RECEIVED

2:23 pm, Aug 06, 2007

Alameda County Environmental Health

SECOR INTERNATIONAL INCORPORATED www.secor.com 3017 Kilgore Road, Suite 100 Rancho Cordova, CA 95670 916-861-0400 TEL 916-861-0430 FAX

July 27, 2007

Ms. Donna Drogos, P.E. Alameda County Environmental Health Services 1131 Harbor Bay Parkway Suite 250 Alameda, CA 94502

RE: Quarterly Monitoring and Summary Report – Second Quarter 2007 SECOR Project No.: 77CP.01634.03.0303

Dear Ms. Drogos:

On behalf of ConocoPhillips, SECOR International Incorporated (SECOR) is forwarding the quarterly summary report for the following location:

Service Station

Location

Former 76 Service Station No. 7124

10151 International Boulevard Oakland, California

If there are questions or comments regarding this quarterly summary report, please contact me at (916) 861-0400.

Sincerely, SECOR International Incorporated

Sean Coyle Project Manager

Attachments: SECOR's Quarterly Monitoring and Summary Report – Second Quarter 2007.

cc: Mr. Bill Borgh, ConocoPhillips

SECOR

Former 76 Station No. 7124 July 27, 2007 Page 2

QUARTERLY SUMMARY REPORT Second Quarter 2007

Former 76 Service Station No. 7124 10151 International Boulevard Oakland, California

City/County ID #:Oakland/RO0002444County:Alameda

SITE DESCRIPTION

The site is currently an active Royal Gasoline Station located on the northwestern corner of the intersection of International Boulevard and 102nd Avenue in Oakland, California. Site facilities include three underground storage tanks (USTs) and associated piping and fuel dispensers. A detailed site plan is included in TRC's *Quarterly Monitoring Report April through June 2007* dated April 26, 2007 (Attachment 1).

PREVIOUS ASSESSMENT

On March 22, 2000, SECOR supervised the removal and replacement of product lines and dispensers by Balch Petroleum of Milpitas, California. Soil samples collected from beneath the dispensers and product lines revealed the presence of total petroleum hydrocarbons as gasoline (TPHg) at a maximum concentration of 6,200 milligrams per kilogram (mg/kg), methyl tertiary butyl ether (MtBE) up to120 mg/kg, and up to 7.4 mg/kg. Excavation and sampling activities were observed and approved by Inspector Gomez of the City of Oakland Fire Services Agency.

On March 27, 2000, SECOR observed the over-excavation of approximately 60 cubic yards of soil from the beneath those portions of the dispensers and product lines where soil samples with elevated concentrations of petroleum hydrocarbons were located. Areas measuring approximately 8-10 feet long by 8-10 feet wide were over-excavated to an approximate depth of 8 feet below ground surface (bgs) in each of these areas. Additional over-excavation in these areas was not possible due to their proximity to the footings of the service station canopy. TPHg was detected in two of the three samples at a concentration of 108 mg/kg; benzene was detected in one of the three samples at 0.162 mg/kg; and MtBE was detected in all three samples at a maximum concentrations of up to 43.8 mg/kg. Lead was not detected at or above laboratory reporting limits in any samples.

During February 2002, SECOR supervised the installation of four on-site groundwater monitoring wells. Prior to well installation, all borings were advanced to 26.5 feet bgs, and subsurface soil samples were collected every five feet. Soil samples were analyzed for gasoline range organics (GRO), benzene, toluene, ethylbenzene, total xylenes (BTEX), and fuel oxygenates via EPA Method 8260B. The maximum reported concentrations were 42 mg/kg GRO, 0.36 mg/kg ethylbenzene, 0.26 mg/kg xylenes, and 1.2 mg/kg MtBE.

Former 76 Station No. 7124 July 27, 2007 Page 3

SENSITIVE RECEPTORS

During the third quarter 2004, SECOR completed a ½-mile radius agency receptor survey and obtained an Environmental Data Resources (EDR) radius map for the site from Environmental Data Resources, Incorporated. The agency survey identified two industrial supply wells, three cathodic protection wells, and two wells of unknown type within the search radius. The survey also identified twelve wells of unknown type that could not be located precisely because the records on file with DWR did not include this information. These wells may or may not be located within the search radius. The EDR radius map did not identify any water supply wells within the search radius, but did identify two water supply wells within one mile of the site.

MONITORING AND SAMPLING

The site has been monitored and sampled since the third quarter 2002. Currently, four wells are monitored quarterly (MW-1 through MW-4). Samples are analyzed for TPHg, BTEX, and the fuel oxygenates tert-butyl alcohol (TBA), MtBE, di-isopropyl ether (DIPE), ethyl tert-butyl ether (EtBE), tert-amyl methyl ether (TAME), and ethanol, as well as, ethylene di-bromide (EDB) by EPA Method 8260B.

DISCUSSION

During the second quarter 2007, depth to groundwater ranged between 15.31 and 17.84 feet below top of casing (toc), which is slightly lower than historical low levels. Historical groundwater depths have been reported between 15.11 and 17.26 feet below toc. The direction of groundwater flow is toward the southwest at a gradient of 0.03 foot/foot (Attachment 1).

The highest concentrations of petroleum hydrocarbons and MtBE continue to be detected in on-site wells MW-3 and MW-4. This quarter, the maximum concentrations of TPHg and MtBE were reported to be in well MW-3 at 1,700 μ g/L, and 650 μ g/L respectively (Attachment 1); however, the reported TPPH concentrations may actually be MTBE, as the BC Laboratories includes MtBE in their TPPH concentrations. Lack of detectable levels of BTEX indicates that TPHg is probably not a major contaminant at the site. The downgradient/crossgradient extent of the dissolved plume remains undefined by the existing monitoring well network.

On October 14, 2004, SECOR submitted a work plan for the installation of monitoring wells offsite to delineate the dissolved phase hydrocarbons in groundwater; however, in a letter dated April 12, 2005, the Alameda County Environmental Health Services (ACEHS) disapproved the work plan stating that it was premature to install more monitoring wells without additional groundwater sampling to determine the location of the plume for optimal well locations. Therefore, an addendum to the October 14, 2004 work plan was submitted on July 22, 2005 and has never been approved.

Former 76 Station No. 7124 July 27, 2007 Page 4

CHARACTERIZATION STATUS

None of the groundwater samples collected showed detections at or above MCL levels for any BTEX components. The highest concentrations of residual MtBE contamination are localized in the northeastern area of the site in the vicinity of MW-3 and MW-4. The extent of dissolved contamination is undefined in the downgradient (northwest) direction, but MTBE concentrations continue declining, and variable TBA levels in MW-4 may indicate active degradation of MTBE.

REMEDIATION STATUS

Currently, there is no active remediation at this site.

RECENT SUBMITTALS/CORRESPONDENCE

Submitted: Quarterly Summary and Monitoring Report – First Quarter 2007, dated April 25, 2007

WASTE DISPOSAL SUMMARY

The volume of purged groundwater generated and disposed of during the quarterly groundwater monitoring event is documented in TRC's *Quarterly Monitoring Report, April through June 2007,* dated April 26, 2007 (Attachment 1).

THIS QUARTER ACTIVITIES (Second Quarter 2007)

- 1. TRC performed quarterly groundwater monitoring and sampling event.
- 2. SECOR prepared and submitted the first quarter 2007 summary report.

NEXT QUARTER ACTIVITIES (Third Quarter 2007)

- 1. TRC to perform coordinated groundwater monitoring and sampling event.
- 2. SECOR to prepare and submit quarterly summary and monitoring report.
- 3. SECOR to discuss site path forward with the agency, including any required revisions to the work plan submitted approximately one year ago. After discussions, if no additional comments to the work plan are forthcoming, the proposed scope of work will be implemented within 60 days of discussion, as it has been well over 60 days since the work plan was first submitted.

Former 76 Station No. 7124 July 27, 2007 Page 5

LIMITATIONS

This report has been prepared for the exclusive use of ConocoPhillips and its representatives as it pertains to the property located at 10151 International Boulevard, Oakland, California. The evaluation of subsurface conditions at the site for the purpose of this investigation is inherently limited due to the number of points of investigation. There are no representations, warranties, or guarantees that the results are representative of the entire site. Data from this report reflects the conditions at locations at a specified time. No other interpretation, representations, warranties, guarantees, express or implied, are included or intended in the report findings. SECOR makes no warranties or guarantees for the groundwater monitoring report (Attachment 1) prepared by TRC.

Sincerely, **SECOR International Incorporated**

Ed Simonis P.G. Senior Geologist Wesley Snyder Staff Scientist

Attachment 1: TRC's *Quarterly Monitoring Report – April through June 2007*, dated April 26, 2007

ATTACHMENT 1 TRC'S QUARTERLY MONITORING REPORT APRIL THROUGH JUNE 2007

Quarterly Monitoring and Summary Report 76 Service Station No. 7124 10151 International Boulevard Oakland, California

Irvine, CA 92618 949.727.9336 PHONE

949.727.7399 FAX

www.TRCsolutions.com

- DATE: May 2, 2007
- TO: **ConocoPhillips** Company 76 Broadway Sacramento, CA 95818

ATTN: MR. ERIC HETRICK

- SITE: **76 STATION 7124** 10151 INTERNATIONAL BOULEVARD OAKLAND, CALIFORNIA
- RE: QUARTERLY MONITORING REPORT **APRIL THROUGH JUNE 2007**

Dear Mr. Hetrick:

Please find enclosed our Quarterly Monitoring Report for 76 Station 7124, located at 10151 International Bouelvard, Oakland, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Anju Farfan Groundwater Program Operations Manager

CC: Mr. Sean Coyle, SECOR International, Inc (2 copies)

Enclosures 200400/7124R015.QMS.doc

QUARTERLY MONITORING REPORT APRIL THROUGH JUNE 2007

76 STATION 7124 10151 International Boulevard Oakland, California

Prepared For:

Mr. Eric Hetrick CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

No. P_{G3531} CALIFO

Senior Project Géologist, Irvine Operations April 26, 2007

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key
	Contents of Tables
	Table 1: Current Fluid Levels and Selected Analytical Results
	Table 1a: Additional Current Analytical Results
	Table 2: Historic Fluid Levels and Selected Analytical Results
	Table 2a: Additional Historic Analytical Results
Figures	Figure 1: Vicinity Map
	Figure 2: Groundwater Elevation Contour Map
	Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map
	Figure 4: Dissolved-Phase Benzene Concentration Map
	Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time
	MTBE 8260B Concentrations vs. Time
Field Activities	General Field Procedures
	Field Monitoring Data Sheet $-4/4/07$
	Groundwater Sampling Field Notes – 4/4/07
Laboratory	Official Laboratory Reports
Reports	Quality Control Reports
	Chain of Custody Records
Statements	Purge Water Disposal
	Limitations

Summary of Gauging and Sampling Activities April 2007 through June 2007 76 Station 7124 10151 International Boulevard Oakland, CA

Project Coordinator: Eric Hetrick Telephone: 916-558-7604	Water Sampling Contractor: <i>TRC</i> Compiled by: Daniel Lee
Date(s) of Gauging/Sampling Event: 04/04/07	
Sample Points	
Groundwater wells:4 onsite,0 offsitePurging method:Submersible pumpPurge water disposal:Onyx/Rodeo Unit 100Other Sample Points:0Type: n/a	Wells gauged: 4 Wells sampled: 4
Liquid Phase Hydrocarbons (LPH) Wells with LPH: 0 Maximum thickness (feet): LPH removal frequency: n/a Treatment or disposal of water/LPH: n/a	n/a Method: n/a
Hydrogeologic Parameters	
 Depth to groundwater (below TOC): Minimum: Average groundwater elevation (relative to available Average change in groundwater elevation since present interpreted groundwater gradient and flow direction Current event: 0.03 ft/ft, southwest Previous event: 0.01 ft/ft, west (01/12/07) 	e local datum): 21.04 feet evious event: -0.03 feet n:
Selected Laboratory Results	
Wells with detected Benzene: 0 Maximum reported benzene concentration: n /	Wells above MCL (1.0 µg/l): n/a a
	Maximum: 1,700 μg/l (MW-3) Maximum: 650 μg/l (MW-3)

Notes:

TABLES

TABLE KEY

STANDAR	D ABI	BREVI	ATIONS
	=	not an	nalyzed, measured, or collected
LPH	=	liquid	-phase hydrocarbons
Trace		less th	nan 0.01 foot of LPH in well
ug/l			grams per liter (approx. equivalent to parts per billion, ppb)
mg/l			rams per liter (approx. equivalent to parts per million, ppm)
ND<	=	not de	etected at or above laboratory detection limit
TOC	=	top of	casing (surveyed reference elevation)
ANTAL XZTEP	C.		
ANALYTE: BTEX	2	=	benzene, toluene, ethylbenzene, and (total) xylenes
DIPE		_	di-isopropyl ether
ETBE		_	ethyl tertiary butyl ether
MTBE		=	methyl tertiary butyl ether
PCB		=	polychlorinated biphenyls
PCE		=	tetrachloroethene
TBA		=	tertiary butyl alcohol
TCA		=	trichloroethane
TCE			trichloroethene
TPH-G		=	total petroleum hydrocarbons with gasoline distinction
TPH-G (GC	(MS)	=	total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B
TPH-D	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		total petroleum hydrocarbons with diesel distinction
TRPH			total recoverable petroleum hydrocarbons
TAME		<u></u>	tertiary amyl methyl ether
1,1-DCA			1,1-dichloroethane
1,2-DCA			1,2-dichloroethane (same as EDC, ethylene dichloride)
1,1-DCE		=	1,1-dichloroethene
1,2-DCE		=	1,2-dichloroethene (cis- and trans-)
,			

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness</u>), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Groundwater vs. Time graphs may be corrected for apparent level changes due to resurvey

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 7124 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: 76 Station 7124

Current Event

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
Table 1a	Well/ Date	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME						
Historic D	ata													
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
Table 2a	Well/ Date	ТВА	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME					

Table 1 CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS April 4, 2007 76 Station 7124

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1 04/04/0	7 37.37	15.31	0.00	22.06	0.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-2 04/04/0	7 37.87	17.84	0.00	20.03	-0.77		110	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2.5	
MW-3 04/04/0	7 37.72	16.62	0.00	21.10	0.23		1700	ND<0.50	ND<0.50	ND<0.50	ND<0.50		650	
MW-4 04/04/0	7 38.36	17.40	0.00	20.96	0.17		460	ND<0.50	ND<0.50	ND<0.50	ND<0.50		41	

Table 1 aADDITIONAL CURRENT ANALYTICAL RESULTS76 Station 7124

Date Sampled	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1 04/04/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-2 04/04/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-3 04/04/07	130	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-4 04/04/07	260	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS April 2002 Through April 2007 76 Station 7124

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	ar
MW-1														
04/08/0	37.37	14.27	0.00	23.10		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	ND<2.0	
07/28/0	37.37	15.88	0.00	21.49	-1.61		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
11/03/0	37.37	16.75	0.00	20.62	-0.87		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/24/0	3 37.37	13.94	0.00	23.43	2.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
04/02/0	3 37.37	14.99	0.00	22.38	-1.05		460	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
07/01/0	3 37.37	15.48	0.00	21.89	-0.49		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
10/02/0	3 37.37	16.68	0.00	20.69	-1.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/09/0	37.37	13.79	0.00	23.58	2.89		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
04/26/0	37.37	15.21	0.00	22.16	-1.42		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
07/22/0	37.37	16.43	0.00	20.94	-1.22		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
10/29/0	37.37	16.14	0.00	21.23	0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
01/12/0	37.37	12.83	0.00	24.54	3.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/20/0	5 37.37	14.38	0.00	22.99	-1.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/23/0	5 37.37	15.92	0.00	21.45	-1.54		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/13/0	5 37.37	16.09	0.00	21.28	-0.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/24/0	6 37.37	11.85	0.00	25.52	4.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/30/0	6 37.37	13.30	0.00	24.07	-1.45		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
08/22/0	6 37.37	15.11	0.00	22.26	-1.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
10/31/0	6 37.37	16.11	0.00	21.26	-1.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
01/12/0	37.37	15.55	0.00	21.82	0.56		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
04/04/0	37.37	15.31	0.00	22.06	0.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-2 04/08/0)2 37.87	15.86	0.00	22.01		4400		ND<2.5	ND<2.5	6.4	ND<2.5	380	490	

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS April 2002 Through April 2007 76 Station 7124

-

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued													
07/28/0			0.00	20.59	-1.42		3200	ND<2.5	ND<2.5	ND<2.5	ND<5.0		170	
11/03/0	37.87	18.03	0.00	19.84	-0.75		3800	ND<5.0	ND<5.0	ND<5.0	ND<10		72	
01/24/0	37.87	15.59	0.00	22.28	2.44		410	ND<2.5	ND<2.5	ND<2.5	ND<5.0		490	
04/02/0	37.87	16.50	0.00	21.37	-0.91		1000	ND<5.0	ND<5.0	ND<5.0	ND<10		180	
07/01/0	37.87	16.94	0.00	20.93	-0.44		1900	ND<2.5	ND<2.5	ND<2.5	ND<5.0		120	
10/02/0	37.87	17.93	0.00	19.94	-0.99		6900	ND<0.50	ND<0.50	ND<0.50	ND<1.0		32	
01/09/0)4 37.87	15.42	0.00	22.45	2.51		1000	ND<2.5	ND<2.5	ND<2.5	ND<5.0		300	
04/26/0)4 37.87													Covered with asphalt
07/22/0	94 37.87													Covered with asphalt
10/29/0)4 37.87		0.00											Well is paved over.
01/12/0)5 37.87													Well was paved over.
06/20/0)5 37.87	15.94	0.00	21.93			120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		46	
09/23/0	5 37.87	17.29	0.00	20.58	-1.35		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		10	
12/13/0)5 37.87	17.41	0.00	20.46	-0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		11	
03/24/0	6 37.87	13.77	0.00	24.10	3.64		190	ND<0.50	ND<0.50	ND<0.50	ND<1.0		15	
05/30/0)6 37.87	15.16	0.00	22.71	-1.39		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.6	
08/22/0	6 37.87	16.49	0.00	21.38	-1.33		81	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.0	
10/31/0)6 37.87	17.15	0.00	20.72	-0.66		93	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2.0	
01/12/0)7 37.87	17.07	0.00	20.80	0.08		230	ND<0.50	ND<0.50	ND<0.50	ND<0.50		4.3	
04/04/0	07 37.87	17.84	0.00	20.03	-0.77		110	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2.5	
MW-3														
04/08/0)2 37.72	15.86	0.00	21.86		8700		65	ND<25	400	ND<25	6500	8300	
07/28/0)2 37.72	17.22	0.00	20.50	-1.36		4500	ND<25	ND<25	ND<25	ND<50		1100	
11/03/0)2 37.72	17.90	0.00	19.82	-0.68		25000	ND<5.0	ND<5.0	25	ND<10		470	
7124								Page	2 of 4					

Table 2HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTSApril 2002 Through April 200776 Station 7124

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevatior	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-3	continued													
01/24/0	37.72	15.57	0.00	22.15	2.33		6000	ND<25	ND<25	94	ND<50		10000	
04/02/0	37.72	16.45	0.00	21.27	-0.88		130000	ND<100	ND<100	ND<100	ND<200		4400	
07/01/0	37.72	16.88	0.00	20.84	-0.43		9400	ND<10	ND<10	ND<10	ND<20		2200	
10/02/0	37.72	17.85	0.00	19.87	-0.97		73000	ND<50	ND<50	ND<50	ND<100		460	
01/09/0)4 37.72	15.31	0.00	22.41	2.54		8700	ND<25	ND<25	98	ND<50		3800	
04/26/0	04 37.72	16.62	0.00	21.10	-1.31		6700	ND<25	ND<25	ND<25	ND<50		3900	
07/22/0)4 37.72	17.62	0.00	20.10	-1.00		13000	ND<25	ND<25	ND<25	ND<50		980	
10/29/0	04 37.72	17.29	0.00	20.43	0.33		4600	ND<5.0	ND<5.0	13	ND<10		640	
01/12/0)5 37.72	14.64	0.00	23.08	2.65		6100	0.88	0.99	30	2.2		6900	
06/20/0)5 37.72	15.91	0.00	21.81	-1.27		1900	ND<0.50	0.21J	0.52	0.46J		960	
09/23/0)5 37.72	17.20	0.00	20.52	-1.29		2400	ND<0.50	ND<0.50	ND<0.50	ND<1.0		160	
12/13/0)5 37.72	17.32	0.00	20.40	-0.12		2100	ND<2.5	ND<2.5	ND<2.5	ND<5.0		340	
03/24/0	6 37.72	13.86	0.00	23.86	3.46		2200	ND<5.0	ND<5.0	ND<5.0	ND<10		970	
05/30/0)6 37.72	15.69	0.00	22.03	-1.83		1500	ND<12	ND<12	ND<12	ND<25		760	
08/22/0)6 37.72	16.51	0.00	21.21	-0.82		1900	ND<0.50	ND<0.50	ND<0.50	ND<0.50		160	
10/31/0	6 37.72	17.36	0.00	20.36	-0.85		2200	ND<0.50	ND<0.50	ND<0.50	ND<0.50		58	
01/12/0	07 37.72	16.85	0.00	20.87	0.51		2600	ND<0.50	ND<0.50	ND<0.50	ND<0.50		680	
04/04/0)7 37.72	16.62	0.00	21.10	0.23		1700	ND<0.50	ND<0.50	ND<0.50	ND<0.50		650	
MW-4														
04/08/0	38.36	16.59	0.00	21.77		13000		ND<5.0	ND<5.0	28	ND<5.0	790	980	
07/28/0	38.36	17.93	0.00	20.43	-1.34		18000	ND<2.5	ND<2.5	ND<2.5	ND<5.0		170	
11/03/0	38.36	18.66	0.00	19.70	-0.73		220	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.7	
01/24/0	38.36	16.27	0.00	22.09	2.39		ND<1000	ND<10	ND<10	ND<10	ND<20		1000	
04/02/0)3 38.36	17.19	0.00	21.17	-0.92		130000	ND<100	ND<100	ND<100	ND<200		ND<400	
7104								Page	3 of 4					

Page 3 of 4

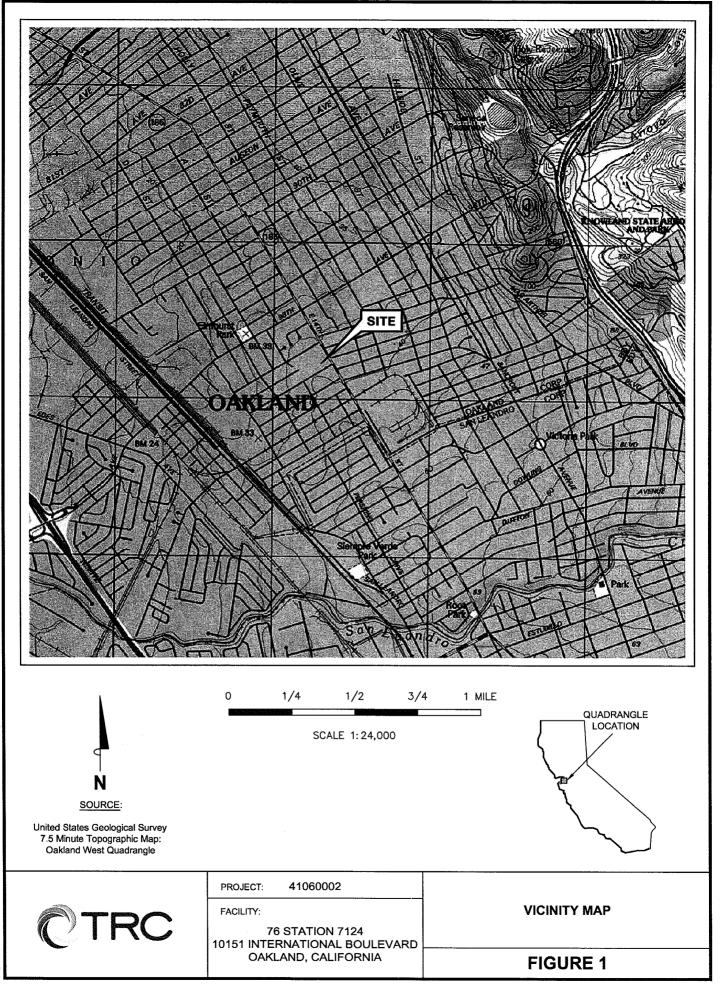
Table 2HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTSApril 2002 Through April 200776 Station 7124

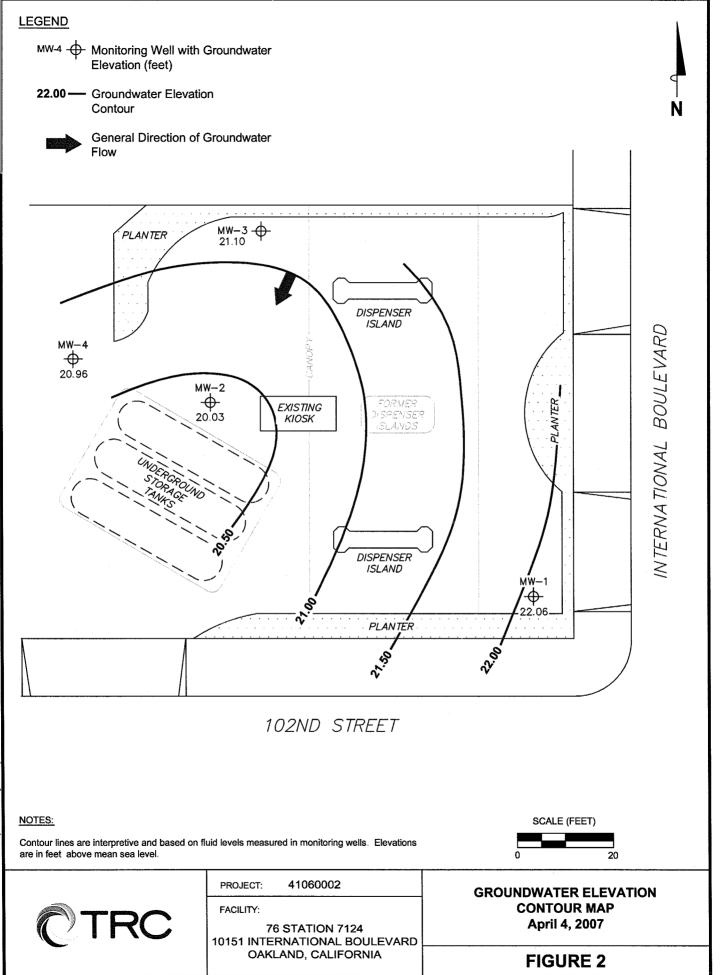
Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-4	continued	l												
07/01/0	38.36	17.61	0.00	20.75	-0.42		15000	ND<2.5	ND<2.5	ND<2.5	ND<5.0		170	
10/02/0	38.36	18.58	0.00	19.78	-0.97		7100	ND<10	ND<10	ND<10	ND<20		70	
01/09/0	38.36	16.15	0.00	22.21	2.43		18000	ND<10	ND<10	ND<10	ND<20		530	
04/26/0	38.36	17.20	0.00	21.16	-1.05		6500	ND<10	ND<10	ND<10	ND<20		240	
07/22/0	38.36	18.34	0.00	20.02	-1.14		18000	ND<10	ND<10	ND<10	ND<20		48	
10/29/0)4 38.36	18.13	0.00	20.23	0.21		2700	ND<2.5	ND<2.5	ND<2.5	ND<5.0		76	
01/12/0)5 38.36	15.22	0.00	23.14	2.91		1300	ND<0.50	ND<0.50	ND<0.50	ND<1.0		620	
06/20/0)5 38.36	16.63	0.00	21.73	-1.41		980	ND<0.50	ND<0.50	ND<0.50	ND<1.0		110	
09/23/0)5 38.36	17.93	0.00	20.43	-1.30		1500	ND<0.50	ND<0.50	ND<0.50	ND<1.0		34	
12/13/0)5 38.36	18.04	0.00	20.32	-0.11		3900	ND<0.50	ND<0.50	ND<0.50	ND<1.0		36	
03/24/0)6 38.36	14.48	0.00	23.88	3.56		1500	ND<12	ND<12	ND<12	ND<25		200	
05/30/0)6 38.36	15.79	0.00	22.57	-1.31		1200	ND<2.5	ND<2.5	ND<2.5	ND<5.0		130	
08/22/0	6 38.36	17.26	0.00	21.10	-1.47		980	ND<0.50	ND<0.50	ND<0.50	ND<0.50		33	
10/31/0)6 38.36	18.08	0.00	20.28	-0.82		1300	ND<0.50	ND<0.50	ND<0.50	ND<0.50		10	
01/12/0)7 38.36	17.57	0.00	20.79	0.51		820	ND<0.50	ND<0.50	ND<0.50	ND<0.50		28	
04/04/0	38.36	17.40	0.00	20.96	0.17		460	ND<0.50	ND<0.50	ND<0.50	ND<0.50		41	

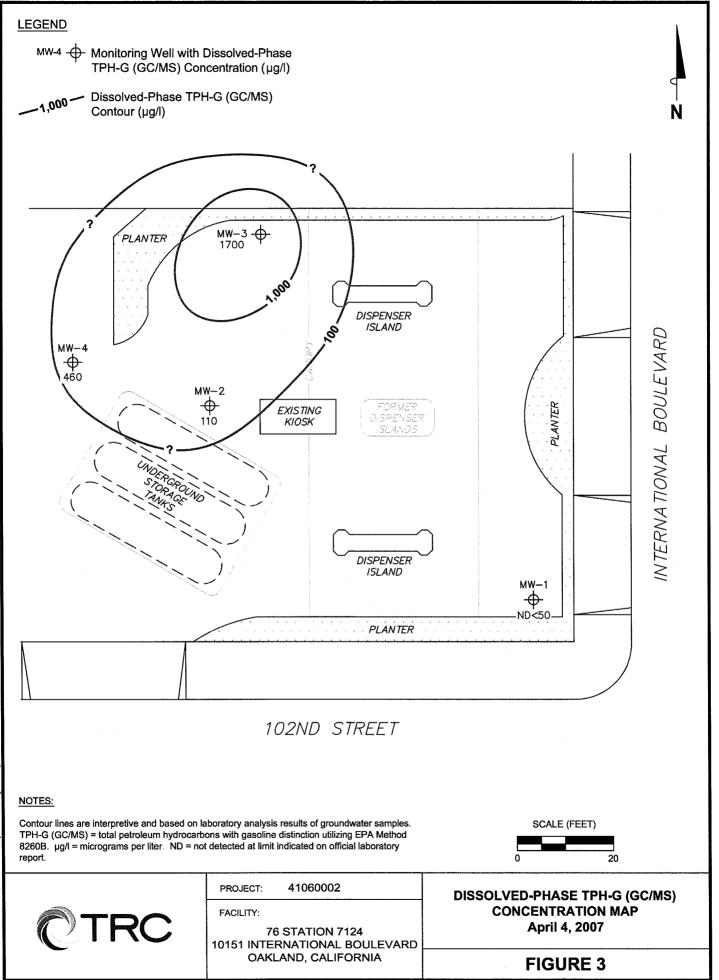
Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 7124

Date Sampled	TBA	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide	1,2-DCA (EDC)	DIPE	ETBE	TAME	
Sampica		(00152)	(02002)	(EDB)	(120)				
	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1									
07/28/02	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	
11/03/02	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	
01/24/03	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	
04/02/03	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	
07/01/03	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	
10/02/03	ND<100		ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	
01/09/04	ND<100		ND<500	ND<2	ND<2.0	ND<2	ND<2	ND<2	
04/26/04	ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	
07/22/04	ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	
10/29/04	ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	
01/12/05	ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	
06/20/05	ND<10		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
09/23/05	ND<10		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
12/13/05	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
03/24/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
05/30/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
08/22/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
10/31/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
01/12/07	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
04/04/07	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
MW-2									
04/08/02	ND<2000	ND<10000		ND<40	ND<40	ND<40	ND<40	ND<40	
07/28/02	ND<500	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10	
11/03/02	ND<1000	ND<5000		ND<20	ND<20	ND<20	ND<20	ND<20	
01/24/03	ND<500	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10	
04/02/03	ND<1000	ND<5000		ND<20	ND<20	ND<20	ND<20	ND<20	
7124							Page 1	l of 3	

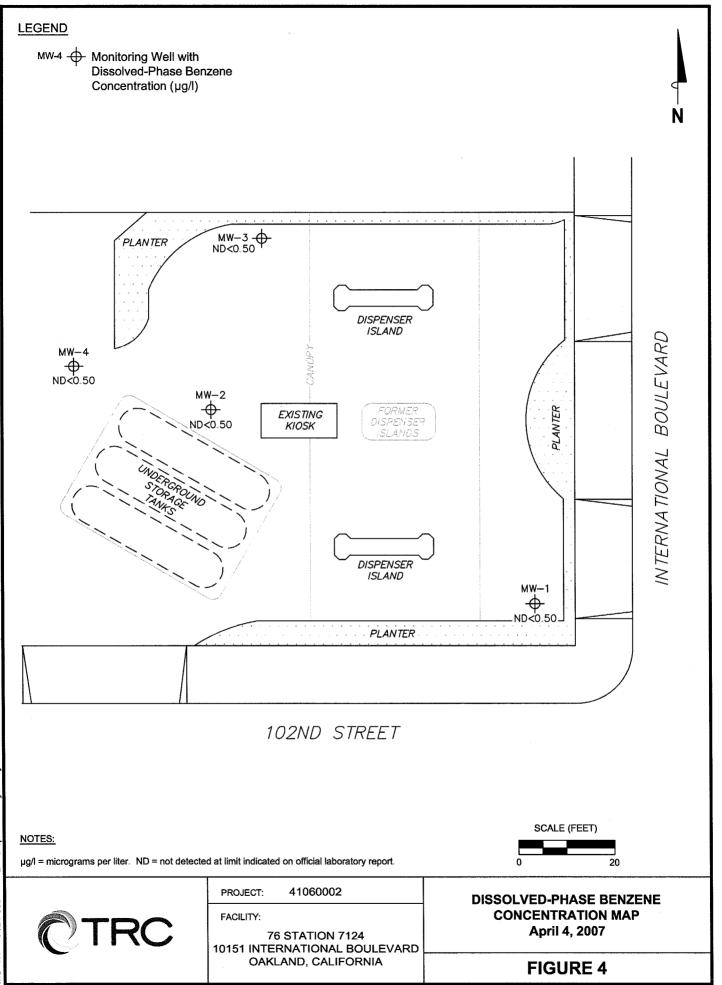
Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 7124

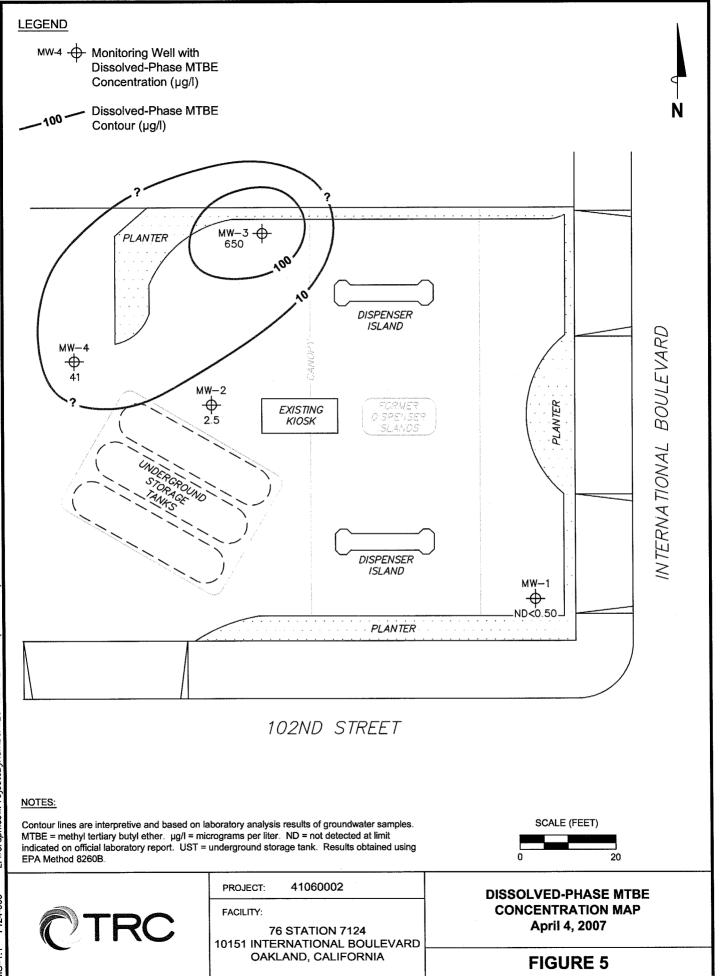

Date Sampled	TBA	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide	1,2-DCA (EDC)	DIPE	ETBE	TAME
F		` '	. ,	(EDB)	. /			
	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-2 c	ontinued							
07/01/03	ND<500	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10
10/02/03	ND<100		ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
01/09/04	ND<500		ND<2500	ND<10	ND<10	ND<10	ND<10	ND<10
06/20/05	25		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
09/23/05	ND<10		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
12/13/05	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
03/24/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
05/30/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
08/22/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
10/31/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
01/12/07	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
04/04/07	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-3								
10/02/03	ND<10000		ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200
01/09/04	ND<5000		ND<25000	ND<100	ND<100	ND<100	ND<100	ND<100
04/26/04	ND<250		ND<2500	ND<25	ND<25	ND<50	ND<25	ND<25
07/22/04			ND<2500	ND<25	ND<25	ND<50	ND<25	ND<25
10/29/04	ND<50		ND<500	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0
01/12/05	1300		ND<2500	ND<25	ND<25	ND<50	ND<25	ND<25
06/20/05	39		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.31J
09/23/05	ND<10		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
12/13/05	ND<50		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5
03/24/06			ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
	ND<250		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12
08/22/06			ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
10/31/06			ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
_ 0, 0 1, 00								


Page 2 of 3

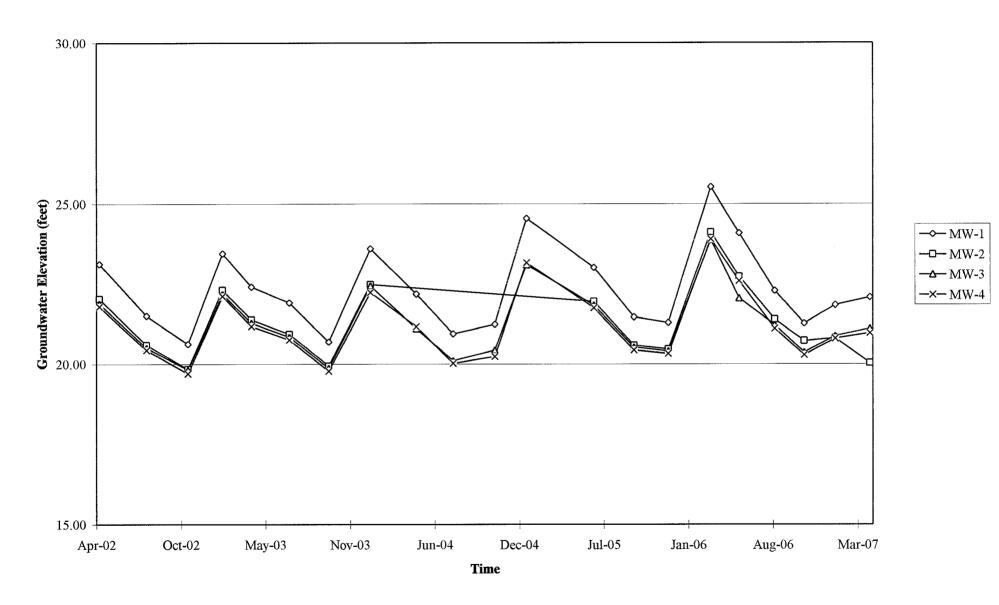

Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 7124

TBA	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME
(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
ontinued							
43		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
130		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<5000	ND<25000		ND<100	ND<100	ND<100	ND<100	ND<100
ND<500	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10
ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
ND<2000	ND<10000		ND<40	ND<40	ND<40	ND<40	ND<40
ND<20000	ND<100000		ND<400	ND<400	ND<400	ND<400	ND<400
ND<500	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10
ND<2000		ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40
ND<2000		ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40
430		ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10
ND<100		ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10
63		ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5
1300		ND<250	ND<10	ND<2.5	ND<5.0	ND<2.5	ND<2.5
580		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
92		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
50		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1900		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12
ND<50		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5
150		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
43		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
72		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
260		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	(μg/l) ontinued 43 130 ND<5000 ND<500 ND<2000 ND<2000 ND<2000 ND<2000 0 ND<2000 1300 63 1300 63 1300 580 92 50 1900 ND<500 150 43 72	(8015B) (μg/l) (mg/l) ontinued 43 130 ND<5000 ND<25000 ND<5000 ND<2500 ND<1000 ND<2500 ND<2000 ND<2500 ND<2000 ND<2000 ND<2000 ND<2000 430 ND<2000 430 580 92 500 1300 580 92 500 1900 150 43 43 43 43 43 43	(8015B) (8260B) (μg/l) (mg/l) (μg/l) ontinued ND<250 43 ND<250	(8015B)(8260B)dibromide (EDB) $(\mu g/l)$ (mg/l)($\mu g/l$)($\mu g/l$)($\mu g/l$)(mg/l)($\mu g/l$)($\mu g/l$)ontinuedND<250ND<0.5043ND<250ND<0.50130ND<250ND<0.50ND<500ND<2500ND<100ND<100ND<2500ND<10ND<100ND<500ND<40ND<2000ND<10000ND<400ND<2000ND<10000ND<400ND<2000ND<100ND<40ND<2000ND<1000ND<40ND<2000ND<1000ND<40ND<2000ND<1000ND<40ND<2000ND<1000ND<40ND<2000ND<1000ND<40ND<2000ND<1000ND<10ND<100ND<1000ND<10ND<100ND<250ND<1063ND<250ND<0.5092ND<1000ND<0.5092ND<250ND<0.501900ND<250ND<0.501900ND<250ND<0.5043ND<250ND<0.5043ND<250ND<0.5072ND<250ND<0.50	(8015B)(8260B)dibromide (EDB)(EDC) (EDB) (\mug/l) (mg/l)(\mug/l)(\mug/l)(\mug/l)ontinued 43ND<250	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(8015B)(8260B)dibromide (EDB)(EDC)($\mu g/l$)(mg/l)($\mu g/l$)ontinued 43ND<250ND<0.50ND<0.50ND<0.50ND<0.50ND<0.50130ND<2500ND<100ND<100ND<0.50ND<0.50ND<0.50ND<0.50ND<5000ND<25000ND<100ND<100ND<100ND<100ND<100ND<5000ND<2500ND<10ND<10ND<10ND<10ND<100ND<500ND<10ND<2.0ND<2.0ND<2.0ND<1000ND<1000ND<400ND<400ND<400ND<400ND<1000ND<100ND<10ND<10ND<10ND<10ND<2000ND<2000ND<10ND<10ND<10ND<10ND<2000ND<2000ND<10ND<10ND<10ND<10ND<2000ND<100ND<10ND<10ND<10ND<10ND<2000ND<100ND<10ND<10ND<10ND<10ND<2000ND<100ND<10ND<10ND<10ND<10ND<2000ND<100ND<10ND<10ND<10ND<10ND<2000ND<100ND<10ND<10ND<10ND<10ND<2000ND<100ND<10ND<10ND<10ND<10ND<2000ND<100ND<10ND<10ND<10ND<10ND<100 <t< td=""></t<>


FIGURES

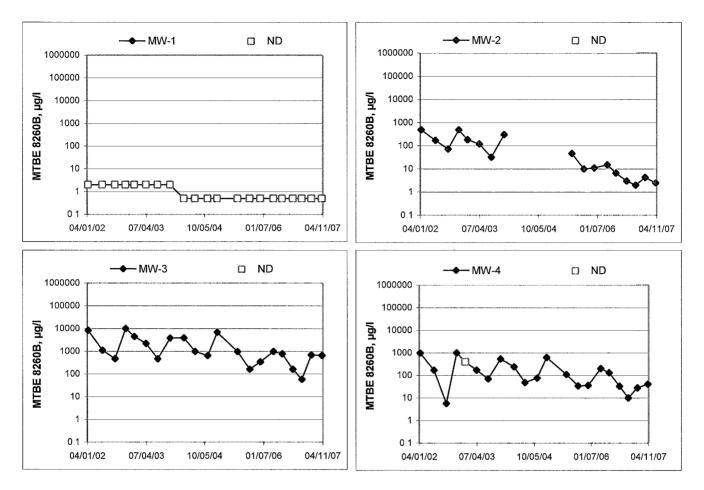


- 2:50pm cvuong 2007 Apr 23, 7124-003 MS=1:1


– 2:50pm cvuong 2007 Apr 23, 7124-003 MS=1:1

- 2:50pm cvuong 2007 L: EGraphics DProjectsByNumber 020-xxxx 020-0400(UnocalQMS) 0x-7000 07124+ 07124QMS.DWG Apr 23, 7124-003 MS=1:1

GRAPHS


Groundwater Elevations vs. Time 76 Station 7124

Elevations may have been corrected for apparent changes due to resurvey

MTBE 8260B Concentrations vs Time

76 Station 7124

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ¹/₂-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted are specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated to a particular wells, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

1/5/04 version

FIELD MONITORING DATA SHEET

Technician:	DAMEAN

Date: <u>4/4/07</u>

Site # <u>7124</u>.

Job #/Task #: <u>41060001/FAB0</u> Project Manager <u>SEAN Coyle</u>

Page _____ of _____

1

	Time		Total	Depth to	Depth to	Product Thickness	Time		
Well #	Gauged	тос	Depth	Water	Product	(feet)	Sampled	Misc. Well Notes	
MW-1	0612		24.98	15.31			0948	4"	
MW-2			25.45	17.84	~		1002	<i>4"</i>	
MW-4	0631		25.0	17.40	-		1010	41	
MW-3		nan a taun kunik penyakan kana kana kana kana kana kana kan	25.30	16.62	~		1032.	41.	
<u> 10/100 0</u>								and the second	
, and the other state of the state state of the state of								an a	
								a na analana manana ang manana na siya na manana manana manana manana na sa kata na sa kata na sa kata na sa k	
29 Mar - 20 Mar									
			- Construction of the Administration						
			1	and a survey of the second					
			<u>+</u>						
			1						
		1							
						n Carlon Contractor and a final final first contraction			
		1							
a fan seinifian a san fa 1944 yn na ad ad ad an		non a concernant in a second second						nen forst forst forst forstelle statement and an an angeler of the statement of the	
				anyan di kana da Tangan di Tangan di Kana da K					
								in a fair an	
			-					ለመጠና የሚሰር በግንድ ትርመታሪ ትርመታሪ ትርመታ ትርስ አስተዳር መደርገ ላይ የሳይላ ላይ ለመጠ እያለት የርጥ የሚሰር ላይ ላይ የመሆን መደርገ መለበር መታወቅ ትር በሆኑ	
			-					anna a searainn an an Salainn a an Sanain an Sanain an Sanain an Sanain an Sanain (1948) (1948) (1948) (1948) (
FIELD DAT	FIELD DATA COMPLETE QAJOC COC WELL BOX CONDITION SHEETS								
	-	and a course of	and the state of the		Peter mining rags problem in Clark 999.05	1	an ta para mangada ang ang ang ang ang ang ang ang ang an		
WTT CER	TIFICATE		MANIFE	EST	DRUM	VENTORY	TRA	AFFIC CONTROL	

GROUNDWATER SAMPLING FIELD NOTES

Technician: DAMTAN

Site: 7129	Project No.: 41060001/ FA30 Date: 4/4/07
Well No. <u>Mw-1</u>	Purge Method: SUB
Depth to Water (feet): 15-31	Depth to Product (feet):
Total Depth (feet) 24.98	LPH & Water Recovered (gallons):
Water Column (feet): 9.67	Casing Diameter (Inches): <u>Ý</u>
80% Recharge Depth(feet)	

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (FC)	pН	D.Q.	ORP	Turbidity
0749			6	445 M3	19.0	6.57			
Nor 1			12	441 MS	19.8	6:55			
	0806		18	444 MS	19.8	6.58			1
Stati	c at Time Sa	ampled	Tota	 al Gallons Pu	ged		Sample	Time	I
1545			18		0948.				
Comments	•						£		
								·	

Well No. MW-2 Depth to Water (feet): 17.84 Total Depth (feet) 23.45

Depth to Product (feet)

Water Column (feet) 761

80% Recharge Depth(feet): 19.36

LPH & Water Recovered (gallons):_____

Casing Diameter (Inches): 9

Purge Method: ______

1 Well Volume (gallons): 5.

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F, O)	рН	D.O.	ORP	Turbidity
0819.		5	5	475 MS	19.0	6.74			
		10	10	452 MS	200	6.61			
	0825.	15.	15	\$58 MS	20.5	662.			
Stati	c at Time Sa	impled	Tota	al Gallons Pu	rged		Sample	Time	(
	1680		15			100			
Comments	*								
		······································							

GROUNDWATER SAMPLING FIELD NOTES

Technician: DAMEAN

Site: 7/24

Project No : <u>41050001 / FARO</u> Date: <u>4/4/07</u>

Well No. MW-9

Purge Method: SUB

Depth to Water (feet): 17.40 Total Depth (feet) 25.00

Water Column (feet): 7.60.

80% Recharge Depth(feet): 18.92.

Depth to Product (feet):_____ LPH & Water Recovered (gallons): ---Casing Diameter (Inches): 9 1 Well Volume (gailons): <u>39</u>

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F,C)	рН	D.O.	ORP	Turbidity
0838			13	486 MS	20.5	671			
			26	483 MS	20.7	667			
	0856.		39	479 M5	207	6.70.			
L									
	<u> </u>	<u> </u>		l					
Stati	ic at Time Sa	ampled	Tota	al Gallons Pu	ged		Sample	Time	
			39			1010			······
Comments			IOCK FL	PR WEIL	CAP (M			1 70	BIE .

Well No. MW-3 Depth to Water (feet): 16.62.

Total Depth (feet) 35-30

Water Column (feet): 8-98

80% Recharge Depth(feet) 18-11

Purge Method: 508

Depth to Product (feet):_____

LPH & Water Recovered (gallons):_____

Casing Diameter (Inches): 9

1 Well Volume (gallons): ______

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F Ø	рН	D.O.	ORP	Turbidity
0905.	·		13	486 MS	20.3	6.64			
			26	493 MS	20.6	6.61			
	0925		39	495 MS.	20.5.	6-64-			
Stat	ic at Time Sa	ampled	Tota	al Gallons Pu	rged	I	L Sample	Time	[
-	1671		39			1032	· ·		
Comments	it								
						····			

Date of Report: 04/17/2007

Anju Farfan

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302

RE: 7124 BC Work Order: 0703998

Enclosed are the results of analyses for samples received by the laboratory on 04/04/2007 21:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Hooker **Client Service Rep**

. Burgara

Authorized Signature

TRC Alton Geos 21 Technology rvine, CA 9261	Drive		Project: 7124 Project Number: [none] Project Manager: Anju Farfan		Reported: 04/17/2007 13:34
		Laboratory	/ Client Sample Cross Ret	ference	
Laboratory	Client Sample Informat	ion			
0703998-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124 MW-1 MW-1 Damian B. of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	04/04/2007 21:10 04/04/2007 09:48 Water	Delivery Work Order: Global ID: T0600173591 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0703998-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124 MW-2 MW-2 Damian B. of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	04/04/2007 21:10 04/04/2007 10:02 Water	Delivery Work Order: Global ID: T0600173591 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0703998-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124 MW-4 MW-4 Damian B. of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	04/04/2007 21:10 04/04/2007 10:10 Water	Delivery Work Order: Global ID: T0600173591 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0703998-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124 MW-3 MW-3 Damian B. of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	04/04/2007 21:10 04/04/2007 10:32 Water	Delivery Work Order: Global ID: T0600173591 Matrix: W Samle QC Type (SACode): CS Cooler ID:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience 21 Technology Drive				ect Number						Repo	orted: 04/	17/2007 13:34
Irvine, CA 92618-2302				ct Manager								
	Vol	atile	Organic A	nalys	sis (E	EPA Met	hod	8260))			
BCL Sample ID: 0703998-0	01 Client Sam	ple Name	e: 7124, MW-1, MW-	1, 4/4/2007	9:48:00/	AM, Damian B.						
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495	ND	
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495	ND	
Toluene	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495	ND	
Ethanol	ND	ug/L	250	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495	ND	
1,2-Dichloroethane-d4 (Surrogate)	104	%	76 - 114 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495		
Toluene-d8 (Surrogate)	102	%	88 - 110 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495		
4-Bromofluorobenzene (Surrogate)	99.6	%	86 - 115 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 04:52	DKC	MS-V12	1	BQD0495		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience	Project: 7124	Reported: 04/17/2007 13:34
21 Technology Drive Irvine, CA 92618-2302	Project Number: [none] Project Manager: Anju Farfan	

BCL Sample ID: 0703998-02	Client Sam	ple Name	: 7124, MW-2, MV	/-2, 4/4/2007	10:02:00	AM, Damian B.						
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495	ND	
Methyl t-butyl ether	2.5	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495	ND	
Toluene	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495	ND	
Ethanol	ND	ug/L	250	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495	ND	
Total Purgeable Petroleum Hydrocarbons	110	ug/L	50	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495	ND	
1,2-Dichloroethane-d4 (Surrogate)	102	%	76 - 114 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495		
4-Bromofluorobenzene (Surrogate)	105	%	86 - 115 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 05:15	DKC	MS-V12	1	BQD0495		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience	Project: 7124	Reported: 04/17/2007 13:34
21 Technology Drive Irvine, CA 92618-2302	Project Number: [none] Project Manager: Anju Farfan	

BCL Sample ID: 0703998-03	Client Sam		: 7124, MW-4, MW	.,	Prep	AM, Damian B. Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495	ND	
Methyl t-butyl ether	41	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495	ND	
Toluene	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495	ND	
t-Butyl alcohol	260	ug/L	10	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495	ND	
Ethanol	ND	ug/L	250	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495	ND	
Total Purgeable Petroleum Hydrocarbons	460	ug/L	50	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495	ND	
1,2-Dichloroethane-d4 (Surrogate)	105	%	76 - 114 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495		
Toluene-d8 (Surrogate)	99.5	%	88 - 110 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495		
4-Bromofluorobenzene (Surrogate)	118	%	86 - 115 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 05:39	DKC	MS-V12	1	BQD0495		A19,S09

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience	Project: 7124	Reported: 04/17/2007 13:34
21 Technology Drive Irvine, CA 92618-2302	Project Number: [none] Project Manager: Anju Farfan	

					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495	ND	
Methyl t-butyl ether	650	ug/L	5.0	EPA-8260	04/13/07	04/14/07 23:42	DKC	MS-V12	10	BQD0495	ND	A01
Toluene	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495	ND	
t-Butyl alcohol	130	ug/L	10	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495	ND	
Ethanol	ND	ug/L	250	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495	ND	
Total Purgeable Petroleum Hydrocarbons	1700	ug/L	50	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495	ND	
1,2-Dichloroethane-d4 (Surrogate)	104	%	76 - 114 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495		
1,2-Dichloroethane-d4 (Surrogate)	97.7	%	76 - 114 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 23:42	DKC	MS-V12	10	BQD0495		
Toluene-d8 (Surrogate)	104	%	88 - 110 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 23:42	DKC	MS-V12	10	BQD0495		
4-Bromofluorobenzene (Surrogate)	98.6	%	86 - 115 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 23:42	DKC	MS-V12	10	BQD0495		
4-Bromofluorobenzene (Surrogate)	125	%	86 - 115 (LCL - UCL)	EPA-8260	04/13/07	04/14/07 06:03	DKC	MS-V12	1	BQD0495		A19,S09

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 7124	Reported: 04/17/2007 13:34
21 Technology Drive	Project Number: [none]	
Irvine, CA 92618-2302	Project Manager: Anju Farfan	

Quality Control Report - Precision & Accuracy

										<u>Contr</u>	<u>ol Limits</u>
Constituent	Batch ID	QC Sample Type	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery Lab Quals
Benzene	BQD0495	Matrix Spike	0703711-15	0	26.830	25.000	ug/L		107		70 - 130
		Matrix Spike Duplicat	e 0703711-15	0	27.150	25.000	ug/L	1.9	109	20	70 - 130
Toluene	BQD0495	Matrix Spike	0703711-15	0	26.580	25.000	ug/L		106		70 - 130
		Matrix Spike Duplicat	e 0703711-15	0	26.930	25.000	ug/L	1.9	108	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BQD0495	Matrix Spike	0703711-15	ND	10.510	10.000	ug/L		105		76 - 114
		Matrix Spike Duplicat	e 0703711-15	ND	9.8400	10.000	ug/L		98.4		76 - 114
Toluene-d8 (Surrogate)	BQD0495	Matrix Spike	0703711-15	ND	9.8400	10.000	ug/L		98.4		88 - 110
		Matrix Spike Duplicat	e 0703711-15	ND	9.9200	10.000	ug/L		99.2		88 - 110
4-Bromofluorobenzene (Surrogate)	BQD0495	Matrix Spike	0703711-15	ND	10.220	10.000	ug/L		102		86 - 115
		Matrix Spike Duplicat	e 0703711-15	ND	10.180	10.000	ug/L		102		86 - 115

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 7124	Reported: 04/17/2007 13:34
21 Technology Drive Irvine, CA 92618-2302	Project Number: [none] Project Manager: Anju Farfan	

Quality Control Report - Laboratory Control Sample

										<u>Control</u>	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BQD0495	BQD0495-BS1	LCS	26.620	25.000	0.50	ug/L	106		70 - 130		
Toluene	BQD0495	BQD0495-BS1	LCS	27.890	25.000	0.50	ug/L	112		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BQD0495	BQD0495-BS1	LCS	9.8200	10.000		ug/L	98.2		76 - 114		
Toluene-d8 (Surrogate)	BQD0495	BQD0495-BS1	LCS	10.110	10.000		ug/L	101		88 - 110		
4-Bromofluorobenzene (Surrogate)	BQD0495	BQD0495-BS1	LCS	10.500	10.000		ug/L	105		86 - 115		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Proj	F	Reported: 04	/17/2007 13:34			
Vo	latile Organic	Analysis (E	PA Metho	od 8260)		
	Quality Control I	• • •			•		
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BQD0495	BQD0495-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BQD0495	BQD0495-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BQD0495	BQD0495-BLK1	ND	ug/L	0.50		
Ethylbenzene	BQD0495	BQD0495-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BQD0495	BQD0495-BLK1	ND	ug/L	0.50		
Toluene	BQD0495	BQD0495-BLK1	ND	ug/L	0.50		
Total Xylenes	BQD0495	BQD0495-BLK1	ND	ug/L	0.50		
t-Amyl Methyl ether	BQD0495	BQD0495-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BQD0495	BQD0495-BLK1	ND	ug/L	10		
Diisopropyl ether	BQD0495	BQD0495-BLK1	ND	ug/L	0.50		
Ethanol	BQD0495	BQD0495-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BQD0495	BQD0495-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BQD0495	BQD0495-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BQD0495	BQD0495-BLK1	93.9	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BQD0495	BQD0495-BLK1	97.5	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BQD0495	BQD0495-BLK1	98.4	%	86 - 115	(LCL - UCL)	

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

21 Technol	ogy Drive Project Numb	ct: 7124 er: [none] er: Anju Farfan	Reported: 04/17/2007 13:34
Notes An	d Definitions		
MDL	Method Detection Limit		
ND	Analyte Not Detected at or above the reporting limit		
PQL	Practical Quantitation Limit		
RPD	Relative Percent Difference		
A01	PQL's and MDL's are raised due to sample dilution.		
A19	Surrogate is high due to matrix interference. Interferences verified through second extract	ion/analysis.	
S09	The surrogate recovery on the sample for this compound was not within the control limits.		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

BC LABORATORIES INC.			and the second of the second	PT FORM		v. No. 10		and a second second	1	<u> </u>		
Submission #: 07-6399	8 P	roject Co	ode:			ТВЕ	Batch #					
Submission #: 07563998 Project Code:												
Federal Express UPS Hand Delivery BC Lab Field Service Other (Specify)				SHIPPING CONTAINER Ice Chest I None I Box I Other I (Specify)								
Refrigerant: Ice 🛛 Blue Ice 🗆	None	Oth Oth	ner 🗆 👘	Commen	ts:				·			
	Containe Intact? Yes		None 🗹	Comme	nts:							
All samples received? Yes 🕰 No 🗆 🖌	All samples	containers	s intact? Y	ese No t	3	Descript	ion(s) mate	h COC? Y	∕es ⊘ No			
COC Received	Ice Chest ID Temperature:			\mathcal{R}/\mathcal{L} Emissivity <u>0.95</u> $\mathcal{O}^{\circ}C$ Container <u>$\sqrt{0.00}$</u>			. <u>95</u>	Date/Time <u>4/4/7</u> Analyst Init <u>Avre</u>				
	<u> </u>	Inermome	hermometer ID: 48									
SAMPLE CONTAINERS	1	2	3	4	SAMPLE 5	NUMBERS	7	8	9	10		
QT GENERAL MINERAL/ GENERAL PHYSICAL		_	<u>`</u>	 	`	1	<u> </u>	<u>_</u>	1			
QT GENERAL MINERALI GENERAL PHYSICAL PT PE UNPRESERVED				 		1						
QT INORGANIC CHEMICAL METALS				1								
PT INORGANIC CHEMICAL METALS												
PT CYANIDE												
PT NITROGEN FORMS												
PT TOTAL SULFIDE												
207. NITRATE / NITRITE												
100ml TOTAL ORGANIC CARBON												
οτ τοχ												
PT CHEMICAL OXYGEN DEMAND							<u> </u>	1				
PTA PHENOLICS												
40mi VOA VIAL TRAVEL BLANK									•			
40ml VOA VIAL	A.3	A (3)	A.3,	AIZ	()) ()	()	()) (()		
QT EPA 413.1, 413.2, 418.1												
PTODOR				، 								
RADIOLOGICAL									ļ			
BACTERIOLOGICAL									l	1		
40 mt VOA VIAL- 504									 			
QT EPA 508/608/8080				1	35	Į	;		ļ			
QT EPA 515.1/8150						ļ				-		
QT EPA 525				ļ		<u> </u>			 			
QT EPA 525 TRAVEL BLANK	ų "					<u> </u>		6	<u> </u>			
100ml EPA 547	i					 						
100ml EPA 531.1						 			<u> </u>			
QT EPA 548						<u> </u>			<u> </u>			
QT EPA 549						<u> </u>		 	 			
<u>) T EPA 632</u>	· · · ·			<u> </u>	<u> </u>							
QT EPA 8015M						┨─────						
91 QA/QC	·					 						
)T AMBER									,			
OZ. JAR						 			<u> </u>			
2 OZ. JAR									<u> </u>			
SOIL SLEEVE									<u> </u>			
PCB VIAL	-,					<u> </u>						
PLASTIC BAG						<u> </u>			 			
FERROUS IRON						<u> </u>						
ENCORE						ļ			1			

CAN Date/Time: 4/5/02 0940

07-03998

BC LABORATORIES, INC.

4100 Atlas Court D Bakersfield, CA 93308 (661) 327-4911 D FAX (661) 327-1918

CHAIN OF CUSTODY

								Analysis Requested								
Bill to: Conoco Phillips/ TRC Consultant Firm: TRC			MATRIX (GW)	ñ												
Address: 21 Techology Drive 10 ISI INTERNATIONAL BLVD Irvine, CA 92618-2302 Attn: Anju Farfan City: OAKLAND 4-digit site#: 7124 Workorder #01634-4507923519		Irvine, CA 92618-23	CA 92618-2302		, Gas by 801			nates	8260B					Time Requested		
		_ Soil (WW)	21B	N	TPH DIESEL by 8015	8260 full list w/ oxygenates	BTEX/MTBE/OXYS BY	ETHANOL by 8260B				Red				
		Workorder #01634-	Workorder #01634- 4507923519						TPH GAS by 8015M	-G by GC/MS	EDC		ime			
State: CA Zip:		Project #: 4106000	Project #: 41060001													
Conoco Phillips Mgr: ERIK HETRICK		CK Sampler Name: D	AMIAN	Sludge		SAS	E E S E S		MT	NOL	စ္	SHE SHE		Irou		
Lab#	Sample Description	Field Point Name	Date & Time Sampled		BTEX/MTBE by 8021B,	TPH	ТРН	8260	BTEX	ETHA	H	EDB		Turnaround		
	~ 1	MW-1	4/4/07 0948	6.W					\times	\mathbf{X}	\mathbf{X}	$\boldsymbol{\times}$		STP		
	- 2	MW-2	1002													
	<u> </u>	MW-4	1010	ļ										ļ		
		мш-3	V 1032						\mathbf{V}	1	\downarrow	V		<u></u>		
	n yang manana ang kang saka ta sanan da saka kang ta kang saka kang saka kang saka kang saka kang saka kang sa					1000000	СНК	BY	D	ISTR	IBUT	10N				
			n affred and a feature for a set of the set				SL	13))r							
						()										
Comments:	ТРН-9 ВУ СЦМ5; ВТЕХЛМ ОХУЅ ВУ 8260В, ЕДВЛЕ						eivec					e & Time	100	-7		
DY 8260	13): <i>10600173591</i>	- A Cal	D. Bracesauch Relinquished by: (Signature)			ERIG Received by:			log	$\begin{array}{c} 4/4/07 1237 \\ \text{Date & Time} \\ 4/4/07 1340 \end{array}$						
GLUDAL II	.,,,//	Relinquished by: (Relinquished by: (Signature)				Received by: Received by: RIRING				Date & Time 4-4-07 1800					
A) = ANAL)	(C) = CONTAIN	PRESE R (P) = PRESE	IRVATINE 4-4-	07 211	O	na si na	ā	hen				41417	21	110		

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by a licensed carrier, to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office. Purge water suspected of containing potentially hazardous material, such as liquid-phase hydrocarbons, was accumulated separately in a drum for transportation and disposal by others.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.