

Catalina Espino Devine Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-3949 espino@chevron.com

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Service Station No. 93600

2200 Telegraph Avenue

Oakland, CA

RECEIVED

By Alameda County Environmental Health at 3:19 pm, Jun 14, 2013

I have reviewed the attached report titled Annual 2013 Groundwater Monitoring and Sampling Report.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Catalina Espino Devine Project Manager

Attachment: Report



5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

http://www.craworld.com

June 10, 2013 Reference No. 311965

Mr. Mark Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Annual 2013 Groundwater Monitoring and Sampling Report

Chevron Service Station 93600 2200 Telegraph Avenue Oakland, California

Fuel Leak Case No. RO00002435

Dear Mr. Detterman:

Conestoga-Rovers & Associates (CRA) is submitting this *Annual 2013 Groundwater Monitoring and Sampling Report* for the site referenced above (Figure 1) on behalf of Chevron Environmental Management Company (EMC). Groundwater monitoring and sampling was performed by Blaine Tech Services (Blaine Tech) of San Jose, California and their *Second Quarter 2013 Monitoring* report is included as Attachment A. Groundwater monitoring and sampling data are presented in Table 1. Eurofins Lancaster Laboratories' *Analytical Results* report is included as Attachment B.

#### **RESULTS OF ANNUAL 2013 EVENT**

On May 1, 2013, Blaine Tech monitored and sampled the site wells per the established schedule. Results of the current monitoring event indicate the following:

Groundwater Flow Direction SoutheastHydraulic Gradient 0.01

Approximate Depth to Water
 10.5 to 11.5 feet below grade

Equal Employment Opportunity Employer



June 10, 2013 Reference No. 311965 -2-

Results of the current sampling event are presented below in Table A:

|                                                   | TABLE A: GROUNDWATER ANALYTICAL DATA |         |         |              |         |      |  |  |  |  |  |  |
|---------------------------------------------------|--------------------------------------|---------|---------|--------------|---------|------|--|--|--|--|--|--|
|                                                   |                                      |         |         |              | Total   |      |  |  |  |  |  |  |
|                                                   | ТРНд                                 | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE |  |  |  |  |  |  |
| Well ID (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) |                                      |         |         |              |         |      |  |  |  |  |  |  |
| WQOs/ESLs                                         | 100                                  | 1.0     | 40      | 30           | 20      | 5    |  |  |  |  |  |  |
| MW-1                                              | 1,500                                | <0.5    | <0.5    | <0.5         | <0.5    | 38   |  |  |  |  |  |  |
| MW-2                                              | <50                                  | <0.5    | <0.5    | <0.5         | <0.5    | <0.5 |  |  |  |  |  |  |
| MW-3                                              | <50                                  | <0.5    | <0.5    | <0.5         | <0.5    | <0.5 |  |  |  |  |  |  |
| Note:                                             |                                      |         |         |              |         |      |  |  |  |  |  |  |

- Indicates constituent was not detected at or above laboratory reporting limit. Bold indicates results above the drinking water environmental screening level (ESL).
- Water Quality Objective (Regional Water Quality Control Board San Francisco Bay Region, Water Quality Control Plan (Basin Plan): dated December 31, 2011.)
- ESL Environmental Screening Level (Regional Water Quality Control Board, San Francisco Bay Region (RWQCB), Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final, November 2007, revised May 2013.)

#### CONCLUSIONS AND RECOMMENDATIONS

The results of ongoing groundwater monitoring and sampling at the site indicate the following:

- Dissolved-phase petroleum hydrocarbon concentrations detected in well MW-1 are low and decreasing
- All concentrations are below historical maximums

#### ANTICIPATED FUTURE ACTIVITIES

#### **Groundwater Monitoring**

Blaine Tech will monitor and sample site wells per the established schedule. CRA will submit a groundwater monitoring and sampling report.

#### Closure Request

EMC and CRA are awaiting a response to CRA's closure request that was submitted in the Subsurface Investigation Report and Case Closure Request report dated June 8, 2012.



June 10, 2013 Reference No. 311965

Please contact Nathan Lee at (925) 849-1003 if you have any questions or require additional information.

Regards,

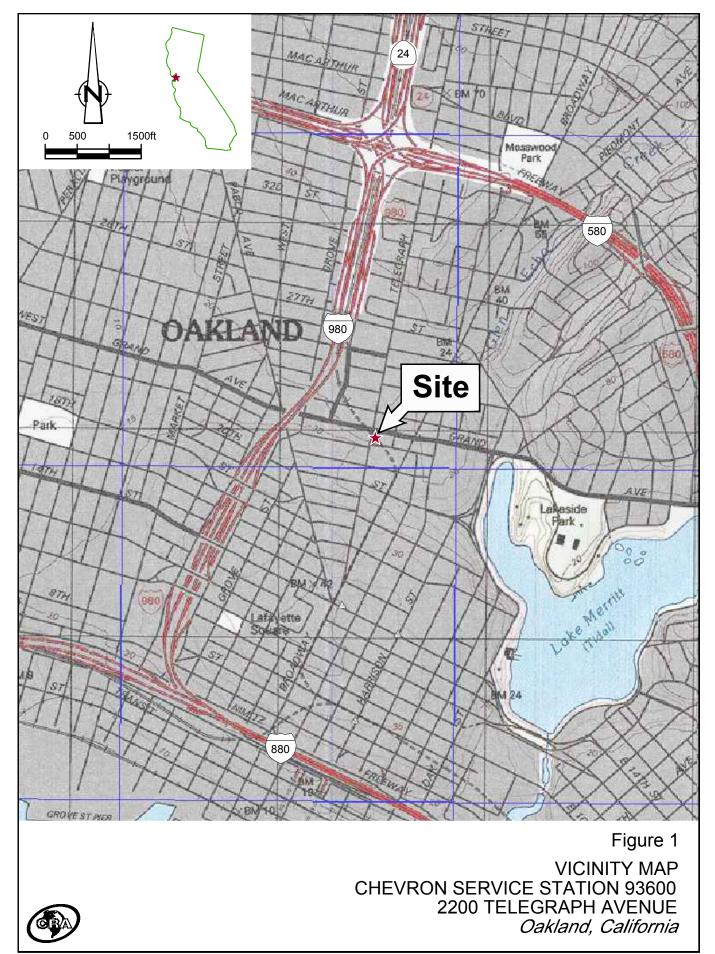
CONESTOGA-ROVERS & ASSOCIATES

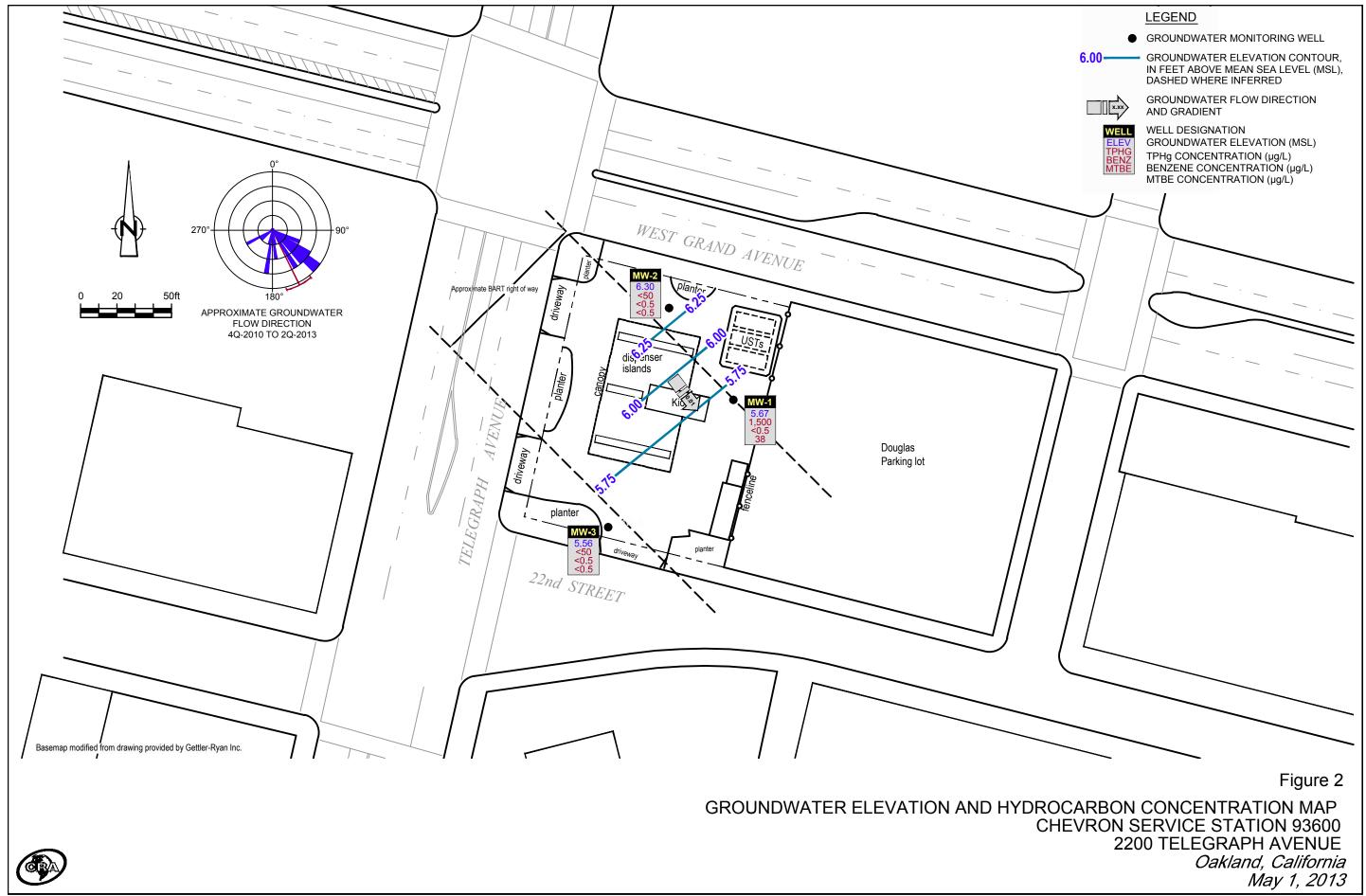
Nathan S. Lee, PG 8486

NL/aa/12 Encl.

Figure 1 Vicinity Map

Figure 2 Groundwater Elevation and Hydrocarbon Concentration Map


Table 1 Groundwater Monitoring and Sampling Data


Attachment A Monitoring Data Package
Attachment B Laboratory Analytical Report

cc: Ms. Catalina Espino Devine, Chevron (electronic copy)

Mr. George Kim, Property Owner

#### **FIGURES**





**TABLE** 

TABLE 1 Page 1 of 7

|    |        |                         |       |       |         | HYDROCARBONS    | NS PRIMARY VOCS |       |       |       | Ī              |         | ADD   | OITIONAL V                            | OCS   |       |
|----|--------|-------------------------|-------|-------|---------|-----------------|-----------------|-------|-------|-------|----------------|---------|-------|---------------------------------------|-------|-------|
|    |        |                         |       |       |         | III DIG CIMBONO |                 | 110   |       |       |                |         | 1.100 | I I I I I I I I I I I I I I I I I I I | 2.20  |       |
| Lo | cation | Date                    | TOC   | DTW   | GWE     | ТРН-GRО         | В               | T     | E     | X     | MTBE by SW8260 | ETHANOL | TBA   | DIPE                                  | ETBE  | TAME  |
|    |        | Units                   | ft    | ft    | ft-amsl | μg/L            | μg/L            | μg/L  | μg/L  | μg/L  | μ <i>g</i> /L  | μg/L    | μg/L  | μg/L                                  | μg/L  | µg∕L  |
|    |        |                         |       |       |         |                 |                 |       |       |       |                |         |       |                                       |       |       |
|    | IW-1   | $04/05/2002^1$          | 17.07 | 11.68 | 5.39    | 2,000           | 5.0             | <1.0  | 14    | 8.4   | 310/370        | -       | 200   | <2                                    | <2    | 10    |
|    | IW-1   | 07/01/2002              | 17.07 | 12.01 | 5.06    | 2,000           | 8.9             | <1.0  | 97    | 31    | 420/370        | -       | 190   | <2                                    | <2    | 9     |
|    | IW-1   | 10/08/2002              | 17.07 | 12.20 | 4.87    | 1,400           | 9.2             | <10   | 75    | 20    | 360/440        | -       | 110   | <2                                    | <2    | 8     |
|    | IW-1   | 01/11/2003              | 17.07 | 11.13 | 5.94    | 1,600           | 7.1             | 0.51  | 53    | 13    | 280/270        | -       | <100  | <2                                    | <2    | 7     |
|    | IW-1   | 04/01/2003              | 17.07 | 11.53 | 5.54    | 1,800           | 5.2             | 0.6   | 25    | 9.1   | 210/210        | -       | 22    | <0.5                                  | <0.5  | 5     |
|    | IW-1   | 07/01/2003 <sup>3</sup> | 17.07 | 11.95 | 5.12    | 2,000           | 4               | <0.5  | 31    | 12    | 170            | <50     | 26    | <0.5                                  | <0.5  | 5     |
|    | IW-1   | 10/02/2003 <sup>3</sup> | 17.07 | 12.25 | 4.82    | 480             | <5              | <5    | <5    | <5    | 9,800          | <500    | 2,600 | <5                                    | <5    | 6     |
| N  | IW-1   | 01/05/2004 <sup>3</sup> | 17.07 | 11.05 | 6.02    | 1,700           | 3               | < 0.5 | 27    | 4     | 140            | <50     | 21    | < 0.5                                 | < 0.5 | 3     |
| N  | IW-1   | $04/05/2004^3$          | 17.07 | 11.63 | 5.44    | 1,500           | 2               | < 0.5 | 21    | 0.6   | 120            | <50     | 17    | < 0.5                                 | < 0.5 | 3     |
| N. | IW-1   | $07/01/2004^3$          | 17.07 | 12.08 | 4.99    | 1,500           | 1               | < 0.5 | 3     | < 0.5 | 130            | <50     | 13    | < 0.5                                 | < 0.5 | 2     |
| N. | IW-1   | $10/05/2004^3$          | 17.07 | 12.21 | 4.86    | 1,400           | < 0.5           | < 0.5 | 1     | 0.5   | 130            | < 50    | 14    | < 0.5                                 | <0.5  | 2     |
| N. | IW-1   | $01/04/2005^3$          | 17.07 | 11.15 | 5.92    | 1,500           | < 0.5           | < 0.5 | < 0.5 | < 0.5 | < 0.5          | < 50    | <5    | < 0.5                                 | <0.5  | < 0.5 |
| N  | IW-1   | $04/14/2005^3$          | 17.07 | 11.20 | 5.87    | 2,100           | < 0.5           | < 0.5 | 4     | 0.5   | 61             | <50     | 15    | < 0.5                                 | < 0.5 | 1     |
| N  | IW-1   | $07/08/2005^3$          | 17.07 | 11.38 | 5.69    | 1,800           | < 0.5           | < 0.5 | 0.8   | < 0.5 | 71             | <50     | 15    | < 0.5                                 | < 0.5 | 1     |
| N  | 1W-1   | $10/27/2005^3$          | 17.07 | 12.24 | 4.83    | 800             | < 0.5           | < 0.5 | < 0.5 | < 0.5 | 76             | <50     | 10    | < 0.5                                 | <0.5  | 1     |
| N  | 1W-1   | $01/12/2006^3$          | 17.07 | 11.10 | 5.97    | 1,600           | < 0.5           | < 0.5 | 4     | < 0.5 | 47             | <50     | 12    | < 0.5                                 | < 0.5 | < 0.5 |
| N  | 1W-1   | $04/13/2006^3$          | 17.07 | 10.81 | 6.26    | 1,500           | < 0.5           | < 0.5 | 1     | < 0.5 | 36             | <50     | 8     | < 0.5                                 | < 0.5 | 0.6   |
| N  | 1W-1   | $07/13/2006^3$          | 17.07 | 11.18 | 5.89    | 990             | < 0.5           | < 0.5 | < 0.5 | < 0.5 | 44             | <50     | 7     | < 0.5                                 | <0.5  | 0.7   |
| N  | 1W-1   | $10/16/2006^3$          | 17.07 | 12.18 | 4.89    | 780             | < 0.5           | < 0.5 | < 0.5 | < 0.5 | 59             | <50     | 6     | < 0.5                                 | <0.5  | 1     |
| N  | 1W-1   | $01/20/2007^3$          | 17.07 | 11.91 | 5.16    | 890             | < 0.5           | < 0.5 | < 0.5 | < 0.5 | 47             | <50     | 8     | < 0.5                                 | <0.5  | 0.8   |
| N  | 1W-1   | $04/11/2007^3$          | 17.07 | 11.87 | 5.20    | 1,900           | < 0.5           | < 0.5 | 4     | < 0.5 | 39             | <50     | 9     | < 0.5                                 | <0.5  | 0.7   |
| M  | IW-1   | $07/27/2007^3$          | 17.07 | 11.91 | 5.16    | 1,500           | < 0.5           | < 0.5 | 0.6   | < 0.5 | 56             | < 50    | 8     | < 0.5                                 | < 0.5 | 0.8   |
| M  | IW-1   | $10/22/2007^3$          | 17.07 | -     | -       | 610             | < 0.5           | < 0.5 | < 0.5 | < 0.5 | 65             | <50     | 5     | <0.5                                  | <0.5  | 0.7   |
| M  | IW-1   | 11/26/2007              | 17.07 | 11.96 | 5.11    | -               | -               | -     | -     | -     | -              | -       | -     | -                                     | -     | -     |
| N  | 1W-1   | $01/21/2008^3$          | 17.07 | 11.78 | 5.29    | 1,100           | < 0.5           | < 0.5 | 0.8   | < 0.5 | 48             | <50     | 5     | <0.5                                  | <0.5  | 0.7   |
| N  | 1W-1   | $04/04/2008^3$          | 17.07 | 11.83 | 5.24    | 1,600           | < 0.5           | < 0.5 | < 0.5 | < 0.5 | 53             | <50     | 6     | <0.5                                  | <0.5  | 0.6   |
| M  | IW-1   | $07/21/2008^3$          | 17.07 | 12.10 | 4.97    | 950             | < 0.5           | < 0.5 | < 0.5 | < 0.5 | 72             | <50     | 11    | <0.5                                  | <0.5  | 0.7   |
|    |        |                         |       |       |         |                 |                 |       |       |       |                |         |       |                                       |       |       |

TABLE 1 Page 2 of 7

|          |                         |           |           |                | HYDROCARBONS   | NS PRIMARY VOCS |           |           |           |                            |              | ADL         | OITIONAL V   | 'OCS         |       |
|----------|-------------------------|-----------|-----------|----------------|----------------|-----------------|-----------|-----------|-----------|----------------------------|--------------|-------------|--------------|--------------|-------|
| Location | Date<br>Units           | TOC<br>ft | DTW<br>ft | GWE<br>ft-amsl | ת<br>T TPH-GRO | В<br>µg/L       | Τ<br>μg/L | E<br>µg/L | X<br>μg/L | <b>"</b><br>™TBE by SW8260 | π<br>FTHANOL | h &r<br>TBA | μ⊗⁄L         | μ⊗μ<br>LETBE | TAME  |
|          |                         |           |           |                |                |                 |           |           |           |                            |              |             |              |              |       |
| MW-1     | 10/09/2008 <sup>3</sup> | 17.07     | 12.17     | 4.90           | 960            | < 0.5           | <0.5      | < 0.5     | <0.5      | 59                         | <50          | 5           | <0.5         | < 0.5        | 0.5   |
| MW-1     | $01/21/2009^3$          | 17.07     | 12.15     | 4.92           | 840            | <0.5            | <0.5      | <0.5      | <0.5      | 31                         | <50          | 5           | <0.5         | <0.5         | 0.5   |
| MW-1     | 04/29/2009              | 17.07     | 11.68     | 5.39           | 1,800          | <0.5            | <0.5      | 3         | <0.5      | 25                         | <50          | 5           | <0.5         | <0.5         | <0.5  |
| MW-1     | 07/23/2009 <sup>3</sup> | 17.07     | 11.85     | 5.22           | 1,900          | <0.5            | <0.5      | <0.5      | <0.5      | 30                         | <50          | 4 J         | <0.5         | <0.5         | <0.5  |
| MW-1     | 01/28/2010              | 17.07     | 10.81     | 6.26           | 2,600          | <0.5            | <0.5      | 2         | <0.5      | 31<br>59                   | <50          | 11          | <0.5<br><0.5 | <0.5         | <0.5  |
| MW-1     | 07/22/2010              | 17.07     | 11.76     | 5.31           | 4,200          | 0.5 J           | <0.5      |           | <0.5      |                            | <50          | 9           |              | <0.5         | 0.6 J |
| MW-1     | 01/20/2011              | 17.07     | 11.33     | 5.74           | 2,500          | <0.5            | <0.5      | 2         | <0.5      | 30                         | <50          | 4 J         | <0.5         | <0.5         | <0.5  |
| MW-1     | 07/18/2011              | 17.07     | 11.41     | 5.66           | 2,200          | <0.5            | <0.5      | 4         | <0.5      | 55<br><b>2</b> 2           | <50          | 5           | <0.5         | <0.5         | 0.5 J |
| MW-1     | 04/02/2012              | 17.07     | 10.76     | 6.31           | 1,600          | <0.5            | <0.5      | 2         | <0.5      | 23                         | <50          | 3 J         | <0.5         | <0.5         | <0.5  |
| MW-1     | 05/01/2013              | 17.07     | 11.40     | 5.67           | 1,500          | <0.5            | <0.5      | <0.5      | <0.5      | 38                         | <50          | <2          | <0.5         | <0.5         | <0.5  |
| MW-2     | $04/05/2002^1$          | 16.82     | 11.17     | 5.65           | <50            | <0.50           | < 0.50    | < 0.50    | <1.5      | <2/<2.5                    | _            | <100        | <2           | <2           | <2    |
| MW-2     | 07/01/2002              | 16.82     | 11.36     | 5.46           | <50            | < 0.50          | 0.57      | 0.52      | <1.5      | <2.5/<2                    | _            | <100        | <2           | <2           | <2    |
| MW-2     | 10/08/2002              | 16.82     | 11.57     | 5.25           | <100           | <2.0            | <2.0      | <2.0      | < 5.0     | <10/<2                     | _            | <100        | <2           | <2           | <2    |
| MW-2     | 01/11/2003              | 16.82     | 10.94     | 5.88           | <50            | < 0.50          | < 0.50    | < 0.50    | <1.5      | <2.5/<2                    | _            | <100        | <2           | <2           | <2    |
| MW-2     | 04/01/2003              | 16.82     | 11.03     | 5.79           | <50            | < 0.5           | < 0.5     | < 0.5     | <1.5      | <0.5/<2.5                  | <50          | <5          | < 0.5        | <0.5         | < 0.5 |
| MW-2     | $07/01/2003^3$          | 16.82     | 11.30     | 5.52           | <50            | < 0.5           | < 0.5     | < 0.5     | < 0.5     | <0.5                       | <50          | <5          | < 0.5        | <0.5         | < 0.5 |
| MW-2     | $10/02/2003^3$          | 16.82     | 11.63     | 5.19           | <50            | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5                      | <50          | <5          | < 0.5        | < 0.5        | < 0.5 |
| MW-2     | $01/05/2004^3$          | 16.82     | 10.82     | 6.00           | <50            | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5                      | <50          | <5          | < 0.5        | < 0.5        | < 0.5 |
| MW-2     | $04/05/2004^3$          | 16.82     | 11.21     | 5.61           | <50            | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5                      | < 50         | <5          | < 0.5        | <0.5         | < 0.5 |
| MW-2     | $07/01/2004^3$          | 16.82     | 11.46     | 5.36           | <50            | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5                      | < 50         | <5          | < 0.5        | <0.5         | < 0.5 |
| MW-2     | $10/05/2004^3$          | 16.82     | 11.57     | 5.25           | <50            | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5                      | <50          | <5          | < 0.5        | <0.5         | < 0.5 |
| MW-2     | $01/04/2005^3$          | 16.82     | 10.87     | 5.95           | <50            | 0.5             | <0.5      | 8         | 0.9       | 87                         | <50          | 14          | < 0.5        | < 0.5        | 2     |
| MW-2     | $04/14/2005^3$          | 16.82     | 10.72     | 6.10           | <50            | <0.5            | <0.5      | < 0.5     | <0.5      | < 0.5                      | <50          | <5          | < 0.5        | <0.5         | < 0.5 |
| MW-2     | $07/08/2005^3$          | 16.82     | 11.16     | 5.66           | <50            | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5                      | <50          | <5          | < 0.5        | < 0.5        | < 0.5 |
| MW-2     | $10/27/2005^3$          | 16.82     | 11.59     | 5.23           | <50            | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5                      | <50          | <5          | < 0.5        | < 0.5        | <0.5  |
| MW-2     | $01/12/2006^3$          | 16.82     | 10.68     | 6.14           | <50            | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5                      | <50          | <5          | < 0.5        | < 0.5        | < 0.5 |

TABLE 1 Page 3 of 7

|          |                         |       |       |         | HYDROCARBONS | NS PRIMARY VOCS |           |           |           | 1              |         | ADD  | ITIONAL V        | OCS               |                   |
|----------|-------------------------|-------|-------|---------|--------------|-----------------|-----------|-----------|-----------|----------------|---------|------|------------------|-------------------|-------------------|
|          |                         | TO G  | DOTA  | CME     | TPH-GRO      |                 |           |           |           | MTBE by SW8260 | ETHANOL | TBA  | DIPE             | ETBE              | TAME              |
| Location | Date                    | TOC   | DTW   | GWE     |              | В<br>µ g/L      | T<br>µg/L | E<br>µg/L | X<br>μg/L | μg/L           | μg/L    | μg/L | <u>β</u><br>μg/L | μ <sub>g</sub> /L | μ <sub>g</sub> /L |
|          | Units                   | ft    | ft    | ft-amsl | μÿL          | μgr             | μgr       | μgL       | μgr       | μχι            | μχι     | μyr  | μgr              | μχι               | μgr               |
| MW-2     | 04/13/2006 <sup>3</sup> | 16.82 | 10.37 | 6.45    | <50          | <0.5            | <0.5      | <0.5      | <0.5      | <0.5           | <50     | <5   | <0.5             | <0.5              | <0.5              |
| MW-2     | $07/13/2006^3$          | 16.82 | 10.68 | 6.14    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | <0.5           | <50     | <5   | < 0.5            | <0.5              | < 0.5             |
| MW-2     | $10/16/2006^3$          | 16.82 | 11.48 | 5.34    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | <50     | <5   | <0.5             | <0.5              | <0.5              |
| MW-2     | $01/20/2007^3$          | 16.82 | 11.27 | 5.55    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | <0.5           | <50     | <2   | <0.5             | <0.5              | <0.5              |
| MW-2     | $04/11/2007^3$          | 16.82 | 11.20 | 5.62    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | <50     | <2   | <0.5             | < 0.5             | <0.5              |
| MW-2     | $07/25/2007^3$          | -     | -     | -       | -            | -               | -         | -         | -         | -              | <50     | <2   | < 0.5            | < 0.5             | <0.5              |
| MW-2     | $07/27/2007^3$          | 16.82 | 11.27 | 5.55    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | -       | -    | -                | -                 | -                 |
| MW-2     | $10/22/2007^3$          | 16.82 | -     | -       | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | <50     | <2   | < 0.5            | < 0.5             | < 0.5             |
| MW-2     | 11/26/2007              | 16.82 | 11.31 | 5.51    | -            | -               | -         | -         | -         | -              | -       | -    | -                | -                 | -                 |
| MW-2     | $01/21/2008^3$          | 16.82 | 11.08 | 5.74    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | <50     | <2   | < 0.5            | <0.5              | < 0.5             |
| MW-2     | $04/04/2008^3$          | 16.82 | 11.12 | 5.70    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | <50     | <2   | < 0.5            | < 0.5             | < 0.5             |
| MW-2     | $07/21/2008^3$          | 16.82 | 11.56 | 5.26    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | <50     | <2   | < 0.5            | < 0.5             | < 0.5             |
| MW-2     | $10/09/2008^3$          | 16.82 | 11.73 | 5.09    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | <50     | <2   | < 0.5            | < 0.5             | < 0.5             |
| MW-2     | $01/21/2009^3$          | 16.82 | 11.55 | 5.27    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | <50     | <2   | < 0.5            | < 0.5             | < 0.5             |
| MW-2     | 04/29/2009              | 16.82 | 11.06 | 5.76    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | <50     | <2   | < 0.5            | < 0.5             | < 0.5             |
| MW-2     | $07/23/2009^3$          | 16.82 | 11.30 | 5.52    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | <50     | <2   | < 0.5            | < 0.5             | < 0.5             |
| MW-2     | 01/28/2010              | 16.82 | 10.23 | 6.59    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | <50     | <2   | < 0.5            | < 0.5             | < 0.5             |
| MW-2     | 07/22/2010              | 16.82 | 11.03 | 5.79    | <50          | <0.5            | < 0.5     | <0.5      | < 0.5     | < 0.5          | <50     | <2   | <0.5             | < 0.5             | <0.5              |
| MW-2     | 01/20/2011              | 16.82 | 10.52 | 6.30    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | <50     | <2   | < 0.5            | < 0.5             | < 0.5             |
| MW-2     | 07/18/2011              | 16.82 | 10.61 | 6.21    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | <50     | <2   | < 0.5            | < 0.5             | < 0.5             |
| MW-2     | 04/02/2012              | 16.82 | 9.86  | 6.96    | <50          | < 0.5           | < 0.5     | < 0.5     | < 0.5     | < 0.5          | < 50    | <2   | < 0.5            | < 0.5             | < 0.5             |
| MW-2     | 05/01/2013              | 16.82 | 10.52 | 6.30    | <50          | <0.5            | <0.5      | <0.5      | <0.5      | <0.5           | <50     | <2   | <0.5             | <0.5              | <0.5              |
|          |                         |       |       |         |              |                 |           |           |           |                |         |      |                  |                   |                   |
| MW-3     | $04/05/2002^1$          | 16.52 | 11.29 | 5.23    | <50          | < 0.50          | 0.59      | < 0.50    | <1.5      | <2.5/<2        | -       | <100 | <2               | <2                | <2                |
| MW-3     | 07/01/2002              | 16.52 | 11.55 | 4.97    | <50          | < 0.50          | 0.60      | < 0.50    | <1.5      | <2.5/<2        | -       | <100 | <2               | <2                | <2                |
| MW-3     | 10/08/2002              | 16.52 | 11.62 | 4.90    | <100         | <2.0            | <2.0      | <2.0      | <5.0      | <2/<10         | -       | <100 | <2               | <2                | <2                |
| MW-3     | 01/11/2003              | 16.52 | 11.09 | 5.43    | <50          | < 0.50          | < 0.50    | < 0.50    | <1.5      | <2.5/<2        | -       | <100 | <2               | <2                | <2                |

TABLE 1 Page 4 of 7

|              |                                                                  |                         |                         |                      | HYDROCARBONS      | NS PRIMARY VOCS      |                      |                      |                      |                        |            | ADD            | OITIONAL V           | OCS                  | 1                    |
|--------------|------------------------------------------------------------------|-------------------------|-------------------------|----------------------|-------------------|----------------------|----------------------|----------------------|----------------------|------------------------|------------|----------------|----------------------|----------------------|----------------------|
| Location     | Date<br>Units                                                    | TOC                     | DTW                     | GWE                  | π<br>TPH-GRO      | B<br>µg/L            | T<br>μg/L            | E<br>μg/L            | X<br>μg/L            | π<br>MTBE by SW8260    | דא ETHANOL | μ⊗/Γ<br>ΑΒΑ    | DIPE<br>π×ΣΓ         | μ⊗/Γ                 | Т%П ТАМЕ             |
|              | Units                                                            | ft                      | ft                      | ft-amsl              | PyL               | PyL                  | μÿL                  | μÿL                  | PyL                  | PyE                    | μyŁ        | PyL            | PyL                  | μyL                  | PyL                  |
| MW-3<br>MW-3 | 04/01/2003<br>07/01/2003 <sup>3</sup><br>10/02/2003 <sup>3</sup> | 16.52<br>16.52<br>16.52 | 11.25<br>11.42<br>11.74 | 5.27<br>5.10<br>4.78 | <50<br><50<br><50 | <0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5 | <1.5<br><0.5<br><0.5 | <0.5/<2.5<br>2<br><0.5 | <50<br><50 | <5<br><5<br><5 | <0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5 |
| MW-3<br>MW-3 | $01/05/2004^3$<br>$04/05/2004^3$                                 | 16.52<br>16.52          | 11.06<br>11.40          | 5.46<br>5.12         | <50<br><50        | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br>0.6            | <50<br><50 | <5<br><5       | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         |
| MW-3<br>MW-3 | $07/01/2004^3$<br>$10/05/2004^3$                                 | 16.52<br>16.52          | 11.58<br>11.60          | 4.94<br>4.92         | <50<br><50        | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | 0.8<br><0.5            | <50<br><50 | <5<br><5       | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         |
| MW-3         | $01/04/2005^3$                                                   | 16.52                   | 10.95                   | 5.57                 | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5                   | <50        | <b>&lt;</b> 5  | <0.5                 | <0.5                 | <0.5                 |
| MW-3<br>MW-3 | $04/14/2005^3$<br>$07/08/2005^3$                                 | 16.52<br>16.52          | 11.10<br>11.29          | 5.42<br>5.23         | <50<br><50        | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5           | <50<br><50 | <5<br><5       | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         |
| MW-3         | 10/27/2005 <sup>3</sup>                                          | 16.52                   | 11.68                   | 4.84                 | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5                   | <50        | <5             | <0.5                 | <0.5                 | <0.5                 |
| MW-3<br>MW-3 | $01/12/2006^3$<br>$04/13/2006^3$                                 | 16.52<br>16.52          | 10.83<br>10.65          | 5.69<br>5.87         | <50<br><50        | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5           | <50<br><50 | <5<br><5       | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         |
| MW-3         | 07/13/2006 <sup>3</sup>                                          | 16.52                   | 11.03                   | 5.49                 | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5                   | <50        | <5             | <0.5                 | <0.5                 | <0.5                 |
| MW-3<br>MW-3 | $10/16/2006^3$ $01/20/2007^3$                                    | 16.52<br>16.52          | 11.46<br>11.39          | 5.06<br>5.13         | <50<br><50        | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5           | <50<br><50 | <5<br><2       | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         |
| MW-3         | $04/11/2007^3$                                                   | 16.52                   | 11.27                   | 5.25                 | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5                   | <50        | <2             | <0.5                 | <0.5                 | <0.5                 |
| MW-3<br>MW-3 | $07/27/2007^3$<br>$10/22/2007^3$                                 | 16.52<br>16.52          | 11.38                   | 5.14                 | <50<br><50        | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5           | <50<br><50 | <2<br><2       | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         |
| MW-3         | 11/26/2007                                                       | 16.52                   | 11.35                   | 5.17                 | -                 | -                    | -                    | -                    | -                    | -                      | -          | -              | -                    | -                    | -                    |
| MW-3<br>MW-3 | $01/21/2008^3$<br>$04/04/2008^3$                                 | 16.52<br>16.52          | 11.16<br>11.15          | 5.36<br>5.37         | <50<br><50        | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5           | <50<br><50 | <2<br><2       | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         |
| MW-3         | $07/21/2008^3$                                                   | 16.52                   | 11.13                   | 5.14                 | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5                   | <50        | <2             | <0.5                 | <0.5                 | <0.5                 |
| MW-3         | $10/09/2008^3$<br>$01/21/2009^3$                                 | 16.52                   | 11.49                   | 5.03                 | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5                   | <50        | <2             | <0.5                 | <0.5                 | <0.5                 |
| MW-3<br>MW-3 | 01/21/2009 04/29/2009                                            | 16.52<br>16.52          | 11.52<br>11.10          | 5.00<br>5.42         | <50<br><50        | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5           | <50<br><50 | <2<br><2       | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         |
| MW-3         | $07/23/2009^3$                                                   | 16.52                   | 11.20                   | 5.32                 | <50               | <0.5                 | <0.5                 | <0.5                 | < 0.5                | <0.5                   | <50        | <2             | <0.5                 | <0.5                 | <0.5                 |

TABLE 1 Page 5 of 7

|                          |                                        |                         |                         |                      | HYDROCARBONS      | NS PRIMARY VOCS      |                      |                      |                      |                   |                   | ADD            | OITIONAL V           | OCS                  |                      |
|--------------------------|----------------------------------------|-------------------------|-------------------------|----------------------|-------------------|----------------------|----------------------|----------------------|----------------------|-------------------|-------------------|----------------|----------------------|----------------------|----------------------|
| Location                 | Date                                   | тос                     | DTW                     | GWE                  | π<br>TPH-GRO      | B<br>µg/L            | T<br>µg/L            | E<br>µg/L            | X<br>µg/L            | MTBE by SW8260    | Τ⁄εΤΗΑΝΟL         | µg∕г<br>11ВА   | µ⊗/L                 | π&T<br>ETBE          | T∕Sπ<br>TAME         |
|                          | Units                                  | ft                      | ft                      | ft-amsl              | μÿL               | μgL                  | μgr                  | μyL                  | μyL                  | μgr               | μyL               | μgr            | μgr                  | μyL                  | μgL                  |
| MW-3<br>MW-3             | 01/28/2010<br>07/22/2010<br>01/20/2011 | 16.52<br>16.52<br>16.52 | 10.41<br>10.91<br>10.55 | 6.11<br>5.61<br>5.97 | <50<br><50<br><50 | <0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5 | <0.5<br>1<br><0.5 | <50<br><50<br><50 | <2<br><2<br><2 | <0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5 |
| MW-3                     | 07/18/2011                             | 16.52                   | 10.43                   | 6.09                 | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5              | <50               | <2             | <0.5                 | <0.5                 | <0.5                 |
| MW-3                     | 04/02/2012                             | 16.52                   | 10.22                   | 6.30                 | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5              | <50               | <2             | <0.5                 | <0.5                 | <0.5                 |
| MW-3                     | 05/01/2013                             | 16.52                   | 10.96                   | 5.56                 | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5              | < 50              | <2             | <0.5                 | <0.5                 | <0.5                 |
| Trip Blank               | 04/05/2002                             | -                       | -                       | -                    | <50               | <0.50                | <0.50                | <0.50                | <1.5                 | <2.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | 07/01/2002                             | -                       | -                       | -                    | <50               | < 0.50               | < 0.50               | < 0.50               | <1.5                 | <2.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | 10/08/2002                             | -                       | -                       | -                    | <100              | <2.0                 | <2.0                 | <2.0                 | < 5.0                | <10               | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | 01/11/2003                             | -                       | -                       | -                    | <50               | < 0.50               | < 0.50               | < 0.50               | <1.5                 | <2.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | 04/01/2003                             | -                       | -                       | -                    | <50               | <0.5                 | < 0.5                | <0.5                 | <1.5                 | <2.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | 07/01/2003 <sup>3</sup>                | -                       | -                       | -                    | <50               | <0.5                 | < 0.5                | < 0.5                | <0.5                 | <0.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | 10/02/2003 <sup>3</sup>                | -                       | -                       | -                    | <50               | <0.5                 | <0.5                 | < 0.5                | < 0.5                | <0.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | 01/05/2004 <sup>3</sup>                | -                       | -                       | -                    | <50               | < 0.5                | < 0.5                | < 0.5                | < 0.5                | <0.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | 04/05/2004 <sup>3</sup>                | -                       | -                       | -                    | <50               | <0.5                 | <0.5                 | < 0.5                | < 0.5                | <0.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | 07/01/2004 <sup>3</sup>                | -                       | -                       | -                    | <50               | < 0.5                | < 0.5                | <0.5                 | <0.5                 | <0.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | 10/05/2004 <sup>3</sup>                | -                       | -                       | -                    | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | $01/04/2005^3$                         | -                       | -                       | -                    | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | $04/14/2005^3$                         | -                       | -                       | -                    | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | $07/08/2005^3$                         | -                       | -                       | -                    | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | $10/27/2005^3$                         | -                       | -                       | -                    | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | $01/12/2006^3$                         | -                       | -                       | -                    | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | $04/13/2006^3$<br>$07/13/2006^3$       | -                       | -                       | -                    | <50               | <0.5                 | <0.5                 | <0.5                 | <0.5                 | <0.5              | -                 | -              | -                    | -                    | -                    |
| Trip Blank               | $10/16/2006^3$                         | -                       | -                       | -                    | <50<br><50        | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5      | -                 | -              | -                    | -                    | -                    |
| Trip Blank<br>Trip Blank | $01/20/2007^3$                         | -                       | -                       | -                    | <50<br><50        | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5         | <0.5<br><0.5      | -                 | -              | -                    | -                    | -                    |
| rrip biank               | 01/20/2007                             | -                       | -                       | -                    | <b>\30</b>        | <b>~0.</b> 5         | <b>~0.</b> 5         | <b>~0.</b> 5         | <b>~0.5</b>          | <b>~0.</b> 5      | -                 | -              | -                    | -                    | -                    |

TABLE 1 Page 6 of 7

#### GROUNDWATER MONITORING AND SAMPLING DATA FORMER CHEVRON SERVICE STATION 93600 2200 TELEGRAPH AVE OAKLAND, CALIFORNIA

|                          |                                                    |     |     |         | HYDROCARBONS      |              | PR           | RIMARY V     | /OCS         |                |         | ADD  | OITIONAL V | 'OCS |      |
|--------------------------|----------------------------------------------------|-----|-----|---------|-------------------|--------------|--------------|--------------|--------------|----------------|---------|------|------------|------|------|
| Location                 | Date                                               | тос | DTW | GWE     | трн-ско           | В            | T            | E            | X            | MTBE by SW8260 | ETHANOL | TBA  | DIPE       | ETBE | TAME |
|                          | Units                                              | ft  | ft  | ft-amsl | μg/L              | µg∕L         | μg/L         | μg/L         | μg/L         | μg/L           | μg/L    | μg/L | μg/L       | μg/L | μg/L |
| Trip Blank<br>Trip Blank | 04/11/2007 <sup>3</sup><br>07/27/2007 <sup>3</sup> | -   | -   | -       | <50<br><50        | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5   | -       | -    | -          | -    | -    |
| Trip Blank               | $10/22/2007^3$                                     | _   | _   | _       | <50               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5           | _       | _    | _          | _    | _    |
| Trip Blank               | $01/21/2008^3$                                     | _   | _   | _       | <50               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5           | _       | _    | _          | _    | _    |
| Trip Blank               | $04/04/2008^3$                                     | _   | _   | _       | <50               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5           | _       | _    | _          | _    | _    |
| Trip Blank               | $07/21/2008^3$                                     | _   | _   | _       | <50               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5           | _       | _    | _          | _    | _    |
| Trip Blank               | 10/09/2008 <sup>3</sup>                            | _   | _   | -       | <50               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5           | _       | _    | _          | -    | _    |
| Trip Blank               | $01/21/2009^3$                                     | _   | _   | -       | < 50 <sup>5</sup> | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5          | _       | _    | _          | -    | -    |
| Trip Blank               | 04/29/2009                                         | -   | -   | -       | <50               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | <0.5           | -       | -    | -          | -    | -    |
| Trip Blank               | $07/23/2009^3$                                     | -   | -   | -       | <50               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | <0.5           | -       | -    | -          | -    | -    |
| Trip Blank               | 01/28/2010                                         | -   | -   | -       | <50               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5          | -       | -    | -          | -    | -    |
| Trip Blank               | 07/22/2010                                         | _   | -   | -       | <50               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5          | -       | -    | -          | -    | -    |
| Trip Blank               | 01/20/2011                                         | -   | -   | -       | <50               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5          | -       | -    | -          | -    | -    |
| Trip Blank               | 07/18/2011                                         | -   | -   | -       | <50               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5          | -       | -    | -          | -    | -    |
| Trip Blank               | 04/02/2012                                         | -   | -   | -       | <50               | < 0.5        | < 0.5        | < 0.5        | < 0.5        | <0.5           | -       | <2   | < 0.5      | <0.5 | <0.5 |
| Trip Blank               | 05/01/2013                                         | -   | -   | -       | <50               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5           | -       | <2   | <0.5       | <0.5 | <0.5 |

#### Abbreviations and Notes:

TOC = Top of casing

DTW = Depth to water

GWE = Groundwater elevation

(ft-amsl) = Feet above mean sea level

ft = Feet

 $\mu$ g/L = Micrograms per liter

TPH-GRO = Total petroleum hydrocarbons - gasoline range organics

VOCS = Volatile organic compounds

B = Benzene

TABLE 1 Page 7 of 7

#### GROUNDWATER MONITORING AND SAMPLING DATA FORMER CHEVRON SERVICE STATION 93600 2200 TELEGRAPH AVE OAKLAND, CALIFORNIA

|          |       |     |     |         | HYDROCARBONS  |      | PR   | IMARY V | OCS  |                |         | ADD  | ITIONAL V | 'OCS          |      |
|----------|-------|-----|-----|---------|---------------|------|------|---------|------|----------------|---------|------|-----------|---------------|------|
| Location | Date  | тос | DTW | GWE     | TPH-GRO       | В    | T    | E       | X    | MTBE by SW8260 | ETHANOL | TBA  | ЭШС       | ETBE          | ТАМЕ |
|          | Units | ft  | ft  | ft-amsl | μ <i>g</i> /L | μg/L | μg/L | μg/L    | μg/L | µg∕L           | µg∕L    | μg/L | µg∕L      | μ <i>g/</i> L | µg∕L |

T = Toluene

E = Ethylbenzene

X = Xylenes (Total)

MTBE = Methyl tert butyl ether

TBA = Tert-butyl alcohol

DIPE = Diisopropyl ether

ETBE = Tert-butyl ethyl ether

TAME = Tert-amyl methyl ether

-- = Not available / not applicable

x = Not detected above laboratory method detection limit

J = Estimated concentration

- 3 BTEX and MTBE by EPA Method 8260.
- Laboratory report indicates the original analysis was performed on an instrument where the ending calibration standard failed the method criteria. The sample was originally analyzed approximately 30 minutes after the LCS/LCSD. The LCS/LCSD showed good GRO recovery and the surrogate recovery for this sample was 85%. The sample was reanalyzed from a vial with headspace since only 1 vial was submitted. The results for the original and the reanalysis were similar. The reanalysis was reported.

#### ATTACHMENT A

MONITORING DATA PACKAGE



May 7, 2013

Chevron Environmental Management Company Catalina Devine 6111 Bollinger Canyon Rd. San Ramon, CA 94583

> Second Quarter 2013 Monitoring at Chevron Service Station 93600 2200 Telgraph Ave. Oakland, CA

Monitoring performed on May 1, 2013

#### Blaine Tech Services, Inc. Groundwater Monitoring Event 130501-JO2

This submission covers the routine monitoring of groundwater wells conducted on May 1, 2013 at this location. Three monitoring wells were measured for depth to groundwater (DTW). Three monitoring wells were sampled. All sampling activities were performed in accordance with local, state and federal guidelines.

Water levels measurements were collected using an electronic slope indicator. All sampled wells were purged of three case volumes, depending on well recovery, or until water temperature, pH and conductivity stabilized. Purging was accomplished using electric submersible pumps, positive air displacement pumps, or stainless steel, Teflon, or disposable bailers. Subsequent sample collection and sample handling was performed in accordance with EPA protocols. Alternately, where applicable, wells were sampled utilizing no-purge methodology. All reused equipment was decontaminated in an integrated stainless steel sink with de-ionized water supplied Hotsy pressure washer and Liquinox or equivalent.

Samples were delivered under chain-of-custody to Lancaster Laboratories of Lancaster, Pennsylvania, for analysis. Monitoring well purgewater and equipment rinsate water was collected and transported under bill-of-lading to Blaine Tech of San Jose, California.

Enclosed documentation from this event includes copies of the Well Gauging Sheet, Well Monitoring Data Sheets, and Chain-of-Custody.

Blaine Tech Services, Inc.'s activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrogeologic conditions or formulation of recommendations was performed.

Please call if you have any questions.

Sincerely,

**Dustin Becker** 

Blaine Tech Services, Inc. Senior Project Manager

200

attachments: SOP

Well Gauging Sheet

Individual Well Monitoring Data Sheets

Chain of Custody

Wellhead Inspection Form

Bill of Lading

cc: CRA

Attn: Nathan Lee 5900 Hollis St. Suite A Emeryville, CA 94608

# BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT CHEVRON SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

#### SAMPLING PROCEDURES OVERVIEW

#### **SAFETY**

All groundwater monitoring assignments performed for Chevron comply with Chevron's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Chevron site.

#### **INSPECTION AND GAUGING**

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. GeoTech). No samples are collected from a well containing product.

#### TRADITIONAL PURGING & SAMPLING

#### **Evacuation**

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

#### **Parameter Stabilization**

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

#### **Sample Collection**

All samples are collected using disposable bailers.

#### Sample Containers

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

#### **Dewatered Wells**

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

#### Measuring Recharge

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed approximately 2 hours to recharge prior to sampling or will be sampled at site departure. All wells requiring off-site traffic control in the public right-of-way, the 80% recharge rule may be disregarded in the interests of Health and Safety. The sample may be collected as soon as there is sufficient water. The water level at time of sampling will be noted.

#### **Dissolved Oxygen Measurements**

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 550) or HACH field test kits.

The YSI meters are able to collect accurate in-situ readings. The probe allows downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated

as per the instructions in the operating manual. The probe is lowered into the water column and the reading is allowed to stabilize prior to collection.

#### Oxidation Reduction Potential Measurements (ORP)

All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

#### LOW FLOW SAMPLING USING SAMPLE-PRO BLADDER PUMP

#### Calibration

Calibrate YSI Flow Cell as per manufacturer's specifications. Thoroughly rinse probe and cup between parameters. Calibration order as follows:

- 1. pH (use 3-point calibration of 7, 4, 10)
- 2. Oxygen Reduction Potential (ORP)
- 3. Specific Conductance
- 4. Dissolved Oxygen (DO) (calibrate simulating 100% oxygen saturation)

#### **Purging & Sampling Collection**

- 1. Insert new bladder into Sample-Pro pump housing.
- 2. Remove dedicated PE tubing from the well or start with new PE tubing cut to the required length.
- 3. Attach the PE tubing to the Sample-Pro Bladder Pump.
- 4. Gently lower the Sample-Pro Bladder Pump, and PE tubing into the well, placing the Sample-Pro Bladder Pump intake at the center of the screened interval. Take care to minimize disturbance to the water column.
- 5. Direct effluent line into YSI 556 Flow Cell.
- 6. Set Sample-Pro Bladder Pump speed at 100 500 ml/min.
- 7. Collect water quality parameter measurements for temperature, pH, conductivity, turbidity, DO and ORP every 3-5 minutes.
- 8. Monitor drawdown during purging with electronic water level meter. Record water level with each parameter measurement. MAXIMUM DRAWDOWN IS 0.33 FEET.
- 9. Collect parameter measurements until stability is achieved. Stability is defined as three consecutive measurements where:

Temp  $\pm$  1 ° Celsius pH  $\pm$  0.1 Conductivity  $\pm$  3% Turbidity  $\pm$  10% NTU DO  $\pm$  0.3 mg/l ORP  $\pm$  10 Mv

- 10. Sample may be collected once stability is achieved and at least one system volume of water removed from the well.
- 11. Disconnect effluent line from YSI 556 Flow Cell.
- 12. Sample through effluent line while maintaining constant flow rate.
- 13. Remove Sample-Pro Bladder Pump, and PE tubing from well.
- 14. Detach and reinstall dedicated PE tubing in well.

#### **PURGEWATER CONTAINMENT**

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading or Non-Hazardous Waste Manifest to a Blaine Tech Services, Inc. facility before being transported to a Chevron approved disposal facility

#### TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

#### **DUPLICATES**

Duplicates, if requested, may be collected at a site.

#### SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

#### **DOCUMENTATION CONVENTIONS**

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label. Field documentation is contemporaneous.

#### **DECONTAMINATION**

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment such as hose reels, pumps and bailers is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is

facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with deionized water.

#### **FERROUS IRON MEASUREMENTS**

All field measurements are collected at time of sampling with a HACH test kit.

### WELL GAUGING DATA

| Proje | ct#_\2 | 0501-JUZ  | Date | 5-1-13    | Client | Chevry |
|-------|--------|-----------|------|-----------|--------|--------|
|       |        |           |      |           |        |        |
| Site_ | 2200   | Telegraph | Ave  | Oatland c | 1.     |        |
|       | 4.5    |           |      |           |        |        |

| Well ID      | Time | Well<br>Size<br>(in.) | Sheen /<br>Odor                         | Depth to<br>Immiscible<br>Liquid (ft.)  | of<br>Immiscible | Depth to water | Depth to well bottom (ft.) | Survey Point: TOB or TOC | Notes |
|--------------|------|-----------------------|-----------------------------------------|-----------------------------------------|------------------|----------------|----------------------------|--------------------------|-------|
| MW-1         | 1342 | 2                     |                                         |                                         |                  | 11.46          | 20.02                      |                          |       |
| MW-Z         | 1339 | 2                     |                                         |                                         |                  | 10.5Z          | 20.01                      |                          |       |
| MW-2<br>MW-3 | 1335 | 2                     |                                         |                                         |                  | 10.5Z<br>10.96 | 20.07<br>20.01<br>20.00    | )                        |       |
|              |      |                       |                                         |                                         |                  |                |                            |                          |       |
|              |      |                       |                                         |                                         |                  |                |                            |                          |       |
|              |      |                       |                                         |                                         |                  |                |                            |                          |       |
|              |      |                       |                                         |                                         |                  |                |                            |                          |       |
|              |      |                       |                                         |                                         |                  |                |                            |                          |       |
|              |      |                       |                                         |                                         |                  |                |                            |                          |       |
|              |      |                       |                                         |                                         |                  |                |                            |                          |       |
|              |      |                       |                                         |                                         |                  |                |                            |                          |       |
|              |      |                       |                                         |                                         |                  |                |                            |                          |       |
|              |      |                       | *************************************** |                                         |                  |                |                            |                          |       |
|              |      |                       |                                         |                                         |                  |                |                            |                          |       |
|              |      |                       |                                         |                                         | 1. 1.            |                |                            |                          |       |
|              |      |                       |                                         |                                         |                  |                |                            |                          |       |
|              | -    |                       |                                         | *************************************** |                  |                |                            |                          |       |

#### CHEVRON WELL MONITORING DATA SHEET

|                     |                         | CILLY              | CON WEDE IN                               | OMIOMING                   | DAIASHEE                                                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|-------------------------|--------------------|-------------------------------------------|----------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project #           | : 13050                 | 1 -Ja              |                                           | Station #: 9_              | 3600                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampler:            | Jo                      |                    |                                           | Date: 5 - 1                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Weather:            | clear                   |                    |                                           | Ambient Air 7              | Cemperature:                                              | 73°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Well I.D.           |                         |                    |                                           | Well Diameter              | _                                                         | 6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total We            | ell Depth:              | 20                 | .62                                       | Depth to Wate              | er: 11.40                                                 | Service and the service and th |
| Depth to            | Free Produ              |                    | digital according                         | Thickness of I             | Free Product (fe                                          | et):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Referenc            | ed to:                  | ЮO                 | Grade                                     | D.O. Meter (if             |                                                           | YSI HACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DTW wit             | th 80% Red              | charge [(F         | Height of Water                           | Column x 0.20              | )) + DTW]:                                                | 13.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Purge Meth          | Bailer<br>Disposable Ba | Displacement       | Waterra Peristaltic Extraction Pump Other | Sampling Method            | Bailer Disposable Bailer Extraction Port Dedicated Tubing | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| \.4<br>1 Case Volur | _(Gals.) X _<br>ne Sp   | 3<br>ecified Volun | = <mark>4.2</mark><br>nes Calculated Vo   | Gals. Well Diame  1" 2" 3" | ter Multiplier Well 0.04 4" 0.16 6" 0.37 Other            | Diameter Multiplier  0.65  1.47  er radius <sup>2</sup> * 0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time                | Temp (°F)               | pН                 | Cond.<br>(mS or (uS)                      | Turbidity<br>(NTUs)        | Gals. Removed                                             | Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1422                | 68.(                    | 7.13               | 893                                       | 71000                      | 1.4                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1424                | 68.0                    | 7.1[               | 897                                       | 7000                       | 2.8                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1426                | 68.0                    | 7.10               | 894                                       | 71000                      | 4.2                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                         |                    |                                           |                            |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                         |                    |                                           |                            |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did well            | dewater?                | Yes                | No                                        | Gallons actual             | ly evacuated:                                             | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sampling            | Date: 5.                | -1-13              | Sampling Time                             | e: 1430                    | Depth to Wate                                             | r: 12.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample I.           | D.: MW                  | 1 -                |                                           | Laboratory:                | (Lancaster) Ot                                            | her                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Analyzed            | for: трн-               | -G BTEX            | MTBE OXYS                                 | Other: See                 | 2 (80                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duplicate           | I.D.:                   |                    | Analyzed for:                             | ТРН-С ВТЕХ                 | MTBE OXYS                                                 | Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D.O. (if r          | eq'd):                  |                    | Pre-purge:                                | mg/L                       | Post-purge:                                               | mg/ <sub>L</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O.R.P. (if          | req'd):                 |                    | Pre-purge:                                | mV                         | Post-purge:                                               | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### CHEVRON WELL MONITORING DATA SHEET

|                  |                                                       |                    |                             |                                                           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | WINE DELLINE                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|-------------------------------------------------------|--------------------|-----------------------------|-----------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project #:       | 13050                                                 | 01-102             |                             | Station                                                   | 1#: 9-                                  | 3685                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampler:         |                                                       |                    |                             |                                                           | \$-1-0                                  |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Weather:         | clear                                                 |                    |                             | Ambie                                                     | nt Air T                                | emperature:                                             | 73°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Well I.D.        | : Mw - Z                                              | •                  |                             | Well D                                                    | Diameter:                               | : 2 3 4                                                 | 6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total We         | ll Depth:                                             | 26.                | , O(                        | Depth                                                     | to Water                                | r: 10.52                                                | The second secon |
| Depth to         | Free Produ                                            | ict:               | Emmorantiques               | Thickn                                                    | ness of F                               | ree Product (fee                                        | et):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Reference        | ed to:                                                | $\mathbb{C}$       | Grade                       | D.O. M                                                    | leter (if                               | req'd):                                                 | YSI HACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DTW wit          | h 80% Rec                                             | harge [(H          | leight of Water             | Columi                                                    | n x 0.20)                               | ) + DTW]:                                               | 12.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Purge Metho      | od: Bailer Disposable Ba Positive Air D Electric Subm | isplacement        | g Method:                   | Bailer Disposable Bailer Extraction Port Dedicated Tubing | >                                       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.5 1 Case Volum | _(Gals.) X _<br>ne Spe                                | 3<br>ecified Volum | = 4.5<br>nes Calculated Vo  | Gals.                                                     | Well Diamete 1" 2" 3"                   | er Multiplier Well  <br>0.04 4"<br>0.16 6"<br>0.37 Othe | Diameter Multiplier 0.65 1.47 radius <sup>2</sup> * 0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Time             | Temp (°F)                                             | рН                 | Cond.<br>(mS or (\omega S)) | 1                                                         | bidity<br>ΓUs)                          | Gals. Removed                                           | Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1409             | 68.2                                                  | 6.93               | 1104                        | >10                                                       |                                         | 1.5                                                     | Obstitutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1411             | 68.1                                                  | 6.94               | 1107                        | >10                                                       |                                         | 3.0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1413             | 69.6                                                  | 6.94               | 1102                        | >100                                                      | 00                                      | 4.5                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                                                       |                    |                             |                                                           |                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | N.                                                    |                    |                             |                                                           |                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did well         | dewater?                                              | Yes                | <u>6</u>                    | Gallon                                                    | s actuall                               | y evacuated:                                            | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sampling         | Date: 5                                               | -1-13              | Sampling Time               | e: 14                                                     | 15                                      | Depth to Water                                          | r: 10.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample I.        | D.: Mh                                                | 1-2                |                             | Labora                                                    |                                         | Lancaster Otl                                           | her                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Analyzed         | for: TPH-                                             | -G BTEX            | MTBE OXYS                   | Other:                                                    | 50                                      | ee Coc                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duplicate        | : I.D.:                                               |                    | Analyzed for:               | TPH-G                                                     |                                         | MTBE OXYS                                               | Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D.O. (if r       | eq'd):                                                |                    | Pre-purge:                  |                                                           | mg/L                                    | Post-purge:                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| O.R.P. (if       | req'd):                                               |                    | Pre-purge:                  |                                                           | mV                                      | Post-purge:                                             | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

### CHEVRON WELL MONITORING DATA SHEET

|              |                        |                    |                                           |                               |                                                    | Д.                       |  |  |  |  |
|--------------|------------------------|--------------------|-------------------------------------------|-------------------------------|----------------------------------------------------|--------------------------|--|--|--|--|
| Project #    | : 1308                 | 501·J02            | ***************************************   | Station #:                    | 7- 3660                                            |                          |  |  |  |  |
| Sampler:     |                        |                    |                                           |                               | 1-13                                               |                          |  |  |  |  |
| Weather      | : clea                 | . <                |                                           | Ambient Air Temperature: 72°F |                                                    |                          |  |  |  |  |
| Well I.D     |                        | <br>)-             |                                           | Well Diameter: (2) 3 4 6 8    |                                                    |                          |  |  |  |  |
| Total We     | ell Depth:             | 20.00              | Ó                                         | Depth to Water: 10.96         |                                                    |                          |  |  |  |  |
| Depth to     | Free Prod              | uct:               |                                           |                               | Free Product (fe                                   | et):                     |  |  |  |  |
| Referenc     | ed to:                 | (PVC)              | Grade                                     | D.O. Meter (if                |                                                    | YSI HACH                 |  |  |  |  |
| DTW wi       | th 80% Re              | charge [(I         | Height of Water                           | Column x 0.20                 |                                                    | 12.76                    |  |  |  |  |
| Purge Meth   | Bailer<br>Dispesable B | Displacement       | Waterra Peristaltic Extraction Pump Other | Sampling Method  Other        | Disposable Bailer Extraction Port Dedicated Tubing | Diameter Multiplier 0.65 |  |  |  |  |
| 1 Case Volum | _(Gals.) X             | 3<br>ecified Volum | = 4.2                                     | _ Gals. 2"                    | 0.16 6"<br>0.37 Otho                               | 1.47                     |  |  |  |  |
| 1 Case voide | <u> </u>               | ecined void        | mes Calculated Vo                         | Turbidity                     |                                                    | 7aurus 7 0,103           |  |  |  |  |
| Time         | Temp (°F)              | рН                 | (mS on µS)                                | (NTUs)                        | Gals. Removed                                      | Observations             |  |  |  |  |
| 1345         | 68.1                   | 6.99               | 802                                       | 71000                         | 1.4                                                |                          |  |  |  |  |
| 1347         | 68.0                   | 7.00               | 797                                       | >1000                         | 2.8                                                |                          |  |  |  |  |
| 1349         | 66,0                   | 7.02               | 186                                       | 71000                         | 4.2                                                |                          |  |  |  |  |
|              |                        |                    |                                           |                               |                                                    |                          |  |  |  |  |
|              |                        | *                  |                                           |                               |                                                    |                          |  |  |  |  |
| Did well     | dewater?               | Yes                | <u> </u>                                  | Gallons actuall               | y evacuated:                                       | 4.2                      |  |  |  |  |
| Sampling     | Date: 5                | -1-13              | Sampling Time                             | °: \355                       | Depth to Water                                     | r: 11,47                 |  |  |  |  |
| Sample I.    | D.: Mu                 | 1-3                |                                           | Laboratory:                   | (Lancaster) Oth                                    |                          |  |  |  |  |
| Analyzed     | for: TPH               | G BTEX             | MTBE OXYS                                 | Other: See                    | - COC                                              |                          |  |  |  |  |
| Duplicate    | I.D.:                  |                    | Analyzed for:                             |                               | MTBE OXYS                                          | Other:                   |  |  |  |  |
| D.O. (if re  | eq'd):                 |                    | Pre-purge:                                | mg/ <sub>L</sub>              | Post-purge:                                        | · mg/L                   |  |  |  |  |
| O.R.P. (if   | req'd):                |                    | Pre-purge:                                | mV                            | Post-purge:                                        | mV                       |  |  |  |  |

Blaine Tech Services, Inc., 1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

|                                                                             |                    | _ 05          | 0113-05          | igement Compan                                | CHAIN OF C      | USTODY FOR              | M                                     | Α         |           |                  |                    |                | n s r                         | 20             |                                         | ~        | ٠.       | 1 06 1                                          |
|-----------------------------------------------------------------------------|--------------------|---------------|------------------|-----------------------------------------------|-----------------|-------------------------|---------------------------------------|-----------|-----------|------------------|--------------------|----------------|-------------------------------|----------------|-----------------------------------------|----------|----------|-------------------------------------------------|
| Cl<br>Chevron Site Number.                                                  |                    | Environ       | nental Mana      |                                               |                 | linger Canyon           | KO.B                                  | Sai       | ) Ka      | imo              | n, c               | MAI            | 940<br>755                    | BJ<br>SRE      | OIII                                    |          |          | l of l                                          |
|                                                                             |                    |               |                  | Chevron Consultat                             | nt <u>Cra</u>   |                         |                                       | i li      |           |                  |                    |                |                               |                | Ī                                       |          |          | Preservation Codes                              |
| Chevron Site Global II                                                      |                    |               |                  | Address: _5900 ны                             |                 | meryviëe.               |                                       |           |           |                  |                    | _              |                               | : <b>1</b> 0   |                                         |          |          | H =HCL T=                                       |
| Chevron Site Address:                                                       | 2200 Tel           | greph Ave     |                  | CAConsultant Conf                             |                 | -                       | j j                                   | L N       |           |                  |                    | 7              |                               | GREASE (       |                                         |          |          | Thiosubate                                      |
| Oakland, CA                                                                 |                    |               |                  | Consultant Phone                              |                 |                         | 3                                     | SCREEN    |           |                  |                    | 3              |                               | 5              |                                         |          |          | N=HNO, B = NaOH                                 |
| Chevron PM: CATALIN                                                         | A DEVINE           | •             |                  | Consultant Project                            | No. 1305 DL     | -102                    |                                       | E S       |           |                  |                    | ALKALINITY     |                               | Oit &          |                                         |          |          | S = H <sub>2</sub> SO <sub>4</sub> O =<br>Other |
| Chevron PM Phone No                                                         | ).: <u>(925)79</u> | <u>D-3949</u> |                  | Sampling Compan                               |                 | rvices                  | 1                                     |           |           |                  | STC                | 7              |                               | 413.1 (        | . 1                                     |          |          |                                                 |
| ⊠ Retail and Terminal Business Unit (RTSU) Job<br>⊠ Construction/Retail Job |                    |               | Job              | Sampled By (Print): Startes                   |                 |                         | MTRETA COXYCENATESION HVDC II         | ORO       |           |                  | TICDS              | EPA 310.1      |                               | EPA 41         | *************************************** |          |          |                                                 |
| Charge Code: NWRTB-0093600-0-OML                                            |                    |               |                  |                                               | OtherLab        | Temp. Blank Chack       | ιŞ                                    |           |           |                  |                    | _              |                               | _              |                                         |          |          | Special                                         |
| NWRTB (                                                                     |                    | MBER-0-WIL    |                  | Lancaster<br>Laboratories                     | Ottercan        | Time Temp.              | 1                                     | DRO       |           | S.               | าเรต               |                | ΥLIN                          |                |                                         |          |          | Instructions Must meet lowest                   |
| (WBS ELEMENTS:<br>SITE ASSESSMENT: A1L<br>SITE MONITORING: OML              |                    |               |                  | Et Lancaster, PA<br>Lab Contact: Jill Parker  |                 | 1300                    |                                       | P         | MTBE      | Mg, Mn,          | 22 METALS          |                | SM2510B SPECIFIC CONDUCTIVITY |                | đ                                       | ם        |          | detection finite possible<br>for 8266 Compounds |
| THIS IS A LEGAL DOCL                                                        | MENT. AL           | L FIELDS MUS  | T BE FILLED OUT  | 2425 New Holland Pike,<br>Lancaster, PA 17601 |                 |                         | MS                                    | GROY      | ×         | ×                | Ë                  |                | NC C                          | <b>0</b>       | ETHANO                                  | TPH-D    |          |                                                 |
| COAREL                                                                      | -CLT AND           | COMPLETS      | . F.             | Pñone No:<br>(717)858-2300                    |                 |                         | 8260B/GC/MS                           | 5B        | 1B BTEX   | EPA 6010 Ca, Fe, | EPA6010/7000 TITLE | EPA150.1 PH [] | B Speci                       | EPA 418,1 TRPH |                                         | ۶        |          |                                                 |
| ****                                                                        | SAMPL              | E ID          | y                |                                               |                 |                         | 88                                    | EPA 8015B | EPA 8021B | 8                | 601                | 150            | 510                           | 418            | 826                                     | EPA 8015 |          |                                                 |
| Field Point Name                                                            | Matrix             | Top Depth     | Date<br>(yymmdd) | Sample Time                                   | # of Containers | Container Type          | EPA 8260B                             | EP.       | RP.       | EPA              | EP.                | EPA            | SMS                           | EP.            | EPA 8250                                | EPA      |          | Notes/Comment<br>s                              |
| MW-1                                                                        | W                  |               | 130501           | 1430                                          | 6               | 6 Vons                  | C                                     | ×         |           |                  |                    |                |                               |                | X                                       |          |          |                                                 |
| MW-2                                                                        | j                  |               |                  | 1415                                          |                 |                         | C                                     | *         |           |                  |                    |                |                               |                | 뇌                                       |          |          |                                                 |
| MW-3                                                                        | <u> </u>           |               |                  | 1355                                          | į į             | V                       | ~                                     | <b>Se</b> |           |                  |                    |                |                               |                | X                                       |          | <u> </u> |                                                 |
| QA                                                                          | 1                  |               | <b>(</b>         | 1345                                          | 2               | 11925                   | <b>X</b>                              | <b>Y</b>  |           |                  |                    |                |                               |                | _                                       |          |          |                                                 |
| ,                                                                           |                    |               |                  |                                               |                 | <u> </u>                |                                       |           |           |                  |                    |                |                               |                |                                         |          |          |                                                 |
|                                                                             |                    |               |                  |                                               |                 |                         |                                       |           |           |                  |                    |                |                               |                |                                         |          |          |                                                 |
|                                                                             |                    |               |                  |                                               |                 |                         |                                       |           |           |                  |                    |                |                               |                | _                                       |          |          | · ·                                             |
|                                                                             |                    |               |                  |                                               |                 |                         |                                       |           |           |                  |                    |                |                               |                | _                                       |          |          |                                                 |
|                                                                             |                    |               |                  |                                               |                 |                         |                                       |           |           |                  |                    |                |                               |                | _                                       |          |          |                                                 |
| _                                                                           |                    |               |                  |                                               |                 |                         |                                       |           |           | -                |                    |                |                               |                |                                         |          |          |                                                 |
| Relinquished By                                                             | Comp               | -             | ate/Time:        | Pellinquished To                              | Company         | Date/Time               | · · · · · · · · · · · · · · · · · · · |           | Tur       | ndaro            | ind Ti             | ime:           | 4 Ho                          | ursD           |                                         | 48 h     | oursi    | 72                                              |
| Dall Marie                                                                  | _ <u>P</u>         | 5 5           | 1-13/1450        | Relinquished To                               | CLI             | 5/1/3 /450<br>Date/Time |                                       |           | Hot       | irs□<br>nple     |                    | Othe           | rD.                           |                |                                         |          |          |                                                 |
| Relinby Shed By                                                             | Comp               | earry D       | ale/Time         | vėmidniemo 16                                 | Company         | Carri Hite              |                                       |           | Inte      | •                |                    | On i           |                               |                | Te                                      | mp:      |          |                                                 |
| Relinquished By                                                             | Comp               | any D         | ate/Time         | Relinquished To                               | Company         | Date/Time               |                                       |           |           |                  |                    |                |                               | C              | OC                                      | #        | . —      |                                                 |
|                                                                             |                    |               |                  |                                               |                 |                         |                                       |           |           |                  |                    |                |                               |                |                                         |          |          |                                                 |

**CHAIN OF CUSTODY FORM** 

#### WELLHEAD INSPECTION CHECKLIST

Page \_\_\_\_\_ of \_\_\_\_

| Client     | Che      | WYON                                                       |                                                   | ····                                                                                                           |                                    |                                  |                 | Date             | 5-1-                                           | (3                                          |                                         |
|------------|----------|------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------|-----------------|------------------|------------------------------------------------|---------------------------------------------|-----------------------------------------|
| Site Addre | ess _    | 2200                                                       | Tolegra                                           | wh Ave                                                                                                         |                                    | Oakla                            | <u>ul</u>       | C/A.             |                                                |                                             |                                         |
| Job Numb   | er       | 13058                                                      | )<br>)) - 1/10.                                   | iph Ave                                                                                                        |                                    |                                  | Techi           | nician           | 20                                             |                                             |                                         |
|            | ****     |                                                            |                                                   |                                                                                                                |                                    | 1                                | •               |                  | 1                                              |                                             | 1                                       |
| Well II    | }        | Well<br>Inspected -<br>No Corrective<br>Action<br>Required | WELL IS<br>SECURABLE<br>BY DESIGN<br>(12"or less) | WELL IS CLEARLY MARKED WITH THE WORDS "MONITORING WELL" (12"or less)                                           | Water<br>Bailed<br>From<br>Wellbox | Wellbox<br>Components<br>Cleaned | Cap<br>Replaced | Lock<br>Replaced | Other<br>Action<br>Taken<br>(explain<br>below) | Well Not<br>Inspected<br>(explain<br>below) | Repair<br>Order<br>Submitted            |
| MW-1       |          |                                                            | ک                                                 | X                                                                                                              |                                    |                                  |                 |                  | X                                              |                                             |                                         |
| <u> </u>   | <u> </u> | ~                                                          | <u> </u>                                          | X                                                                                                              | <u> </u>                           |                                  |                 |                  |                                                |                                             |                                         |
| MW-2       | · '\     | >~                                                         | 7                                                 | <del>\</del>                                                                                                   |                                    |                                  |                 |                  |                                                |                                             |                                         |
|            |          |                                                            |                                                   | Vanish and 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1 |                                    |                                  |                 |                  |                                                |                                             |                                         |
|            |          |                                                            |                                                   |                                                                                                                |                                    |                                  |                 |                  |                                                |                                             |                                         |
|            |          |                                                            |                                                   |                                                                                                                |                                    |                                  |                 |                  | **************************************         |                                             |                                         |
|            |          |                                                            |                                                   |                                                                                                                |                                    |                                  |                 |                  |                                                |                                             | **************************************  |
|            |          |                                                            |                                                   |                                                                                                                |                                    |                                  |                 |                  |                                                |                                             |                                         |
|            |          |                                                            |                                                   | ***************************************                                                                        |                                    |                                  |                 |                  |                                                |                                             |                                         |
|            |          |                                                            |                                                   |                                                                                                                |                                    |                                  |                 |                  |                                                |                                             |                                         |
|            |          |                                                            |                                                   |                                                                                                                |                                    |                                  |                 |                  |                                                |                                             |                                         |
|            |          |                                                            |                                                   | **************************************                                                                         |                                    |                                  |                 |                  | ***************************************        |                                             |                                         |
|            |          |                                                            |                                                   |                                                                                                                |                                    |                                  |                 |                  |                                                |                                             |                                         |
|            |          |                                                            |                                                   |                                                                                                                |                                    |                                  |                 |                  |                                                |                                             | *************************************** |
|            |          |                                                            |                                                   |                                                                                                                |                                    |                                  |                 |                  |                                                |                                             |                                         |
|            |          |                                                            |                                                   |                                                                                                                |                                    |                                  |                 |                  |                                                |                                             |                                         |
| NOTE       | <br>S∙   | MW-1                                                       | 1                                                 | 4.1                                                                                                            | 12×20/10                           |                                  | <u> </u>        | <u> </u>         | <u> </u>                                       | <u> </u>                                    |                                         |
| 11012      |          | 14100 1                                                    | 47                                                | tubo                                                                                                           | UNU4E                              | 1                                |                 |                  | <u>, , , , , , , , , , , , , , , , , , , </u>  |                                             |                                         |
| ****       |          |                                                            |                                                   |                                                                                                                |                                    |                                  |                 |                  |                                                |                                             |                                         |
|            |          |                                                            |                                                   |                                                                                                                |                                    |                                  |                 |                  |                                                |                                             |                                         |
|            |          |                                                            |                                                   |                                                                                                                |                                    |                                  |                 |                  |                                                |                                             |                                         |

SOURCE RECORD **BILL OF LADING**FOR PURGEWATER RECOVERED FROM GROUNDWATER WELLS AT CHEVRON FACILITIES IN THE STATE OF CALIFORNIA. THE PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUNDWATER WELLS IS COLLECTED BY THE CONTRACTOR AND HAULED TO THEIR FACILITY IN SAN JOSE, CALIFORNIA FOR TEMPORARILY HOLDING PENDING TRANSPORT BY OTHERS TO FINAL DESTINATION.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BLAINE TECH), 1680 Rogers Ave. San Jose CA (408) 573-0555). BLAINE TECH. is authorized by Chevron Environmental Management Company (CHEVRON EMC) to recover, collect, apportion into loads, and haul the purgewater that is drawn from wells at the CHEVRON EMC facility indicated below and to deliver that purgewater to BLAINE TECH for temporarily holding. Transport routing of the purgewater may be direct from one CHEVRON EMC facility to BLAINE TECH; from one CHEVRON EMC facility; or any combination thereof. The well purgewater is and remains the property of CHEVRON EMC.

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

| 9-3600        |               | Cadalisia Deun | €     |
|---------------|---------------|----------------|-------|
| CHEVRON #     |               | Chevron Engine | er    |
| 12100         | Telegroph the | - Oaklend      | cA.   |
| street number | street name   |                | state |

| WELL I.D. GALS.                | WELL I.D. GALS.           |
|--------------------------------|---------------------------|
| MW-1 1 4.Z                     |                           |
| MW-Z 1 4.5                     |                           |
| MW-3 , 4.Z                     |                           |
|                                |                           |
|                                |                           |
|                                |                           |
|                                |                           |
| added equip.                   | any other adjustments /   |
| TOTAL GALS.                    | loaded onto BTS vehicle # |
| BTS event # time               | date 1450 5 / 1 / 13      |
| Transporter signature          |                           |
| ******                         |                           |
| REC'D AT                       | time date<br>1550 5/1/13  |
| Unloaded/received by signature |                           |

### TEST EQUIPMENT CALIBRATION LOG

| PROJECT NAI               | NE Chevran                              | 9-3600               |              | PROJECT NUM          | /IBER  30501-502                 | 7     |            |
|---------------------------|-----------------------------------------|----------------------|--------------|----------------------|----------------------------------|-------|------------|
| EQUIPMENT<br>NAME         | EQUIPMENT<br>NUMBER                     | DATE/TIME<br>OF TEST | USED         | EQUIPMENT<br>READING | CALIBRATED TO:<br>OR WITHIN 10%: | ТЕМР. | INITIALS   |
| ingron 2<br>Ultra melerit | 622284                                  | 5-1-13<br>0630       | 7,10,4 34000 | 7-01,10-01,4.023     | noins yes                        | 16°C  | \(\omega\) |
|                           |                                         |                      |              |                      | ,                                |       |            |
|                           | *************************************** |                      |              |                      |                                  |       |            |
|                           |                                         |                      |              |                      |                                  |       |            |
|                           |                                         |                      |              |                      |                                  |       |            |
|                           |                                         |                      |              |                      |                                  |       |            |
|                           |                                         |                      |              |                      |                                  |       |            |
|                           |                                         |                      |              |                      |                                  |       |            |
|                           |                                         |                      |              |                      |                                  |       |            |
|                           |                                         |                      |              |                      |                                  |       |            |

#### ATTACHMENT B

LABORATORY ANALYTICAL REPORT



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

#### ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

May 10, 2013

Project: 93600

Submittal Date: 05/02/2013 Group Number: 1387286 PO Number: 0015119899 Release Number: ESPINO DEVINE

State of Sample Origin: CA

 Client Sample Description
 Lancaster Labs (LLI) #

 MW-1-W-130501 NA Water
 7043475

 MW-2-W-130501 NA Water
 7043476

 MW-3-W-130501 NA Water
 7043477

 QA-T-130501 NA Water
 7043478

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

**ELECTRONIC** Chevron c/o CRA Attn: Report Contact COPY TO **ELECTRONIC** Blaine Tech Services, Inc. Attn: Dustin Becker COPY TO **ELECTRONIC** Chevron Attn: Anna Avina COPY TO **ELECTRONIC CRA** Attn: Ian Hull COPY TO **ELECTRONIC** CRA Attn: Nathan Lee COPY TO



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

fill M. Parker
Senior Specialist

(717) 556-7262



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax; 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-130501 NA Water

Facility# 93600 BTST

2200 Telegraph Ave-Oakland T0600161613

LLI Sample # WW 7043475

LLI Group # 1387286 Account # 10991

Project Name: 93600

Collected: 05/01/2013 14:30 by JO Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 05/02/2013 22:00 Reported: 05/10/2013 18:23

TA001

| CAT<br>No. | Analysis Name       |          | CAS Number | As Received<br>Result | As Received<br>Method<br>Detection Limit* | As Received<br>Limit of<br>Quantitation | Dilution<br>Factor |
|------------|---------------------|----------|------------|-----------------------|-------------------------------------------|-----------------------------------------|--------------------|
| GC/MS      | Volatiles           | SW-846   | 8260B      | ug/l                  | ug/l                                      | ug/l                                    |                    |
| 10943      | t-Amyl methyl ether |          | 994-05-8   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Benzene             |          | 71-43-2    | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | t-Butyl alcohol     |          | 75-65-0    | N.D.                  | 2                                         | 5                                       | 1                  |
| 10943      | Ethanol             |          | 64-17-5    | N.D.                  | 50                                        | 250                                     | 1                  |
| 10943      | Ethyl t-butyl ether |          | 637-92-3   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Ethylbenzene        |          | 100-41-4   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | di-Isopropyl ether  |          | 108-20-3   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Methyl Tertiary But | yl Ether | 1634-04-4  | 38                    | 0.5                                       | 1                                       | 1                  |
| 10943      | Toluene             |          | 108-88-3   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Xylene (Total)      |          | 1330-20-7  | N.D.                  | 0.5                                       | 1                                       | 1                  |
| GC Vol     | latiles             | SW-846   | 8015B      | ug/l                  | ug/l                                      | ug/l                                    |                    |
| 01728      | TPH-GRO N. CA water | C6-C12   | n.a.       | 1,500                 | 50                                        | 100                                     | 1                  |

#### General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

#### Laboratory Sample Analysis Record

| CAT<br>No.     | Analysis Name                                          | Method                       | Trial# | Batch#                 | Analysis<br>Date and Time            | Analyst                            | Dilution<br>Factor |
|----------------|--------------------------------------------------------|------------------------------|--------|------------------------|--------------------------------------|------------------------------------|--------------------|
| 10943          | UST VOCs by 8260B - Water                              | SW-846 8260B                 | 1      | D131292AA              | 05/09/2013 15:32                     | Daniel H Heller                    | 1                  |
| 01163<br>01728 | GC/MS VOA Water Prep<br>TPH-GRO N. CA water C6-<br>C12 | SW-846 5030B<br>SW-846 8015B | 1<br>1 | D131292AA<br>13127A20A | 05/09/2013 15:32<br>05/07/2013 13:56 | Daniel H Heller<br>Laura M Krieger | 1<br>1             |
| 01146          | GC VOA Water Prep                                      | SW-846 5030B                 | 1      | 13127A20A              | 05/07/2013 13:56                     | Laura M Krieger                    | 1                  |



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax; 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-2-W-130501 NA Water

Facility# 93600 BTST

2200 Telegraph Ave-Oakland T0600161613

LLI Sample # WW 7043476

LLI Group # 1387286 Account # 10991

Project Name: 93600

Collected: 05/01/2013 14:15 by JO Chevron

6001 Bollinger Canyon Rd L4310

05/03/2013 22:06 Catherine J

Schwarz

San Ramon CA 94583

Submitted: 05/02/2013 22:00 Reported: 05/10/2013 18:23

TA002

| CAT<br>No. | Analysis Name       |          | CAS Number | As Received<br>Result | As Received<br>Method<br>Detection Limit* | As Received<br>Limit of<br>Quantitation | Dilution<br>Factor |
|------------|---------------------|----------|------------|-----------------------|-------------------------------------------|-----------------------------------------|--------------------|
| GC/MS      | Volatiles           | SW-846   | 8260B      | ug/l                  | ug/l                                      | ug/l                                    |                    |
| 10943      | t-Amyl methyl ether |          | 994-05-8   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Benzene             |          | 71-43-2    | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | t-Butyl alcohol     |          | 75-65-0    | N.D.                  | 2                                         | 5                                       | 1                  |
| 10943      | Ethanol             |          | 64-17-5    | N.D.                  | 50                                        | 250                                     | 1                  |
| 10943      | Ethyl t-butyl ether |          | 637-92-3   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Ethylbenzene        |          | 100-41-4   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | di-Isopropyl ether  |          | 108-20-3   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Methyl Tertiary But | yl Ether | 1634-04-4  | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Toluene             |          | 108-88-3   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Xylene (Total)      |          | 1330-20-7  | N.D.                  | 0.5                                       | 1                                       | 1                  |
| GC Vol     | latiles             | SW-846   | 8015B      | ug/l                  | ug/l                                      | ug/l                                    |                    |
| 01728      | TPH-GRO N. CA water | C6-C12   | n.a.       | N.D.                  | 50                                        | 100                                     | 1                  |

#### General Sample Comments

State of California Lab Certification No. 2501

01146 GC VOA Water Prep

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

SW-846 5030B

|            |                                                        | Labor                        | atory Sa | mple Analy             | sis Record                           |                                           |                    |
|------------|--------------------------------------------------------|------------------------------|----------|------------------------|--------------------------------------|-------------------------------------------|--------------------|
| CAT<br>No. | Analysis Name                                          | Method                       | Trial#   | Batch#                 | Analysis<br>Date and Time            | Analyst                                   | Dilution<br>Factor |
| 10943      | UST VOCs by 8260B - Water                              | SW-846 8260B                 | 1        | D131292AA              | 05/09/2013 15:54                     | Daniel H Heller                           | 1                  |
|            | GC/MS VOA Water Prep<br>TPH-GRO N. CA water C6-<br>C12 | SW-846 5030B<br>SW-846 8015B | 1<br>1   | D131292AA<br>13123A07A | 05/09/2013 15:54<br>05/03/2013 22:06 | Daniel H Heller<br>Catherine J<br>Schwarz | 1                  |

13123A07A

1

<sup>\*=</sup>This limit was used in the evaluation of the final result



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax; 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-130501 NA Water

Facility# 93600 BTST

2200 Telegraph Ave-Oakland T0600161613

LLI Sample # WW 7043477

LLI Group # 1387286 Account # 10991

Project Name: 93600

Collected: 05/01/2013 13:55 by JO Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 05/02/2013 22:00 Reported: 05/10/2013 18:23

TA003

| CAT<br>No. | Analysis Name       |          | CAS Number | As Received<br>Result | As Received<br>Method<br>Detection Limit* | As Received<br>Limit of<br>Quantitation | Dilution<br>Factor |
|------------|---------------------|----------|------------|-----------------------|-------------------------------------------|-----------------------------------------|--------------------|
| GC/MS      | Volatiles           | SW-846   | 8260B      | ug/l                  | ug/l                                      | ug/l                                    |                    |
| 10943      | t-Amyl methyl ether |          | 994-05-8   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Benzene             |          | 71-43-2    | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | t-Butyl alcohol     |          | 75-65-0    | N.D.                  | 2                                         | 5                                       | 1                  |
| 10943      | Ethanol             |          | 64-17-5    | N.D.                  | 50                                        | 250                                     | 1                  |
| 10943      | Ethyl t-butyl ether |          | 637-92-3   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Ethylbenzene        |          | 100-41-4   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | di-Isopropyl ether  |          | 108-20-3   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Methyl Tertiary But | yl Ether | 1634-04-4  | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Toluene             |          | 108-88-3   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Xylene (Total)      |          | 1330-20-7  | N.D.                  | 0.5                                       | 1                                       | 1                  |
| GC Vol     | latiles             | SW-846   | 8015B      | ug/l                  | ug/l                                      | ug/l                                    |                    |
| 01728      | TPH-GRO N. CA water | C6-C12   | n.a.       | N.D.                  | 50                                        | 100                                     | 1                  |

#### General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

| Laboratory | $\mathtt{Sample}$ | Analysis | Record |
|------------|-------------------|----------|--------|
|------------|-------------------|----------|--------|

|            |                                |              | _      | -         |                        |       |                        |                    |
|------------|--------------------------------|--------------|--------|-----------|------------------------|-------|------------------------|--------------------|
| CAT<br>No. | Analysis Name                  | Method       | Trial# | Batch#    | Analysis Date and Time |       | Analyst                | Dilution<br>Factor |
|            | UST VOCs by 8260B - Water      | SW-846 8260B | 1      | D131292AA |                        |       | Daniel H Heller        | 1                  |
| 01163      | GC/MS VOA Water Prep           | SW-846 5030B | 1      | D131292AA | 05/09/2013 1           | 16:17 | Daniel H Heller        | 1                  |
| 01728      | TPH-GRO N. CA water C6-<br>C12 | SW-846 8015B | 1      | 13123A07A | 05/03/2013 2           | 22:32 | Catherine J<br>Schwarz | 1                  |
| 01146      | GC VOA Water Prep              | SW-846 5030B | 1      | 13123A07A | 05/03/2013 2           | 22:32 | Catherine J            | 1                  |



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: QA-T-130501 NA Water

Facility# 93600 BTST

2200 Telegraph Ave-Oakland T0600161613

LLI Sample # WW 7043478

LLI Group # 1387286 Account # 10991

Project Name: 93600

Collected: 05/01/2013 13:45 Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 05/02/2013 22:00 Reported: 05/10/2013 18:23

#### TAOQA

| CAT<br>No. | Analysis Name        |          | CAS Number | As Received<br>Result | As Received<br>Method<br>Detection Limit* | As Received<br>Limit of<br>Quantitation | Dilution<br>Factor |
|------------|----------------------|----------|------------|-----------------------|-------------------------------------------|-----------------------------------------|--------------------|
| GC/MS      | Volatiles            | SW-846   | 8260B      | ug/l                  | ug/l                                      | ug/l                                    |                    |
| 10943      | t-Amyl methyl ether  |          | 994-05-8   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Benzene              |          | 71-43-2    | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | t-Butyl alcohol      |          | 75-65-0    | N.D.                  | 2                                         | 5                                       | 1                  |
| 10943      | Ethyl t-butyl ether  |          | 637-92-3   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Ethylbenzene         |          | 100-41-4   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | di-Isopropyl ether   |          | 108-20-3   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Methyl Tertiary Buty | /l Ether | 1634-04-4  | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Toluene              |          | 108-88-3   | N.D.                  | 0.5                                       | 1                                       | 1                  |
| 10943      | Xylene (Total)       |          | 1330-20-7  | N.D.                  | 0.5                                       | 1                                       | 1                  |
|            |                      |          |            |                       |                                           |                                         |                    |
| GC Vol     | latiles              | SW-846   | 8015B      | ug/l                  | ug/l                                      | ug/l                                    |                    |
| 01728      | TPH-GRO N. CA water  | C6-C12   | n.a.       | N.D.                  | 50                                        | 100                                     | 1                  |

#### General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

#### Laboratory Sample Analysis Record

| CAT<br>No. | Analysis Name                     | Method       | Trial# | Batch#    | Analysis<br>Date and Time | Analyst                | Dilution<br>Factor |
|------------|-----------------------------------|--------------|--------|-----------|---------------------------|------------------------|--------------------|
| 10943      | BTEX + 5 Oxygenates 8260<br>Water | SW-846 8260B | 1      | D131292AA | 05/09/2013 12:52          | Daniel H Heller        | 1                  |
| 01163      | GC/MS VOA Water Prep              | SW-846 5030B | 1      | D131292AA | 05/09/2013 12:52          | Daniel H Heller        | 1                  |
| 01728      | TPH-GRO N. CA water C6-<br>C12    | SW-846 8015B | 1      | 13123A07A | 05/03/2013 18:44          | Catherine J<br>Schwarz | 1                  |
| 01146      | GC VOA Water Prep                 | SW-846 5030B | 1      | 13123A07A | 05/03/2013 18:44          | Catherine J            | 1                  |

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 1 of 2

#### Quality Control Summary

Client Name: Chevron Group Number: 1387286

Reported: 05/10/13 at 06:23 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

#### Laboratory Compliance Quality Control

| Analysis Name               | Blank<br><u>Result</u> | Blank<br>MDL** | Blank<br><u>LOQ</u> | Report<br><u>Units</u> | LCS<br>%REC | LCSD<br>%REC | LCS/LCSD<br><u>Limits</u> | RPD | RPD Max |
|-----------------------------|------------------------|----------------|---------------------|------------------------|-------------|--------------|---------------------------|-----|---------|
| Batch number: D131292AA     | Sample numb            | per(s): 70     | )43475-704          | 3478                   |             |              |                           |     |         |
| t-Amyl methyl ether         | N.D.                   | 0.5            | 1                   | ug/l                   | 91          |              | 66-120                    |     |         |
| Benzene                     | N.D.                   | 0.5            | 1                   | ug/l                   | 93          |              | 77-121                    |     |         |
| t-Butyl alcohol             | N.D.                   | 2.             | 5                   | ug/l                   | 100         |              | 75-120                    |     |         |
| Ethanol                     | N.D.                   | 50.            | 250                 | ug/l                   | 100         |              | 54-149                    |     |         |
| Ethyl t-butyl ether         | N.D.                   | 0.5            | 1                   | ug/l                   | 91          |              | 66-120                    |     |         |
| Ethylbenzene                | N.D.                   | 0.5            | 1                   | ug/l                   | 96          |              | 79-120                    |     |         |
| di-Isopropyl ether          | N.D.                   | 0.5            | 1                   | ug/l                   | 93          |              | 65-120                    |     |         |
| Methyl Tertiary Butyl Ether | N.D.                   | 0.5            | 1                   | ug/l                   | 92          |              | 68-121                    |     |         |
| Toluene                     | N.D.                   | 0.5            | 1                   | ug/l                   | 94          |              | 79-120                    |     |         |
| Xylene (Total)              | N.D.                   | 0.5            | 1                   | ug/l                   | 96          |              | 77-120                    |     |         |
| Batch number: 13123A07A     | Sample numb            | per(s): 70     | )43476-704          | 3478                   |             |              |                           |     |         |
| TPH-GRO N. CA water C6-C12  | N.D.                   | 50.            | 100                 | ug/l                   | 106         | 115          | 75-135                    | 8   | 30      |
| Batch number: 13127A20A     | Sample numb            | per(s): 70     | )43475              |                        |             |              |                           |     |         |
| TPH-GRO N. CA water C6-C12  | N.D.                   | 50.            | 100                 | ug/l                   | 87          | 85           | 75-135                    | 3   | 30      |

#### Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

| Analysis Name               | MS<br><u>%REC</u> | MSD<br><u>%REC</u> | MS/MSD<br><u>Limits</u> | RPD    | RPD<br><u>MAX</u> | BKG<br>Conc | DUP<br>Conc | DUP<br><u>RPD</u> | Dup RPD<br><u>Max</u> |
|-----------------------------|-------------------|--------------------|-------------------------|--------|-------------------|-------------|-------------|-------------------|-----------------------|
| Batch number: D131292AA     | Sample            | number(s)          | : 7043475               | -70434 | 78 UNSP           | K: P043466  |             |                   |                       |
| t-Amyl methyl ether         | 105               | 104                | 65-117                  | 1      | 30                |             |             |                   |                       |
| Benzene                     | 149 (2)           | 147 (2)            | 72-134                  | 0      | 30                |             |             |                   |                       |
| t-Butyl alcohol             | 102               | 100                | 67-119                  | 2      | 30                |             |             |                   |                       |
| Ethanol                     | 101               | 96                 | 53-146                  | 6      | 30                |             |             |                   |                       |
| Ethyl t-butyl ether         | 101               | 102                | 74-122                  | 2      | 30                |             |             |                   |                       |
| Ethylbenzene                | 117               | 116                | 71-134                  | 1      | 30                |             |             |                   |                       |
| di-Isopropyl ether          | 109               | 109                | 70-129                  | 0      | 30                |             |             |                   |                       |
| Methyl Tertiary Butyl Ether | 99                | 99                 | 72-126                  | 0      | 30                |             |             |                   |                       |
| Toluene                     | 111               | 110                | 80-125                  | 1      | 30                |             |             |                   |                       |
| Xylene (Total)              | 115               | 112                | 79-125                  | 2      | 30                |             |             |                   |                       |

<sup>\*-</sup> Outside of specification

<sup>\*\*-</sup>This limit was used in the evaluation of the final result for the blank

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The unspiked result was more than four times the spike added.



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 2 of 2

#### Quality Control Summary

Group Number: 1387286 Client Name: Chevron

Reported: 05/10/13 at 06:23 PM

#### Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water

Batch number: D131292AA

|         | Dibromofluoromethane | 1,2-Dichloroethane-d4 | Toluene-d8 | 4-Bromofluorobenzene |  |
|---------|----------------------|-----------------------|------------|----------------------|--|
| 7043475 | 100                  | 93                    | 97         | 107                  |  |
| 7043476 | 99                   | 95                    | 98         | 99                   |  |
| 7043477 | 100                  | 98                    | 98         | 96                   |  |
| 7043478 | 101                  | 96                    | 98         | 100                  |  |
| Blank   | 100                  | 101                   | 98         | 99                   |  |
| LCS     | 100                  | 100                   | 99         | 99                   |  |
| MS      | 102                  | 98                    | 96         | 107                  |  |
| MSD     | 100                  | 103                   | 97         | 106                  |  |
| Limits: | 80-116               | 77-113                | 80-113     | 78-113               |  |

Analysis Name: TPH-GRO N. CA water C6-C12

Batch number: 13123A07A

Trifluorotoluene-F

7043476 92 7043477 7043478 81 Blank 8.3 92 LCS LCSD 75

Limits: 63-135

Analysis Name: TPH-GRO N. CA water C6-C12 Batch number: 13127A20A

Trifluorotoluene-F

7043475 115 89 Blank LCS 104 LCSD 103

Limits: 63-135

<sup>\*-</sup> Outside of specification

<sup>\*\*-</sup>This limit was used in the evaluation of the final result for the blank

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The unspiked result was more than four times the spike added.

OSO 13-05 CHAIN OF CUSTODY FORM
Chevron Environmental Management Company ■ 6111 Bollinger Canyon Rd.■ San Ramon, CA 94583 COC ( of Chevron Site Number: 93600 Chevron Consultant: CRA ANALYSES REQUIRED Preservation Codes Chevron Site Global ID: T0600161613 Address: 5900 Hollis St. Suite A Emeryville, H =HCL T= Chevron Site Address: 2200 Telgraph Ave... SOXYGENATES X HVOCII CAConsultant Contact: Nathan Lee Thiosulfate GREASE [ HC SCREEN **EPA 310.1 ALKALINITY** Consultant Phone No. 510-420-3333 Oakland, CA N =HNO<sub>3</sub> B = NaOH Chevron PM: CATALINA DEVINE Consultant Project No. 1305171-507 OIL & S = H2SO4 O = Occt #10991 STLC Sampling Company: Blaine Tech Services Chevron PM Phone No.: (925)790-3949 413.1 Co# 1387286 Sampled By (Print): ORO ☑ Retail and Terminal Business Unit (RTBU) Job TLC D ☑ Construction/Retail Job EPA Sampler Signature: Charge Code: NWRTB-0093600-0-OML Other Lab Temp. Blank Check Lancaster EPA6010/7000 TITLE 22 METALS □ Special DRO Time NWRTB 00SITE NUMBER-0-WBS Temp. SM2510B SPECIFIC CONDUCTIVITY Laboratories Instructions EPA 6010 Ca, Fe, K, Mg, Mn, Na (WBS ELEMENTS: Must meet lowest SITE ASSESSMENT: A1L REMEDIATION IMPLEMENTATION: R5L detection limits possible ☑ Lancaster, PA for 8260 Compounds SITE MONITORING: OML OPERATION MAINTENANCE & MONITORING: M1L Lab Contact: Jill Parker ETHANOL THIS IS A LEGAL DOCUMENT. ALL FIELDS MUST BE FILLED OUT 2425 New Holland Pike. EPA 8260B/GC/MS TPH-G □ BTEX TPH-D BTEX CORRECTLY AND COMPLETELY. Lancaster, PA 17601 **EPA 418.1 TRPH** EPA150.1 PH □ Phone No: (717)656-2300 **EPA 8015B EPA 8015** EPA 8260 SAMPLE ID # of Containers Date Sample Time **Container Type** Notes/Comment Field Point Name Matrix Top Depth (vvmmdd) Mw-1 い 1430 130501 6 VOK MW-Z 1415 MW-3 1355 ~ 1345 QA X 11925 Relinquished By Company Date/Time: Retinguished

Relinquished By

Relinquished By

Date/Time

Date/Time

\$1MAY 13 1636

Refinquished

Company

Company

|          |           |                          |                                  |             | ++          |       |           |                  |
|----------|-----------|--------------------------|----------------------------------|-------------|-------------|-------|-----------|------------------|
|          |           |                          |                                  |             |             |       |           |                  |
|          |           |                          |                                  |             |             |       |           |                  |
| To       | COMPANY   | Date(Time<br>5/1//3 /450 | Turnaround<br>Standard<br>Hours□ |             | Hours□<br>] | 48 hc | ours□     | 72               |
| TO<br>EX | Company   | Date/Time                | Sample Inte                      | egrity: (Cl | neck by la  | temp: | ival)     | 5.0°C            |
| To       | Company   | Date/Time<br>5/2//3      |                                  |             | C           | OC#   | र्भा ३    |                  |
|          |           |                          |                                  |             |             |       | 0         |                  |
|          | Page 9 of | 10                       |                                  |             |             |       | COC Revis | ion 12, 04/25/13 |



### **Explanation of Symbols and Abbreviations**

The following defines common symbols and abbreviations used in reporting technical data:

| RL       | Reporting Limit       | BMQL<br>MPN | Below Minimum Quantitation Level |
|----------|-----------------------|-------------|----------------------------------|
| N.D.     | none detected         |             | Most Probable Number             |
| TNTC     | Too Numerous To Count | CP Units    | cobalt-chloroplatinate units     |
| IU       | International Units   | NTU         | nephelometric turbidity units    |
| umhos/cm | micromhos/cm          | ng          | nanogram(s)                      |
| С        | degrees Celsius       | F           | degrees Fahrenheit               |
| meq      | milliequivalents      | lb.         | pound(s)                         |
| g        | gram(s)               | kg          | kilogram(s)                      |
| μg       | microgram(s)          | mg          | milligram(s)                     |
| mL       | milliliter(s)         | L           | liter(s)                         |
| m3       | cubic meter(s)        | μL          | microliter(s)                    |
|          |                       | pg/L        | picogram/liter                   |

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

#### U.S. EPA CLP Data Qualifiers:

#### Organic Qualifiers

## Inorganic Qualifiers

Correlation coefficient for MSA < 0.995

| TIC is a possible aldol-condensation product   | В                                                                                                                                                                                                                                      | Value is <crdl, but="" th="" ≥idl<=""></crdl,>                                                                                                                                                                                                                                |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analyte was also detected in the blank         | Е                                                                                                                                                                                                                                      | Estimated due to interference                                                                                                                                                                                                                                                 |
| Pesticide result confirmed by GC/MS            | M                                                                                                                                                                                                                                      | Duplicate injection precision not met                                                                                                                                                                                                                                         |
| Compound quantitated on a diluted sample       | N                                                                                                                                                                                                                                      | Spike sample not within control limits                                                                                                                                                                                                                                        |
| Concentration exceeds the calibration range of | S                                                                                                                                                                                                                                      | Method of standard additions (MSA) used                                                                                                                                                                                                                                       |
| the instrument                                 |                                                                                                                                                                                                                                        | for calculation                                                                                                                                                                                                                                                               |
| Presumptive evidence of a compound (TICs only) | U                                                                                                                                                                                                                                      | Compound was not detected                                                                                                                                                                                                                                                     |
| Concentration difference between primary and   | W                                                                                                                                                                                                                                      | Post digestion spike out of control limits                                                                                                                                                                                                                                    |
| confirmation columns >25%                      | *                                                                                                                                                                                                                                      | Duplicate analysis not within control limits                                                                                                                                                                                                                                  |
|                                                | Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument Presumptive evidence of a compound (TICs only) Concentration difference between primary and | Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument Presumptive evidence of a compound (TICs only) Concentration difference between primary and |

U Compound was not detectedX.Y.Z Defined in case narrative

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.