

By Alameda County Environmental Health at 11:50 am, Jul 14, 2014

Second Quarter 2014 Semi-Annual Groundwater Monitoring Report

Former Chevron-branded Service Station 92029 890 West MacArthur Boulevard Oakland, California Case #: RO0002438

Prepared for: Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583

Prepared by: Stantec Consulting Services Inc. 15575 Los Gatos Blvd., Building C Los Gatos, CA 95032

Carryl MacLeodProject Manager
Marketing Business Unit

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6506 CMacleod@chevron.com

July 11, 2014

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Dear Mr. Detterman:

Attached for your review is the Second Quarter 2014 Semi-Annual Groundwater Monitoring Report for former Chevron-branded service station 92029, located at 890 West MacArthur Boulevard in Oakland, California (Case #: RO0002438). This report was prepared by Stantec Consulting Services Inc. (Stantec), upon whose assistance and advice I have relied. I declare under penalty of perjury that the information and/or recommendations contained in the attached report are true and correct, to the best of my knowledge.

If you should have any further questions, please do not hesitate to contact me or the Stantec project manager, Travis Flora, at (408) 356-6124 ext. 238, or travis.flora@stantec.com.

Sincerely,

Carryl MacLeod Project Manager

July 11, 2014

Attention: Mr. Mark Detterman

Alameda County Environmental Health

1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502

Reference: Second Quarter 2014 Semi-Annual Groundwater Monitoring Report

Former Chevron-branded Service Station 92029 890 West MacArthur Boulevard, Oakland, California

Case #: RO0002438

Dear Mr. Detterman:

On behalf of Chevron Environmental Management Company (Chevron), Stantec Consulting Services Inc. (Stantec) is pleased to submit the Second Quarter 2014 Semi-Annual Groundwater Monitoring Report for former Chevron-branded service station 92029, which was located at 890 West MacArthur Boulevard, Oakland, Alameda County, California (the Site - shown on **Figure 1**). This report is presented in three sections: Site Background, Second Quarter 2014 Groundwater Monitoring and Sampling Program, and Conclusions and Recommendations.

SITE BACKGROUND

The Site is a former Chevron-branded service station located on the northeast corner at the intersection of West MacArthur Boulevard and Market Street in Oakland, California. The Site is currently a fenced vacant lot. A former Chevron-branded service station operated at the Site from approximately 1956 to 2004. Prior to 1970, Site features consisted of two 5,000-gallon and one 3,000-gallon gasoline underground storage tanks (USTs) located in the eastern portion of the Site, three fuel dispenser islands (one located in the northwestern portion of the Site and two located in the central portion of the Site), associated product piping, a station building with two hydraulic hoists, and a waste oil UST (unknown size) located in the northern portion of the Site. The product piping was replaced in 1970, and the 3,000-gallon UST was replaced with a 10,000-gallon UST sometime before 1978. In 1982, the two 5,000-gallon and one 10,000-gallon USTs were replaced with three 10,000-gallon fiberglass USTs.

In 1984, the service station building was demolished, the hydraulic hoists were removed, and a kiosk was installed near the center of the Site. In addition, the three fuel dispenser islands were removed from the Site and replaced with five fuel dispenser islands (two located in the north-central portion of the Site and three located in the south-central portion of the Site). The fuel dispenser islands were replaced and the USTs were upgraded in 1997. The waste oil UST was removed from the Site sometime between 1984 and 1997. In 2005, the service station was closed and all Site structures, including the three 10,000-gallon fiberglass USTs and fuel dispenser islands, were removed. According to the Well Installation Report, prepared by Conestoga-Rovers & Associates (CRA) and dated November 18, 2008, extensive over-excavation was performed at this time and approximately 5,135 tons of impacted soil and 25,500 gallons of groundwater were removed and disposed off Site.

Former Chevron-branded Service Station 92029 July 11, 2014 Page 2 of 6

Land use near the Site consists of a mixture of commercial and residential properties. The Site is bounded to the north by a residential area, on the west by Market Street followed by a small grocery store and associated parking, on the south by West MacArthur Boulevard followed by a tire sales and service shop, and to the east by a small hotel.

In a letter dated December 18, 2013, Alameda County Environmental Health (ACEH) requested, at a minimum, a one-time sampling of Site wells for tetrachloroethene (PCE) to eliminate the waste oil UST as a potential source for a larger groundwater plume. PCE was added to the groundwater sampling program at all Site wells for Second Quarter 2014.

SECOND QUARTER 2014 GROUNDWATER MONITORING AND SAMPLING PROGRAM

Gettler-Ryan Inc. (G-R) performed the Second Quarter 2014 groundwater monitoring and sampling event on May 14, 2014. G-R's standard operating procedures (SOPs) and field data sheets are included in **Attachment A**. G-R gauged depth-to-groundwater in four Site wells (MW-5, MW-6, MW-7, and MW-8) prior to collecting groundwater samples for laboratory analysis. All four wells, which are located down-gradient of the Site, were sampled this quarter.

Investigation-derived waste (IDW) generated during the Second Quarter 2014 groundwater monitoring and sampling event was transported by Clean Harbors Environmental Services to Seaport Environmental in Redwood City, California.

Groundwater Elevation and Gradient

Well construction details and a screen interval assessment for each Site well are presented in **Table 1**. All four Site wells are currently screened across the prevailing groundwater table. Current and historical groundwater elevation data are presented in **Table 2**. A groundwater elevation contour map (based on Second Quarter 2014 data) is shown on **Figure 2**. The direction of groundwater flow at the time of sampling was generally towards the southwest at an approximate hydraulic gradient of 0.036 feet per foot (ft/ft). This is generally consistent with the historical direction of groundwater flow, as shown by the Rose Diagram on **Figure 3** illustrating the direction of groundwater flow from Second Quarter 2011 to present.

Schedule of Laboratory Analysis

Groundwater samples were collected and analyzed for total petroleum hydrocarbons as gasoline range organics (TPH-GRO) using United States Environmental Protection Agency (US EPA) Method 8015B (SW-846). Benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds), fuel oxygenates including methyl tertiary-butyl ether (MtBE), di-isopropyl ether (DIPE), ethyl tertiary-butyl ether (EtBE), tertiary-amyl methyl ether (TAME), and tertiary-butyl alcohol (TBA), and PCE were analyzed using US EPA Method 8260B (SW-846).

Groundwater Analytical Results

During Second Quarter 2014, groundwater samples were collected from four Site wells (MW-5, MW-6, MW-7, and MW-8). Current and historical groundwater analytical results are included in **Table 2** and **Table 3**. A figure showing the latest groundwater analytical data plotted on a Site map is included as **Figure 4**. A TPH-GRO isoconcentration map is shown on **Figure 5**. A benzene isoconcentration map is shown on **Figure 6**. A MtBE isoconcentration map is shown on **Figure 7**.

Former Chevron-branded Service Station 92029 July 11, 2014 Page 3 of 6

Certified laboratory analysis reports and chain-of-custody documents are presented as **Attachment B**. Hydrographs based on current and historical groundwater elevations and analytical results are included in **Attachment C**. A summary of Second Quarter 2014 groundwater analytical results follows. Historical trends were not analyzed for PCE as it was only analyzed during Second Quarter 2014.

- **TPH-GRO** was detected in three Site wells this quarter, at concentrations of 3,500 micrograms per liter (µg/L; well MW-5), 5,000 µg/L (well MW-6), and 8,200 µg/L (well MW-7), which are within historical limits for each respective well.
- **Benzene** was detected in three Site wells this quarter, at concentrations of 1 μg/L (well MW-5), 140 μg/L (well MW-6), and 380 μg/L (well MW-7), which are within historical limits for each respective well.
- **Toluene** was detected in two Site wells this quarter, at concentrations of 2 µg/L (well MW-5) and 6 µg/L (well MW-6), which are within historical limits for each respective well.
- **Ethylbenzene** was detected in three Site wells this quarter, at concentrations of 4 μ g/L (well MW-5), 46 μ g/L (well MW-6), and 460 μ g/L (well MW-7), which are within historical limits for each respective well.
- **Total Xylenes** were detected in two Site wells this quarter, at concentrations of 2 µg/L (well MW-6) and 34 µg/L (well MW-7), which are within historical limits for each respective well.
- MtBE was detected in two Site wells this quarter, at concentrations of 4 µg/L (well MW-7) and 10 µg/L (well MW-6). The concentration in well MW-6 is within historical limits, while the concentration in well MW-7 is equal to the lowest detected concentration for the well.
- **DIPE** was not detected above the laboratory reporting limits (LRLs; $0.5 \mu g/L$ and $1 \mu g/L$) in any Site well sampled this quarter.
- **EfBE** was not detected above the LRLs (0.5 μ g/L and 1 μ g/L) in any Site well sampled this quarter.
- **TAME** was not detected above the LRLs (0.5 μ g/L and 1 μ g/L) in any Site well sampled this quarter.
- **TBA** was detected in one Site well this quarter, at a concentration of 8 µg/L (well MW-6), which is within historical limits for this well.
- **PCE** was not detected above the LRLs (0.5 μ g/L and 1 μ g/L) in any Site well sampled this quarter.

CONCLUSIONS AND RECOMMENDATIONS

Concentrations were conservatively compared to California Regional Water Quality Control Board – San Francisco Bay Region Environmental Screening Levels (ESLs) for groundwater that is a current or potential source of drinking water and concentrations of TPH-GRO, benzene,

Former Chevron-branded Service Station 92029 July 11, 2014 Page 4 of 6

ethylbenzene, total xylenes, and MtBE were observed equal to or above ESLs in select wells as follows:

- TPH-GRO concentrations exceed the ESL of 100 µg/L in wells MW-5, MW-6, and MW-7;
- Benzene concentrations equal or exceed the ESL of 1 μ g/L in wells MW-5, MW-6, and MW-7;
- Ethylbenzene concentrations exceed the ESL of 30 µg/L in wells MW-6 and MW-7;
- The total xylenes concentration exceeds the ESL of 20 µg/L in well MW-7; and
- The MtBE concentration exceeds the ESL of 5 μg/L in well MW-6.

During Second Quarter 2014, maximum concentrations of petroleum hydrocarbons were observed in well MW-6, located down-gradient of former service station features (fuel dispenser islands and gasoline USTs) situated in the southern and eastern portions of the Site, and well MW-7, which is located approximately 95 feet down-gradient of well MW-6. TPH-GRO and benzene were also detected above or equal to the ESL in well MW-5, located down-gradient of former service station features (fuel dispenser islands, hydraulic hoists, and waste oil UST) situated in the northern portion of the Site. The dissolved-phase petroleum hydrocarbon plume does not appear to extend to the furthest down-gradient well MW-8, which is approximately 190 feet southwest of the Site.

Current and historical groundwater quality data indicate that the dissolved-phase petroleum hydrocarbon plume is generally stable or decreasing in overall size and concentration. However, the dissolved-phase petroleum hydrocarbon plume remains undefined off Site, and therefore current Site conditions do not satisfy any of the groundwater-specific criteria scenarios set forth in the Low-Threat UST Case Closure Policy (LTCP).

Based on concentrations of TPH-GRO, benzene, ethylbenzene, total xylenes, and MtBE equal to or above ESLs, Stantec recommends continuation of the semi-annual groundwater monitoring and sampling program; however, as PCE was not detected in any Site well, PCE analysis will be discontinued. Reports will continue to be submitted to ACEH within 60 days following groundwater monitoring and sampling events.

In a letter dated December 18, 2013, ACEH responded to the Site Conceptual Model and Data Gap Work Plan, dated August 16, 2013, with technical comments and requested a meeting to discuss an efficient strategy for collecting data at the Site in an effort to progress the Site towards closure and redevelopment as residential. The correspondence requested a work plan addendum based on the strategy decided upon during the meeting and that addressed ACEH's technical comments. The strategy meeting was held on May 8, 2014, a summary of the conclusions from that meeting was provided by ACEH in a letter dated May 14, 2014, and the Work Plan Addendum was submitted on June 11, 2014. The scope of the work plan addendum includes the advancement of five on-site soil borings (SB-11 through SB-15) and six off-site soil borings (SB-16 through SB-21) and collection of shallow soil and groundwater samples to evaluate the lateral extent of petroleum hydrocarbons in soil and groundwater and determine if the Site meets the groundwater-specific and vapor intrusion to indoor air criteria set forth in the LTCP. Should soil and groundwater results from sampling of the on- and off-site soil borings indicate potential vapor intrusion risk, soil vapor probes may be installed and sampled. In addition, updated sensitive receptor and water supply well surveys were proposed. ACEH approved of the Work Plan Addendum in a letter dated July 9, 2014 and Stantec will begin planning and scheduling the proposed activities.

Former Chevron-branded Service Station 92029 July 11, 2014 Page 5 of 6

Please feel free to contact me if you have any questions regarding the contents of this report.

Sincerely,

Stantec Consulting Services Inc.

Associate Project Manager Phone: (408) 356-6124

Travis.Flora@stantec.com

Attachments:

Table 1 - Well Details / Screen Interval Assessment - Second Quarter 2014

Table 2 – Groundwater Monitoring Data and Analytical Results

Table 3 – Groundwater Analytical Results – Oxygenate Compounds

Figure 1 – Site Location Map

Figure 2 – Groundwater Elevation Contour Map – Second Quarter 2014

Figure 3 – Groundwater Flow Direction Rose Diagram – Second Quarter 2014

Figure 4 – Site Plan Showing Groundwater Concentrations – Second Quarter 2014

Figure 5 – TPH-GRO Isoconcentration Map – Second Quarter 2014

Figure 6 – Benzene Isoconcentration Map – Second Quarter 2014

Figure 7 – MtBE Isoconcentration Map – Second Quarter 2014

Attachment A – Gettler-Ryan Inc. Field Data Sheets and Standard Operating Procedures – Second Quarter 2014

Attachment B – Certified Laboratory Analysis Reports and Chain-of-Custody Documents Attachment C – Hydrographs

cc:

Ms. Carryl MacLeod, Chevron Environmental Management Company, 6101 Bollinger Canyon Road, San Ramon, CA 94583 – Electronic Copy

Mr. Buyandalai Itgel, 787 Marlesta Road, Pinole, CA 94564 - Electronic Copy

Former Chevron-branded Service Station 92029 July 11, 2014 Page 6 of 6

This document entitled Second Quarter 2014 Semi-Annual Groundwater Monitoring Report was prepared by Stantec Consulting Services Inc. for the account of Chevron Environmental Management Company. The material in it reflects Stantec's best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec Consulting Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Erin O'Malley

Project Engineer

Reviewed by

Marisa Kaffenberger

Senior Engineer

Reviewed by

Travis L. Flora

Associate Project Manager

Reviewed by

(signature)

SEESSIONAL GEO Mark Paul Bare

No. 8435

Mark Bare, P.G. Senior Geologist

Table 1 Well Details / Screen Interval Assessment Second Quarter 2014

Former Chevron-Branded Service Station 92029 890 West MacArthur Boulevard, Oakland, California

Well ID	Date Installed	Well Type	Casing Diameter (inches)	Top of Casing (feet above msl)	Construction Well Depth (feet bgs)	Current Well Depth ¹ (feet bgs)	Current Depth to Groundwater ¹ (feet below TOC)	Screen Interval (feet bgs)	Screen Interval Assessment
MW-5	07/24/08	Monitoring	2	49.39	25.00	24.99	6.74	5-25	Depth-to-groundwater within screen interval.
MW-6	07/24/08	Monitoring	2	49.07	25.00	24.95	6.29	5-25	Depth-to-groundwater within screen interval.
MW-7	07/24/08	Monitoring	2	48.74	25.00	24.89	8.73	5-25	Depth-to-groundwater within screen interval.
MW-8	07/24/08	Monitoring	2	47.61	25.00	24.99	11.69	5-25	Depth-to-groundwater within screen interval.

Notes:

bgs = below ground surface

msl = mean sea level

TOC = top of casing

¹ = As measured prior to groundwater sampling on May 14, 2014.

WELL ID/	TOC*	DTW	GWE	TPH-GRO	Β (μg/L)	T (ug/l)	E (ug/l)	X (ug/l)	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)		(µg/L)	(µg/L)	(µg/L)	(μg/L)
	Groundv	vater ESL		100	5	40	30	20	5
MW-5									
08/22/08 ¹	49.39	9.97	39.42						
08/27/08 ³	49.39	10.03	39.36	54	0.5	0.8	<0.5	0.7	10
11/21/08 ³	49.39	8.42	40.97	6,000	93	6	37	6	8
02/13/09 ³	49.39	7.11	42.28	5,100	31	5	20	3	6
05/08/09 ³	49.39	7.21	42.18	3,600	18	4	14	2	2
08/07/09 ³	49.39	9.60	39.79	520	0.7	<0.5	<0.5	<0.5	2
11/05/09 ³	49.39	7.08	42.31	7,400	16	5	18	4	0.9
05/06/10 ³	49.39	6.08	43.31	3,500	4	2	3	0.9	0.9
11/03/10 ⁵	49.39	9.05	40.34	5,000	13	4	8	3	0.9
05/10/11 ⁵	49.39	7.26	42.13	3,200	6	4	7	0.9	<0.5
11/10/11 ⁵	49.39	7.60	41.79	2,600	6	3	10	2	<0.5
05/11/12 ⁵	49.39	6.48	42.91	3,300	<3	<3	<3	<3	<3
11/14/12 ³	49.39	8.89	40.50	2,100	3	2	3	0.6	<0.5
05/08/13 ³	49.39	8.41	40.98	2,100	2	0.9	2	<0.5	<0.5
11/06/13 ³	49.39	9.81	39.58	160	<0.5	< 0.5	<0.5	<0.5	<0.5
05/14/14 ³	49.39	6.74	42.65	3,500	1	2	4	<0.5	<0.5
MW-6									
08/22/08 ¹	49.07	8.98	40.09						
08/27/08 ³	49.07	8.98	40.09	6,000	990	4	350	530	440
11/21/08 ³	49.07	8.12	40.95	14,000	1,000	15	1,300	550	300
02/13/09 ³	49.07	5.84	43.23	9,700	630	4	510	36	180
05/08/09 ³	49.07	5.77	43.30	7,600	240	4	470	67	38
08/07/09 ³	49.07	8.49	40.58	14,000	1,500	12	1,400	180	330
11/05/09 ³	49.07	6.72	42.35	22,000	870	8	1,300	130	160
05/06/10 ³	49.07	4.89	44.18	5,200	110	2	160	23	9
11/03/10 ⁵	49.07	8.05	41.02	13,000	1,100	8	670	58	160
05/10/11 ^{4,5}	49.07	8.56	40.51	<50	0.6	<0.5	<0.5	<0.5	<0.5
11/10/11 ⁵	49.07	7.59	41.48	5,700	260	7	180	13	37
05/11/12 ⁵	49.07	5.68	43.39	1,200	36	0.6	0.8	<0.5	1
11/14/12 ³	49.07	9.83	39.24	6,400	290	9	180	6	36
05/08/13 ³	49.07	7.21	41.86	2,000	77	1	9	<0.5	6
11/06/13 ³	49.07	9.27	39.80	5,300	330 ⁶	3 ⁶	8 ⁶	16	78 ⁶
05/14/14 ³	49.07	6.29	42.78	5,000	140	6	46	2	10

WELL ID/	TOC*	DTW	GWE	TPH-GRO (µg/L)	Β (μg/L)	Τ (μg/L)	E (ug/l)	X (ua/l)	MtBE
DATE	(ft.)	(ft.)	(msl)				(µg/L)	(µg/L)	(µg/L)
	Groundy	vater ESL		100	5	40	30	20	5
MW-7									
08/22/08 ¹	48.74	10.20	38.54						
08/27/08 ³	48.74	10.19	38.55	<50	<0.5	0.6	<0.5	0.7	6
11/21/08 ³	48.74	9.51	39.23	1,100	80	<0.5	65	0.7	6
02/13/09 ³	48.74	7.95	40.79	630	30	<0.5	38	0.9	7
05/08/09 ³	48.74	8.04	40.70	1,200	83	<0.5	190	2	8
08/07/09 ³	48.74	9.88	38.86	8,900	240	0.7	770	5	5
11/05/09 ³	48.74	9.03	39.71	12,000	630	<1	1,300	420	5
05/06/10 ³	48.74	7.88	40.86	4,000	190	<0.5	270	7	6
11/03/10 ⁵	48.74	9.48	39.26	5,700	150	0.7	45	2	4
05/10/11 ⁵	48.74	8.82	39.92	3,500	180	<0.5	150	2	5
11/10/11 ⁵	48.74	9.68	39.06	1,500	2	<0.5	2	<0.5	5
05/11/12 ⁵	48.74	8.37	40.37	9,200	440	<5	1,000	33	<5
11/14/12 ³	48.74	9.79	38.95	5,000	<3	<3	6	<3	4
05/08/13 ³	48.74	9.54	39.20	2,200	10	<0.5	2	<0.5	5
11/06/13 ³	48.74	10.60	38.14	790	<0.5	<0.5	<0.5	<0.5	4
05/14/14 ³	48.74	8.73	40.01	8,200	380 ⁶	<16	460 ⁶	34 ⁶	46
MW-8									
08/22/08 ¹	47.61	12.41	35.20						
08/27/08 ³	47.61	12.42	35.19	<50	<0.5	0.7	<0.5	0.6	< 0.5
11/21/08 ³	47.61	11.42	36.19	<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/13/09 ³	47.61	8.87	38.74	<50	<0.5	<0.5	<0.5	<0.5	< 0.5
05/08/09 ³	47.61	10.79	36.82	<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/07/09 ³	47.61	12.33	35.28	<50	<0.5	<0.5	<0.5	<0.5	< 0.5
11/05/09 ³	47.61	11.23	36.38	<50	<0.5	<0.5	<0.5	<0.5	< 0.5
05/06/10 ³	47.61	10.28	37.33	<50	<0.5	<0.5	<0.5	<0.5	< 0.5
11/03/10 ⁵	47.61	11.37	36.24	<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/10/11 ⁵	47.61	11.55	36.06	<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/10/11 ⁵	47.61	11.49	36.12	<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/11/12 ⁵	47.61	10.89	36.72	<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/14/12 ³	47.61	11.73	35.88	<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/08/13 ³	47.61	12.03	35.58	<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/06/13 ³	47.61	12.63	34.98	<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/14/14 ³	47.61	11.69	35.92	<50	<0.5	<0.5	<0.5	<0.5	<0.5

WELL ID/	TOC*	DTW	GWE	TPH-GRO	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
	Groundy	vater ESL		100	5	40	30	20	5
MW-1									
03/12/021	50.71	6.50	44.21	<50	< 0.50	< 0.50	<0.50	<1.5	<2.5/<2 ²
06/07/02	50.71	8.69	42.02	<50	< 0.50	<0.50	<0.50	<1.5	<2.5/<2 ²
09/13/02	50.71	9.28	41.43	<50	< 0.50	<0.50	<0.50	<1.5	<2.5/<2 ²
12/13/02	50.71	8.48	42.23	<50	< 0.50	<0.50	<0.50	<1.5	<2.5/<2 ²
03/01/03	50.71	7.34	43.37	<50	< 0.50	<0.50	<0.50	<1.5	<2.5/<0.5 ²
06/27/03 ³	50.71	9.29	41.42	<50	<0.5	0.6	<0.5	<0.5	<0.5
09/30/03 ³	50.71	10.17	40.54	<50	<0.5	0.6	<0.5	<0.5	<0.5
12/03/03 ³	50.71	7.82	42.89	<50	<0.5	<0.5	<0.5	<0.5	<0.5
03/10/04 ³	50.71	6.57	44.14	<50	<0.5	<0.5	<0.5	<0.5	<0.5
06/30/04 ³	50.71	9.78	40.93	<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/30/04 ³	50.71	9.91	40.80	<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
12/29/04 ³	50.71	2.90	47.81	<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
03/23/05 ³	50.71	2.90	47.81	<50	<0.5	<0.5	<0.5	<0.5	<0.5
06/22/05 ³	50.71	8.59	42.12	<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/02/05 ³	50.71	9.38	41.33	<50	<0.5	<0.5	<0.5	<0.5	<0.5
12/02/05	50.71	8.44	42.27						
03/20/06	50.71	3.05	47.66						
06/01/06	50.71	6.77	43.94						
09/11/06	50.71	9.18	41.53						
DESTROYED									
MW-2	50.57		44.40	.50	0.50	0.50	0.50		2
03/12/02	52.57	6.09	46.48	<50	<0.50	<0.50	<0.50	<1.5	<2.5/3 ²
06/07/02	52.57	8.65	43.92	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ²
09/13/02	52.57	9.58	42.99	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ²
12/13/02	52.57	8.50	44.07	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ²
03/01/03	52.57	7.00	45.57	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<0.5 ²
06/27/03 ³	52.57	9.59	42.98	<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/30/03 ³	52.57	10.64	41.93	<50	<0.5	<0.5	<0.5	<0.5	0.7
12/03/03 ³	52.57	7.54	45.03	<50	<0.5	<0.5	<0.5	<0.5	<0.5
03/10/04 ³	52.57	6.05	46.52	<50	<0.5	<0.5	<0.5	<0.5	<0.5
06/30/04 ³	52.57	10.15	42.42	<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/30/04 ³	52.57	10.14	42.43	<50	<0.5	<0.5	<0.5	<0.5	<0.5
12/29/04 ³	52.57	2.29	50.28	<50	<0.5	<0.5	<0.5	<0.5	<0.5
03/23/05 ³	52.57	2.44	50.13	<50	<0.5	<0.5	<0.5	<0.5	<0.5
06/22/05 ³	52.57	8.99	43.58	<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/02/05 ³	52.57	10.17	42.40	<50	<0.5	<0.5	<0.5	<0.5	<0.5
12/02/05	52.57	8.99	43.58						

WELL ID/ DATE	TOC* (ft.)	DTW (ff.)	GWE (msl)	TPH-GRO (µg/L)	Β (μg/L)	Τ (μg/L)	Ε (μg/L)	Χ (μg/L)	MtBE (µg/L)
DATE		water ESL	(IIISI)	100	<u>μ9/ε/</u> 5	40	30	20	μ <i>g/τ</i> / 5
	Ciodilav	Waler LJL		100				20	
MW-2 (cont)									
03/20/06	52.57	2.70	49.87						
06/01/06	51.57	6.51	45.06						
09/11/06 DESTROYED	51.57	10.06	41.51						
MW-3									
03/12/02 ¹	50.31	6.50	43.81	12,000	600	8.5	1,100	370	700/650 ²
06/07/02	50.31	7.74	42.57	14,000	630	8.8	1,200	160	520/490 ²
09/13/02	50.31	9.73	40.58	3,000	270	3.2	200	11	600/640 ²
12/13/02	50.31	8.60	41.71	24,000	1,100	14	2,400	220	650/540 ²
03/01/03	50.31	6.75	43.56	16,000	500	9.0	1,200	130	460/330 ²
06/27/03 ³	50.31	9.25	41.06	9,500	390	6	450	30	470
09/30/03 ³	50.31	10.31	40.00	2,000	110	1	100	3	710
12/03/03 ³	50.31	8.18	42.13	19,000	970	8	2,100	85	420
03/10/04 ³	50.31	6.10	44.21	15,000	550	6	960	95	220
06/30/04 ³	50.31	9.80	40.51	3,200	150	1	100	3	660
09/30/04 ³	50.31	10.18	40.13	1,900	66	0.8	84	4	690
12/29/04 ³	50.31	4.58	45.73	16,000	470	7	820	47	170
03/23/05 ³	50.31	5.07	45.24	18,000	380	6	960	58	140
06/22/05 ³	50.31	8.12	42.19	16,000	700	6	950	62	300
09/02/05 ³	50.31	9.41	40.90	8,400	380	4	510	41	440
12/02/05 ³	50.31	7.97	42.34	16,000	490	6	1,200	32	170
03/20/06 ³	50.31	5.32	44.99	4,200	79	0.8	2	10	34
06/01/06 ³	50.31	7.07	43.24	5,400	67	1	26	3	28
09/11/06 ³ DESTROYED	50.31	9.07	41.24	14,000	270	5	240	38	97
MW-4									
03/12/02 ¹	49.93	5.34	44.59	9,700	360	5.3	1,100	150	170/170 ²
06/07/02	49.93	8.52	41.41	7,300	170	2.7	280	21	200/120 ²
09/13/02	49.93	9.86	40.07	5,800	92	4.5	80	14	190/160 ²
12/13/02	49.93	9.42	40.51	10,000	250	2.2	330	19	170/100 ²
03/01/03	49.93	7.33	42.60	12,000	300	4.6	900	110	160/100 ²
06/27/03 ³	49.93	9.62	40.31	7,500	110	2	200	58	130
09/30/03 ³	49.93	11.13	38.80	3,600	18	<1	16	7	520
12/03/03 ³	49.93	7.80	42.13	16,000	1,000	6	720	52	73
03/10/04 ³	49.93	6.69	43.24	2,200	230	3	610	71	55

WELL ID/ DATE	TOC* (ff.)	DTW (ft.)	GWE (msl)	TPH-GRO (µg/L)	B (µg/L)	Τ (μg/L)	Ε (μg/L)	Χ (μg/L)	MtBE (µg/L)
AIL	Groundy		(IIISI)	100			30		<u>(μg/1)</u> 5
	Groundy	vater ESL		100	5	40	30	20	<u> </u>
MW-4 (cont)									
06/30/04 ³	49.93	10.33	39.60	7,700	59	<1	78	17	110
09/30/04 ³	49.93	10.75	39.18	4,800	100	1	33	10	400
12/29/04 ³	49.93	3.34	46.59	13,000	250	3	480	27	42
03/23/05 ³	49.93	4.24	45.69	12,000	130	2	280	16	24
06/22/05 ³	49.93	7.95	41.98	6,400	290	2	11	11	18
09/02/05 ³	49.93	9.46	40.47	3,700	180	1	13	7	18
2/02/05 ³	49.93	7.60	42.33	11,000	840	5	480	24	34
03/20/06 ³	49.93	4.50	45.43	790	14	<0.5	1	0.6	2
06/01/06 ³	49.93	7.30	42.63	5,100	48	0.8	42	4	2
09/11/06 ³	49.93	9.38	40.55	6,700	64	3	44	3	4
DESTROYED									
RIP BLANK									
QA									
3/12/02				<50	<0.50	<0.50	<0.50	<1.5	<2.5
6/07/02				<50	<0.50	<0.50	<0.50	<1.5	<2.5
9/13/02				<50	<0.50	<0.50	<0.50	<1.5	<2.5
2/13/02				<50	<0.50	<0.50	<0.50	<1.5	<2.5
03/01/03				<50	<0.50	<0.50	<0.50	<1.5	<2.5
06/27/03 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/30/03 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
2/03/03 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
3/10/04 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
06/30/04 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/30/04 ³				<50	<0.5	<0.7	<0.8	<0.8	<0.5
2/29/04 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
3/23/05 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
06/22/05 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/02/05 ³				<50	<0.5	14	<0.5	14	<0.5
2/02/05 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
3/20/06 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
6/01/06 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/11/06 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/27/08 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
1/21/08 ⁵				<50	<0.5	<0.5	<0.5	<0.5	
)2/13/09 ⁵				<50	<0.5	<0.5	<0.5	<0.5	
05/08/09 ⁵				<50	<0.5	<0.5	<0.5	<0.5	
08/07/09 ⁵				<50	<0.5	<0.5	<0.5	<0.5	

VELL ID/ DATE	TOC* (ff.)	DTW (ft.)	GWE (msl)	TPH-GRO (µg/L)	B (µg/L)	T (μg/L)	E (µg/L)	Χ (μg/L)	M†BE (µg/L)
	Groundy	vater ESL		100	5	40	30	20	5
A (cont)									
1/14/12 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
5/08/13 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
I/06/13 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
5/14/14 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5

Table 2

Groundwater Monitoring Data and Analytical Results

Former Chevron-Branded Service Station 92029 890 West MacArthur Boulevard, Oakland, California

EXPLANATIONS:

Current groundwater monitoring data was provided by Gettler-Ryan Inc. Current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

TOC = Top of Casing

TPH-GRO = Total Petroleum Hydrocarbons as Gasoline Range Organics

-- = Not Measured/Not Analyzed

(ft.) = FeetB = BenzeneQA = Quality Assurance/Trip BlankDTW = Depth to WaterT = TolueneEPA = Environmental Protection Agency

GWE = Groundwater Elevation E = Ethylbenzene (msl) = Mean sea level X = Xylenes

(µg/L) = Micrograms per liter MtBE = Methyl tertiary-butyl ether

ESL = California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Level for groundwater that is a current or potential source of drinking water

- * Current TOC elevations were surveyed on October 1, 2008, by CRA. The benchmark for this survey was a USGS bronze disk located near the north end of the curb return at the Northwest corner of 38th Street and Broadway, (Benchmark Elevation = 85.41 feet, NGVD29).
- Well development performed.
- ² MtBE by EPA Method 8260.
- ³ BTEX and MtBE by EPA Method 8260.
- Laboratory confirmed analytical result.
- ⁵ BTEX by EPA Method 8260.
- 6 Laboratory report indicates reporting limits were raised due to interference from the sample matrix.

Table 3 Groundwater Analytical Results - Oxygenate Compounds

WELL ID/	ETHANOL	TBA	MtBE	DIPE	EtBE	TAME	1,2-DCA	1,2-DBA	PCE
DATE	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)
Groundwater ESL	NE	12	5	NE	NE	NE	0.5	0.05	5
MW-5									
08/27/08		2	10	<0.5	<0.5	<0.5			
11/21/08		4	8	<0.5	<0.5	<0.5			
02/13/09		3	6	<0.5	<0.5	<0.5			
05/08/09		7	2	<0.5	<0.5	<0.5			
08/07/09		<2	2	<0.5	<0.5	<0.5			
11/05/09		2	0.9	<0.5	<0.5	<0.5			
05/06/10		<2	0.9	<0.5	< 0.5	<0.5			
11/03/10		<2	0.9	<0.5	< 0.5	<0.5			
05/10/11		<2	<0.5	<0.5	<0.5	<0.5			
11/10/11		<2	<0.5	<0.5	<0.5	<0.5			
05/11/12		<10	<3	<3	<3	<3			
11/14/12		<2	<0.5	<0.5	<0.5	<0.5			
05/08/13		<2	<0.5	<0.5	<0.5	<0.5			
11/06/13		<2	<0.5	<0.5	<0.5	<0.5			
05/14/14		<5	<0.5	<0.5	<0.5	<0.5			<0.5
,									
MW-6									
08/27/08		390	440	<0.5	<0.5	6			
11/21/08		320	300	<13	<13	<13			
02/13/09		100	180	<1	<1	4			
05/08/09		16	38	<0.5	<0.5	0.9			
08/07/09		190	330	<3	<3	5			
11/05/09		86	160	<1	<1	4			
05/06/10		2	9	<0.5	<0.5	<0.5			
11/03/10		98	160	<3	<3	3			
05/10/11 ¹		<2	<0.5	<0.5	<0.5	<0.5			
11/10/11		19	37	<1	<1	<1			
05/11/12		<2	1	<0.5	<0.5	<0.5			
11/14/12		16	36	<0.5	< 0.5	0.7			
05/08/13		5	6	<0.5	< 0.5	<0.5			
11/06/13 ²		60	78	<1	<1	2			
05/14/14		8	10	<0.5	<0.5	<0.5			<0.5
MW-7		6		c -					
08/27/08		<2	6	<0.5	<0.5	<0.5			
11/21/08		5	6	<0.5	<0.5	<0.5			
02/13/09		<2	7	<0.5	< 0.5	<0.5			

Table 3 Groundwater Analytical Results - Oxygenate Compounds

WELL ID/	ETHANOL	TBA	MtBE	DIPE	EtBE	TAME	1,2-DCA	1,2-DBA	PCE
DATE	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Groundwater ESL	NE	12	5	NE	NE	NE	0.5	0.05	5
MW-7 (cont)									
05/08/09		<2	8	<0.5	<0.5	< 0.5			
08/07/09		4	5	<0.5	<0.5	< 0.5			
11/05/09		9	5	<1	<1	<1			
05/06/10		3	6	<0.5	<0.5	<0.5			
11/03/10		6	4	<0.5	<0.5	<0.5			
05/10/11		3	5	<0.5	<0.5	<0.5			
11/10/11		4	5	<0.5	<0.5	<0.5			
05/11/12		<20	<5	<5	<5	<5			
11/14/12		<10	4	<3	<3	<3			
05/08/13		<2	5	<0.5	<0.5	<0.5			
11/06/13		<2	4	<0.5	<0.5	<0.5			
05/14/14 ²		<10	4	<1	<1	<1			<1
MW-8									
08/27/08		<2	<0.5	<0.5	<0.5	<0.5			
11/21/08		<2	<0.5	<0.5	<0.5	<0.5			
02/13/09		<2	<0.5	<0.5	<0.5	<0.5			
05/08/09		<2	<0.5	<0.5	<0.5	<0.5			
08/07/09		<2	<0.5	<0.5	<0.5	<0.5			
11/05/09		<2	<0.5	<0.5	<0.5	<0.5			
05/06/10		<2	<0.5	<0.5	<0.5	< 0.5			
11/03/10		<2	<0.5	<0.5	<0.5	< 0.5			
05/10/11		<2	<0.5	<0.5	<0.5	<0.5			
11/10/11		<2	<0.5	<0.5	<0.5	<0.5			
05/11/12		<2	<0.5	<0.5	<0.5	<0.5			
11/14/12		<2	<0.5	<0.5	<0.5	<0.5			
05/08/13		<2	<0.5	<0.5	<0.5	<0.5			
11/06/13		<2	<0.5	<0.5	<0.5	<0.5			
05/14/14		<5	<0.5	<0.5	<0.5	<0.5			<0.5
MW-1									
03/12/02		<100	<2	<2	<2	<2	<2	<2	
06/07/02		<100	<2	<2	<2	<2	<2	<2	
09/13/02		<100	<2	<2	<2	<2	<2	<2	
12/13/02		<100	<2	<2	<2	<2	<2	<2	
03/01/03		<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
06/27/03		<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
09/30/03	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
12/03/03	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

Table 3 Groundwater Analytical Results - Oxygenate Compounds

WELL ID/	ETHANOL	TBA	MtBE	DIPE	EtBE	TAME	1,2-DCA	1,2-DBA	PCE
DATE	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)
Groundwater ESL	NE	12	5	NE	NE	NE	0.5	0.05	5
MW-1 (cont)									
03/10/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
06/30/04	<50	<5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	
09/30/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
12/31/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
03/23/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
06/22/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
09/02/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
DESTROYED									
MW-2									
03/12/02		<100	3	<2	<2	<2	<2	<2	
06/07/02		<100	<2	<2	<2	<2	<2	<2	
09/13/02		<100	<2	<2	<2	<2	<2	<2	
12/13/02		<100	<2	<2	<2	<2	<2	<2	
03/01/03		<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
06/27/03		<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
09/30/03	<50	<5	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	
12/03/03	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
03/10/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
06/30/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
09/30/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
12/31/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
03/23/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
06/22/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
09/02/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
DESTROYED	55	ŭ	3.0	3.0	3.0	0.0	3.5	3.0	
MW-3									
03/12/02		<100	650	<2	<2	18	<2	<2	
06/07/02		230	490	<5.0	<5.0	11	<5.0	<5.0	
09/13/02		170	640	<2	<2	8	<2	<2	
12/13/02		240	540	<2	<2	29	31	<2	
03/01/03		160	330	<0.5	<0.5	10	<0.5	<0.5	
06/27/03		200	470	<0.5	<0.5	11	<0.5	<0.5	
09/30/03	<50	120	710	<0.5	<0.5	6	0.7	<0.5	
12/03/03	<250	200	420	<3	<3	14	<3	<3	
03/10/04	<50	140	220	<0.5	<0.5	5	<0.5	<0.5	
06/30/04	<50	100	660	<0.5	<0.5	5	<0.5	<0.5	
09/30/04	<50	72	690	<0.5	<0.5	4	0.5	<0.5	

Table 3
Groundwater Analytical Results - Oxygenate Compounds

WELL ID/ DATE	ETHANOL (μg/L)	TBA (μg/L)	M†BE (µg/L)	DIPE (µg/L)	EtBE (μg/L)	TAME (µg/L)	1,2-DCA (μg/L)	1,2-DBA (μg/L)	PCE (µg/L)
Groundwater ESL	NE	12	5	NE	NE	NE	0.5	0.05	5
MW-3 (cont)									
12/31/04	<50	77	170	<0.5	<0.5	5	<0.5	<0.5	
03/23/05	<50	<5	140	<0.5	<0.5	4	<0.5	3	
06/22/05	<250	150	300	<3	<3	6	<3	<3	
09/02/05	<100	99	440	<1	<1	<1	<1	<1	
12/02/05	<100	66	170	<1	<1	5	<1	<1	
03/20/06	<50	14	34	<0.5	<0.5	<0.5	<0.5	<0.5	
06/01/06	<50	12	28	<0.5	<0.5	0.8	<0.5	<0.5	
09/11/06	<50	47	97	<0.5	<0.5	2	<0.5	<0.5	
DESTROYED									
MW-4									
03/12/02		<100	170	<2	<2	13	<2	<2	
06/07/02		<100	120	<2	<2	14	<2	<2	
09/13/02		<100	160	<2	<2	14	<2	<2	
12/13/02		<100	200	<2	<2	17	<2	<2	
03/01/03		19	100	<0.5	<0.5	8	<0.5	<0.5	
06/27/03		22	130	<0.5	<0.5	11	<0.5	<0.5	
09/30/03	<100	<10	520	<1	<1	9	<1	<1	
12/03/03	<50	18	73	<0.5	<0.5	5	<0.5	<0.5	
03/10/04	<50	11	55	<0.5	<0.5	4	<0.5	<0.5	
06/30/04	<100	<10	110	<1	<1	6	<1	<1	
09/30/04	<50	17	400	<0.5	<0.5	7	<0.5	<0.5	
12/31/04	<50	11	42	<0.5	<0.5	2	<0.5	<0.5	
03/23/05	<50	<5	24	<0.5	<0.5	1	<0.5	0.9	
06/22/05	<50	15	18	<0.5	<0.5	1	<0.5	<0.5	
09/02/05	<50	6	18	<0.5	<0.5	<0.5	<0.5	<0.5	
12/02/05	<50	11	34	<0.5	<0.5	1	<0.5	<0.5	
03/20/06	<50	<5	2	<0.5	<0.5	<0.5	<0.5	<0.5	
06/01/06	<50	<5	2	<0.5	<0.5	<0.5	<0.5	<0.5	
09/11/06	<50	<5	4	<0.5	<0.5	<0.5	<0.5	<0.5	
DESTROYED									

Table 3

Groundwater Analytical Results - Oxygenate Compounds

Former Chevron-Branded Service Station 92029 890 West MacArthur Boulevard, Oakland, California

EXPLANATIONS:

Current groundwater monitoring data was provided by Gettler-Ryan Inc. Current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

TBA = Tertiary-Butyl Alcohol

MtBE = Methyl tertiary-butyl ether

DIPE = Di-Isopropyl Ether

EtBE = Ethyl Tertiary-Butyl Ether

TAME = Tertiary-Amyl Methyl Ether

1,2-DCA = 1,2-Dichloroethane

1,2-DBA = 1,2-Dibromoethane

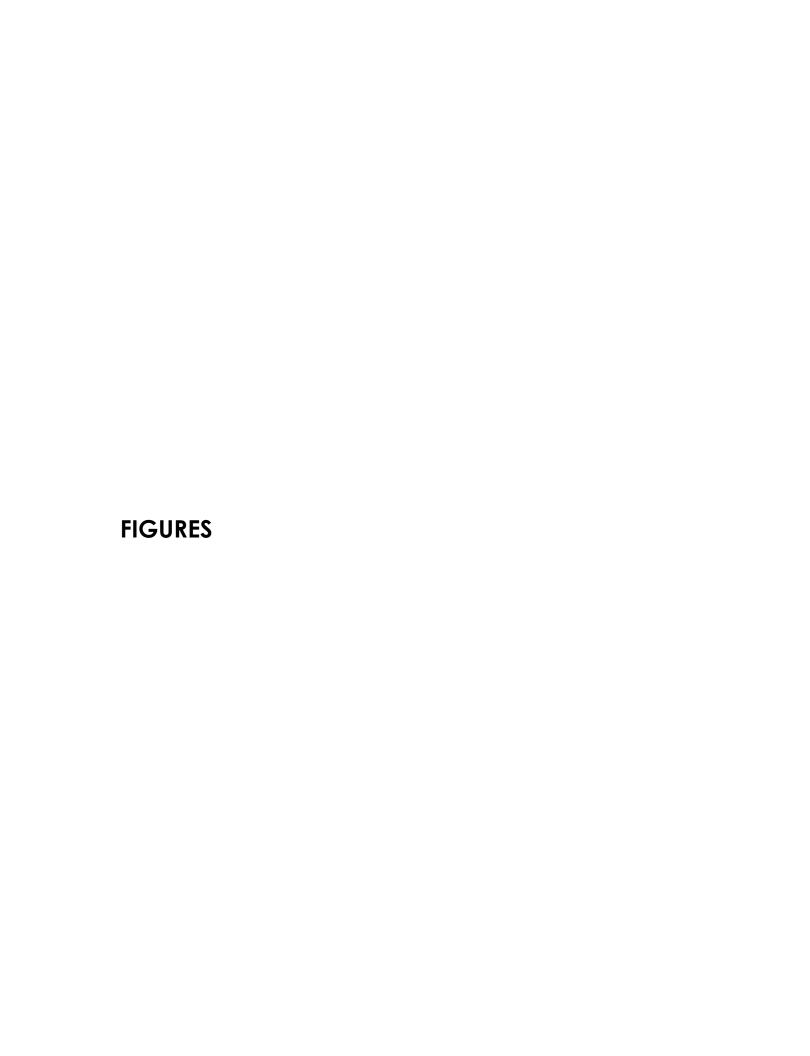
PCE = Tetrachloroethene

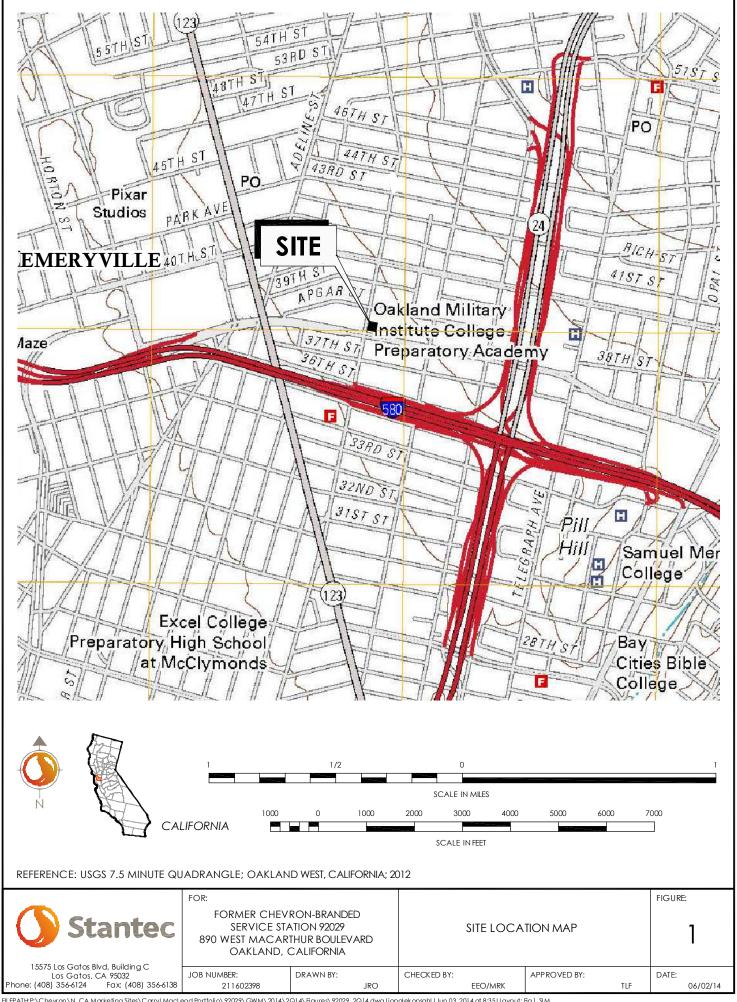
(µg/L) = Micrograms per liter

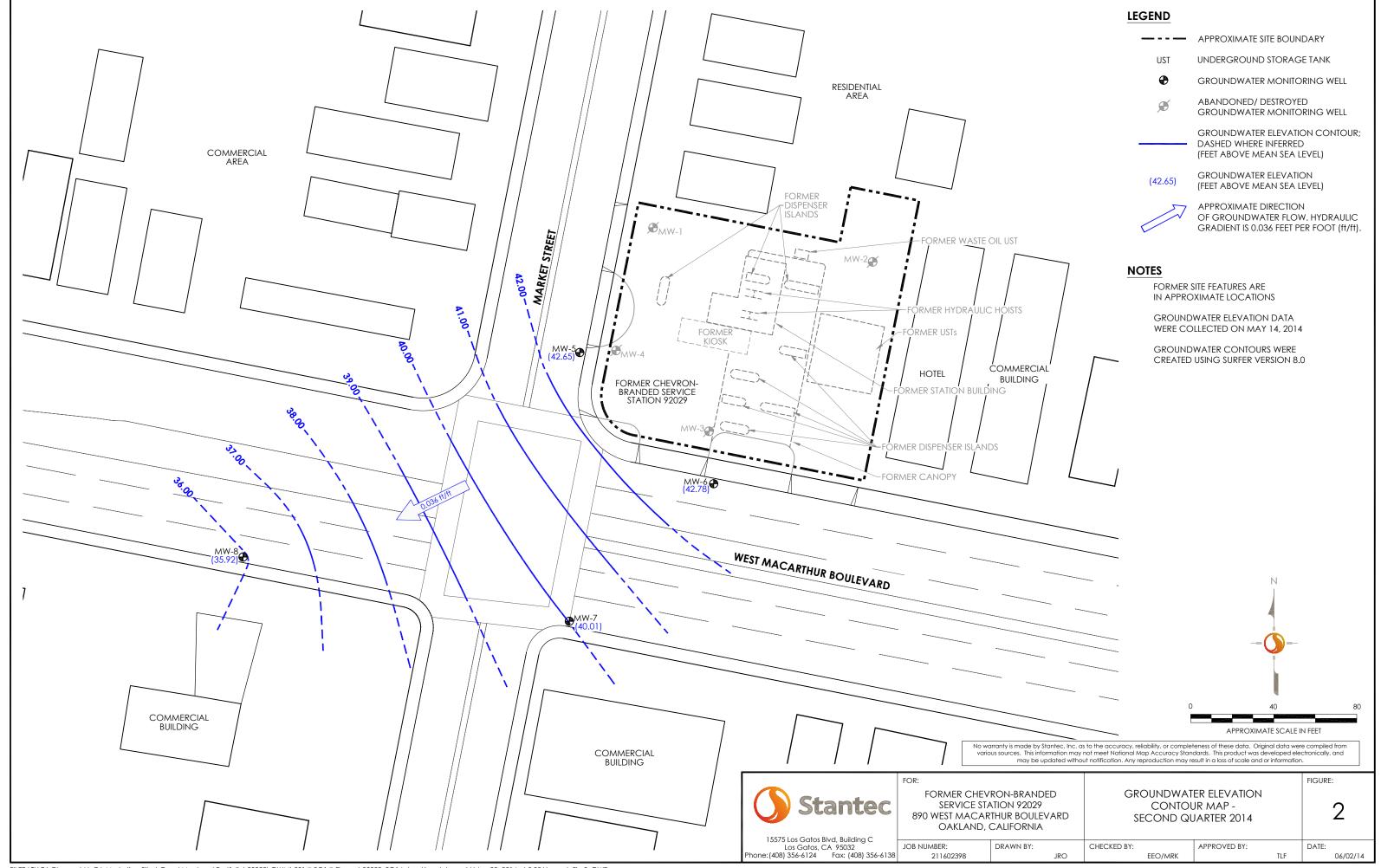
-- = Not Analyzed

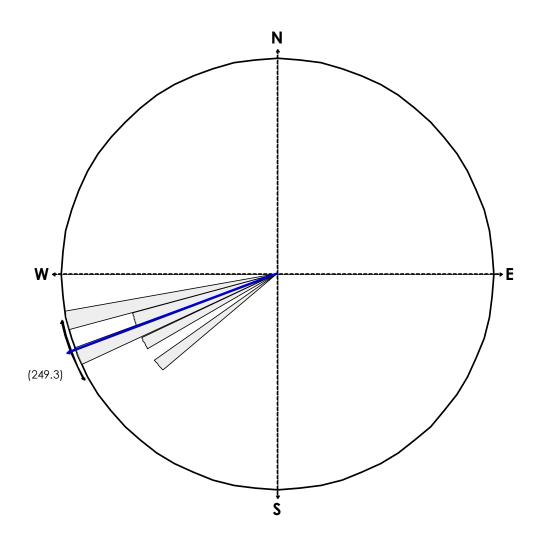
EPA = Environmental Protection Agency

ESL = California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Level for groundwater that is a current or potential source of drinking water


NE = ESL not established


ANALYTICAL METHOD:


EPA Method 8260 for Oxygenate Compounds


¹ Laboratory confirmed analytical result.

 $^{^{2}}$ Laboratory report indicates reporting limits were raised due to interference from the sample matrix.

EQUAL AREA PLOT

Number of Points 7

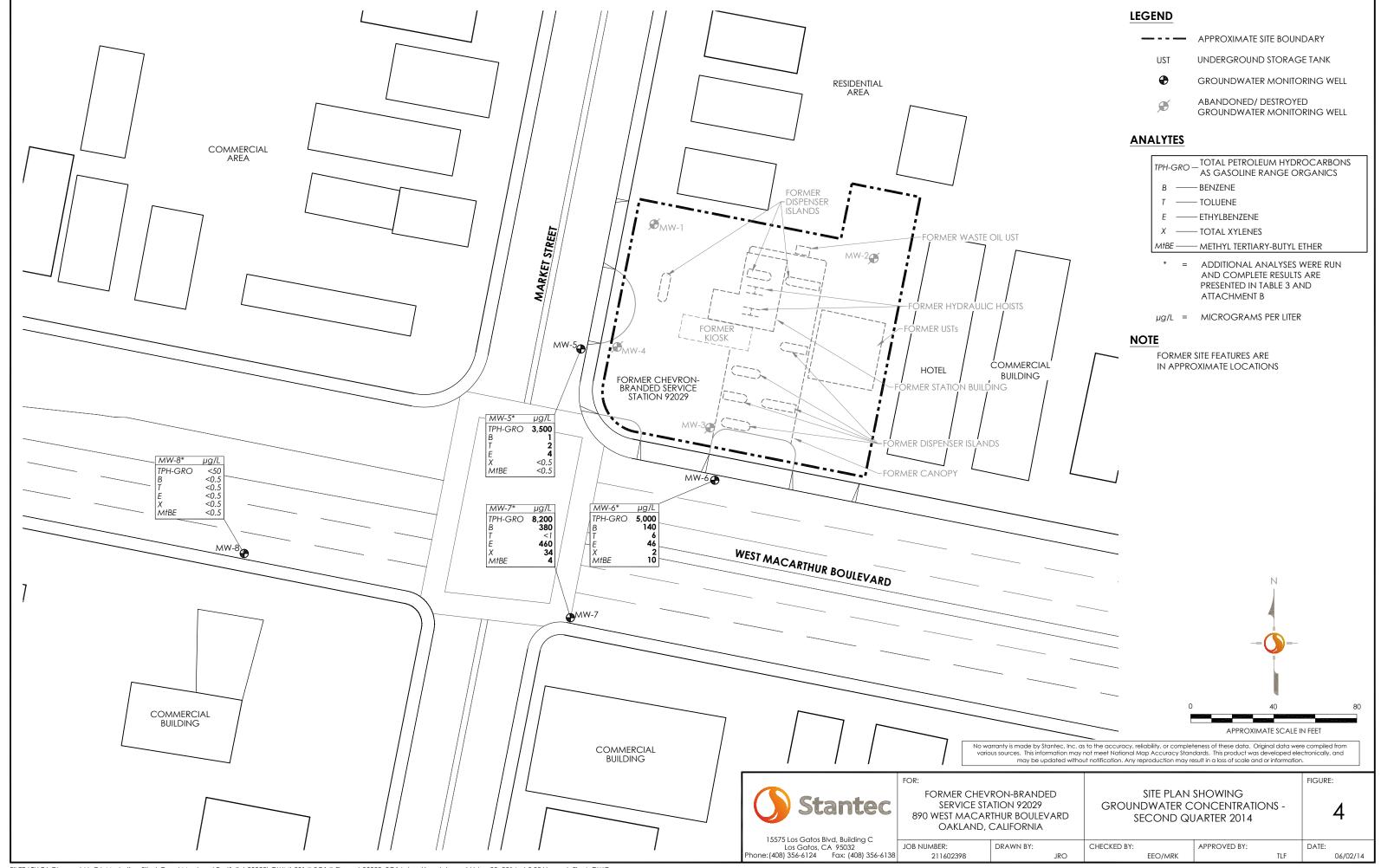
Class Size 5

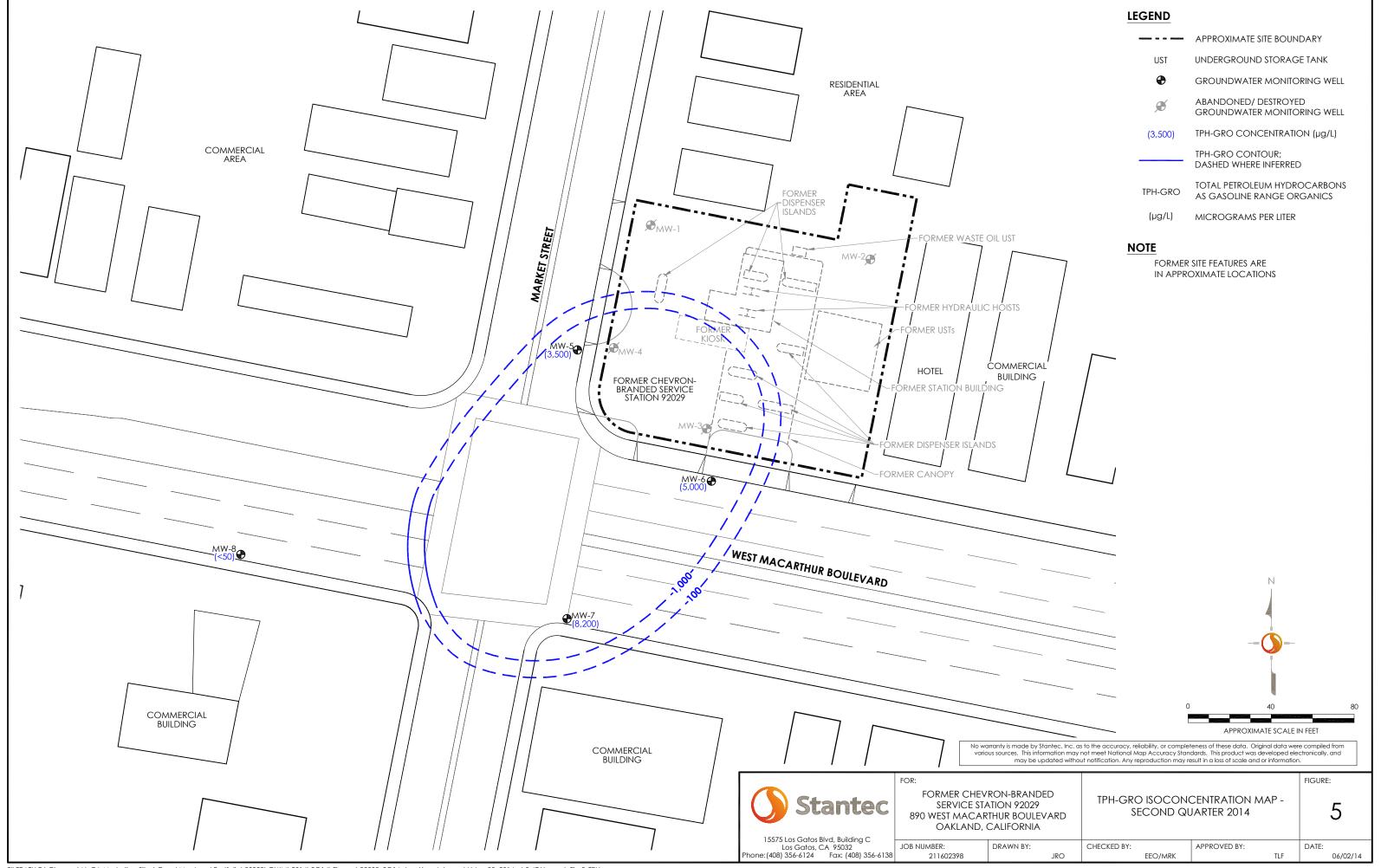
Vector Mean 249.29

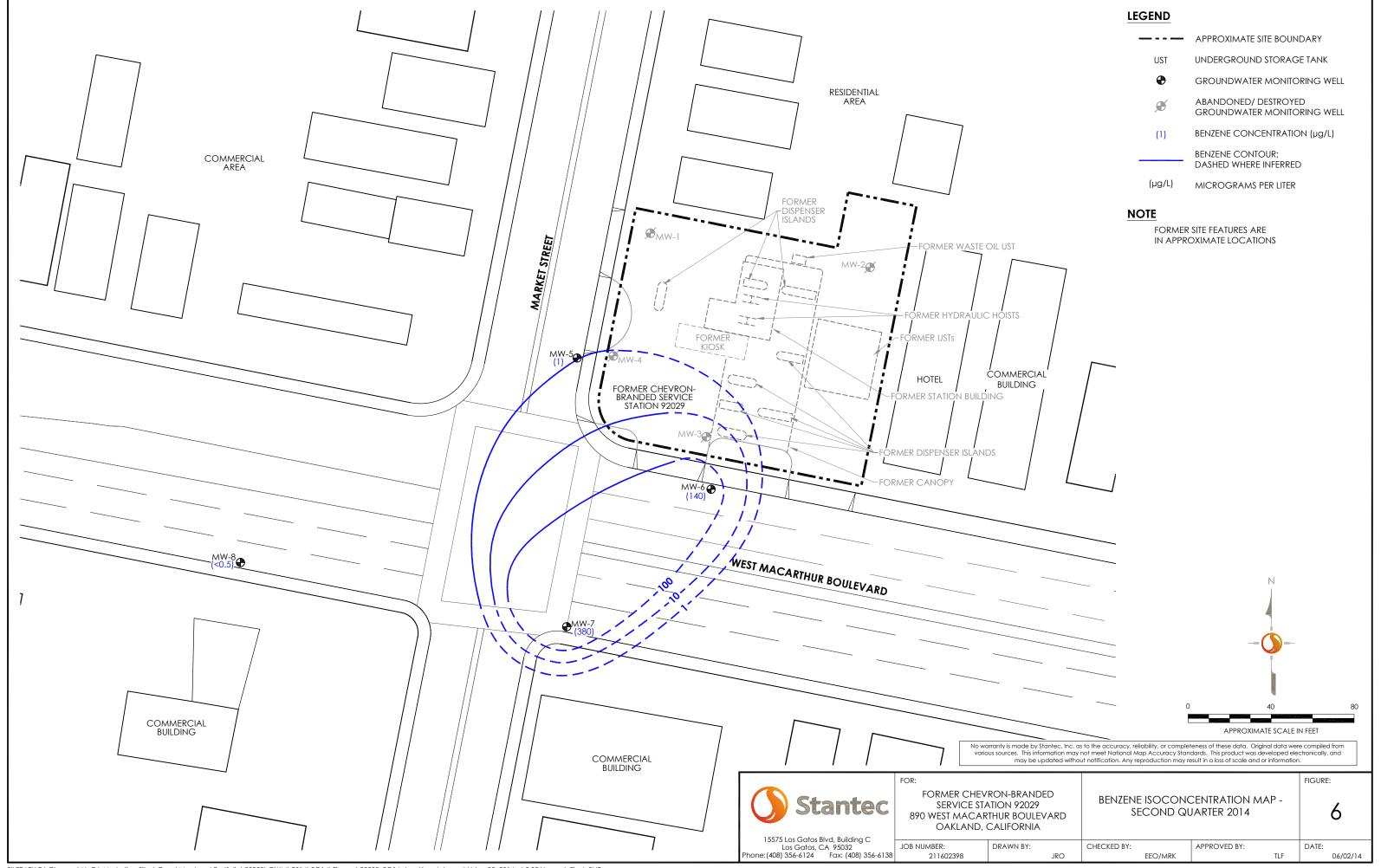
Vector Magnitude 6.92

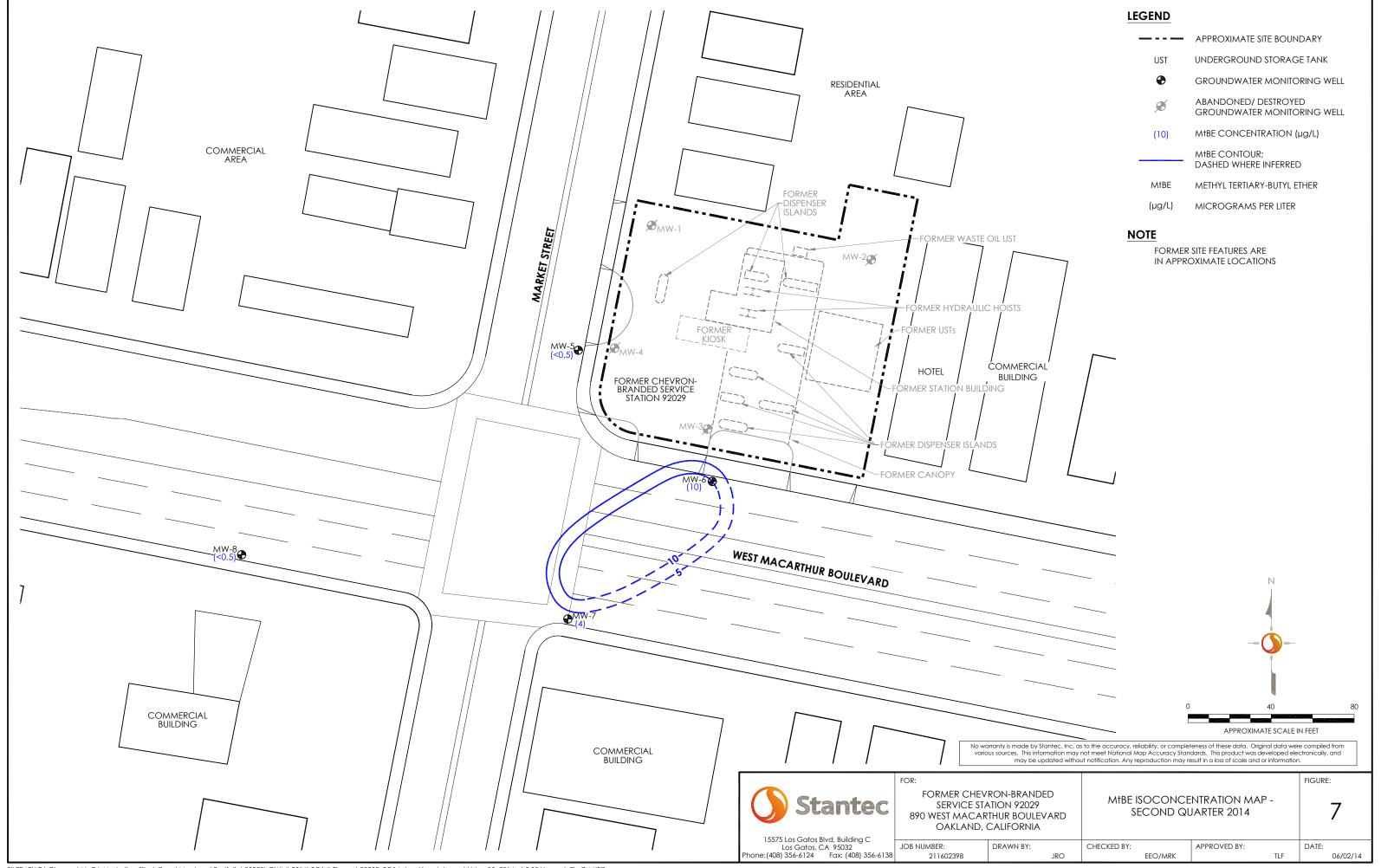
Consistency Ratio 0.99

NOTE: ROSE DIAGRAM IS BASED ON THE DIRECTION OF GROUNDWATER FLOW BEGINNING SECOND QUARTER 2011.




15575 Los Gatos Blvd, Building C Los Gatos, CA 95032 Phone:(408) 356-6124 Fax: (408) 356-6138 FORMER CHEVRON-BRANDED SERVICE STATION 92029 890 WEST MACARTHUR BOULEVARD OAKLAND, CALIFORNIA GROUNDWATER FLOW DIRECTION ROSE DIAGRAM -SECOND QUARTER 2014 -IGURE:


DATE:


06/02/14

JOB NUMBER: DRAWN BY: CHECKED BY: APPROVED BY: 211602398 JRO EEO/MRK

ATTACHMENT A
Gettler-Ryan Inc. Field Data Sheets and Standard
Operating Procedures – Second Quarter 2014

TRANSMITTAL

May 23, 2014 G-R #386911

TO: Mr. Travis Flora

Stantec

15575 Los Gatos Blvd., Building C Los Gatos, California 95032

FROM: Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6805 Sierra Court, Suite G Dublin, California 94568 **RE:** Former Chevron Service Station

#9-2029

890 West MacArthur Blvd.

Oakland, California

RO 0002438

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DESCRIPTION
VIA PDF	Groundwater Monitoring and Sampling Data Package First Semi-Annual Event of May 14, 2014

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/9-2029

WELL CONDITION STATUS SHEET

Client/Facility #: Site Address: City:	Chevron #9-2029 890 West Macarthur Blvd. Oakland, CA					•	Job # Event Date: Sampler:	386911 5.14.14 Fr			
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Boit Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y (N)	REPLACE CAP Y (N)	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes (No
MW-5	OK						\rightarrow			Monussile	
MW-6	DIL						→			Monuson/62/2	2762 B 87
MW-7	OL	_					\rightarrow				
MW-8	OIL						->	*			
Comments											
										· · · · · · · · · · · · · · · · · · ·	

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #9-2029		Job Number:	386911	
Site Address:	890 West Macar	hur Blvd.	Event Date:	5.14.4	(inclusive)
City:	Oakland, CA		Sampler:	FT	
			•		
Well ID	MW- 5		Date Monitored:	5.14.14	
Well Diameter	2 in.	Volu	me 3/4"= 0.	02 1"= 0.04 2"= 0.17	3"= 0.38
Total Depth	24.99 ft.		or (VF) $4^n = 0$.		12"= 5.80
Depth to Water	6.74 ft.	Check if water column		_	
Donth to Water	\(\frac{18.25}{\text{xVF}}\) xVF \(\frac{1}{\text{w}}\) 80% Recharge [(Height		The second	Estimated Purge Volume:	gal.
Deptil to water t	w/ ou // Recharge [(Heigi	nt or water Column x 0.20) +	10.39	Time Started:	(2400 hrs)
Purge Equipment:		Sampling Equipment:		Time Completed:	
Disposable Bailer		Disposable Bailer		Depth to Product:	
Stainless Steel Baile	er	Pressure Bailer		Depth to Water:	
Stack Pump		Metal Filters		Hydrocarbon Thickness Visual Confirmation/De	
Peristaltic Pump		Peristaltic Pump		Visual Committation/De	acripuori.
QED Bladder Pump		QED Bladder Pump		Skimmer / Absorbant S	lock (circle one)
Other:		Other:		Amt Removed from Ski	immer: Itr
				Amt Removed from We	
				Water Removed:	ltr
Start Time (purge	e): 1115	Weather Cor	nditions:	SUNHY	
	ite: 1145 /3.14		CLEAN	4	• • • • • •
Approx. Flow Ra				- <u> </u>	4641
• •			· —	NONE	
Did well de-wate	r? <u>No</u> If ye	s, Time: Vo	olume:	_ gal. DTW @ Sampling	: 10.3L
Time	Volume (gal.) pH	Conductivity (µS) mS	Temperature	D.O. OR	
(2400 hr.)		µmhos/cm)	(② / F)	(mg/L) (m ¹	V)
1121	3.0 7.11		19.0		
1127	<u>6.0</u> 7.0		19.6	//	
1133	9.0 7.6	6 782	20.1		
		LABORATORY IN	IFORMATION		
SAMPLE ID	(#) CONTAINER REF	RIG. PRESERV. TYPE	LABORATORY	ANAL	YSES
MW- 5		ES HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBI PCE(8260)	
	x voa vial Y	ES NP	CHEVRON RTC	CHEVRON STUDY SAMPLES	3
			-		
COMMENTS:					
Add/Replaced Ga	sket: Add/R	eplaced Bolt:	Add/Replaced Loc	k· Add/Replace	ed Plug

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #9-202	29	Job Nu	mber:	386911				
Site Address:	890 West Maca	rthur Blvd.	Event [- Date:	5.14.14	(inclusive)			
City:					FT	(,			
			Sample						
Well ID	MW- 6		Date Moni	tored:	51414				
Well Diameter	2 in.		[V-1			011 0 00			
Total Depth	24.95 ft.		Volume Factor (VF)	3/4"= 0.02 4"= 0.66		3"= 0.38 12"= 5.80			
Depth to Water	6.29 ft.	Check if water	er column is less th	en 0.50 f	}				
	1 40	4mconomic				D.D nal			
Depth to Water w/ 80% Recharge [(Height of Water Column x 0.20) + DTW]: 10.02									
•		3			Time Started:	(2400 hrs)			
Purge Equipment:		Sampling Equ	ipment:	/	Time Completed:				
Disposable Bailer		Disposable Bai	iler		Depth to Product:ft Depth to Water:ft				
Stainless Steel Baile	er	Pressure Baile	r		Hydrocarbon Thickne				
Stack Pump		Metal Filters			Visual Confirmation/E				
Peristaltic Pump		Peristaltic Pum	ıp		Visual Commitmation/L	escription.			
QED Bladder Pump		QED Bladder F	Pump		Skimmer / Absorbant	Sock (circle one)			
Other:		Other:				skimmer: Itr			
					Amt Removed from V				
					Water Removed:	ltr			
Start Time (purge	e): 1200	Weat	her Conditions:		SUNNY				
Sample Time/Da	ite: 1235 /5.1	4.14 Wate	r Color:	- AL		100 EMTE			
Approx. Flow Ra	•		nent Description:		NOHE				
Did well de-wate		yes, Time:	•		gal. DTW @ Samplir	ng: 9.95			
		-			gan Bitt @ campin	·9·			
Time	Volume (gal.)	Conducti pH ((ப் S)/ m	nempera			PRP			
(2400 hr.)	voidino (gaii)	µmhos/c		F)	(mg/L) (r	nV)			
1207	3.5 7.	25 875	19.5	Š					
1214	7.0 7.	21 870	. ۵۵						
12.21	10.0	18 864	.هد	8					
			<u> </u>						
			ORY INFORMA						
SAMPLE ID	_ ` '	EFRIG. PRESERY				LYSES			
MW- 6	(o x voa vial	YES HC	L LANCA		「PH-GRO(8015)/BTEX+MT PCE(8260)	BE(8260)/5 OXYS(8260)/			
	🗘 x voa vial	YES NF	CHEVRO		CHEVRON STUDY SAMPL	ES			
<u> </u>				<u>L</u>					
COMMENTS: CHEMAN SAMPLES TAKEN									
Add/Replaced Ga	sket Add	/Replaced Bolt:	Add/Rents	eced Lock	Add/Repla	ced Plua			
riaari topidood Od		piaooa Doit	__\\\\\\\\\\\\\\\\\\\\\\\\\\\\	wou book.		oca i iug			

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #9-20)29		Job Number:	386911	
Site Address:	890 West Mad	arthur Bl	vd.	Event Date:	5-14.14	(inclusive)
City:	Oakland, CA			Sampler:	FT	<u> </u>
Well ID	MW- 7		D	ate Monitored:	5.14.14	
Well Diameter	2 in.		Volum	**		0.20
Total Depth	24.89 ft.			r (VF) 4"= 0.0		= 0.38 = 5.80
Depth to Water	8.73 ft.	terminant.		is less then 0.50		
Denth to Water	w/ 80% Recharge [(i	'			Estimated Purge Volume: 8.0	gal.
Departo Water	W co / Tree large (leight of Water	Column x 0.20) +	D1W]. 11. 1C	Time Started:	
Purge Equipment:		Samp	ling Equipment:		Time Completed: Depth to Product:	
Disposable Bailer		•	sable Bailer		Depth to Water:	
Stainless Steel Bail	er		ure Bailer		Hydrocarbon Thickness:	"i
Stack Pump	****	Metal			Visual Confirmation/Descri	ption:
Peristaltic Pump			altic Pump			
QED Bladder Pump Other:)		Bladder Pump		Skimmer / Absorbant Sock	
Other.		Other.			Amt Removed from Skimm	
					Amt Removed from Well: Water Removed:	
					Water Kernoved.	
Start Time (purg	e): 1255		Weather Con-	ditions:	SUNNY	
	ate: 1315 /5.	4.12	Water Color:			bHT .
Approx. Flow Ra	_	pm.	Sediment Des		とられば	DAT.
Did well de-wate	_	f yes, Time:		ume:	_ gal. DTW @ Sampling: _	11. 89
Time			Conductivity	•	D.O. ORP	
(2400 hr.)	Volume (gal.)	pН	(US) mS	Temperature ((mg/L) (mV)	
	35 -	. 20	µmhos/cm)		(, , , , , , , , , , , , , , , , , , ,	
1300	- - 3 2 =	1.29	773	20.0		_
1305		.25	768	20.7		<u></u>
	8.0	1.22	761	21.1		
SAMPLE ID	(#) CONTAINER		BORATORY IN	LABORATORY	ANALYSE	-s
MW- 1	(x) x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(82	
					PCE(8260)	
	x voa vial	YES	NP	CHEVRON RTC	CHEVRON STUDY SAMPLES	
COMMENTS:						M-2,004.00
		*				
Add/Replaced Ga	asket A	d/Replaced Bo	Jt·	Add/Replaced Loc	k: Add/Replaced P	lua:

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #9-2029		Job Number:	386911	
Site Address:	890 West Macart	hur Blvd.	Event Date:	5.14.14	(inclusive)
City:	Oakland, CA		- Sampler:	FT	
			-		
Well ID	MW- 8		Date Monitored:	5.14.14	
Well Diameter	2 in.	T _V	olume 3/4"= 0.	.02 1"= 0.04 2"= 0.17	3"= 0.38
Total Depth	24.99 ft.		actor (VF) 4"= 0.		2"= 5.80
Depth to Water	11.69 ft.	Check if water colu	ımn is less then 0.50) ft	
		-		Estimated Purge Volume:	o gal.
Depth to Water	w/ 80% Recharge [(Heigh	nt of Water Column x 0.20) + DTW]: 14.3	III O	(2400 hrs)
Purge Equipment:	/	Sampling Equipmer	nt· /	Time Completed:	
Disposable Bailer		Disposable Bailer		Depth to Product:	ft
Stainless Steel Baile	ar —	Pressure Bailer		Depth to Water:	ft
Stack Pump	***************************************	Metal Filters		Hydrocarbon Thickness	
Peristaltic Pump		Peristaltic Pump		Visual Confirmation/Des	scription:
QED Bladder Pump	M-9-	QED Bladder Pump			
Other:		Other:		Skimmer / Absorbant So	
outor.	****	Otrici		Amt Removed from Skir	
				Amt Removed from Well Water Removed:	
				water Kemoved	IU
O T	` 1336				
Start Time (purge		Weather C	_	SUNH	
Sample Time/Da	ite: 1405 / 5.14.	<u>رد</u> Water Cold	or: <u></u>	_Odor: Y / 🕦	
Approx. Flow Ra	ite:gpm.	Sediment [Description:	SILTY	
Did well de-wate	r? No If ye	s, Time:	Volume:	gal. DTW @ Sampling	14.32
		Conductivity		_	
Time	Volume (gal.) pH		Temperature	D.O. ORI	
(2400 hr.)	(0 / 1	µmhos/cm)	(② / F)	(mg/L) (mV	')
1340	25 7.1	8 655	21.1		
1345	5.6 7.1.	5 651	21.5		
1350	7.0 7.1	3 644	21.9		
				· · · · · · · · · · · · · · · · · · ·	
SAMPLE ID	(#) CONTAINER REF	RIG. PRESERV. TYP	INFORMATION E LABORATORY	ANALY	/eFe
MW- 8		S HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE	
, , , , , , , , , , , , , , , , , , ,	N 40a viai	-0 1101	LANOASIER		:(020U)/3 UXY3(826U)/
	x voa vial YE	S NP	CHEVRON RTC		
	 				
COMMENTS:				***************************************	
Add/Replaced Ga	sket: Add/Re	eplaced Bolt:	Add/Replaced Loc	k: Add/Replace	d Plug:

Chevron California Region Analysis Request/Chain of Custody

Lancaster \$51414 - \$4 Acct. #_	For Eurofins Lancaster Laboratories use or # Group # Sample # Instructions on reverse side correspond with circled numb																
Laboratories Client Information	(4)	Matrix			(5)				nalys				ed he	-			10-51
Facility \$5#9-2029-OML G-R#386911 Glob#PfD#T0600173887	1	Matrix	\neg		9				larys	100	iequ	ics.	Ju				SCR #: •
Site Ad 899 WEST MACARTHUR BLVD., OAKLAND, CA	- - - - - -						☐ dnı	□						(09)			Results in Dry Weight
Consultre Ryan, Inc., 6805 Sierra Court, Suite G, Dublin, CA 94	Jime	Ground Surface		S	8260X	8260	Gel Cleanup	anup		(09				826			Must meet lowest detection limits possible for 8260
Consultre Court, Suite G, Dublin, CA 94	36	ਹਿੱ ਲੋ		iner	82(85	a Gel	Gel Cleanup		~ 1				\vee			compounds 8021 MTBE Confirmation
Consultant Project Mgr. Harding, deanna@grinc.com	1		미	Containers		8015)	ut Silica	Silica G		00	Method	Method	260)	1 BE			Confirm highest hit by 8260
Consultant Phone # (925) 551-7444 x180	1	Potable NPDES	¥	ਰ	8021	801	8015 without	with		Oxygenates	2		28	1			Run oxy's on highest hit
Sampler Frank Tenninovi 3		1 1		Total Number		မှု	RO 8015	3O 8015	8260 Full Scan	Oxyg	ad	Dissolved Lead	CE (+ ×3			Run oxy's on all hits
2 Soil Collected & Soil Sample Identification Depth Date Time	Soil	Water	_	otal	BTEX	трн-сво	TPH-DRO	TPH-DRO	60 Ft	1	Total Lead	ssolv	PC	BTS			
	- S		Ö	Ė	В		Ë	F	82	1	۴	ä					6 Remarks
Qa 5.14.14	士	W		4													
MW-5 1145 X	╀		\dashv	9	\times	$\langle \rangle$	_			$\langle \rangle$			$\langle \rangle$	\dashv			
MW-6 1235 X MW-7 1315 X	╫		\dashv	0	\Diamond	Θ	-	\vdash		\Diamond	-		\Diamond				
MW-8 + 1405 X		V		6	$\hat{\mathbf{x}}$	Ŷ				\hat{X}			$\widehat{\chi}$				
	上		\Box														
	\vdash			\dashv	_		\dashv				-		-				
	\vdash						\dashv										
			\Box														
	╁		\dashv	-		\vdash	\dashv	\vdash	_		\dashv	,	\dashv	\dashv			
7 Turnaround Time Requested (TAT) (please circle) Relinquish	ad by	P			Date	4.	7	Time			Receiv			1			Date Time 9
Standard 5 day 4 day		. (4.1			96					SO	1		14MA714 15000
72 hour 48 hour 24 hou EDF/EDD	su by				Date			Time			Receiv	rea by					Date Time
—— (/ Commercia						,			Receiv	ed by					Date Time
Type I - Full EDFFLAT (default) UPS		Fe	dEx			Oth	er_			_							
Type VI (Raw Data) Other:	emp	erature U	pon	Rec	eipt			°	C		Cu	stod	ly Se	als I	Intac	et?	Yes No 🛶

Yes Chain-of-Custody-Record ☐ No Chevron Facility #: 9-2029 Global ID#: T0600173887 Chevron Contact: (Name) Rachel Molher Facility Address: 890 West MacArthur Blvd., Oakland CA (Phone) 510-242-4939 Consultant Project #: 15-386911 Laboratory Name: Chevron RTC CHEVRON RTC SAMPLES Consultant Name: GETTLER-RYAN INC. Laboratory Service Order: Address: 6805 SIERRA COURT, SUITE G, DUBLIN, CA 94568 Laboratory Service Code: Project Contact: (Name) DEANNA L. HARDING (deanna@grinc.com) Samples Collected by: (Name) FRANK TENNINDNI (Phone) 925-551-7555 (Fax) 925-551-7888 Signature: NW Series LO LO OI TU Remarks Number of Containers Sample Preservation CHEVRON STUDY (NON-PRESERVED) Sample Number Date/Time Lab Sample No. MW-L NP Relinquished By (Signature) Organization Date/Time Received By (Signature) Organization Date/Time Iced (Y/N) 5.15.14 Turn Around Time (Circle Choice) Gettler-Ryan 1101 Relinquished By (Signature) Organization Date/Time Received By (Signature) Organization Date/Time Iced (Y/N) 24 Hrs. 48 Hrs. 5 Days Relinquished By (Signature) Organization Date/Time Received For Laboratory By (Signature) Date/Time Iced (Y/N) 10 Days As Contracted

ATTACHMENT B
Certified Laboratory Analysis Reports and
Chain-of-Custody Documents

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

May 29, 2014

Project: 92029

Submittal Date: 05/16/2014 Group Number: 1474946 PO Number: 0015141332 Release Number: CMACLEOD

State of Sample Origin: CA

Client Sample Description	<u>Lancaster Labs (LL) #</u>
QA-T-140514 NA Water	7466572
MW-5-W-140514 Grab Groundwater	7466573
MW-6-W-140514 Grab Groundwater	7466574
MW-7-W-140514 Grab Groundwater	7466575
MW-8-W-140514 Grab Groundwater	7466576

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC	Gettler-Ryan Inc.	Attn: Gettler Ryan
COPY TO		
ELECTRONIC	Stantec	Attn: Laura Viesselman
COPY TO		
ELECTRONIC	Stantec	Attn: Erin O'Malley
COPY TO		
ELECTRONIC	Stantec	Attn: Marisa Kaffenberger
COPY TO		
ELECTRONIC	Stantec International	Attn: Travis Flora
COPY TO		

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Amek Carter Specialist

(717) 556-7252

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: QA-T-140514 NA Water

QA-T-140514 NA Water LL Sample # WW 7466572 Facility# 92029 Job# 386911 GRD LL Group # 1474946 890 W MacArthur-Oakland T0600173887 Account # 10906

Project Name: 92029

Collected: 05/14/2014 Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 05/16/2014 09:25 Reported: 05/29/2014 14:02

WMOQA

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	Latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	F141431AA	05/23/2014	12:28	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F141431AA	05/23/2014	12:28	Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	14140A20A	05/22/2014	13:04	Miranda P Tillinghast	1
01146	GC VOA Water Prep	SW-846 5030B	1	14140A20A	05/22/2014	13:04	Miranda P Tillinghast	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5-W-140514 Grab Groundwater

Facility# 92029 Job# 386911 GRD 890 W MacArthur-Oakland T0600173887

LL Sample # WW 7466573 LL Group # 1474946 Account # 10906

Project Name: 92029

Collected: 05/14/2014 11:45 by FT Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 05/16/2014 09:25 Reported: 05/29/2014 14:02

WMO05

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10335	t-Amyl methyl ether		994-05-8	N.D.	0.5	1
10335	Benzene		71-43-2	1	0.5	1
10335	t-Butyl alcohol		75-65-0	N.D.	5	1
10335	Ethyl t-butyl ether		637-92-3	N.D.	0.5	1
10335	Ethylbenzene		100-41-4	4	0.5	1
10335	di-Isopropyl ether		108-20-3	N.D.	0.5	1
10335	Methyl Tertiary Buty	yl Ether	1634-04-4	N.D.	0.5	1
10335	Tetrachloroethene		127-18-4	N.D.	0.5	1
10335	Toluene		108-88-3	2	0.5	1
10335	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	3,500	50	1
01728	TPH-GRO N. CA water	C6-C12	n.a.	3,500	50	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10335	VOCs 8260 BTEX, PCE + 5 Oxys	SW-846 8260B	1	T141432AA	05/23/2014	22:55	Sara E Johnson	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T141432AA	05/23/2014	22:55	Sara E Johnson	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	14140A20A	05/22/2014	15:39	Miranda P Tillinghast	1
01146	GC VOA Water Prep	SW-846 5030B	1	14140A20A	05/22/2014	15:39	Miranda P Tillinghast	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-6-W-140514 Grab Groundwater

Facility# 92029 Job# 386911 GRD 890 W MacArthur-Oakland T0600173887

LL Group # 1474946 Account # 10906

LL Sample # WW 7466574

Project Name: 92029

Collected: 05/14/2014 12:35 by FT Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 05/16/2014 09:25 Reported: 05/29/2014 14:02

WMO06

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor		
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l			
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1		
10335	Benzene	71-43-2	140	0.5	1		
10335	t-Butyl alcohol	75-65-0	8	5	1		
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1		
10335	Ethylbenzene	100-41-4	46	0.5	1		
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1		
10335	Methyl Tertiary Butyl Ether	1634-04-4	10	0.5	1		
10335	Tetrachloroethene	127-18-4	N.D.	0.5	1		
10335	Toluene	108-88-3	6	0.5	1		
10335	Xylene (Total)	1330-20-7	2	0.5	1		
GC Volatiles SW-846 8015B ug/l ug/l							
01728	TPH-GRO N. CA water C6-C12	n.a.	5,000	250	5		

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time		Analyst	Dilution Factor
10335	VOCs 8260 BTEX, PCE + 5 Oxys	SW-846 8260B	1	T141461AA	05/26/2014 21	:35	Amanda K Richards	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T141461AA	05/26/2014 21	:35	Amanda K Richards	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	14140A20A	05/22/2014 16	5:23	Laura M Krieger	5
01146	GC VOA Water Prep	SW-846 5030B	1	14140A20A	05/22/2014 16	:23	Laura M Krieger	5

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-7-W-140514 Grab Groundwater

Facility# 92029 Job# 386911 GRD 890 W MacArthur-Oakland T0600173887

LL Group # 1474946 Account # 10906

LL Sample # WW 7466575

Project Name: 92029

Collected: 05/14/2014 13:15 by FT Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 05/16/2014 09:25 Reported: 05/29/2014 14:02

WMO07

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846 8	260B	ug/l	ug/l	
10335	t-Amyl methyl ether	994-05-8	N.D.	1	2
10335	Benzene	71-43-2	380	1	2
10335	t-Butyl alcohol	75-65-0	N.D.	10	2
10335	Ethyl t-butyl ether	637-92-3	N.D.	1	2
10335	Ethylbenzene	100-41-4	460	1	2
10335	di-Isopropyl ether	108-20-3	N.D.	1	2
10335	Methyl Tertiary Butyl Ether	1634-04-4	4	1	2
10335	Tetrachloroethene	127-18-4	N.D.	1	2
10335	Toluene	108-88-3	N.D.	1	2
10335	Xylene (Total)	1330-20-7	34	1	2
Repo	rting limits were raised due to	interference fr	om the sample matrix.		
GC Vo	latiles SW-846 8	015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	8,200	250	5

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
10335	VOCs 8260 BTEX, PCE + 5 Oxys	SW-846 8260B	1	T141432AA	05/24/2014	00:07	Sara E Johnson	2
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T141432AA	05/24/2014	00:07	Sara E Johnson	2
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	14140A20A	05/22/2014	16:45	Laura M Krieger	5
01146	GC VOA Water Prep	SW-846 5030B	1	14140A20A	05/22/2014	16:45	Laura M Krieger	5

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-8-W-140514 Grab Groundwater

Facility# 92029 Job# 386911 GRD 890 W MacArthur-Oakland T0600173887

LL Group # 1474946 Account # 10906

LL Sample # WW 7466576

Project Name: 92029

Collected: 05/14/2014 14:05 by FT Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 05/16/2014 09:25 Reported: 05/29/2014 14:02

800MW

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles S	SW-846	8260B	ug/l	ug/l	
10335	t-Amyl methyl ether		994-05-8	N.D.	0.5	1
10335	Benzene		71-43-2	N.D.	0.5	1
10335	t-Butyl alcohol		75-65-0	N.D.	5	1
10335	Ethyl t-butyl ether		637-92-3	N.D.	0.5	1
10335	Ethylbenzene		100-41-4	N.D.	0.5	1
10335	di-Isopropyl ether		108-20-3	N.D.	0.5	1
10335	Methyl Tertiary Butyl	Ether	1634-04-4	N.D.	0.5	1
10335	Tetrachloroethene		127-18-4	N.D.	0.5	1
10335	Toluene		108-88-3	N.D.	0.5	1
10335	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles S	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C	C6-C12	n.a.	N.D.	50	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10335	VOCs 8260 BTEX, PCE + 5 Oxys	SW-846 8260B	1	T141432AA	05/24/2014	00:55	Sara E Johnson	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T141432AA	05/24/2014	00:55	Sara E Johnson	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	14140A20A	05/22/2014	14:55	Miranda P Tillinghast	1
01146	GC VOA Water Prep	SW-846 5030B	1	14140A20A	05/22/2014	14:55	Miranda P Tillinghast	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1474946

Reported: 05/29/14 at 02:02 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
<u>Analysis Name</u>	<u>Result</u>	<u>MDL</u>	<u>Units</u>	%REC	<u>%REC</u>	<u>Limits</u>	<u>RPD</u>	RPD Max
Batch number: F141431AA	Cample nu	mber(s): 74	CCE72					
Benzene	N.D.	0.5		96		78-120		
Ethylbenzene	N.D.	0.5	ug/l	96		79-120		
	N.D.	0.5	ug/l	97		75-120		
Methyl Tertiary Butyl Ether Toluene			ug/l					
	N.D.	0.5	ug/l	98		80-120		
Xylene (Total)	N.D.	0.5	ug/l	97		80-120		
Batch number: T141432AA	Sample nu	mber(s): 74	66573,7466	575-7466	576			
t-Amyl methyl ether	N.D.	0.5	ug/l	98	98	75-120	0	30
Benzene	N.D.	0.5	uq/l	107	107	78-120	0	30
t-Butyl alcohol	N.D.	5.	ug/l	102	101	75-120	1	30
Ethyl t-butyl ether	N.D.	0.5	ug/l	101	102	74-120	1	30
Ethylbenzene	N.D.	0.5	ug/l	105	111	79-120	5	30
di-Isopropyl ether	N.D.	0.5	ug/l	104	105	65-120	0	30
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	95	97	75-120	2	30
Tetrachloroethene	N.D.	0.5	uq/l	106	107	80-120	1	30
Toluene	N.D.	0.5	uq/l	107	110	80-120	3	30
Xylene (Total)	N.D.	0.5	uq/l	94	98	80-120	4	30
, , , , , , , , , , , , , , , , , , , ,			- 5,					
Batch number: T141461AA	Sample nu	mber(s): 74	66574					
t-Amyl methyl ether	N.D.	0.5	ug/l	97	101	75-120	4	30
Benzene	N.D.	0.5	uq/l	112	115	78-120	3	30
t-Butyl alcohol	N.D.	5.	ug/l	105	106	75-120	1	30
Ethyl t-butyl ether	N.D.	0.5	ug/l	104	108	74-120	4	30
Ethylbenzene	N.D.	0.5	uq/l	104	107	79-120	3	30
di-Isopropyl ether	N.D.	0.5	ug/l	105	109	65-120	3	30
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	96	97	75-120	2	30
Tetrachloroethene	N.D.	0.5	ug/l	107	108	80-120	0	30
Toluene	N.D.	0.5	uq/l	106	108	80-120	2	30
Xylene (Total)	N.D.	0.5	ug/l	93	96	80-120	3	30
-			_					
Batch number: 14140A20A	Sample nu	mber(s): 74		576				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	112	114	80-139	2	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	<u>Max</u>

- *- Outside of specification
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Environmental

Page 2 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1474946

Reported: 05/29/14 at 02:02 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	RPD	Max
Batch number: F141431AA	Sample	number(s)	: 7466572	UNSPK:	P46644	13			
Benzene	100	100	72-134	1	30				
Ethylbenzene	99	101	71-134	2	30				
Methyl Tertiary Butyl Ether	98	99	72-126	1	30				
Toluene	99	100	80-125	0	30				
Xylene (Total)	98	100	79-125	2	30				

Surrogate Quality Control

98

96

99

103

78-113

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water

Anary	PTP	maille:	051	VUCS	IJУ	02000	_	water
Ratch	nıır	nher.	F1414	13122				

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
7466572	101	101	101	100	
Blank	99	100	101	100	
LCS	99	101	101	101	
MS	100	102	101	100	
MSD	100	100	101	101	
Limits:	80-116	77-113	80-113	78-113	
	Name: 8260 Ext.	Water Master w/GRO)		
satch num		400111 11 14	T 1 10	4.D	
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
7466573	101	99	101	104	
7466575	101	98	101	101	
7466576	102	102	98	98	
Blank	99	99	100	98	
LCS	98	98	100	100	
LCSD	99	96	104	104	
Limits:	80-116	77-113	80-113	78-113	
Analwaia		Water Master w/GRO)		
	mber: T141461AA				

92

93

94

98

80-113

Analysis Name: TPH-GRO N. CA water C6-C12

*- Outside of specification

103

105

101

103

7466574

Limits:

Blank

LCS

LCSD

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

96

100

95

97

77-113

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 3 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1474946

Reported: 05/29/14 at 02:02 PM

Surrogate Quality Control

Batch number: 14140A20A Trifluorotoluene-F

7466572	83		
7466573	109		
7466574	82		
7466575	85		
7466576	82		
Blank	77		
LCS	82		
LCSD	87		
Limits:	63-135		

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

	caster 65 oratories	1414	-959 Ac	cct. # _	100	101	(o	G	iroup	# T	ns on re	dGL everse s	side cor	_ Sai	mple :	rcled nu	mbers	65	72	-76	2			1	041		
	ent Informatio					4	Mat	rix			(5)			Ar	nalys	es F	?eqı	uest	ed				SCF	R #:			
Facility \$S#9-2029-OML G-R	#386911 Glo	bariD#T	0600173	887																							-
Site Ad 890 WEST MACARTH	UR BLVD., C	AKLANI	O, CA		,		,						유 8							6				esults in Dr value repoi			
Chevrop PM STANTE	ECTF	Lead Cons	ultant Ira			liment	Ground	Surface		W	8260🔀	000	Cleanup	annb		6				978				lust meet lo mits possibl			
Consultant/Office Getter-Ryan, Inc., 680	5 Sierra Coui	t, Suite	G, Dublii	n, CA	945	68	Ġ	S		Containers	826	8260	sa Gel	Gel Cleanup		8760)				7				ompounds 021 MTBE	Confirm	ation	
Consultant Project Mgr. Deanna L. Harding, de	eanna@grinc	.com			A CONTRACTOR OF THE PARTY OF TH					Cont	1	X	without Silica	with Silica (\vee	Method	Method	260)	MTBE				onfirm high onfirm all h	est hit b	y 8260	
Consultant Phone # (925) 551-7444 x180							Potable	NPDES	Air	er of	8021	801	5 witho	5 with		Oxygenates	_		(81	1			□ R		oxy's or	highest hit	
Sampler FNANK TEN	תואסטו			3	osite	미		ı		Total Number		RO	RO 8015	TPH-DRO 8015	8260 Full Scan	oxy O	ead	Dissolved Lead	BCE			i de la constanta de la consta					
2) Sample Identification	Soil		ected Time	Grab	Composite	Soil	Water		iö	Total	BTEX	TPH-GRO	TPH-DRO	TPH-D	8260 Fi	2	Total Lead	Dissolv	đ	BT5×			6	Re	mark	3	
G	?A	5.14.1	4				W			2		X								\boxtimes				100 gg/finarina falainina thiannafaga, 1920			
	_	1	1114				-					$\overline{\mathbf{V}}$															
Mu-		++-	1145	$ label{label} $			+	\dashv		(q)	\Leftrightarrow	\diamondsuit				\diamondsuit			\Rightarrow								
MW-		++-	1315	쉿		\dashv	+	\dashv	\dashv	6	\Diamond	\Diamond				\Rightarrow			$\widehat{\mathcal{A}}$								
MW-		1	1405	X			V			Le	Ź	文				X			\hat{X}								
		<u> </u>							-																		
7) Turnaround Time Reques	stool /TAT\ /slad			Relino	uished	by					Date			Time			Recei	ved by					<u> </u>	ate	ĪŦi	ne	
	day	4 day		7		Q'	1			,	5:1	4.	14		ÞØ		a	·	A.	fl.			l	4 MAT		5.06	9
72 hour 48	hour	24 hour	EDF/EDI		uished	by A	l Uka	, ! A	_		Date	UA-,		Time	30		Recei	ved by	PS	>			Da	ate	Ti	ne	
8 Data Package (circle if requ	ired) ED	D (circle if i	required)	1	quishe	d by	Comr					'' {					Recei	ed by	3	<u> </u>	~~			ate / /	Ti	ne	
Type I - Full	EDF	FLAT (defa	ault)	U	IPS _	\leq	_		dEx			Oth		ō.			_		\lesssim	-				5/14/	4 6	725	
Type VI (Raw Data) Other:					Te	mpe	eratu	re U _l	pon	Rec	eipt()	3-1	470	С		Ĉι	istoc	dy Se	als I	ntac	t?		Yes)	No	

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weightbasis
Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C - result confirmed by reanalysis.

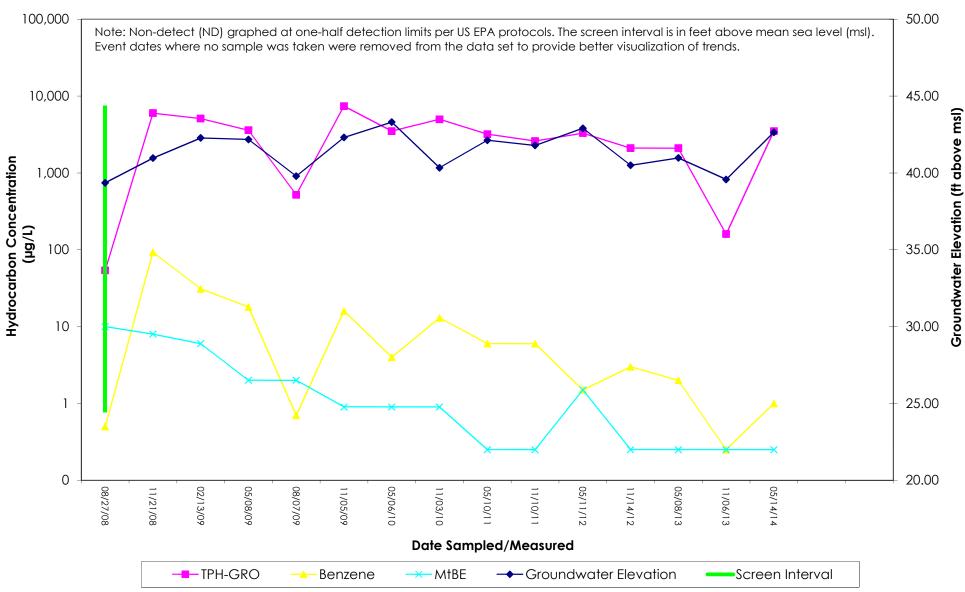
J - estimated value – The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

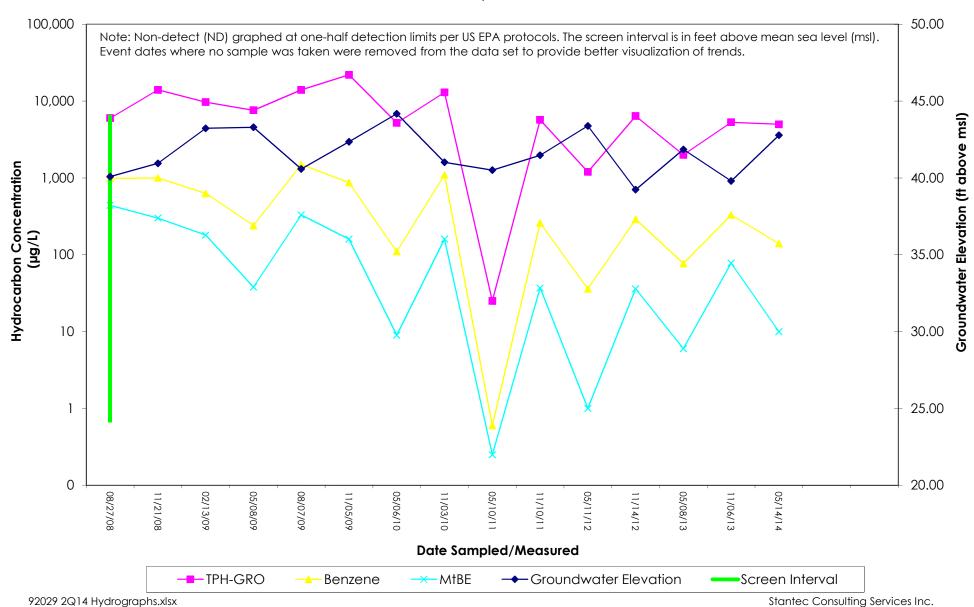
	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

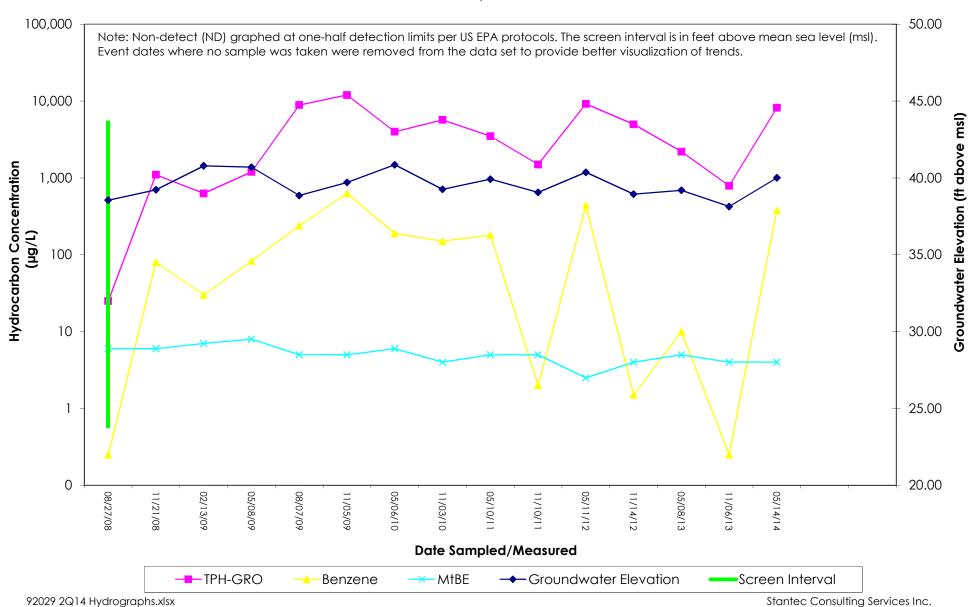
Measurement uncertainty values, as applicable, are available upon request.

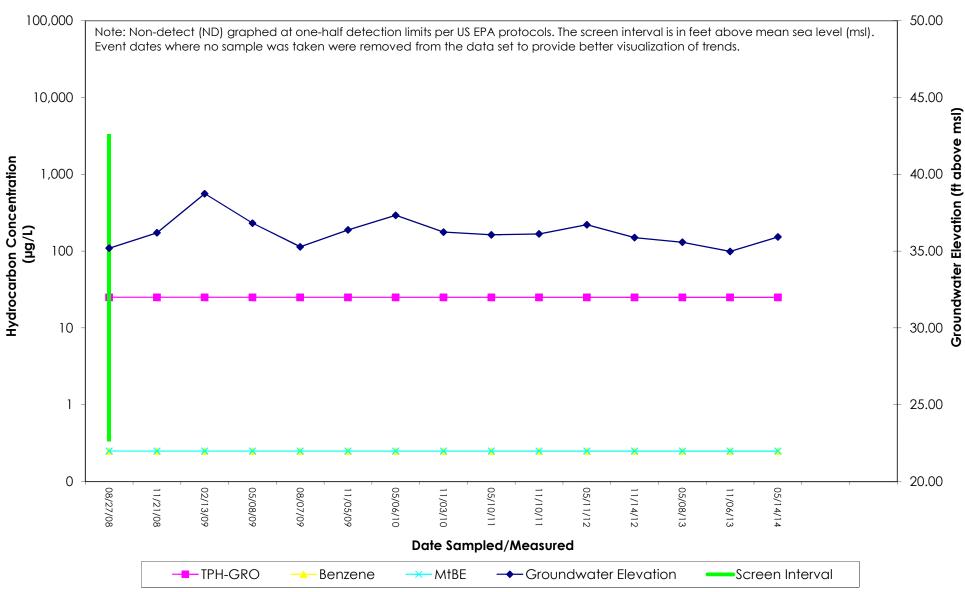

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.


WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ATTACHMENT C Hydrographs


MW-5 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time


MW-6 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

MW-7 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

MW-8 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

