

RECEIVED

9:02 am, May 03, 2010

Alameda County Environmental Health Aaron Costa Project Manager Marketing Business Unit Chevron Environmental Management Company 6111 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 543-2961 Fax (925) 543-2324 acosta@chevron.com

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Service Station No. 9-3600 2200 Telegraph Avenue Oakland, CA

I have reviewed the attached report dated April 28, 2010.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Aaron Costa Project Manager

Attachment: Report

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700 http://www.craworld.com

Fax: (510) 420-9170

April 28, 2010

Reference No. 311965

Mr. Mark Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Third Quarter 2009 Groundwater Monitoring and Sampling Report Chevron Service Station 9-3600 2200 Telegraph Avenue Oakland, California Fuel Leak Case No. RO0002435

Dear Mr. Mark Detterman:

Conestoga-Rovers & Associates is submitting this *Third Quarter 2009 Groundwater Monitoring and Sampling Report* for the site referenced above (Figure 1) on behalf of Chevron Environmental Management Company (Chevron).

On July 23, 2009, groundwater monitoring and sampling was performed by Blaine Tech Services of San Jose, California (Blaine Tech). Groundwater potentiometric and concentration data from this event are presented on Figure 2. Groundwater monitoring and sampling data are presented in Tables 1 and 2. Blaine Tech's July 23, 2009 *Third Quarter 2009 Monitoring* report is included as Attachment A. The Lancaster Laboratories groundwater analytical report is included as Attachment B.

> Equal Employment Opportunity Employer

April 28, 2010

Reference No. 311965

Please contact Brandon Wilken at (510) 420-3355 if you have any questions or require additional information.

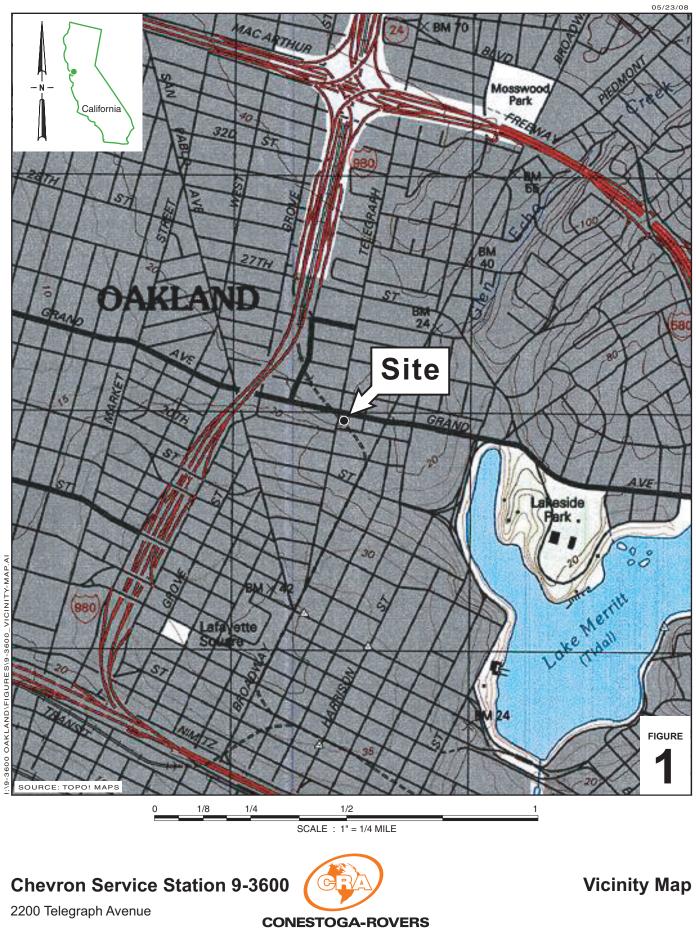
- 2 -

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

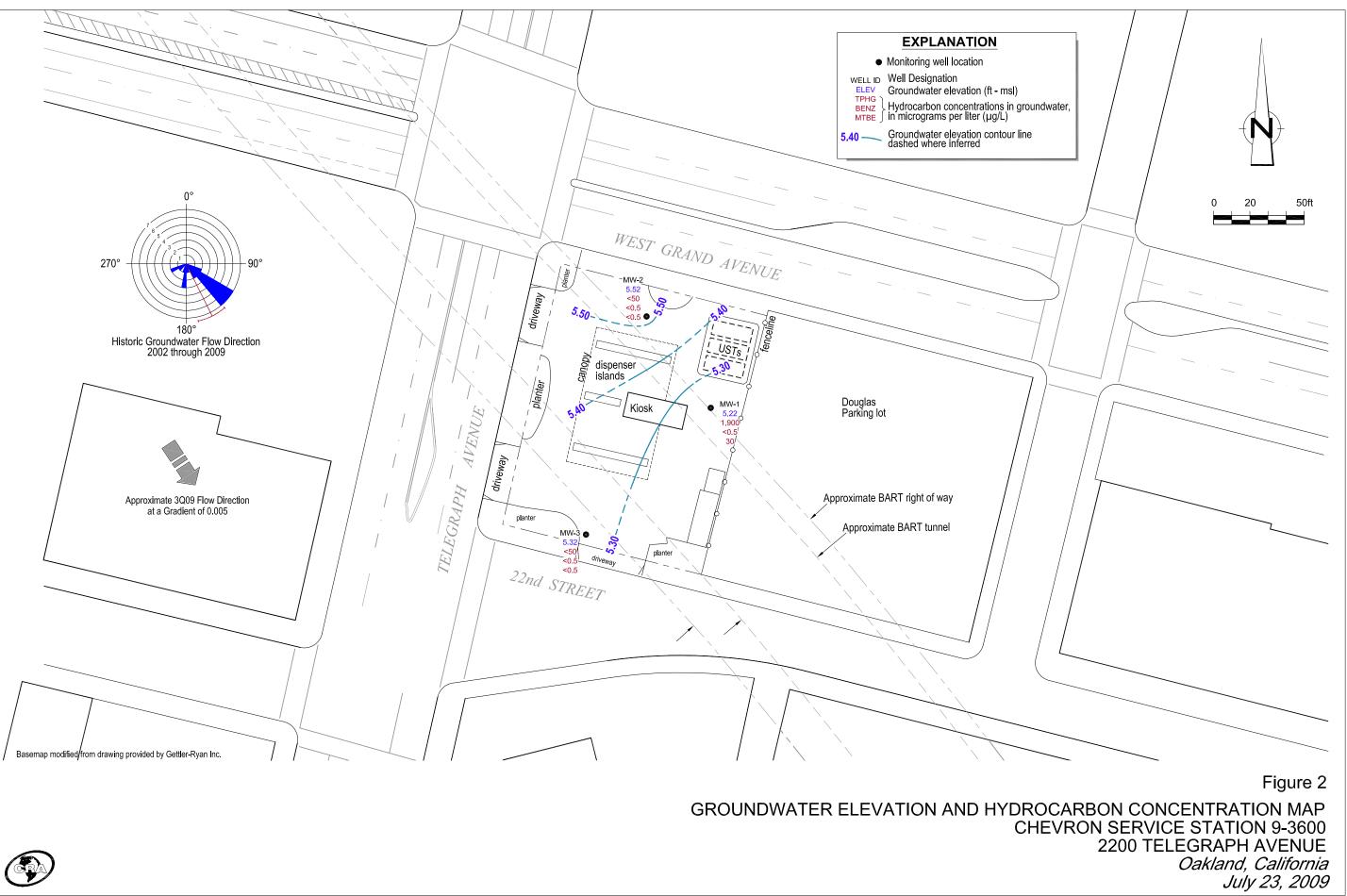
Lan Aul

Branch AC, Jill


Ian Hull

Brandon S. Wilken, P.G. #7564

IH/doh/4 Encl.	
Figure 1	Vicinity Map
Figure 2	Groundwater Elevation and Hydrocarbon Concentration Map
Table 1	Groundwater Monitoring Data and Analytical Results
Table 2	Groundwater Analytical Results - Oxygenate Compounds
Attachment A Attachment B	Blaine Tech's July 24, 2009 <i>Third Quarter 2009 Monitoring</i> Report Lancaster Laboratories' August 5, 2009 analytical report


cc: Mr. Aaron Costa, Chevron

FIGURES

Oakland, California

CONESTOGA-ROVERS & ASSOCIATES

WELL ID/	TOC*	DTW	GWE	TPH-G	B	T T	E	X	MTBE
DATE	(ft.)	(ft.)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1									
04/05/021	17.07	11.68	5.39	2,000	5.0	<1.0	14	8.4	310/370 ²
07/01/02	17.07	12.01	5.06	2,000	8.9	<1.0	97	31	370/420 ²
10/08/02	17.07	12.20	4.87	1,400	9.2	<10	75	20	440/360 ²
01/11/03	17.07	11.13	5.94	1,600	7.1	0.51	53	13	$280/270^2$
04/01/03	17.07	11.53	5.54	1,800	5.2	0.6	25	9.1	$210/210^2$
07/01/03 ³	17.07	11.95	5.12	2,000	4	<0.5	31	12	170
10/02/03 ³	17.07	12.25	4.82	480	<5	<5	<5	<5	9,800
01/05/04 ³	17.07	11.05	6.02	1,700	3	<0.5	27	4	140
04/05/04 ³	17.07	11.63	5.44	1,500	2	<0.5	21	0.6	120
07/01/04 ³	17.07	12.08	4.99	1,500	1	<0.5	3	< 0.5	130
10/05/04 ³	17.07	12.21	4.86	1,400	<0.5	<0.5	1	0.5	130
01/04/05 ³	17.07	11.15	5.92	1,500	<0.5	<0.5	< 0.5	< 0.5	<0.5
04/14/05 ³	17.07	11.20	5.87	2,100	<0.5	<0.5	4	0.5	61
07/08/05 ³	17.07	11.38	5.69	1,800	< 0.5	< 0.5	0.8	< 0.5	71
10/27/05 ³	17.07	12.24	4.83	800	<0.5	< 0.5	< 0.5	< 0.5	76
01/12/06 ³	17.07	11.10	5.97	1,600	< 0.5	< 0.5	4	< 0.5	47
04/13/06 ³	17.07	10.81	6.26	1,500	<0.5	< 0.5	1	< 0.5	36
07/13/06 ³	17.07	11.18	5.89	990	<0.5	< 0.5	< 0.5	< 0.5	44
10/16/06 ³	17.07	12.18	4.89	780	< 0.5	< 0.5	<0.5	< 0.5	59
01/20/07 ³	17.07	11.91	5.16	890	< 0.5	< 0.5	<0.5	< 0.5	47
04/11/07 ³	17.07	11.87	5.20	1,900	<0.5	< 0.5	4	< 0.5	39
$07/27/07^3$	17.07	11.91	5.16	1,500	< 0.5	< 0.5	0.6	< 0.5	56
$10/22/07^3$	17.07	4		610	<0.5	< 0.5	< 0.5	< 0.5	65
11/26/07	17.07	11.96	5.11						
$01/21/08^3$	17.07	11.78	5.29	1,100	< 0.5	< 0.5	0.8	< 0.5	48
04/04/08 ³	17.07	11.83	5.24	1,600	< 0.5	< 0.5	<0.5	< 0.5	53
07/21/08 ³	17.07	12.10	4.97	950	< 0.5	< 0.5	<0.5	< 0.5	72
10/09/08 ³	17.07	12.17	4.90	960	<0.5	<0.5	<0.5	< 0.5	59
$01/21/09^3$	17.07	12.15	4.92	840	< 0.5	< 0.5	<0.5	< 0.5	31
04/29/09	17.07	11.68	5.39	1,800	< 0.5	< 0.5	3	< 0.5	25
$07/23/09^3$	17.07	11.85	5.22	1,900	<0.5	<0.5	<0.5	<0.5	30
MW-2									
04/05/021	16.82	11.17	5.65	<50	< 0.50	<0.50	< 0.50	<1.5	<2.5/<22
07/01/02	16.82	11.36	5.46	<50	< 0.50	0.57	0.52	<1.5	<2.5/<2 ²

DATE(ft.)(ft.)(µg/L)(µg/L)(µg/L)(µg/L)(µg/L) $MW-2$ (cont) $10/08/02$ 16.82 11.57 5.25 <100 <2.0 <2.0 <2.0 <2.0 <5.0 $01/11/03$ 16.82 10.94 5.88 <50 <0.50 <0.50 <0.50 <1.5 $04/01/03$ 16.82 11.03 5.79 <50 <0.5 <0.5 <0.5 <1.5 $07/01/03^3$ 16.82 11.30 5.52 <50 <0.5 <0.5 <0.5 <0.5 $01/05/04^3$ 16.82 11.63 5.19 <50 <0.5 <0.5 <0.5 <0.5 $01/05/04^3$ 16.82 11.21 5.61 <50 <0.5 <0.5 <0.5 <0.5 $07/01/04^3$ 16.82 11.46 5.36 <50 <0.5 <0.5 <0.5 <0.5 $01/05/04^3$ 16.82 11.46 5.36 <50 <0.5 <0.5 <0.5 <0.5 $07/01/04^3$ 16.82 11.46 5.36 <50 <0.5 <0.5 <0.5 <0.5 $07/01/04^3$ 16.82 11.46 5.36 <50 <0.5 <0.5 <0.5 <0.5 $01/05/04^3$ 16.82 11.57 5.25 <50 <0.5 <0.5 <0.5 <0.5 $01/04/05^3$ 16.82 10.87 5.95 <50 <0.5 <0.5 <0.5 <0.5 $01/04/05^3$ 16.82 10.87 <th>MTBE</th>	MTBE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(µg/L)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	<10/<22
	$<2.5/<2^{2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$<2.5/<0.5^{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.5
$10/05/04^3$ 16.82 11.57 5.25 <50 <0.5 <0.5 <0.5 <0.5	<0.5
	<0.5
$01/04/05^3$ 16.82 10.87 5.95 <50 0.5 <0.5 8 0.9	<0.5
	87
$04/14/05^3$ 16.82 10.72 6.10 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$07/08/05^3$ 16.82 11.16 5.66 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$10/27/05^3$ 16.82 11.59 5.23 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$01/12/06^3$ 16.82 10.68 6.14 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$04/13/06^3$ 16.82 10.37 6.45 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$07/13/06^3$ 16.82 10.68 6.14 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$10/16/06^3$ 16.82 11.48 5.34 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$01/20/07^3$ 16.82 11.27 5.55 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$04/11/07^3$ 16.82 11.20 5.62 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$07/27/07^3$ 16.82 11.27 5.55 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$10/22/07^3$ 16.824 <50 <0.5 <0.5 <0.5 <0.5	<0.5
11/26/07 16.82 11.31 5.51	
$01/21/08^3$ 16.82 11.08 5.74 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$04/04/08^3$ 16.82 11.12 5.70 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$07/21/08^3$ 16.82 11.56 5.26 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$10/09/08^3$ 16.82 11.73 5.09 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$01/21/09^3$ 16.82 11.55 5.27 <50 <0.5 <0.5 <0.5 <0.5	<0.5
04/29/09 16.82 11.06 5.76 <50 <0.5 <0.5 <0.5 <0.5	<0.5
$07/23/09^3$ 16.82 11.30 5.52 <50 <0.5 <0.5 <0.5 <0.5	<0.5
MW-3	
$04/05/02^1$ 16.52 11.29 5.23 <50 <0.50 0.59 <0.50 <1.5	<2.5/<22
07/01/02 16.52 11.55 4.97 <50 <0.50 0.60 <0.50 <1.5	<2.5/<22
10/08/02 16.52 11.62 4.90 <100 <2.0 <2.0 <5.0	<10/<22
01/11/03 16.52 11.09 5.43 <50 <0.50 <0.50 <0.50 <1.5	<2.5/<22

WELL ID/	TOC*	DTW	GWE	TPH-G			 E	X	MTBE
WELL ID/ DATE	(ft.)	DI w (ft.)	GWE (ft.)	1PH-G (μg/L)	В (µg/L)	ι (μg/L)	Ε (μg/L)	л (µg/L)	ΜΙΒΕ (μg/L)
	<i>()i</i> , <i>)</i>	()1.)	()4.)	(#5/12)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(#8/12)
MW-3 (cont)									
04/01/03	16.52	11.25	5.27	<50	<0.5	<0.5	<0.5	<1.5	<2.5/<0.5 ²
07/01/03 ³	16.52	11.42	5.10	<50	<0.5	<0.5	<0.5	<0.5	2
10/02/03 ³	16.52	11.74	4.78	<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/05/04 ³	16.52	11.06	5.46	<50	<0.5	<0.5	<0.5	<0.5	<0.5
04/05/04 ³	16.52	11.40	5.12	<50	<0.5	<0.5	<0.5	<0.5	0.6
07/01/04 ³	16.52	11.58	4.94	<50	<0.5	<0.5	<0.5	< 0.5	0.8
10/05/04 ³	16.52	11.60	4.92	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5
01/04/05 ³	16.52	10.95	5.57	<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5
04/14/05 ³	16.52	11.10	5.42	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
07/08/05 ³	16.52	11.29	5.23	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5
10/27/05 ³	16.52	11.68	4.84	<50	< 0.5	<0.5	< 0.5	<0.5	< 0.5
01/12/06 ³	16.52	10.83	5.69	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
04/13/06 ³	16.52	10.65	5.87	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
07/13/06 ³	16.52	11.03	5.49	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/16/06 ³	16.52	11.46	5.06	<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5
01/20/07 ³	16.52	11.39	5.13	<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5
04/11/07 ³	16.52	11.27	5.25	<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5
07/27/07 ³	16.52	11.38	5.14	<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5
10/22/07 ³	16.52	4		<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
11/26/07	16.52	11.35	5.17						
01/21/083	16.52	11.16	5.36	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5
04/04/08 ³	16.52	11.15	5.37	<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5
07/21/08 ³	16.52	11.38	5.14	<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5
10/09/08 ³	16.52	11.49	5.03	<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5
01/21/093	16.52	11.52	5.00	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5
04/29/09	16.52	11.10	5.42	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5
07/23/09 ³	16.52	11.20	5.32	<50	<0.5	<0.5	<0.5	<0.5	<0.5
TRIP BLANK									
QA									
04/05/02				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
07/01/02				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
10/08/02				<100	<2.0	<2.0	<2.0	<5.0	<10
01/11/03				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
04/01/03				<50	< 0.5	<0.5	<0.5	<1.5	<2.5

2200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA WELL ID/ TOC* TPH-G B T E X DTW **GWE** MTBE (ft.) (ft.) $(\mu g/L)$ $(\mu g/L)$ DATE (ft.) $(\mu g/L)$ $(\mu g/L)$ $(\mu g/L)$ $(\mu g/L)$ QA (cont) 07/01/03³ < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------10/02/03³ < 0.5 < 50 < 0.5 < 0.5 < 0.5 < 0.5 ------01/05/04³ < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------ $04/05/04^3$ < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------07/01/043 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------< 0.5 < 0.5 $10/05/04^3$ < 50 < 0.5 < 0.5 < 0.5 ------ $01/04/05^3$ < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------ $04/14/05^3$ < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------07/08/05³ < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------ $10/27/05^3$ < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------ $01/12/06^3$ < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------04/13/06³ <50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------07/13/063 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <50 ------10/16/063 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <50 -------01/20/073 <50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------ $04/11/07^3$ < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------ $07/27/07^3$ < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------ $10/22/07^3$ < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------ $01/21/08^3$ < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------04/04/08³ < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 50 ------ $07/21/08^3$ < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------< 0.5 < 0.5 < 0.5 $10/09/08^3$ < 50 < 0.5 < 0.5 ------<50⁵ < 0.5 $01/21/09^3$ < 0.5 < 0.5 < 0.5 < 0.5 ------04/29/09 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 ------ $07/23/09^3$ <50 < 0.5 < 0.5 < 0.5 <0.5 <0.5 ------

EXPLANATIONS:		
TOC = Top of Casing	B = Benzene	$(\mu g/L) =$ Micrograms per liter
(ft.) = Feet	T = Toluene	= Not Measured/Not Analyzed
DTW = Depth to Water	E = Ethylbenzene	QA = Quality Assurance/Trip Blank
GWE = Groundwater Elevation	X = Xylenes	
TPH-G = Total Petroleum Hydrocarbons as Gasoline	MTBE = Methyl Tertiary But	tyl Ether
 Well development performed. MTBE by EPA Method 8260. 		

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS CHEVRON SERVICE STATION 9-3600 2200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA

WELL ID	DATE	ETHANOL (µg/L)	TBA (μg/L)	MTBE (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)
MW-1	04/05/02		200	370	<2	<2	10
	07/01/02		190	420	<2	<2	9
	10/08/02		110	360	<2	<2	8
	01/11/03		<100	270	<2	<2	7
	04/01/03		22	210	< 0.5	<0.5	5
	07/01/03	<50	26	170	< 0.5	<0.5	5
	10/02/03	<500	2,600	9,800	<5	<5	6
	01/05/04	<50	21	140	< 0.5	<0.5	3
	04/05/04	<50	17	120	< 0.5	<0.5	3
	07/01/04	<50	13	130	< 0.5	<0.5	2
	10/05/04	<50	14	130	< 0.5	<0.5	2
	01/04/05	<50	<5	<0.5	< 0.5	<0.5	< 0.5
	04/14/05	<50	15	61	< 0.5	<0.5	1
	07/08/05	<50	15	71	< 0.5	<0.5	1
	10/27/05	<50	10	76	< 0.5	< 0.5	1
	01/12/06	<50	12	47	< 0.5	< 0.5	< 0.5
	04/13/06	<50	8	36	< 0.5	< 0.5	0.6
	07/13/06	<50	7	44	< 0.5	<0.5	0.7
	10/16/06	<50	6	59	< 0.5	< 0.5	1
	01/20/07	<50	8	47	< 0.5	<0.5	0.8
	04/11/07	<50	9	39	< 0.5	<0.5	0.7
	07/27/07	<50	8	56	< 0.5	< 0.5	0.8
	10/22/07	<50	5	65	< 0.5	<0.5	0.7
	01/21/08	<50	5	48	< 0.5	<0.5	0.7
	04/04/08	<50	6	53	< 0.5	< 0.5	0.6
	07/21/08	<50	11	72	< 0.5	<0.5	0.7
	10/09/08	<50	5	59	< 0.5	<0.5	0.5
	01/21/09	<50	5	31	< 0.5	<0.5	0.5
	04/29/09	<50	5	25	< 0.5	<0.5	< 0.5
	07/23/09	<50	4 J	30	<0.5	<0.5	<0.5
MW-2	04/05/02		<100	<2	<2	<2	<2
	07/01/02		<100	<2	<2	<2	<2
	10/08/02		<100	<2	<2	<2	<2
	01/11/03		<100	<2	<2	<2	<2
	04/01/03	<50	<5	< 0.5	< 0.5	<0.5	< 0.5
	07/01/03	<50	<5	<0.5	<0.5	<0.5	<0.5

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS CHEVRON SERVICE STATION 9-3600 2200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA

WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2 (cont)	10/02/03	<50	<5	<0.5	< 0.5	< 0.5	<0.5
	01/05/04	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	04/05/04	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	07/01/04	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	10/05/04	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	01/04/05	<50	14	87	< 0.5	< 0.5	2
	04/14/05	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	07/08/05	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	10/27/05	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	01/12/06	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	04/13/06	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	07/13/06	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	10/16/06	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	01/20/07	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	04/11/07	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	07/25/07	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	10/22/07	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	01/21/08	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	04/04/08	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	07/21/08	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	10/09/08	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	01/21/09	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	04/29/09	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	07/23/09	<50	<2	<0.5	<0.5	<0.5	<0.5
MW-3	04/05/02		<100	<2	<2	<2	<2
	07/01/02		<100	<2	<2	<2	<2
	10/08/02		<100	<2	<2	<2	<2
	01/11/03		<100	<2	<2	<2	<2
	04/01/03		<5	< 0.5	< 0.5	< 0.5	< 0.5
	07/01/03	<50	<5	2	< 0.5	< 0.5	<0.5
	10/02/03	<50	<5	< 0.5	< 0.5	< 0.5	<0.5
	01/05/04	<50	<5	< 0.5	< 0.5	<0.5	<0.5
	04/05/04	<50	<5	0.6	< 0.5	< 0.5	<0.5
	07/01/04	<50	<5	0.8	< 0.5	<0.5	<0.5
	10/05/04	<50	<5	< 0.5	<0.5	<0.5	<0.5
	01/04/05	<50	<5	< 0.5	<0.5	<0.5	<0.5

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS CHEVRON SERVICE STATION 9-3600 2200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA

WELL ID	DATE	ETHANOL (µg/L)	ТВА (µg/L)	MTBE (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)
MW-3 (cont)	04/14/05	<50	<5	<0.5	<0.5	<0.5	<0.5
	07/08/05	<50	<5	< 0.5	<0.5	< 0.5	<0.5
	10/27/05	<50	<5	< 0.5	<0.5	< 0.5	<0.5
	01/12/06	<50	<5	< 0.5	<0.5	< 0.5	<0.5
	04/13/06	<50	<5	< 0.5	<0.5	< 0.5	<0.5
	07/13/06	<50	<5	<0.5	<0.5	< 0.5	<0.5
	10/16/06	<50	<5	<0.5	<0.5	< 0.5	<0.5
	01/20/07	<50	<2	< 0.5	<0.5	<0.5	<0.5
	04/11/07	<50	<2	< 0.5	<0.5	<0.5	<0.5
	07/27/07	<50	<2	< 0.5	<0.5	<0.5	<0.5
	10/22/07	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	01/21/08	<50	<2	< 0.5	< 0.5	< 0.5	<0.5
	04/04/08	<50	<2	< 0.5	<0.5	<0.5	<0.5
	07/21/08	<50	<2	< 0.5	<0.5	<0.5	<0.5
	10/09/08	<50	<2	<0.5	< 0.5	<0.5	<0.5
	01/21/09	<50	<2	<0.5	< 0.5	<0.5	<0.5
	04/29/09	<50	<2	<0.5	< 0.5	<0.5	<0.5
	07/23/09	<50	<2	<0.5	<0.5	<0.5	<0.5

EXPLANATIONS:

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

TBA = t-Butyl alcohol MTBE = Methyl Tertiary Butyl Ether DIPE = di-Isopropyl ether ETBE = Ethyl t-butyl ether TAME = t-Amyl methyl ether $(\mu g/L)$ = Micrograms per liter -- = Not Analyzed ATTACHMENT A

BLAINE TECH'S JULY 24, 2009 THIRD QUARTER 2009 MONITORING REPORT

July 24, 2009

Chevron Environmental Management Company Aaron Costa 6111 Bollinger Canyon Rd. San Ramon, CA 94583

> Third Quarter 2009 Monitoring at Chevron Service Station 93600 2200 Telgraph Ave. Oakland, CA

Monitoring performed on July 23, 2009

Blaine Tech Services, Inc. Groundwater Monitoring Event 090723-JO3

This submission covers the routine monitoring of groundwater wells conducted on July 23, 2009 at this location. Three monitoring wells were measured for depth to groundwater (DTW). Three monitoring wells were sampled. All sampling activities were performed in accordance with local, state and federal guidelines.

Water levels measurements were collected using an electronic slope indicator or an electronic interface probe. All sampled wells were purged of three case volumes, depending on well recovery, or until water temperature, pH and conductivity stabilized. Purging was accomplished using electric submersible pumps, positive air-displacement pumps or stainless steel, Teflon or disposable bailers. Subsequent sample collection and sample handling was performed in accordance with EPA protocols using disposable bailers. Alternately, where applicable, wells were sampled utilizing no-purge methodology. All reused equipment was decontaminated in an integrated stainless steel sink with de-ionized water supplied Hotsy pressure washer and Liquinox or equivalent.

Samples were delivered under chain-of-custody to Lancaster Laboratories of Lancaster, Pennsylvania, for analysis. Monitoring well purgewater and equipment rinsate water was collected and transported under bill-of-lading to IWM facilities of San Jose, California.

Enclosed documentation from this event includes copies of the Well Gauging Sheet, Well Monitoring Data Sheets, and Chain-of-Custody.

Blaine Tech Services, Inc.'s activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrogeologic conditions or formulation of recommendations was performed.

Please call if you have any questions.

Sincerely,

Potr Cin

Pete Cornish Blaine Tech Services, Inc. Project Manager

attachments: SOP Well Gauging Sheet Individual Well Monitoring Data Sheets Chain of Custody Wellhead Inspection Form Bill of Lading Calibration Log

cc: CRA Attn: Charlotte Evans 5900 Hollis St. Suite A Emeryville, CA 94608

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT CHEVRON SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Chevron comply with Chevron's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Chevron site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. GeoTech). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be

evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed approximately 2 hours to recharge prior to sampling or will be sampled at site departure. All wells requiring off-site traffic control in the public right-of-way, the 80% recharge rule may be disregarded in the interests of Health and Safety. The sample may be collected as soon as there is sufficient water. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Chevron approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using disposable bailers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Duplicate sample is collected, typically from the well containing the most measurable contaminants. The Duplicate sample is labeled the same as the original.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with deionized water.

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 550) or HACH field test kits.

The YSI meters are able to collect accurate in-situ readings. The probe allows downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe is lowered into the water column and the reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS

All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

WELL GAUGING DATA

Project # 090723- 50 3 Date	7123109	Client	chewon
-----------------------------	---------	--------	--------

Site 2700 telegraph ave Oakland ca

Well ID	Time 1046	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)		Immiscibles Removed	Depth to water (ft.)	bottom (ft.)	Survey Point: TOB or	Notes
MW-1	(0,40	2					11.85	20.10		
MW.2	1035	2					11.30	20.06		
MW-1 MW-2 MW-3	1030	2					11.85 11.30 11.20	20,05	7	
	i									
211 211										
					-					
					-					
	-									

CHEVRON WELL MONITORING DATA SHEET

Project #	: 0907	23- 103	3	Station #: 🧧	1-3600		
Sampler:	30			Date: 7[23]			
Weather:	Sonnel			Ambient Air Temperature: zo°			
Well I.D.	: MW.1			Well Diamete	~ ~	6 8	
Total We	ell Depth:	20.1	0	Depth to Wate	er: 11.85		
Depth to	Free Produ	lct:		Thickness of I	Free Product (fe	et):	
Reference	ed to:	PVC	Grade	D.O. Meter (it	freq'd):	YSI HACH	
DTW wit	h 80% Red	charge [(H	leight of Water	Column x 0.20)) + DTW]:	13.5	
Purge Metho	Bailer Disposable Ba	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier	
L.S 1 Case Volum	_(Gals.) X ne Spo	3 ecified Volum	= 3.9 Calculated Volume	Gals. 1"	0.04 4" 0.16 6" 0.37 Othe	0.65	
Time	Temp (°F)	pН	$\begin{array}{c} \text{Cond.} \\ \text{(mS or } \mu S) \end{array}$	Turbidity (NTUs)	Gals. Removed	Observations	
130	68.1	6.73	987	307	1.3	Bran/clovel	
1152	68.1	6.78	118	421	7.6		
1125.	68.2	6-79	699	58	3.9		
Did well o	dewater?	Yes	No	Gallons actual	y evacuated:	3.9	
Sampling	Date: 712	3109	Sampling Time	e: 1140	Depth to Water	: 12.39	
Sample I.D.: MW -				Laboratory:	Lancaster Oth		
Analyzed	for: TPH-	G BTEX	MTBE OXYS	Other: See	COL		
Duplicate	I.D.:		Analyzed for:		ATBE OXYS	Other:	
D.O. (if re	eq'd):		Pre-purge:	mg/L	Post-purge:	mg/L	
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:	mV	

Blaine Tech Services, Inc., 1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

CHEVRON WELL MONITORING DATA SHEET

Project #: 090723 - J03	Station #: 9-3600
Sampler: <u>Jo</u>	Date: 7/23/09
Weather: Sunny	Ambient Air Temperature: 200
Well I.D.: Mw-2	Well Diameter: 2 3 4 6 8
Total Well Depth: 20.06	Depth to Water: (1.30
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: PVC Grade	D.O. Meter (if req'd): YSI HACH
DTW with 80% Recharge [(Height of Water	Column x 0.20) + DTW]: 13.05
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other 1.4 (Gals.) X 3 $= 4.2Calculated Vo1 Case Volume$ Specified Volumes $= 4.2Calculated VoTime Temp (°F) pH (mS or fis)110 BB-3 G-S0 [1991150112 69.2 G-S0 [1991149$	Sampling Method:BailerDisposable BailerExtraction PortDedicated TubingOther:
Did well dewater? Yes	Gallons actually evacuated: 4.2
Sampling Date: 7123109 Sampling Time	:: 1(20 Depth to Water: 1(.77
	Laboratory: Lancaster Other
	Other: See Coc
Duplicate I.D.: Analyzed for:	
D.O. (if req'd): Pre-purge:	^{mg} / _L Post-purge: ^{mg} / _L
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV

Blaine Tech Services, Inc., 1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

CHEVROM WELL MONITORING DATA SHEET

Project #	Project #: 090723 - 503			Station #: 9-3600					
Sampler:	SO			Date: 7(23)	09				
Weather:	Partly c	loudy		Ambient Air 7	8	65° F			
Well I.D.	MW-	3		Well Diameter: 2 3 4 6 8					
Total We	ell Depth:	20.05		Depth to Water: 11,20					
Depth to	Free Prod	uct:		Thickness of I	Free Product (fe	eet):			
Referenc	ed to:	PVO	Grade	D.O. Meter (if	freq'd):	YSI HACH			
DTW wit	th 80% Re	charge [(I	leight of Water	Column x 0.20)) + DTW]:	2.97			
Purge Meth	Bailer Disposable B	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method Other Gals.	Disposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier 0.65 1.47			
1 Case Volun		ecified Volur			0.37 Oth	er radius ² * 0.163			
Time	Temp (°F)	pН	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations			
1046	68.9	6.35	1292	137	1.4	clarely			
1048	68.5	6.39	1250	149	2.8				
650	68.6	6.91	1237	157	4.2				
				т. • •					
Did well a	dewater?	Yes	(No)	Gallons actuall	ly evacuated:	4.2			
Sampling	Date: H	23/09	Sampling Time	e: 1055	Depth to Wate	r: 1(, 4 7			
Sample I.I	D.: <u>M</u> W	-3		Laboratory:	Lancaster Ot	her			
				Other: See	Cor				
Duplicate	I.D.:		Analyzed for:	TPH-G BTEX M	MTBE OXYS	Other:			
D.O. (if re	eq'd):		Pre-purge:	mg/L	Post-purge:	mg/L			
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:	mV			

Blaine Tech Services, Inc., 1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

С	hevron	Environ	mental	Mana	igement Compan		USTODY FOR		Sai	ı R:	ണറ	n (۵:	Q15	83		cr	٦C	of
Chevron Site Number	: <u>93600</u>				Chevron Consulta	nt: CRA	<u>inigor ounyon</u>			1 1 1 1	41110					QUI	RED	<u> </u>	
Chevron Site Global II	D: <u>T060016</u>	1613			Address: <u>5900 Holl</u>		neryville,	14	łł							4-		H	Preservation Codes
Chevron Site Address	: <u>2200 Tel</u>	graph Ave.,			<u>CA</u> Consultant Cont														H =HCL T= Thiosulfate
Oakland, CA					Consultant Phone				SCREEN						GREASE				N =HNO ₃ B = NaOH
Chevron PM: <u>AARON</u>	COSTA				Consultant Project	Consultant Project No. 090723-203							ALKALINITY		~ শ				$S = H_2SO_4 O =$
Chevron PM Phone N	io.: <u>(925)54</u>	3-2961				Sampling Company: Blaine Tech Services			Р. П			STLC 🗆			.1 OIL				Other
☑ Retail and Termina ☑ Construction/Retail		Unit (RTBU) Job		Sampled By (Print):, Grd	ni	OXYGENATESR	ORO [\ 310.1		1413.1			Carl Director	
1					Sampler Signature	: Ale	2	ХХС	0			TTLC	EPA		EPA			100	
Charge Code: NWR NWRTB		600-0-0ML JMBER-0- W			Lancaster Laboratories	Óther Lab	Temp. Blank Check Time Temp.			-	B			≥				82	Special Instructions
(WBS ELEMENTS: SITE ASSESSMENT: A1L		N İMPLEMENTAT	10N: R5L		⊠ Lancaster, PA	· · ·	0500 1°C	MTRFR	Б	MTBE	۸n, N	IETAL		CONDUCTIVITY				No.	Must meet lowest detection limits possible
SITE MONITORING: OML					Lab Contact: Jill Parker	····	1002 <u>2°C</u> 1202 <u>3°C</u> 1402 2°C				Mg, ľ	E 22 N		NDNO		Ы		50	for 8260 Compounds
This is a LEGAL doc CORRE	UMENT. <u>AL</u> CTLY AND	<u>L</u> FIELDS MU COMPLETE	ST BE FILLE <mark>'LY.</mark>	D OUT	2425 New Holland Pike, Lancaster, PA 17601		1600 2.4	NNS FX R	GRO	втех 🗆	e, K,	TITLE		FIC C		THANO	TPH-D	MT	
					Phone No: (717)656-2300	K		N 8260B/GC/MS	m		Ca, F	. 0002	БНП	SPECIFIC	TRPI	Ш.	ЦЦ	al-	
	SAMPL	.E ID						260	0151	0211	010	10/	50.1		18.1	60	015	\mathbf{X}	
Field Point Name	Matrix	Top Depth	Dat (yymn		· Sample Time	# of Containers	Container Type	EPA 8 TPH-0	EPA 8015B	EPA 8021B	EPA 6010 Ca, Fe, K, Mg, Mn, Na	EPA6010/7000 TITLE 22 METALS []	EPA150.11	SM2510B	EPA 418.1 TRPH	EPA 8260	EPA 8015	51	Notes/Comment s
MW-1	W		0907	-23	1940 1140	Ģ	VOAS	x	X							×			
MW-2			1		1120		1	×	×							k			······································
MW·3	2		ľ		1055	5		X	×							X			
QA	T		J	9	1100	2	6		X									\mathbf{x}	
																			·
					3	•													
	Com Com	400	Date/Time:	600	Relinquished To	Company		160	20	Sta Hou	narou ndaro urs⊡		2 Othe	er□	ursロ			ours[
Relinguished By	Com	pany	Date/Time		Rélinquished To	Compañy	Date/Time			Sar	nple	Integr	rity: ((Cheo	ck by	lab o	on ar	rival)	
Relinguished By	Com	pany	Date/Time		Relinguished To	Company	Date/Time			Inta	ict:		On l	ce:		Te COC	mp: _	<u></u>	
						Company	DUCHTIC								(500	#		

WELLHEAD INSPECTION CHECKLIST

Page _____ of _____

Client	nerron						Date	712	3109	
Site Address	2200	teles	mph An	IR	Oaklan	d.	CA			
Site Address Job Number	09077	23-104	3			Tech	nician _.	JO		
Well ID	Well Inspected - No Corrective Action Required	WELL IS SECURABLE BY DESIGN (12"or less)	WELL IS CLEARLY MARKED WITH	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
MW-1		×	×					×		
MW-2	*	Y.	K					r		
MW-1 MW-2 MW-3	x									
6										
			· · · · · · · · · · · · · · · · · · ·		-					
			-							
:										
-										
NOTES: MW·Z	Muv = 1 2(2	uz tabs	Tabe B Stripper	sok <u>e</u> I	1 (12	Tabs	stripp	red.		
• • • • • • • • • • • • • • • • • • •										

SOURCE RECORD **BILL OF LADING** FOR NON-HAZARDOUS PURGEWATER RECOVERED FROM GROUNDWATER WELLS AT CHEVRON FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY IWM TO THEIR FACILITY IN SAN JOSE, CALIFORNIA.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Ave. San Jose CA (408)573-0555). Blaine Tech Services, Inc. is authorized by CHEVRON PRODUCTS COMPANY (CHEVRON) to recover, collect, apportion into loads, and haul the Non-Hazardous Well Purgewater that is drawn from wells at the CHEVRON facility indicated below and to deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one Chevron facility to BTS; from one Chevron facility to BTS via another Chevron facility; or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of CHEVRON.

This **Source Record BILL OF LADING** was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

9-3600		Aaron Coster	
CHEVRON #		Chevron Engineer	<u></u>
2200 Telepraph street number	Ark street name	Oubland	state
	oucountaine	City	31216

WELL I.D. GALS.	WELL I.D. GALS.
MW-1 / 3.9	
MW-2 , 4.2	/
MW-3 , U.Z.	
//	/
/	/
/	/
//	//
/ 12,3 added equip. rinse water_/ 1.0	/ any other adjustments_/
TOTAL GALS. RECOVERED 13.0	BTS vehicle #6
BTS event # 090723 • 503 signature	time date
* * * * * * * * * * * * * * * * * * *	time date
unloaded by signature	1600 7 1 23 109

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAI	PROJECT NAME Cherron 9-3600			PROJECT NUMBER 090723- Jo3						
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS			
myron L utta mehr II	6222814	1020 9123109	PH 7, 10, 4 390000	4.01, 10.03, 4.0 3876 us	yes	20° F	92			
				¥						

ATTACHMENT B

LANCASTER LABORATORIES' AUGUST 5, 2009 ANALYTICAL REPORT

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

August 05, 2009

SAMPLE GROUP

The sample group for this submittal is 1154949. Samples arrived at the laboratory on Saturday, July 25, 2009. The PO# for this group is 0015040460 and the release number is COSTA.

Client Description MW-1-W-090723 NA Water MW-2-W-090723 NA Water MW-3-W-090723 NA Water QA-T-090723 NA Water Lancaster Labs Number 5732960 5732961 5732962 5732963

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Chevron c/o CRA COPY TO ELECTRONIC CRA COPY TO Attn: Report Contact

Attn: Charlotte Evans

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300

Respectfully Submitted,

Tracy a. Cole Tracy A. Cole Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample	No. WW 5732960	Group No. 1154949 CA
MW-1-W-090723 NA Water Facility# 93600 BTST 2200 Telegraph Ave-Oakland T06	00161613 MW-1	
Collected: 07/23/2009 11:40	by JO	Account Number: 10991
Submitted: 07/25/2009 09:30 Reported: 08/05/2009 at 13:54 Discard: 09/05/2009		Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

TAO01

Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
5 8260B GC/MS	Volatiles	ug/l	ug/l	ug/l	
t-Amyl methyl ether	994-05-8	N.D.	0.5	1	1
Benzene	71-43-2	N.D.	0.5	1	1
t-Butyl alcohol	75-65-0	4 J	2	5	1
Ethanol	64-17-5	N.D.	50	250	1
Ethyl t-butyl ether	637-92-3	N.D.	0.5	1	1
Ethylbenzene	100-41-4	N.D.	0.5	1	1
di-Isopropyl ether	108-20-3	N.D.	0.5	1	1
Methyl Tertiary Butyl Ether	1634-04-4	30	0.5	1	1
Toluene	108-88-3	N.D.	0.5	1	1
Xylene (Total)	1330-20-7	N.D.	0.5	1	1
5 8015B GC Vol	latiles	ug/l	ug/l	ug/l	
TPH-GRO N. CA water C6-C12	n.a.	1,900	50	100	1
	5 8260B GC/MS t-Amyl methyl ether Benzene t-Butyl alcohol Ethanol Ethyl t-butyl ether Ethylbenzene di-Isopropyl ether Methyl Tertiary Butyl Ether Toluene Xylene (Total) 5 8015B GC Voi	6 8260B GC/MS Volatiles t-Amyl methyl ether 994-05-8 Benzene 71-43-2 t-Butyl alcohol 75-65-0 Ethanol 64-17-5 Ethyl t-butyl ether 637-92-3 Ethylbenzene 100-41-4 di-Isopropyl ether 108-20-3 Methyl Tertiary Butyl Ether 1634-04-4 Toluene 108-88-3 Xylene (Total) 1330-20-7	Analysis Name CAS Number Result 5 8260B GC/MS Volatiles ug/l t-Amyl methyl ether 994-05-8 N.D. Benzene 71-43-2 N.D. t-Butyl alcohol 75-65-0 4 J Ethanol 64-17-5 N.D. Ethyl t-butyl ether 637-92-3 N.D. Ethyl t-butyl ether 100-41-4 N.D. Ethyl topolyl ether 108-20-3 N.D. Methyl Tertiary Butyl Ether 1634-04-4 30 Toluene N.D. Xylene (Total) 1330-20-7 N.D. 5 8015B GC Volatiles ug/l Lage Lage Lage	Analysis NameCAS NumberAs Received ResultMethod Detection Limit*6 8260BGC/MS Voltilesug/lug/lt-Amyl methyl ether994-05-8N.D.0.5Benzene71-43-2N.D.0.5t-Butyl alcohol75-65-04JEthanol64-17-5N.D.50Ethyl t-butyl ether637-92-3N.D.0.5Ethyl benzene100-41-4N.D.0.5di Isopropyl ether108-20-3N.D.0.5Methyl Tertiary Butyl Ether1634-04-4300.5Nolene108-88-3N.D.0.5Xylene (Total)0.50.50.5BO15BGC Volatilesug/l	Analysis NameCAS NumberAs Received ResultMethod Detection Limit*Limit of Quantitation58260BGC/MS Volatilesug/lug/lug/lt-Amyl methyl ether994-05-8N.D.0.51Benzene71-43-2N.D.0.51t-Butyl alcohol75-65-04J2Ethanol64-17-5N.D.50250Ethyl t-butyl ether637-92-3N.D.0.51di-Isopropyl ether100-41-4N.D.0.51di-Isopropyl ether108-20-3N.D.0.51Methyl Tertiary Butyl Ether1634-04-4300.51Toluene1330-20-7N.D.0.51Xylene (Total)GC Volatilesug/lug/lug/l

General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	BTEX+5 Oxygenates+ETOH	SW-846 8260B	1	Z092104AA	07/30/2009 05:08	Michael A Ziegler	
	GC/MS VOA Water Prep	SW-846 5030B	1	Z092104AA Z092104AA	07/30/2009 05:08	5	
	, 1		1			2	1
	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09210A08A	07/29/2009 17:24	Fanella S Zamcho	1
01146	GC VOA Water Prep	SW-846 5030B	1	09210A08A	07/29/2009 17:24	Fanella S Zamcho	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5732961	Group No. 1154949 CA
MW-2-W-090723 NA Water Facility# 93600 BTST 2200 Telegraph Ave-Oakland T0600161613 MW-2	
Collected: 07/23/2009 11:20 by JO	Account Number: 10991
Submitted: 07/25/2009 09:30 Reported: 08/05/2009 at 13:54 Discard: 09/05/2009	Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

TAO02

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SW-84	6 8260B GC/MS	Volatiles	ug/l	ug/l	ug/l	
06059	t-Amyl methyl ether	994-05-8	N.D.	0.5	1	1
06059	Benzene	71-43-2	N.D.	0.5	1	1
06059	t-Butyl alcohol	75-65-0	N.D.	2	5	1
06059	Ethanol	64-17-5	N.D.	50	250	1
06059	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1	1
06059	Ethylbenzene	100-41-4	N.D.	0.5	1	1
06059	di-Isopropyl ether	108-20-3	N.D.	0.5	1	1
06059	Methyl Tertiary Butyl Ether	r 1634-04-4	N.D.	0.5	1	1
06059	Toluene	108-88-3	N.D.	0.5	1	1
06059	Xylene (Total)	1330-20-7	N.D.	0.5	1	1
SW-84	6 8015B GC Vo	latiles	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06059	BTEX+5 Oxygenates+ETOH	SW-846 8260B	1	Z092104AA	07/30/2009 05:34	Michael A Ziegler	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z092104AA	07/30/2009 05:34	Michael A Ziegler	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09210A08A	07/29/2009 18:13	Fanella S Zamcho	1
01146	GC VOA Water Prep	SW-846 5030B	1	09210A08A	07/29/2009 18:13	Fanella S Zamcho	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5732962	Group No. 1154949 CA
MW-3-W-090723 NA Water Facility# 93600 BTST 2200 Telegraph Ave-Oakland T0600161613 MW-3	
Collected: 07/23/2009 10:55 by JO	Account Number: 10991
Submitted: 07/25/2009 09:30 Reported: 08/05/2009 at 13:54 Discard: 09/05/2009	Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

TAO03

ution tor

General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
				BOOOLO133			
	BTEX+5 Oxygenates+ETOH	SW-846 8260B	T	Z092101AA	07/29/2009 08:31	Ginelle L Feister	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z092101AA	07/29/2009 08:31	Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09210A08A	07/29/2009 18:37	Fanella S Zamcho	1
01146	GC VOA Water Prep	SW-846 5030B	1	09210A08A	07/29/2009 18:37	Fanella S Zamcho	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5732963	Group No. 1154949 CA
QA-T-090723 NA Water Facility# 93600 BTST 2200 Telegraph Ave-Oakland T0600161613 QA	
Collected: 07/23/2009 11:00	Account Number: 10991
Submitted: 07/25/2009 09:30 Reported: 08/05/2009 at 13:54 Discard: 09/05/2009	Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

TAOQA

Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
8260B	GC/MS Vola	tiles	ug/l	ug/l	ug/l	
Benzene		71-43-2	N.D.	0.5	1	1
Ethylbenzene		100-41-4	N.D.	0.5	1	1
Methyl Tertiary Buty	yl Ether	1634-04-4	N.D.	0.5	1	1
Toluene		108-88-3	N.D.	0.5	1	1
Xylene (Total)		1330-20-7	N.D.	0.5	1	1
8015B	GC Volatil	es	ug/l	ug/l	ug/l	
TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	100	1
	8260B Benzene Ethylbenzene Methyl Tertiary Buty Toluene Xylene (Total) 8015B	8260B GC/MS Vola Benzene Ethylbenzene Methyl Tertiary Butyl Ether Toluene Xylene (Total)	8260B GC/MS Volatiles Benzene 71-43-2 Ethylbenzene 100-41-4 Methyl Tertiary Butyl Ether 1634-04-4 Toluene 108-88-3 Xylene (Total) 1330-20-7 8015B GC Volatiles	Analysis NameCAS NumberResult8260BGC/MS Volatilesug/lBenzene71-43-2N.D.Ethylbenzene100-41-4N.D.Methyl Tertiary Butyl Ether1634-04-4N.D.Toluene108-88-3N.D.Xylene (Total)1330-20-7N.D.8015BGC Volatilesug/l	Analysis NameCAS NumberAs Received ResultMethod Detection Limit*8260BGC/MS Volatilesug/lug/lBenzene71-43-2N.D.0.5Ethylbenzene100-41-4N.D.0.5Methyl Tertiary Butyl Ether1634-04-4N.D.0.5Toluene108-88-3N.D.0.5Xylene (Total)1330-20-7N.D.0.58015BGC Volatilesug/lug/l	Analysis NameCAS NumberAs Received ResultMethod Detection Limit*Limit of Quantitation8260BGC/MS Volatilesug/lug/lug/lBenzene71-43-2N.D.0.51Ethylbenzene100-41-4N.D.0.51Methyl Tertiary Butyl Ether1634-04-4N.D.0.51Toluene108-88-3N.D.0.51Xylene (Total)1330-20-7N.D.0.518015BGC Volatilesug/lug/lug/l

General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	D092113AA	07/31/2009 06:57	Michael A Ziegler	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D092113AA	07/31/2009 06:57	Michael A Ziegler	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09210A08A	07/29/2009 12:56	Fanella S Zamcho	1
01146	GC VOA Water Prep	SW-846 5030B	1	09210A08A	07/29/2009 12:56	Fanella S Zamcho	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Reported: 08/05/09 at 01:54 PM Group Number: 1154949

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank <u>LOQ</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: D092113AA	Sample num	ber(s) · 5	732963						
Benzene	N.D.	0.5	1	uq/l	110		80-116		
Ethylbenzene	N.D.	0.5	1	ug/l	107		80-113		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	92		78-117		
Toluene	N.D.	0.5	1	ug/l	109		80-115		
Xylene (Total)	N.D.	0.5	1	ug/l	109		81-114		
Batch number: Z092101AA	Sample num	ber(s): 5'	732962						
t-Amyl methyl ether	N.D.	0.5	1	ug/l	89		78-117		
Benzene	N.D.	0.5	1	ug/l	100		80-116		
t-Butyl alcohol	N.D.	2.	5	ug/l	110		74-116		
Ethanol	N.D.	50.	250	ug/l	111		40-158		
Ethyl t-butyl ether	N.D.	0.5	1	ug/l	90		75-118		
Ethylbenzene	N.D.	0.5	1	ug/l	96		80-113		
di-Isopropyl ether	N.D.	0.5	1	ug/l	112		71-124		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	110		78-117		
Toluene	N.D.	0.5	1	ug/l	96		80-115		
Xylene (Total)	N.D.	0.5	1	ug/l	97		81-114		
Batch number: Z092104AA	Sample numl	ber(s): 5'	732960-573	2961					
t-Amyl methyl ether	N.D.	0.5	1	ug/l	86		78-117		
Benzene	N.D.	0.5	1	ug/l	96		80-116		
t-Butyl alcohol	N.D.	2.	5	ug/l	98		74-116		
Ethanol	N.D.	50.	250	ug/l	80		40-158		
Ethyl t-butyl ether	N.D.	0.5	1	ug/l	87		75-118		
Ethylbenzene	N.D.	0.5	1	ug/l	96		80-113		
di-Isopropyl ether	N.D.	0.5	1	ug/l	90		71-124		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	89		78-117		
Toluene	N.D.	0.5	1	ug/l	95		80-115		
Xylene (Total)	N.D.	0.5	1	ug/l	95		81-114		
Batch number: 09210A08A	Sample num			2963					
TPH-GRO N. CA water C6-C12	N.D.	50.	100	ug/l	109	109	75-135	0	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u>	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: D092113AA Benzene	Sample 110	number(s) 102	: 5732963 80-126	UNSPK: 7	P73293 30	31			

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Reported: 08/05/09 at 01:54 PM Group Number: 1154949

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u> Ethylbenzene Methyl Tertiary Butyl Ether Toluene Xylene (Total)	MS <u>%REC</u> 105 81 108 108	MSD <u>%REC</u> 102 91 103 103	MS/MSD <u>Limits</u> 77-125 72-126 80-125 79-125	RPD 3 12 5 5	RPD <u>MAX</u> 30 30 30 30	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: Z092101AA	Sample	number(s)	: 5732962	UNSPK:	57329	62			
t-Amyl methyl ether	90	90	75-122	0	30				
Benzene	106	106	80-126	0	30				
t-Butyl alcohol	109	106	67-119	3	30				
Ethanol	96	113	37-164	16	30				
Ethyl t-butyl ether	92	92	74-122	0	30				
Ethylbenzene	104	104	77-125	0	30				
di-Isopropyl ether	110	117	70-129	7	30				
Methyl Tertiary Butyl Ether	113	113	72-126	0	30				
Toluene	104	102	80-125	1	30				
Xylene (Total)	104	104	79-125	0	30				
Batch number: Z092104AA	Sample	number(s)	: 5732960	-573296	1 UNSP	K: P732942			
t-Amyl methyl ether	87	91	75-122	4	30				
Benzene	105	106	80-126	1	30				
t-Butyl alcohol	98	96	67-119	2	30				
Ethanol	81	114	37-164	34*	30				
Ethyl t-butyl ether	90	92	74-122	2	30				
Ethylbenzene	105	108	77-125	2	30				
di-Isopropyl ether	94	96	70-129	3	30				
Methyl Tertiary Butyl Ether	90	92	72-126	2	30				
Toluene	103	105	80-125	2	30				
Xylene (Total)	104	106	79-125	2	30				
Batch number: 09210A08A	Sample	number(s)	: 5732960	-573296	3 UNSP	K: 5732961			
TPH-GRO N. CA water C6-C12	118		63-154						

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX+MTBE by 8260B

Batch num	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5732963	106	105	97	100
Blank	108	105	97	99
LCS	108	102	99	104
MS	106	105	99	104
MSD	107	104	100	105
Limits:	80-116	77-113	80-113	78-113

Analysis Name: BTEX+5 Oxygenates+ETOH

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ΡМ

Page 3 of 3

Quality Control Summary

Client	Nan	ne:	Chevro	on	
Reporte	ed:	08/	05/09	at	01:54

Group Number: 1154949

Surrogate Quality Control

	200010122	Barrogace g	darrey concror	
Batch numb	per: Z092101AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
5732962	104	102	102	92
Blank	104	101	103	93
LCS	104	104	103	97
MS	103	102	102	96
MSD	103	103	102	96
Limits:	80-116	77-113	80-113	78-113
	Iame: BTEX+5 Oxygenates+ET per: Z092104AA	ОН		
Batch num	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
5732960	106	103	109	103
5732961	108	103	110	96
Blank	108	103	110	96
LCS	110	108	110	100
MS	108	105	109	105
MSD	108	106	109	106
Limits:	80-116	77-113	80-113	78-113
	Jame: TPH-GRO N. CA water	C6-C12		
Batch numb	per: 09210A08A			
	Trifluorotoluene-F			
5732960	106			
5732961	98			
5732962	105			
5732963	284*			
Blank	105			
LCS	109			
LCSD	110			
MS	106			
Limits:	63-135			

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

hevron Site Number	03600		menta	I Walla		nt Compar			llinger	Canyon	Ra.∎	i Sai	п ка	mo								<u>(of \</u>
						on Consulta	int: <u>CR/</u>	<u>A</u>			14	H		1	- í	ANAL	.TSE		QUII Y		¥	Preservation Codes
hevron Site Global II	J. <u>1060016</u>	01013			Addres	SS: <u>5900 Holl</u>	<u>lis St. St</u>	uite A 🛓	meryville										•			
Chevron Site Address: 2200 Telgraph Ave.					CAConsultant Contact: Charlotte Evans						1 -				Ū,						H =HCL T= Thiosulfate	
Oakland, CA					Consultant Phone No. 510-420-3351						HC SCREEN						GREASE				N ≃HNO₃ B = NaOH	
Chevron PM: AARON COSTA					Consultant Project No. 090723-103						1 20				KAL		- তঠ				S = H ₂ SO ₄ O = Other	
Chevron PM Phone No.: (925)543-2961					Sampling Company: Blaine Tech Services					S II				STLC D			1 OIL			ſ	acct * 10991	
I Retail and Terminal Business Unit (RTBU) Job					Sampled By (Print):, Grha					ORO I				EPA 310.1		413.1			_	1154949		
Construction/Retail	Jop				Sampl	er Signature	e:	100	5		XVGENATES	Ö				EPA		EPA			60	son 06# 5732960-6
Charge Code: NWRTB-0093600-0-OML NWRTB 00SITE NUMBER-0-WBS (WBS ELEMENTS: SITE ASSESSMENT: A1L REMEDIATION IMPLEMENTATION: R5L OPERATION MAINTENANCE & MONITORING: M1L THIS IS A LEGAL DOCUMENT. <u>ALL</u> FIELDS MUST BE FILLED OUT CORRECTLY AND COMPLETELY.					Lancaster Other Lab Temp. Bia Laboratories			Blank Check Temp.				Na			ΛTΥ			:	28)	Special Instructions Must meet lowest		
				ING: M1L	⊠ Lanca Lab Cont	aster, PA act: Jill Parker			<u>()500</u> 1000 1100	- Pec	MTRFX	X	MTBE	Mg, Mn, Na	22 META		NDUCTI		_	_	BE	detection limits possible for 8260 Compounds
						 		1402	2~	EPA 8260B/GC/MS TPH-G IT BTEX EV	B GRO	in l	Ca, Fe, K,	EPA6010/7000 TITLE	EPA150.1 PH 🗆	SM2510B SPECIFIC CONDUCTIVITY	EPA 418.1 TRPH	ETHA	TPH-D	+ MTI		
	SAMPL	.E ID				<u> </u>				· · · · · · · · · · · · · · · · · · ·		3015	8021B	6010	010/	50.1	10B	118.1	260	3015	影	
Field Point Name	Matrix	Top Depth		ate I md d)	Sample Time		# of Containers		Container Type		EPA 8	EPA 8015B	EPA 6	EPA	EPA6	EPA1	SM25	EPA 4	EPA 8260	-	51	Notes/Comment s
w-1	Ŵ		090	723	44	40 1140	G	>	100	S	x	X						_	٢		-	
<u>nw-1</u>				1		10			1		×	x						_	٢			<u> </u>
w·3	6				101	55					X	X							×			
LA	Т				110	-		2				X						[\mathbf{x}	
								ł			1								+	-1	4	<u>. </u>
						<u>.</u>	<u>+</u>	 {			-										+	
				·····							-			-						\neg		
																			1			
						· ·····								ſ							\neg	
								i												\neg		
elinquished By	Com	pany C) Date/Time		Relingui	shed To	LCo	mpany	Date/	Time		L	Turna	arou	l nd Ti	me:						
a B	ĸ		4123/09	LAN	Λ. «	- (Sender				123/09	16	00	Stan Hour	lard	¥		Hou	ırs□	4	48 hc	ours⊡] 72
inguished By	Com		Date/Time		Relinqui	shed To	, Co	mpany	Date/			~	Sam					k by l	ab o	n arr	ival)	
	Bis	7	124/09	1130	7	1 Hai	+ L	II		1/21/09	ו וישנ	5	Intac	•		On lo	<u>у</u> е.	Ú	Ton	nn.	-	
Relinquished By / Company Date/Time			<u> </u>	Relinquished To Company Date/Time					Intact: On Ice: Temp: COC # COC #													
1 h alta	K U	I I	515	7/24/05	1/Fe	d bx																

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D. TNTC IU umhos/cm C Cal meq g ug	none detected Too Numerous To Count International Units micromhos/cm degrees Celsius (diet) calories milliequivalents gram(s) microgram(s) milliter(c)	BMQL MPN CP Units NTU F Ib. kg mg I	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s)
ml m3	milliliter(s) cubic meter(s)	ul fib >5 um/ml	microliter(s) fibers greater than 5 microns in length per ml

 less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers

- **A** TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- **N** Presumptive evidence of a compound (TICs only)
- **P** Concentration difference between primary and confirmation columns >25%
- **U** Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- **E** Estimated due to interference
- **M** Duplicate injection precision not met
- **N** Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.