

James P. Kiernan, P.E. Project Manager Chevron Environmental Management Company 6001 Bollinger Canyon Road Room C2102 San Ramon, CA 94583 Tel (925) 842-3220 jkiernan@chevron.com

January 9, 2017

Alameda County Health Care Services Agency Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RECEIVED

By Alameda County Environmental Health 1:36 pm, Feb 08, 2017

Re: 76 Station No. 7124 (351638) Semi-Annual Status Report, Fourth Quarter 2016 10151 International Blvd, Oakland, California Fuel Leak Case No.: RO0002444 GeoTracker Global ID #T0600173591

I have read and acknowledge the content, recommendations and/or conclusions contained in the attached document or report submitted on my behalf to ACDEH's FTP server and the SWRCB's GeoTracker website.

The information in this report is accurate to the best of my knowledge. This report was prepared by Arcadis, upon whose assistance and advice I have relied.

Sincerely,

James P. Kiernan, P.E. Project Manager

Attachment: Semi-Annual Status Report, Fourth Quarter 2016 by Arcadis

Mr. Keith Nowell Alameda County Health Care Services Agency Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Semi-Annual Status Report, Fourth Quarter 2016

Dear Mr. Nowell,

On behalf of Chevron Environmental Management Company's (CEMC's) affiliate, Union Oil Company of California (Union Oil), Arcadis has prepared the attached *Semi-Annual Status Report, Fourth Quarter 2016* for the following facility:

76 Station No.	<u>Case No.</u>	Location
7124	RO0002444	10151 International Blvd,
		Oakland, California

If you have any questions, please do not hesitate to contact me.

Sincerely,

Arcadis U.S., Inc.

Samuel Miles Project Manager

therine Brand

Katherine Brandt, P.G. Senior Geologist

Arcadis U.S., Inc. 1100 Olive Way Suite 800 Seattle WA 98101 Tel 206-726-4720 Fax 206-325-8218 www.arcadis-us.com

ENVIRONMENT

Date: January 15, 2017

Contact: Samuel Miles

Phone: 206.726.4720

Email: Samuel.Miles@arcadis.com

Our ref: B0035135.1638

Copies:

Geotracker Database Mr. James Kiernan, CEMC (electronic) Mr. Ed Ralston, Phillips 66 (electronic) Ibrahim and Nawal Abbushi (paper copy)

Semi-Annual Status Report Fourth Quarter 2016 January 15, 2017

Facility No: Former 76 Station No. 7	Address:	10151 International Blvd, Oakland, CA
Arcadis Contact Person / Phone No.:		Samuel Miles / (206) 726-4720
Arcadis Project No.:		B0035135.1638
Primary Agency/Regulatory ID No.:	Alameda	County Department of Environmental Health (ACDEH) / Keith Nowell / Case No. RO0002444

WORK CONDUCTED THIS PERIOD [Fourth Quarter 2016]:

- 1. Conducted semi-annual groundwater monitoring activities on November 21, 2016.
- 2. Prepared the Semi-Annual Status Report, Fourth Quarter 2016.

WORK PROPOSED NEXT PERIOD [Second Quarter 2017]:

- 1. If required, conduct semi-annual groundwater monitoring activities.
- 2. Prepare the Semi-Annual Status Report, Second Quarter 2017.

Current Phase of Project:	Monitoring	
Frequency of Monitoring / Sampling:	Semi-Annual	
Are Phase Separate Hydrocarbons (PSH) Present On-site:	No	
Cumulative PSH Recovered to Date:	None	(gallons)
Approximate Depth to Groundwater:	16.91 to 18.72	(feet below top of casing)
Approximate Groundwater Elevation:	19.64 to 20.46	(feet above mean sea level)
Groundwater Flow Direction	West	
Groundwater Gradient	0.01	(foot per foot)
Current Remediation Techniques:	None	

Permits for Discharge:	None
Summary of Unusual Activity:	None
Agency Directive Requirements:	None

DISCUSSION

Gettler-Ryan Inc. (GR) conducted semi-annual groundwater monitoring activities on November 21, 2016. Field data sheets and general procedures are included as Attachment A. Four (4) monitoring wells (MW-1 through MW-4) were gauged, purged, and sampled by GR representatives.

Groundwater samples were submitted to BC Laboratories, Inc. of Bakersfield, California under standard chain-of-custody protocols. Gauging and analytical data obtained by GR for this event are summarized in Table 1 and Table 2. Historical gauging and analytical data for the site are summarized in Table 3 and Table 4. The site location and layout are presented on Figures 1 and 2, respectively; the groundwater elevation contours for the site on November 21, 2016 are presented on Figure 3. Concentration maps for total petroleum hydrocarbons as gasoline (TPH-g), benzene, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) are presented on Figures 4 through 7, respectively. A copy of the laboratory analytical report and chain-of-custody documentation are included as Attachment B.

The calculated direction of groundwater flow and gradient and the analytical results were generally consistent with previous monitoring events. TPH-g was detected in wells MW-2 through MW-4; the concentration in MW-3 was consistent with previous monitoring events while the concentrations in MW-2 and MW-4 were the highest to date in these wells, but similar to previous results at the site. Benzene and TBA continue to not be detected in groundwater samples from the four wells. MTBE was only detected in MW-3; the detected concentration was low and consistent with previous events.

The site continues to meet the criteria for low-threat closure. As such, no further monitoring is warranted and we recommend ACDEH move forward with closure notification per the January 16, 2015 letter. If further monitoring is required, Arcadis recommends transitioning to an annual frequency.

LIMITATIONS

This report was prepared in accordance with the scope of work outlined in Arcadis' contract and with generally accepted professional engineering and environmental consulting practices existing at the time this report was prepared and applicable to the location of the site. It was prepared for the exclusive use of Chevron Environmental Management Company's affiliate, Union Oil Company of California ("Union Oil"), for the express purpose stated above. Any re-use of this report for a different purpose or by others not identified above shall be at the user's sole risk without liability to Arcadis. To the extent that this report is based on information provided to Arcadis by third parties, Arcadis may have made efforts to verify this third party information, but Arcadis cannot guarantee the completeness or accuracy of this information. The opinions expressed and data collected are based on the conditions of the site existing at the time of the field investigation. No other warranties, expressed or implied are made by Arcadis.

Sherine Brondt

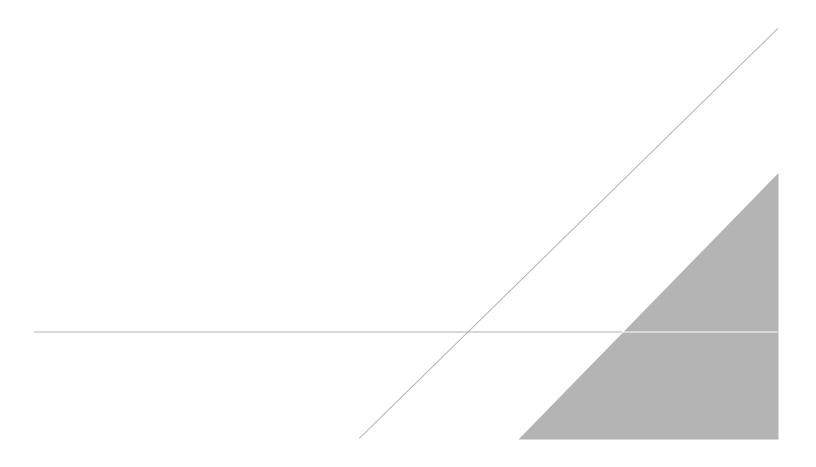
Katherine Brandt, P.G. Senior Geologist

Date: January 15, 2017

Samuel Miles Project Manager Date: January 15, 2017

TABLES

- Table 1
 Current Groundwater Gauging and Analytical Results, 2011 to Current
- Table 2
 Current Groundwater Analytical Results Monitored Natural Attenuation Parameters
- Table 3
 Historical Groundwater Gauging and Analytical Results
- Table 4
 Historical Groundwater Analytical Results Monitored Natural Attenuation Parameters


FIGURES

- Figure 1Site Location MapFigure 2Site PlanFigure 3Groundwater Elevation Contour, November 21, 2016Figure 4TPH-g Concentrations, November 21, 2016Figure 5Benzene Concentrations, November 21, 2016Figure 6MTBE Concentrations, November 21, 2016
- Figure 7 TBA Concentrations, November 21, 2016

ATTACHMENTS

- Attachment A Field Data Sheets and General Procedures
- Attachment B Laboratory Report and Chain-of-Custody Documentation

TABLES

Table 1. Current Groundwater Gauging and Analytical Results

Union Oil Company of California 76 Station No. 7124

10151 International Blvd, Oakland, California

Well ID	Sample Date	TOC (ft amsl)	DTW (ft bTOC)	GW Elev (ft amsl)	TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (μg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	TBA (µg/L)	EDB EDC (µg/L) (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	Ethanol (μg/L)
MW-1	11/21/2016	37.37	16.91	20.46	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50 <0.50	<0.50	<0.50	<0.50	<250
MW-2	11/21/2016	37.87	18.12	19.75	140	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50 <0.50	<0.50	<0.50	<0.50	<250
MW-3	11/21/2016	37.72	17.98	19.74	780	<0.50	<0.50	<0.50	<1.0	21	<10	<0.50 <0.50	<0.50	<0.50	<0.50	<250
MW-4	11/21/2016	38.36	18.72	19.64	1,000	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50 <0.50	<0.50	<0.50	<0.50	<250

Notes:

MW = Groundwater monitoring well	TPH-g = Total petroleum hydrocarbons, gasoline range by LUFT GC/MS according to Environmental Protection Agency (EPA) Method 8260B
TOC = Top of casing	Samples analyzed by EPA Method 8260B:
ft amsl = Feet above mean sea level	Benzene, toluene, ethylbenzene and total xylenes (collectively BTEX)
DTW = Depth to groundwater	MTBE = Methyl tert-butyl ether
ft bTOC = Feet below top of casing	TBA = Tert-butanol or tertiary butyl alcohol
Bold = Value exceeds laboratory reporting	EDB = 1,2-Dibromoethane
ft = Feet	EDC = 1,2-Dichloroethane
GW Elev = Groundwater elevation	ETBE = Ethyl tert-butyl ether
μg/L = Micrograms per liter	TAME = Tert-amyl methyl ether
	Ethanol
	Data QA/QC by: PC 12/8/2016

Table 2. Current Groundwater Analytical Results - Monitored Natural Attenuation Parameters

Union Oil Company of California 76 Station No. 7124 10151 International Blvd, Oakland, California

			Total Alkalinity						Non-Volatile		Total	
	Sample	Methan e	As CaCO3	Nitrate as NO3	Sulfate	Iron (II) Species	Nitrate as NO2	Total Sulfide	Organic Carbon	Dissolved Iron	Manganes e	
Well ID	Date	mg/L	mg/L	mg/L	mg/L	(µg/L)	mg/L	mg/L	mg/L	(µg/L)	(µg/L)	
MW-1	11/21/2016	<0.0010	170	34	28	<100	<0.17	<0.10	<1.0	<50	910	
MW-2	11/21/2016	0.011	200	<0.44	31	530	<0.17	<0.10	<1.0	<50	4,700	
MW-3	11/21/2016	0.10	300	<0.44	1.0	2,700	<0.17	<0.10	1.4	<50	6,800	
MW-4	11/21/2016	0.061	170	5.5	28	1,000	<0.17	<0.10	15	<50	1,700	

Notes:

MW = Groundwater monitoring well

mg/L = Miligrams per liter

 $\mu g/L = Micrograms per liter$

Methane analyzed by Method RSK-175M

Total alkalinity as CaCO3 analyzed by Environmental Protection Agency (EPA) Method 310.1

Nitrate as NO3 and sulfate analyzed by EPA Method 300.0

Iron (II) species analyzed by Method SM-3500-FeD

Nitrate as NO2 analyzed by EPA Method 353.2

Total sulfide analyzed by Method SM-4500SD

Non-volatile organic carbon analyzed by EPA Method 415.1

Dissolved iron and total manganese analyzed by EPA Method 6010B

Data QA/QC by: PC 12/8/2016

Table 3. Historical Groundwater Gauging and Analytical Results, 2011 to Current

Union Oil Company of California Former 76 Station No. 7124

10151 International Blvd, Oakland, California

	Sample	тос	DTW	GW Elev	TPH-g	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	ТВА	EDB	EDC	DIPE	ETBE	TAME	Ethanol
Well ID	Date	(ft amsl)	(ft bTOC)	(ft amsl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	11/2/2011	37.37	17.52	19.85	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-1	4/6/2012	37.37	14.20	23.17	<50	<0.50	<0.50	<0.50	<1.0	< 0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-1	6/12/2013	37.37	16.81	20.56	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	< 0.50	<0.50	<0.50	<0.50	<250
MW-1	10/7/2013	37.37	17.62	19.75	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	< 0.50	<0.50	<0.50	<0.50	<250
MW-1	4/8/2014	37.37	17.52	19.85	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-1	10/15/2014	37.37	18.29	19.08	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<250
MW-1	6/17/2015	37.37	17.30	20.07	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	< 0.50	<0.50	<0.50	< 0.50	<250
MW-1	12/15/2015	37.37	17.98	19.39	<50	< 0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	< 0.50	<0.50	<0.50	< 0.50	<250
MW-1	6/15/2016	37.37	16.22	21.15	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	< 0.50	<0.50	<0.50	<0.50	<250
MW-1	11/21/2016	37.37	16.91	20.46	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	< 0.50	< 0.50	<0.50	<0.50	<0.50	<250
	1.12.12010	01.01	10.01	20.10		0.00	0.00	0.00		0.00	10	0.00	0.00	0.00	0.00	0.00	200
MW-2	11/2/2011	37.87	17.15	20.72	96	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-2	4/6/2012	37.87	15.63	22.24	<50	<0.50	< 0.50	<0.50	<1.0	< 0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-2	6/12/2013	37.87	18.03	19.84	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-2	10/7/2013	37.87	18.74	19.13	99	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-2	4/8/2014	37.87	17.80	20.07	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-2	10/15/2014	37.87	19.31	18.56	100	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-2	6/17/2015	37.87	18.55	19.32	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-2	12/15/2015	37.87	19.00	18.87	66	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-2	6/15/2016	37.87	17.75	20.12	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-2	11/21/2016	37.87	18.12	19.75	140	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	< 0.50	<0.50	<0.50	<0.50	<250
MW-3	11/2/2011	37.72	17.55	20.17	880	<0.50	<0.50	<0.50	<1.0	35	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-3	4/6/2012	37.72	16.40	21.32	1,000	<0.50	<0.50	<0.50	<1.0	210	85	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-3	6/12/2013	37.72	17.95	19.77	<50	<0.50	<0.50	<0.50	<1.0	6.5	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-3	10/7/2013	37.72	18.62	19.10	880	<0.50	<0.50	<0.50	<1.0	12	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-3	4/8/2014	37.72	17.10	20.62	320	<0.50	<0.50	<0.50	<1.0	150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-3	10/15/2014	37.72	19.17	18.55	1,600	<0.50	<0.50	<0.50	<1.0	27	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-3	6/17/2015	37.72	18.34	19.38	250	<0.50	<0.50	<0.50	<1.0	3.2	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-3	12/15/2015	37.72	18.83	18.89	490	<0.50	<0.50	<0.50	<1.0	20	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-3	6/15/2016	37.72	17.57	20.15	<50	<0.50	<0.50	<0.50	<1.0	0.96	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-3	11/21/2016	37.72	17.98	19.74	780	<0.50	<0.50	<0.50	<1.0	21	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-4	11/2/2011	38.36	18.27	20.09	170	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-4	4/6/2012	38.36	15.68	22.68	200	<0.50	<0.50	<0.50	<1.0	1.7	58	<0.50	<0.50	<0.50	<0.50	<0.50	<250

Table 3. Historical Groundwater Gauging and Analytical Results, 2011 to Current

Union Oil Company of California Former 76 Station No. 7124 10151 International Blvd, Oakland, California

								Ethyl-	Total								
	Sample	TOC	DTW	GW Elev	TPH-g	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	EDB	EDC	DIPE	ETBE	TAME	Ethanol
Well ID	Date	(ft amsl)	(ft bTOC)	(ft amsl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4	6/12/2013	38.36	18.65	19.71	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-4	10/7/2013	38.36	19.33	19.03	95	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-4	4/8/2014	38.36	18.04	20.32	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-4	10/15/2014	38.36	19.88	18.48	190	<0.50	<0.50	<0.50	<1.0	0.63	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-4	6/17/2015	38.36	19.04	19.32	78	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-4	12/15/2015	38.36	19.56	18.80	110	<0.50	<0.50	<0.50	<1.0	0.51	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-4	6/15/2016	38.36	18.20	20.16	92	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-4	11/21/2016	38.36	18.72	19.64	1,000	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250

Notes: MW = Groundwater monitoring well

TOC = Top of casing

ft amsl = Feet above mean sea level

DTW = Depth to groundwater

ft bTOC = Feet below top of casing

PSH = Phase separate hydrocarbons

ft = Feet

<0.50 = Not detected at or above the stated limit

GW Elev = Groundwater elevation

µg/L = Micrograms per liter

Bold = Value exceeds laboratory reporting limits; PSH thickness Ethanol

Data QA/QC by: PC 12/8/2016

TPH-g = Total petroleum hydrocarbons, gasoline range by LUFT GC/MS according to Environmental Protection Agency (EPA) Method 8260B

Samples analyzed by EPA Method 8260B:

Benzene, toluene, ethylbenzene, and total xylenes (collectively BTEX)

MTBE = Methyl tert-butyl ether

TBA = Tert-butanol or tertiary butyl alcohol

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

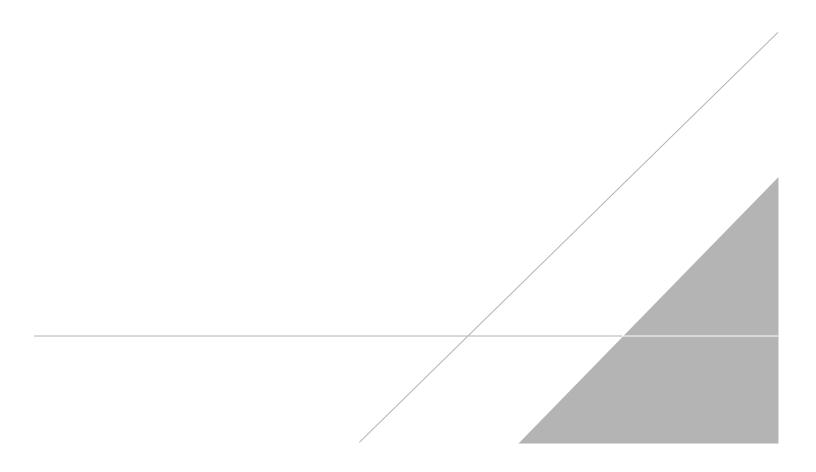
ETBE = Ethyl tert-butyl ether

TAME = Tert-amyl methyl ether

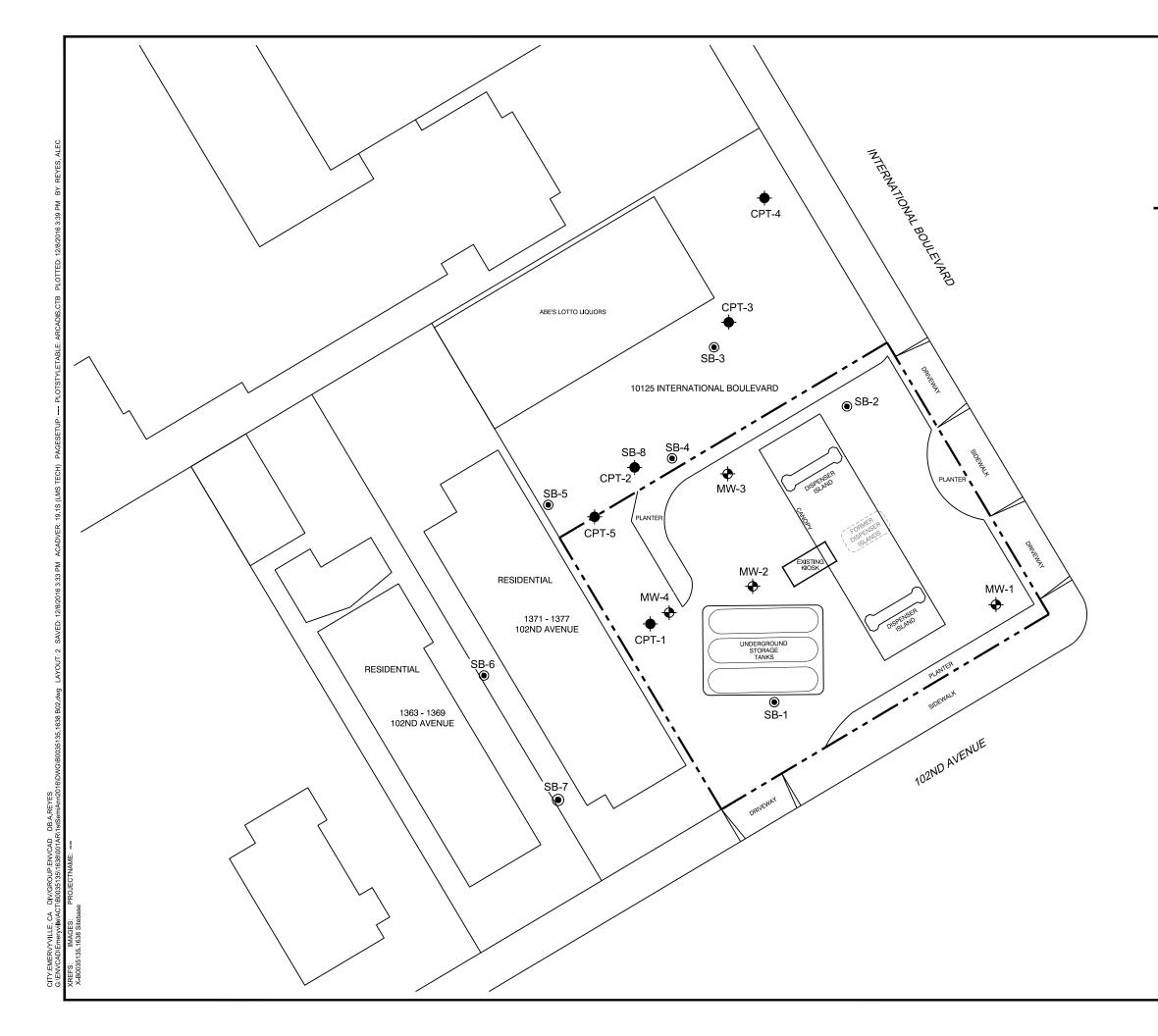
Table 4. Historical Groundwater Analytical Results - Monitored Natural Attenuation Parameters

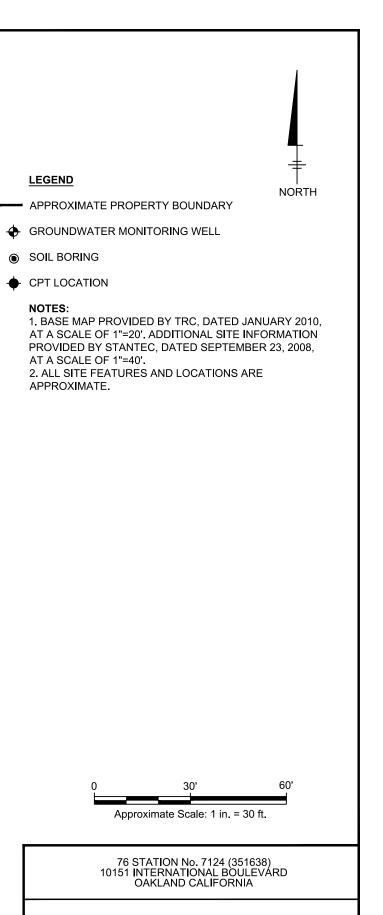
Union Oil Company of California

76 Station No. 7124

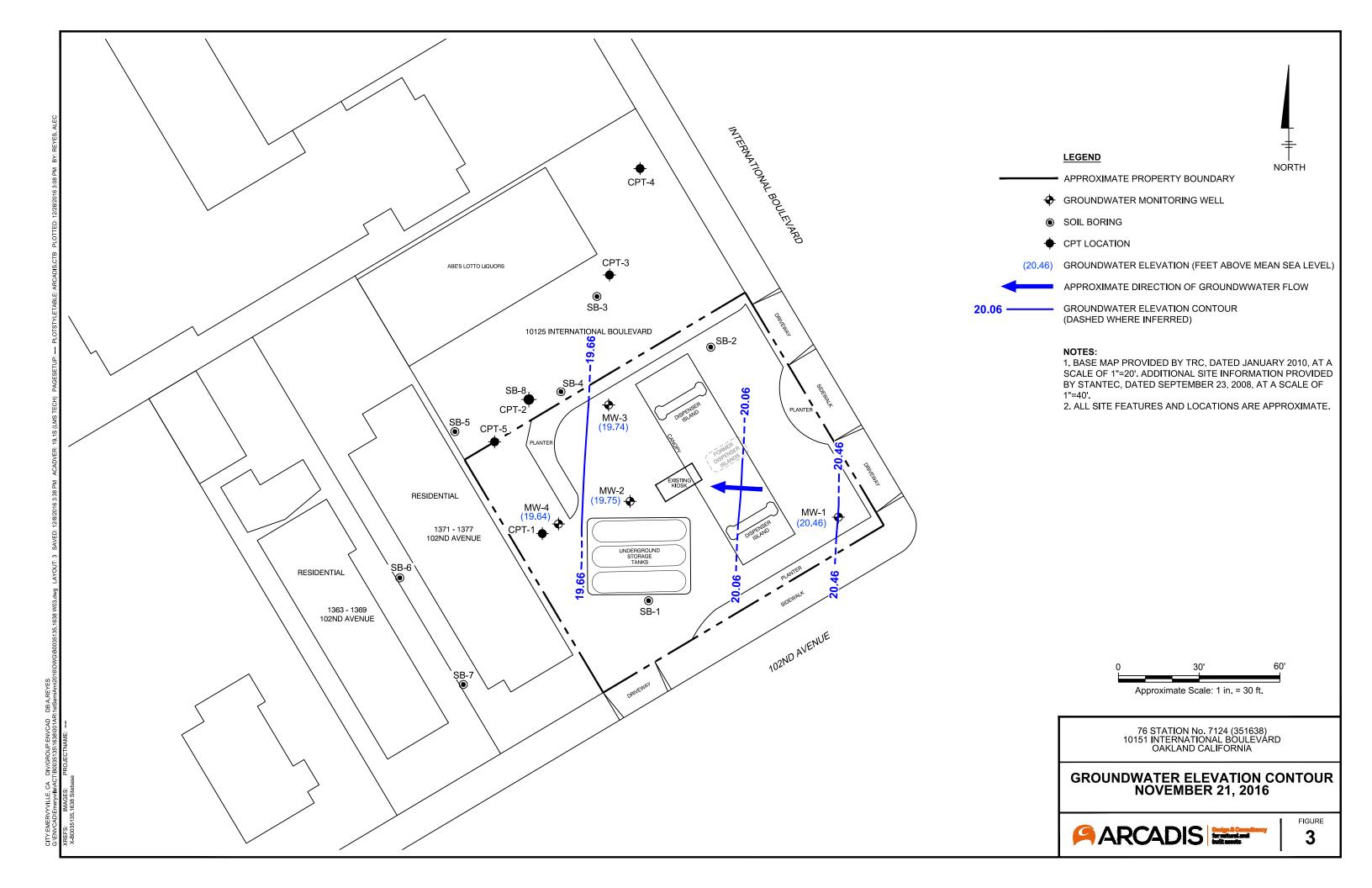

10151 International Blvd, Oakland, California

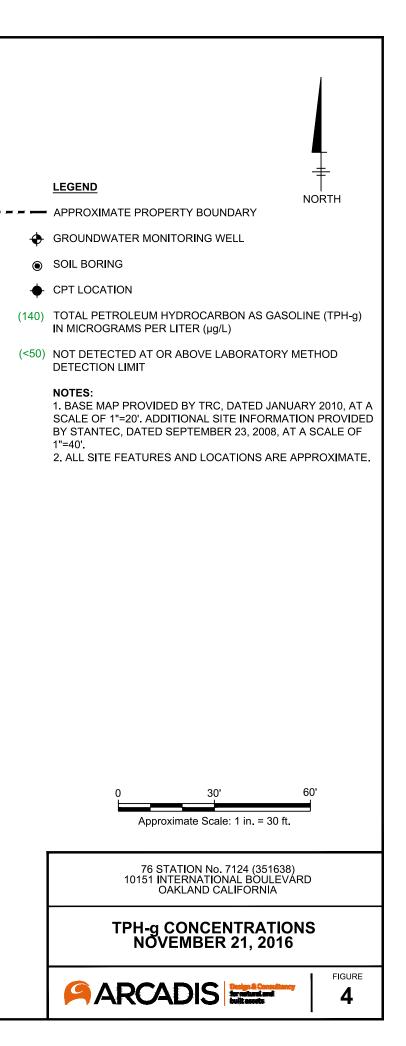

Well ID	Sample Date	Methane mg/L	Total Alkalinity As CaCO3 mg/L	Nitrate as NO3 mg/L	Sulfate mg/L	Iron (III) Species (μg/L)	Nitrate as NO2 mg/L	Total Sulfide mg/L	Non-Volatile Organic Carbon mg/L	Dissolved Iron (µg/L)	Total Manganes e (µg/L)
MW-1	6/13/2013	<0.0010	17.52	24	23	<100	<0.17	<0.50	1.1	<50	31,000
MW-1	10/7/2013	0.0015	150	0	22	<100	<0.17	<0.10	3.4	<50	13,000
MW-1	4/8/2014	0.0049	170	22	25	<100	<0.17	<0.10	1.3	<50	11,000
MW-1	10/15/2014	<0.001	160	27	26	<100	<0.17	<0.50	<1.0	<50	39,000
MW-1	6/17/2015	<0.001	170	28	28	<100	<0.17	<0.10	<1.0	<50	2,900
MW-1	12/15/2015		170	34	26	<100	<0.17	<0.10	1.0	<50	11,000
MW-1	6/15/2016	0.0016	170	40	29	<100	<0.17	<0.10	<1.0	<50	2,600
MW-2	6/13/2013	<0.0010	180	<0.44	20	250	<0.17	<0.10	1.0	120	9,700
MW-2	10/7/2013	0.0049	200	<0.44	9.6	2,700	<0.17	<0.10	3.2	260	5,600
MW-2	4/8/2014	0.007	210	<0.44	33	1,700	<0.17	<0.10	1.4	140	8,400
MW-2	10/15/2014	0.011	210	<0.44	20	19,000	<0.17	<0.50	<1.0	200	6,400
MW-2	6/17/2015	<0.001	210	<0.44	34	2,500	<0.17	<0.10	<1.0	320	5,300
MW-2	12/15/2015	0.027	210	<0.44	23	1,700	<0.17	<0.10	1.3	140	6,300
MW-2	6/15/2016	0.0020	200	<0.44	36	1,000	<0.17	<0.10	<1.0	<50	6,700
MW-3	6/13/2013	0.0075	260	<0.44	<1.0	3,200	<0.17	<0.10	1.4	160	5,700
MW-3	10/7/2013	0.071	260	<0.44	<1.0	9,000	<0.17	<0.10	3.1	710	9,600
MW-3	4/8/2014	0.034	290	<0.44	2.1	1,200	<0.17	<0.10	1.3	220	6,000
MW-3	10/15/2014	0.069	290	<0.44	<1.0	<100	<0.17	<0.50	<1.0	93	6,900
MW-3	6/17/2015	0.11	310	<0.44	<1.0	4,700	<0.17	<0.50	25.0	350	6,300
MW-3	12/15/2015	0.13	280	<0.44	<1.0	5,900	<0.17	<0.10	1.6	140	6,900
MW-3	6/15/2016	0.035	280	<0.44	7.4	1,400	<0.17	<0.10	1.8	<50	6,000
MW-4	6/13/2013	<0.0010	210	<0.44	15	5,200	<0.17	<0.50	4.7	<50	7,900
MW-4	10/7/2013	<0.0010	190	<0.44	18	13,000	<0.17	<0.10	8.2	220	5,000
MW-4	4/8/2014	<0.0010	130	5	17	280	<0.17	<0.10	12.0	200	1,200
MW-4	10/15/2014	0.17	210	<0.44	24	5,800	<0.17	<0.50	1.5	<50	8,000
MW-4	6/17/2015	0.0027	210	<0.44	51	2,100	<0.17	<0.10	1.9	<50	2,400
MW-4	12/15/2015	0.057	200	2.5	37	2,900	<0.17	<0.10	17	<50	4,200
MW-4	6/15/2016	0.0016	250	<0.44	26	1,200	<0.17	<0.50	4.8	<50	1,800

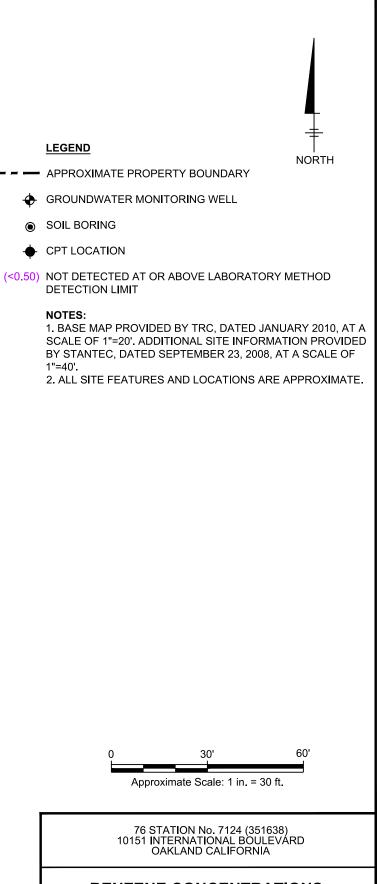

Notes:

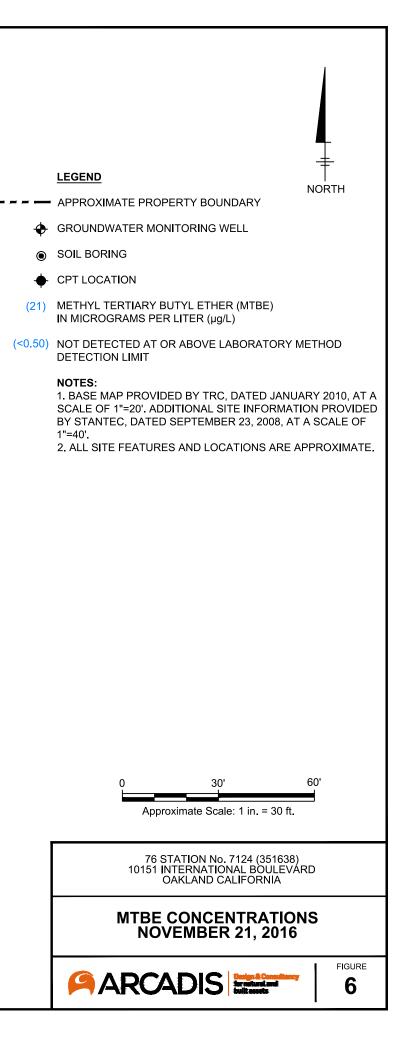

MW = Groundwater monitoring well mg/L = Miligrams per liter µg/L = Micrograms per liter Methane analyzed by Method RSK-175M Total alkalinity as CaCO3 analyzed by Environmental Protection Agency (EPA) Method 310.1 Nitrate as NO3 and sulfate analyzed by EPA Method 300.0 Iron (II) species analyzed by Method SM-3500-FeD Nitrate as NO2 analyzed by EPA Method 353.2 Total sulfide analyzed by Method SM-4500SD Non-volatile organic carbon analyzed by EPA Method 415.1 Dissolved iron and total manganese analyzed by EPA Method 6010B Data QA/QC by: PC 12/8/2016

FIGURES



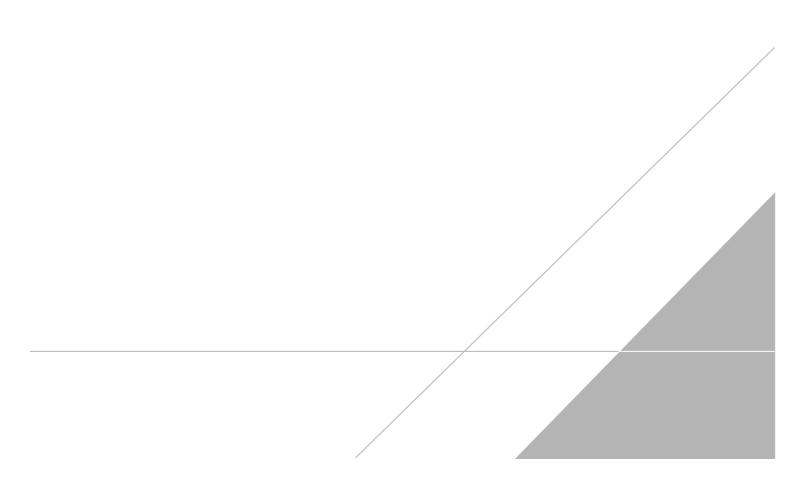

SITE PLAN


FIGURE

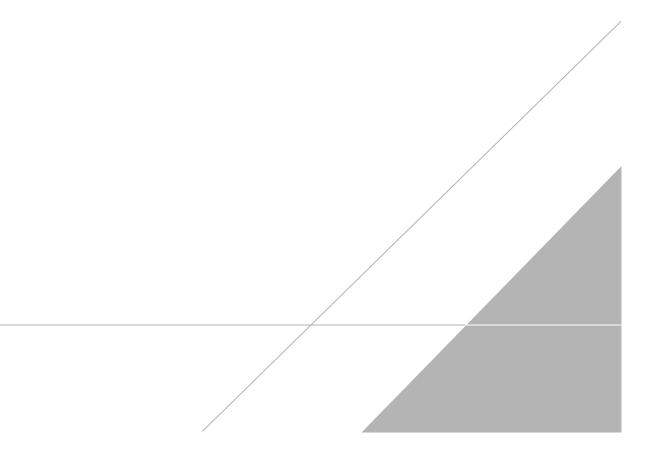


BENZENE CONCENTRATIONS NOVEMBER 21, 2016

FIGURE



TBA CONCENTRATIONS NOVEMBER 21, 2016


FIGURE

ATTACHMENTS

ATTACHMENT A

Field Data Sheets and General Procedures

TRANSMITTAL

November 23, 2016 G-R #385639

- TO: Ms. Tamera Rogers Arcadis 6296 San Ignacio Ave., Suite C & D San Jose, California 95119
- FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6805 Sierra Court, Suite G Dublin, California 94568

RE: Chevron Facility #351638/7124 10151 International Boulevard Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES

DESCRIPTION

VIA PDF

Groundwater Monitoring and Sampling Data Package Second Semi-Annual Event of November 21, 2016

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/351638 7124

WELL CONDITION STATUS SHEET

Client/ Facility #:		#351638 /				_	Job #:	385639	1		
Site Address:		ternationa	l Blvd.			-	Event Date:		11-21-16		
City:	Oakland	, CA				-	Sampler:		Au	······································	
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M) Missing (R) Replaced	Bolts (M) Missing (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retap	Apron Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) Inches from TOC	Casing (Condition prevents tight cap seal)	REPLACI LOCK Y/N	E REPLACE CAP Y/N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Y/N
MW-1	OK							N	N	Bmio /121/2	N
MW-2 MW-3 MW-4	ok							1	1	1	
MW-3	٥K	<u> </u>					~~~~				
MW-4	OK		->	IB	QK					momson/101/2	
· · · · · · · · · · · · · · · · · · ·								え			
					-						
			·								
Comments											

STANDARD OPERATING PROCEDURE GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells. Total well depths are measured annually.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California.

Client/Facility#:	Chevron #351638 / 71	24	Job Number:	385639		
Site Address:	10151 International B	vd.	Event Date:	11-21-	16	- (inclusive)
City:	Oakland, CA		Sampler:	fw		-
Well ID	MW	Da	te Monitored:		16	
Well Diameter	4 in.	Volume			2"= 0.17 3"= 0.3	
Total Depth	<u>29.84 ft.</u>	Factor			6"= 1.50 12"= 5.8	0
Depth to Water	tomail a	eck if water column i $6 = 8.53$			76.0	
Depth to Water	N/ 80% Recharge [(Height of Wa	· · · · · · · · · · · · · · · · · · ·		Estimated Purge V	olume:	_ gal.
Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Peristaltic Pump QED Bladder Pump Other:	r Dis Pre Me Per QE	mpling Equipment: posable Bailer essure Bailer tal Filters istaltic Pump D Bladder Pump er:		Time Comp Depth to Pr Depth to W Hydrocarbo Visual Conf Skimmer / A Amt Remov Amt Remov	ed: oleted: ater: in Thickness: firmation/Description Absorbant Sock (cirro ved from Skimmer: ved from Well: oved:	ftftftftftftftftftftftftftftftftftr ftrftrftrftrftrftrftr ftrftrf
Start Time (purge		Weather Condi	tions:	Parn		
Sample Time/Da		Water Color:	Cloudy	Odor: Y /		
Approx. Flow Ra		Sediment Desc		Ão		
Did well de-water	? If yes, Tim	e: Volu	me:	_gal. DTW @	Sampling: 18	1.57
Time (2400 hr.)	Volume (gal.) pH	rins/ms	Temperature	D.O. (mg/L)	ORP (mV)	
0705	9.0 7.60	280	17.5	PRE: 1.4	PRE: 130	
0710	18.0 7.54	311	17.6			
0715	26.0 7.50	334	17.7	POST: 1.2	POST: 166	
·					1001. 100	

	LABORATORY INFORMATION											
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES						
MW-	E	x voa vial	YES	HCL	BC LABS	TPH-GRO(8015)/BTEX+MTBE(8260)/8 OXYS(8260)						
•	-	x 1 liter poly	YES	NP	BC LABS	NITRATE/NITRITE/SULFATE/ALKALINITY/DISSOLVED IRON						
		x 500ml poly	YES	ZnAc	BC LABS	SULFIDE(376.2)						
	1	x 500ml amber	YES	H2SO4	BC LABS	TOC						
		x 250ml poly	YES	HCL	BC LABS	FERROUS IRON						
		x 500ml poly	YES	HNO3	BC LABS	TOTAL MANGANESE						
		2 x voa vial	YES	NP	BC LABS	METHANE						

COMMENTS:

_

Add/Replaced Plug: _____

Client/Facility#:	Chevron #351638	/ 7124	Job Number:	385639		
Site Address:	10151 Internation	al Bivd.	Event Date:	11-21-1	6	 (inclusive)
City:	Oakland, CA		- Sampler:	Aw		-
Well ID	MW- 2		Date Monitored:	11-2	1-11	
Well Diameter Total Depth	4 in. 25.26 ft.		olume 3/4"= (actor (VF) 4"= (2"= 0.17 3"= 0. 6"= 1.50 12"= 5.	
Depth to Water	18.12 ft.	Check if water colu	mn is less then 0.5	0 ft.		80
Depth to Water w		<u>.66</u> = <u>4.7</u> of Water Column x 0.20		Estimated Purge		gal.
Purge Equipment:		Sampling Equipmen	it:		ed: pleted:	
Disposable Bailer		Disposable Bailer	~ /		Product:	
Stainless Steel Bailer		Pressure Bailer			Vater:	
Stack Pump		Metal Filters			on Thickness:	
Peristaltic Pump		Peristaltic Pump		Visual Cor	firmation/Description	m:
QED Bladder Pump		QED Bladder Pump		Skimmer /	Absorbant Sock (ci	rcle one)
Other:		Other:		Amt Remo	ved from Skimmer:	ltr
					ved from Well:	
				Water Ren	noved:	ltr
	~ ~					
Start Time (purge		Weather Co			oudy	
	e: 0925 / 11-21		r: <u>Cloudy</u>	_Odor: Y /	/	
Approx. Flow Rat		Sediment D	Description:	<u> </u>	not	
Did well de-water	? If yes,	Time: \	/olume:	gal. DTW @	Sampling:	19.06
Time (2400 hr.)	Volume (gal.) pH	Conductivity (/) mS µmhos/cm)	Temperature	D.O. (mg/L)	ORP (mV)	••••
0850	5.0 7.40	270	19.9	PRE: 1.3	PRE: 136	
0855	10.0 7.5		19.9		- ne. 1 W	•
0900	14.5 7.5	6 316	20.2		<u></u>	-
			····	POST: 1.4	POST: 154	;

	LABORATORY INFORMATION									
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES					
MW- 2	6 x voa vial	YES	HCL	BC LABS	TPH-GRO(8015)/BTEX+MTBE(8260)/8 OXYS(8260)					
	1 x 1 liter poly	YES	NP	BC LABS	NITRATE/NITRITE/SULFATE/ALKALINITY/DISSOLVED IRON					
	1 x 500ml poly	YES	ZnAc	BC LABS	SULFIDE(376.2)					
	X 500ml amber	YES	H2SO4	BC LABS	TOC					
	x 250ml poly	YES	HCL	BC LABS	FERROUS IRON					
	x 500ml poly	YES	HNO3	BC LABS	TOTAL MANGANESE					
	2 x voa vial	YES	NP	BC LABS	METHANE					

COMMENTS:

Client/Facility#:	Chevron #351638 / 7124	Job Number:	385639	
Site Address:	10151 International Blvd.	Event Date:	11-21-46	(inclusive)
City:	Oakland, CA	Sampler:	An	` /
Well ID Well Diameter Total Depth Depth to Water Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Peristaltic Pump QED Bladder Pump Other:	T.22 xVF .66 = .4. w/ 80% Recharge [(Height of Water Column x Sampling Equil Disposable Bail Pressure Bailer Metal Filters Peristaltic Pump	x 0.20) + DTW]: <u> 9.42</u> ipment: er pump	6 5"= 1.02 6"= 1.50 12"= t. stimated Purge Volume: [4.9	(2400 hrs) ft
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.) 0805 0815	te: <u>0830 / 11-21-16</u> Water te: <u>1.0</u> gpm. Sedim	ent Description: / Volume: rity Temperature n) (O/F) 18.5 18.6	Cloudy Odor: Y (C) / gal. DTW @ Sampling: _ D.O. ORP (mg/L) (mV) PRE: 1.2 PRE: 135 POST: 1.3 POST: 111	9.4 ₀

	LABORATORY INFORMATION									
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES					
MW- 3	6 x voa vial	YES	HCL	BC LABS	TPH-GRO(8015)/BTEX+MTBE(8260)/8 OXYS(8260)					
	x 1 liter poly	YES	NP	BC LABS	NITRATE/NITRITE/SULFATE/ALKALINITY/DISSOLVED IRON					
	x 500ml poly	YES	ZnAc	BC LABS	SULFIDE(376.2)					
	x 500ml amber	YES	H2SO4	BC LABS	TOC					
	x 250ml poly	YES	HCL	BC LABS	FERROUS IRON					
	x 500ml poly	YES	HNO3	BC LABS	TOTAL MANGANESE					
	2 x voa vial	YES	NP	BC LABS	METHANE					

COMMENTS:

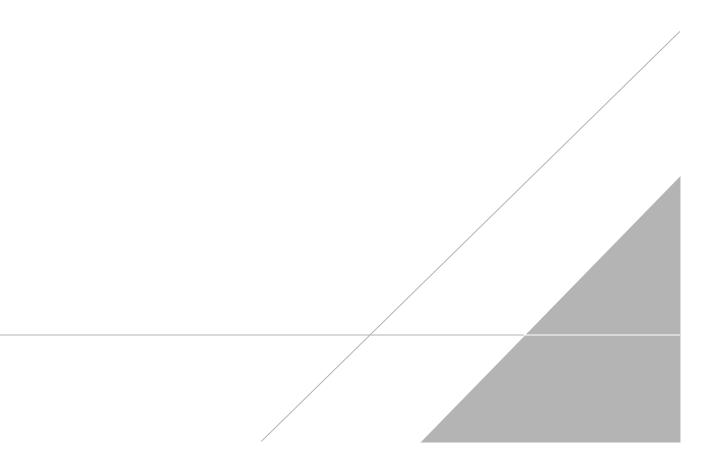
Client/Facility#:	Chevron #351638 / 7124	Job Number:	385639	
Site Address:	10151 International Bivd.	Event Date:	11-21-16	(inclusive)
City:	Oakland, CA	Sampler:	Aw	
Well ID Well Diameter Total Depth Depth to Water Depth to Water w			6 5"= 1.02 6"= 1.50 12"= 5 ft. Estimated Purge Volume: 2-5	.80 gal.
Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Peristaltic Pump QED Bladder Pump Other:	Sampling Equ Disposable Bai Pressure Baile Metal Filters Peristaltic Pum QED Bladder F Other:	iler	Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Descript Skimmer / Absorbant Sock (of Amt Removed from Skimmer Amt Removed from Well: Water Removed:	(2400 hrs) ft ft ft ft ft ft ttr ltr
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-water	te: <u>1015 / 11-21-16</u> Water te: <u>1.9</u> gpm. Sedim	her Conditions: r Color: <u>COUP</u> nent Description:	Odor: Y / M Clowdy gal. DTW @Sampling:	9.11
Time (2400 hr.) 0940 0945 0950	Volume (gal.) pH Conduction 4.5 7.18 7.44 9.0 7.24 290 12.5 7.27 325	$\frac{19.9}{20.4}$	D.O. (mg/L) PRE: 1.2 PRE: 1.2 PRE: 146 POST: 129	-

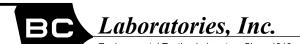
	LABORATORY INFORMATION									
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES					
MW- Y	6 x voa vial	YES	HCL	BC LABS	TPH-GRO(8015)/BTEX+MTBE(8260)/8 OXYS(8260)					
	x 1 liter poly	YES	NP	BC LABS	NITRATE/NITRITE/SULFATE/ALKALINITY/DISSOLVED IRON					
57.5	1 x 500ml poly	YES	ZnAc	BC LABS	SULFIDE(376.2)					
	x 500ml amber	YES	H2SO4	BC LABS	TOC					
	x 250ml poly	YES	HCL	BC LABS	FERROUS IRON					
	x 500ml poly	YES	HNO3	BC LABS	TOTAL MANGANESE					
	2⁄x voa vial	YES	NP	BC LABS	METHANE					

COMMENTS:

_

Add/Replaced Plug: ____


					N OF CUSTODY FORM													1	1	
			Union Oil Co	mpany of California 610	1 Bollinger Canyon Road	∎ Sa	n Rar	non,	CA 94	4583						C		of		
	24			Union Oil Consultant: Al								AN/	ALYS	<u>es re</u>	EQUIF	RED				
Site Global ID: TOGOC	17359	1		Consultant Contact: SAMUEL MILES													Tumar	ound Tim	e (TAT):	
Site Address: 10151		THONAL 51	⊻V	Consultant Phone No.: 2	06-726-4720		E					2							4 Hours 🗌	
Dakland		. (Sampling Company: (-++)Pr -Ryon			3		X		-	IRON							2 Hours	
	Jnion Oil PM: JOMES KJERNAN Jnion Oil PM Phone No.: 925-842-3220		2.0	Sampled By (PRINT):	ry		2	30B	THAVE		ATE							Spe	cial Instruc	tions
Charge Code: NWRTB- 0 _	1. A. S.			Sampler Signature:		8015	(8015)	y EPA 82	= ME	vith OXYS	E/Sut	DISSOLVED	(2:0		N	MANGANESE				
This is a LEGAL document. COMPLETELY.	<u>ALL</u> fields r	must be filled ou	t CORRECTLY and	Project Manag 4100 Atlas Court, E	atories, Inc. er: Molly Meyers Bakersfield, CA 93308 661-327-4911	Diesel by EPA	TPH - G by GC/MS	BTEX/MTBE/OXYS by EPA 8260B		EPA 8260B Full List with OXYS	NTHATE / NTRIFE/SULFATE	ALKAUNTY /D	SULFIDE (376		FERRONS IRON					
	SAMPLE	EID	D.4	-			0 ÷	WX.		A 826	M	KAL	1.F	$\left \right\rangle$	EX.	TOTAL				
Field Point Name	Matrix	Depth	Date (yymmdd)	Sample Time	# of Containers	TPH	Ē.	E E	đ	ËPZ	2	AL	5	12	π	15	Note	s / Comn	nents	
QA	W-S-A		161121		2		$[\mathcal{Y}]$	\times												
mw-1	W-S-A			0740	13		X	X	$\left \times \right $	·	\times	\mathbf{X}	X	X	$\left[\times \right]$	$\left \times \right $				
mw-Z	W-S-A			0925			11	1	1		$\overline{\mathbf{n}}$		1	1	1	1				
MW-3	W-S-A			0830							\square									
rnw-4	W-S-A		J.	1015	J		J	J	1		J	Ţ	Ţ	J	J	J				
	W-S-A																			
	W-S-A																			
	W-S-A						<u> </u>													
	W-S-A					-	-				-									
	W-S-A					-		-			\dashv	_		<u> </u>						
	W-S-A					-	<u> </u>								<u> </u>					
Relinquished By Co	W-S-A mpany	Date / Time:		Relinguished By Cor	npany Date / Time :	11		L.,	Relir	quishe	ed Bv		C	ompa	inv		ate / Time:			
	(-1,1		21/1153.	The office	1711-21-1	45	3						S.		-			÷ د ز	and the second	
Received By Con	mpany	Date / Time:	1153	Received By Cor	npaný () Date/Time: BelAB 1/-21-16	14	4_	5	Rece	eived B	У		(Compa	any	[Date / Time:	100 Ja 112 112	and in the second se	


1.

.....

ATTACHMENT B

Laboratory Report and Chain-of-Custody Documentation

Date of Report: 12/01/2016

Samuel Miles

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102

Client Project: 351638 7124 **BCL Project:** 1632639 BCL Work Order: B253244 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 11/21/2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Molly Mayers

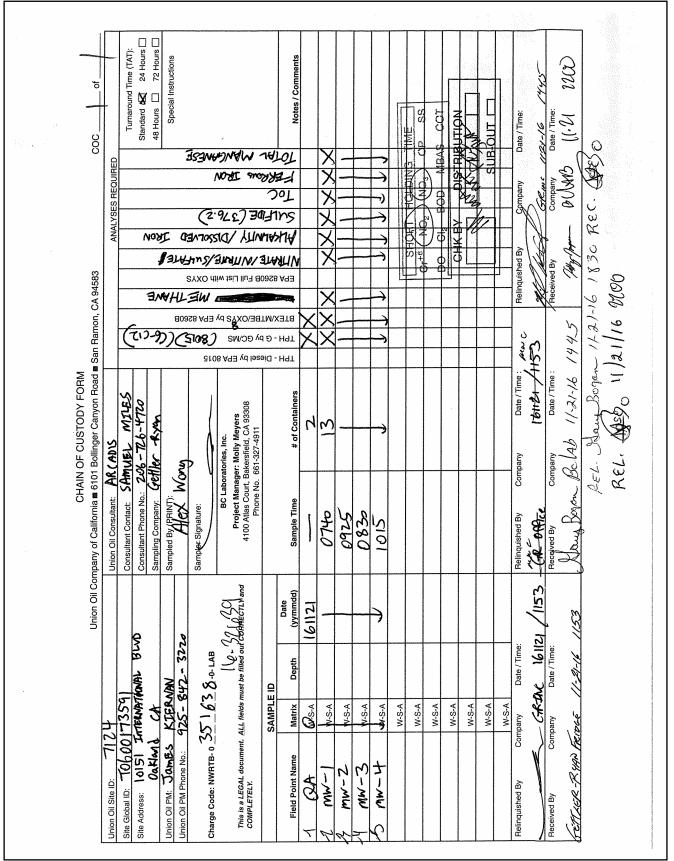
Contact Person: Molly Meyers **Client Service Rep**

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample	Information	
-	Chain of Custody and Cooler Receipt form	3
	Laboratory / Client Sample Cross Reference	5
Sample	Results	
	1632639-01 - QA-W-161121	
	Volatile Organic Analysis (EPA Method 8260B)	7
	Purgeable Aromatics and Total Petroleum Hydrocarbons	
	1632639-02 - MW-1-W-161121	0
	Volatile Organic Analysis (EPA Method 8260B)	0
	Purgeable Aromatics and Total Petroleum Hydrocarbons	
	Gas Testing in Water	
	Water Analysis (General Chemistry)	
	Metals Analysis	
	1632639-03 - MW-2-W-161121	
	Volatile Organic Analysis (EPA Method 8260B)	
	Purgeable Aromatics and Total Petroleum Hydrocarbons	
	Gas Testing in Water	
	Water Analysis (General Chemistry)	
	Metals Analysis	18
	1632639-04 - MW-3-W-161121	
	Volatile Organic Analysis (EPA Method 8260B)	
	Purgeable Aromatics and Total Petroleum Hydrocarbons	20
	Gas Testing in Water	21
	Water Analysis (General Chemistry)	22
	Metals Analysis	23
	1632639-05 - MW-4-W-161121	
	Volatile Organic Analysis (EPA Method 8260B)	
	Purgeable Aromatics and Total Petroleum Hydrocarbons	
	Gas Testing in Water	
	Water Analysis (General Chemistry)	
	Metals Analysis	
Quality	Control Reports	
-	Volatile Organic Analysis (EPA Method 8260B)	
	Method Blank Analysis	20
	Laboratory Control Sample	
	Precision and Accuracy Purgeable Aromatics and Total Petroleum Hydrocarbons	
	•	20
	Method Blank Analysis	
	Laboratory Control Sample	
	Precision and Accuracy.	
	Gas Testing in Water	05
	Method Blank Analysis	
	Laboratory Control Sample	
	Water Analysis (General Chemistry)	
	Method Blank Analysis	
	Laboratory Control Sample	
	Precision and Accuracy	
	Metals Analysis	
	Method Blank Analysis	
	Laboratory Control Sample	
	Precision and Accuracy	
Notes		
	Notes and Definitions	43

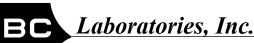

 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

 1000548899
 4100 Atlas Court
 Bakersfield, CA
 93308
 (661) 327-4911
 FAX (661) 327-1918
 www.bclabs.com
 P.

Chain of Custody and Cooler Receipt Form for 1632639 Page 1 of 2

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

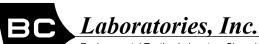


Chain of Custody and Cooler Receipt Form for 1632639 Page 2 of 2

□ (Speci] Nor Contai	l Ind Delive		Ice C	SHIPPING	G CONTA	INER		FREE LI	Of
MATION Ha (Speci	ind Delive ify)	ry 🗆	Ice C		G CONTA	INER	·		
□ Ha □ (Speci] Nor Contai	ind Delive ify)	ry 🛛	Ice C		G CONTA	INFR			
□ (Speci] Nor Contai	ify)	ry 🗆	Ice C						
) Noi Contai				nest		Box []	VEST I	NOD
Contai	ne 🛛		- 0	her 🗇 (Sp	ecity)		- .		S
		Other [] Con	nments:					
	nore 🖂 😳	Non	e 🖽 Co	mments:					
	nets p s ⊡_No ∏	NON		minents.					
All sample	s container	s intact?	Yes A	0 🗆	Descri	otion(s) ma	tch COC?	Yes No	Paul
issivity: ().90	Containe	r: PF	Thermo	meter ID:2	01	Date/Ti	me 11 2	1H: U
	0	12			1.2			- 11/	en
mperature	e: (A) /	· /	°C /	(C)	<u> </u>	°C	Analyst) OV
				SAMPL	E NUMBERS			7	
1 1	2	3	4	5	6	7	8	9	10
1		1-+-	+ F	++-			+		+
1									┼───┤
1								1	+
1	1-	+	1-	+					+
1	$+ \circ$	1-2		+					┼╢
 		+							tll.
 	1			+ $$					tl
1	15	-the	+- <u>h</u>	1n					
	100	(AA					1.		
	-1-447-	<u> </u>	<u> - VV </u>	<u> 1</u> ¥\					
			+						
NR									
RA	TAT	AT	DIC	+ Not			-		
-04	177-1		- P/ 1	1.1					
	1								
<u>.</u>									
	GH	CIH	Rill	RIL					
	- pr	- fit	- art				·		
						· · · ·			
	•								
			, 1						
	1-1	1	1,1						
			~~~						
			1		<u> </u>				
					SAMPL 1 2 3 4 5 1 7 7 7 7 3 7 7 7 3 7 7 7 4 8 8 5 7 7 7 5 7 5	SAMPLE NUMBERS SAMPLE NUMBERS 1 2 3 4 5 6 1 F F F F F 3 7 5 5 K K K K M M M M M M M M M M M M M F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F A F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SAMPLE NUMBERS 1 2 3 4 5 6 7 8 1 7 7 8 1 7 7 7 7 3 7 7 7 3 7 7 7 3 7 7 7 3 7 7 3 7 7 3 7 7 4 7 7 5 7 7 5 7 7 5 7 7 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	SAMPLE NUMBERS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 41000548899 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

٦




Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102

Reported: 12/01/2016 11:04 Project: 7124 Project Number: 351638 Project Manager: Samuel Miles

### Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information									
1632639-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124  QA-W-161121 GRD	Global ID: T06001 Location ID (FieldF Matrix: W	Sampling Date:11/21/2016 00:00Sample Depth:Lab Matrix:WaterSample Type:Blank WaterDelivery Work Order:Global ID: T0600173591Location ID (FieldPoint):QAMatrix:WSample QC Type (SACode):CS						
1632639-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124  MW-1-W-161121 GRD	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Metal Analysis: 2- Acidified past 15 m Delivery Work Orde Global ID: T06001 Location ID (FieldF Matrix: W Sample QC Type ( Cooler ID:	inute holding time er: 73591 voint): MW-1						
1632639-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124  MW-2-W-161121 GRD	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Metal Analysis: 2- Acidified past 15 m Delivery Work Orde Global ID: T06001 Location ID (FieldF Matrix: W Sample QC Type ( Cooler ID:	inute holding time er: 73591 Point): MW-2						



Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102

Reported: 12/01/2016 11:04 Project: 7124 Project Number: 351638 Project Manager: Samuel Miles

### Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information									
1632639-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124  MW-3-W-161121 GRD	Receive Date:11/21/2016 22:00Sampling Date:11/21/2016 08:30Sample Depth:Lab Matrix:WaterSample Type:WaterMetal Analysis:2-LabFiltered andAcidified past 15 minute holding timeDelivery Work Order:Global ID:T0600173591Location ID (FieldPoint):MW-3Matrix:WSample QC Type (SACode):CSCooler ID:							
1632639-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124  MW-4-W-161121 GRD	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Metal Analysis: 2- Acidified past 15 m Delivery Work Ord Global ID: T06001 Location ID (FieldF Matrix: W Sample QC Type ( Cooler ID:	inute holding time er: 73591 Point): MW-4						

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102

Reported: 12/01/2016 11:04 Project: 7124 Project Number: 351638 Project Manager: Samuel Miles

## Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 1	632639-01	Client Sample	e Name:	7124, QA-W-	161121	, 11/21/2016 12:	00:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50		EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Toluene		ND	ug/L	0.50		EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10		EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Ethanol		ND	ug/L	250		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surr	rogate)	104	%	75 - 125 (LCL -	UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		99.0	%	80 - 120 (LCL -	UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rogate)	100	%	80 - 120 (LCL -	UCL)	EPA-8260B			1

			Run	QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/23/16	11/23/16 12:41	IO1	MS-V12	1	BZK1967	

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1632639-01	Client Sampl	e Name:	7124, QA	-W-161121	I, 11/21/2016 12	::00:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Orgar	nics (C6 - C12)	ND	ug/L	50		EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	90.8	%	70 - 130 (LC	CL - UCL)	EPA-8015B			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/22/16	11/22/16 12:42	AKM	GC-V9	1	BZK1800	

Laboratories, Inc. 

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 16	632639-02	Client Sampl	e Name:	7124, MW-1	-W-1611	121, 11/21/2016	7:40:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50		EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Toluene		ND	ug/L	0.50		EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10		EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Ethanol		ND	ug/L	250		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surro	ogate)	103	%	75 - 125 (LCL -	UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		95.1	%	80 - 120 (LCL -	UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surr	ogate)	102	%	80 - 120 (LCL -	UCL)	EPA-8260B			1

	Run					QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8260B	11/23/16	11/23/16 13:16	I01	MS-V12	1	BZK1967			

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102

Reported: 12/01/2016 11:04 Project: 7124 Project Number: 351638 Project Manager: Samuel Miles

## Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1632639-02	Client Sampl	e Name:	7124, MV	7124, MW-1-W-161121, 11/21/2016 7:40:00AM						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #		
Gasoline Range Organ	nics (C6 - C12)	ND	ug/L	50		EPA-8015B	ND		1		
a,a,a-Trifluorotoluene	(FID Surrogate)	106	%	70 - 130 (LC	CL - UCL)	EPA-8015B			1		

			Run		QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8015B	11/22/16	11/22/16 13:03	AKM	GC-V9	1	BZK1800		

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Gas Testing in Water

BCL Sample ID:	1632639-02	Client Sample	e Name:	7124, MW	7124, MW-1-W-161121, 11/21/2016 7:40:00AM				
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Methane		ND	mg/L	0.0010		RSK-175M	ND		1

			Run		QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	RSK-175M	11/29/16	11/29/16 15:22	JH2	GC-V1	1	BZK2446		

Laboratories, Inc.

Environmental Testing Laboratory Since 1949

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Water Analysis (General Chemistry)

BCL Sample ID:	1632639-02	Client Sampl	e Name:	7124, MW	/-1-W-161	121, 11/21/2016	7:40:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Total Alkalinity as CaC	:03	170	mg/L	4.1		EPA-310.1	ND		1
Nitrate as NO3		34	mg/L	0.44		EPA-300.0	ND		2
Sulfate		28	mg/L	1.0		EPA-300.0	ND		2
Iron (II) Species		ND	ug/L	100		SM-3500-FeD	ND		3
Nitrite as NO2		ND	mg/L	0.17		EPA-353.2	ND		4
Total Sulfide		ND	mg/L	0.10		SM-4500SD	ND		5
Non-Volatile Organic C	arbon	ND	mg/L	1.0		EPA-415.1	ND		6

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-310.1	11/28/16	11/28/16 12:21	RML	MET-1	1	BZK2273
2	EPA-300.0	11/22/16	11/22/16 15:02	EMW	IC1	1	BZK2042
3	SM-3500-FeD	11/28/16	11/28/16 14:11	RCC	KONE-1	1	BZK2268
4	EPA-353.2	11/22/16	11/22/16 09:50	RCC	KONE-1	1	BZK2071
5	SM-4500SD	11/23/16	11/23/16 08:00	MC1	SPEC06	1	BZK2174
6	EPA-415.1	11/22/16	11/22/16 14:27	ALW	TOC2	1	BZK1969

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102

Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Metals Analysis

BCL Sample ID:	1632639-02	Client Sampl	e Name:	me: 7124, MW-1-W-161121, 11/21/2016					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Dissolved Iron		ND	ug/L	50		EPA-6010B	ND		1
Total Manganese		910	ug/L	10		EPA-6010B	ND		2

			Run	QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-6010B	11/29/16	11/29/16 14:38	JCC	PE-OP3	1	BZK2374
2	EPA-6010B	11/28/16	11/29/16 11:20	JCC	PE-OP3	1	BZK2305

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 16	632639-03	Client Sampl	e Name:	7124, MW-2	2-W-1611	121, 11/21/2016	9:25:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50		EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Toluene		ND	ug/L	0.50		EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10		EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Ethanol		ND	ug/L	250		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surro	ogate)	98.8	%	75 - 125 (LCL	- UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		94.0	%	80 - 120 (LCL	- UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surr	ogate)	99.9	%	80 - 120 (LCL	- UCL)	EPA-8260B			1

			Run	QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/23/16	11/23/16 13:34	IO1	MS-V12	1	BZK1895	

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102

Reported: 12/01/2016 11:04 Project: 7124 Project Number: 351638 Project Manager: Samuel Miles

## Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1632639-03	Client Sampl	e Name:	7124, MV	7124, MW-2-W-161121, 11/21/2016 9:25:00AM						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #		
Gasoline Range Orga	nics (C6 - C12)	140	ug/L	50		EPA-8015B	ND		1		
a,a,a-Trifluorotoluene	(FID Surrogate)	102	%	70 - 130 (LC	CL - UCL)	EPA-8015B			1		

			Run			QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8015B	11/22/16	11/22/16 13:23	AKM	GC-V9	1	BZK1800			

Laboratories, Inc. 

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Gas Testing in Water

BCL Sample ID:	1632639-03	Client Sample	Client Sample Name: 7124, MW-2-W-161121, 11/21/2016						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Methane		0.011	mg/L	0.0010		RSK-175M	ND		1

			Run	QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	RSK-175M	11/29/16	11/29/16 12:37	JH2	GC-V1	1	BZK2446	

Laboratories, Inc.

Environmental Testing Laboratory Since 1949

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Water Analysis (General Chemistry)

BCL Sample ID:	1632639-03	Client Sampl	Client Sample Name:			121, 11/21/2016	9:25:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Total Alkalinity as Ca	:03	200	mg/L	4.1		EPA-310.1	ND		1
Nitrate as NO3		ND	mg/L	0.44		EPA-300.0	ND		2
Sulfate		31	mg/L	1.0		EPA-300.0	ND		2
Iron (II) Species		530	ug/L	100		SM-3500-FeD	ND		3
Nitrite as NO2		ND	mg/L	0.17		EPA-353.2	ND		4
Total Sulfide		ND	mg/L	0.10		SM-4500SD	ND		5
Non-Volatile Organic C	arbon	ND	mg/L	1.0		EPA-415.1	ND		6

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-310.1	11/28/16	11/28/16 12:30	RML	MET-1	1	BZK2273
2	EPA-300.0	11/22/16	11/22/16 15:20	EMW	IC1	1	BZK2042
3	SM-3500-FeD	11/28/16	11/28/16 13:04	RCC	KONE-1	1	BZK2268
4	EPA-353.2	11/22/16	11/22/16 09:50	RCC	KONE-1	1	BZK2071
5	SM-4500SD	11/23/16	11/23/16 08:00	MC1	SPEC06	1	BZK2174
6	EPA-415.1	11/22/16	11/22/16 16:07	ALW	TOC2	1	BZK1969

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102

Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## **Metals Analysis**

BCL Sample ID:	1632639-03	Client Sampl	e Name:	7124, MW	/-2-W-1611	21, 11/21/2016	9:25:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Dissolved Iron		ND	ug/L	50		EPA-6010B	ND		1
Total Manganese		4700	ug/L	10		EPA-6010B	ND		2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-6010B	11/29/16	11/29/16 14:39	JCC	PE-OP3	1	BZK2374
2	EPA-6010B	11/28/16	11/29/16 11:30	JCC	PE-OP3	1	BZK2305

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 10	632639-04	Client Sampl	e Name:	7124, MW-	3-W-161	121, 11/21/2016	8:30:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50		EPA-8260B	ND		1
Methyl t-butyl ether		21	ug/L	0.50		EPA-8260B	ND		1
Toluene		ND	ug/L	0.50		EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10		EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Ethanol		ND	ug/L	250		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surro	ogate)	102	%	75 - 125 (LCL	- UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		96.1	%	80 - 120 (LCL	- UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surr	rogate)	92.0	%	80 - 120 (LCL	- UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	11/23/16	11/23/16 15:04	IO1	MS-V12	1	BZK1895

Laboratories, Inc.

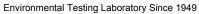
Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	Client Sampl	e Name:	7124, MV	7124, MW-3-W-161121, 11/21/2016 8:30:00AM						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #	
Gasoline Range Orga	nics (C6 - C12)	780	ug/L	50		EPA-8015B	ND		1	
a,a,a-Trifluorotoluene (	FID Surrogate)	121	%	70 - 130 (LC	CL - UCL)	EPA-8015B			1	

			Run			QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8015B	11/28/16	11/28/16 10:50	AKM	GC-V9	1	BZK2260			

Laboratories, Inc. 


Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Gas Testing in Water

BCL Sample ID:	1632639-04	Client Sample	e Name:	7124, MW	-3-W-1611	121, 11/21/2016	8:30:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Methane		0.10	mg/L	0.0010		RSK-175M	ND		1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	RSK-175M	11/29/16	11/29/16 12:43	JH2	GC-V1	1	BZK2446

Laboratories, Inc.



Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Water Analysis (General Chemistry)

BCL Sample ID:	1632639-04	Client Sampl	e Name:	7124, MV	/-3-W-161 ⁻	121, 11/21/2016	8:30:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Total Alkalinity as Ca	CO3	300	mg/L	4.1		EPA-310.1	ND		1
Nitrate as NO3		ND	mg/L	0.44		EPA-300.0	ND		2
Sulfate		1.0	mg/L	1.0		EPA-300.0	ND		2
Iron (II) Species		2700	ug/L	100		SM-3500-FeD	ND		3
Nitrite as NO2		ND	mg/L	0.17		EPA-353.2	ND		4
Total Sulfide		ND	mg/L	0.10		SM-4500SD	ND		5
Non-Volatile Organic	Carbon	1.4	mg/L	1.0		EPA-415.1	ND		6

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-310.1	11/28/16	11/28/16 12:40	RML	MET-1	1	BZK2273
2	EPA-300.0	11/22/16	11/22/16 15:37	EMW	IC1	1	BZK2042
3	SM-3500-FeD	11/28/16	11/28/16 13:04	RCC	KONE-1	1	BZK2268
4	EPA-353.2	11/22/16	11/22/16 09:50	RCC	KONE-1	1	BZK2071
5	SM-4500SD	11/23/16	11/23/16 08:00	MC1	SPEC06	1	BZK2174
6	EPA-415.1	11/22/16	11/22/16 16:22	ALW	TOC2	1	BZK1969

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Metals Analysis

BCL Sample ID:	BCL Sample ID: 1632639-04 Client Sample Name:				7124, MW-3-W-161121, 11/21/2016 8:30:00AM						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #		
Dissolved Iron		ND	ug/L	50		EPA-6010B	ND		1		
Total Manganese		6800	ug/L	10		EPA-6010B	ND		2		

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-6010B	11/29/16	11/29/16 14:41	JCC	PE-OP3	1	BZK2374
2	EPA-6010B	11/28/16	11/29/16 11:37	JCC	PE-OP3	1	BZK2305

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 16	632639-05	Client Sampl	e Name:	7124, MW-	4-W-161′	121, 11/21/2016	10:15:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50		EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Toluene		ND	ug/L	0.50		EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10		EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Ethanol		ND	ug/L	250		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surro	ogate)	98.1	%	75 - 125 (LCL	- UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		97.9	%	80 - 120 (LCL	- UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surr	ogate)	98.6	%	80 - 120 (LCL	- UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	11/23/16	11/23/16 14:46	IO1	MS-V12	1	BZK1895

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1632639-05	Client Sample	e Name:	7124, MV	V-4-W-161	121, 11/21/2016			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C6 - C12)	1000	ug/L	50		EPA-8015B	ND		1
a,a,a-Trifluorotoluene (	FID Surrogate)	110	%	70 - 130 (LC	CL - UCL)	EPA-8015B			1

			Run			QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8015B	11/28/16	11/28/16 10:30	AKM	GC-V9	1	BZK2260			

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Gas Testing in Water

BCL Sample ID:	1632639-05	Client Sample	e Name:	7124, MW	-4-W-1611	21, 11/21/2016			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Methane		0.061	mg/L	0.0010		RSK-175M	ND		1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	RSK-175M	11/29/16	11/29/16 12:48	JH2	GC-V1	1	BZK2446

Laboratories, Inc.

Environmental Testing Laboratory Since 1949

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Water Analysis (General Chemistry)

BCL Sample ID:	1632639-05	Client Sampl	e Name:	7124, MW	/-4-W-161	121, 11/21/2016	10:15:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Total Alkalinity as Ca	03	170	mg/L	4.1		EPA-310.1	ND		1
Nitrate as NO3		5.5	mg/L	0.44		EPA-300.0	ND		2
Sulfate		28	mg/L	1.0		EPA-300.0	ND		2
Iron (II) Species		1000	ug/L	100		SM-3500-FeD	ND		3
Nitrite as NO2		ND	mg/L	0.17		EPA-353.2	ND		4
Total Sulfide		ND	mg/L	0.10		SM-4500SD	ND		5
Non-Volatile Organic	Carbon	15	mg/L	5.0		EPA-415.1	ND	A07	6

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-310.1	11/28/16	11/28/16 12:50	RML	MET-1	1	BZK2273
2	EPA-300.0	11/22/16	11/22/16 15:55	EMW	IC1	1	BZK2042
3	SM-3500-FeD	11/28/16	11/28/16 13:04	RCC	KONE-1	1	BZK2268
4	EPA-353.2	11/22/16	11/22/16 09:50	RCC	KONE-1	1	BZK2071
5	SM-4500SD	11/23/16	11/23/16 08:00	MC1	SPEC06	1	BZK2174
6	EPA-415.1	11/22/16	11/22/16 16:36	ALW	TOC2	5	BZK1969

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102

Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Metals Analysis

BCL Sample ID:	1632639-05	Client Sample	e Name:	7124, MW	/-4-W-1611	21, 11/21/2016			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Dissolved Iron		ND	ug/L	50		EPA-6010B	ND		1
Total Manganese		1700	ug/L	10		EPA-6010B	ND		2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-6010B	11/29/16	11/29/16 14:43	JCC	PE-OP3	1	BZK2374
2	EPA-6010B	11/28/16	11/29/16 11:39	JCC	PE-OP3	1	BZK2305

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Volatile Organic Analysis (EPA Method 8260B)

#### **Quality Control Report - Method Blank Analysis**

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZK1895						
Benzene	BZK1895-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BZK1895-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BZK1895-BLK1	ND	ug/L	0.50		
Ethylbenzene	BZK1895-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BZK1895-BLK1	ND	ug/L	0.50		
Toluene	BZK1895-BLK1	ND	ug/L	0.50		
Total Xylenes	BZK1895-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BZK1895-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BZK1895-BLK1	ND	ug/L	10		
Diisopropyl ether	BZK1895-BLK1	ND	ug/L	0.50		
Ethanol	BZK1895-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BZK1895-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane-d4 (Surrogate)	BZK1895-BLK1	104	%	75 - 12	5 (LCL - UCL)	
Toluene-d8 (Surrogate)	BZK1895-BLK1	99.4	%	80 - 12	0 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BZK1895-BLK1	103	%	80 - 12	0 (LCL - UCL)	
QC Batch ID: BZK1967						
Benzene	BZK1967-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BZK1967-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BZK1967-BLK1	ND	ug/L	0.50		
Ethylbenzene	BZK1967-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BZK1967-BLK1	ND	ug/L	0.50		
Toluene	BZK1967-BLK1	ND	ug/L	0.50		
Total Xylenes	BZK1967-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BZK1967-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BZK1967-BLK1	ND	ug/L	10		
Diisopropyl ether	BZK1967-BLK1	ND	ug/L	0.50		
Ethanol	BZK1967-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BZK1967-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane-d4 (Surrogate)	BZK1967-BLK1	102	%	75 - 12	5 (LCL - UCL)	
Toluene-d8 (Surrogate)	BZK1967-BLK1	100	%	80 - 12	0 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BZK1967-BLK1	95.3	%	80 - 12	0 (LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Volatile Organic Analysis (EPA Method 8260B)

#### **Quality Control Report - Laboratory Control Sample**

								Control Limits			
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
QC Batch ID: BZK1895											
Benzene	BZK1895-BS1	LCS	23.530	25.000	ug/L	94.1		70 - 130			
Toluene	BZK1895-BS1	LCS	24.330	25.000	ug/L	97.3		70 - 130			
1,2-Dichloroethane-d4 (Surrogate)	BZK1895-BS1	LCS	10.250	10.000	ug/L	102		75 - 125			
Toluene-d8 (Surrogate)	BZK1895-BS1	LCS	10.270	10.000	ug/L	103		80 - 120			
4-Bromofluorobenzene (Surrogate)	BZK1895-BS1	LCS	10.080	10.000	ug/L	101		80 - 120			
QC Batch ID: BZK1967											
Benzene	BZK1967-BS1	LCS	24.650	25.000	ug/L	98.6		70 - 130			
Toluene	BZK1967-BS1	LCS	24.890	25.000	ug/L	99.6		70 - 130			
1,2-Dichloroethane-d4 (Surrogate)	BZK1967-BS1	LCS	9.7500	10.000	ug/L	97.5		75 - 125			
Toluene-d8 (Surrogate)	BZK1967-BS1	LCS	10.530	10.000	ug/L	105		80 - 120			
4-Bromofluorobenzene (Surrogate)	BZK1967-BS1	LCS	10.070	10.000	ug/L	101		80 - 120			



Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Volatile Organic Analysis (EPA Method 8260B)

#### **Quality Control Report - Precision & Accuracy**

									Cont	Control Limits Percent Lak					
		Source	Source		Spike			Percent		Percent	Lab				
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals				
QC Batch ID: BZK1895	Use	d client samp	le: N												
Benzene	 MS	1632299-09	ND	25.290	25.000	ug/L		101		70 - 130					
	MSD	1632299-09	ND	26.650	25.000	ug/L	5.2	107	20	70 - 130					
Toluene	MS	1632299-09	ND	26.240	25.000	ug/L		105		70 - 130					
	MSD	1632299-09	ND	28.170	25.000	ug/L	7.1	113	20	70 - 130					
1,2-Dichloroethane-d4 (Surrogate)	MS	1632299-09	ND	9.8800	10.000	ug/L		98.8		75 - 125					
	MSD	1632299-09	ND	9.7900	10.000	ug/L	0.9	97.9		75 - 125					
Toluene-d8 (Surrogate)	MS	1632299-09	ND	10.220	10.000	ug/L		102		80 - 120					
	MSD	1632299-09	ND	10.190	10.000	ug/L	0.3	102		80 - 120					
4-Bromofluorobenzene (Surrogate)	MS	1632299-09	ND	10.590	10.000	ug/L		106		80 - 120					
	MSD	1632299-09	ND	10.260	10.000	ug/L	3.2	103		80 - 120					
QC Batch ID: BZK1967	Use	d client samp	le: N												
Benzene	 MS	1632299-12	ND	26.630	25.000	ug/L		107		70 - 130					
	MSD	1632299-12	ND	27.350	25.000	ug/L	2.7	109	20	70 - 130					
Toluene	MS	1632299-12	ND	25.790	25.000	ug/L		103		70 - 130					
	MSD	1632299-12	ND	26.750	25.000	ug/L	3.7	107	20	70 - 130					
1,2-Dichloroethane-d4 (Surrogate)	MS	1632299-12	ND	9.9500	10.000	ug/L		99.5		75 - 125					
	MSD	1632299-12	ND	9.9600	10.000	ug/L	0.1	99.6		75 - 125					
Toluene-d8 (Surrogate)	MS	1632299-12	ND	10.190	10.000	ug/L		102		80 - 120					
	MSD	1632299-12	ND	9.9300	10.000	ug/L	2.6	99.3		80 - 120					
4-Bromofluorobenzene (Surrogate)	MS	1632299-12	ND	9.5900	10.000	ug/L		95.9		80 - 120					
	MSD	1632299-12	ND	10.270	10.000	ug/L	6.8	103		80 - 120					

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 1000548800 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Pa

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Purgeable Aromatics and Total Petroleum Hydrocarbons

#### **Quality Control Report - Method Blank Analysis**

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZK1800						
Gasoline Range Organics (C6 - C12)	BZK1800-BLK1	ND	ug/L	50		
a,a,a-Trifluorotoluene (FID Surrogate)	BZK1800-BLK1	81.6	%	70 - 13	0 (LCL - UCL)	
QC Batch ID: BZK2260						
Gasoline Range Organics (C6 - C12)	BZK2260-BLK1	ND	ug/L	50		
a,a,a-Trifluorotoluene (FID Surrogate)	BZK2260-BLK1	98.2	%	70 - 13	0 (LCL - UCL)	



Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Purgeable Aromatics and Total Petroleum Hydrocarbons

#### **Quality Control Report - Laboratory Control Sample**

					Control Limits					
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BZK1800										
Gasoline Range Organics (C6 - C12)	BZK1800-BS1	LCS	976.05	1000.0	ug/L	97.6		85 - 115		
a,a,a-Trifluorotoluene (FID Surrogate)	BZK1800-BS1	LCS	33.615	40.000	ug/L	84.0		70 - 130		
QC Batch ID: BZK2260										
Gasoline Range Organics (C6 - C12)	BZK2260-BS1	LCS	1122.2	1000.0	ug/L	112		85 - 115		
a,a,a-Trifluorotoluene (FID Surrogate)	BZK2260-BS1	LCS	35.162	40.000	ug/L	87.9		70 - 130		



Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Purgeable Aromatics and Total Petroleum Hydrocarbons

		-		•					0		
									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BZK1800	Use	d client samp	le: N								
Gasoline Range Organics (C6 - C12)	MS	1632299-01	ND	1081.5	1000.0	ug/L		108		70 - 130	
	MSD	1632299-01	ND	1109.8	1000.0	ug/L	2.6	111	20	70 - 130	
a,a,a-Trifluorotoluene (FID Surrogate)	MS	1632299-01	ND	35.357	40.000	ug/L		88.4		70 - 130	
	MSD	1632299-01	ND	34.912	40.000	ug/L	1.3	87.3		70 - 130	
QC Batch ID: BZK2260	Use	d client samp	ole: N								
Gasoline Range Organics (C6 - C12)	MS	1632299-02	ND	1142.2	1000.0	ug/L		114		70 - 130	
	MSD	1632299-02	ND	1038.5	1000.0	ug/L	9.5	104	20	70 - 130	
a,a,a-Trifluorotoluene (FID Surrogate)	MS	1632299-02	ND	40.011	40.000	ug/L		100		70 - 130	
	MSD	1632299-02	ND	37.322	40.000	ug/L	7.0	93.3		70 - 130	

#### **Quality Control Report - Precision & Accuracy**



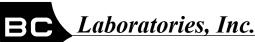
Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Gas Testing in Water

#### **Quality Control Report - Method Blank Analysis**

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZK2446						
Methane	BZK2446-BLK1	ND	mg/L	0.0010		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

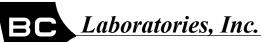



Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Gas Testing in Water

#### **Quality Control Report - Laboratory Control Sample**

								Control I	_imits	
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BZK2446										
Methane	BZK2446-BS1	LCS	0.010824	0.010843	mg/L	99.8		80 - 120		
	BZK2446-BSD1	LCSD	0.010948	0.010843	mg/L	101	1.1	80 - 120	20	




Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Water Analysis (General Chemistry)

#### **Quality Control Report - Method Blank Analysis**

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZK1969						
Non-Volatile Organic Carbon	BZK1969-BLK1	ND	mg/L	1.0		
QC Batch ID: BZK2042						
Nitrate as NO3	BZK2042-BLK1	ND	mg/L	0.44		
Sulfate	BZK2042-BLK1	ND	mg/L	1.0		
QC Batch ID: BZK2071						
Nitrite as NO2	BZK2071-BLK1	ND	mg/L	0.17		
QC Batch ID: BZK2174						
Total Sulfide	BZK2174-BLK1	ND	mg/L	0.10		
QC Batch ID: BZK2268						
Iron (II) Species	BZK2268-BLK1	ND	ug/L	100		
QC Batch ID: BZK2273						
Total Alkalinity as CaCO3	BZK2273-BLK1	ND	mg/L	4.1		



Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

## Water Analysis (General Chemistry)

#### **Quality Control Report - Laboratory Control Sample**

							Control Limits			
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
QC Batch ID: BZK1969										
Non-Volatile Organic Carbon	BZK1969-BS1	LCS	5.2480	5.0000	mg/L	105		85 - 115		
QC Batch ID: BZK2042										
Nitrate as NO3	BZK2042-BS1	LCS	22.453	22.134	mg/L	101		90 - 110		
Sulfate	BZK2042-BS1	LCS	102.24	100.00	mg/L	102		90 - 110		
QC Batch ID: BZK2071										
Nitrite as NO2	BZK2071-BS1	LCS	1.6813	1.6425	mg/L	102		90 - 110		
QC Batch ID: BZK2174										
Total Sulfide	BZK2174-BS1	LCS	0.49947	0.50000	mg/L	99.9		90 - 110		
QC Batch ID: BZK2268										
Iron (II) Species	BZK2268-BS1	LCS	2487.8	2500.0	ug/L	99.5		90 - 110		
QC Batch ID: BZK2273										
Total Alkalinity as CaCO3	BZK2273-BS3	LCS	102.84	100.00	mg/L	103		90 - 110		



Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102

12/01/2016 11:04 Reported: Project: 7124 Project Number: 351638 Project Manager: Samuel Miles

## Water Analysis (General Chemistry)

#### **Quality Control Report - Precision & Accuracy**

								Control Limits			
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BZK1969	Use	d client sam	ole: Y - Des	cription: MV	V-1-W-16112	21, 11/21/2	2016 07	<b>7</b> :40			
Non-Volatile Organic Carbon	DUP	1632639-02	0.86800	ND		mg/L			10		
	MS	1632639-02	0.86800	5.9367	5.0251	mg/L		101		80 - 120	
	MSD	1632639-02	0.86800	5.9447	5.0251	mg/L	0.1	101	10	80 - 120	
QC Batch ID: BZK2042	Use	d client sam	ole: N								
Nitrate as NO3	DUP	1632646-01	64.153	63.449		mg/L	1.1		10		
	MS	1632646-01	64.153	85.464	22.358	mg/L		95.3		80 - 120	
	MSD	1632646-01	64.153	85.875	22.358	mg/L	0.5	97.2	10	80 - 120	
Sulfate	DUP	1632646-01	21.966	22.053		mg/L	0.4		10		
	MS	1632646-01	21.966	124.01	101.01	mg/L		101		80 - 120	
	MSD	1632646-01	21.966	124.67	101.01	mg/L	0.5	102	10	80 - 120	
QC Batch ID: BZK2071	Use	d client sam	ole: Y - Des	cription: MV	V-1-W-16112	21, 11/21/2	2016 07	/:40			
Nitrite as NO2	DUP	1632639-02	0.040110	ND		mg/L			10		
	MS	1632639-02	0.040110	1.7696	1.7289	mg/L		100		90 - 110	
	MSD	1632639-02	0.040110	1.7572	1.7289	mg/L	0.7	99.3	10	90 - 110	
QC Batch ID: BZK2174	Use	d client sam	ole: Y - Des	cription: MV	V-1-W-16112	21, 11/21/2	2016 07	<b>7</b> :40			
Total Sulfide	DUP	1632639-02	ND	ND		mg/L			10		
	MS	1632639-02	ND	0.39396	0.50000	mg/L		78.8		80 - 120	Q03
	MSD	1632639-02	ND	0.40088	0.50000	mg/L	1.7	80.2	10	80 - 120	
QC Batch ID: BZK2268	Use	d client sam	ole: Y - Des	cription: MV	V-1-W-16112	21, 11/21/2	2016 07	<b>'</b> :40			
Iron (II) Species	DUP	1632639-02	ND	ND		ug/L			10		
QC Batch ID: BZK2273	Use	d client sam	ole: N								
Total Alkalinity as CaCO3	 DUP	1632788-01	465.22	467.66		mg/L	0.5		10		
	DUP	1002700 01	TUU.LL	00.00		iiig/L	0.0		10		

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102

12/01/2016 11:04 Reported: Project: 7124 Project Number: 351638 Project Manager: Samuel Miles

### **Metals Analysis**

#### **Quality Control Report - Method Blank Analysis**

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZK2305						
Total Manganese	BZK2305-BLK1	ND	ug/L	10		
QC Batch ID: BZK2374						
Dissolved Iron	BZK2374-BLK1	ND	ug/L	50		



Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

### Metals Analysis

#### **Quality Control Report - Laboratory Control Sample**

								Control L		
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
QC Batch ID: BZK2305										
Total Manganese	BZK2305-BS1	LCS	512.01	500.00	ug/L	102		85 - 115		
QC Batch ID: BZK2374										
Dissolved Iron	BZK2374-BS1	LCS	1083.2	1000.0	ug/L	108		85 - 115		



Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102 Reported:12/01/201611:04Project:7124Project Number:351638Project Manager:Samuel Miles

### **Metals Analysis**

#### **Quality Control Report - Precision & Accuracy**

									Cont	trol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BZK2305	Use	d client samp	ole: Y - Des	cription: MV	V-1-W-16112	21, 11/21/	2016 07	7:40			
Fotal Manganese	DUP	1632639-02	912.65	927.72		ug/L	1.6		20		
	MS	1632639-02	912.65	1581.0	500.00	ug/L		134		75 - 125	Q03
	MSD	1632639-02	912.65	1854.3	500.00	ug/L	15.9	188	20	75 - 125	Q03
QC Batch ID: BZK2374	Use	d client samp	ole: N								
Dissolved Iron	DUP	1632491-01	ND	ND		ug/L			20		
	MS	1632491-01	ND	991.94	1020.4	ug/L		97.2		75 - 125	
	MSD	1632491-01	ND	1023.0	1020.4	ug/L	3.1	100	20	75 - 125	

Laboratories, Inc.

Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98102

#### 12/01/2016 11:04 Reported: Project: 7124 Project Number: 351638 Project Manager: Samuel Miles

#### **Notes And Definitions**

MDL	Method Detection Limit
ND	Analyte Not Detected
PQL	Practical Quantitation Limit
A07	Detection and quantitation limits were raised due to sample dilution caused by high analyte concentration or matrix interference.
Q03	Matrix spike recovery(s) is(are) not within the control limits.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 41000548899 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Pa

# **GEOTRACKER ESI**

UPLOADING A GEO_WELL FILE

## SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:	GEO_WELL
Report Title:	4Q16 DTW
Facility Global ID:	T0600173591
Facility Name:	<b>UNOCAL</b> #7124
File Name:	GEO_WELL.zip
Organization Name:	ARCADIS
<u>Username:</u>	ARCADIS76
IP Address:	8.39.233.109
Submittal Date/Time:	1/16/2017 1:14:32 PM
<b>Confirmation Number:</b>	7520193696

Copyright © 2017 State of California

# GEOTRACKER ESI

UPLOADING A GEO_REPORT FILE

S	UCCESS
Your GEO_REPORT fi	le has been successfully submitted!
<u>Submittal Type:</u>	GEO_REPORT
Report Title:	4Q16 SASR
<u>Report Type:</u>	Monitoring Report - Semi-Annually
Report Date:	1/15/2017
Facility Global ID:	T0600173591
Facility Name:	UNOCAL #7124
File Name:	351638 _4Q16_GWMR Reportpdf
Organization Name:	ARCADIS
Username:	ARCADIS76
IP Address:	8.39.233.214
Submittal Date/Time:	1/15/2017 8:17:52 PM
Confirmation Number:	3935530245

Copyright © 2017 State of California