND	ND	ND	NA	0.5		
Benzene	ND	ND	ND	ND	NA	0.5		
t-Butyl alcohol (TBA)	ND	ND	ND	ND	NA	2.0		
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	NA	0.5		
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND	ND	NA	0.5		
Diisopropyl ether (DIPE)	ND	ND	ND	ND	NA	0.5		
Ethanol	ND	ND	ND	ND	NA	50		
Ethylbenzene	ND	ND	ND	ND	NA	0.5		
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	ND	NA	0.5		
Methanol	ND	ND	ND	ND	NA	500		
Methyl-t-butyl ether (MTBE)	ND	ND	ND	3.9	NA	0.5		
Toluene	ND	ND	ND	ND	NA	0.5		
Xylenes, Total	ND	ND	ND	ND	NA	0.5		
	Surro	gate Recoveries	s (%)					
%SS1:	100	101	101	101				
%SS2:	98	100	97	97				
Comments								
-								

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

[#] surrogate diluted out of range or surrogate coelutes with another peak.

Cook Environmental Corriges Inc.	l cr	D : .ID #1004	TZ 1	D . C . 1.1	0.4/0.2/1.2			
Cook Environmental Services, Inc.	Petrol	Project ID: #1024	Date Sampled:	04/03/12				
1485 Treat Blvd, Ste. 203A				Date Received: 04/04/12				
	Client	Contact: Tim Cool	k	Date Extracted: 04/05/12-04/07/12				
Walnut Creek, CA 94597	Client	P.O.:		Date Analyzed:	04/05/12-0)4/07/12		
	Oxyg	enates and BTEX b	y GC/MS*	•				
Extraction Method: SW5030B		Analytical Method: SW8260)B		Work Order:	1204088		
Lab ID	1204088-017	A						
Client ID	PZ-2B				Reporting DF	Limit for		
Matrix	W							
DF	1				S	W		
Compound		Conce	entration	<u> </u>	ug/kg	μg/L		
tert-Amyl methyl ether (TAME)	ND				NA	0.5		
Benzene	ND				NA	0.5		
t-Butyl alcohol (TBA)	ND				NA	2.0		
1,2-Dibromoethane (EDB)	ND				NA	0.5		
1,2-Dichloroethane (1,2-DCA)	ND				NA	0.5		
Diisopropyl ether (DIPE)	ND				NA	0.5		
Ethanol	ND				NA	50		
Ethylbenzene	ND				NA	0.5		
Ethyl tert-butyl ether (ETBE)	ND				NA	0.5		
Methanol	ND				NA	500		
Methyl-t-butyl ether (MTBE)	ND				NA	0.5		
Toluene	ND				NA	0.5		
Xylenes, Total	ND				NA	0.5		
	Su	rrogate Recoveries	(%)					
%SS1:	100							
%SS2:	97							
Comments								
* water and vapor samples are reported in µg extracts are reported in mg/L, wipe samples		olid samples in mg/kg, pro	oduct/oil/non-aque	eous liquid samples and	all TCLP & SI	PLP		

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

Cook Environmental Services, Inc.	Client Project ID: #1024; Kahn	Date Sampled: 04/03/12
1485 Treat Blvd, Ste. 203A	Petroleum	Date Received: 04/04/12
	Client Contact: Tim Cook	Date Extracted 04/05/12-04/06/12
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed 04/05/12-04/06/12

TPH(g) by Purge & Trap and GC/MS*

Analytical methods: SW8260B Work Order: 1204088 Extraction method: SW5030B

Lab ID	Client ID	Matrix	TPH(g)	DF	% SS	Comments
001A	CMT-1-C1	W	ND	1	104	
002A	CMT-1-C2	W	ND	1	103	
003A	CMT-1-C3	W	ND	1	104	
004A	CMT-3-C1	W	ND	1	103	
005A	CMT-3-C2	W	ND	1	103	
006A	CMT-3-C3	W	ND	1	102	
007A	CMT-6-C1	W	ND	1	102	
008A	CMT-6-C2	W	ND	1	102	
009A	CMT-6-C3	W	ND	1	102	
010A	CMT-7-C1	W	ND	1	101	
011A	CMT-7-C2	W	ND	1	102	
012A	CMT-7-C3	W	ND	1	103	
013A	CMT-10-C1	W	ND	1	102	
014A	CMT-10-C2	W	ND	1	103	
015A	CMT-10-C3	W	ND	1	101	
016A	PZ-2A	W	ND	1	101	

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Angela Rydelius, Lab Manager

1534 Willow Pass Road, Pittsburg, CA 94565-1701

- MCC	"When Quality Co	Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
Cook Environmental Services, Inc.		Client Project ID: #1024; Kahn Petroleum		Date Sampled: 04/03/12				
1485 Treat Blvd, Ste. 203A			Date Received: 04/04/12					
		Client Contact: Ti	Date Extracted 04/05/12-04/06/12 Date Analyzed 04/05/12-04/06/12					
Walnut Creek, CA	94597	Client P.O.:						
Extraction method: SW5030			Trap and GC/MS* ethods: SW8260B		W	ork Order:	1204088	
Lab ID	Client ID	Matrix	TPH(g)		DF % SS		Comments	
017A	PZ-2B	W	ND		1	101		
	Limit for DF =1;	W	50			μg/L		
	s not detected at or ne reporting limit	S	NA			NA		

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Angela Rydelius, Lab Manager

extracts are reported in mg/L, wipe samples in µg/wipe.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 66429 WorkOrder: 1204088

EPA Method: SW8260B Extraction: S	W5030B					;	Spiked Sam	ple ID:	1204088-002A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)		
, maye	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	110	108	1.88	109	70 - 130	20	70 - 130
Benzene	ND	10	109	107	1.80	107	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	4.4	40	117	118	0.998	94.8	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	109	109	0	105	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	111	110	1.09	106	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	104	104	0	103	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	108	108	0	107	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	0.54	10	112	112	0	104	70 - 130	20	70 - 130
Toluene	ND	10	101	100	0.955	106	70 - 130	20	70 - 130
%SS1:	100	25	104	106	2.25	103	70 - 130	20	70 - 130
%SS2:	99	25	104	105	0.988	100	70 - 130	20	70 - 130
%SS3:	87	2.5	91	90	1.17	90	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 66429 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1204088-001A	04/03/12	04/05/12	04/05/12 2:37 PM	1204088-002A	04/03/12	04/05/12	04/05/12 3:18 PM
1204088-003A	04/03/12	04/05/12	04/05/12 9:22 PM	1204088-004A	04/03/12	04/05/12	04/05/12 10:03 PM
1204088-005A	04/03/12	04/05/12	04/05/12 10:43 PM	1204088-006A	04/03/12	04/05/12	04/05/12 11:23 PM
1204088-007A	04/03/12	04/07/12	04/07/12 1:12 AM	1204088-008A	04/03/12	04/06/12	04/06/12 12:42 AM
1204088-009A	04/03/12	04/06/12	04/06/12 1:22 AM	1204088-010A	04/03/12	04/06/12	04/06/12 2:02 AM
1204088-011A	04/03/12	04/07/12	04/07/12 1:53 AM	1204088-012A	04/03/12	04/06/12	04/06/12 3:22 AM
1204088-013A	04/03/12	04/06/12	04/06/12 4:02 AM	1204088-014A	04/03/12	04/06/12	04/06/12 4:41 AM
1204088-015A	04/03/12	04/06/12	04/06/12 5:20 AM	1204088-016A	04/03/12	04/06/12	04/06/12 6:00 AM
1204088-017A	04/03/12	04/06/12	04/06/12 6:40 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer