

RECEIVED

2:20 pm, Feb 08, 2008

Alameda County Environmental Health

January 14, 2008

Mr. Jerry Wickham Alameda County Health Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Fourth Quarter 2007 Groundwater Monitoring Report

New West Stations Livermore - Bernard's Gas

1051 Airway Boulevard Livermore, California

Dear Mr. Wickham:

On behalf of New West Stations, Inc. (New West), Closure Solutions, Incorporated (Closure Solutions) is submitting the *Fourth Quarter 2007 Groundwater Monitoring Report* for the New West facility, located at 1051 Airway Boulevard, in Livermore, California

If you have any questions regarding this submission, please contact Mr. Ronald Chinn of Closure Solutions at (925) 429-5555, or at rchinn@closuresolutions.com.

Sincerely,

CLOSURE SOLUTIONS

Roger Hoffmore, P.G. Senior Geologist

Enclosure: Fourth Quarter 2007 Groundwater Monitoring Report

ROGER HOFFMORE

cc: Ms. Marta Garcia, New West Stations, Inc.

Date: January 14, 2008

Quarter: 4Q 2007

QUARTERLY GROUNDWATER MONITORING REPORT

Address:

Address:

New West Stations Livermore – Bernard's Gas

1051 Airway Boulevard

Livermore, California

Responsible Party:

New West Stations, Inc.

Consulting Co./Contact Person:

Primary Agency/Regulatory ID No.:

ACHSA/Case No. RO0002440

WORK PERFORMED THIS QUARTER: (Fourth – 2007):

- 1. Performed Fourth Quarter 2007 groundwater monitoring event on October 26, 2007.
- 2. Prepare and submit Third Quarter 2007 groundwater monitoring report.

WORK PROPOSED FOR NEXT QUARTER: (First – 2008):

- 1. Prepare and submit Fourth Quarter 2007 groundwater monitoring report.
- 2. Perform First Quarter 2008 groundwater monitoring and sampling event.

Current Phase of Project:

Groundwater Monitoring & Sampling:

Is Free Product (FP) Present On-Site:

Current Remediation Techniques:

Groundwater Elevation:

Groundwater Gradient (direction):

Groundwater Gradient (magnitude):

Monitoring

Quarterly: MW-1, MW-2, MW-3, MW-4, MW-5

No

No

420.40 ft (MW-1) to 421.59 ft (MW-3)

Southwest

0.004 ft/ft

DISCUSSION:

The Fourth Quarter Groundwater Monitoring and Sampling event was performed at the New West Livermore facility located at 1051 Airway Boulevard, in Livermore, California on October 26, 2007. This is the fourth quarterly monitoring and sampling event at the Site.

In June of 2001, six fuel dispensers and associated product lines were removed by Walton Engineering, Inc of West Sacramento, California. Soil samples were collected beneath the

former dispensers and product lines. Laboratory analytical results indicated detectable concentrations of Total Petroleum Hydrocarbons as gasoline (TPHg), Total Petroleum Hydrocarbons as diesel (TPHd), benzene, toluene, ethylbenzene, and total xylenes (BTEX) and Methyl-tertiary-Butyl Ether (MTBE) were present in the subsurface. Soil impacts discovered during underground storage tank (UST) retrofit activities prompted the advancement of four Geoprobe soil borings in June of 2002. Soil analytical results of samples collected during the investigation resulted in detections of constituents of concerns (COCs) from 3 to 5 feet below ground surface (bgs), however no COCs were detected at 24 feet bgs. Groundwater results reported detections of MTBE in low to moderated concentrations. A more complete background is provided as Attachment A.

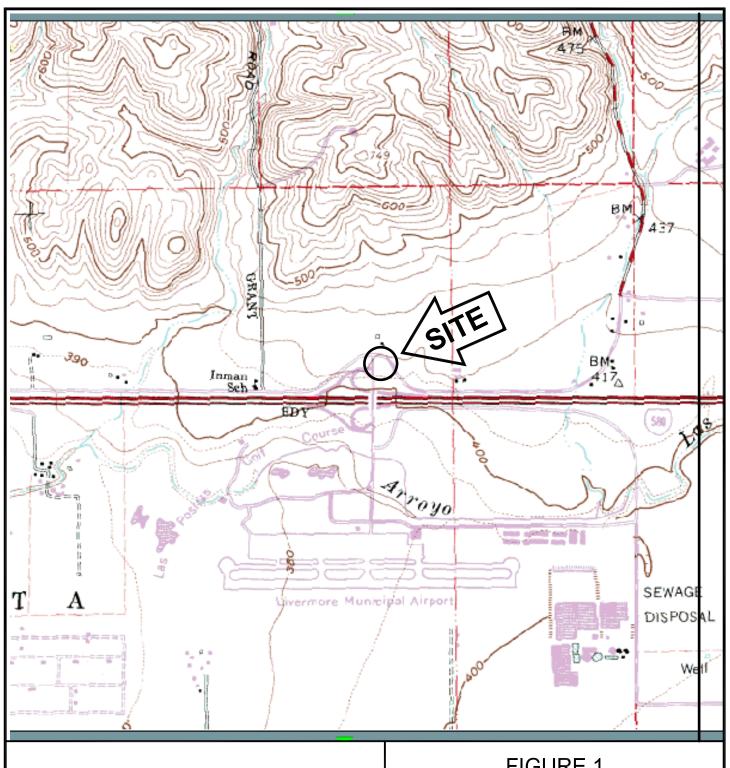
On October 26, 2007, five monitoring wells (MW-1 through MW-5) were gauged and sampled in accordance with Blaine Tech Services' Standard Operating Procedures (included in Attachment B). Groundwater samples and a trip blank sample were submitted to Kiff Analytical for laboratory analysis under Chain-of-Custody protocols.

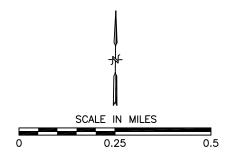
Samples were analyzed for TPHg, TPHd, BTEX constituents, lead, and the fuel additives MTBE, Di-isopropyl Ether (DIPE), Tert-butyl Alcohol (TBA), Ethyl tert-butyl ether (EtBE), Tert-amyl methyl ether (TAME), Ethanol, Methanol, 1,2-Dichloroethane (1,2-DCA), and 1,2-Dibromoethane (EDB). TPHg, TPHd, BTEX, and the fuel oxygenates were analyzed by EPA Method 8260B.

No TPHg or TPHd were not detected in any of the five wells sampled. Benzene was detected in one well (MW-1), at a concentration of 11 microgarms per liter ($\mu g/L$). Toluene, ethylbenzene, and total xylenes were not detected in any of the five wells sampled. MTBE was detected in four of the five wells sampled (MW-1, MW-2, MW-4 and MW-5) at concentrations of 5.0 $\mu g/L$, 0.57 $\mu g/L$, 1.7 $\mu g/L$, and 42 $\mu g/L$, respectively. Ethanol was detected in two of the five wells sampled (MW-2 and MW-5) at concentrations of 22 $\mu g/L$ and 5.5 $\mu g/L$, respectively. No other fuel oxygenate or additive was detected above its respective laboratory reporting limit.

The average groundwater elevation at the Site during the monitoring and sampling event was 420.72 feet above mean sea level. This is a decrease of approximately 0.73 feet since the last monitoring event. The groundwater flow direction and gradient is to the southwest at an approximate gradient of 0.004 feet per foot.

Laboratory procedures, chain of custody records, and the certified analytical report are included as Attachment C. Groundwater elevation and analytical data are summarized on Tables 1 and 2.


Purge water generated during the monitoring and sampling event was temporarily drummed on site pending transport and disposal at a licensed hazardous waste treatment facility.


CURRENT STATUS/RECENT DEVELOPMENTS:

Concentrations of benzene detected in well MW-1 have ranged from 3.0 to 14 ug/L (most recently 11 ug/L) and appear to indicate that the benzene plume is stable and low. MTBE has been detected in four of the five site wells each quarter. Concentrations of MTBE have reached historical lows in wells MW-2 (0.57 ug/L) and MW-4 (1.7 ug/L) and are within its historical range in well MW-1 (5.0 ug/L). The maximum concentration of MTBE at the site (42 ug/L in MW-5) is considered low for an operating gasoline service station and does not appear to represent a significant threat to human health and the environment. If groundwater samples continue to exhibit low to insignificant concentrations of constituents of concern over the next quarterly monitoring event (First Quarter 2008), Closure Solutions recommends that the case be considered for environmental case closure.

ATTACHMENTS:

- Figure 1 Site Location Map
- Figure 2 Fourth Quarter 2007 Groundwater Elevation & Contour October 26, 2007
- Table 1 Groundwater Elevation and Analytical Data
- Table 2 Fuel Oxygenate Analytical Data
- Attachment A Site Background
- Attachment B Field Procedures and Field Data Sheets
- Attachment C Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody Records

NOTES:

1. BASEMAP SOURCE: USGS TOPOGRAPHIC MAP ALBION, CALIFORNIA QUADRANGLE, 1:24,000 SERIES

FIGURE 1 SITE LOCATION MAP

NEW WEST STATIONS, INC. 1051 AIRWAY BOULEVARD LIVERMORE, CALIFORINA

CLOSURE SOLUTIONS, INC.

1243 Oak Knoll Drive • Concord California • 94521 Phone: (925) 348-0656 • Fax: (925) 459-5602

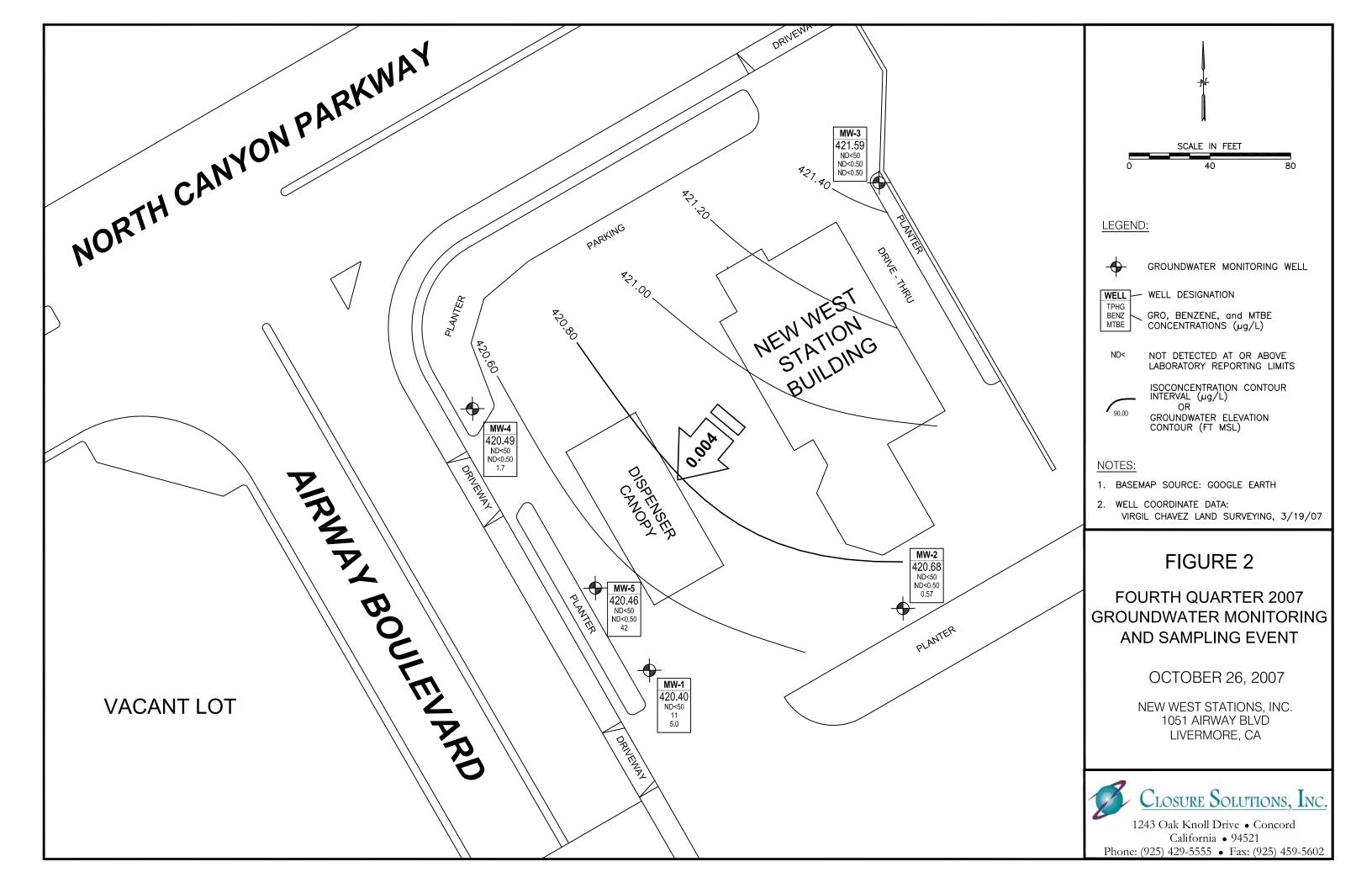


 Table 1

 Groundwater Elevation and Analytical Data

Bernard's Gas 1051 Airway Boulevard Livermore, California

MW-1 3/16/07 440.89 22.04 418.85 ND<50	WELL ID	DATE OF SAMPLING/ MONITORING	CASING ELEVATION (Feet)	DEPTH TO WATER (Feet)	GROUNDWATER ELEVATION (Feet)	TPHg (ug/L)	TPHd (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	LAB
A/17/07 22.58 418.31 ND<50 ND<50 3.0 ND<0.50 ND<0.	MW-1	3/16/07	440.89	22.04	418.85	ND<50	ND<50	3.8	ND<0.50	ND<0.50	ND<0.50	KIFF
MW-2 3/16/07 441.49 22.50 418.99 ND<50 ND<50 ND<50 ND<0.50 ND<0.5									ND<0.50			
MW-2 3/16/07 441.49 22.50 418.99 ND<50 ND<50 ND<0.50 ND<0.50<		7/3/07		21.54	419.35	ND<50	ND<50	14	ND<0.50	ND<0.50	ND<0.50	KIFF
4/17/07 23.05 418.44 ND<50 ND<50 ND<0.50 ND<0		10/26/07		20.49	420.40	ND<50	ND<50	11	ND<0.50	ND<0.50	ND<0.50	KIFF
7/3/07 21.78 419.71 ND<50 ND<50 ND<0.50 ND<0.	MW-2	3/16/07	441.49	22.50	418.99	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
10/26/07 20.81 420.68 ND<50 ND<50 ND<0.50		4/17/07		23.05	418.44	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
MW-3 3/16/07 445.33 24.90 420.43 ND<50 ND<50 ND<0.50 N		7/3/07		21.78	419.71	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
4/17/07 25.57 419.76 ND<50 ND<50 ND<0.50 ND<0.		10/26/07		20.81	420.68	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
7/3/07 24.26 421.07 ND<50 ND<50 ND<0.50 ND<0.5	MW-3	3/16/07	445.33	24.90	420.43	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
MW-4 3/16/07 440.67 21.10 419.57 ND<50 ND<50 ND<0.50 ND<0.50 </td <td></td> <td>4/17/07</td> <td></td> <td>25.57</td> <td>419.76</td> <td>ND<50</td> <td>ND<50</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>KIFF</td>		4/17/07		25.57	419.76	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
MW-4 3/16/07 440.67 21.10 419.57 ND<50 ND<50 ND<0.50 ND		7/3/07		24.26	421.07	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
4/17/07 21.96 418.71 ND<50 ND<50 ND<0.50 ND<0.		10/26/07		23.74	421.59	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
7/3/07 20.66 420.01 ND<50 ND<50 ND<0.50 ND<0.5	MW-4	3/16/07	440.67	21.10	419.57	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
MW-5 3/16/07 440.98 21.67 419.31 ND<50 ND<50 ND<0.50 ND<0.50 </td <td></td> <td>4/17/07</td> <td></td> <td>21.96</td> <td>418.71</td> <td>ND<50</td> <td>ND<50</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>KIFF</td>		4/17/07		21.96	418.71	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
MW-5 3/16/07 440.98 21.67 419.31 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 KIFF 4/17/07 22.41 418.57 ND<50 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 KIFF 7/3/07 21.17 419.81 ND<50 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 KIFF		7/3/07		20.66	420.01	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
4/17/07 22.41 418.57 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 KIFF 7/3/07 21.17 419.81 ND<50 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 KIFF		10/26/07		20.18	420.49	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
4/17/07 22.41 418.57 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 KIFF 7/3/07 21.17 419.81 ND<50 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 KIFF	MW-5	3/16/07	440.98	21.67	419.31	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
		4/17/07		22.41	418.57	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
10/26/07 20.43 420.46 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 KIFF		7/3/07		21.17	419.81	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
		10/26/07		20.43	420.46	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF

Table 1

Groundwater Elevation and Analytical Data

Bernard's Gas 1051 Airway Boulevard Livermore, California

ABBREVIATIONS:

TPHg	Total Petroleum Hydrocarbons as Gasoline
TPHd	Total Petroleum Hydrocarbons as Diesel
В	Benzene
T	Toluene
E	Ethylbenzene
X	Total xylenes
ug/L	Micrograms per liter (parts per billion [ppb])
	Not analyzed/measured/applicable
ND<	Not detected at or above specified laboratory reporting limit
KIFF	Kiff Analytical LLC, Davis, Ca
NA	Not Accessible / Not Available
NS	Not Sampled

LIMITATIONS:

Background information, including but not limited to previous field measurements, analytical results, Site plans, and other data have been obtained from previous consultants, and/or third parties, in the preparation of this report. Closure Solutions has relied on this information as furnished. Closure Solutions is not responsible for, nor has it confirmed the accuracy of data collected or generated by others.

 Table 2

 Fuel Oxygenate & Lead Scavenger Analytical Data

Bernard's Gas 1051 Airway Boulevard Livermore, California

MW-1	Well Number	Date Sampled	MTBE (ug/L)	Ethanol (ug/L)	Methanol (ug/L)	TBA (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	1,2-DCA (ug/L)	EDB (ug/L)ND<0.50	LAB
T/3/07 5.5 ND<5.0 ND<	MW-1	3/16/07	2.8	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
10/26/07 5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<0.50 ND<		4/17/07	3.6	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
MW-2 3/16/07 1.5 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<0.50 ND<0.50 </td <td></td> <td>7/3/07</td> <td>5.5</td> <td>ND<5.0</td> <td>ND<50</td> <td>ND<5.0</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>KIFF</td>		7/3/07	5.5	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
A/17/07 1.1 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<0.50 ND		10/26/07	5.0	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
T/3/07 0.86 ND<5.0 ND<50 ND<5.0 ND<5.0 ND<0.50 ND	MW-2	3/16/07	1.5	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
ND<		4/17/07	1.1	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
MW-3 3/16/07 ND<0.50 ND<5.0 ND<50 ND<5.0 ND<5.0 ND<5.0 ND<0.50		7/3/07	0.86	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
4/17/07 ND<0.50 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<0.50 ND		10/26/07	0.57	22	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
7/3/07 ND<0.50 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<0.50 ND<	MW-3	3/16/07	ND<0.50	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
10/26/07 ND<0.50 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<0.50		4/17/07	ND<0.50	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
MW-4 3/16/07 5.9 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<0.50 ND		7/3/07	ND<0.50	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
4/17/07 8.7 ND<5.0 ND<50 ND<5.0 ND<0.50 ND<0.5		10/26/07	ND<0.50	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
7/3/07 3.8 ND<5.0 ND<50 ND<5.0 ND<0.50	MW-4	3/16/07	5.9	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
MW-5 3/16/07 14 ND<5.0 ND<50 ND<5.0 ND<5.0 ND<0.50 ND<0.50 <td></td> <td>4/17/07</td> <td>8.7</td> <td>ND<5.0</td> <td>ND<50</td> <td>ND<5.0</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>ND<0.50</td> <td>KIFF</td>		4/17/07	8.7	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
MW-5 3/16/07 14 ND<5.0 ND<50 ND<5.0 ND<0.50 ND		7/3/07	3.8	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
4/17/07 7.3 ND<5.0 ND<50 ND<5.0 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 KIFF 7/3/07 22 ND<5.0 ND<5.0 ND<5.0 ND<0.50 ND		10/26/07	1.7	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
7/3/07 22 ND<5.0 ND<5.0 ND<5.0 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 KIFF	MW-5	3/16/07	14	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
		4/17/07	7.3	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
10/26/07 42 5.5 ND<50 ND<5.0 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 KIFF		7/3/07	22	ND<5.0	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
		10/26/07	42	5.5	ND<50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF

Table 2

Fuel Oxygenate & Lead Scavanger Analytical Data

Bernard's Gas 1051 Airway Boulevard Livermore, California

ABBREVIATIONS:

MTBE	Methyl Tertiary Butyl Ether
TBA	Tertiary Butyl Alcohol
DIPE	Diisopropyl Ether
ETBE	Ethyl Tertiary Butyl ether
TAME	Tertiary Amyl Methyl Ether
1,2-DCA	1,2-Dichloroethane
EDB	1,2-Dibromoethane
ug/L	Micrograms per liter (parts per billion [ppb])
	Not analyzed/measured/applicable
ND*	Not detected at or above raised laboratory detection limits
ND<	Not detected at or above specified laboratory reporting limit
NA	Not Accessible / Not Available
NS	Not Sampled

LIMITATIONS:

Background information, including but not limited to previous field measurements, analytical results, Site plans, and other data have been obtained from previous consultants, and/or third parties, in the preparation of this report. Closure Solutions has relied on this information as furnished. Closure Solutions is not responsible for, nor has it confirmed the accuracy of data collected or generated by others.

Attachment A

Site Background

SITE BACKGROUND

New West Petroleum- Bernard's Gas 1051 Airway Boulevard Livermore, California

In June of 2001, six fuel dispensers and associated product lines were removed by Walton Engineering, Inc of West Sacramento, California. Soil samples were collected beneath the former dispensers and product lines. Laboratory results indicted detectable concentrations of total petroleum hydrocarbons as gas (TPHg), TPH as diesel (TPHd), benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tertiary butyl ether (MTBE).

On January 2002, Grayland Environmental (Grayland) submitted a Site Contamination Work Plan to evaluate the spatial extent of soil contamination beneath the site and to determine if groundwater had been impacted by residual hydrocarbons.

On June 12, 2002, Apex Environmental (Apex) supervised the advancement of four soil borings at the site. Soil results detections of constituents of concerns (COCs) from 3 to 5 feet below ground surface (bgs). No COCs were detected at 24 feet bgs. Groundwater results detections of MTBE in low to moderated concentrations. Results were documented in the *Soil Boring and Groundwater Collection Results Report*, dated August 6, 2002.

On August 30, 2002, the ACEH issued a letter requesting a site conceptual model (SCM) for the site.

On December 19, 2002, Apex submitted a SCM to ACEH. Although no recommendations were proposed, no response was received from ACEH.

On June 14, 2005, the ACEH issued a letter requesting a work plan to vertically and horizontally define the plume and address technical comments. In response to ACEH's request, APEX prepared and submitted a Work Plan for Monitoring Well Installation, dated October 7, 2005. This Work Plan proposed the installation of six shallow monitoring wells and one deep well at the Site to evaluate the extent of contamination.

On November 18, 2005, ACEH responded to APEX's Work Plan, and requested modification of the work scope to include an additional monitoring well, and a review of the well survey performed for the Site. On April 14, 2006, APEX prepared and submitted a Workplan for Monitoring Well Installation Addendum. On May 9, 2006,

ACEH responded to the Workplan Addendum by noting that while certain elements had not been fully addressed as requested in the November 18th letter, APEX should proceed with the well installation.

On December 7, 2006, ACEH issued a letter stating that they had not received the requested Soil and Groundwater Investigation Report, and that the Site was out of compliance.

On December 13, 2006, Closure Solutions, Inc. became the consultant of record for the Site and initiated the proposed site investigation requested by ACEH.

On February 14 through February 16, 2007, Closure Solutions observed the advancement of one boring (B-5D) and the installation five groundwater monitoring wells (MW-1 through MW-5). Boring B-5D was originally proposed as a deep well, MW-5D. After drilling to 85 feet bgs, a second water bearing zone was not observed. Approximately 45 feet of silty clay and clayey silt were observed from a depth of 35 feet bgs to 80 feet bgs. Closure Solutions believed that the aquitard was competent enough to protect against downward migration of contaminants. Concentrations of petroleum hydrocarbons in soil and groundwater were found to be relatively low and do not represent an unreasonable risk to human health and the environment. Because of this, Closure Solutions recommended that groundwater at the Site be monitored over one hydrologic cycle (one year) to confirm the extent of contamination. If concentrations of the identified contaminants remain similar across one hydrologic cycle, Closure Solutions would recommend the Site for No Further Action status.

Attachment B

Field Procedures and Field Data Sheets

PURGING SOP Page 1 of 3

Blaine Tech Services, Inc. Standard Operating Procedure

WELL WATER EVACUATION (PURGING)

Purpose

Evacuation of a predetermined minimum volume of water from a well (purging) while simultaneously measuring water quality parameters is typically required prior to sampling. Purging a minimum volume guarantees that actual formation water is drawn into the well. Measuring water quality parameters either verifies that the water is stable and suitable for sampling or shows that the water remains unstable, indicating the need for continued purging. Both the minimum volume and the stable parameter qualifications need to be met prior to sampling. This assures that the subsequent sample will be representative of the formation water surrounding the well screen and not of the water standing in the well.

Defining Casing Volumes

The predetermined minimum quantity of water to be purged is based on the wells' casing volume. A casing volume is the volume of water presently standing within the casing of the well. This is calculated as follows:

Casing Volume = (TD – DTW) VCF

- 1. Subtract the wells' depth to water (DTW) measurement from its total depth (TD) measurement. This is the height of the water column in feet.
- 2. Determine the well casings' volume conversion factor (VCF). The VCF is based on the diameter of the well casing and represents the volume, in gallons, that is contained in one (1) foot of a particular diameter of well casing. The common VCF's are listed on our Well Purge Data Sheets.
- 3. Multiply the VCF by the calculated height of the water column. This is the casing volume, the amount of water in gallons standing in the well.

Remove Three to Five Casing Volumes

Prior to sampling, an attempt will be made to purge all wells of a minimum of three casing volumes and a maximum of five casing volumes except where regulations mandate the minimum removal of four casing volumes.

Choose the Appropriate Evacuation Device Based on Efficiency

In the absence of instructions on the SOW to the contrary, selection of evacuation device will be based on efficiency.

PURGING SOP Page 2 of 3

Measure Water Quality Parameters at Each Casing Volume

At a minimum, water quality measurements include pH, temperature and electrical conductivity (EC). Measurements are made and recorded at least once every casing volume. They are considered stable when all parameters are within 10% of their previous measurement.

Note: The following instructions assume that well has already been properly located, accessed, inspected and gauged.

Prior to Purging a Well

- 1. Confirm that the well is to be purged and sampled per the SOW.
- 2. Confirm that the well is suitable based on the conditions set by the client relative to separate phase.
- 3. Calculate the wells' casing volume.
- 4. Put new Latex or Nitrile gloves on your hands.

Purging With a Bailer (Stainless Steel, Teflon or Disposable)

- 1. Attach bailer cord or string to bailer. Leave other end attached to spool.
- 2. Gently lower empty bailer into well until well bottom is reached.
- 3. Cut cord from spool. Tie end of cord to hand.
- 4. Gently raise full bailer out of well and clear of well head. Do not let the bailer or cord touch the ground.
- 5. Pour contents into graduated 5-gallon bucket or other graduated receptacle.
- 6. Repeat purging process.
- 7. Upon removal of first casing volume, fill clean parameter cup with purgewater, empty the remainder of the purgewater into the bucket, lower the bailer back into the well and secure the cord on the Sampling Vehicle.
- 8. Use the water in the cup to collect and record parameter measurements.
- 9. Continue purging until second casing volume is removed.
- 10. Collect parameter measurements.
- 11. Continue purging until third casing volume is removed.
- 12. Collect parameter measurements. If parameters are stable, stop purging. If parameters remain unstable, continue purging until stabilization occurs or the fifth casing volume is removed.

Purging With a Pneumatic Pump

- 1. Position Pneumatic pump hose reel over the top of the well.
- 2. Gently unreel and lower the pump into the well. Do not contact the well bottom.
- Secure the hose reel.
- 4. Begin purging into graduated 5-gallon bucket or other graduated receptacle.
- 5. Adjust water recharge duration and air pulse duration for maximum efficiency.
- 6. Upon removal of first casing volume, fill clean parameter cup with water.
- 7. Use the water in the cup to collect and record parameter measurements.
- 8. Continue purging until second casing volume is removed.

PURGING SOP Page 3 of 3

- 9. Collect parameter measurements.
- 10. Continue purging until third casing volume is removed.
- 11. Collect parameter measurements. If parameters are stable, stop purging. If parameters remain unstable, continue purging until stabilization occurs or the fifth casing volume is removed.
- 12. Upon completion of purging, gently recover the pump and secure the reel.

Purging With a Fixed Speed Electric Submersible Pump

- 1. Position Electric Submersible hose reel over the top of the well.
- 2. Gently unreel and lower the pump to the well bottom.
- 3. Raise the pump 5 feet off the bottom.
- 4. Secure the hose reel.
- 5. Begin purging.
- 6. Verify pump rate with flow meter or graduated 5-gallon bucket
- 7. Upon removal of first casing volume, fill clean parameter cup with water.
- 8. Use the water in the cup to collect and record parameter measurements.
- 9. Continue purging until second casing volume is removed.
- 10. Collect parameter measurements.
- 11. Continue purging until third casing volume is removed.
- 12. Collect parameter measurements. If parameters are stable, stop purging. If parameters remain unstable, continue purging until stabilization occurs or the fifth casing volume is removed.
- 13. Upon completion of purging, gently recover the pump and secure the reel.

Sampling SOP Page 1 of 1

Blaine Tech Services, Inc. Standard Operating Procedure

SAMPLE COLLECTION FROM GROUNDWATER WELLS USING BAILERS

Sampling with a Bailer (Stainless Steel, Teflon or Disposable)

- 1. Put new Latex or Nitrile gloves on your hands.
- 2. Determine required bottle set.
- 3. Fill out sample labels completely and attach to bottles.
- 4. Arrange bottles in filling order and loosen caps (see Determine Collection Order below).
- 5. Attach bailer cord or string to bailer. Leave other end attached to spool.
- 6. Gently lower empty bailer into well until water is reached.
- 7. As bailer fills, cut cord from spool and tie end of cord to hand.
- 8. Gently raise full bailer out of well and clear of well head. Do not let the bailer or cord touch the ground. If a set of parameter measurements is required, go to step 9. If no additional measurements are required, go to step 11.
- 9. Fill a clean parameter cup, empty the remainder contained in the bailer into the sink, lower the bailer back into the well and secure the cord on the Sampling Vehicle. Use the water in the cup to collect and record parameter measurements.
- 10. Fill bailer again and carefully remove it from the well.
- 11. Slowly fill and cap sample bottles. Fill and cap volatile compounds first, then semi-volatile, then inorganic. Return to the well as needed for additional sample material.

Fill 40-milliliter vials for volatile compounds as follows: Slowly pour water down the inside on the vial. Carefully pour the last drops creating a convex or positive meniscus on the surface. Gently screw the cap on eliminating any air space in the vial. Turn the vial over, tap several times and check for trapped bubbles. If bubbles are present, repeat process.

Fill 1 liter amber bottles for semi-volatile compounds as follows: Slowly pour water into the bottle. Leave approximately 1 inch of headspace in the bottle. Cap bottle.

Field filtering of inorganic samples using a stainless steel bailer is performed as follows: Attach filter connector to top of full stainless steel bailer. Attach 0.45 micron filter to connector. Flip bailer over and let water gravity feed through the filter and into the sample bottle. If high turbidity level of water clogs filter, repeat process with new filter until bottle is filled. Leave headspace in the bottle. Cap bottle.

Field filtering of inorganic samples using a disposable bailer is performed as follows: Attach 0.45 micron filter to connector plug. Attach connector plug to bottom of full disposable bailer. Water will gravity feed through the filter and into the sample bottle. If high turbidity level of water clogs filter, repeat process with new filter until bottle is filled. Leave headspace in the bottle. Cap bottle.

- 12. Bag samples and place in ice chest.
- 13. Note sample collection details on well data sheet and Chain of Custody.

BLAINE TECH SERVICES, INC SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO

SPH or Purge Water Drum Log

Client: Closure Solutions

Site Address: New West Petroleum, 1051 Airway Blud., Livernore

STATUS OF DRUM(S) UPON	ARRIVAL					
Date	3 7 07	3/16/07	4/17/07	7/3/07	10/26/07	
Number of drum(s) empty:			•			
Number of drum(s) 1/4 full:					2	
Number of drum(s) 1/2 full:						
Number of drum(s) 3/4 full:			1	1		
Number of drum(s) full:	23	Z	2	2		
Total drum(s) on site:	23	2_	3	4	2	
Are the drum(s) properly labeled?	yes	YET .	Yrs	Ye5	No	, i
Drum ID & Contents:	ුරු/ නි වැ	Hz Pringenel	1/20	Hao Proceeds	7	
If any drum(s) are partially or totally filled, what is the first use date:	*	3-7-07	4/17/07	4/17/07	?	

- If you add any SPH to an empty or partially filled drum, drum must have at least 20 gals. of Purgewater or DI Water.
- -If drum contains SPH, the drum MUST be steel AND labeled with the appropriate label.

-All BTS drums MUST be labeled appropriately.

STATUS OF DRUM(S) UPON	DEPARTU	JRE				
Date	3 7/07		4/17/07	7/3/07	10/26/01	
Number of drums empty:			,	egagaman-kitrika 1934		
Number of drum(s) 1/4 full:				Prompted Challenger	2	
Number of drum(s) 1/2 full:		1		1		
Number of drum(s) 3/4 full:		300	J	٠٩٤٩ مسير. ۾		
Number of drum(s) full:	25	2	2	3		
Total drum(s) on site:	25	3	4	4	3	
Are the drum(s) properly labeled?	Ves	ARI	Yes	yes	У	
Drum ID & Contents:	Hro puse	theo Provincity	HO	puselates	purge Mz 0	

LOCATION OF DRUM(S)

Describe location of drum(s): Next to dumpster (SE corne of facility)

FINAL STATUS						
Number of new drum(s) left on site this event	2	Í	1			i tit A
Date of inspection:	3/7/07	3/16/07	4/17/07	7/3/07	10/26/07	
Drum(s) labelled properly:	yes	YEZ	yrs	yes	Y	
Logged by BTS Field Tech:	びと	MA	BM	<i>50</i>	KF,	
Office reviewed by:	pu	ion	red	6."	Man	

BLA	NE	SAN J		LIFORM	3ERS AVEN NA 95112-11 (408) 573-77	05		co	NDUC	T ANA	LYSIS	TO DET	ECT	LAB ALL ANALYSES M SET BY CALIFOR	JUST MEE		TIONS AND DE	DHS #				
CHAIN OF CU				PHONE	(408) 573-05	555 ¬	.					dn t		EPA LIA			RWQCB RE	GION				
CLIENT	Closure	Solution		026	-6F2	CONTAINERS	0B))B))B)	Gel Clean		SPECIAL INSTRU	JCTIONS	C-1i		act: Ron Chinn uresolutions.com				
					Petroleum ny Blvd.		Petroleum				X (826)) (8260B)	B)	(0B)	(8260B)	Silica G		Invoice and Report	1234 Oa Concord	k Knoll Dr. 9 i, CA 94521	025.459.5602 Fax	C .
	Livermor			d con	NTAINERS	SITE ALL	BTE	ates (5)	(8260]	01 (826	, EDB	vith		Global ID: T060014 EDF require		t (PDF) and ED	F to Ron Chinn (email)				
AMPLE I.D.	DATE	TIME	MATRIX S= SOIL W=W	TOTAL		C = COMPOSITE	TPH-g / BTEX (8260B)	Oxygenates	Ethanol (8260B)	Methanol (8260B)	1,2-DCA	TPH-d with (8015M)		APPIL INSORM		071710		(
IW-1	10/26/0		w	6	6 HCL VOAS		X	X	X	X	X	X		ADD'L INFORM	ATION	STATUS	CONDITION	LAB SAMPLE#				
W-2		1031	w	6	6 HCL VOAS	<u> </u>	X	X	Х	Х	X	Х						02				
W-3		1103	w	6	6 HCL VOAS		Х	Х	х	х	Х	х						03				
W-4		1147	w	6	6 HCL VOAS		х	Х	х	Х	Х	х						<u></u>				
W-5		1216	w	6	6 HCL VOAS		х	Х	Х	·X	Х	х						05				
MPLING OMPLETED	DATE 1926/2	TIME	SAMPLII PERFOR	NG RMED B	 Y K .	<u></u>	ord	es			:			RESULTS NEEDE	_	Standard						
	~					<u>'</u> .	26/	07		٥ ٥		RECEIV		e C		z.a.radi u	DATE 10/26/					
LEASED BY			#			DAT	29/E	/_ T	TIME [[[0		RECEIV	ED BY				DATE	TIME				
LEASED BY						DAT			TIME		<u>'</u>	RECEIV	ED BY	kiff		,	DATE	TIME				

WELLHEAD INSPECTION CHECKLIST

	ĺ		7
Page	1	of !	

Date 10/26	107	_ Client	Clo.	sure 5	olutions	.		
Date 10/26	1051/	Airway	Blud.	, Li	vermos	د		
Job Number _C	71026-	KF2	· · · · · · · · · · · · · · · · · · ·	Tec	hnician	KF	" 4	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From	Lock Replaced	Other Action Taken (explain	Well Not Inspected (explain
MW-1	1 7				Wellbox	·	below)	below)
MW-2	X							
MW-3	<u> </u>							
MW-1 MW-2 MW-3 MW-4 MW-5	×							
MW-5	人							
		APPL 9 L 9 W. L.						

NOTES:			1					
NOTES.						· · · · · · · · · · · · · · · · · · ·		
							The second secon	
	a t Americano malal cartico sa co		·			TARING BUILD OF THE STREET		
,								· · · · · · · · · · · · · · · · · · ·

WELL GAUGING DATA

Project # <u>07102</u>	5-1CF2	_ Date _ 10	126	107	Client	KIFF	
Site 1051	Airway	Blud.)	Livernore	g Dans		

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
MW-7 MW-3 MW-4 MW-5	0923	2					20.49	34.45		
MW-Z	0934	2					20.81	33.55		
MW-3	0938	2					23.74	34.74		
MW-4	0943	2					20.18	33.77	**************************************	
MW-5	0927	2					20.43	34,53	>	
						·				
								O.		
Ψ.	all	well	S un	Саррес	15,	nin. pr	ior to	jauging	u-	
				1.		((
	·								-	
			_							

		V\$		UMING		SHL.			
Project #: c	71026	- KF2		Client: Kiff Closure					
Sampler:				Date: 18	126	107			
Well I.D.:	MW-1			Well Di	ameter	: <i>(2)</i> 3 4	6 8		
Total Well I	Depth (TD): ZL	1.45	Depth to	Water	(DTW): Zo.	49		
Depth to Fro	ee Product			Thickne	ss of F	ree Product (fee	t):		
Referenced	to:	(VC)	Grade	D.O. Me	YSI HACH				
DTW with 8	80% Recha	arge [(H	eight of Water	Column	x 0.20)) + DTW]: 7	3.28		
Purge Method:	Disposable Be Positive Air E Electric Subm Gals.) X	Displaceme	Other	_ Gals.	/ell Diamete 1" 2" 3"	Sampling Method:	Bailer Disposable Bailer Extraction Port Dedicated Tubing Dedicated Tubing		
Time 0951 0954 0957	Temp (°F or ©) 18.1 18.7	pH 7.29 7.07 7.04	Cond. (mS or (\$\mu S)) 2919 2897 2964	Turbi (NT) 7100 7100	Us) 20	Gals. Removed 2.2 4.4 6.6	Observations Brown 4		
Did well de			No			y evacuated:	6.6		
Sampling D	vate: 10/20	0/07	Sampling Tim	e: 100	2	Depth to Water	r: 22.88		
Sample I.D.	: MW-	- 1		Laborat	ory: (Kiff CalScience	Other		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other: See C	0 C		
EB I.D. (if	applicable)): <	@ Time	Duplica	te I.D.	(if applicable):			
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other:			
D.O. (if req	'd): P	re-purge:		mg/L	F	ost-purge:	my/L		
O.R.P. (if re	eq'd): P	re-purge:		тV	F	ost-purge:	mV		

		M		ORINGDAT	ASHL.		
Project #:	07102	6-KF	2	Client:	of Clo	Swe	
Sampler:	KF			Date: (8/2	-6/37		
Well I.D.:	MW-	2		Well Diamet	er: (2) 3. 4	6 8	
Total Well	Depth (TD): 33	5.55	Depth to Wa	ter (DTW): Zc	2.81	
Depth to Fr	ee Product	•		Thickness of	Free Product (fe	et):	
Referenced	to:	(VC)	Grade	D.O. Meter (if req'd): YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.2	$\frac{1}{(0) + DTW}$: 2	3.36	
Purge Method:	Bailer (Disposable B Positive Air I Electric Subn	Displaceme	nt Extrac Other	Well Dian		Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier	
2.0 (Case Volume	Gals.) XSpeci	3 fied Volum	$\frac{1}{1000} = \frac{6.0}{\text{Calculated Vo}}$	_ Gals. 1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163	
Time	Temp (°F or C)	рН	Cond. (mS o(µS)	Turbidity (NTUs)	Gals. Removed	Observations	
1020	17.8	7.51	1051	71000	2	5000	
1023	18.8	7.39	1017	7/000	4		
1026	19.0	7.35	1059	71000	6	Ci	
	10-21-2						
Did well de	water?	Yes (No	Gallons actua	ally evacuated:	6	
Sampling D	ate: 19/26	107	Sampling Tim	e: 1031	Depth to Wate	er: 72.50	
Sample I.D.	: M	W-2		Laboratory:	Kiff CalScienc	e Other	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	ac	
EB I.D. (if a	applicable):	(i) Time	Duplicate I.D	O. (if applicable):		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:		
D.O. (if req	'd): P	re-purge:		mg/L	Post-purge:	. mg/L	
O.R.P. (if re	eq'd): P	re-purge:		mV	Post-purge:	mV	

W LL MONITORING DATA SHE. .

Project #:	071026	,-KF:	2	Client:	KIT P	f Cla	swe		
Sampler:	KF			Date: 10/26/07					
Well I.D.:	MW-3				Well Diameter: (2) 3 4 6 8				
Total Well I	Depth (TD): 34	.74	Depth	to Water	(DTW): 23.	74		
Depth to Fro	ee Product			Thickn	ess of F	ree Product (fee	et):		
Referenced	to:	(PVC)	Grade	D.O. M	Aeter (if	req'd):	YSI HACH		
DTW with 8	80% Recha	arge [(H	eight of Water	Colum	n x 0.20)) + DTW]: 2	5.94		
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other Other: Well Diameter Multiplier Well Diameter Multiplier					Disposable Bailer Extraction Port Dedicated Tubing				
1.8	Gals.) X	3	= 5.4	Gals.	1" 2"	0.04 4" 0.16 6"	0.65 1.47		
l Case Volume		fied Volum	Calculated Vo	_	3"	0.37 Other	radius ² * 0.163		
Time	Temp (°F or	рН	Cond. (mS or (µS))	1	bidity TUs)	Gals. Removed	Observations		
1052	18.8	7.54	1639	71	000	1.8	50000		
1055	18.5	7.29	1647	710	000	3.6	· · · ·		
1058	18.4	7.29	1626	710	00	5,4	U		
		ē							
				E					
Did well de	water?	Yes (No	Gallon	s actuall	y evacuated:	5,4		
Sampling D	ate: (0/26	107	Sampling Time	e: \ (23	Depth to Water	r: 24.80		
Sample I.D.	: MW-	3		Labora	itory: (Kiff CalScience	Other		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: See Co)C		
EB I.D. (if a	npplicable)	:	@ Time	Duplic	ate I.D.	(if applicable):			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:			
D.O. (if req	(d): Pr	e-purge:		mg/L	Р	ost-purge:	mg/L		
O.R.P. (if re	eq'd): Pr	e-purge:		mV	P	ost-purge:	m∨		

I. MONITORING DATA SHE

		V V			א דו דו א לרוו ו	OHHE. A		
Project #:	071026	0-KF	Gamera	Client: Kiff Closure				
Sampler:	UF			Date:	10/2	6/07		
Well I.D.:	MW-4			1		2 3 4	6 8	
Total Well I	Depth (TD): 33	>.77	Depth t	to Water	(DTW): ZO.	18	
Depth to Fre	ee Product	:		Thickn	ess of Fi	ree Product (fee	et):	
Referenced	to:	(PVC)	Grade	D.O. M	leter (if	req'd):	YSI HACH	
DTW with 8	80% Recha	arge [(H	leight of Water	Columr	n x 0.20)) + DTW]:	22.90	
,	Bailer Фisposable B Positive Air I Electric Subm	Displaceme		Waterra Peristaltic tion Pump	Well Diamete	Sampling Method: Other: Multiplier Well D 0.04 4"	Bailer Disposable Bailer Extraction Port Dedicated Tubing Multiplier 0.65	
2.2	Gals.) X	3	_ 6.6	Gals.	2"	0.16 6"	1.47	
1 Case Volume	Speci	fied Volum	nes Calculated Vo	olume	3"	0.37 Other	radius ² * 0.163	
Time	Temp	pН	Cond. (mS or (µS))		oidity (TUs)	Gals. Removed	Observations	
1136	17.9	7.28	1357	70	CO	2.2	brown	
1139	18.3	7.16	1380	70	000	4.4	LC	
1142	18.3	7.11	1367	7/9	000	6.6	C	
					2-	·		
						·		
Did well de	water?	Yes	No.	Gallons	s actuall	y evacuated:	6.6	
Sampling D	ate: \0/2(0/07	Sampling Time	e: 114	7	Depth to Water	r: 22.76	
Sample I.D.	: MW-	4		Labora	tory: (Kiff CalScience	Other	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: See C	o c	
EB I.D. (if a	applicable));	(a) Time	Duplic	ate I.D.	(if applicable):		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:		
D.O. (if req	'd): Pi	e-purge:		nig/L	P	'ost-purge:	mg/ _L	
O.R.P. (if re	eq'd): Pi	e-purge:		mV	P	ost-purge:	mV	

W _L MONITORING DATA SHL

		V V						
Project #:	07102	6-K	FL	Client: ACC	- Clos	ure		
Sampler:	KF			Date: 10/26/07				
Well I.D.:	MW-S)		Well Diameter	(2) 3 4	6 8		
Total Well I	Depth (TD): 34	.53.	Depth to Water	:(DTW): 70	.43		
Depth to Fro	ee Product		7 / /	Thickness of F	ree Product (fee	et):		
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH		
DTW with 8		arge [(H	eight of Water	Column x 0.20)		23.25		
Purge Method:	Bailer Disposable Ba Positive Air E Electric Subm	Displaceme			Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing		
2.3 (C) I Case Volume	Gals.) XSpeci	3 fied Volum	$= \frac{6.9}{\text{Calculated Vo}}$	_ Gals. Jume Well Diamete 1" 2" 3"	n Multiplier Well E 0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163		
Time	Temp (°F or 🕏	рН	Cond. (mS or μ S))	Turbidity (NTUs)	Gals. Removed	Observations		
1204	18.0	7.48	1274	71000	2.3	Lown		
1208	18.4	7-31	1323	7(200)	4.6	Ų		
1211	18-5	7.29	1438	7(200	6.9	ci .		
					0	TW=23.95		
Did well de	water?	Yes ((No	Gallons actuall	y evacuated: (6.9		
Sampling D	ate: (0/7	6/07	Sampling Time	e: 1216	Depth to Water	r: 23.25		
Sample I.D.	: MU	-5		Laboratory:	(Kiff) CalScience	Other		
Analyzed fo	or: TPH-G	ВТЕХ	MTBE TPH-D	Oxygenates (5)	Other: See (Coc		
EB I.D. (if a	applicable)	:	@ Time	Duplicate I.D.	(if applicable):			
Analyzed fo	or: TPH-G	ВТЕХ	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req	'd): Pr	e-purge:		mg/ _L P	ost-purge:	. ^{mg} /L		
Q.R.P. (if re	eq'd): Pr	e-purge:	New York Control of the Control of t	mV P	ost-purge:	m√		

Attachment C Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody Records

Date: 11/1/2007

Ron Chinn Closure Solutions, Inc. 1243 Oak Knoll Drive Concord, CA 94521

Subject: 5 Water Samples

Project Name: New West Petroleum 1051 Airway Blvd.; Livermore

Project Number: 071026-KF2

Dear Mr. Chinn,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Date: 11/1/2007

Project Name: New West Petroleum 1051 Airway Blvd.; Livermore

Project Number: 071026-KF2

Sample: MW-1 Matrix: Water Lab Number: 59279-01

Sample Date :10/26/2007

Cample Bate : 10/20/2001	Measured	Method Reporting		Analysis	Date
Parameter	Value	Limit	Units	Analysis Method	Analyzed
Benzene	11	0.50	ug/L	EPA 8260B	10/30/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Methyl-t-butyl ether (MTBE)	5.0	0.50	ug/L	EPA 8260B	10/30/2007
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	10/30/2007
Methanol	< 50	50	ug/L	EPA 8260B	10/30/2007
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	10/30/2007
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	10/30/2007
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	10/30/2007
4-Bromofluorobenzene (Surr)	93.9		% Recovery	EPA 8260B	10/30/2007
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	10/31/2007
Octacosane (Diesel Silica Gel Surr)	96.4		% Recovery	M EPA 8015	10/31/2007

Approved By:

Joel Kiff

Date: 11/1/2007

Project Name: New West Petroleum 1051 Airway Blvd.; Livermore

Project Number: 071026-KF2

Sample: MW-2 Matrix: Water Lab Number: 59279-02

Sample Date :10/26/2007

Campio Bato 110/20/2001		Method				
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007	
Methyl-t-butyl ether (MTBE)	0.57	0.50	ug/L	EPA 8260B	10/30/2007	
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007	
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007	
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007	
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	10/30/2007	
Methanol	< 50	50	ug/L	EPA 8260B	10/30/2007	
Ethanol	22	5.0	ug/L	EPA 8260B	10/30/2007	
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007	
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007	
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	10/30/2007	
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	10/30/2007	
4-Bromofluorobenzene (Surr)	95.4		% Recovery	EPA 8260B	10/30/2007	
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	10/31/2007	
Octacosane (Diesel Silica Gel Surr)	95.7		% Recovery	M EPA 8015	10/31/2007	

Approved By:

Joel∤Kiff

Date: 11/1/2007

Project Name: New West Petroleum 1051 Airway Blvd.; Livermore

Project Number: 071026-KF2

Sample: MW-3 Matrix: Water Lab Number: 59279-03

Sample Date :10/26/2007

Campio Bato 110/20/2001		Method				
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007	
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007	
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007	
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007	
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007	
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	10/31/2007	
Methanol	< 50	50	ug/L	EPA 8260B	10/31/2007	
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	10/31/2007	
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007	
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007	
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	10/31/2007	
Toluene - d8 (Surr)	99.1		% Recovery	EPA 8260B	10/31/2007	
4-Bromofluorobenzene (Surr)	112		% Recovery	EPA 8260B	10/31/2007	
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	10/31/2007	
Octacosane (Diesel Silica Gel Surr)	96.7		% Recovery	M EPA 8015	10/31/2007	

Approved By:

Joel∤Kiff

Date: 11/1/2007

Project Name: New West Petroleum 1051 Airway Blvd.; Livermore

Project Number: 071026-KF2

Sample: MW-4 Matrix: Water Lab Number: 59279-04

Sample Date :10/26/2007

Sample Date :10/20/2007	Measured	Method Reporting		Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Methyl-t-butyl ether (MTBE)	1.7	0.50	ug/L	EPA 8260B	10/31/2007
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	10/31/2007
Methanol	< 50	50	ug/L	EPA 8260B	10/31/2007
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	10/31/2007
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	10/31/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	10/31/2007
4-Bromofluorobenzene (Surr)	96.9		% Recovery	EPA 8260B	10/31/2007
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	11/1/2007
Octacosane (Diesel Silica Gel Surr)	91.8		% Recovery	M EPA 8015	11/1/2007

Approved By:

Joel Kiff

Date: 11/1/2007

Project Name: New West Petroleum 1051 Airway Blvd.; Livermore

Project Number: 071026-KF2

Sample: MW-5 Matrix: Water Lab Number: 59279-05

Sample Date :10/26/2007

Sample Date : 10/20/2001	Measured	Method Reporting		Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Methyl-t-butyl ether (MTBE)	42	0.50	ug/L	EPA 8260B	10/31/2007
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	10/31/2007
Methanol	< 50	50	ug/L	EPA 8260B	10/31/2007
Ethanol	5.5	5.0	ug/L	EPA 8260B	10/31/2007
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	10/31/2007
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	10/31/2007
4-Bromofluorobenzene (Surr)	97.3		% Recovery	EPA 8260B	10/31/2007
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	11/1/2007
Octacosane (Diesel Silica Gel Surr)	98.8		% Recovery	M EPA 8015	11/1/2007

Approved By:

Joel Kiff

Date: 11/1/2007

QC Report : Method Blank Data

Project Name: New West Petroleum 1051 Airway Blvd.; Livermore

Project Number: 071026-KF2

	Measured	Method Reporting	α	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	10/31/2007
Octacosane (Diesel Silica Gel Surr)	84.2		%	M EPA 8015	10/31/2007
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	10/31/2007
Methanol	< 50	50	ug/L	EPA 8260B	10/31/2007
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	10/31/2007
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	10/31/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	10/31/2007
Toluene - d8 (Surr)	99.8		%	EPA 8260B	10/31/2007
4-Bromofluorobenzene (Surr)	112		%	EPA 8260B	10/31/2007
			_		
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	10/30/2007
Methanol	< 50	50	ug/L	EPA 8260B	10/30/2007
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	10/30/2007
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	10/30/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	10/30/2007

	Measured	Method Reportir		Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Toluene - d8 (Surr)	100		%	EPA 8260B	10/30/2007
4-Bromofluorobenzene (Surr)	96.0		%	EPA 8260B	10/30/2007

Approved By:

Joel Kiff

Date: 11/1/2007

Project Name: New West Petroleum 1051

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number: 071026-KF2

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	e Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
TPH-D (Si Gel)	Blank	<50	1000	1000	854	861	ug/L	M EPA 8015	10/31/07	85.4	86.1	0.835	70-130	25
Benzene	59313-06	16	40.0	40.0	53.6	52.5	ug/L	EPA 8260B	10/31/07	94.8	92.0	3.00	70-130	25
Toluene	59313-06	0.77	40.0	40.0	39.1	37.7	ug/L	EPA 8260B	10/31/07	95.8	92.4	3.64	70-130	25
Tert-Butanol	59313-06	72	200	200	262	263	ug/L	EPA 8260B	10/31/07	94.6	95.2	0.640	70-130	25
Methyl-t-Butyl Ethe	er 59313-06	200	40.0	40.0	252	253	ug/L	EPA 8260B	10/31/07	124	128	3.27	70-130	25
Benzene	59279-01	11	40.0	40.0	53.4	52.3	ug/L	EPA 8260B	10/30/07	106	104	2.51	70-130	25
Toluene	59279-01	<0.50	40.0	40.0	42.5	41.2	ug/L	EPA 8260B	10/30/07	106	103	3.03	70-130	25
Tert-Butanol	59279-01	<5.0	200	200	213	210	ug/L	EPA 8260B	10/30/07	106	105	1.28	70-130	25
Methyl-t-Butyl Ethe	r 59279-01	5.0	40.0	40.0	52.6	51.8	ug/L	EPA 8260B	10/30/07	119	117	1.70	70-130	25

Date: 11/1/2007

Project Name : New West Petroleum 1051

QC Report : Laboratory Control Sample (LCS)

Project Number: 071026-KF2

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit			
Benzene	40.0	ug/L	EPA 8260B	10/31/07	94.5	70-130			
Toluene	40.0	ug/L	EPA 8260B	10/31/07	98.4	70-130			
Tert-Butanol	200	ug/L	EPA 8260B	10/31/07	96.1	70-130			
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	10/31/07	107	70-130			
Benzene	40.0	ug/L	EPA 8260B	10/30/07	104	70-130			
Toluene	40.0	ug/L	EPA 8260B	10/30/07	103	70-130			
Tert-Butanol	200	ug/L	EPA 8260B	10/30/07	98.9	70-130			
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	10/30/07	112	70-130			

Approved By:

Joe Kiff

DIA					SERS AVENU			COI	NDUC	T ANA	LYSIS	TO DET	ECT]LAB	Kiff		DHS#		
BLA TECH SER	05 71 55						Up			ALL ANALYSES MUST ME SET BY CALIFORNIA DHS	AND	IONS AND DET	ECTION LIMITS							
CHAIN OF CUS	CONTAINERS	(8260B)					Clean U			LIA OTHER										
CLIENT			(8260B)				Cl			SPECIAL INSTRUCTIONS Project Contact: Ron Chinn rchinn@closuresolutions.com										
SITE	Closure Solutions SITE New West Petroleum									<u></u>	8260B	a Gel			Invoice and Report to: Closure Solutions 925.348.0656 Office 1234 Oak Knoll Dr. 925.459.5602 Fax					
	1051 Air	way Bl	vd.			 	X	(5)	<u>8</u>	9	CA, EDB (8260B)	TPH-d with Silica Gel (8015M)			Concord, CA 94521 Global ID: T0600148042 Report (PDF) and EDF to Ron Chinn (email)					
	Livermore	e, CA					BTEX	es (826	88					EDF required		`	•		
			MATRI)	CON	TAINERS	1 00	_) [0	lou										
SAMPLE I.D.	DATE	TIME	S= SOIL W=H ₂ 0	TOTAL		C = COMPOSITE	TPH-g	Oxygenates	Ethanol (8260B)	Methanol (8260B)	1,2-DCA,	TPH-d v (8015M)			ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #		
MW-1	10/26/01	1002	w	6	6 HCL VOAS		х	х	х	х	х	х						01		
MW-2	- (1031	w	6	6 HCL VOAS		х	х	х	Х	x	x						02		
MW-3		1103	w	6	6 HCL VOAS		Х	х	Х	Х	Х	Х						03		
MW-4		1147	w	6	6 HCL VOAS		Х	x	x	X	х	X						04		
MW-5	V	1216	w	6	6 HCL VOAS		х	х	х	х	х	х			CANA			05		
															Temp °C 1.	LE RECEIP Therm.iD#	TR-5			
															Initial_731	Data 16.2	1107			
					<u> </u>										Time <u>1575/</u> C	olant present	YEE/ No			
				+-							_									
								ļ	-	_							-			
SAMPLING COMPLETED	DATE 19265	TIME	SAMPLI PERFO	ING RMED B	Y K.	C	srd ord	es	<u> </u>	<u>L</u>	<u> </u>	L			RESULTS NEEDED NO LATER THAN	Standard				
RELEASED BY													/ED BY	2	<u></u>		DATE 10/26/0	TIME 7 /YUO		
RELEASED BY		DATE TIME					RECEIVED BY					DATE	TIME							
RELEASED BY	ATE TIME					_RECEIVED BY			kilt		DATE	TIME								
SHIPPED VIA	DAT	TE SENT TIME SENT					COOLER#			Anathical		102407	1114							
											·						-			