

RECEIVED

2:24 pm, Mar 05, 2008

Alameda County Environmental Health

February 27, 2008

Ms. Donna Drogos Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

Re: Quarterly Monitoring and Summary Report – 1st Quarter 2008 76 Service Station #7124 10151 International Boulevard Oakland, CA

Dear Ms. Drogos:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact me at (916) 558-7612.

Sincerely,

Bill Bargh

Bill Borgh Site Manager – Risk Management and Remediation

Attachment

SECOR INTERNATIONAL INCORPORATED www.secor.com 3017 Kilgore Road, Suite 100 Rancho Cordova, CA 95670 916-861-0400 TEL 916-861-0430 FAX

February 27, 2008

Ms. Donna Drogos, P.E. Alameda County Environmental Health Services 1131 Harbor Bay Parkway Suite 250 Alameda, CA 94502 *(Sent Via Electronic Upload to Alameda ftp)*

RE: Quarterly Monitoring and Summary Report – First Quarter 2008 SECOR Project No.: 77CP.01634.41.0303

Dear Ms. Drogos:

On behalf of ConocoPhillips, SECOR International Incorporated (SECOR) is forwarding the quarterly summary report for the following location:

Service Station

Location

Former 76 Service Station No. 7124

10151 International Boulevard Oakland, California

If there are questions or comments regarding this quarterly summary report, please contact me at (916) 861-0400 extension 289.

Sincerely, SECOR International Incorporated

22____

Ben Chevlen, P.G. Project Geologist

Attachments: SECOR's Quarterly Monitoring and Summary Report – First Quarter 2008.

cc: Mr. Bill Borgh, ConocoPhillips

QUARTERLY SUMMARY REPORT First Quarter 2008

Former 76 Service Station No. 7124 10151 International Boulevard Oakland, California

City/County ID #: <u>Oakland/RO0002444</u> County: <u>Alameda</u>

SITE DESCRIPTION

The site is currently an active Royal Gasoline Station located on the northwest corner of the intersection of International Boulevard and 102nd Avenue in Oakland, California. Site facilities include three underground storage tanks (USTs) and associated piping and fuel dispensers. A detailed site plan is included in TRC's *Quarterly Monitoring Report January through March 2008* dated January 31, 2008 (Attachment 1).

PREVIOUS ASSESSMENT

On March 22, 2000, SECOR supervised the removal and replacement of product lines and dispensers by Balch Petroleum of Milpitas, California. Soil samples collected from beneath the dispensers and product lines revealed the presence of total petroleum hydrocarbons as gasoline (TPHg) at a maximum concentration of 6,200 milligrams per kilogram (mg/kg), methyl tertiary butyl ether (MTBE) up to120 mg/kg, and benzene up to 7.4 mg/kg. Excavation and sampling activities were observed and approved by Inspector Gomez of the City of Oakland Fire Services Agency.

On March 27, 2000, SECOR observed the over-excavation of approximately 60 cubic yards of soil from the beneath those portions of the dispensers and product lines where soil samples with elevated concentrations of petroleum hydrocarbons were located. Areas measuring approximately 8-10 feet long by 8-10 feet wide were over-excavated to an approximate depth of 8 feet below ground surface (bgs) in each of these areas. Additional over-excavation in these areas was not possible due to their proximity to the footings of the service station canopy. TPHg was detected in two of the three samples at a concentration of 108 mg/kg; benzene was detected in one of the three samples at 0.162 mg/kg; and MTBE was detected in all three samples at maximum concentrations of up to 43.8 mg/kg. Lead was not detected at or above laboratory reporting limits in any samples.

During February 2002, SECOR supervised the installation of four on-site groundwater monitoring wells. Prior to well installation, all borings were advanced to 26.5 feet bgs, and subsurface soil samples were collected every five feet. Soil samples were analyzed for gasoline range organics (GRO), benzene, toluene, ethylbenzene, total xylenes (BTEX), and fuel oxygenates via EPA Method 8260B. The maximum reported concentrations were 42 mg/kg GRO, 0.36 mg/kg ethylbenzene, 0.26 mg/kg xylenes, and 1.2 mg/kg MTBE.

SENSITIVE RECEPTORS

During the third quarter 2004, SECOR completed a ½-mile radius agency receptor survey and obtained an Environmental Data Resources Incorportated (EDR) radius map for the site. The agency survey identified two industrial supply wells, three cathodic protection wells, and two wells of unknown type within the search radius. The survey also identified twelve wells of unknown type that could not be located precisely because the records on file with DWR did not include this information. These wells may or may not be located within the search radius. The EDR radius map did not identify any water supply wells within the search radius, but did identify two water supply wells within one mile of the site.

MONITORING AND SAMPLING

The site has been monitored and sampled since the third quarter 2002. Currently, four wells are monitored quarterly (MW-1 through MW-4). Samples are analyzed for TPHg, BTEX, and the fuel oxygenates tert-butyl alcohol (TBA), MTBE, di-isopropyl ether (DIPE), ethyl tert-butyl ether (EtBE), tert-amyl methyl ether (TAME), and ethanol, as well as, ethylene di-bromide (EDB) by EPA Method 8260B.

DISCUSSION

During the first quarter 2008, depth to groundwater ranged between 14.48 and 16.80 feet below top of casing (toc), which is within historical levels; historical groundwater depths have been reported between 15.11 and 18.02 feet below toc. The direction of groundwater flow is toward the southwest at a gradient of 0.02 foot/foot (Attachment 1). Historically, groundwater gradient flows to the west, southwest, and south; with a westerly gradient being the predominant direction.

The highest concentrations of petroleum hydrocarbons and MTBE continue to be detected in on-site well MW-3 (historical highs of 130,000 µg/L and 10,000 µg/L, respectively, observed in 2003). This quarter, the maximum concentrations of TPHg and MTBE were detected in well MW-3 at 2,200 µg/L, and 1,300 µg/L respectively (Attachment 1). MTBE concentrations detected in well MW-3 had increased over 1-order-of-magnitude from the fourth quarter 2007 sampling event. It should be noted that some of the reported TPPH concentrations may actually represent MTBE concentrations, as the BC Laboratories include MTBE in their TPPH concentrations. Lack of consistently detectable levels of BTEX indicate supports this interpretation. The downgradient/crossgradient extent of the dissolved plume remains undefined by the existing monitoring well network.

On October 14, 2004, SECOR submitted a work plan for the installation of monitoring wells offsite to delineate the dissolved phase hydrocarbons in groundwater; however, in a letter dated April 12, 2005, the Alameda County Environmental Health Services (ACEHS) disapproved the work plan stating that it was premature to install more monitoring wells without additional groundwater sampling to determine the location of the plume for optimal well locations. Therefore, an addendum to the October 14, 2004 work plan was submitted on July 22, 2005. SECOR has yet to receive

approval or disapproval from the ACEHS for SECOR's addendum to the October 14, 2004 work plan.

CHARACTERIZATION STATUS

Other than ethlybenzene detected in well MW-3 at a concentration of 1.6 μ g/L, none of the groundwater samples collected showed detectable levels of any BTEX components. The highest concentrations of residual MTBE contamination are localized in the northeastern area of the site in the vicinity of MW-3. The extent of dissolved contamination is undefined in the downgradient (northwest) direction, but MTBE concentrations continue declining, and variable TBA levels in MW-4 may indicate active degradation of MTBE.

REMEDIATION STATUS

Currently, there is no active remediation at this site.

RECENT SUBMITTALS/CORRESPONDENCE

Submitted: *Quarterly Summary and Monitoring Report – Fourth Quarter 2007,* dated November 27, 2007

WASTE DISPOSAL SUMMARY

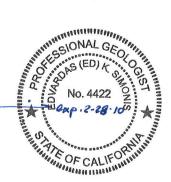
The volume of purged groundwater generated and disposed of during the quarterly groundwater monitoring event is documented in TRC's *Quarterly Monitoring Report, January through March 2008,* dated January 31, 2008 (Attachment 1).

THIS QUARTER ACTIVITIES (First Quarter 2008)

- 1. TRC performed quarterly groundwater monitoring and sampling event.
- 2. SECOR attempted to contact the ACEHS with regards to the *Work Plan Addendum* dated July 22, 2005.

NEXT QUARTER ACTIVITIES (Second Quarter 2008)

- 1. TRC to perform coordinated groundwater monitoring and sampling event.
- 2. SECOR to prepare and submit quarterly summary and monitoring report.


LIMITATIONS

This report has been prepared for the exclusive use of ConocoPhillips and its representatives as it pertains to the property located at 10151 International Boulevard, Oakland, California. The evaluation of subsurface conditions at the site for the purpose of this investigation is inherently limited due to the number of points of investigation. There are no representations, warranties, or guarantees that the results are representative of the entire site. Data from this report reflects the conditions at locations at a specified time. No other interpretation, representations, warranties, guarantees, express or implied, are included or intended in the report findings. SECOR makes no warranties or guarantees for the groundwater monitoring report (Attachment 1) prepared by TRC.

Sincerely, **SECOR International Incorporated**

Ben Chevlen, P.G. Project Geologist

Ed Simonis, P.G. Senior Geologist

Attachment 1: TRC's Quarterly Monitoring Report – January through March 2008, dated January 31, 2008

SECOR

ATTACHMENT 1 TRC'S QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2008

Quarterly Monitoring and Summary Report 76 Service Station No. 7124 10151 International Boulevard Oakland, California

21 Technology Drive Irvine, CA 92618 949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

- DATE: February 1, 2008
- TO: ConocoPhillips Company 76 Broadway Sacramento, CA 95818

ATTN: MR. BILL BORGH

- SITE: 76 STATION 7124 10151 INTERNATIONAL BOULEVARD OAKLAND, CALIFORNIA
- RE: QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2008

Dear Mr. Borgh:

Please find enclosed our Quarterly Monitoring Report for 76 Station 7124, located at 10151 International Bouelvard, Oakland, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Anju Farfan Groundwater Program Operations Manager

CC: Mr. Ben Chevlen, SECOR International, Inc (2 copies)

Enclosures 200400/7124R018QMS doc

QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2008

76 STATION 7124 10151 International Boulevard Oakland, California

Prepared For:

Mr Bill Borgh CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

No PG3531 CA

Senior Project Geologist, Irvine Operations

Date: 1/31/08

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key
	Contents of Tables
	Table 1: Current Fluid Levels and Selected Analytical Results
	Table 1a: Additional Current Analytical Results
	Table 2: Historic Fluid Levels and Selected Analytical Results
	Table 2a: Additional Historic Analytical Results
Figures	Figure 1: Vicinity Map
	Figure 2: Groundwater Elevation Contour Map
	Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map
	Figure 4: Dissolved-Phase Benzene Concentration Map
	Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time
	MTBE 8260B Concentrations vs. Time
Field Activities	General Field Procedures
	Field Monitoring Data Sheet – 01/11/08
	Groundwater Sampling Field Notes – 01/11/08
Laboratory	Official Laboratory Reports
Reports	Quality Control Reports
	Chain of Custody Records
Statements	Purge Water Disposal
	Limitations

Summary of Gauging and Sampling Activities January 2008 through March 2008 76 Station 7124 10151 International Boulevard Oakland, CA

Project Coordinator: Bill Borgh Telephone: 916-558-7612	Water Sampling Contractor: TRC Compiled by: Christina Carrillo
Date(s) of Gauging/Sampling Event: 01/11/08	
Sample Points	
Groundwater wells:4 onsite,0 offsitePurging method:Diaphragm pumpPurge water disposal:Onyx/Rodeo Unit 100Other Sample Points:0Type:n/a	Wells gauged: 4 Wells sampled: 4
Liquid Phase Hydrocarbons (LPH)	
Wells with LPH: 0 Maximum thickness (feet): LPH removal frequency: n/a Treatment or disposal of water/LPH: n/a	n/a Method: n/a
Hydrogeologic Parameters	
 Depth to groundwater (below TOC): Minimum Average groundwater elevation (relative to availab Average change in groundwater elevation since prediction Interpreted groundwater gradient and flow direction Current event: 0.02 ft/ft, southwest Previous event: 0.01 ft/ft, northwest (10/10) 	le local datum): 21.91 feet evious event: 2.19 feet n:
Selected Laboratory Results	
Wells with detected Benzene: 0 Maximum reported benzene concentration: n /	Wells above MCL (1.0 µg/l): n/a ′a
	Maximum: 2,200 μg/l (MW-3) Maximum: 1,300 μg/l (MW-3)

Notes:

This report presents the results of groundwater monitoring and sampling activities performed by TRC. Please contact the primary consultant for other specific information on this site.

TABLES

TABLE KEY

SIANDARD.	AB	BREVI	ATIONS
	=	not an	alyzed, measured, or collected
LPH	=	liquid	-phase hydrocarbons
Trace	=	less th	nan 0.01 foot of I PH in well
ug/l	=	micro	grams per liter (approx. equivalent to parts per billion, ppb)
mg/l	=	millig	nams per liter (approx. equivalent to parts per million, ppm)
ND<	=	not de	etected at or above laboratory detection limit
TOC	-	top of	casing (surveyed reference elevation)
<u>ANALYIES</u>			
BTEX		=	benzene, toluene, ethylbenzene, and (total) xylenes
DIPE		=	di-isopropyl ether
ETBE		=	ethyl tertiary butyl ether
MIBE		=	methyl tertiary butyl ether
PCB		=	polychlorinated biphenyls
PCE		=	tetrachloroethene
TBA		=	tertiary butyl alcohol
TCA		=	trichloroethane
ICE		=	trichloroethene
IPH-G		=	total petroleum hydrocarbons with gasoline distinction
IPH-G (GC/M	(S)	=	total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B
TPH-D		=	total petroleum hydrocarbons with diesel distinction
IRPH		=	total recoverable petroleum hydrocarbons
IAME		=	tertiary amyl methyl ether
1,1-DCA		=	1,1-dichloroethane
1,2-DCA		=	1,2-dichloroethane (same as EDC, ethylene dichloride)
1,1-DCE		=	1,1-dichloroethene
1,2-DCE		=	1,2-dichloroethene (cis- and trans-)

<u>NOIES</u>

- 1. Elevations are in feet above mean sea level Depths are in feet below surveyed top-of-casing
- 2. Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness</u>), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures)
- 4 Comments shown on tables are general Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report
- 5 A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory
- 6. Other laboratory flags (qualifiers) may have been reported See the official laboratory report (attached) for a complete list of laboratory flags
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report
- 8. Groundwater vs Time graphs may be corrected for apparent level changes due to resurvey

<u>REFERENCE</u>

TRC began groundwater monitoring and sampling for 76 Station 7124 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: 76 Station 7124

Current Event

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
Table 1a	Well/ Date	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME						
Historic D	ata						·							
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
Table 2a	Well/ Date	TBA	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME					

Table 1CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTSJanuary 11, 200876 Station 7124

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1 01/11/03	8 37.37	14.48	0.00	22.89	2.65		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-2 01/11/03	8 37.87	16.80	0.00	21.07	1.45		130	ND<0.50	ND<0.50	ND<0.50	ND<1.0		7.7	
MW-3 01/11/03	8 37.72	15.84	0.00	21.88	2.32		2200	ND<0.50	ND<0.50	1.6	ND<1.0		1300	
MW-4 01/11/0	8 38.36	16.56	0.00	21.80	2.33		340	ND<0.50	ND<0.50	ND<0.50	ND<1.0		21	

----- p----

Table 1 a ADDITIONAL CURRENT ANALYTICAL RESULTS 76 Station 7124

Date Sampled	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME				
<u></u>	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		 	 	
MW-1 01/11/08	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
MW-2 01/11/08	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
MW-3 01/11/08	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
MW-4 01/11/08	140	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				

Table 2HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTSApril 2002 Through January 200876 Station 7124

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1														
04/08/0	2 37.37	14.27	0.00	23.10		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	ND<2.0	
07/28/0	2 37.37	15.88	0.00	21.49	-1.61		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
11/03/0	2 37.37	16.75	0.00	20.62	-0.87		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/24/0	3 37.37	13.94	0.00	23.43	2.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
04/02/0	3 37.37	14.99	0.00	22.38	-1.05		460	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
07/01/0	3 37.37	15.48	0.00	21.89	-0.49		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
10/02/0	3 37.37	16.68	0.00	20.69	-1.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/09/0	4 37.37	13.79	0.00	23.58	2.89		ND<50	ND<0.50	ND<0.50	ND<0.50	ND <i< td=""><td></td><td>ND<2</td><td></td></i<>		ND<2	
04/26/0	4 37.37	15.21	0.00	22.16	-1.42		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
07/22/0	4 37.37	16.43	0.00	20.94	-1.22		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
10/29/0	4 37.37	16.14	0.00	21.23	0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
01/12/0	5 37.37	12.83	0.00	24.54	3.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/20/0	5 37.37	14.38	0.00	22.99	-1.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/23/0	5 37.37	15.92	0.00	21.45	-1.54		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/13/0	5 37.37	16.09	0.00	21.28	-0.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/24/0	6 37.37	11.85	0.00	25.52	4.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/30/0	6 37.37	13.30	0.00	24.07	-1.45		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
08/22/0	6 37.37	15.11	0.00	22.26	-1.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
10/31/0	6 37.37	16.11	0.00	21.26	-1.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
01/12/0	7 37.37	15.55	0.00	21.82	0.56		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
04/04/0	7 37.37	15.31	0.00	22.06	0.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
07/05/0	7 37.37	16.21	0.00	21.16	-0.90		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
10/01/0	7 37.37	17.13	0.00	20.24	-0.92		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	

7124

Page 1 of 5

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS April 2002 Through January 2008 76 Station 7124

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1 01/11/0	continued 8 37.37	14.48	0.00	22.89	2.65		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-2														
04/08/0		15.86	0.00	22.01		4400		ND<2.5	ND<2.5	6.4	ND<2.5	380	490	
07/28/0	2 37.87	17.28	0.00	20.59	-1.42		3200	ND<2.5	ND<2.5	ND<2.5	ND<5.0		170	
11/03/0	2 37.87	18.03	0.00	19.84	-0.75		3800	ND<5.0	ND<5.0	ND<5.0	ND<10		72	
01/24/0	3 37.87	15.59	0.00	22.28	2.44		410	ND<2.5	ND<2.5	ND<2.5	ND<5.0		490	
04/02/0		16.50	0.00	21.37	-0.91		1000	ND<5.0	ND<5.0	ND<5.0	ND<10		180	
07/01/0	3 37.87	16.94	0.00	20.93	-0.44		1900	ND<2.5	ND<2.5	ND<2.5	ND<5.0		120	
10/02/0	3 37.87	17.93	0.00	19.94	-0.99		6900	ND<0.50	ND<0.50	ND<0.50	ND<1.0		32	
01/09/0	4 37.87	15.42	0.00	22.45	2.51		1000	ND<2.5	ND<2.5	ND<2.5	ND<5.0		300	
04/26/0	4 37.87													Covered with asphalt
07/22/0	4 37.87													Covered with asphalt
10/29/0	4 37.87		0.00											Well is paved over.
01/12/0	5 37.87													Well was paved over.
06/20/0	5 37.87	15.94	0.00	21.93			120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		46	
09/23/0	5 37.87	17.29	0.00	20.58	-1.35		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		10	
12/13/0	5 37.87	17.41	0.00	20.46	-0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		11	
03/24/0	6 37.87	13.77	0.00	24.10	3.64		190	ND<0.50	ND<0.50	ND<0.50	ND<1.0		15	
05/30/0	6 37.87	15.16	0.00	22.71	-1.39		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.6	
08/22/0	6 37.87	16.49	0.00	21.38	-1.33		81	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.0	
10/31/0	6 37.87	17.15	0.00	20.72	-0.66		93	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2.0	
01/12/0	7 37.87	17.07	0.00	20.80	0.08		230	ND<0.50	ND<0.50	ND<0.50	ND<0.50		4.3	
04/04/0	7 37.87	17.84	0.00	20.03	-0.77		110	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2.5	
07/05/0	7 37.87	17.51	0.00	20.36	0.33		150	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2.6	
7124								Page	2 of 5					

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS April 2002 Through January 2008 76 Station 7124

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(fect)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	$(\mu g/l)$	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-2	continued													
10/01/0	07 37.87	18.25	0.00	19.62	-0.74		160	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2.0	
01/11/0)8 37.87	16.80	0.00	21.07	1.45		130	ND<0.50	ND<0.50	ND<0.50	ND<1.0		7.7	
MW-3														
04/08/0)2 37.72	15.86	0.00	21.86		8700		65	ND<25	400	ND<25	6500	8300	
07/28/0)2 37.72	17.22	0.00	20.50	-1.36		4500	ND<25	ND<25	ND<25	ND<50		1100	
11/03/0)2 37.72	17.90	0.00	19.82	-0.68		25000	ND<5.0	ND<5.0	25	ND<10		470	
01/24/0	37.72	15.57	0.00	22.15	2.33		6000	ND<25	ND<25	94	ND<50		10000	
04/02/0)3 37.72	16.45	0.00	21.27	-0.88		130000	ND<100	ND<100	ND<100	ND<200		4400	
07/01/0)3 37.72	16.88	0.00	20.84	-0.43		9400	ND<10	ND<10	ND<10	ND<20		2200	
10/02/0	3 37.72	17.85	0.00	19.87	-0.97		73000	ND<50	ND<50	ND<50	ND<100		460	
01/09/0)4 37.72	15.31	0.00	22.41	2.54		8700	ND<25	ND<25	98	ND<50		3800	
04/26/0)4 37.72	16.62	0.00	21.10	-1.31		6700	ND<25	ND<25	ND<25	ND<50		3900	
07/22/0)4 37.72	17.62	0.00	20.10	-1.00		13000	ND<25	ND<25	ND<25	ND<50		980	
10/29/0)4 37.72	17.29	0.00	20.43	0.33		4600	ND<5.0	ND<5.0	13	ND<10		640	
01/12/0)5 37.72	14.64	0.00	23.08	2.65		6100	0.88	0.99	30	2.2		6900	
06/20/0)5 37.72	15.91	0.00	21.81	-1.27		1900	ND<0.50	0.21J	0.52	0.46J		960	
09/23/0)5 37.72	17.20	0.00	20.52	-1.29		2400	ND<0.50	ND<0.50	ND<0.50	ND<1.0		160	
12/13/0)5 37.72	17.32	0.00	20.40	-0.12		2100	ND<2.5	ND<2.5	ND<2.5	ND<5.0		340	
03/24/0	6 37.72	13.86	0.00	23.86	3.46		2200	ND<5.0	ND<5.0	ND<5.0	ND<10		970	
05/30/0	6 37.72	15.69	0.00	22.03	-1.83		1500	ND<12	ND<12	ND<12	ND<25		760	
08/22/0	6 37.72	16.51	0.00	21.21	-0.82		1900	ND<0.50	ND<0.50	ND<0.50	ND<0.50		160	
10/31/0	6 37.72	17.36	0.00	20.36	-0.85		2200	ND<0.50	ND<0.50	ND<0.50	ND<0.50		58	
01/12/0)7 37.72	16.85	0.00	20.87	0.51		2600	ND<0.50	ND<0.50	ND<0.50	ND<0.50		680	
04/04/0	07 37.72	16.62	0.00	21.10	0.23		1700	ND<0.50	ND<0.50	ND<0.50	ND<0.50		650	
7124								Page	3 of 5					

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS April 2002 Through January 2008

76 Station 7124

Date Sampled		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued													
07/05/0		17.42		20.30	-0.80		2400		ND<0.50	ND<0.50			160	
10/01/0		18.16		19.56	-0.74		1700	ND<1.0	ND<1.0	ND<1.0	ND<1.0		87	
01/11/0	8 37.72	15.84	0.00	21.88	2.32		2200	ND<0.50	ND<0.50	1.6	ND<1.0		1300	
MW-4														
04/08/0	2 38.36	16.59		21.77		13000		ND<5.0	ND<5.0	28	ND<5.0	790	980	
07/28/0		17.93	0.00	20.43	-1.34		18000	ND<2.5	ND<2.5	ND<2.5	ND<5.0		170	
11/03/0		18.66		19.70	-0.73		220	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.7	
01/24/0	3 38.36	16.27	0.00	22.09	2.39		ND<1000	ND<10	ND<10	ND<10	ND<20		1000	
04/02/0	3 38.36	17.19	0.00	21.17	-0.92		130000	ND<100	ND<100	ND<100	ND<200		ND<400	
07/01/0	3 38.36	17.61	0.00	20.75	-0.42		15000	ND<2.5	ND<2.5	ND<2.5	ND<5.0		170	
10/02/0	3 38.36	18.58	0.00	19.78	-0.97		7100	ND<10	ND<10	ND<10	ND<20		70	
01/09/0	4 38.36	16.15	0.00	22.21	2.43		18000	ND<10	ND<10	ND<10	ND<20		530	
04/26/0	4 38.36	17.20	0.00	21.16	-1.05		6500	ND<10	ND<10	ND<10	ND<20		240	
07/22/0	4 38.36	18.34	0.00	20.02	-1.14		18000	ND<10	ND<10	ND<10	ND<20		48	
10/29/0	4 38.36	18.13	0.00	20.23	0.21		2700	ND<2.5	ND<2.5	ND<2.5	ND<5.0		76	
01/12/0	5 38.36	15.22	0.00	23.14	2.91		1300	ND<0.50	ND<0.50	ND<0.50	ND<1.0		620	
06/20/0	5 38.36	16.63	0.00	21.73	-1.41		980	ND<0.50	ND<0.50	ND<0.50	ND<1.0		110	
09/23/0	5 38.36	17.93	0.00	20.43	-1.30		1500	ND<0.50	ND<0.50	ND<0.50	ND<1.0		34	
12/13/0	5 38.36	18.04	0.00	20.32	-0.11		3900	ND<0.50	ND<0.50	ND<0.50	ND<1.0		36	
03/24/0	6 38.36	14.48	0.00	23.88	3.56		1500	ND<12	ND<12	ND<12	ND<25		200	
05/30/0	6 38.36	15.79	0.00	22.57	-1.31		1200	ND<2.5	ND<2.5	ND<2.5	ND<5.0		130	
08/22/0	6 38.36	17.26	0.00	21.10	-1.47		980	ND<0.50	ND<0.50	ND<0.50	ND<0.50		33	
10/31/0	6 38.36	18.08	0.00	20.28	-0.82		1300	ND<0.50	ND<0.50	ND<0.50	ND<0.50		10	
01/12/0	7 38.36	17.57	0.00	20.79	0.51		820	ND<0.50	ND<0.50	ND<0.50	ND<0.50		28	
7124								Page 4	4 of 5					

Table 2HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTSApril 2002 Through January 2008

76 Station 7124

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-4	continued	l												
04/04/0	07 38.36	17.40	0.00	20.96	0.17		460	ND<0.50	ND<0.50	ND<0.50	ND<0.50		41	
07/05/0)7 38.36	18.02	0.00	20.34	-0.62		920	ND<0.50	ND<0.50	ND<0.50	ND<0.50		7.0	
10/01/0	07 38.36	18.89	0.00	19.47	-0.87		560	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.0	
01/11/0	8 38.36	16.56	0.00	21.80	2.33		340	ND<0.50	ND<0.50	ND<0.50	ND<1.0		21	

							76 Stati	on 7124
Date Sampled	TBA	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME
e	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1								
	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
11/03/02	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
01/24/03	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
04/02/03	ND<100	.ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
07/01/03	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
10/02/03	ND<100		ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
01/09/04	ND<100		ND<500	ND<2	ND<2.0	ND<2	ND<2	ND<2
04/26/04	ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
07/22/04	ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
10/29/04	ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
01/12/05	ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
06/20/05	ND<10		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
09/23/05	ND<10		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
12/13/05	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
03/24/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
05/30/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
08/22/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
10/31/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
01/12/07	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
04/04/07	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
07/05/07	ND<10		ND<250	ND<0.50	ND<0,50	ND<0.50	ND<0.50	ND<0.50
10/01/07	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
01/11/08	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
34337.0								
MW-2 04/08/02	ND<2000	ND<10000		ND<40	ND<40	ND<40	ND<40	ND<40
07/28/02	ND<500	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10
7124							Page 1	

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 7124

76 Station 7124							
TBA	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide (EDB)	i,2-DCA (EDC)	DIPE	ETBE	TAME
(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
ontinued							
	ND<5000		ND<20	ND<20	ND<20	ND<20	ND<20
	ND<2500		ND<10		ND<10	ND<10	ND<10
ND<1000	ND<5000		ND<20	ND<20	ND<20	ND<20	ND<20
	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10
ND<100		ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
ND<500		ND<2500	ND<10	ND<10	ND<10	ND<10	ND<10
25		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10000		ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200
ND<5000		ND<25000					ND<200
							ND<100 ND<25
							ND<23 ND<25
							ND<23 ND<5.0
							ND<3.0 ND<25
							0.31J
22							
	(μg/l) ontinued ND<1000 ND<500 ND<1000 ND<500 25 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<25 ND<10 ND<25 ND<10 ND<25 ND<10 ND<25 ND<10 ND<25 ND<10 ND<25 ND<10 ND<25 ND<10 ND<25 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND 20 ND	(μg/l) (mg/l) ontinued ND<1000	(8015B) (8260B) (µg/l) (µg/l) (µg/l) ontinued ND<5000 ND<500	(8015B)(8260B)dibromide (EDB) $(\mu g/l)$ (mg/l)($\mu g/l$)($\mu g/l$)ontinuedND<1000	(8015B)(8260B)dibromide (EDB)(EDC) (EDB) $(\mu g/l)$ $(\eta g/l)$ $(\mu g/l)$ $(\mu g/l)$ $(\mu g/l)$ $nD<1000$ ND<5000	(8015B)(8260B)dibromide (EDB)(EDC) $(\mu g/l)$ $(\mu g/l)$ $(\mu g/l)$ $(\mu g/l)$ $(\mu g/l)$ ontinued ND<1000	TBA Ethanol (8015B) Ethanol (8260B) Ethylene- dibromide (EDB) 1,2-DCA (EDC) DIPE ETBE ($\mu g/l$) ontinued ND~1000 ($m g/l$) ($\mu g/l$) ($\mu g/l$) ($\mu g/l$) ($\mu g/l$) ND~1000 ND~5000 ND~20 ND~20 ND~20 ND~1000 ND~5000 ND~10 ND~10 ND~10 ND~1000 ND~5000 ND~10 ND~10 ND~10 ND~100 ND~500 ND~10 ND~10 ND~10 ND~100 ND~200 ND~20 ND~20 ND~20 ND~20 ND~500 ND~10 ND~10 ND~10 ND~10 ND~100 ND~200 ND~20 ND~20 ND~20 ND~20 ND<10

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7124

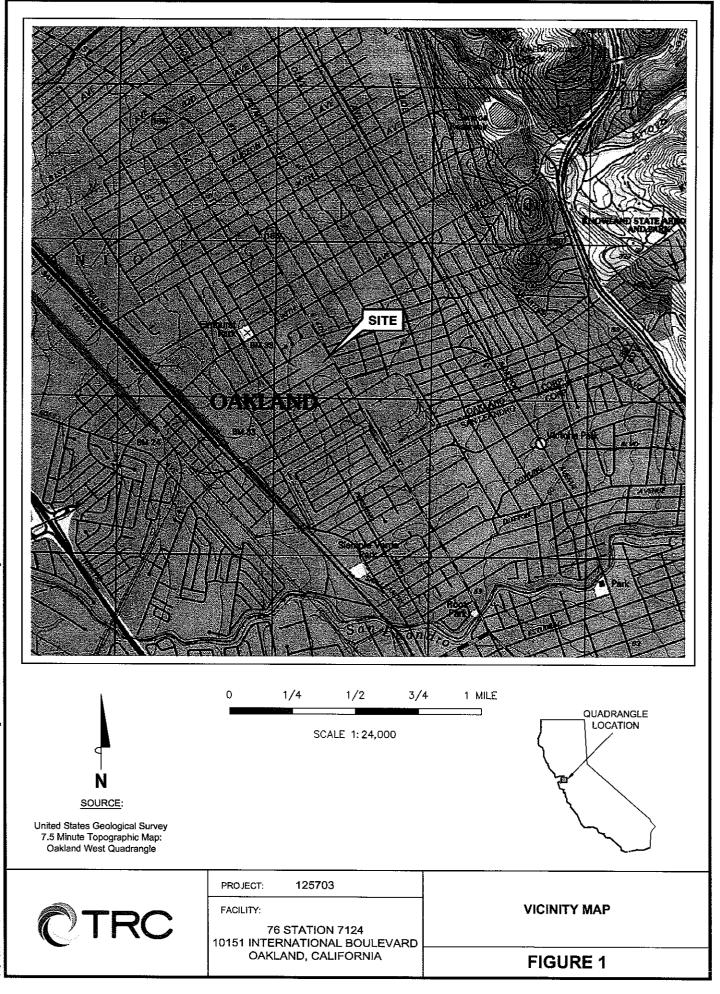
7124

Page 2 of 4

-

76 Station 7124								
Date Sampled	TBA	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME
	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3 c	ontinued							
09/23/05	ND<10		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
12/13/05	ND<50		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2,5
03/24/06	ND<100		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
05/30/06	ND<250		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12
08/22/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
10/31/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
01/12/07	43		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
04/04/07	130		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
07/05/07	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
10/01/07	ND<20		ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
01/11/08	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-4								
04/08/02	ND<5000	ND<25000		ND<100	ND<100	ND<100	ND<100	ND<100
07/28/02	ND<500	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10
11/03/02	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
01/24/03	ND<2000	ND<10000		ND<40	ND<40	ND<40	ND<40	ND<40
04/02/03	ND<20000	ND<100000		ND<400	ND<400	ND<400	ND<400	ND<400
07/01/03	ND<500	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10
10/02/03	ND<2000		ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40
01/09/04	ND<2000		ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40
04/26/04	430		ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10
07/22/04	ND<100		ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10
10/29/04	63		ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5
01/12/05	1300		ND<250	ND<10	ND<2.5	ND<5.0	ND<2.5	ND<2.5
06/20/05	580		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
09/23/05	92		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 7124


7124

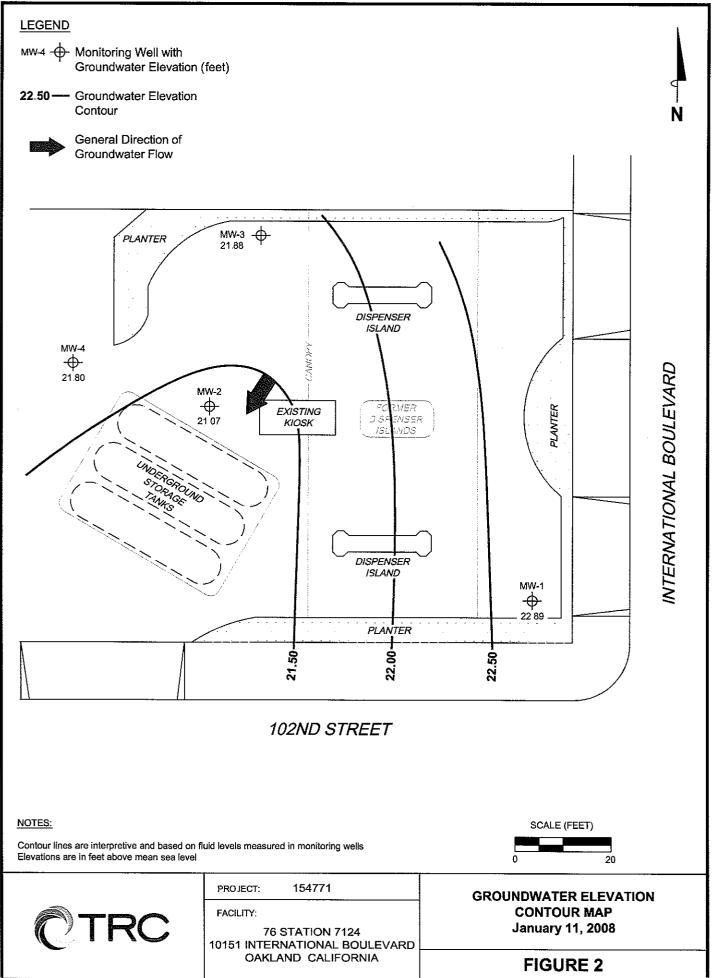
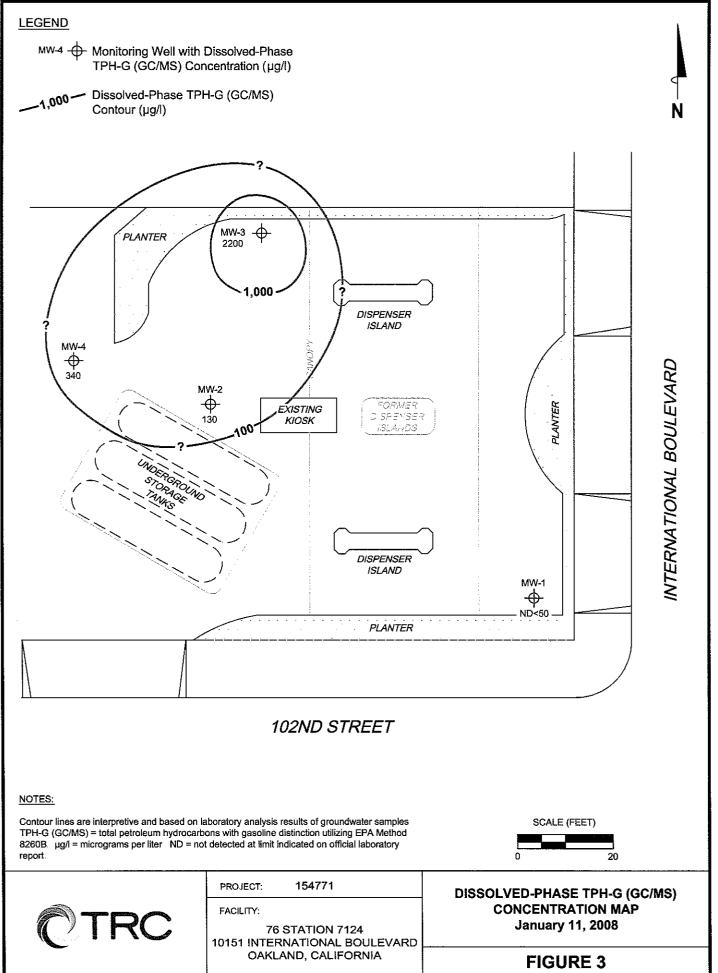
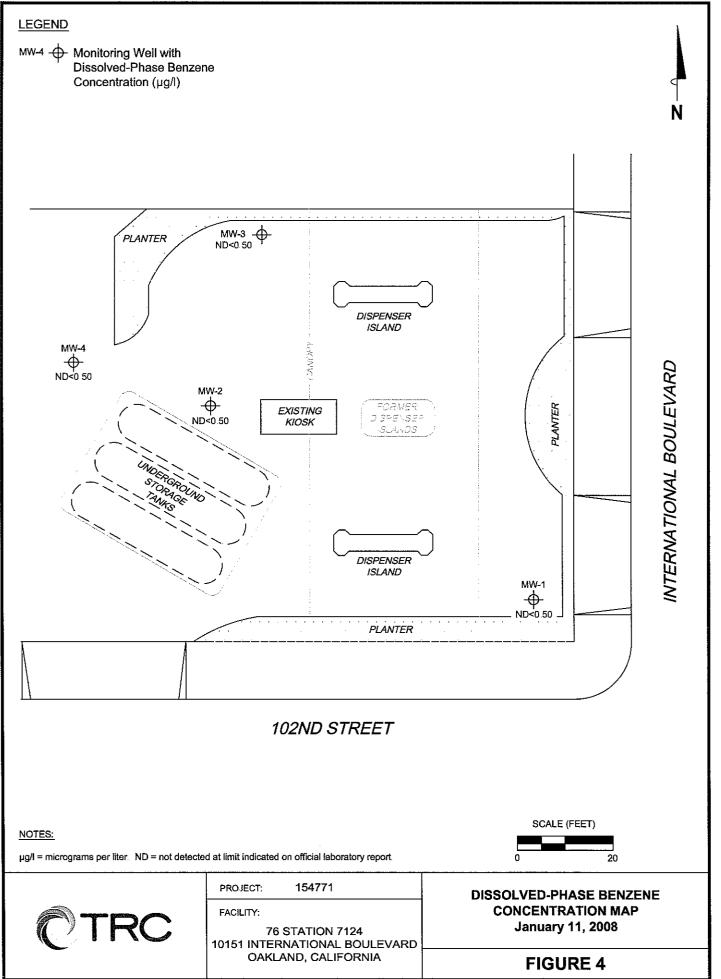
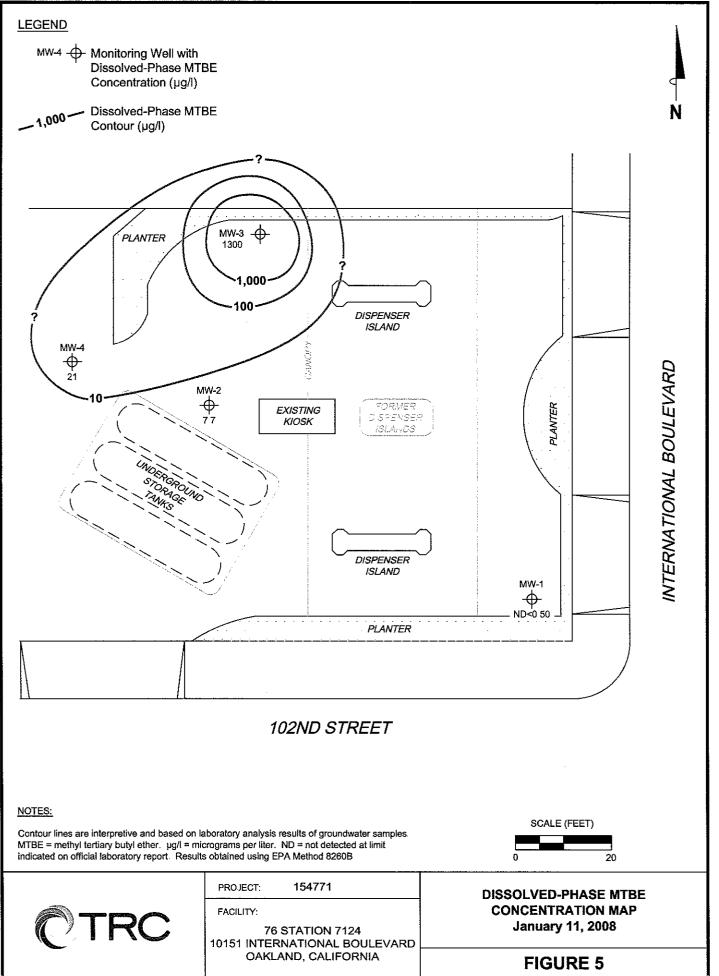

Page 3 of 4

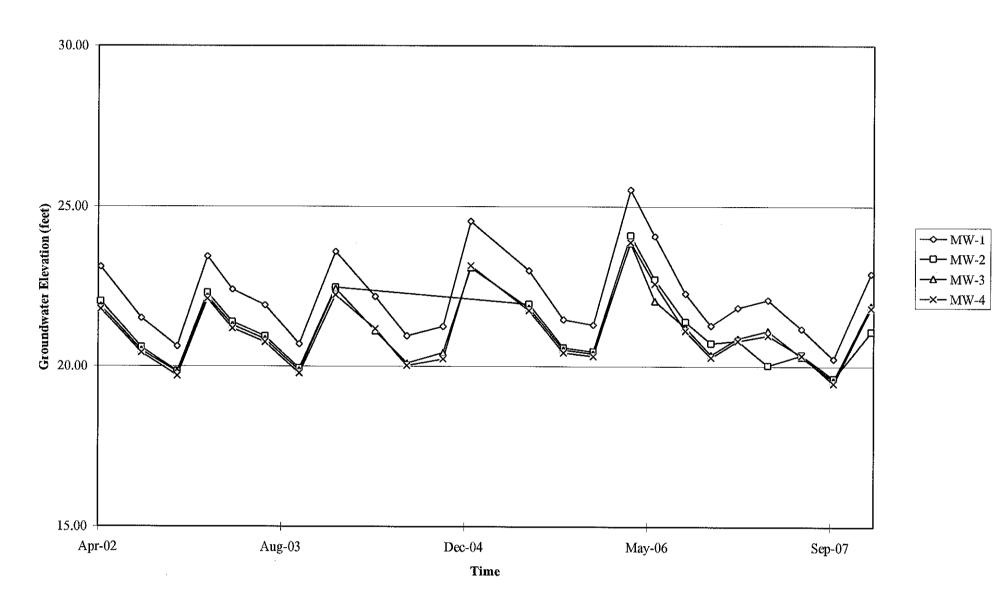
Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 7124


Date Sampled	TBA	Ethanoi (8015B)	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	
·	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-4 12/13/05	continued 50		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
03/24/06			ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12	
05/30/06	ND<50		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	
08/22/06	150		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
10/31/06	43		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
01/12/07	72		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
04/04/07	260		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
07/05/07	18		ND<250	ND<0.50	ND<0.50	ND<0.50-	ND<0.50	ND<0.50	
10/01/07	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
01/11/08	140		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	


FIGURES

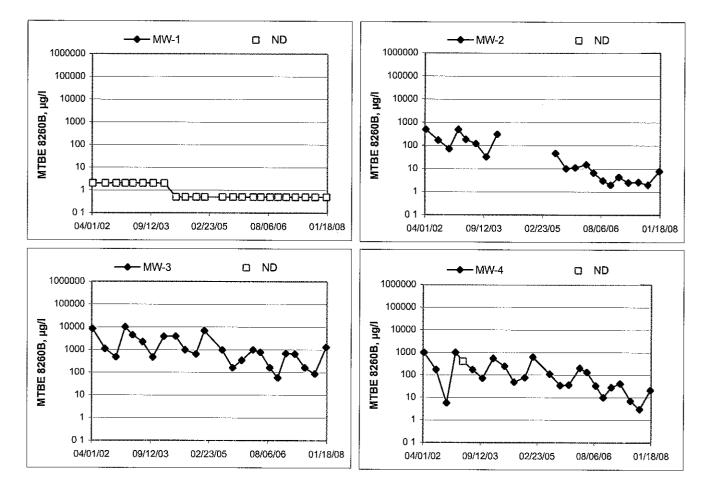


 12:05pm bschmidt 2008 Jan 30, L: EGraphics DOMS NORTH-SOUTH BX-7000 D7124+ D7124OMS.DWG 7124-003 MS=1:1



2008 – 12:09pm bschmidt Jan 30, L: DGraphics DQMS_NORTH-SOUTH Dx-7000 D7124+ D7124QMS.DWG 7124-003 MS=1:1

GRAPHS


Groundwater Elevations vs. Time 76 Station 7124

Elevations may have been corrected for apparent changes due to resurvey

MTBE 8260B Concentrations vs Time

-

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyo rs mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. IRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the ISR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted are specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH Technicians wear nitrile gloves during all gauging, purging and sampling activities Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated to a particular wells, decontaminated prior to each use, or discarded after a single use Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

1/5/04 version

Site #	7124	/ 	Projec	t Manager	A.C.a.	11115_		Page of
			[Depth	Depth	Product		
	Time		Total	to	to	Thickness	Time	i ș
Well #	Gauged	тос	Depth	Water	Product	(feet)	Sampled	Misc. Well Notes
MUJ-1	0814		2480	14.48			6922	411
MILI-4	0825		2490	16-56			0953	4 "
MUI-Z.	0826		23.16	16 80	-	~	1013	4#
MW-3	0837		والمتقالية فالمتحدث ومستحصا وروا	15.84			1037	4"
]					
			1	<u> </u>				
	<u> </u>							
······								
				· · · · · · · · · · · · · · · · · · ·				
	,,							
				ļ				
	<u> </u>							
			·					
		<u> </u>			ļ			
- <u></u>							<u> </u>	
)						-		· · · · · · · · · · · · · · · · · · ·
	·			·				
	<u> -</u>					<u> </u>	ļ	
		ļ		<u></u>	·		<u> </u>	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1		<u> </u>	<u> </u>
FIELD DAT	A COMPL	ETE	QAVO		<u> </u>	N	ELL BOX C	ONDITION SHEETS
				<u> </u>			,	an a
WTT CERT	IFICATE		MANIFE	:ST	DRUMIN	VENTORY	TRA	EPIC CONTROL

FIELD MONITORING DATA SHEET

Technician: DAMIAN Job #Task #: 154771

Date: 1/11/02

1

GROUNDWATER SAMPLING FIELD NOTES

Technician: DAMIAN

Site:	712	4.
· · · · · · ·	تسني والمساعد	

Project No .: 154771

Date: 1/11/08

Well No. <u>MW-1</u>

Purge Method: DIN.

Depth to Water (feet): ______

Total Depth (feet)______

Water Column (feet): 10-32

80% Recharge Depth(feet): 16.54

Depth to Product (feet):_____ LPH & Water Recovered (gallons):_____ Casing Diameter (Inches):_____ 1 Well Volume (gallons):____7

		Depth to	Volume	Conduc-	Tamparahura			ł	
Time	Time	Water	Purged	tivity	Temperature	рН	D.O.	ORP	Turbidit
Start	Stop	(feet)	(gallons)	(uS/cm)				ļ	ļ
909			7	586.5	16.8	767		L	
<u>,,,,,,</u>			14	566.1	18.1	7:23.	<u> </u>	<u> </u>	
	0917		21	563.9	18.4	703.		<u> </u>	
	<u></u>								
			<u>. </u>					<u> </u>	
Stat	tic at Time S	ampled	To	al Gallons Pu	irged		Sample	e Time	
	14 91	ويستبعث معدرتها وتتهجي أسفاعه	21			092	32.		
omment									

Weil No. <u>MW-4</u> Depth to Water (feet): <u>16-56</u> Total Depth (feet) <u>24-90</u> Water Column (feet): <u>8-34</u> 80% Recharge Depth(feet): <u>18-22</u> Purge Method: ______ Depth to Product (feet): ______ LPH & Water Recovered (gallons): ______ Casing Diameter (Inches): ______ 1 Well Volume (gallons): _____

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (FC)	pH	D.O.	ORP	Turbidity
0940.			6.	6066	17.2	6.94.	 		<u> </u>
0110	 	المرابعة المحيونية (a	12.	620-7	18.3	655	l		
	0950		and the second sec	585-2	19.1	672	 		<u> </u>
						<u> </u>			
	1			<u></u>		<u>]</u>	<u> </u>		1
Sta	tic at Time S	ampled	To	tal Gallons Pu	irged		Sample	e nime	
	17.0		18.				<u>33</u>		·
Comment		, «««««»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»	یک باری دی روید میں د <u>توسط ان ر</u>				الخاصيب ويهرجونهم		
Commence	3,	وی او المنطقة است. من محمد الم المحمد الم الم			,				

GROUNDWATER SAMPLING FIELD NOTES

Technician: <u>DAMIAN</u>

Site: 7124

Project No : 15474/____

Date: 1/11/03

Well No. MW-2

Depth to Water (feet): ______

80% Recharge Depth(feet): 18-47

Total Depth (feet) 35.16

Water Column (feet): 8.36

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F,C)	рН	D.O.	ORP	Turbidity
1007.		······································	6	6799	185	7.00			<u> </u>
////	بحرافية بالمحادثة المحادثة بالمحادثة بالم		12.	605-4	200	6.85.			
	1012		18:	6519	30:2	8.79.			<u> </u>
									
							<u> </u>	<u> </u>	<u> </u>
Stati	ic at Time St	ampled	To	al Gallons Pu	irged	فماد فبالم والمراجع	Sample		
	16-60		18.				1013.		
Comments			1 7 2	ه می و بار می و بارد می و بارد به از از می و بارد می و بارد و بار	······································				

Well No. _______ Depth to Water (feet): ______ Total Depth (feet) ______ Water Column (feet): ______ 80% Recharge Depth(feet): ______ 1772____ Purge Method: DIX

Depth to Product (feet):_____

LPH & Water Recovered (gallons):

7. 6.94.
7 723
Prature pH D.O. ORP Turb
-

Date of Report: 01/22/2008

Anju Farfan

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302

RE: 7124 BC Work Order: 0800688

Enclosed are the results of analyses for samples received by the laboratory on 01/14/2008 21:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

lyns

Contact Person/ Molly Meyers Client Service Rep

Authorized Signature

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report atteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

RC Alton Geo 1 Technology rvine, CA 9261	Drive		Project: 7124 Project Number: [none] Project Manager: Anju Farfan	Reported: 01/22/2008 15		
			Laboratory / Client Sample Cross Re	ference		
Laboratory	Client Sample Informat	tion				
0800688-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124 MW-1 MW-1 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/14/2008 21:00 01/11/2008 09:22 Water	Delivery Work Order: Global ID: T0600173591 Matrix: W Samle QC Type (SACode): CS Cooler ID:	
0800688-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124 MW-4 MW-4 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/14/2008 21:00 01/11/2008 09:53 Water	Delivery Work Order: Global ID: T0600173591 Matrix: W Samle QC Type (SACode): CS Cooler ID:	
0800688-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124 MW-2 MW-2 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/14/2008 21:00 01/11/2008 10:13 Water	Delivery Work Order: Global ID: T0600173591 Matrix: W Samle QC Type (SACode): CS Cooler ID:	
0800688-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124 MW-3 MW-3 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/14/2008 21:00 01/11/2008 10:39 Water	Delivery Work Order: Global ID: T0600173591 Matrix: W Samle QC Type (SACode): CS Cooler ID:	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 1 of 9

ND

ND

ND

ND

99.7

95.8

102

ug/L

ug/L

ug/L

ug/L

%

%

%

0.50

250

0.50

50

76 - 114 (LCL - UCL)

88 - 110 (LCL - UCL)

86 - 115 (LCL - UCL) EPA-8260

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302					Project ect Number ect Manager	Inone	rfan				Repo	orted: 01/2	2/2008 15:2
	Vol	atile (Orga	nic A	nalys	is (E	EPA Met	hod	8260))			
BCL Sample ID: 0800688-01	Client Sam	ple Name:	7124, M	W-1, MW-	1, 1/11/200	8 9:22:00	DAM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50		EPA-8260	01/16/08	01/17/08 01:11	SDU	MS-V10	1	BRA0986	ND	
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	01/16/08	01/17/08 01:11	SDU	MS-V10	1	BRA0986	ND	
1,2-Dichloroethane	ND	ug/L	0.50		EPA-8260	01/16/08	01/17/08 01:11	SDU	MS-V10	1	BRA0986	ND	
Ethylbenzene	ND	ug/L	0.50		EPA-8260	01/16/08	01/17/08 01:11	SDU	MS-V10	1	BRA0986	ND	
Methyl t-butyl ether	ND	ug/L	0.50		EPA-8260	01/16/08	01/17/08 01:11	SDU	MS-V10	1	BRA0986	ND	
Toluene	ND	ug/L	0.50		EPA-8260	01/16/08	01/17/08 01:11	SDU	MS-V10	1	BRA0986	ND	
Total Xylenes	ND	ug/L	1.0		EPA-8260	01/16/08	01/17/08 01:11	SDU	MS-V10	1	BRA0986	ND	
t-Amyl Methyl ether	ND	ug/L	0.50		EPA-8260	01/16/08	01/17/08 01:11	SDU	MS-V10	1	BRA0986	ND	
t-Butyl alcohol	ND	ug/L	10		EPA-8260	01/16/08	01/17/08 01:11	SDU	MS-V10	1	BRA0986	ND	

EPA-8260

EPA-8260

EPA-8260

EPA-8260

EPA-8260

EPA-8260

01/16/08 01/17/08 01:11

01/16/08 01/17/08 01:11

01/16/08 01/17/08 01:11

01/16/08 01/17/08 01:11

01/17/08 01:11

01/17/08 01:11

01/17/08 01:11

01/16/08

01/16/08

01/16/08

SDU

SDU

SDU

SDU

SDU

SDU

SDU

MS-V10

MS-V10

MS-V10

MS-V10

MS-V10

MS-V10

MS-V10

1

1

1

1

1

1

1

BRA0986

BRA0986

BRA0986

BRA0986

BRA0986

BRA0986

BRA0986

ND

ND

ND

ND

BC Laboratories

Diisopropyl ether

Ethyl t-butyl ether

Hydrocarbons

Total Purgeable Petroleum

Toluene-d8 (Surrogate)

1,2-Dichloroethane-d4 (Surrogate)

4-Bromofluorobenzene (Surrogate)

Ethanol

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation,

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302				Project lect Number ect Manager		rfan				Repo	orted: 01/2	22/2008 15:2:
	Vol	atile	Organic A				hod	826	D)			
BCL Sample ID: 0800688-02	Client Sam	ple Name	e: 7124, MW-4, MW-	-4, 1/11/200	8 9:53:00)AM						
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986	NĎ	A39
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986	ND	A39
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986	ND	A39
Ethylbenzene	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986	ND	A39
Methyl t-butyl ether	21	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986	ND	A39
Toluene	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986	ND	A39
Total Xylenes	ND	ug/L	1.0	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986	ND	A39
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986	ND	A39
t-Butyl alcohol	140	ug/L	10	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986	ND	A39
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986	ND	A39
Ethanol	ND	ug/L	250	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986	ND	A39
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986	ND	A39
Total Purgeable Petroleum Hydrocarbons	340	ug/L	50	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986	ND	A39
1,2-Dichloroethane-d4 (Surrogate)	99.4	%	76 - 114 (LCL - UCL)	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986		
Toluene-d8 (Surrogate)	96.0	%	88 - 110 (LCL - UCL)	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986		
4-Bromofluorobenzene (Surrogate)	105	%	86 - 115 (LCL - UCL)	EPA-8260	01/16/08	01/17/08 01:29	SDU	MS-V10	1	BRA0986		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Page 3 of 9

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302				Project Project Number Poject Manager		rfan				Reported: 01/22/2008 15:23		
	Vol	atile	Organic	Analys	sis (E	EPA Met	hod	8260	D)			·····
BCL Sample ID: 0800688-03	Client Sample Name: 7124, MW-2, MW-2, 1/11/2008 10:13:00AM										·····	
Constituent	Result	Units	PQL MD	L Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986	ND	A39
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986	ND	A39
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986	ND	A39
Ethylbenzene	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986	ND	A39
Methyl t-butyl ether	7.7	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986	ND	A39
Toluene	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986	ND	A39
Total Xylenes	ND	ug/L	1.0	EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986	ND	A39
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986	ND	A39
t-Butyl alcohol	ND	ug/L	10	EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986	ND	A39
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986	ND	A39
Ethanol	ND	ug/L	250	EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986	ND	A39
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986	ND	A39
Total Purgeable Petroleum Hydrocarbons	130	ug/L	50	EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986	ND	A39
1,2-Dichloroethane-d4 (Surrogate)	99.5	%	76 - 114 (LCL - UC	L) EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986		
Toluene-d8 (Surrogate)	98.7	%	88 - 110 (LCL - UC	L) EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986		
4-Bromofluorobenzene (Surrogate)	106	%	86 - 115 (LCL - UC	L) EPA-8260	01/16/08	01/17/08 01:46	SDU	MS-V10	1	BRA0986		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 4 of 9

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302				Project ject Number ect Manager		rfan				Repo	orted: 01/2	2/2008 15
	Vol	atile	Organic A	Analys	sis (E	PA Met	hod	8260))			
BCL Sample ID: 0800688-04	Client Sam	ple Name	e: 7124, MW-3, MW	-3, 1/11/200	8 10:39:0	0AM						
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986	ND	A39
I,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986	ND	A39
I,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986	ND	A39
Ethylbenzene	1.6	ug/L	0.50	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986	ND	A39
Nethyl t-butyl ether	1300	ug/L	10	EPA-8260	01/16/08	01/18/08 22:04	SDU	MS-V10	20	BRA0986	ND	A01
oluene	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986	ND	A39
otal Xylenes	ND	ug/L	1.0	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986	ND	A39
Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986	ND	A39
-Butyl alcohol	ND	ug/L	10	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986	ND	A39
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986	ND	A39
Ethanol	ND	ug/L	250	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986	ND	A39
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986	ND	A39
otal Purgeable Petroleum Hydrocarbons	2200	ug/L	50	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986	ND	A39
,2-Dichloroethane-d4 (Surrogate)	104	%	76 - 114 (LCL - UCL)	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986		
,2-Dichloroethane-d4 (Surrogate)	105	%	76 - 114 (LCL - UCL)	EPA-8260	01/16/08	01/18/08 22:04	SDU	MS-V10	20	BRA0986		
oluene-d8 (Surrogate)	97.5	%	88 - 110 (LCL - UCL)	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986		
oluene-d8 (Surrogate)	97.9	%	88 - 110 (LCL - UCL)	EPA-8260	01/16/08	01/18/08 22:04	SDU	MS-V10	20	BRA0986		
-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260	01/16/08	01/18/08 22:04	SDU	MS-V10	20	BRA0986		
-Bromofluorobenzene (Surrogate)	105	%	86 - 115 (LCL - UCL)	EPA-8260	01/16/08	01/17/08 02:04	SDU	MS-V10	1	BRA0986		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 5 of 9

TRC Alton Geoscience	Project: 7124	Reported: 01/22/2008 15:23
21 Technology Drive	Project Number: [none]	
Irvine, CA 92618-2302	Project Manager: Anju Farfan	

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										Contro	<u>ol Limits</u>
Constituent	Batch ID	QC Sample Type	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery Lab Quals
Benzene	BRA0986	Matrix Spike	0800597-02	0	24.750	25.000	ug/L		99.0		70 - 130
		Matrix Spike Duplicat	e 0800597-02	0	23.510	25.000	ug/L	5.2	94.0	20	70 - 130
Toluene	BRA0986	Matrix Spike	0800597-02	0	25.310	25.000	ug/L		101		70 - 130
		Matrix Spike Duplicat	e0800597-02	0	24.780	25.000	ug/L	1.9	99.1	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRA0986	Matrix Spike	0800597-02	ND	10.120	10.000	ug/L		101		76 - 114
		Matrix Spike Duplicat	e0800597-02	ND	9.8600	10.000	ug/L		98.6		76 - 114
Toluene-d8 (Surrogate)	BRA0986	Matrix Spike	0800597-02	ND	9.7700	10.000	ug/L		97.7		88 - 110
		Matrix Spike Duplicat	e 0800597-02	ND	9.9300	10.000	ug/L		99.3		88 - 110
4-Bromofluorobenzene (Surrogate)	BRA0986	Matrix Spike	0800597-02	ND	10.260	10.000	ug/L		103		86 - 115
		Matrix Spike Duplicat	e 0800597-02	ND	10.140	10.000	ug/L		101		86 - 115

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report atteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

TRC Alton Geoscience		Project:	7124	Reported: 01/22/2008 15:2	:3
21 Technology Drive		Project Number:			
Irvine, CA 92618-2302	 	Project Manager:	Anju Fartan		
-	 -				

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

										<u>Control</u>		
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BRA0986	BRA0986-BS1	LCS	22.580	25.000	0.50	ug/L	90.3		70 - 130		
Toluene	BRA0986	BRA0986-BS1	LCS	23.810	25.000	0.50	ug/L	95.2		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BRA0986	BRA0986-BS1	LCS	10.020	10.000		ug/L	100		76 - 114		
Toluene-d8 (Surrogate)	BRA0986	BRA0986-BS1	LCS	9.9200	10.000		ug/L	99.2		88 - 110		
4-Bromofluorobenzene (Surrogate)	BRA0986	BRA0986-BS1	LCS	9.9100	10.000		ug/L	99.1		86 - 115		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Pro	ł	Reported: 01/22/2008 15:2					
Vol	latile Organic	Analysis (E	PA Metho	d 8260)			
	Quality Control	Report - Method	Blank Ana	ysis				
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals	
Benzene	BRA0986	BRA0986-BLK1	ND	ug/L	0.50			
1,2-Dibromoethane	BRA0986	BRA0986-BLK1	ND	ug/L	0.50			
1,2-Dichloroethane	BRA0986	BRA0986-BLK1	ND	ug/L	0.50		• •	
Ethylbenzene	BRA0986	BRA0986-BLK1	ND	ug/L	0.50			
Methyl t-butyl ether	BRA0986	BRA0986-BLK1	ND	ug/L	0.50			
Toluene	BRA0986	BRA0986-BLK1	ND	ug/L	0.50			
Total Xylenes	BRA0986	BRA0986-BLK1	ND	ug/L	1.0			
t-Amyl Methyl ether	BRA0986	BRA0986-BLK1	ND	ug/L	0.50			
t-Butyl alcohol	BRA0986	BRA0986-BLK1	ND	ug/L	10			
Diisopropyl ether	BRA0986	BRA0986-BLK1	ND	ug/L	0.50			
Ethanol	BRA0986	BRA0986-BLK1	ND	ug/L	250			
Ethyl t-butyl ether	BRA0986	BRA0986-BLK1	ND	ug/L	0.50			
Total Purgeable Petroleum Hydrocarbons	BRA0986	BRA0986-BLK1	ND	ug/L	50			
1,2-Dichloroethane-d4 (Surrogate)	BRA0986	BRA0986-BLK1	104	%	76 - 114	(LCL - UCL)		
Toluene-d8 (Surrogate)	BRA0986	BRA0986-BLK1	99.4	%	88 - 110	(LCL - UCL)		
4-Bromofluorobenzene (Surrogate)	BRA0986	BRA0986-BLK1	99.0	%	86 - 115	(LCL - UCL)		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 8 of 9

21 Tech	on Geoscience inology Drive CA 92618-2302	Project: 7124 Project Number: [none] Project Manager: Anju Farfan	Reported: 01/22/2008 15:23
Notes	And Definitions		
MDL	Method Detection Limit		
ND	Analyte Not Detected at or above the reporting limit		
PQL	Practical Quantitation Limit		
RPD	Relative Percent Difference		
A01	PQL's and MDL's are raised due to sample dilution.		
A39	Sample received at pH greater than 2.		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 9 of 9

Submission #: 0800(08 SHIPPING INFO Federal Express D _ UPS D		roject Code:												
ederal Express 🔲 🖉 UPS 🗍				·		atch #								
ederal Express 🔲 🖉 UPS 🛛	NINA HON	I			SHIPPIN	IG CONT	AINER							
	Hand De			Ice Chest	/	Non								
3C Lab Field Service D Other	C (Specify	y)		Box D Other C (Specify)										
Refrigerant: Ice 🖄 Blue Ice	D No	ne 🗌 🛛 Other	Com	ments:										
Custody Seals: Ice Chest	Containe	4	ve 🛛 Comr	nents:										
It samples received? Yes 🖉 No 🗆	All sample	os containers intac	t? Yes 🖉 No	» ()	Descripti	on{s} match	COC? Ye	No No	D					
COC Received		Ice Chest ID	Red	Emis	sivity	17	Date/Ti	me_ <u>2</u> [7	20 /u					
		Temperature:	<u></u> °c	Conta)CA		init <u>IN</u>	~					
		Thermometer ID:	<u>X48</u>				Analysi							
				SAMPLE	UMBERS									
SAMPLE CONTAINERS	1	2 3	4	5	6	7	8	9	10					
IT GENERAL MINERALI GENERAL PHYSICAL T PE UNPRESERVED					<u>.</u>			,,~						
T INORGANIC CHEMICAL METALS														
T INORGANIC CHEMICAL METALS						-			_					
T CYANIDE									<u> </u>					
T NITRO JEN FORMS									<u> </u>					
T TOTAL SULFIDE				I					 					
DE_NITRATE/NITRITE						 			_					
00ml TOTAL ORGANIC CARBON									_					
ит тох	1								 					
T CHEMICAL OXYGEN DEMAND	1								_					
1A PHENOLICS									ļ					
0mi VOA VIAL TRAVEL BLANK	I ,								ļ					
emi VOA VIAL	A3	A.3A	5 A12	× · · ·	1)			1	<u> </u>					
YT EPA 413.1, 413.2, 418.1			```	1										
TODOR		<u> </u>		<u> </u>	ļ				_					
ADIOLOGICAL		<u> </u>				 			 					
ACTERIOLOGICAL		.l		·					 					
0 ml VOA VIAL-504	_ 	<u> </u>				ļ ļ			_					
YT EPA 508/608/8080		<u> </u>		_ _										
)T EPA 515.1/8150		. 			 				_					
7T EPA-525		<u> </u>		<u> </u>	L			ļ	_					
YT EPA 525 TRAVEL BLANK		<u> </u>		<u> </u>	 			ļ	<u> </u>					
00md EPA 547		<u> </u>		<u> </u>	ļ				<u> </u>					
90mat EPA 531.1									_					
)T EPA 548									<u> </u>					
)T EPA 549				1					_					
)T EPA 632									_					
ут ера 8915М									_					
21 QA/QC									 					
T AMBER					Į		. <u> </u>		<u> </u>					
OZ. JAR									1					
12 OZ. JAR					Į		······	L	<u> </u>					
OIL SLEEVE								L	<u> </u>					
PCB VIAL								L	_					
PLASTIC BAG					ļ									
FERROUS IRON	•			-					<u> </u>					
ENCORE														
					<u> </u>				<u> </u>					
oroments:	n2		1.15.0	<u>~</u>].		FM7)						

6	800688						An	ah	/SiS	Re	que	este	d		
البط واربا والمراب المرابية والمرابية والمطرية	onoco Phillips/ TRC	c	onsultant Firm: Ti	SC.	MATRIX — (GW)	8015									
INTERNATIONAL BLUD IN			21 Techology Drive Irvine, CA 92618-2302 Attn: Anju Farfan			, Gas by 80		r	oxygenates	8260B		.22	· 80		Requested
City: Ox	KLAND	4	-digit site#: 712 9	1	_ Soil (WW)	21B	N	35	ygel	BY	m		220		Req
-		V	Vorkorder # <i>01634</i>	Waste- water	by 8021B	015	by 8015		XYS	8260	GC/MS	X		Time	
State: C/	Zip:		Project #: 154771			р Ш В Ш	by 8		ist v	BE/O	by	20 7	Da U		
22 - 1		ampler Name: 🚕	Sludge	LW/	SAS	ES SE	full	/MT	NOL	-G by	QD,		Inou		
Lab#	Sample Description		eld Point Name	Date & Time Sampled		BTEX/NTBE	TPH GAS by 8015M	TPH DIESEL	8260 full list w/	BTEX/MTBE/OXYS	ETHANOL by 8260B	TPH -	faa y		Turnaround
	-1 MW-1		1/11/08 0922	Gia					$\left \right>$	1X	\boxtimes	X		37	
	7 <u>7</u> 7	MU	- 4	0953	ļ			<u>. </u>		ļ., ļ.,					
	5	MW	-7	1013		ļ						_			
		MW	-3	V 1039	V					$\downarrow \downarrow \checkmark$	$ \downarrow$	$ \psi $			$\downarrow\downarrow$
											ļ				
<u> </u>			un en												
								<u> </u>							+
			Relinquished by: (S	(Daa		1		<u> </u>		0.17.		
Comments 5						Received by: FR16E			:		Date & Time /145.				
GLOBAL I	D: <i>70600173591</i>		Relinquished by: (S	ignature)			₿¢₽		i/by: v		y	Date	e & Tin 4/08		3
			Relinquished by (S	Signatury)	/		Rec R	eivec	l by:	K	N		e & Tin	ne 08(

Page 1 of 1

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by a licensed carrier, to the ConocoPhillips Refinery at Rodeo, California Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office. Purge water suspected of containing potentially hazardous material, such as liquid-phase hydrocarbons, was accumulated separately in a drum for transportation and disposal by others.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.