

Second Quarter 2013 Semi-Annual Groundwater Monitoring Report

Former Chevron-branded Service Station 92029 890 West MacArthur Boulevard Oakland, California Case #: RO0002438

Submitted to:

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Prepared for:

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583

Submitted by:

Stantec Consulting Services Inc. 15575 Los Gatos Blvd., Building C Los Gatos, CA 95032

July 12, 2013

Carryl MacLeod Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6506 CMacleod@chevron.com

July 12, 2013

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Dear Mr. Detterman:

Attached for your review is the Second Quarter 2013 Semi-Annual Groundwater Monitoring Report for former Chevron-branded service station 92029, located at 890 West MacArthur Boulevard in Oakland, California (**Case #:** RO0002438). This report was prepared by Stantec Consulting Services Inc. (Stantec), upon whose assistance and advice I have relied. I declare under penalty of perjury that the information and/or recommendations contained in the attached report are true and correct, to the best of my knowledge.

If you should have any further questions, please do not hesitate to contact me or the Stantec project manager, Travis Flora, at (408) 356-6124 ext. 238, or <u>travis.flora@stantec.com</u>.

Sincerely,

Carryl MacLeod Project Manager

July 12, 2013

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

RE: Second Quarter 2013 Semi-Annual Groundwater Monitoring Report Former Chevron-branded Service Station 92029 890 West MacArthur Boulevard Oakland, California Case #: RO0002438

Dear Mr. Detterman:

On behalf of Chevron Environmental Management Company (Chevron), Stantec Consulting Services Inc. (Stantec) is pleased to submit the Second Quarter 2013 Semi-Annual Groundwater Monitoring Report for former Chevron-branded service station 92029, which was located at 890 West MacArthur Boulevard, Oakland, Alameda County, California (the Site - shown on **Figure 1**). This report is presented in three sections: Site Background, Second Quarter 2013 Groundwater Monitoring and Sampling Program, and Conclusions and Recommendations.

SITE BACKGROUND

The Site is a former Chevron-branded service station located on the northeast corner at the intersection of West MacArthur Boulevard and Market Street in Oakland, California. The Site is currently a fenced vacant lot. A former Chevron-branded service station operated at the Site from approximately 1956 to 2004. Prior to 1970, Site features consisted of two 5,000-gallon and one 3,000-gallon gasoline underground storage tanks (USTs) located in the eastern portion of the Site, three fuel dispenser islands (one located in the northwestern portion of the Site and two located in the central portion of the Site), associated product piping, a station building with two hydraulic hoists, and a waste oil UST (unknown size) located in the northern portion of the Site. The product piping was replaced in 1970, and the 3,000-gallon UST was replaced with a 10.000-gallon UST sometime before 1978. In 1982, the two 5.000-gallon and one 10,000-gallon USTs were replaced with three 10,000-gallon fiberglass USTs. In 1984, the service station building was demolished, the hydraulic hoists were removed, and a kiosk was installed near the center of the Site. In addition, the three fuel dispensers were removed from the Site and replaced with five fuel dispensers (two located in the north-central portion of the Site and three located in the south-central portion of the Site). The fuel dispensers were replaced and the USTs were upgraded in 1997. The waste oil UST was removed from the Site sometime between 1984 and 1997. In 2005, the service station was closed and all Site structures, including the three 10,000-gallon fiberglass USTs and fuel dispensers, were removed. According to the Well Installation Report, prepared by Conestoga-Rovers & Associates (CRA)

Second Quarter 2013 Semi-Annual Groundwater Monitoring Report Former Chevron-branded Service Station 92029 July 12, 2013 Page 2 of 6

and dated November 18, 2008, extensive over-excavation was performed at this time and approximately 5,135 tons of impacted soil and 25,500 gallons of groundwater were removed and disposed off Site.

Land use near the Site consists of a mixture of commercial and residential properties. The Site is bounded to the north by a residential area, on the west by Market Street, on the south by West MacArthur Boulevard, and to the east by a small hotel.

SECOND QUARTER 2013 GROUNDWATER MONITORING AND SAMPLING PROGRAM

Gettler-Ryan Inc. (G-R) performed the Second Quarter 2013 groundwater monitoring and sampling event on May 8, 2013. G-R's standard operating procedures (SOPs) and field data sheets are included in *Attachment A*. G-R gauged depth-to-groundwater in four Site wells (MW-5, MW-6, MW-7, and MW-8) prior to collecting groundwater samples for laboratory analysis. All four wells, which are located down-gradient of the Site, were sampled this quarter.

Investigation-derived waste (IDW) generated during the Second Quarter 2013 groundwater monitoring and sampling event was transported by Clean Harbors Environmental Services to Seaport Environmental in Redwood City, California.

Groundwater Elevation and Gradient

Well construction details and an assessment of whether groundwater samples were collected when groundwater elevations were measured across the well screen intervals are presented in **Table 1**. All four Site wells are currently screened across the prevailing groundwater table. Current and historical groundwater elevation data are presented in **Table 2**. A groundwater elevation contour map (based on Second Quarter 2013 data) is shown on **Figure 2**. The direction of groundwater flow at the time of sampling was generally towards the southwest at an approximate hydraulic gradient ranging from 0.025 to 0.030 feet per foot (ft/ft). This is generally consistent with the historical direction of groundwater flow, as shown by the Rose Diagram on **Figure 3** illustrating the direction of groundwater flow from Second Quarter 2011 to the present.

Schedule of Laboratory Analysis

Groundwater samples were collected and analyzed for total petroleum hydrocarbons as gasoline range organics (TPH-GRO) using United States Environmental Protection Agency (US EPA) Method 8015B (SW-846). Benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds) and fuel oxygenates, including methyl *tertiary*-butyl ether (MtBE), di-isopropyl ether (DIPE), ethyl *tertiary*-butyl ether (EtBE), *tertiary*-amyl methyl ether (TAME), and *tertiary*-butyl alcohol (TBA), were analyzed using US EPA Method 8260B (SW-846).

Groundwater Analytical Results

During Second Quarter 2013, groundwater samples were collected from four Site wells (MW-5, MW-6, MW-7, and MW-8). Current and historical groundwater analytical results are included in *Table 2* and *Table 3*. A figure showing the latest groundwater analytical data plotted on a Site map is included as *Figure 4*. A TPH-GRO isoconcentration map is shown on *Figure 5*.

Second Quarter 2013 Semi-Annual Groundwater Monitoring Report Former Chevron-branded Service Station 92029 July 12, 2013 Page 3 of 6

A benzene isoconcentration map is shown on *Figure 6*. A MtBE isoconcentration map is shown on *Figure 7*.

Certified laboratory analysis reports and chain-of-custody documents are presented as *Attachment B*. Hydrographs based on current and historical groundwater elevations and analytical results are included in *Attachment C*. A summary of Second Quarter 2013 groundwater analytical results follows:

- TPH-GRO was detected in three Site wells this quarter, at concentrations of 2,000 micrograms per liter (μg/L; well MW-6), 2,100 μg/L (well MW-5), and 2,200 μg/L (well MW-7), which are within historical limits for each respective well.
- Benzene was detected in three Site wells this quarter, at concentrations of 2 μg/L (well MW-5), 10 μg/L (well MW-7), and 77 μg/L (well MW-6), which are within historical limits for each respective well.
- **Toluene** was detected in two Site wells this quarter, at concentrations of 0.9 μg/L (well MW-5) and 1 μg/L (well MW-6), which are within historical limits for each respective well.
- Ethylbenzene was detected in three Site wells this quarter, at concentrations of 2 μg/L (wells MW-5 and MW-7) and 9 μg/L (well MW-6), which are within historical limits for each respective well.
- **Total Xylenes** were not detected above the laboratory reporting limit (LRL; 0.5 μg/L) in any Site well sampled this quarter.
- **MtBE** was detected in two Site wells this quarter, at concentrations of 5 μg/L (well MW-7) and 6 μg/L (well MW-6), which are within historical limits for each respective well.
- **DIPE** was not detected above the LRL (0.5 µg/L) in any Site well sampled this quarter.
- **EtBE** was not detected above the LRL (0.5 µg/L) in any Site well sampled this quarter.
- **TAME** was not detected above the LRL ($0.5 \mu g/L$) in any Site well sampled this quarter.
- **TBA** was detected in one Site well this quarter, at a concentration of 5 μ g/L (well MW-6), which is within historical limits for this well.

CONCLUSIONS AND RECOMMENDATIONS

Concentrations were conservatively compared to California Regional Water Quality Control Board – San Francisco Bay Region (RWQCB) Environmental Screening Levels (ESLs) for groundwater that is a current or potential source of drinking water, and concentrations of TPH-GRO, benzene, and MtBE were observed equal to or above ESLs in select wells as follows:

• TPH-GRO concentrations exceed the ESL of 100 μg/L in wells MW-5, MW-6, and MW-7;

Second Quarter 2013 Semi-Annual Groundwater Monitoring Report Former Chevron-branded Service Station 92029 July 12, 2013 Page 4 of 6

- Benzene concentrations exceed the ESL of 1 µg/L in wells MW-5, MW-6, and MW-7; and
- MtBE concentrations equal or exceed the ESL of 5 μg/L in wells MW-6 and MW-7.

Maximum concentrations of petroleum hydrocarbons were observed in well MW-6, located down-gradient of former service station features (fuel dispensers and gasoline USTs) situated in the southern and eastern portions of the Site, and well MW-7, which is located approximately 95 feet down-gradient of well MW-6. TPH-GRO and benzene were also detected above ESLs in well MW-5, located down-gradient of former service station features (fuel dispensers, hydraulic hoists, and waste oil UST) situated in the northern portion of the Site. The dissolved-phase petroleum hydrocarbon plume does not appear to extend to the furthest down-gradient well MW-8, which is approximately 190 feet southwest of the Site. In addition, a previous off-site subsurface investigation conducted by CRA in January 2011 indicated that the plume is defined down-gradient of well MW-7 across Market Street. This investigation is documented in the Additional Investigation Report, dated March 31, 2011.

Current and historical groundwater quality data indicate that the dissolved-phase petroleum hydrocarbon plume is generally stable or decreasing in size and concentration. All concentrations were within historical limits at all wells sampled during Second Quarter 2013.

Based on concentrations of TPH-GRO, benzene, and MtBE equal to or exceeding ESLs, Stantec recommends continuation of the semi-annual groundwater monitoring and sampling program. Reports will continue to be submitted to Alameda County Environmental Health (ACEH) within 60 days following groundwater monitoring and sampling events.

As requested by ACEH in correspondence dated May 21, 2013, Stantec is preparing a Site conceptual model, a work plan to address identified data gaps, and a path to closure schedule. These will be submitted to ACEH under separate cover by July 26, 2013.

If you have any questions regarding the contents of this report, please contact the Stantec project manager, Travis Flora, at (408) 356-6124 or <u>travis.flora@stantec.com</u>.

Sincerely, Stantec Consulting Services Inc.

Travis L. Flora Project Manager

Second Quarter 2013 Semi-Annual Groundwater Monitoring Report Former Chevron-branded Service Station 92029 July 12, 2013 Page 5 of 6

Attachments:

- Table 1 Well Details / Screen Interval Assessment Second Quarter 2013
- Table 2 Groundwater Monitoring Data and Analytical Results
- Table 3 Groundwater Analytical Results Oxygenate Compounds
- Figure 1 Site Location Map
- Figure 2 Groundwater Elevation Contour Map Second Quarter 2013
- Figure 3 Rose Diagram Second Quarter 2013
- Figure 4 Site Plan Showing Groundwater Concentrations Second Quarter 2013
- Figure 5 TPH-GRO Isoconcentration Map Second Quarter 2013
- Figure 6 Benzene Isoconcentration Map Second Quarter 2013
- Figure 7 MtBE Isoconcentration Map Second Quarter 2013
- Attachment A Gettler-Ryan Inc. Field Data Sheets and Standard Operating Procedures Second Quarter 2013

Attachment B – Certified Laboratory Analysis Reports and Chain-of-Custody Documents Attachment C – Hydrographs

cc:

- Ms. Carryl MacLeod, Chevron Environmental Management Company, 6101 Bollinger Canyon Road, San Ramon, CA 94583 – Electronic Copy
- Mr. Buyandalai Itgel, 787 Marlesta Road, Pinole, CA 94564 Electronic Copy

3

Second Quarter 2013 Semi-Annual Groundwater Monitoring Report Former Chevron-branded Service Station 92029 July 12, 2013 Page 6 of 6

LIMITATIONS AND CERTIFICATION

This report was prepared in accordance with the scope of work outlined in Stantec's contract and with generally accepted professional engineering and environmental consulting practices existing at the time this report was prepared and applicable to the location of the site. It was prepared for the exclusive use of Chevron for the express purpose stated above. Any re-use of this report for a different purpose or by others not identified above shall be at the user's sole risk without liability to Stantec. To the extent that this report is based on information provided to Stantec by third parties, Stantec may have made efforts to verify this third party information, but Stantec cannot guarantee the completeness or accuracy of this information. The opinions expressed and data collected are based on the conditions of the site existing at the time of the field investigation. No other warranties, expressed or implied are made by Stantec.

Prepared by:

Reviewed by:

Erin O'Malley Engineering Project Specialist

arosa Koffenburger

Marisa Kaffenberger Senior Engineer

All information, conclusions, and recommendations provided by Stantec in this document regarding the Subject Property have been prepared under the supervision of and reviewed by the Licensed Professional whose signature appears below:

Licensed Approver:

Name: James May, P.G.

Date: 12 JULY 2013

Signature:

Stamp:

SIONAL GE PRO JAMES PATRICK MAY NO. 802 OFCA

Tables

Table 1Well Details / Screen Interval AssessmentSecond Quarter 2013

Former Chevron-Branded Service Station 92029 890 West MacArthur Boulevard, Oakland, California

Well ID	Date Installed	Well Type	Casing Diameter (inches)	Top of Casing (feet above msl)	Construction Well Depth (feet bgs)	Current Well Depth ¹ (feet bgs)	Current Depth to Groundwater ¹ (feet below TOC)	Screen Interval (feet bos)	Screen Interval Assessment
MW-5	7/24/2008	Monitoring	2	49.39	25.00	25.01	8.41	5-25	Depth-to-groundwater within screen interval.
MW-6	7/24/2008	Monitoring	2	49.07	25.00	24.96	7.21	5-25	Depth-to-groundwater within screen interval.
MW-7	7/24/2008	Monitoring	2	48.74	25.00	24.90	9.54	5-25	Depth-to-groundwater within screen interval.
MW-8	7/24/2008	Monitoring	2	47.61	25.00	24.99	12.03	5-25	Depth-to-groundwater within screen interval.
Notes:									

Notes:

bgs = below ground surface

msl = mean sea level

 $TOC_{1} = top of casing$

 1 = As measured prior to groundwater sampling on May 8, 2013.

WELL ID/	TOC*	DTW	GWE	TPH-GRO	В	т	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-5									
08/22/08 ¹	49.39	9.97	39.42						
08/27/08 ³	49.39	10.03	39.36	54	0.5	0.8	<0.5	0.7	10
11/21/08 ³	49.39	8.42	40.97	6,000	93	6	37	6	8
02/13/09 ³	49.39	7.11	42.28	5,100	31	5	20	3	6
05/08/09 ³	49.39	7.21	42.18	3,600	18	4	14	2	2
08/07/09 ³	49.39	9.60	39.79	520	0.7	<0.5	<0.5	<0.5	2
11/05/09 ³	49.39	7.08	42.31	7,400	16	5	18	4	0.9
05/06/10 ³	49.39	6.08	43.31	3,500	4	2	3	0.9	0.9
11/03/10 ⁵	49.39	9.05	40.34	5,000	13	4	8	3	0.9
05/10/11 ⁵	49.39	7.26	42.13	3,200	6	4	7	0.9	<0.5
11/10/11 ⁵	49.39	7.60	41.79	2,600	6	3	10	2	<0.5
05/11/12 ⁵	49.39	6.48	42.91	3,300	<3	<3	<3	<3	<3
11/14/12 ³	49.39	8.89	40.50	2,100	3	2	3	0.6	<0.5
05/08/13 ³	49.39	8.41	40.98	2,100	2	0.9	2	<0.5	<0.5
MW-6	40.07	0.00	10.00						
08/22/08 ¹	49.07	8.98	40.09						
08/27/08 ³	49.07	8.98	40.09	6,000	990	4	350	530	440
11/21/08 ³	49.07	8.12	40.95	14,000	1,000	15	1,300	550	300
02/13/09 ³	49.07	5.84	43.23	9,700	630	4	510	36	180
05/08/09 ³	49.07	5.77	43.30	7,600	240	4	470	67	38
08/07/09 ³	49.07	8.49	40.58	14,000	1,500	12	1,400	180	330
11/05/09 ³	49.07	6.72	42.35	22,000	870	8	1,300	130	160
05/06/10 ³	49.07	4.89	44.18	5,200	110	2	160	23	9
11/03/10 ⁵	49.07	8.05	41.02	13,000	1,100	8	670	58	160
05/10/11 ^{4,5}	49.07 49.07	8.56	40.51 41.48	<50 5 700	0.6	<0.5 7	<0.5	<0.5 13	<0.5
11/10/11 ⁵		7.59 5.69		5,700 1,200	260 36		180 0.8		37
$05/11/12^{5}$	49.07	5.68	43.39			0.6		<0.5	1
11/14/12 ³	49.07	9.83	39.24	6,400	290	9	180	6	36
05/08/13 ³	49.07	7.21	41.86	2,000	77	1	9	<0.5	6
MW-7									
08/22/08 ¹	48.74	10.20	38.54						
08/27/08 ³	48.74	10.19	38.55	<50	<0.5	0.6	<0.5	0.7	6
11/21/08 ³	48.74	9.51	39.23	1,100	80	<0.5	65	0.7	6

WELL ID/	TOC*	DTW	GWE	TPH-GRO	В	Т	E	X	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7 (cont)									
02/13/09 ³	48.74	7.95	40.79	630	30	<0.5	38	0.9	7
05/08/09 ³	48.74	8.04	40.70	1,200	83	<0.5	190	2	8
08/07/09 ³	48.74	9.88	38.86	8,900	240	0.7	770	5	5
11/05/09 ³	48.74	9.03	39.71	12,000	630	<1	1,300	420	5
05/06/10 ³	48.74	7.88	40.86	4,000	190	<0.5	270	7	6
11/03/10 ⁵	48.74	9.48	39.26	5,700	150	0.7	45	2	4
05/10/11 ⁵	48.74	8.82	39.92	3,500	180	<0.5	150	2	5
11/10/11 ⁵	48.74	9.68	39.06	1,500	2	<0.5	2	<0.5	5
05/11/12 ⁵	48.74	8.37	40.37	9,200	440	<5	1,000	33	<5
11/14/12 ³	48.74	9.79	38.95	5,000	<3	<3	6	<3	4
05/08/13 ³	48.74	9.54	39.20	2,200	10	<0.5	2	<0.5	5
MW-8									
08/22/08 ¹	47.61	12.41	35.20						
08/22/08 08/27/08 ³	47.61	12.42	35.19	<50	<0.5	0.7	<0.5	0.6	<0.5
11/21/08 ³	47.61	11.42	36.19	<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/13/09 ³	47.61	8.87	38.74	<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/08/09 ³	47.61	10.79	36.82	<50	<0.5	<0.5	<0.5	<0.5	<0.5
03/08/09 08/07/09 ³	47.61	12.33	35.28	<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/05/09 ³	47.61	11.23	36.38	<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/06/10 ³	47.61	10.28	37.33	<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/03/10 ⁵	47.61	11.37	36.24	<50 <50	<0.5	<0.5	<0.5	<0.5	<0.5
05/10/11 ⁵	47.61	11.55	36.06	<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/10/11 ⁵	47.61	11.49	36.12	<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/11/12 ⁵	47.61	10.89	36.72	<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/14/12 ³	47.61	11.73	35.88	<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/08/13 ³	47.61	12.03	35.58	< 50	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5
03/00/13	47.01	12.05	55.55	100	<0.5	N .5	N .5	<0.5	10.0
MW-1									
03/12/02 ¹	50.71	6.50	44.21	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ²
06/07/02	50.71	8.69	42.02	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ²
09/13/02	50.71	9.28	41.43	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ²
12/13/02	50.71	8.48	42.23	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ²
03/01/03	50.71	7.34	43.37	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<0.5 ²
06/27/03 ³	50.71	9.29	41.42	<50	<0.5	0.6	<0.5	<0.5	<0.5
09/30/03 ³	50.71	10.17	40.54	<50	<0.5	0.6	<0.5	<0.5	<0.5
12/03/03 ³	50.71	7.82	42.89	<50	<0.5	<0.5	<0.5	<0.5	<0.5

WH - (cont) Control Contro Control Control	WELL ID/	TOC*	DTW	GWE	TPH-GRO	В	Т	Е	Х	MtBE
3)31004 ³ 50.71 6.57 44.14 <th>DATE</th> <th>(ft.)</th> <th>(ft.)</th> <th>(msl)</th> <th>(µg/L)</th> <th>(µg/L)</th> <th>(µg/L)</th> <th>(µg/L)</th> <th>(µg/L)</th> <th>(µg/L)</th>	DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
3)31004 ³ 50.71 6.57 44.14 	MW-1 (cont)									
big 000d ³ 50.71 9.78 40.93 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	03/10/04 ³	50.71	6.57	44.14	<50	<0.5	<0.5	<0.5	<0.5	<0.5
993000 ³ 50.71 9.91 40.80 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	06/30/04 ³	50.71	9.78	40.93	<50	<0.5	<0.5	<0.5	<0.5	<0.5
1222004 ³ 50.71 2.90 47.81 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	09/30/04 ³	50.71	9.91	40.80	<50	<0.5	<0.5			
332306 ³ 50.71 2.90 47.81 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	12/29/04 ³	50.71		47.81	<50	<0.5	<0.5			
bis 2206 ³ 50.71 8.59 42.12 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	03/23/05 ³	50.71	2.90	47.81	<50	<0.5	<0.5	<0.5	<0.5	<0.5
990206 ³ 50.71 9.38 41.33 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 120206 50.71 8.44 42.27 </td <td>06/22/05³</td> <td>50.71</td> <td>8.59</td> <td>42.12</td> <td><50</td> <td><0.5</td> <td><0.5</td> <td></td> <td><0.5</td> <td><0.5</td>	06/22/05 ³	50.71	8.59	42.12	<50	<0.5	<0.5		<0.5	<0.5
12/02/05 50.71 8.44 42.27	09/02/05 ³	50.71	9.38	41.33	<50	<0.5	<0.5	<0.5	<0.5	<0.5
b601/06 50.71 6.77 43.94	12/02/05	50.71		42.27						
b601/06 50.71 6.77 43.94	03/20/06	50.71		47.66						
99/11/06 50.71 9.18 41.53 -	06/01/06	50.71	6.77	43.94						
AW-2 13/12/02 ¹ 52.57 6.09 46.48 <50	09/11/06		9.18	41.53						
3)1/2/02 ¹ 52.57 6.09 46.48 <50 <0.50 <0.50 <0.50 <1.5 <2.5/2 ² 06/07/02 52.57 8.65 43.92 <50	DESTROYED									
3)1/2/02 ¹ 52.57 6.09 46.48 <50										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MW-2									
99/13/02 52.57 9.58 42.99 <50 <0.50 <0.50 <0.50 <1.5 <2.5/<2² 12/13/02 52.57 8.50 44.07 <50	03/12/02 ¹		6.09	46.48	<50	<0.50	<0.50	<0.50		<2.5/3 ²
$12/13/02$ 52.57 8.50 44.07 <50 <0.50 <0.50 <0.50 <1.5 $<2.5/<2^2$ $03/01/03$ 52.57 7.00 45.57 <50 <0.50 <0.50 <0.50 <1.5 $<2.5/<2^2$ $06/27/03^3$ 52.57 9.59 42.98 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <t< td=""><td>06/07/02</td><td>52.57</td><td>8.65</td><td>43.92</td><td><50</td><td><0.50</td><td></td><td><0.50</td><td></td><td></td></t<>	06/07/02	52.57	8.65	43.92	<50	<0.50		<0.50		
303/01/0352.577.0045.57<50<0.50<0.50<0.50<1.5<2.5/<0.5 ² 36/27/03 ³ 52.579.5942.98<50	09/13/02	52.57	9.58	42.99	<50	<0.50	<0.50	<0.50	<1.5	
b6/27/03³52.579.5942.98<50<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5	12/13/02	52.57	8.50	44.07	<50	<0.50	<0.50	<0.50	<1.5	
99/30/03³52.5710.6441.93<50<0.5<0.5<0.5<0.5<0.50.712/03/03³52.577.5445.03<50	03/01/03	52.57	7.00	45.57	<50	<0.50	<0.50	<0.50	<1.5	
12/03/03352.577.5445.03<50<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5	06/27/03 ³	52.57	9.59	42.98	<50	<0.5	<0.5			<0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/30/03 ³	52.57	10.64	41.93	<50	<0.5	<0.5	<0.5	<0.5	0.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12/03/03 ³	52.57	7.54	45.03	<50	<0.5	<0.5	<0.5	<0.5	<0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	03/10/04 ³	52.57	6.05	46.52	<50	<0.5	<0.5	<0.5	<0.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	06/30/04 ³	52.57	10.15	42.42	<50	<0.5	<0.5	<0.5	<0.5	<0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	09/30/04 ³	52.57	10.14	42.43	<50	<0.5	<0.5	<0.5	<0.5	<0.5
06/22/05 ³ 52.57 8.99 43.58 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 09/02/05 ³ 52.57 10.17 42.40 <50	12/29/04 ³									
09/02/05 ³ 52.57 10.17 42.40 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 12/02/05 52.57 8.99 43.58 0 <	03/23/05 ³	52.57	2.44	50.13	<50	<0.5	<0.5	<0.5	<0.5	<0.5
12/02/0552.578.9943.58<	06/22/05 ³	52.57	8.99	43.58	<50	<0.5	<0.5	<0.5	<0.5	
03/20/0652.572.7049.8706/01/0651.576.5145.0609/11/0651.5710.0641.51	09/02/05 ³	52.57	10.17	42.40	<50	<0.5	<0.5	<0.5	<0.5	<0.5
06/01/06 51.57 6.51 45.06 <	12/02/05	52.57	8.99	43.58						
09/11/06 51.57 10.06 41.51	03/20/06	52.57	2.70	49.87						
	06/01/06	51.57	6.51	45.06						
DESTROYED	09/11/06	51.57	10.06	41.51						
	DESTROYED									

WELL ID/	TOC*	DTW	GWE	TPH-GRO	В	Т	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-3									
03/12/02 ¹	50.31	6.50	43.81	12,000	600	8.5	1,100	370	700/650 ²
06/07/02	50.31	7.74	42.57	14,000	630	8.8	1,200	160	520/490 ²
09/13/02	50.31	9.73	40.58	3,000	270	3.2	200	11	600/640 ²
12/13/02	50.31	8.60	41.71	24,000	1,100	14	2,400	220	650/540 ²
03/01/03	50.31	6.75	43.56	16,000	500	9.0	1,200	130	460/330 ²
06/27/03 ³	50.31	9.25	41.06	9,500	390	6	450	30	470
09/30/03 ³	50.31	10.31	40.00	2,000	110	1	100	3	710
12/03/03 ³	50.31	8.18	42.13	19,000	970	8	2,100	85	420
03/10/04 ³	50.31	6.10	44.21	15,000	550	6	960	95	220
06/30/04 ³	50.31	9.80	40.51	3,200	150	1	100	3	660
09/30/04 ³	50.31	10.18	40.13	1,900	66	0.8	84	4	690
12/29/04 ³	50.31	4.58	45.73	16,000	470	7	820	47	170
03/23/05 ³	50.31	5.07	45.24	18,000	380	6	960	58	140
06/22/05 ³	50.31	8.12	42.19	16,000	700	6	950	62	300
09/02/05 ³	50.31	9.41	40.90	8,400	380	4	510	41	440
12/02/05 ³	50.31	7.97	42.34	16,000	490	6	1,200	32	170
03/20/06 ³	50.31	5.32	44.99	4,200	79	0.8	2	10	34
06/01/06 ³	50.31	7.07	43.24	5,400	67	1	26	3	28
09/11/06 ³	50.31	9.07	41.24	14,000	270	5	240	38	97
DESTROYED									
MW-4									
03/12/02 ¹	49.93	5.34	44.59	9,700	360	5.3	1,100	150	170/170 ²
06/07/02	49.93	8.52	41.41	7,300	170	2.7	280	21	200/120 ²
09/13/02	49.93	9.86	40.07	5,800	92	4.5	80	14	190/160 ²
12/13/02	49.93	9.42	40.51	10,000	250	2.2	330	19	170/200 ²
03/01/03	49.93	7.33	42.60	12,000	300	4.6	900	110	160/100 ²
06/27/03 ³	49.93	9.62	40.31	7,500	110	2	200	58	130
09/30/03 ³	49.93	11.13	38.80	3,600	18	<1	16	7	520
12/03/03 ³	49.93	7.80	42.13	16,000	1,000	6	720	52	73
03/10/04 ³	49.93	6.69	43.24	2,200	230	3	610	71	55
06/30/04 ³	49.93	10.33	39.60	7,700	59	<1	78	17	110
09/30/04 ³	49.93	10.75	39.18	4,800	100	1	33	10	400
12/29/04 ³	49.93	3.34	46.59	13,000	250	3	480	27	42
03/23/05 ³	49.93	4.24	45.69	12,000	130	2	280	16	24
06/22/05 ³	49.93	7.95	41.98	6,400	290	2	11	11	18
09/02/05 ³	49.93	9.46	40.47	3,700	180	1	13	7	18
12/02/05 ³	49.93	7.60	42.33	11,000	840	5	480	24	34

WELL ID/	TOC*	DTW	GWE	TPH-GRO	В	Т	E	Х	MtBE
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4 (cont)									
03/20/06 ³	49.93	4.50	45.43	790	14	<0.5	1	0.6	2
06/01/06 ³	49.93	7.30	42.63	5,100	48	0.8	42	4	2
09/11/06 ³	49.93	9.38	40.55	6,700	64	3	44	3	4
DESTROYED									
TRIP BLANK									
QA									
03/12/02				<50	<0.50	<0.50	<0.50	<1.5	<2.5
06/07/02				<50	<0.50	<0.50	<0.50	<1.5	<2.5
09/13/02				<50	<0.50	<0.50	<0.50	<1.5	<2.5
12/13/02				<50	<0.50	<0.50	<0.50	<1.5	<2.5
03/01/03				<50	<0.50	<0.50	<0.50	<1.5	<2.5
06/27/03 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/30/03 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
12/03/03 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
03/10/04 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
06/30/04 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/30/04 ³				<50	<0.5	<0.7	<0.8	<0.8	<0.5
12/29/04 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
03/23/05 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
06/22/05 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/02/05 ³				<50	<0.5	1 ⁴	<0.5	1 ⁴	<0.5
12/02/05 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
03/20/06 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
06/01/06 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/11/06 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/27/08 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/21/08 ⁵				<50	<0.5	<0.5	<0.5	<0.5	
02/13/09 ⁵				<50	<0.5	<0.5	<0.5	<0.5	
05/08/09 ⁵				<50	<0.5	<0.5	<0.5	<0.5	
08/07/09 ⁵				<50	<0.5	<0.5	<0.5	<0.5	
11/14/12 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/08/13 ³				<50	<0.5	<0.5	<0.5	<0.5	<0.5

EXPLANATIONS:

Current groundwater monitoring data was provided by Gettler-Ryan Inc. Current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

TOC = Top of CasingTPH-GRO = Total Petroleum Hydrocarbons as Gasoline Range Organics(ft.) = FeetB = BenzeneDTW = Depth to WaterT = TolueneGWE = Groundwater ElevationE = Ethylbenzene(msl) = Mean sea levelX = Xylenes(µg/L) = Micrograms per literMtBE = Methyl tertiary-butyl ether

--- = Not Measured/Not Analyzed QA = Quality Assurance/Trip Blank EPA = Environmental Protection Agency

- * Current TOC elevations were surveyed on October 1, 2008, by CRA. The benchmark for this survey was a USGS bronze disk located near the north end of the curb return at the Northwest corner of 38th Street and Broadway, (Benchmark Elevation = 85.41 feet, NGVD29).
- ¹ Well development performed.
- ² MtBE by EPA Method 8260.
- ³ BTEX and MtBE by EPA Method 8260.
- ⁴ Laboratory confirmed analytical result.
- ⁵ BTEX by EPA Method 8260.

WELL ID/	ETHANOL	ТВА	MtBE	DIPE	EtBE	TAME	1,2-DCA	1,2-DBA
DATE	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-5								
08/27/08		2	10	<0.5	<0.5	<0.5		
11/21/08		4	8	<0.5	<0.5	<0.5		
02/13/09		3	6	<0.5	<0.5	<0.5		
05/08/09		7	2	<0.5	<0.5	<0.5		
08/07/09		<2	2	<0.5	<0.5	<0.5		
11/05/09		2	0.9	<0.5	<0.5	<0.5		
05/06/10		<2	0.9	<0.5	<0.5	<0.5		
11/03/10		<2	0.9	<0.5	<0.5	<0.5		
05/10/11		<2	<0.5	<0.5	<0.5	<0.5		
11/10/11		<2	<0.5	<0.5	<0.5	<0.5		
05/11/12		<10	<3	<3	<3	<3		
11/14/12		<2	<0.5	<0.5	<0.5	<0.5		
05/08/13		<2	<0.5	<0.5	<0.5	<0.5		
MW-6				o =	<u>.</u>	0		
08/27/08		390	440	<0.5	<0.5	6		
11/21/08		320	300	<13	<13	<13		
02/13/09		100	180	<1	<1	4		
05/08/09		16	38	<0.5	<0.5	0.9		
08/07/09		190	330	<3	<3	5		
11/05/09 05/06/10		86 2	160	<1 <0.5	<1 <0.5	4		
11/03/10			9	<0.5 <3	<0.5 <3	<0.5		
05/10/11 ¹		98 •2	160 <0.5	<3 <0.5	<3 <0.5	3		
05/10/11 11/10/11		<2	<0.5 37			<0.5		
05/11/12		19 <2	37 1	<1 <0.5	<1 <0.5	<1 <0.5		
11/14/12		<2 16		<0.5 <0.5	<0.5 <0.5	<0.5 0.7		
05/08/13		5	36 6	<0.5 <0.5	<0.5 <0.5	<0.7 <0.5		
03/06/13		5	0	<0.5	<0.5	<0.5		
MW-7								
08/27/08		<2	6	<0.5	<0.5	<0.5		
11/21/08		5	6	<0.5	<0.5	<0.5		
02/13/09		<2	7	<0.5	<0.5	<0.5		
05/08/09		<2	8	<0.5	<0.5	<0.5		
08/07/09		4	5	<0.5	<0.5	<0.5		

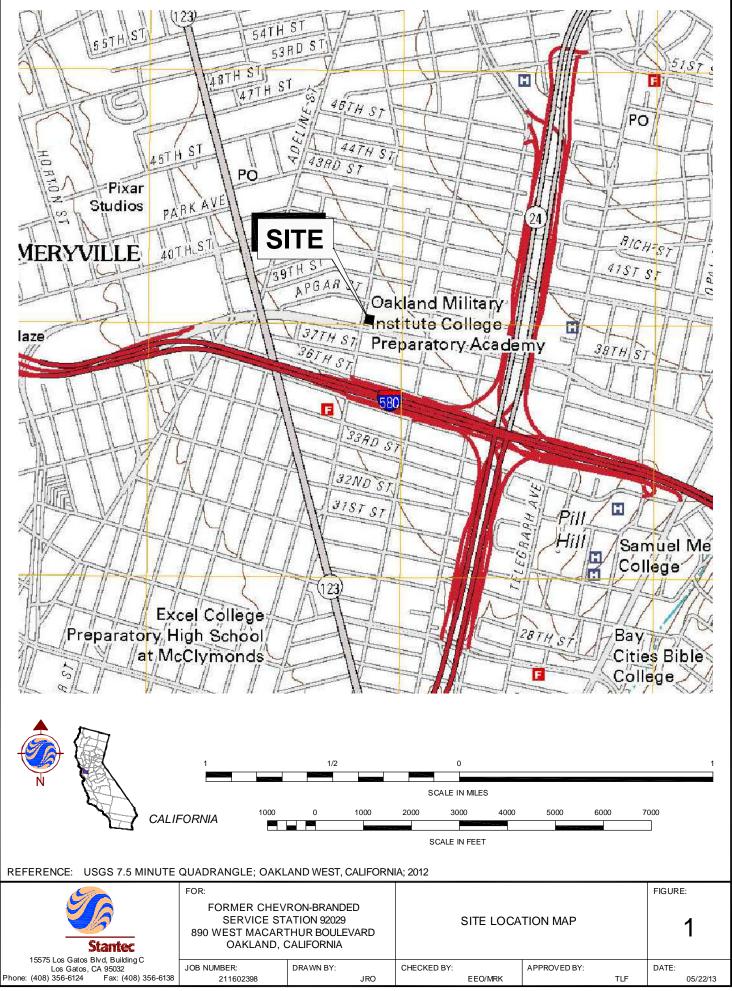
WELL ID/	ETHANOL	TBA	MtBE	DIPE	EtBE	TAME	1,2-DCA	1,2-DBA
DATE	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7 (cont)								
11/05/09		9	5	<1	<1	<1		
05/06/10		3	6	<0.5	<0.5	<0.5		
11/03/10		6	4	<0.5	<0.5	<0.5		
05/10/11		3	5	<0.5	<0.5	<0.5		
11/10/11		4	5	<0.5	<0.5	<0.5		
05/11/12		<20	<5	<5	<5	<5		
11/14/12		<10	4	<3	<3	<3		
05/08/13		<2	5	<0.5	<0.5	<0.5		
MW-8								
08/27/08		<2	<0.5	<0.5	<0.5	<0.5		
11/21/08		<2	<0.5	<0.5	<0.5	<0.5		
02/13/09		<2	<0.5	<0.5	<0.5	<0.5		
05/08/09		<2	<0.5	<0.5	<0.5	<0.5		
08/07/09		<2	<0.5	<0.5	<0.5	<0.5		
11/05/09		<2	<0.5	<0.5	<0.5	<0.5		
05/06/10		<2	<0.5	<0.5	<0.5	<0.5		
11/03/10		<2	<0.5	<0.5	<0.5	<0.5		
05/10/11		<2	<0.5	<0.5	<0.5	<0.5		
11/10/11		<2	<0.5	<0.5	<0.5	<0.5		
05/11/12		<2	<0.5	<0.5	<0.5	<0.5		
11/14/12		<2	<0.5	<0.5	<0.5	<0.5		
05/08/13		<2	<0.5	<0.5	<0.5	<0.5		
MW-1								
03/12/02		<100	<2	<2	<2	<2	<2	<2
06/07/02		<100	<2	<2	<2	<2	<2	<2
09/13/02		<100	<2	<2	<2	<2	<2	<2
12/13/02		<100	<2	<2	<2	<2	<2	<2
03/01/03		<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
06/27/03		<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
09/30/03	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
12/03/03	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
03/10/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
06/30/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
09/30/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
12/31/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

WELL ID/	ETHANOL	TBA	MtBE	DIPE	EtBE	TAME	1,2-DCA	1,2-DBA
DATE	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-1 (cont)								
03/23/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
06/22/05	<50 <50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
09/02/05	<50 <50	<5 <5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
DESTROYED		<0	<0.0	<0.5	<0.5	<0.5	<0.0	<0.5
DEGINOTED								
MW-2								
03/12/02		<100	3	<2	<2	<2	<2	<2
06/07/02		<100	<2	<2	<2	<2	<2	<2
09/13/02		<100	<2	<2	<2	<2	<2	<2
12/13/02		<100	<2	<2	<2	<2	<2	<2
03/01/03		<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
06/27/03		<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
09/30/03	<50	<5	0.7	<0.5	<0.5	<0.5	<0.5	<0.5
12/03/03	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
03/10/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
06/30/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
09/30/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
12/31/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
03/23/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
06/22/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
09/02/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
DESTROYED								
MW-3								
03/12/02		<100	650	<2	<2	18	<2	<2
06/07/02		230	490	<5.0	<5.0	11	<5.0	<5.0
09/13/02		170	640	<2	<2	8	<2	<2
12/13/02		240	540	<2	<2	29	31	<2
03/01/03		160	330	<0.5	<0.5	10	<0.5	<0.5
06/27/03		200	470	<0.5	<0.5	11	<0.5	<0.5
09/30/03	<50	120	710	<0.5	<0.5	6	0.7	<0.5
12/03/03	<250	200	420	<3	<3	14	<3	<3
03/10/04	<50	140	220	<0.5	<0.5	5	<0.5	<0.5
06/30/04	<50	100	660	<0.5	<0.5	5	<0.5	<0.5
09/30/04	<50	72	690	<0.5	<0.5	4	0.5	<0.5
12/31/04	<50	77	170	<0.5	<0.5	5	<0.5	<0.5
03/23/05	<50	<5	140	<0.5	<0.5	4	<0.5	3

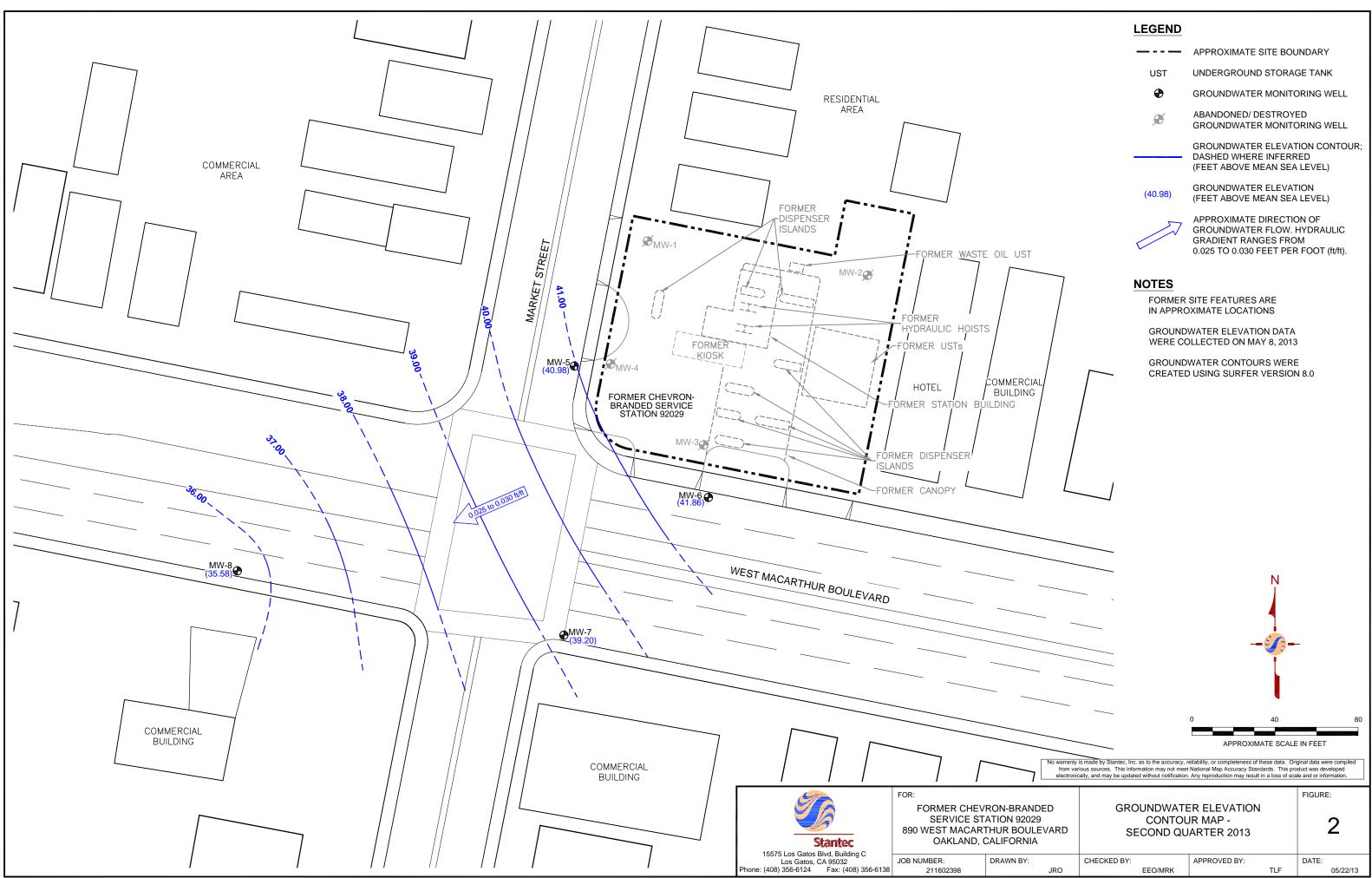
WELL ID/	ETHANOL	TBA	MtBE	DIPE	EtBE	TAME	1,2-DCA	1,2-DBA
DATE	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-3 (cont)								
06/22/05	<250	150	300	<3	<3	6	<3	<3
09/02/05	<100	99	440	<1	<1	<1	<1	<1
12/02/05	<100	66	170	<1	<1	5	<1	<1
03/20/06	<50	14	34	<0.5	<0.5	<0.5	<0.5	<0.5
06/01/06	<50	12	28	<0.5	<0.5	0.8	<0.5	<0.5
09/11/06	<50	47	97	<0.5	<0.5	2	<0.5	<0.5
DESTROYED								
MW-4		100	470	0	0	40	0	0
03/12/02		<100	170	<2	<2	13	<2	<2
06/07/02		<100	120	<2	<2	14	<2	<2
09/13/02		<100	160	<2	<2	14	<2	<2
12/13/02		<100	200	<2	<2	17	<2	<2
03/01/03		19	100	<0.5	<0.5	8	<0.5	<0.5
06/27/03		22	130	<0.5	<0.5	11	<0.5	<0.5
09/30/03	<100	<10	520	<1	<1	9	<1	<1
12/03/03	<50	18	73	<0.5	<0.5	5	<0.5	<0.5
03/10/04	<50	11	55	<0.5	<0.5	4	<0.5	<0.5
06/30/04	<100	<10	110	<1	<1	6	<1	<1
09/30/04	<50	17	400	<0.5	<0.5	7	<0.5	<0.5
12/31/04	<50	11	42	<0.5	<0.5	2	<0.5	<0.5
03/23/05	<50	<5	24	<0.5	<0.5	1	<0.5	0.9
06/22/05	<50	15	18	<0.5	<0.5	1	<0.5	<0.5
09/02/05	<50	6	18	<0.5	<0.5	<0.5	<0.5	<0.5
12/02/05	<50	11	34	<0.5	<0.5	1	<0.5	<0.5
03/20/06	<50	<5	2	<0.5	<0.5	<0.5	<0.5	<0.5
06/01/06	<50	<5	2	<0.5	<0.5	<0.5	<0.5	<0.5
09/11/06	<50	<5	4	<0.5	<0.5	<0.5	<0.5	<0.5
DESTROYED								

EXPLANATIONS:

Current groundwater monitoring data was provided by Gettler-Ryan Inc. Current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

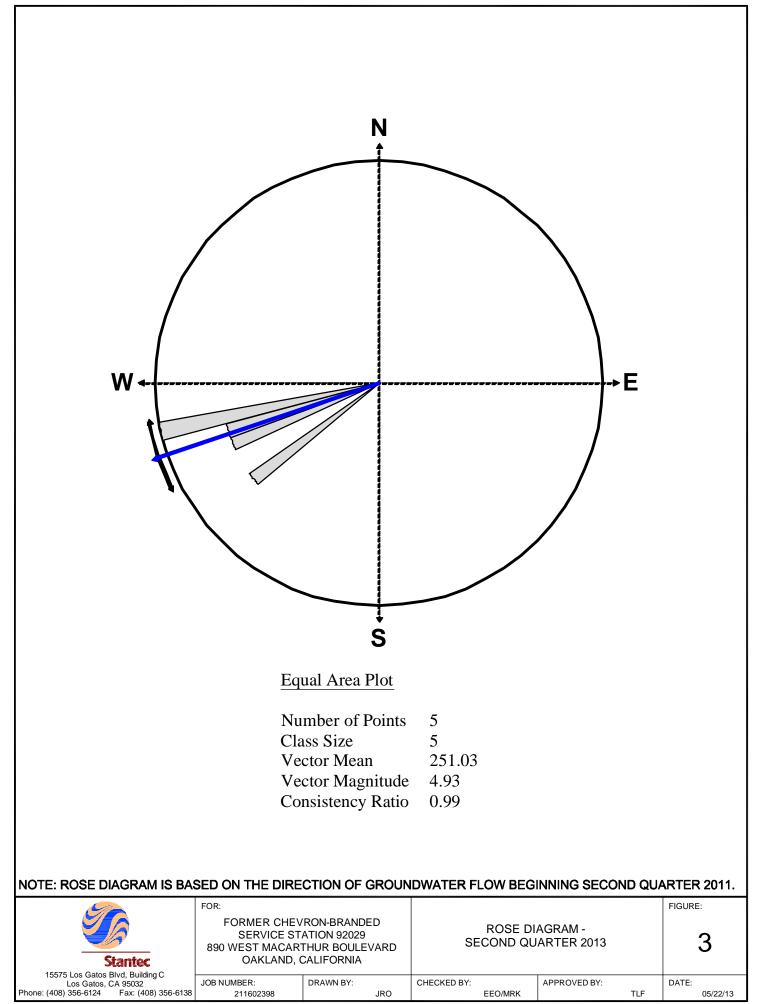

TBA = Tertiary-Butyl Alcohol MtBE = Methyl tertiary-butyl ether DIPE = Di-Isopropyl Ether EtBE = Ethyl Tertiary-Butyl Ether TAME = Tertiary-Amyl Methyl Ether 1,2-DCA = 1,2-Dichloroethane 1,2-DBA = 1,2-Dibromoethane (μ g/L) = Micrograms per liter -- = Not Analyzed EPA = Environmental Protection Agency

ANALYTICAL METHOD:

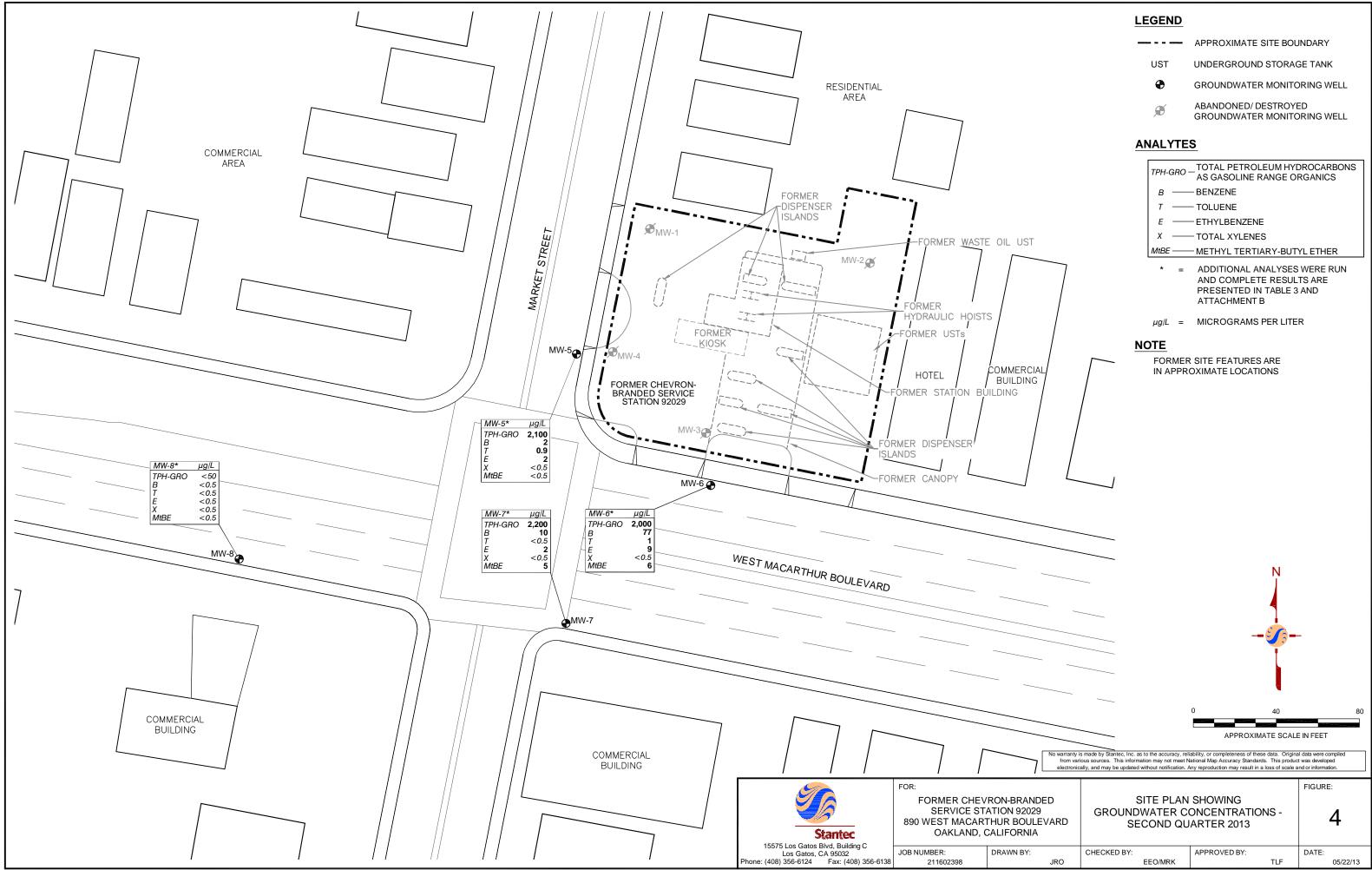

EPA Method 8260 for Oxygenate Compounds

¹ Laboratory confirmed analytical result.

Figures

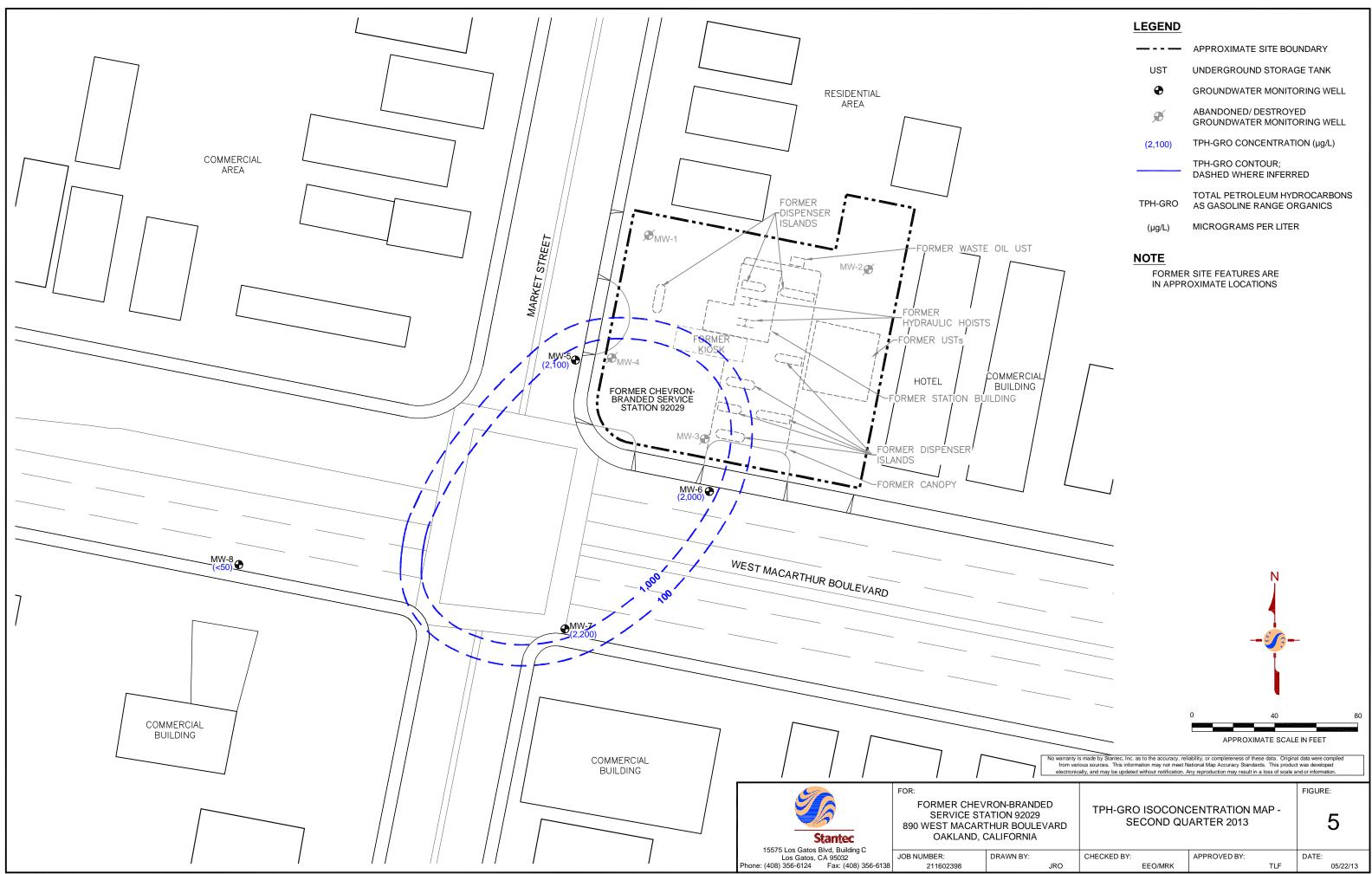


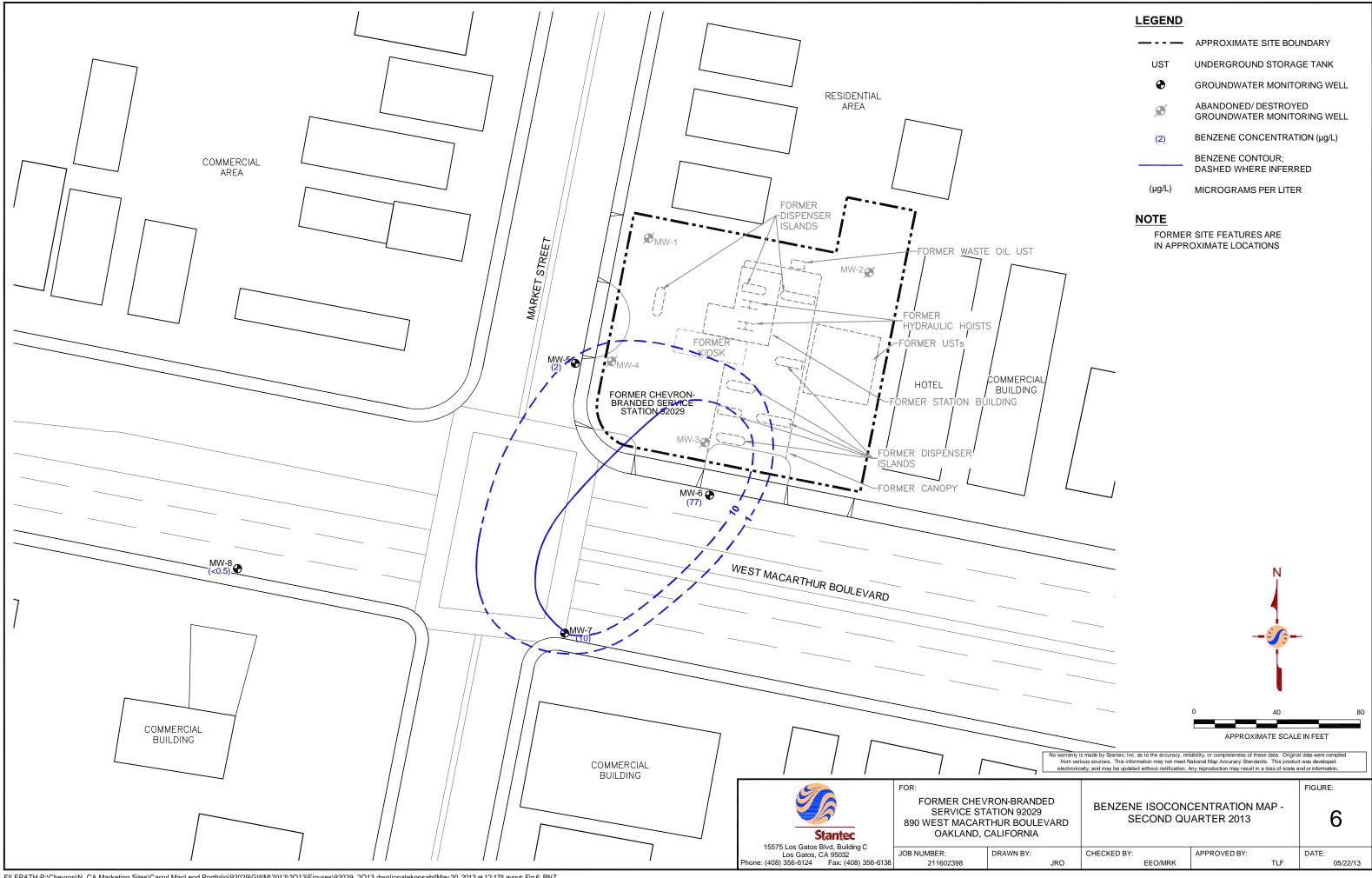
FILEPATH:P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\92029\GWM\2013\2Q13Figures\92029_2Q13.dwgljopalekopsahl|May 17, 2013 at 13:21|Layout: Fig 1_SLM



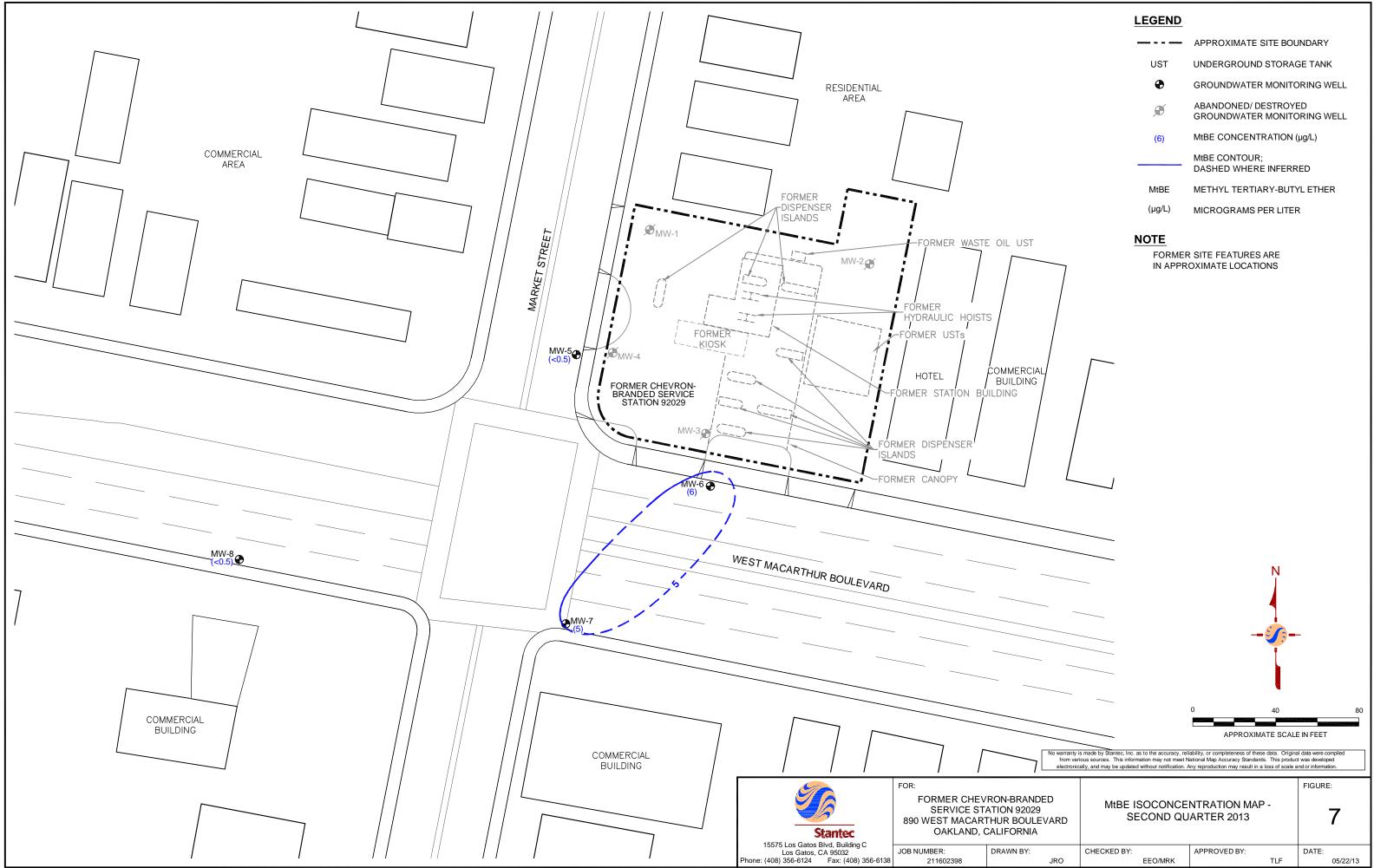
FILEPATH:P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\92029\GWM\2013\2Q13\Figures\92029_2Q13.dwg|jopalekopsahl|May 20, 2013 at 12:06|Layout: Fig 2_GWE

IECKED	D	r	÷	


FILEPATH:P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\92029\GWM\2013\2Q13\Figures\92029_2Q13.dwgjjopalekopsahil/May 20, 2013 at 12:07|Layout: Fig 3_Rose


FILEPATH:P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\92029\GWM\2013\2Q13\Figures\92029_2Q13.dwg|jopalekopsahl|May 20, 2013 at 12:07|Layout: Fig 4_GWC

	CHECKED BY:		APPROVED BY:		DATE:	
JRO	EEO	/MRK		TLF		05/



FILEPATH:P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\92029\GWM\2013\2Q13\Figures\92029_2Q13.dwg|jopalekopsahl|May 20, 2013 at 12:11|Layout: Fig 5_TPHg

FILEPATH:P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\92029\GWM\2013\2Q13\Figures\92029_2Q13.dwg|jopalekopsahl|May 20, 2013 at 12:17|Layout: Fig 6_BNZ

	APPROXIMATE SITE BOUNDARY
UST	UNDERGROUND STORAGE TANK
Ð	GROUNDWATER MONITORING WELL
Æ	ABANDONED/ DESTROYED GROUNDWATER MONITORING WELL
(2)	BENZENE CONCENTRATION (µg/L)
	BENZENE CONTOUR; DASHED WHERE INFERRED
	DASHED WHERE INFERRED
(µg/L)	MICROGRAMS PER LITER

FILEPATH:P:\Chevron\N. CA Marketing Sites\Carryl MacLeod Portfolio\92029\GWM\2013\2Q13\Figures\92029_2Q13.dwg|jopalekopsahl|May 20, 2013 at 12:22|Layout: Fig 7_MtBE

	APPROXIMATE SITE BOUNDARY
UST	UNDERGROUND STORAGE TANK
۲	GROUNDWATER MONITORING WELL
ø	ABANDONED/ DESTROYED GROUNDWATER MONITORING WELL
(6)	MtBE CONCENTRATION (µg/L)
	MtBE CONTOUR; DASHED WHERE INFERRED
MtBE	METHYL TERTIARY-BUTYL ETHER
(µg/L)	MICROGRAMS PER LITER

Attachment A

Gettler-Ryan Inc. Field Data Sheets and Standard Operating Procedures – Second Quarter 2013

TRANSMITTAL

May 14, 2013 G-R #386911

- TO: Mr. Travis Flora Stantec 15575 Los Gatos Blvd., Building C Los Gatos, California 95032
- FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

RE: Former Chevron Service Station #9-2029 890 West MacArthur Blvd. Oakland, California RO 0002438

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DESCRIPTION
VIA PDF	Groundwater Monitoring and Sampling Data Package First Semi-Annual Event of May 8, 2013

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/9-2029

WELL CONDITION STATUS SHEET

Client/Facility #:	Chevror	n #9-2029				_	Job #	386911			
ite Address:	890 Wes	st Macarth	nur Blvd.				Event Date:		5.8	.13	
City: Oakla	Oakland	akland, CA				-	Sampler:		FT		
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y / N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes /No
10-5	OK						\rightarrow	N	ч	Monuson 612	
1-6	OK						\rightarrow	Z		<i>்</i>	
11-7	OK						\rightarrow	Y			
11-8	OIL						\rightarrow	N	4		
										C C	
											· · · · · · · · · · · · · · · · · · ·
							(25)				
										=	
						.8					
Comments		N-5,6	, 7 % 5	3 NG	ÉED N	SEW V	En Con	lans -	ΤΉεγ	BLC HAVE BOLT H	OLE DA

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When prepreserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California.

N;\California\forms\chevron-SOP- 2013

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Cnevron #9-20	29	Job Number:	386911	
Site Address:	890 West Mac	arthur Blvd.	Event Date:	5-8.13	(inclusive)
City:	Oakland, CA		Sampler:	FT	(
Well ID Well Diameter	<u>MW- 5</u>		Date Monitored:	5.8.13	
	2 in. 25.01 ft.		/olume 3/4"= 0.0		3"= 0.38
Total Depth			actor (VF) 4"= 0.6		2"= 5.80
Depth to Water	<u>9.41</u> ft.		olumn is less then 0.50		12
Depth to Water	16.60 xV	F=	2 x3 case volume =	Estimated Purge Volume:	ogal.
Depth to water v	w ou% Recharge ((H	leight of Water Column x 0.	20) + DTW]: 11. (*	Time Started:	(2400 h
Purge Equipment:	1	Sampling Equipm	ent:	Time Completed:	(2400 hrs) (2400 hrs
Disposable Bailer		Disposable Bailer		Depth to Product:	ft
Stainless Steel Bailer		Pressure Bailer	¥	Depth to Water:	ft
Stack Pump		Discrete Bailer		Hydrocarbon Thickness: Visual Confirmation/Deac	ft
Suction Pump		Peristaltic Pump			
Grundfos		QED Bladder Pump		Skimmer / Absorbant Soc	k (circle one)
Peristaltic Pump QED Bladder Pump		Other:		Amt Removed from Skim Amt Removed from Well:	mer:gal gal
Other:				Water Removed:	
ould!				Product Transferred to:	
Time (2400 hr.) 	Volume (gal.) <u>入く 7.</u> <u>5.0</u> 7.	$\begin{array}{c} & Conductivity \\ (\mu mhos/cm - \mu s) \\ \hline 0 & 9 & 1 \\ \hline \end{array}$	Temperature (@/ F) 15.9 16.3 16.7	gal. DTW @ Sampling: D.O. ORP (mg/L) (mV)	
SAMPLE ID	(#) CONTAINER R	LABORATORY	INFORMATION		
MW-5		YES HCL		ANALYSES TPH-GRO(8015)/BTEX(8260)/ 5	
_	LE Damab	Moury so	NEEDS	NEW WELL COY	En Has
COMMENTS:				NEW WELL COY	

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #9-2	2029	Job Numb	ber: 386911		
Site Address:	890 West Ma	acarthur Blvd.	Event Dat	te: K	8.13	– (inclusive)
City:	Oakland, CA		Sampler:		FT	
						-
Well ID	MW-6		Date Monitor	red: 5	.8.13	
Well Diameter	<u>2</u> in.		Volume 3/4	'= 0.02 1"= 0.04		
Total Depth	24.94 ft.			= 0.66 5"= 1.02		
Depth to Water	<u>7.21 ft.</u>		er column is less then			
		xVF=_3	.ol x3 case volu	me = Estimated Pu	irge Volume: 9.	_ gal.
Depth to Water v	w/ 80% Recharge	[(Height of Water Column	1 x 0.20) + DTW]: 10.	76	2441	
Purge Equipment:	1	Sampling Equ	inmont:	4	Started: Completed:	(2400 hrs) (2400 hrs)
Disposable Bailer		Disposable Ba			to Product:	(1400 mis)
Stainless Steel Bailer	· · · · · · · · · · · · · · · · · · ·	Pressure Baile			to Water:	ft
Stack Pump		Discrete Bailer			carbon Thickness: Confirmation/Description	ft
Suction Pump		Peristaltic Pum	p			
Grundfos		QED Bladder P	ump	Skimm	er / Absorbant Sock (circ	le one)
Peristaltic Pump		Other:		- Amt R	emoved from Skimmer: emoved from Well:	gal
QED Bladder Pump Other:				Water	Removed:	gai
Ourier	· · · · · · · · · · · · · · · · · · ·			Produc	t Transferred to:	
01 1 2						
Start Time (purge)	1150	Weat	her Conditions	CL	26.00	
			her Conditions:		N	<u></u>
	e: 1225/5	·8·13 Wate	r Color: CLEAN	Odor: 🔗	N MOD	ENATE
Sample Time/Dat	e: 1225/5	·8·13 Wate	r Color: <u>CLEA</u>	Odor: 00	N MOD	
Sample Time/Dat Approx. Flow Rat	e: 1225/5	• 8 • 13Wategpm.Sedin	r Color: <u>CLEA</u> nent Description: _ Volume: vityTemperature	Odor: Ø	N <u>Mod</u> PE @ Sampling: <u>10</u> ORP	
Sample Time/Dat Approx. Flow Rat Did well de-water Time	e: 1225 / 5 . e:g ?No If y Volume (gal.)	• <u>8 • 13</u> Wate gpm. Sedin res, Time: pH Conducti (µmhos/cm	r Color: <u>CLEAN</u> nent Description: Volume: vity Temperature - (Odor: Ø	N <u>Mod</u> PE @ Sampling: <u>10</u>	
Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.)	e: 1225/5. e:g ?Nolfy	• <u>8 • 13</u> Wate gpm. Sedin res, Time: pH Conducti (µmhos/cm 2.97 \015	r Color: <u>CLEAN</u> nent Description: Volume: vity Temperature - (Odor: Ø	N <u>Mod</u> PE @ Sampling: <u>10</u> ORP	
Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.)	e: <u>1225 / 5</u> . e: <u> </u>	• <u>8 • 13</u> Wate gpm. Sedin res, Time: pH Conducti (µmhos/cm	r Color: <u>CLEAN</u> nent Description: Volume: vity Temperature - (Odor: Ø	N <u>Mod</u> PE @ Sampling: <u>10</u> ORP	
Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.)	re: 1225/5 e: ?No If y Volume (gal.) 	· 8·13 Wate gpm. Sedin res, Time:	r Color: <u>CLEAN</u> nent Description: Volume: vity Temperature - (Odor: Ø	N <u>Mod</u> PE @ Sampling: <u>10</u> ORP	
Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.)	re: 1225/5 e: ?No If y Volume (gal.) 	• 8•13 Wate gpm. Sedin res, Time: pH Conducti (µmhos/cm 2.97 1015 .94 1010 .91 1004	r Color: <u>CLEAN</u> ment Description: _ Volume: vity, Temperature _ O / F _ 17.1 _ 17.5 _ 17.9	Odor: ()	N <u>Mod</u> PE @ Sampling: <u>10</u> ORP	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 1156 1209 1209	e: 1225 / 5 . e: ? If y Volume (gal.) 3.0 4.0 4.0 4.0 4.0	• 8•13 Wate gpm. Sedin res, Time: pH Conducti (µmhos/cm 2.97 1015 .94 1010 .91 1004	r Color: <u>CLEAN</u> ment Description: Volume: vity Temperature (O / F 17.5 17.5 17.6 DRY INFORMATIO	Odor: () 20 30 30 30 30 30 30 30 30 30 3	NOD	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.)	e: 1225 / 5 . e: ? If y Volume (gal.) 3.0 4.0 4.0 4.0 4.0	• 8•13 Wate gpm. Sedin res, Time:	r Color: <u>CLEAN</u> nent Description: Volume: Vity Temperature (Ø / F 17.1 17.5 17.9 DRY INFORMATIO	Odor: () gal. DTW () gal. DTW () (mg/L) N RY	N <u>Mod</u> PE @ Sampling: <u>10</u> ORP	· 69
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 1156 1209 1209	e: 1225 / 5 . e: g ? If y Volume (gal.) 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	· 8·13 Wate gpm. Sedin res, Time:	r Color: <u>CLEAN</u> nent Description: Volume: Vity Temperature (Ø / F 17.1 17.5 17.9 DRY INFORMATIO	Odor: () gal. DTW () gal. DTW () (mg/L) N RY	ANALYSES	· 69
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 1156 1209 1209	e: 1225 / 5 . e: g ? If y Volume (gal.) 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	· 8·13 Wate gpm. Sedin res, Time:	r Color: <u>CLEAN</u> nent Description: Volume: Vity Temperature (Ø / F 17.1 17.5 17.9 DRY INFORMATIO	Odor: () gal. DTW () gal. DTW () (mg/L) N RY	ANALYSES	· 69
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 1156 1209 1209	e: 1225 / 5 . e: g ? If y Volume (gal.) 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	· 8·13 Wate gpm. Sedin res, Time:	r Color: <u>CLEAN</u> nent Description: Volume: Vity Temperature (Ø / F 17.1 17.5 17.9 DRY INFORMATIO	Odor: () gal. DTW () gal. DTW () (mg/L) N RY	ANALYSES	· 69
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 1156 1209 1209	e: 1225 / 5 . e: g ? If y Volume (gal.) 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	• 8•13 Wate gpm. Sedin res, Time:	r Color: <u>CLEAN</u> nent Description: Volume: Vity Temperature (Ø / F 17.1 17.5 17.9 DRY INFORMATIO	Odor: () gal. DTW () gal. DTW () (mg/L) N RY	ANALYSES	· 69
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 1156 1209 1209	e: 1225 / 5 . e: g ? If y Volume (gal.) 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	• 8•13 Wate gpm. Sedin res, Time:	r Color: <u>CLEAN</u> nent Description: Volume: Vity Temperature (Ø / F 17.1 17.5 17.9 DRY INFORMATIO	Odor: () gal. DTW () gal. DTW () (mg/L) N RY	ANALYSES	· 69

COMMENTS: MONNISON 6" NEEDS NEW WEN LOVEN HAS BOLT HOLD DAMAGE.

Add/Replaced Lock: _____

Add/Replaced Plug: _____

Add/Replaced Bolt: ____

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#	Cnevron #9	-2029		Job Number:	386911		
Site Address:	890 West M	lacarthu	r Bivd.	Event Date:	5.8	1.13	— (inclusive)
City:	Oakland, CA			- Sampler:	F1		((
					F1		
Well ID	רי -MW			Date Monitored	5-8	17	
Well Diameter	2 ir	n. 🧹 👘					<u> </u>
Total Depth	24.90 ft			ume 3/4"= 0. xtor (VF) 4"= 0.		2"= 0.17 3"= 0. 6"= 1.50 12"= 5.	
Depth to Water			Check if water colu	Imn is less then 0.5			
				x3 case volume		90	
Depth to Water	w/ 80% Recharge	= (Height of	Water Column x 0 20	$\frac{1}{10000000000000000000000000000000000$	- Esumated Purge	volume: 0.0	gal.
		i i i gitt di	oralini x 0.20		Time Star		(2400 hrs)
Purge Equipment:	: /	:	Sampling Equipmen	it:		pleted:	(2400 hrs)
Disposable Bailer		I	Disposable Bailer		Depth to F Depth to V	Product:	
Stainless Steel Bail	er	1	Pressure Bailer			on Thickness:	ft
Stack Pump			Discrete Bailer			firmation/Descriptio	n:
Suction Pump Grundfos	<u> </u>		Peristaltic Pump		Skimmor	Absorbant Sock (cir	
Peristaltic Pump			QED Bladder Pump Other:		Amt Remo	ved from Skimmer:	CIE ONE) nal
QED Bladder Pump			Jiner		Amt Remo	yed from Well:	gal
Other:					Water Ren	noved: ansferred to:	
Did well de-wate Time (2400 hr.)	Volume (gal.)	рн 7.05	Conductivity (µmhos/cm - (S)	Temperature (Ø / F)	gal. DTW @ 3 D.O. (mg/L)	Sampling: <u>1</u> ORP (mV)	L.10
1302		7.01	1138	17.7			_
1309	8.0	6.98	1132	_ 18.1_			-
				· · · · · · · · · · · · · · · · · · ·			
			LABORATORY	NFORMATION			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY		ANALYSES	
MW- 1	🖉 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)	/BTEX(8260)/ 5 OX	YS (8260)
			<u> </u>	+			
				+			
OMMENTS:	NEEDS N	En v	VELL COUG	in HAS T	BOLT HOLS	E DAMAUS]
				502 6"			
Add/Replaced I	Lock:	Add/	Replaced Plug: _		Add/Replaced	Bolt:	

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #9-202	9	Job Number:	386911	
Site Address:	890 West Maca	rthur Blvd.	Event Date:	5.8.13	(inclusive)
City:	Oakland, CA		_ Sampler:	Fr	(110/03/76)
Well ID	<u>MW- 8</u>		Date Monitored:	5.8.13	
Well Diameter	2 in.		ume 3/4"= 0.0		3"= 0.38
Total Depth	<u>24.99 ft.</u>		ctor (VF) 4"= 0.6		12"= 5.80
Depth to Water	12.03 ft.		umn is less then 0.50		
Depth to Water		17 = 2.20	x3 case volume =	Estimated Purge Volume:	 gal.
Deptil to Water	w/ 80% Recharge [(Hei	ght of Water Column x 0.2()) + DTW]: 14.6	Time Started:	(2409/hrs)
Purge Equipment:		Sampling Equipmer	nt:	Time Completed:	(2400 hrs)
Disposable Bailer		Disposable Bailer		Depth to Product:	ft
Stainless Steel Baile	r	Pressure Bailer		Depth to Water: Hydrocarbon Thickr	ft
Stack Pump		Discrete Bailer		Visual Confirmation	
Suction Pump		Peristaltic Pump			
Grundfos		QED Bladder Pump		Skimmer / Absorbar	011
Peristaltic Pump QED Bladder Pump		Other:		Amt Removed from	Skimmer:gal Well:gal
Other:				Water Removed:	gui
<u> </u>	······			Product Transferred	to:
Start Time (purge Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.) 1351 1357 1404	te: 1420 / 5.8. te:gpm	. Sediment [Time: Vol Conductivity (μmhos/cm - 5) (μπόσ/cm - 5) (μπό	Dr: <u>B</u> <u><u><u></u><u></u><u><u></u><u></u><u>B</u><u><u></u><u></u><u></u><u>B</u><u><u></u><u></u><u>B</u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u>	CLOUPY Odor: Y / (2) SILT- gal. DTW @ Samplin D.O. (mg/L)	g: <u>14.59</u> ORP (mV)
SAMPLE ID	(#) CONTAINER REF	LABORATORY	NFORMATION		
MW- 8		RIG. PRESERV. TYPE		ANAL TPH-GRO(8015)/BTEX(82	
			LANCASTER	TFH-GRO(6015)/BTEA(62	(60)/ 5 UXYS (8260)
COMMENTS:	HOMMSON	6" WELL C	OVER HAS -	BOLT HOLE DA	MALE NERDS
NEW C	ONEn.				

Add/Replaced Lock: _____

Add/Replaced Plug: _____

Add/Replaced Bolt:

the survey in a large state in the second state in the second state in the second state is a second state in the second state	
Image: Second state in the second state is a second state in the second state is a second state in the second state is a seco	
1 Client Information (4) Matrix (5) Analyses Requested	
Facility # SS#9-2029-OML G-R#386911 Global ID#T0600173887 SCR	R #:
Site Address 890 WEST MACARTHUR BLVD., OAKLAND, CA Chevron PM Strantferration Consultant/Office Second Decennal F. Harding (deanna@grinc.com) Consultant Project More strates Sampler Sampler Method Frantferration Strantferration Strant Project More strates Strante strates Strant Project More strates Strates Strate Method Strates Strates Strates Strates <td>tesults in Dry Weight value reporting needed flust meet lowest detection mits possible for 8260 ompounds 021 MTBE Confirmation confirm highest hit by 8260 confirm all hits by 8260 tun oxy's on highest hit tun oxy's on all hits</td>	tesults in Dry Weight value reporting needed flust meet lowest detection mits possible for 8260 ompounds 021 MTBE Confirmation confirm highest hit by 8260 confirm all hits by 8260 tun oxy's on highest hit tun oxy's on all hits
Soil Dissolved I TPH-DRO Dissolved I Dissolve	
	Remarks
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
5-2F 58.13 1520 11 014	ate Time 9
Standard 5 day 4 day 1 1 1 1 72 hour 48 hour 24 hour Relinquished by Date Time Received by Date	ate Time
Image: Non-State Package (circle if required) EDD (circle trice tris trice tris trice trice trice trice trice trice trice	ate Time
Type VI (Raw Data) Other: Temperature Upon Receipt °C Custody Seals Intact? Eurofins Lancaster Laboratories, Inc. • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300	Yes No

The white copy should accompany samples to Eurofins Lancaster Laboratories. The yellow copy should be retained by the client.

Issued by Dept. 40 Management 7050.03

Attachment B

Certified Laboratory Analysis Reports and Chain-of-Custody Documents

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Lancaster

Laboratories

ANALYTICAL RESULTS

Prepared by:

Eurofins Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

May 15, 2013

Project: 92029

Submittal Date: 05/09/2013 Group Number: 1388678 PO Number: 0015116151 Release Number: MACLEOD State of Sample Origin: CA

<u>Client Sample Description</u> QA-T-130508 NA Water MW-5-W-130508 Grab Groundwater MW-6-W-130508 Grab Groundwater MW-7-W-130508 Grab Groundwater MW-8-W-130508 Grab Groundwater Lancaster Labs (LLI) # 7050183 7050184 7050185 7050186 7050187

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO	Stantec c/o Gettler-Ryan	Attn: Rachelle Munoz
ELECTRONIC COPY TO	Stantec	Attn: Laura Viesselman
ELECTRONIC COPY TO	Stantec International	Attn: Travis Flora
ELECTRONIC COPY TO	Stantec	Attn: Erin O'Malley
ELECTRONIC COPY TO	Stantec	Attn: Marisa Kaffenberger

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Lancaster

Laboratories

Respectfully Submitted,

fiel M. Parker

Jill M. Parker Senior Specialist

(717) 556-7262

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: QA-T-130508 NA Water Facility# 92029 Job# 386911 GRD 890 W MacArthur-Oakland T0600173887

LLI Sample # WW 7050183 LLI Group # 1388678 Account # 10906

Project Name: 92029

WMOQA

Collected: 05/08/2013

Submitted: 05/09/2013 09:15 Reported: 05/15/2013 19:03

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
C Vol	latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P131332AA	05/13/2013 13:17	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P131332AA	05/13/2013 13:17	Emily R Styer	1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	13130B20A	05/13/2013 11:36	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	13130B20A	05/13/2013 11:36	Catherine J Schwarz	1

Analysis Report

Account

LLI Sample # WW 7050184

10906

LLI Group # 1388678

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5-W-130508 Grab Groundwater Facility# 92029 Job# 386911 GRD 890 W MacArthur-Oakland T0600173887

Project Name: 92029

Collected:	05/0	3/2013	11:35	by FT
------------	------	--------	-------	-------

Submitted: 05/09/2013 09:15 Reported: 05/15/2013 19:03 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

WMO05

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	t-Amyl methyl ether	994-05-8	N.D.	0.5	1
10943	Benzene	71-43-2	2	0.5	1
10943	t-Butyl alcohol	75-65-0	N.D.	2	1
10943	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	2	0.5	1
10943	di-Isopropyl ether	108-20-3	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	0.9	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	2,100	50	1

Chevron

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX + 5 Oxygenates 8260 Water	SW-846 8260B	1	P131332AA	05/13/2013 22	:31 Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P131332AA	05/13/2013 22	:31 Emily R Styer	1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	13130B20A	05/13/2013 21	:02 Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	13130B20A	05/13/2013 21	:02 Catherine J Schwarz	1

Analysis Report

Account

LLI Sample # WW 7050185

10906

LLI Group # 1388678

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-6-W-130508 Grab Groundwater Facility# 92029 Job# 386911 GRD 890 W MacArthur-Oakland T0600173887

Project Name: 92029

Collected:	05/08/2013 12:25	by FT
------------	------------------	-------

Submitted: 05/09/2013 09:15 Reported: 05/15/2013 19:03 San Ramon CA 94583

WMO06

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	t-Amyl methyl ether	994-05-8	N.D.	0.5	1
10943	Benzene	71-43-2	77	0.5	1
10943	t-Butyl alcohol	75-65-0	5	2	1
10943	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	9	0.5	1
10943	di-Isopropyl ether	108-20-3	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	6	0.5	1
10943	Toluene	108-88-3	1	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	2,000	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX + 5 Oxygenates 8260 Water	SW-846 8260B	1	P131341AA	05/14/2013 17:50	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P131341AA	05/14/2013 17:50	Emily R Styer	1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	13130B20A	05/13/2013 21:24	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	13130B20A	05/13/2013 21:24	Catherine J Schwarz	1

Chevron 6001 Bollinger Canyon Rd L4310

Analysis Report

Account

LLI Sample # WW 7050186

10906

LLI Group # 1388678

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-7-W-130508 Grab Groundwater Facility# 92029 Job# 386911 GRD 890 W MacArthur-Oakland T0600173887

Project Name: 92029

Collected:	05/08/2013	13:25	by FT
------------	------------	-------	-------

Submitted: 05/09/2013 09:15 Reported: 05/15/2013 19:03

WMO07

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	t-Amyl methyl ether	994-05-8	N.D.	0.5	1
10943	Benzene	71-43-2	10	0.5	1
10943	t-Butyl alcohol	75-65-0	N.D.	2	1
10943	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	2	0.5	1
10943	di-Isopropyl ether	108-20-3	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	5	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	2,200	250	5

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX + 5 Oxygenates 8260 Water	SW-846 8260B	1	P131341AA	05/14/2013 18:17	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P131341AA	05/14/2013 18:17	Emily R Styer	1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	13130B20A	05/13/2013 19:57	Catherine J Schwarz	5
01146	GC VOA Water Prep	SW-846 5030B	1	13130B20A	05/13/2013 19:57	Catherine J Schwarz	5

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-8-W-130508 Grab Groundwater Facility# 92029 Job# 386911 GRD 890 W MacArthur-Oakland T0600173887

Project Name: 92029

Collected: 05/08/2013 14:20 by	:20 by FT
--------------------------------	-----------

Submitted: 05/09/2013 09:15 Reported: 05/15/2013 19:03

WMO08

CAT

No.

ted: 05/15/2013 19:03				
Analysis Name CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
Volatiles SW-846 8260B	ug/l	ug/l		
	NT D	0 5		

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

Chevron

10943 t-Amyl methyl et 10943 Benzene	her	994-05-8	N.D.			
10943 Benzene			м	0.5	1	
10945 Delizene		71-43-2	N.D.	0.5	1	
10943 t-Butyl alcohol		75-65-0	N.D.	2	1	
10943 Ethyl t-butyl et	her	637-92-3	N.D.	0.5	1	
10943 Ethylbenzene		100-41-4	N.D.	0.5	1	
10943 di-Isopropyl eth	er	108-20-3	N.D.	0.5	1	
10943 Methyl Tertiary	Butyl Ether	1634-04-4	N.D.	0.5	1	
10943 Toluene		108-88-3	N.D.	0.5	1	
10943 Xylene (Total)		1330-20-7	N.D.	0.5	1	
GC Volatiles	SW-846	8015B	ug/l	ug/l		
01728 TPH-GRO N. CA wa	ter C6-C12	n.a.	N.D.	50	1	

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX + 5 Oxygenates 8260 Water	SW-846 8260B	1	P131341AA	05/14/2013 18:45	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P131341AA	05/14/2013 18:45	Emily R Styer	1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	13130B20A	05/13/2013 13:50	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	13130B20A	05/13/2013 13:50	Catherine J Schwarz	1

Account # 10906

LLI Sample # WW 7050187

LLI Group # 1388678

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Reported: 05/15/13 at 07:03 PM Group Number: 1388678

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
<u>Analysis Name</u>	<u>Result</u>	MDL	<u>Units</u>	<u>%REC</u>	<u>%REC</u>	<u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: P131332AA	Sample num	uber(s): 70	50183-7050	184				
t-Amyl methyl ether	N.D.	0.5	ug/l	98		66-120		
Benzene	N.D.	0.5		91		77-121		
t-Butyl alcohol	N.D.	2.	uq/l	101		75-120		
Ethyl t-butyl ether	N.D.	0.5	ug/l	94		66-120		
Ethylbenzene	N.D.	0.5	ug/l	93		79-120		
di-Isopropyl ether	N.D.	0.5	uq/l	92		65-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	101		68-121		
Toluene	N.D.	0.5	ug/l	92		79-120		
Xylene (Total)	N.D.	0.5	ug/l	94		77-120		
Batch number: P131341AA	Sample num	ber(s): 70	50185-7050	187				
t-Amyl methyl ether	N.D.	0.5	uq/l	103		66-120		
Benzene	N.D.	0.5	ug/l	93		77-121		
t-Butyl alcohol	N.D.	2.	ug/l	101		75-120		
Ethyl t-butyl ether	N.D.	0.5		93		66-120		
Ethylbenzene	N.D.	0.5	ug/l	91		79-120		
di-Isopropyl ether	N.D.	0.5	ug/l	93		65-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	99		68-121		
Toluene	N.D.	0.5	ug/l	90		79-120		
Xylene (Total)	N.D.	0.5	ug/l	91		77-120		
Batch number: 13130B20A	Sample num	ber(s): 70	50183-7050	187				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	100		75-135		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	<u>%REC</u>	<u>%REC</u>	<u>Limits</u>	<u>RPD</u>	MAX	<u>Conc</u>	<u>Conc</u>	<u>RPD</u>	<u>Max</u>
Batch number: P131332AA	Sample	number(s): 7050183	8-70501	L84 UNSF	K: P050319			
t-Amyl methyl ether	97	97	65-117	1	30				
Benzene	96	95	72-134	2	30				
t-Butyl alcohol	97	97	67-119	1	30				
Ethyl t-butyl ether	94	95	74-122	1	30				
Ethylbenzene	100	97	71-134	2	30				
di-Isopropyl ether	95	94	70-129	1	30				
Methyl Tertiary Butyl Ether	100	98	72-126	2	30				
Toluene	97	95	80-125	2	30				

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Reported: 05/15/13 at 07:03 PM Group Number: 1388678

Sample Matrix Quality Control Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u> Xylene (Total)	MS <u>%REC</u> 101	MSD <u>%REC</u> 98	MS/MSD <u>Limits</u> 79-125	<u>RPD</u> 3	RPD <u>MAX</u> 30	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: P131341AA	Sample	number(s)	: 7050185	-705018	37 UNSP	K: P051660			
t-Amyl methyl ether	99 -	93	65-117	6	30				
Benzene	95	93	72-134	2	30				
t-Butyl alcohol	95	93	67-119	1	30				
Ethyl t-butyl ether	92	87	74-122	5	30				
Ethylbenzene	88	88	71-134	1	30				
di-Isopropyl ether	93	89	70-129	3	30				
Methyl Tertiary Butyl Ether	94	87	72-126	3	30				
Toluene	92	90	80-125	2	30				
Xylene (Total)	89	88	79-125	1	30				
Batch number: 13130B20A	Sample	number(s)	: 7050183	-705018	37 UNSP	K: P050589			
TPH-GRO N. CA water C6-C12	115	109	75-135	2	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
7050183	103	95	100	96	
7050184	102	96	98	101	
Blank	102	97	98	95	
LCS	102	100	100	99	
1S	101	97	99	101	
MSD	103	99	98	100	
Limits:	80-116	77-113	80-113	78-113	
Analysis	Name: UST VOCs by	y 8260B - Water			
	Name: UST VOCs by mber: P131341AA Dibromofluoromethane	y 8260B - Water 1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
Batcĥ nu	mber: P131341AA	•	Toluene-d8	4-Bromofluorobenzene	
Batcĥ nu 7050185	mber: P131341AA Dibromofluoromethane	1,2-Dichloroethane-d4			
3atcĥ nu 7050185 7050186	mber: P131341AA Dibromofluoromethane	1,2-Dichloroethane-d4	98	98	
3atcĥ nu 7050185 7050186 7050187	mber: P131341AA Dibromofluoromethane	1,2-Dichloroethane-d4 96 101	98 96	98 99	
3atcĥ nu 7050185 7050186 7050187 3lank	mber: P131341AA Dibromofluoromethane	1,2-Dichloroethane-d4	98 96 100	98 99 96	
Batch nu 7050185 7050186 7050187 Blank GCS	mber: P131341AA Dibromofluoromethane	1,2-Dichloroethane-d4 96 101 99 100	98 96 100 99	98 99 96 96	
	mber: P131341AA Dibromofluoromethane	1,2-Dichloroethane-d4 96 101 99 100 103	98 96 100 99 99	98 99 96 96 96 97	

Analysis Name: TPH-GRO N. CA water C6-C12

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 3 of 3

Quality Control Summary

Client Name: Chevron Reported: 05/15/13 at 07:03 PM Group Number: 1388678

Surrogate Quality Control

Batch number: 13130B20A Trifluorotoluene-F

7050183	84
7050184	144*
7050185	114
7050186	87
7050187	83
Blank	88
LCS	101
MS	96
MSD	96
Limits:	63-135

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

······································	Che	vroi	n Cá	alifo	rn	ia	Re	a	or		1n	al	1/5	ic	V e	20		10	ct/(`ha	in	of Custod	777
🔅 eurofins	Lancaste Laborato	۲		081					Group	For Eu				Labo _ Sai	ratorie mple :	es_use #_ 7 (3-8-				у
1	Client Inf	iormatio	n				4) N	latrix	((5)			Ar	nalys	ses l	Requ	est	ed				
Facility # WBS SS#9-2029-OML G-R#386911 Global ID#T0600173887 Site Address 890 WEST MACARTHUR BLVD., OAKLAND, CA								<u>a</u> –]													SCR #:	_
Consultant/Office Deanna L, I	G-R, Inc., 6747 Sierra Court, Suite J, Dublin, CA 94568 Consultant/Office Deanna L. Harding (deanna@grinc.com)						Sediment	Surface		Containers	8260 🛛	8260	a Gel Cleanup	ael Cleanup		8260)			60)			☐ J value reporting needed Must meet lowest detection limits possible for 8260 compounds ☐ 8021 MTBE Confirmation	
Consultant Project Mgr. 925-551-7555 925-551-7899 Consultant Phor(408) 356-6124 x238										ď	8021	8015 🕅	TPH-DRO 8015 without Silica	TPH-DRO 8015 with Silica Gel Cleanup	E	Oxygenates (Method	d Method	(826			Confirm highest hit by 8260 Confirm all hits by 8260 Run oxy's on highest h	iit
Sampler Fus L TENNYON 2 Sample Identification Depth Date Time U								Water NF	⊡ ⊡	Total Number	BTEX	TPH-GRO	TPH-DRO 801	TPH-DRO 801	8260 Full Scan	N Oxy	Total Lead	Dissolved Lead	MT BE			6) Remarks	
	Q A		5.8.13					N		2	X	X						_	\prec		T		
	MW-5			1135	X					Ŀ		X				\bowtie							
	Mlul			1225	\aleph			<u> </u>	<u> </u>	le	\bowtie	X				X							
	MW-7 MW-8		4	1325	\bigotimes		<	1		6	Ŕ	XX		_		Ř		_					
	<u></u>																	_			-		
						\square										_							
																_							
(7) Turnaround Time F	Requested (T	AT) (pleas	se circle)	<u> </u>	Relinqu	ished b	y				Date			Time			Receive	d bv				Date	9
Standard	5 day		4 day		A .	P	F	د 		•	5. 8	8 .1	3	15	7	D	H	Ľ	Å			5/2/13 1520	ڻ د
72 hour 48 hour 24 hour						ished b		K			Date			Time 16	3[)	Receive	ed by	Ę			Date Time	
8 Data Package (circle if required) EDD (circle if DEVIEDD Relinguish							-										Receive	ed by	7.41	,		Date Time	
Type I - Fuil		EDFI	FLAT (defa	ult)			FedEx XOther <i>Mat GL</i> emperature Upon Receipt 0.5_°C Custody Seals Ir					-		5/9/13 0915	;								
Type VI (Raw Data)		Othe	r:			Ten	npera	ture l	Jpon	Rec	eipt	\mathcal{O}	5	°(C		Cus	stod	y Seals	Intact?		Ves No	

Issued by Dept. 40 Management 7050.03

Eurofins Lancaster Laboratories, Inc. • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 The white copy should accompany samples to Eurofins Lancaster taberator to Eurofine Lancaster to Eurofine Lancaster taberator.

eurofins Lancaster

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL N.D.	Reporting Limit none detected	BMQL MPN	Below Minimum Quantitation Level Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- **ppm** parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight basis** Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

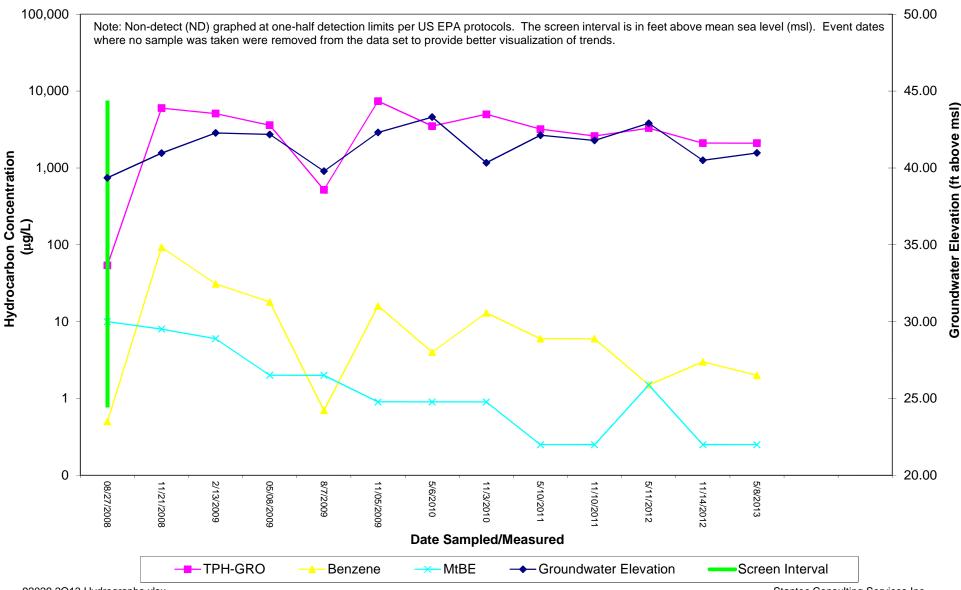
- A TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- N Presumptive evidence of a compound (TICs only)
- P Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- **B** Value is <CRDL, but \ge IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike sample not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

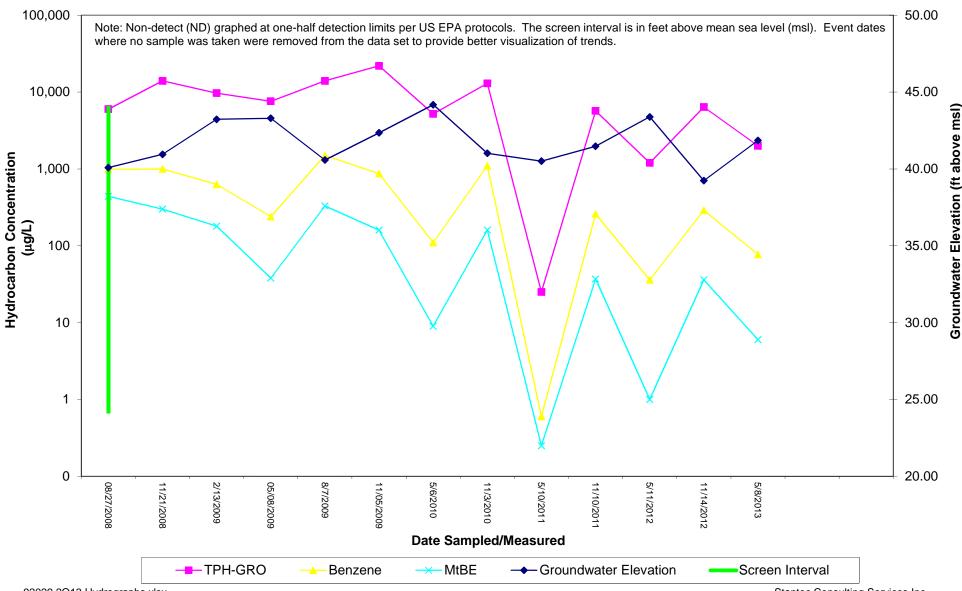
Measurement uncertainty values, as applicable, are available upon request.


Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

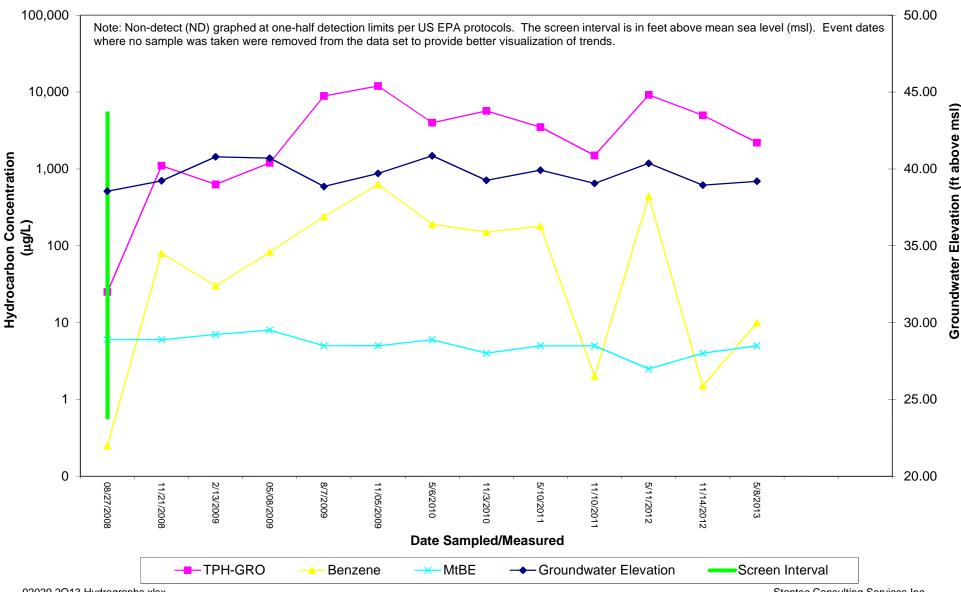
WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client. Attachment C

Hydrographs


MW-5 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time Former Chevron-branded Service Station 92029 890 West MacArthur Boulevard Oakland, California

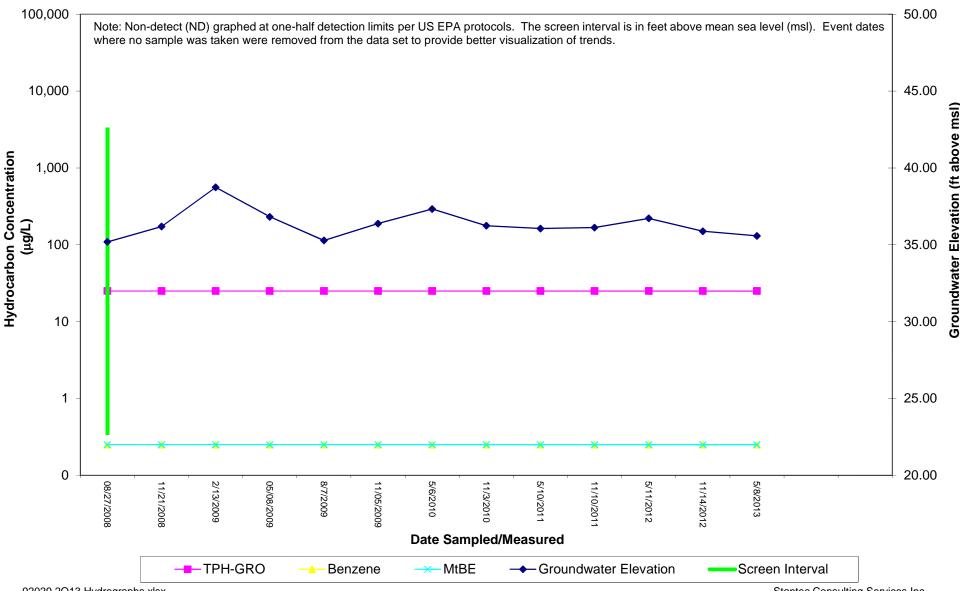
92029 2Q13 Hydrographs.xlsx

Stantec Consulting Services Inc.


MW-6 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time Former Chevron-branded Service Station 92029 890 West MacArthur Boulevard Oakland, California

92029 2Q13 Hydrographs.xlsx

Stantec Consulting Services Inc.


MW-7 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time Former Chevron-branded Service Station 92029 890 West MacArthur Boulevard Oakland, California

92029 2Q13 Hydrographs.xlsx

Stantec Consulting Services Inc.

MW-8 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time Former Chevron-branded Service Station 92029 890 West MacArthur Boulevard Oakland, California

92029 2Q13 Hydrographs.xlsx

Stantec Consulting Services Inc.