

SECOR INTERNATIONAL INCORPORATED www.secor.com 3017 Kilgore Road, Suite 100 Rancho Cordova, CA 95670 916-861-0400 TEL 916-861-0430 FAX

April 25, 2007

RECEIVED

2:21 pm, Aug 06, 2007

Alameda County Environmental Health

Ms. Donna Drogos, P.E. Alameda County Environmental Health Services 1131 Harbor Bay Parkway Suite 250 Alameda, CA 94502

RE: Quarterly Monitoring and Summary Report – First Quarter 2007

SECOR Project No.: 77CP.01634.03.0303

Dear Ms. Drogos:

On behalf of ConocoPhillips, SECOR International Incorporated (SECOR) is forwarding the quarterly summary report for the following location:

Service Station

Location

Former 76 Service Station No. 7124

10151 International Boulevard Oakland, California

If there are questions or comments regarding this quarterly summary report, please contact me at (916) 861-0400.

Sincerely,

SECOR International Incorporated

Sean Coyle

Project Manager

Attachments: SECOR's Quarterly Monitoring and Summary Report - First

Quarter 2007.

cc: Mr. Eric Hetrick, ConocoPhillips

QUARTERLY SUMMARY REPORT First Quarter 2007

Former 76 Service Station No. 7124 10151 International Boulevard Oakland, California

City/County ID #: Oakland
County: Alameda

SITE DESCRIPTION

The site is currently an active Royal Gasoline Station located on the northwestern corner of the intersection of International Boulevard and 102nd Avenue in Oakland, California. Site facilities include three underground storage tanks (USTs) and associated piping and fuel dispensers. A detailed site plan is included in TRC's *Quarterly Monitoring Report January through March 2007* dated February 5, 2007 (Attachment 1).

PREVIOUS ASSESSMENT

On March 22, 2000, SECOR supervised the removal and replacement of product lines and dispensers by Balch Petroleum of Milpitas, California. Soil samples collected from beneath the dispensers and product lines revealed the presence of total petroleum hydrocarbons as gasoline (TPHg) at a maximum concentration of 6,200 milligrams per kilogram (mg/kg), methyl tertiary butyl ether (MtBE) up to120 mg/kg, and up to 7.4 mg/kg. Excavation and sampling activities were observed and approved by Inspector Gomez of the City of Oakland Fire Services Agency.

On March 27, 2000, SECOR observed the over-excavation of approximately 60 cubic yards of soil from the beneath those portions of the dispensers and product lines where soil samples with elevated concentrations of petroleum hydrocarbons were located. Areas measuring approximately 8-10 feet long by 8-10 feet wide were over-excavated to an approximate depth of 8 feet below ground surface (bgs) in each of these areas. Additional over-excavation in these areas was not possible due to their proximity to the footings of the service station canopy. TPHg was detected in two of the three samples at a concentration of 108 mg/kg; benzene was detected in one of the three samples at 0.162 mg/kg; and MtBE was detected in all three samples at a maximum concentrations of up to 43.8 mg/kg. Lead was not detected at or above laboratory reporting limits in any samples.

During February 2002, SECOR supervised the installation of four on-site groundwater monitoring wells. Prior to well installation, all borings were advanced to 26.5 feet bgs, and subsurface soil samples were collected every five feet. Soil samples were analyzed for gasoline range organics (GRO), benzene, toluene, ethylbenzene, total xylenes (BTEX), and fuel oxygenates via EPA Method 8260B. The maximum reported concentrations were 42 mg/kg GRO, 0.36 mg/kg ethylbenzene, 0.26 mg/kg xylenes, and 1.2 mg/kg MtBE.

SENSITIVE RECEPTORS

During the third quarter 2004, SECOR completed a ½-mile radius agency receptor survey and obtained an Environmental Data Resources (EDR) radius map for the site from Environmental Data Resources, Incorporated. The agency survey identified two industrial supply wells, three cathodic protection wells, and two wells of unknown type within the search radius. The survey also identified twelve wells of unknown type that could not be located precisely because the records on file with DWR did not include this information. These wells may or may not be located within the search radius. The EDR radius map did not identify any water supply wells within the search radius, but did identify two water supply wells within one mile of the site.

MONITORING AND SAMPLING

The site has been monitored and sampled since the third quarter 2002. Currently, four wells are monitored quarterly (MW-1 through MW-4). Samples are analyzed for TPHg, BTEX, and the fuel oxygenates tert-butyl alcohol (TBA), MtBE, di-isopropyl ether (DIPE), ethyl tert-butyl ether (EtBE), tert-amyl methyl ether (TAME), and ethanol, as well as, ethylene di-bromide (EDB) by EPA Method 8260B.

DISCUSSION

During the first quarter 2007, depth to groundwater ranged between 15.55 and 17.57 feet below top of casing (toc), which is slightly lower than historical low levels. Historical groundwater depths have been reported between 15.11 and 17.26 feet below toc. The direction of groundwater flow is toward the west at a gradient of 0.01 foot/foot (Attachment 1).

The highest concentrations of petroleum hydrocarbons and MtBE continue to be detected in on-site wells MW-3 and MW-4. This quarter, the maximum concentrations of TPHg and MtBE were reported to be in well MW-3 at $2,600~\mu g/L$, and $680~\mu g/L$ respectively (Attachment 1); however, the reported TPPH concentrations may actually be MTBE, as the BC Laboratories includes MtBE in their TPPH concentrations. Lack of detectable levels of BTEX indicates that TPHg is probably not a major contaminant at the site. The downgradient/crossgradient extent of the dissolved plume remains undefined by the existing monitoring well network.

On October 14, 2004, SECOR submitted a work plan for the installation of monitoring wells offsite to delineate the dissolved phase hydrocarbons in groundwater; however, in a letter dated April 12, 2005, the Alameda County Environmental Health Services (ACEHS) disapproved the work plan stating that it was premature to install more monitoring wells without additional groundwater sampling to determine the location of the plume for optimal well locations. Therefore, an addendum to the October 14, 2004 work plan was submitted on July 22, 2005 and has never been approved.

CHARACTERIZATION STATUS

None of the groundwater samples collected showed detections at or above MCL levels for any BTEX components. The highest concentrations of residual MtBE contamination are localized in the northeastern area of the site in the vicinity of MW-3 and MW-4. The extent of dissolved contamination is undefined in the downgradient (northwest) direction, but MTBE concentrations continue declining, and variable TBA levels in MW-4 may indicate active degradation of MTBE.

REMEDIATION STATUS

Currently, there is no active remediation at this site.

RECENT SUBMITTALS/CORRESPONDENCE

Submitted: Quarterly Summary and Monitoring Report – Fourth Quarter 2006, dated January 29, 2007

WASTE DISPOSAL SUMMARY

The volume of purged groundwater generated and disposed of during the quarterly groundwater monitoring event is documented in TRC's *Quarterly Monitoring Report*, *January through March 2007*, dated February 5, 2007 (Attachment 1).

THIS QUARTER ACTIVITIES (First Quarter 2007)

- 1. TRC performed quarterly groundwater monitoring and sampling event.
- 2. SECOR prepared and submitted the fourth quarter 2006 summary report.

NEXT QUARTER ACTIVITIES (Second Quarter 2007)

- 1. TRC to perform coordinated groundwater monitoring and sampling event.
- 2. SECOR to prepare and submit quarterly summary and monitoring report.
- 3. SECOR to discuss site path forward with the agency, including any required revisions to the work plan submitted approximately one year ago. After discussions, if no additional comments to the work plan are forthcoming, the proposed scope of work will be implemented within 60 days of discussion, as it has been well over 60 days since the work plan was first submitted.

LIMITATIONS

This report has been prepared for the exclusive use of ConocoPhillips and its representatives as it pertains to the property located at 10151 International Boulevard, Oakland, California. The evaluation of subsurface conditions at the site for the purpose of this investigation is inherently limited due to the number of points of investigation. There are no representations, warranties, or guarantees that the results are representative of the entire site. Data from this report reflects the conditions at locations at a specified time. No other interpretation, representations, warranties, guarantees, express or implied, are included or intended in the report findings. SECOR makes no warranties or guarantees for the groundwater monitoring report (Attachment 1) prepared by TRC.

Sincerely,

SECOR International Incorporated

Ed Simonis P.G. Senior Geologist

THE ON THE STATE OF THE STATE O

Wesley Snyder Staff Scientist

Attachment 1: TRC's Quarterly Monitoring Report – January through March 2007, dated February 5, 2007

ATTACHMENT 1 TRC'S QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2007

Quarterly Monitoring and Summary Report 76 Service Station No. 7124 10151 International Boulevard Oakland, California

QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2007

76 STATION 7124 10151 International Boulevard Oakland, California

Prepared For:

Mr. Eric Hetrick CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

Senior Project Geologist, Irvine Operations February 5, 2007

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key
	Contents of Tables
	Table 1: Current Fluid Levels and Selected Analytical Results
	Table 1a: Additional Current Analytical Results
	Table 2: Historic Fluid Levels and Selected Analytical Results
	Table 2a: Additional Historic Analytical Results
Figures	Figure 1: Vicinity Map
	Figure 2: Groundwater Elevation Contour Map
	Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map
	Figure 4: Dissolved-Phase Benzene Concentration Map
	Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time
	MTBE 8260B Concentrations vs. Time
Field Activities	General Field Procedures
	Field Monitoring Data Sheet – 01/12/07
	Groundwater Sampling Field Notes – 01/12/07
Laboratory	Official Laboratory Reports
Reports	Quality Control Reports
	Chain of Custody Records
Statements	Purge Water Disposal
	Limitations

Summary of Gauging and Sampling Activities January 2007 through March 2007 76 Station 7124 10151 International Boulevard

10151 International Boulevar Oakland, CA

Project Coordinator: Eric Hetrick Telephone: 916-558-7604	Water Sampling Contractor: <i>TRC</i> Compiled by: Daniel Lee
Date(s) of Gauging/Sampling Event: 01/12/07	Complied by: Damer Lee
Sample Points	
Groundwater wells: 4 onsite, 0 offsite Purging method: Diaphragm pump Purge water disposal: Onyx/Rodeo Unit 100 Other Sample Points: 0 Type: n/a	Wells gauged: 4 Wells sampled: 4
Liquid Phase Hydrocarbons (LPH)	
Wells with LPH: 0 Maximum thickness (feet): n LPH removal frequency: n/a Treatment or disposal of water/LPH: n/a	/a Method: n/a
Hydrogeologic Parameters	
Depth to groundwater (below TOC): Minimum: 19 Average groundwater elevation (relative to available to availab	ocal datum): 21.07 feet
Selected Laboratory Results	
Wells with detected Benzene: 0 We Maximum reported benzene concentration: n/a	ells above MCL (1.0 µg/l): n/a
- · · · · · · · · · · · · · · · · · · ·	ximum: 2,600 μg/l (MW-3) ximum: 680 μg/l (MW-3)
Notes:	

TABLES

TABLE KEY

STANDARD ABBREVIATIONS

-- not analyzed, measured, or collected

LPH = liquid-phase hydrocarbons Trace = less than 0.01 foot of LPH in well

ug/l = micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l = milligrams per liter (approx. equivalent to parts per million, ppm)

ND< = not detected at or above laboratory detection limit TOC = top of casing (surveyed reference elevation)

ANALYTES

BTEX = benzene, toluene, ethylbenzene, and (total) xylenes

DIPE = di-isopropyl ether

ETBE = ethyl tertiary butyl ether

MTBE = methyl tertiary butyl ether

PCB = polychlorinated biphenyls

PCE = tetrachloroethene

TBA = tertiary butyl alcohol

TCA = tertiary butyl alco TCA = trichloroethane TCE = trichloroethene

TPH-G = total petroleum hydrocarbons with gasoline distinction

TPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B

TPH-D = total petroleum hydrocarbons with diesel distinction

TRPH = total recoverable petroleum hydrocarbons

TAME = tertiary amyl methyl ether 1,1-DCA = 1,1-dichloroethane

1,2-DCA = 1,2-dichloroethane (same as EDC, ethylene dichloride)

1,1-DCE = 1,1-dichloroethene

1,2-DCE = 1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness)</u>, where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Groundwater vs. Time graphs may be corrected for apparent level changes due to resurvey

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 7124 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: 76 Station 7124

Current E	vent													
Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015 M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
Table 1a	Well/ Date	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME						
Historic D	ata													
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
Table 2a	Well/ Date	TBA	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME					

Table 1
CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
January 12, 2007
76 Station 7124

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	
MW-1 01/12/0	7 37.37	15.55	0.00	21.82	0.56		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-2 01/12/0	7 37.87	17.07	0.00	20.80	0.08		230	ND<0.50	ND<0.50	ND<0.50	ND<0.50		4.3	
MW-3 01/12/0	7 37.72	16.85	0.00	20.87	0.51	. 	2600	ND<0.50	ND<0.50	ND<0.50	ND<0.50		680	
MW-4 01/12/0	7 38.36	17.57	0.00	20.79	0.51		820	ND<0.50	ND<0.50	ND<0.50	ND<0.50		28	

Table 1 a
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 7124

Date Sampled	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ЕТВЕ	TAME	
·	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1 01/12/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
MW-2 01/12/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
MW-3 01/12/07	43	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
MW-4 01/12/07	72	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
April 2002 Through January 2007
76 Station 7124

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1														
04/08/0	37.37	14.27	0.00	23.10		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	ND<2.0	
07/28/0	37.37	15.88	0.00	21.49	-1.61		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
11/03/0	37.37	16.75	0.00	20.62	-0.87		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/24/0	37.37	13.94	0.00	23.43	2.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
04/02/0	37.37	14.99	0.00	22.38	-1.05		460	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
07/01/0	37.37	15.48	0.00	21.89	-0.49		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
10/02/0	37.37	16.68	0.00	20.69	-1.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/09/0	37.37	13.79	0.00	23.58	2.89		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
04/26/0	37.37	15.21	0.00	22.16	-1.42		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
07/22/0	37.37	16.43	0.00	20.94	-1.22		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
10/29/0	37.37	16.14	0.00	21.23	0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
01/12/0	37.37	12.83	0.00	24.54	3.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/20/0	37.37	14.38	0.00	22.99	-1.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/23/0	37.37	15.92	0.00	21.45	-1.54		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/13/0	37.37	16.09	0.00	21.28	-0.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/24/0	37.37	11.85	0.00	25.52	4.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/30/0	6 37.37	13.30	0.00	24.07	-1.45		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
08/22/0	6 37.37	15.11	0.00	22.26	-1.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
10/31/0	6 37.37	16.11	0.00	21.26	-1.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
01/12/0	37.37	15.55	0.00	21.82	0.56		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-2														
04/08/0	37.87	15.86	0.00	22.01		4400		ND<2.5	ND<2.5	6.4	ND<2.5	380	490	
07/28/0	37.87	17.28	0.00	20.59	-1.42		3200	ND<2.5	ND<2.5	ND<2.5	ND<5.0		170	

Page 1 of 4

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
April 2002 Through January 2007
76 Station 7124

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	$(\mu g/l)$	
MW-2	continued													
11/03/0	37.87	18.03	0.00	19.84	-0.75		3800	ND<5.0	ND<5.0	ND<5.0	ND<10		72	
01/24/0	37.87	15.59	0.00	22.28	2.44		410	ND<2.5	ND<2.5	ND<2.5	ND<5.0		490	
04/02/0	37.87	16.50	0.00	21.37	-0.91		1000	ND<5.0	ND<5.0	ND<5.0	ND<10		180	
07/01/0	37.87	16.94	0.00	20.93	-0.44		1900	ND<2.5	ND<2.5	ND<2.5	ND<5.0		120	
10/02/0	37.87	17.93	0.00	19.94	-0.99		6900	ND<0.50	ND<0.50	ND<0.50	ND<1.0		32	
01/09/0	37.87	15.42	0.00	22.45	2.51	 ,	1000	ND<2.5	ND<2.5	ND<2.5	ND<5.0		300	
04/26/0	37.87													Covered with asphalt
07/22/0	37.87													Covered with asphalt
10/29/0	37.87		0.00											Well is paved over.
01/12/0	37.87													Well was paved over.
06/20/0	37.87	15.94	0.00	21.93			120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		46	
09/23/0	37.87	17.29	0.00	20.58	-1.35		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		10	
12/13/0	37.87	17.41	0.00	20.46	-0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		11	
03/24/0	06 37.87	13.77	0.00	24.10	3.64		190	ND<0.50	ND<0.50	ND<0.50	ND<1.0		15	
05/30/0	06 37.87	15.16	0.00	22.71	-1.39		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.6	
08/22/0	37.87	16.49	0.00	21.38	-1.33		81	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.0	
10/31/0	37.87	17.15	0.00	20.72	-0.66		93	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2.0	
01/12/0	37.87	17.07	0.00	20.80	0.08		230	ND<0.50	ND<0.50	ND<0.50	ND<0.50		4.3	
MW-3														
04/08/0	37.72	15.86	0.00	21.86		8700		65	ND<25	400	ND<25	6500	8300	
07/28/0	37.72	17.22	0.00	20.50	-1.36		4500	ND<25	ND<25	ND<25	ND<50		1100	
11/03/0	37.72	17.90	0.00	19.82	-0.68		25000	ND<5.0	ND<5.0	25	ND<10		470	
01/24/0	37.72	15.57	0.00	22.15	2.33		6000	ND<25	ND<25	94	ND<50		10000	
04/02/0	37.72	16.45	0.00	21.27	-0.88		130000	ND<100	ND<100	ND<100	ND<200		4400	
7124								Page 2	2 of 4					

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
April 2002 Through January 2007
76 Station 7124

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	$(\mu g/l)$	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	
MW-3	continued													
07/01/0	37.72	16.88	0.00	20.84	-0.43		9400	ND<10	ND<10	ND<10	ND<20		2200	
10/02/0	37.72	17.85	0.00	19.87	-0.97		73000	ND<50	ND<50	ND<50	ND<100		460	
01/09/0	37.72	15.31	0.00	22.41	2.54		8700	ND<25	ND<25	98	ND<50		3800	
04/26/0	37.72	16.62	0.00	21.10	-1.31		6700	ND<25	ND<25	ND<25	ND<50		3900	
07/22/0	37.72	17.62	0.00	20.10	-1.00		13000	ND<25	ND<25	ND<25	ND<50		980	
10/29/0	37.72	17.29	0.00	20.43	0.33		4600	ND<5.0	ND<5.0	13	ND<10		640	
01/12/0	37.72	14.64	0.00	23.08	2.65		6100	0.88	0.99	30	2.2		6900	
06/20/0	37.72	15.91	0.00	21.81	-1.27		1900	ND<0.50	0.21J	0.52	0.46J		960	
09/23/0	37.72	17.20	0.00	20.52	-1.29		2400	ND<0.50	ND<0.50	ND<0.50	ND<1.0		160	
12/13/0	37.72	17.32	0.00	20.40	-0.12		2100	ND<2.5	ND<2.5	ND<2.5	ND<5.0		340	
03/24/0	06 37.72	13.86	0.00	23.86	3.46		2200	ND<5.0	ND<5.0	ND<5.0	ND<10		970	
05/30/0	06 37.72	15.69	0.00	22.03	-1.83		1500	ND<12	ND<12	ND<12	ND<25		760	
08/22/0	06 37.72	16.51	0.00	21.21	-0.82		1900	ND<0.50	ND<0.50	ND<0.50	ND<0.50		160	
10/31/0	37.72	17.36	0.00	20.36	-0.85		2200	ND<0.50	ND<0.50	ND<0.50	ND<0.50		58	
01/12/0	37.72	16.85	0.00	20.87	0.51		2600	ND<0.50	ND<0.50	ND<0.50	ND<0.50		680	
MW-4														
04/08/0	38.36	16.59	0.00	21.77		13000		ND<5.0	ND<5.0	28	ND<5.0	790	980	
07/28/0	38.36	17.93	0.00	20.43	-1.34		18000	ND<2.5	ND<2.5	ND<2.5	ND<5.0		170	
11/03/0	38.36	18.66	0.00	19.70	-0.73		220	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.7	
01/24/0	38.36	16.27	0.00	22.09	2.39		ND<1000	ND<10	ND<10	ND<10	ND<20		1000	
04/02/0	38.36	17.19	0.00	21.17	-0.92		130000	ND<100	ND<100	ND<100	ND<200		ND<400	
07/01/0	38.36	17.61	0.00	20.75	-0.42		15000	ND<2.5	ND<2.5	ND<2.5	ND<5.0		170	
10/02/0	38.36	18.58	0.00	19.78	-0.97		7100	ND<10	ND<10	ND<10	ND<20		70	
01/09/0	38.36	16.15	0.00	22.21	2.43		18000	ND<10	ND<10	ND<10	ND<20		530	
7124								Page	3 of 4					

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
April 2002 Through January 2007
76 Station 7124

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	
MW-4	continued	l												
04/26/0	38.36	17.20	0.00	21.16	-1.05		6500	ND<10	ND<10	ND<10	ND<20		240	
07/22/0	38.36	18.34	0.00	20.02	-1.14		18000	ND<10	ND<10	ND<10	ND<20		48	
10/29/0	38.36	18.13	0.00	20.23	0.21		2700	ND<2.5	ND<2.5	ND<2.5	ND<5.0		76	
01/12/0	38.36	15.22	0.00	23.14	2.91		1300	ND<0.50	ND<0.50	ND<0.50	ND<1.0		620	
06/20/0	38.36	16.63	0.00	21.73	-1.41		980	ND<0.50	ND<0.50	ND<0.50	ND<1.0		110	
09/23/0	38.36	17.93	0.00	20.43	-1.30		1500	ND<0.50	ND<0.50	ND<0.50	ND<1.0		34	
12/13/0	38.36	18.04	0.00	20.32	-0.11		3900	ND<0.50	ND<0.50	ND<0.50	ND<1.0		36	
03/24/0	38.36	14.48	0.00	23.88	3.56		1500	ND<12	ND<12	ND<12	ND<25		200	
05/30/0	38.36	15.79	0.00	22.57	-1.31		1200	ND<2.5	ND<2.5	ND<2.5	ND<5.0		130	
08/22/0	38.36	17.26	0.00	21.10	-1.47		980	ND<0.50	ND<0.50	ND<0.50	ND<0.50		33	
10/31/0	38.36	18.08	0.00	20.28	-0.82		1300	ND<0.50	ND<0.50	ND<0.50	ND<0.50		10	
01/12/0	38.36	17.57	0.00	20.79	0.51		820	ND<0.50	ND<0.50	ND<0.50	ND<0.50		28	

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7124

Date Sampled	TBA	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME				
	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)				
MW-1												
	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
11/03/02	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
01/24/03	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
04/02/03	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
07/01/03	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
10/02/03	ND<100		ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
01/09/04	ND<100		ND<500	ND<2	ND<2.0	ND<2	ND<2	ND<2				
04/26/04	ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
07/22/04	ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
10/29/04	ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
01/12/05	ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
06/20/05	ND<10		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
09/23/05	ND<10		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
12/13/05	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
03/24/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
05/30/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
08/22/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
10/31/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
01/12/07	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
MW-2												
04/08/02	ND<2000	ND<10000		ND<40	ND<40	ND<40	ND<40	ND<40				
07/28/02	ND<500	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10				
11/03/02	ND<1000	ND<5000		ND<20	ND<20	ND<20	ND<20	ND<20				
01/24/03	ND<500	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10				
04/02/03	ND<1000	ND<5000		ND<20	ND<20	ND<20	ND<20	ND<20				
07/01/03	ND<500	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10				
7124							Page 1	of 3				

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7124

Date Sampled	TBA	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME
	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-2	continued							
10/02/03	ND<100		ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
01/09/04	ND<500		ND<2500	ND<10	ND<10	ND<10	ND<10	ND<10
06/20/05	25		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
09/23/05	ND<10		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
12/13/05	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
03/24/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
05/30/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
08/22/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
10/31/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
01/12/07	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
34337 2								
MW-3 10/02/03	ND<10000		ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200
01/09/04	ND<5000		ND<25000	ND<100	ND<100	ND<100	ND<100	ND<100
04/26/04	ND<250		ND<2500	ND<25	ND<25	ND<50	ND<25	ND<25
07/22/04	ND<250		ND<2500	ND<25	ND<25	ND<50	ND<25	ND<25
10/29/04			ND<500	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0
01/12/05	1300		ND<2500	ND<25	ND<25	ND<50	ND<25	ND<25
06/20/05	39		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.31J
09/23/05	ND<10		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
12/13/05	ND<50		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5
	ND<100		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
	ND<250		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12
08/22/06			ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
10/31/06	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
01/12/07	43		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

MW-4

Page 2 of 3

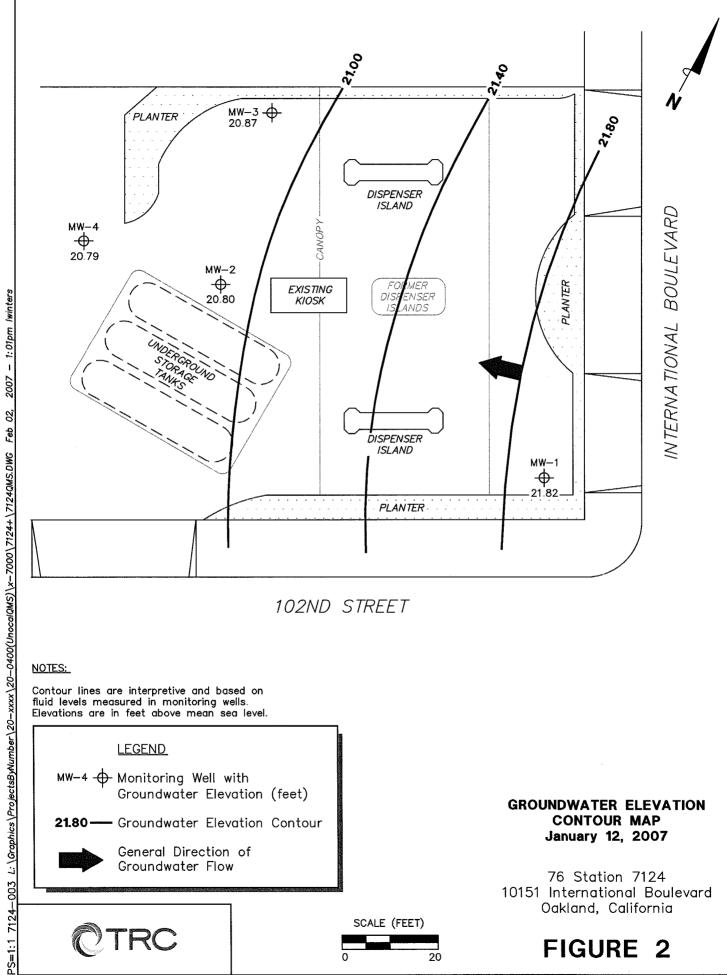
Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7124

Date Sampled	TBA	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME		
	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	$(\mu g/l)$	(µg/l)	(µg/l)		
MW-4	continued									
04/08/02	ND<5000	ND<25000		ND<100	ND<100	ND<100	ND<100	ND<100		
07/28/02	ND<500	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10		
, 11/03/02	ND<100	ND<500		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		
01/24/03	ND<2000	ND<10000		ND<40	ND<40	ND<40	ND<40	ND<40		
04/02/03	ND<20000	ND<100000		ND<400	ND<400	ND<400	ND<400	ND<400		
07/01/03	ND<500	ND<2500		ND<10	ND<10	ND<10	ND<10	ND<10		
10/02/03	ND<2000		ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40		
01/09/04	ND<2000		ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40		
04/26/04	430		ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10		
07/22/04	ND<100		ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10		
10/29/04	63		ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5		
01/12/05	1300		ND<250	ND<10	ND<2.5	ND<5.0	ND<2.5	ND<2.5		
06/20/05	580		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
09/23/05	92		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
12/13/05	50		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
03/24/06	1900		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12		
05/30/06	ND<50		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5		
08/22/06	150		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
10/31/06	43		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
01/12/07	72		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		

PS = 1:1 L: \ V I C I N I T Y M A P S\7124vm.dwg Feb 02, 2007 - 12:58pm lwinters

SOURCE:

United States Geological Survey 7.5 Minute Topographic Map: Oakland West Quadrangle



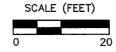
SCALE 1:24,000

VICINITY MAP

76 Station 7124 10151 International Boulevard Oakland, California

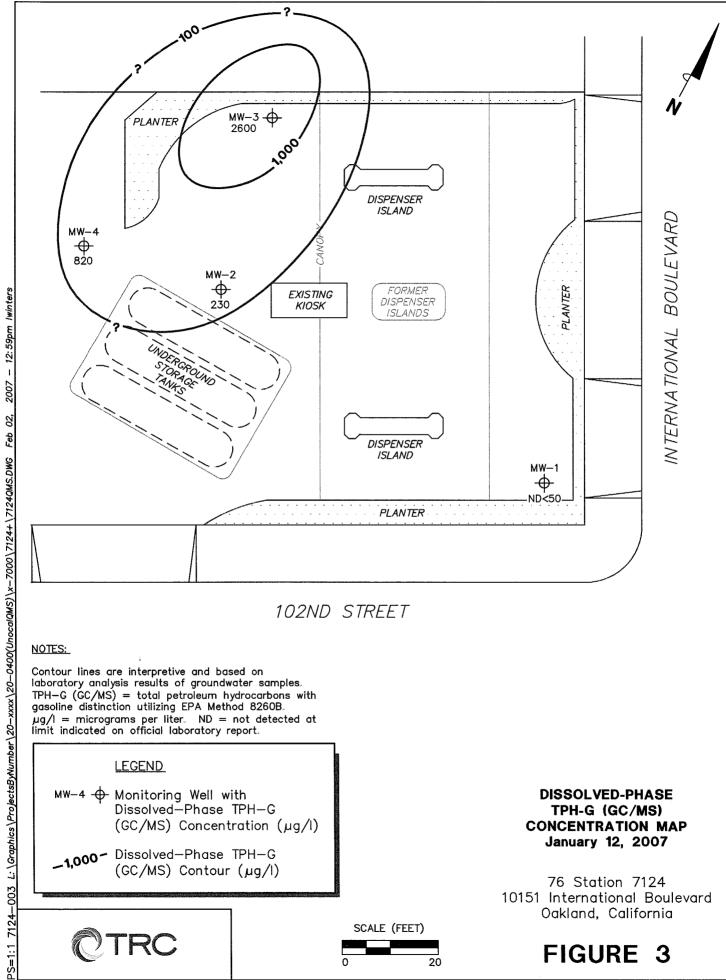
NOTES:

Contour lines are interpretive and based on fluid levels measured in monitoring wells. Elevations are in feet above mean sea level.


LEGEND

MW-4 → Monitoring Well with Groundwater Elevation (feet)

Groundwater Elevation Contour



General Direction of Groundwater Flow

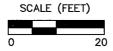
GROUNDWATER ELEVATION CONTOUR MAP January 12, 2007

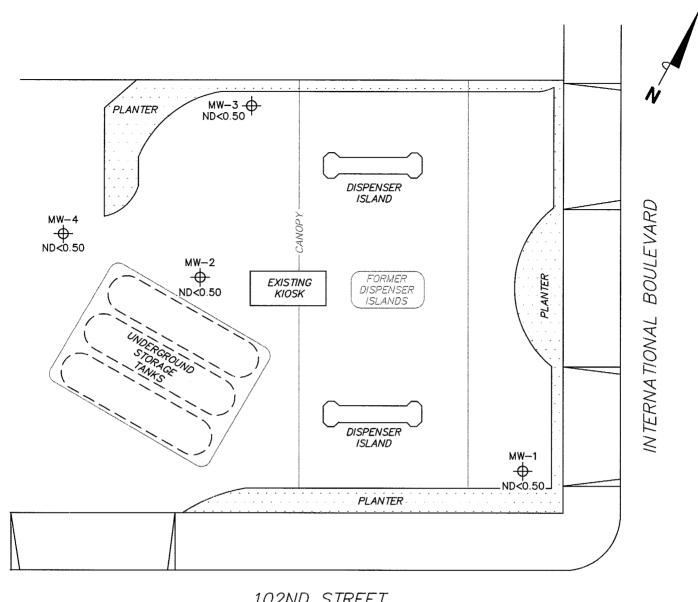
76 Station 7124 10151 International Boulevard Oakland, California

NOTES:

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. TPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B. $\mu g/l = micrograms$ per liter. ND = not detected at limit indicated on official laboratory report.

LEGEND


MW-4 → Monitoring Well with Dissolved-Phase TPH-G (GC/MS) Concentration (µg/I)


_1,000 - Dissolved-Phase TPH-G (GC/MS) Contour (µg/I)

DISSOLVED-PHASE TPH-G (GC/MS) **CONCENTRATION MAP** January 12, 2007

76 Station 7124 10151 International Boulevard Oakland, California

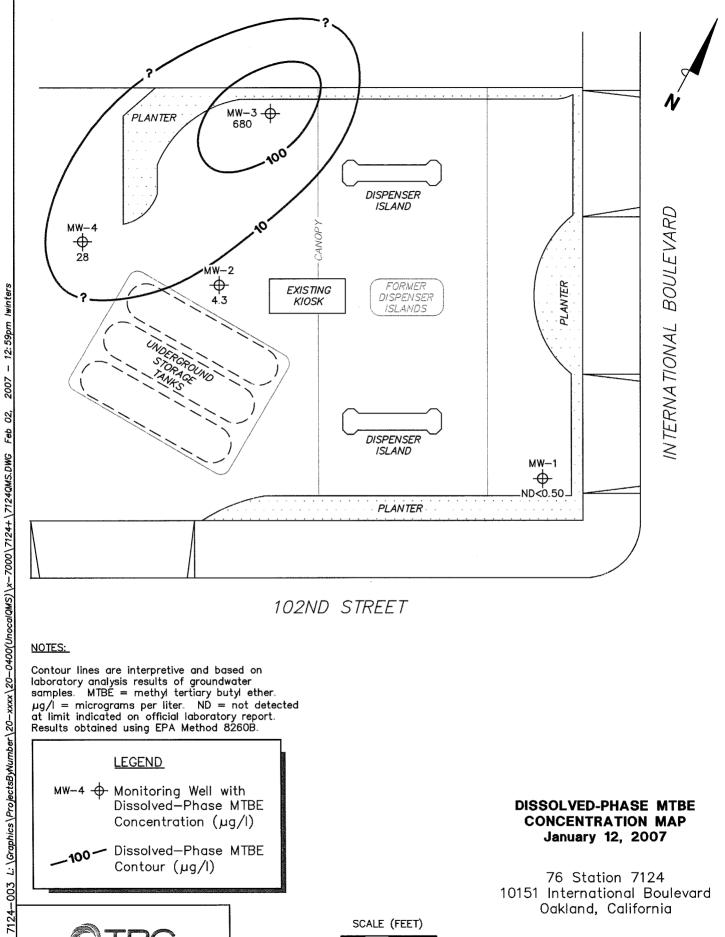
NOTES:

PS=1:1 7124-003 L:\Graphics\ProjectsByNumber\20-xxxx\20-0400(UnocalQMS)\x-7000\7124+\7124GMS.DWG Feb 02,

2007 - 12:59pm lwinters

 $\mu g/l =$ micrograms per liter. ND = not detected at limit indicated on official laboratory report.

LEGEND


MW-4

→ Monitoring Well with Dissolved-Phase Benzene Concentration (µg/I)

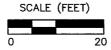
SCALE (FEET)

DISSOLVED-PHASE BENZENE CONCENTRATION MAP January 12, 2007

76 Station 7124 10151 International Boulevard Oakland, California

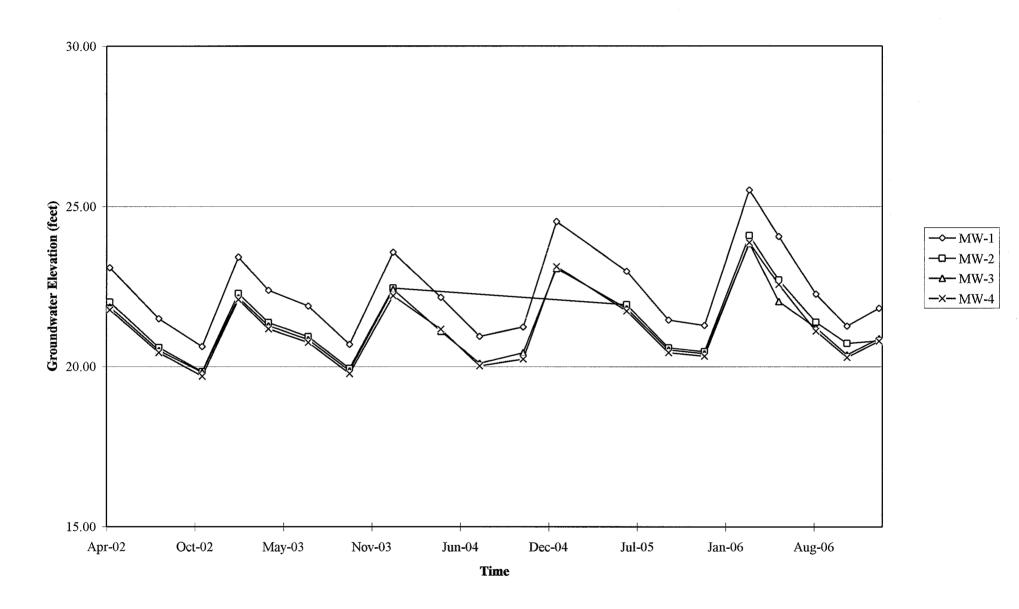
NOTES:

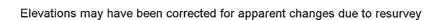
Contour lines are interpretive and based on laboratory analysis results of groundwater samples. MTBE = methyl tertiary butyl ether.


µg/l = micrograms per liter. ND = not detected at limit indicated on official laboratory report. Results obtained using EPA Method 8260B.

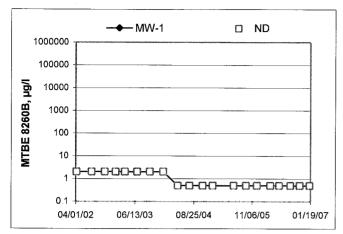
LEGEND Concentration (µg/I) 100 - Dissolved-Phase MTBE Contour (µg/I)

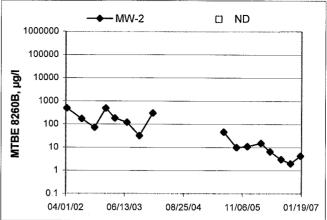
DISSOLVED-PHASE MTBE CONCENTRATION MAP January 12, 2007

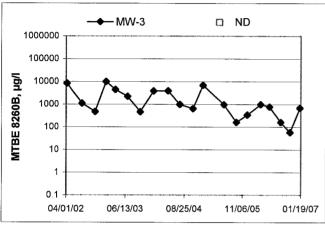

76 Station 7124 10151 International Boulevard Oakland, California

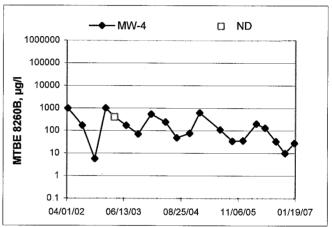


GRAPHS


Groundwater Elevations vs. Time 76 Station 7124






MTBE 8260B Concentrations vs Time

76 Station 7124

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted are specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated to a particular wells, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

1/5/04 version

FIELD MONITORING DATA SHEET

 Technician: JoE
 Job #/Task #: 4/06000/
 Date: 0/-/2-07

 Site # 7124
 Project Manager A . Collins
 Page 1 of 1

	Time		Total	Depth to	Depth to Product	Product Thickness (feet)	Time Sampled	े। Misc. Well Notes
Well #	Gauged		Depth	Water	riouuci	(reer)		4"
MW-1	1102	X	24.75				1150	4
MW-2	1107	X		17.07			1215	4"
MW-2 MW-4	1112	X	24.95	17.57			1235	4"
MW-3	1117	X	25.15	16.85			1255	4"
								
				<u> </u>				
					The same			
								4.
		ļ	ļ					
								The second secon
	_							
	1,			<u></u>				<u></u>
FIELD DA	ТА СОМРІ	LETE	QA/Q	<u>/</u>	COC		WELL BOX (CONDITION SHEETS
WTT CER	TIEICATE	Christian die Elija dirijaan ja Og	MANIFI	 	חפוואוו	NYENTORY	TO	AFFIC CONTROL
NI OER	HINDAIE		MANAILI		DHOW! II	VENIONI	117/	ALLO OURTHOL

GROUNDWATER SAMPLING FIELD NOTES

		Ted	chnician:	JOE	-	****		e.	• .
Site:	24	Pro	ject No.: 4	1106000	<u> </u>	J.	Date	01-1	2-07
Depth to W Total Depth Water Colu	n (feet) ımn (feet):	-4 17.57 24.95 7.38 pet): 19.04		LPH & Wate	od:	gallons):			
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons) 5 / 0 / 5	Conductivity (uS/cm) 542,4 551.4 552.8	Temperature (F,C) 17,4 18,3 16.6	pH 7.43 7.12 6.92	D.O.	ORP	Turbidity
Stat	ic at Time Sa 17,80		Tot	al Gallons Pur	ged		Sample 235		
Depth to Wa Total Depth Water Colui	(feet)	16.85 25.,15		Depth to Prod LPH & Water	Recovered (g	allons):			
Time Start	Time Stop	Depth to Water	Volume Purged	Conduc- tivity	Temperature	рН	D.O.	ORP	Turbidity

Comments			10)		t	433		
17.10			14			1255			
Stat	ic at Time Sa	mpled	Tota	al Gallons Pur	ged	·	Sample	Time	<u> </u>
	<u> </u>								
					·				
	1230		18	586.5	17.8	6.67			
	1250		12	577.6		6.68			
1246			6	573.4	16.0	6.90			
	Stop	(feet)	(gallons)	(uS/cm)	(F(C))	p: t	D.O.	URP	Turbidit
Time Start	Time Stop	Depth to Water	Volume Purged	Conduc- tivity	Temperature	pН	D.O.	ORP	Turkidia

GROUNDWATER SAMPLING FIELD NOTES

		Te	chnician:	JOE	-					
Site: 7 1	24	Pro	pject No.: <u>4</u>	106000	<u> </u>		Date:	01-1	2-07	
Well No	Mw-	/	Purge Metho	od: D.Z.	4		······			
Depth to W	/ater (feet):_	15.55	Depth to Product (feet): LPH & Water Recovered (gallons): Casing Diameter (Inches):							
Total Depti	h (feet)	24.75								
Water Colu	ımn (feet):	9,2								
80% Rech	arge Depth(f	eet): 17.3	9	1 Well Volum	ne (gallons):	6				
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (FC)	pН	D.O.	ORP	Turbidity	
1140	-		6	470.3	16.5	6.87				
	1144		12	504,8	15.3	6.91				
	1117		7.0	307.8	/ /-/	6.80				
Stat	ic at Time S	ampled	Tot	al Gallons Pu	aed		Sample	Time		
	15.82		18	1150						
Comments	S:									
Well No	Mw-	2		Purge Metho	d D7/4	1				
Depth to W	ater (feet):	17-07	Para de la compansa d	Depth to Pro	duct (feet):	_				
		25.30		LPH & Water Recovered (gallons):						
Water Colu	mn (feet):	8,23		Casing Diameter (Inches): 4" 1 Well Volume (gallons): 6						
80% Recha	rge Depth(fe	eet): <u>/3.7/</u>		1 Well Volum	e (gallons):	6				
									- 65	
Time	Time	Depth to	Volume	Conduc-	_ I	Т	 1			

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (FC)	pН	D.O.	ORP	Turbidity	
1203			6	522,5	17.4	7.16		 		
			12	533.7	18.3	6.94				
	1206		18	537.9	18,5	6.83				
Stati	c at Time Sa	mpled	Tota	l al Gallons Pur	ged		Sample	I Time	<u> </u>	
17.22 Comments:			18			1215				
Comments	•			-						

Date of Report: 01/22/2007

Anju Farfan

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302

RE: 7124

BC Work Order: 0700609

Enclosed are the results of analyses for samples received by the laboratory on 01/16/2007 21:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Hooker

Client Service Rep

Authorized Signature

Project: 7124

Project Number: [none]
Project Manager: Anju Farfan

Reported: 01/22/2007 13:05

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informat	tion			
0700609-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124 MW-1 MW-1 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/16/2007 21:40 01/12/2007 11:50 Water	Delivery Work Order: Global ID: T0600173591 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0700609-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124 MW-2 MW-2 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/16/2007 21:40 01/12/2007 12:15 Water	Delivery Work Order: Global ID: T0600173591 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0700609-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7124 MW-4 MW-4 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/16/2007 21:40 01/12/2007 12:35 Water	Delivery Work Order: Global ID: T0600173591 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0700609-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	7124 MW-3 MW-3 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/16/2007 21:40 01/12/2007 12:55 Water	Delivery Work Order: Global ID: T0600173591 Matrix: W Samle QC Type (SACode): CS Cooler ID:

Project: 7124

Project Number: [none]

Project Manager: Anju Farfan

Reported: 01/22/2007 13:05

BCL Sample ID: 0700609-01	Client Sam	ple Name	e: 7124, MW-1, MW-	-1, 1/12/200	7 11:50:0	0AM, Joe						
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878		
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878		
Ethylbenzene	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878	ND	
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878	ND	
Toluene	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878	ND	
Ethanol	ND	ug/L	250	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878	ND	***************************************
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878	ND	
1,2-Dichloroethane-d4 (Surrogate)	108	%	76 - 114 (LCL - UCL)	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878		
Toluene-d8 (Surrogate)	99.6	%	88 - 110 (LCL - UCL)	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878		
4-Bromofluorobenzene (Surrogate)	100	%	86 - 115 (LCL - UCL)	EPA-8260	01/17/07	01/18/07 03:05	DKC	MS-V12	1	BQA0878		•

Project: 7124

Project Number: [none]

Project Manager: Anju Farfan

Reported: 01/22/2007 13:05

BCL Sample ID: 0700609-02	Onent Sam	pie Hallie	e: 7124, MW-2, MW	2, 1/12/200		0PM, Joe Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Prep Date	Date/Time	Analvst	ment ID	Dilution	હું Batch ID	Bias	Lab Quals
Benzene	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878		
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878	THE TOTAL CONTRACTOR OF THE STREET, AND ASSESSMENT OF THE STREET,	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878	ND	***************************************
Methyl t-butyl ether	4.3	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878	ND	
Toluene	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878	ND	*****
t-Butyl alcohol	ND	ug/L	10	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878	ND	
Ethanol	ND	ug/L	250	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878	ND	
Total Purgeable Petroleum Hydrocarbons	230	ug/L	50	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878	ND	
1,2-Dichloroethane-d4 (Surrogate)	108	%	76 - 114 (LCL - UCL)	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878		W
Toluene-d8 (Surrogate)	99.1	%	88 - 110 (LCL - UCL)	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878		4 1
4-Bromofluorobenzene (Surrogate)	114	%	86 - 115 (LCL - UCL)	EPA-8260	01/17/07	01/18/07 03:30	DKC	MS-V12	1	BQA0878	THE COURSE SERVICE SAME AND ADDRESS OF THE COURSE SERVICE SERV	

Project: 7124

Project Number: [none]
Project Manager: Anju Farfan

Reported: 01/22/2007 13:05

BCL Sample ID: 0700609-03	Client Sam	ple Name	e: 7124, MW-4, MW	'-4, 1/12/200	7 12:35:0	0PM, Joe						
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878		
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878		
Ethylbenzene	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878	ND	
Methyl t-butyl ether	28	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878	ND	-
Toluene	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878	ND	7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878	ND	
t-Butyl alcohol	72	ug/L	10	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878	ND	and the second section of the section of t
Ethanol	ND	ug/L	250	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878	ND	
Total Purgeable Petroleum Hydrocarbons	820	ug/L	50	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878	ND	
1,2-Dichloroethane-d4 (Surrogate)	109	%	76 - 114 (LCL - UCL)	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878		
Toluene-d8 (Surrogate)	102	%	88 - 110 (LCL - UCL)	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878		
4-Bromofluorobenzene (Surrogate)	136	%	86 - 115 (LCL - UCL)	EPA-8260	01/17/07	01/18/07 03:56	DKC	MS-V12	1	BQA0878	**************************************	S09

Project: 7124

Project Number: [none]
Project Manager: Anju Farfan

Reported: 01/22/2007 13:05

BCL Sample ID: 0700609-04	Client Sam	pie Name	e: 7124, MW-3, MW-	-3, 1/12/200		0PM, Joe		la a face				1 - t
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878	ND	Quais
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878		
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878		
Ethylbenzene	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878	ND	
Methyl t-butyl ether	680	ug/L	5.0	EPA-8260	01/17/07	01/19/07 17:46	SDU	MS-V12	10	BQA0878	ND	A01
Toluene	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878	ND	
t-Butyl alcohol	43	ug/L	10	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878	ND	
Ethanol	ND	ug/L	250	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878	ND	
Total Purgeable Petroleum Hydrocarbons	2600	ug/L	500	EPA-8260	01/17/07	01/19/07 17:46	SDU	MS-V12	10	BQA0878	ND	A01
1,2-Dichloroethane-d4 (Surrogate)	111	%	76 - 114 (LCL - UCL)	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878		
1,2-Dichloroethane-d4 (Surrogate)	106	%	76 - 114 (LCL - UCL)	EPA-8260	01/17/07	01/19/07 17:46	SDU	MS-V12	10	BQA0878		
Toluene-d8 (Surrogate)	103	%	88 - 110 (LCL - UCL)	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878		
Toluene-d8 (Surrogate)	99.9	%	88 - 110 (LCL - UCL)	EPA-8260	01/17/07	01/19/07 17:46	SDU	MS-V12	10	BQA0878		
4-Bromofluorobenzene (Surrogate)	102	%	86 - 115 (LCL - UCL)	EPA-8260	01/17/07	01/19/07 17:46	SDU	MS-V12	10	BQA0878		
4-Bromofluorobenzene (Surrogate)	138	%	86 - 115 (LCL - UCL)	EPA-8260	01/17/07	01/18/07 04:22	DKC	MS-V12	1	BQA0878	Marin 1 had a 111 hours on will all a delicions because help sond	S09

Project: 7124

Project Number: [none]

Project Manager: Anju Farfan

Reported: 01/22/2007 13:05

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

, and the second					•				Control Limits			
Constituent	Batch ID	QC Sample Type	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery Lab Quals	
Benzene	BQA0878	Matrix Spike	0700515-01	0	25.520	25.000	ug/L		102		70 - 130	
		Matrix Spike Duplicat	e 0700515-01	0	25.570	25.000	ug/L	0	102	20	70 - 130	
Toluene	BQA0878	Matrix Spike	0700515-01	0	24.920	25.000	ug/L		99.7		70 - 130	
		Matrix Spike Duplicat	e 0700515-01	0	25.180	25.000	ug/L	1.3	101	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	BQA0878	Matrix Spike	0700515-01	ND	10.030	10.000	ug/L		100	7777 7411731 1	76 - 114	
TO MANAGEMENT OF THE PROPERTY		Matrix Spike Duplicat	e 0700515-01	ND	10.230	10.000	ug/L		102		76 - 114	
Toluene-d8 (Surrogate)	BQA0878	Matrix Spike	0700515-01	ND	10.040	10.000	ug/L		100		88 - 110	
		Matrix Spike Duplicat	e 0700515-01	ND	10.130	10.000	ug/L		101		88 - 110	
4-Bromofluorobenzene (Surrogate)	BQA0878	Matrix Spike	0700515-01	ND	10.300	10.000	ug/L		103		86 - 115	
		Matrix Spike Duplicat	e 0700515-01	ND	10.060	10.000	ug/L		101		86 - 115	

Project: 7124

Project Number: [none]

Project Manager: Anju Farfan

Reported: 01/22/2007 13:05

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

enzene oluene							•			Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BQA0878	BQA0878-BS1	LCS	25.920	25.000	1.0	ug/L	104		70 - 130		
Toluene	BQA0878	BQA0878-BS1	LCS	25.620	25.000	1.0	ug/L	102		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BQA0878	BQA0878-BS1	LCS	10.110	10.000		ug/L	101		76 - 114		
Toluene-d8 (Surrogate)	BQA0878	BQA0878-BS1	LCS	9.9700	10.000		ug/L	99.7		88 - 110		
4-Bromofluorobenzene (Surrogate)	BQA0878	BQA0878-BS1	LCS	10.030	10.000		ug/L	100		86 - 115		····

Project: 7124

Project Number: [none]
Project Manager: Anju Farfan

Reported: 01/22/2007 13:05

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BQA0878	BQA0878-BLK1	ND	ug/L	1.0		
Ethylbenzene	BQA0878	BQA0878-BLK1	ND	ug/L	1.0		5 The Control of State of Stat
Methyl t-butyl ether	BQA0878	BQA0878-BLK1	ND	ug/L	2.0		
Toluene	BQA0878	BQA0878-BLK1	ND	ug/L	1.0		
Total Xylenes	BQA0878	BQA0878-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BQA0878	BQA0878-BLK1	ND	ug/L	2.0		
t-Butyl alcohol	BQA0878	BQA0878-BLK1	ND	ug/L	10		
Diisopropyl ether	BQA0878	BQA0878-BLK1	ND	ug/L	2.0		
Ethanol	BQA0878	BQA0878-BLK1	ND	ug/L	1000		
Ethyl t-butyl ether	BQA0878	BQA0878-BLK1	ND	ug/L	2.0		the of the community community and an experience of the community of the c
Total Purgeable Petroleum Hydrocarbons	BQA0878	BQA0878-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BQA0878	BQA0878-BLK1	103	%	76 - 114 (LCL - UCL)	
Toluene-d8 (Surrogate)	BQA0878	BQA0878-BLK1	97.7	%	88 - 110 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BQA0878	BQA0878-BLK1	104	%	86 - 115 (LCL - UCL)	

TRC Alton Geoscience

21 Technology Drive

Project: 7124

Reported: 01/22/2007 13:05

Irvine, CA 92618-2302

Project Number: [none]

Project Manager: Anju Farfan

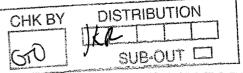
Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

Practical Quantitation Limit PQL RPD Relative Percent Difference

A01 PQL's and MDL's are raised due to sample dilution.


S09 The surrogate recovery on the sample for this compound was not within the control limits.

BC LABORATORIES INC.		SAMI	PLE RECE	IPT FOR	M	Rev. No. 10	01/21/	04 Pa	ge <u> </u>	f (
Submission #: 07-00609	P	roject Co	de:			TB B	atch #			
SHIPPING INFOR	MATION						G CONTA			
Federal Express □ UPS □	Hand Del	ivery 🛘	I		Ice Chest		None		:c1	
BC Lab Field Service Other C] (Specify)			Box	U	Other	□ (Spec	шуу	
Refrigerant: Ice ☐ Blue Ice ☐	None	O:	ther 🗆	Comme	nts:					
	Containe	rsП	None 🗹	Comme	nts:					
Intact? Yes 🗆 No 🗇	Intact? Yes									
	All sample	s container:	intact? Y	es D No	0	Description	on(s) match	COC? Ye	s No E]
CQC Received		ice Ci	est ID	RIW	Emiss	ivity <u>0</u>	.95	Date/Tin	ne <u>///b</u> /	07
✓YES □ NO	I	Temper Thermome	ature: <u>3</u>	.6 .c	Conta	iner <u>V</u> 0	9	Analyst	Init Hi	ià
<i>y</i> 123 2.110			Analyst and Jive							
TARRES CONTAINERS					SAMPLE N				9	10
SAMPLE CONTAINERS		2	3	4	5	6 -		8		10
OT GENERAL MINERAL/ GENERAL PHYSICAL										· .
PT PE UNPRESERVED										
OT INORGANIC CHEMICAL METALS										
PT INORGANIC CHEMICAL METALS										
PT CYANIDE PT NITROGEN FORMS										
PT TOTAL SULFIDE										
ZOZ. NITRATE / NITRITE										
100ml TOTAL ORGANIC CARBON				,						
QT TOX	.									
PT CHEMICAL OXYGEN DEMAND	<u></u>									
PLA PHENOLICS										
40mi VOA VIAL TRAVEL BLANK				~ 7						
40mi YOA VIAL	A13	A13.	A 131	8 3	()		()	- ' '	(- (
QT EPA 413.1, 413.2, 418.1			· · · · · · · · · · · · · · · · · · ·							
PT ODOR										<u></u>
RADIOLOGICAL										
BACTERIOLOGICAL				•						
40 mi VOA VIAL- 504	<u> </u>			,',						
OT EPA 508/608/8080	l									
OT EPA 515.1/8150										
OT EPA 525	1			<u> </u>						ii.
OT EPA 525 TRAVEL BLANK										
100ml EPA 547 100ml EPA 531.1										
OT EPA 548										
QT EPA 549										ļ
QT EPA 632									<u> </u>	<u> </u>
OT EPA 8015M										ļ
QT QA/QC						<u> </u>			<u></u>	
QT AMBER								<u> </u>		
8 OZ. JAR							 	<u> </u>	 	
32 OZ. JAR		ļ				 	 		 	
SOIL SLEEVE	!					 		 	 	+
PCB VIAL			L		ļ				 	+
PLASTIC BAG]						ļ			
FERROUS IRON	 	ļ	ļ		 	ļ	 		 	
ENCORE	ļ				 	 		 	 	-
	<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	!	1			
Comments:		_		·						

#07-00609

BC LABORATORIES, INC.

4100 Atlas Court □ Bakersfield, CA 93308 (661) 327-4911 □ FAX (661) 327-1918

CHAIN OF CUSTODY

							Analysis Requested										
	onoco Phillips/TRC 10151 Internation! Blvd.	Consultant Firm: TR 21 Techology Drive Irvine, CA 92618-230 Attn: Anju Farfan			MATRIX (GW) Ground- water (S)	Gas by 8015			oxygenates	BY 8260B					sted		
City: O	akland	4-digit site#: 7124 Workorder # ₀₁₆₃₄ - 4566			Soil (WW) Waste- water	by 8021B, (8015M	by 8015	8260 full list w/ MTBE &	BTEX/MTBE/OXYS BY 8	ETHANOL by 8260B	GC/MS	PX 8260B		Time Requested		
State: C/A	Zip:	Project #: 4106000			(SL)				ist v	BEK	by.	Ö	1				
Conoco P	Phillips Mgr: Kosel	Sampler Name: Jo		IS	Sludge	/MT	GAS	DIESEL		TW.	ğ	-G by	70.3		Inon		
Lab#	Sample Description	Field Point Name	Date & Samp			BTEX/MTBE	TPH (HAL	8260	ВТЕХ	ЕТНА	TPH-	E08/E0C		Turnaround		
		Mu-1	01-12-07	1150	Gw					\times	\times	\geq	X		STD		
-2 -3 -4		mw-2	01-12-07	1215	Gw					\times	X	\geq	X		57.0		
-3		mu-4	01-12-07	1235	Gw					\geq	\boxtimes	\geq	X		STD		
-4		mu-3	01-12-57	1255	Gw					X	\times	X	M		570		
Connments:	l	Relinquished by: (S	ignature)	D .	Sevin	2		eived	•	e1TC1			e & Tin		55		
GLOBAL IE	D: T0600173591	Relinquished by: (Si	ignature)	D	Seile- 1/16/07			dived eivel	YUD L	afg.		11	e & Tin	7/4	750		
A) = ANALY	SIS (C) = CONTAINE	R (P) = PRESER	VATIVE	(h)	элэг барнаан хайган нагайн дон хагссан басган ханцаган.	:	El	Of se	N)	52			1/1	blor	2140		

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by a licensed carrier, to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office. Purge water suspected of containing potentially hazardous material, such as liquid-phase hydrocarbons, was accumulated separately in a drum for transportation and disposal by others.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.