

RECEIVED

9:02 am, Mar 25, 2010

Alameda County
Environmental Health

Aaron CostaProject Manager
Marketing Business Unit

Chevron Environmental Management Company 6111 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 543-2961 Fax (925) 543-2324 acosta@chevron.com

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Service Station No. 9-3600

2200 Telegraph Avenue

Oakland, CA

I have reviewed the attached report dated October 19, 2009.

I agree with the conclusions and recommendations presented in the referenced report. This information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga Rovers Associates, upon who assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Aaron Costa Project Manager

Attachment: Report

5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

http://www.craworld.com

October 19, 2009 Reference No. 311965

Mr. Mark Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Second Quarter 2009 Groundwater Monitoring and Sampling Report

Chevron Service Station 9-3600

2200 Telegraph Avenue Oakland, California

Fuel Leak Case No. RO0002435

Dear Mr. Detterman:

Conestoga-Rovers & Associates is submitting this *Second Quarter 2009 Groundwater Monitoring* and *Sampling Report* for the site referenced above on behalf of Chevron Environmental Management Company (Chevron).

Groundwater monitoring and sampling was performed by Blaine Tech Services (Blaine Tech) of San Jose, California. Groundwater monitoring and sampling data from this event are presented in Figures 2 and 3, respectively. Groundwater monitoring and sampling data are summarized in Tables 1 and 2. Blaine Tech's May 1, 2009 Second Quarter Monitoring report is presented as Attachment A. Groundwater samples were sent to Lancaster Laboratories (Lancaster) of Pennsylvania for chemical analysis. Lancaster's May 11, 2009 report is included as Attachment B.

Equal Employment Opportunity Employer

October 19, 2009 Reference No. 311965

Please contact Charlotte Evans at (510) 420-3351 if you have any questions or require additional information.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Charlotte Evans

Brandon S. Wilken, P.G. #7564

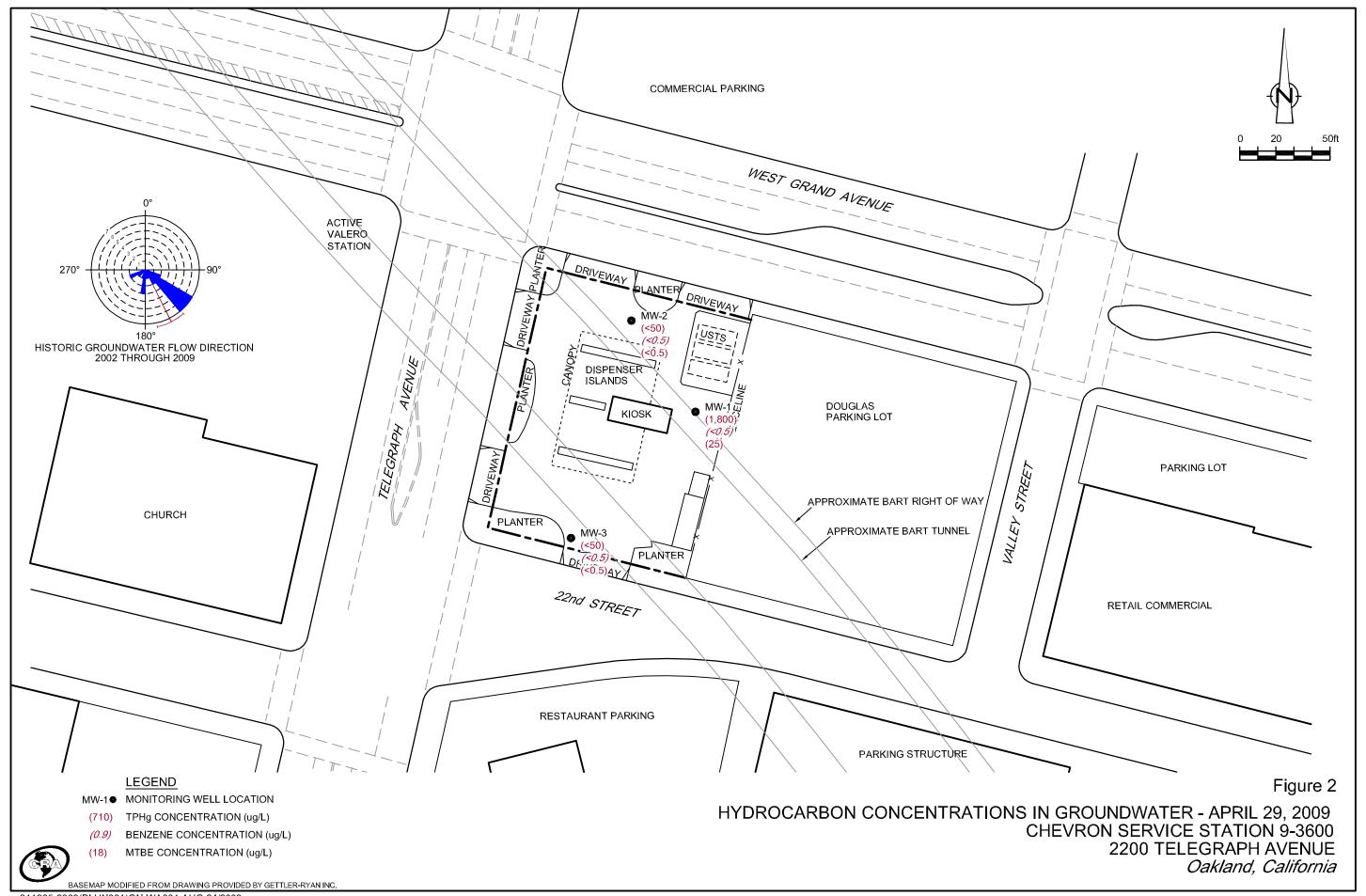
IH/doh/3

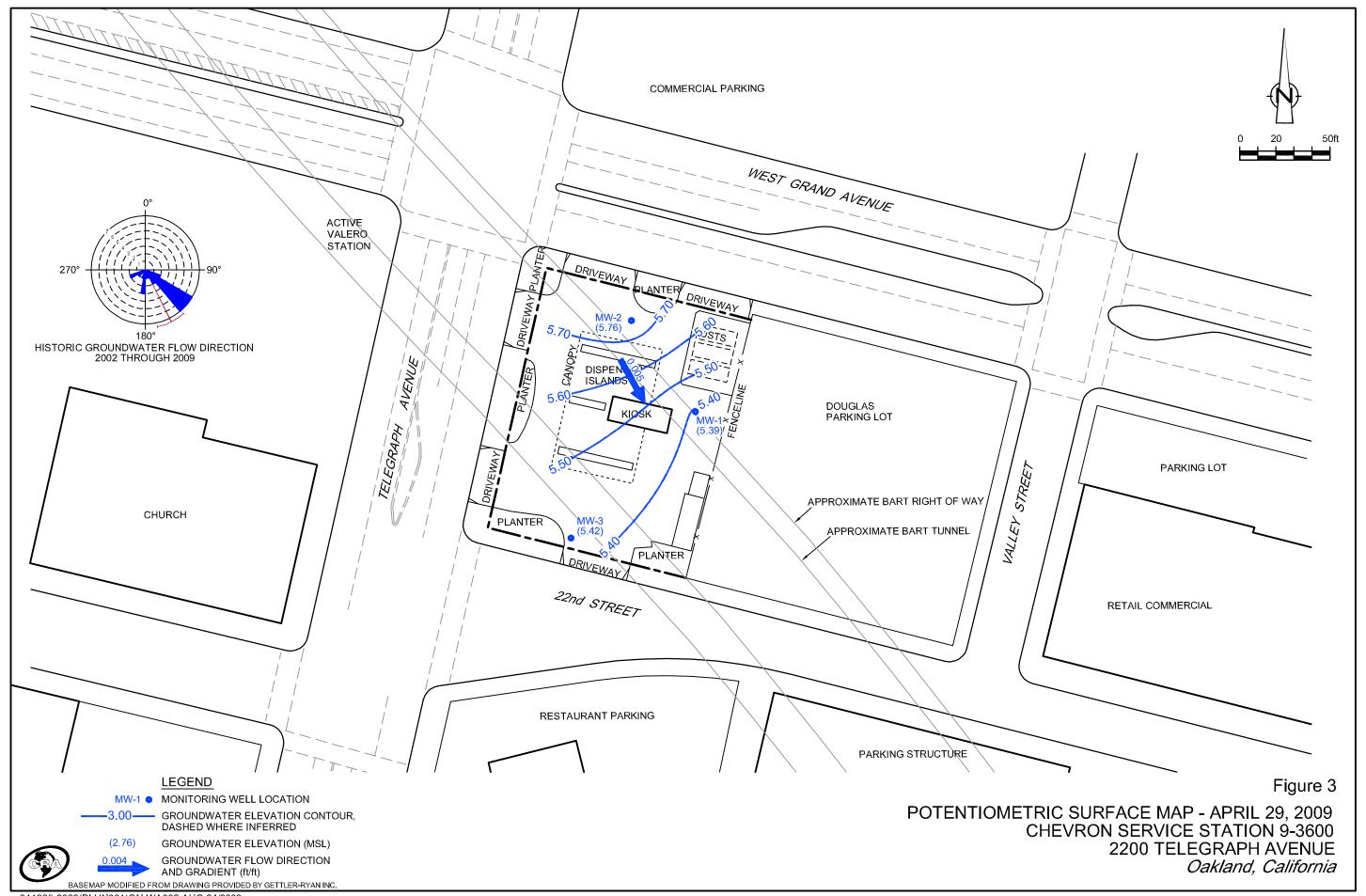
Enc.

Figure 1 Site Vicinity Map

Figure 2 Hydrocarbon Concentration Map Figure 3 Potentiometric Surface Map

Table 1 Groundwater Monitoring Data and Analytical Results
 Table 2 Groundwater Analytical Results – Oxygenate Compounds


Attachment A Blaine Tech's May 1, 2009 Second Quarter Monitoring Report
Attachment B Lancaster Laboratories May 11, 2009 Analytical Report


cc: Mr. Aaron Costa, Chevron Environmental Management Company

FIGURES

Chevron Service Station 9-3600

TABLES

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-3600
2200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA

WELL ID/ DATE	TOC*	DTW (ft.)	GWE (ft.)	TPH-G (µg/L)	Β (μg/L)	Τ (μg/L)	Ε (μg/L)	X (µg/L)	MTBE (µg/L)
	(ft.)	() [.)	(71.)	(µg/L)	(µg/L)	(μχ)	(µg/L)	(µg/L)	(µgr)
MW-1									
$04/05/02^1$	17.07	11.68	5.39	2,000	5.0	<1.0	14	8.4	$310/370^2$
07/01/02	17.07	12.01	5.06	2,000	8.9	<1.0	97	31	$370/420^2$
10/08/02	17.07	12.20	4.87	1,400	9.2	<10	<i>7</i> 5	20	$440/360^2$
01/11/03	17.07	11.13	5.94	1,600	7.1	0.51	53	13	$280/270^2$
04/01/03	17.07	11.53	5.54	1,800	5.2	0.6	25	9.1	$210/210^2$
$07/01/03^3$	17.07	11.95	5.12	2,000	4	< 0.5	31	12	170
$10/02/03^3$	17.07	12.25	4.82	480	<5	<5	<5	<5	9,800
$01/05/04^3$	17.07	11.05	6.02	1,700	3	< 0.5	27	4	140
$04/05/04^3$	17.07	11.63	5.44	1,500	2	< 0.5	21	0.6	120
$07/01/04^3$	17.07	12.08	4.99	1,500	1	< 0.5	3	< 0.5	130
$10/05/04^3$	17.07	12.21	4.86	1,400	< 0.5	< 0.5	1	0.5	130
$01/04/05^3$	17.07	11.15	5.92	1,500	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
$04/14/05^3$	17.07	11.20	5.87	2,100	< 0.5	< 0.5	4	0.5	61
$07/08/05^3$	17.07	11.38	5.69	1,800	< 0.5	< 0.5	0.8	< 0.5	71
$10/27/05^3$	17.07	12.24	4.83	800	< 0.5	< 0.5	<0.5	< 0.5	76
$01/12/06^3$	17.07	11.10	5.97	1,600	< 0.5	< 0.5	4	< 0.5	47
$04/13/06^3$	17.07	10.81	6.26	1,500	< 0.5	< 0.5	1	< 0.5	36
$07/13/06^3$	17.07	11.18	5.89	990	< 0.5	< 0.5	<0.5	< 0.5	44
$10/16/06^3$	17.07	12.18	4.89	780	< 0.5	< 0.5	<0.5	< 0.5	59
$01/20/07^3$	17.07	11.91	5.16	890	< 0.5	< 0.5	<0.5	< 0.5	47
$04/11/07^3$	17.07	11.87	5.20	1,900	< 0.5	< 0.5	4	< 0.5	39
$07/27/07^3$	17.07	11.91	5.16	1,500	< 0.5	< 0.5	0.6	< 0.5	56
$10/22/07^3$	17.07	4		610	< 0.5	< 0.5	<0.5	< 0.5	65
11/26/07	17.07	11.96	5.11						
$01/21/08^3$	17.07	11.78	5.29	1,100	< 0.5	< 0.5	0.8	< 0.5	48
$04/04/08^3$	17.07	11.83	5.24	1,600	< 0.5	< 0.5	<0.5	< 0.5	53
$07/21/08^3$	17.07	12.10	4.97	950	< 0.5	< 0.5	< 0.5	< 0.5	72
$10/09/08^3$	17.07	12.17	4.90	960	< 0.5	< 0.5	< 0.5	< 0.5	59
$01/21/09^3$	17.07	12.15	4.92	840	< 0.5	< 0.5	<0.5	< 0.5	31
04/29/09	17.07	11.68	5.39	1,800	<0.5	<0.5	3	<0.5	25

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS CHEVRON SERVICE STATION 9-3600 2200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-G	B	T	E	X	MTBE
DATE	(ft.)	(ft.)	(ft.)	1F11-0 (μg/L)	μg/L)	μg/L)	L (μg/L)	Λ (μg/L)	(μg/L)
	y -/	y 5-2	y ** /		V.G	y <i>y</i>		1.0	V 0
MW-2	16.02	11 17	F 6F	~ F0	<0.F0	<0.F0	<0.F0	-1 F	12 5 / 122
$04/05/02^{1}$	16.82	11.17	5.65	<50	<0.50	<0.50	<0.50	<1.5	$<2.5/<2^2$
07/01/02	16.82	11.36	5.46	<50	<0.50	0.57	0.52	<1.5	$<2.5/<2^2$
10/08/02	16.82	11.57	5.25	<100	<2.0	<2.0	<2.0	<5.0	<10/<2 ²
01/11/03	16.82	10.94	5.88	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ²
04/01/03	16.82	11.03	5.79	<50	< 0.5	<0.5	<0.5	<1.5	<2.5/<0.5 ²
$07/01/03^3$	16.82	11.30	5.52	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
$10/02/03^3$	16.82	11.63	5.19	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
$01/05/04^3$	16.82	10.82	6.00	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
$04/05/04^3$	16.82	11.21	5.61	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5
$07/01/04^3$	16.82	11.46	5.36	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
$10/05/04^3$	16.82	11.57	5.25	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5
$01/04/05^3$	16.82	10.87	5.95	<50	0.5	< 0.5	8	0.9	87
$04/14/05^3$	16.82	10.72	6.10	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$07/08/05^3$	16.82	11.16	5.66	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$10/27/05^3$	16.82	11.59	5.23	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$01/12/06^3$	16.82	10.68	6.14	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$04/13/06^3$	16.82	10.37	6.45	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$07/13/06^3$	16.82	10.68	6.14	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$10/16/06^3$	16.82	11.48	5.34	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$01/20/07^3$	16.82	11.27	5.55	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$04/11/07^3$	16.82	11.20	5.62	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$07/27/07^3$	16.82	11.27	5.55	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$10/22/07^3$	16.82	4		<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/26/07	16.82	11.31	5.51						
$01/21/08^3$	16.82	11.08	5.74	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$04/04/08^3$	16.82	11.12	5.70	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$07/21/08^3$	16.82	11.56	5.26	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$10/09/08^3$	16.82	11.73	5.09	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$01/21/09^3$	16.82	11.55	5.27	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
04/29/09	16.82	11.06	5.76	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS CHEVRON SERVICE STATION 9-3600 2200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA

WELL ID/ DATE	TOC* (ft.)	DTW (ft.)	GWE (ft.)	TPH-G (µg/L)	Β (μg/L)	Τ (μg/L)	E (μg/L)	X (µg/L)	MTBE (μg/L)
<u>k</u>	y L.	9 2.7	() 4-7	(Mg L)	(FS L)	\P\$ \(\mu_j\)	(Mg =)	(FØ L)	(µg L)
MW-3	4 6 50	44.20	-	.=0	.o. = o	2.52	·0. F 0	.a. =	2
$04/05/02^{1}$	16.52	11.29	5.23	<50	<0.50	0.59	<0.50	<1.5	$<2.5/<2^2$
07/01/02	16.52	11.55	4.97	<50	<0.50	0.60	<0.50	<1.5	<2.5/<2 ²
10/08/02	16.52	11.62	4.90	<100	<2.0	<2.0	<2.0	<5.0	<10/<2 ²
01/11/03	16.52	11.09	5.43	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ²
04/01/03	16.52	11.25	5.27	<50	<0.5	<0.5	<0.5	<1.5	$<2.5/<0.5^2$
$07/01/03^3$	16.52	11.42	5.10	<50	< 0.5	<0.5	<0.5	<0.5	2
$10/02/03^3$	16.52	11.74	4.78	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
$01/05/04^3$	16.52	11.06	5.46	<50	<0.5	<0.5	<0.5	<0.5	<0.5
$04/05/04^3$	16.52	11.40	5.12	<50	< 0.5	<0.5	<0.5	<0.5	0.6
$07/01/04^3$	16.52	11.58	4.94	<50	< 0.5	<0.5	<0.5	<0.5	0.8
$10/05/04^3$	16.52	11.60	4.92	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
$01/04/05^3$	16.52	10.95	5.57	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
$04/14/05^3$	16.52	11.10	5.42	<50	<0.5	<0.5	<0.5	<0.5	<0.5
$07/08/05^3$	16.52	11.29	5.23	<50	<0.5	< 0.5	<0.5	<0.5	<0.5
$10/27/05^3$	16.52	11.68	4.84	<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
$01/12/06^3$	16.52	10.83	5.69	<50	<0.5	< 0.5	<0.5	<0.5	<0.5
$04/13/06^3$	16.52	10.65	5.87	<50	<0.5	< 0.5	<0.5	<0.5	<0.5
$07/13/06^3$	16.52	11.03	5.49	<50	<0.5	<0.5	< 0.5	< 0.5	< 0.5
$10/16/06^3$	16.52	11.46	5.06	<50	<0.5	< 0.5	<0.5	<0.5	< 0.5
$01/20/07^3$	16.52	11.39	5.13	<50	<0.5	< 0.5	< 0.5	<0.5	< 0.5
$04/11/07^3$	16.52	11.27	5.25	<50	<0.5	< 0.5	< 0.5	<0.5	< 0.5
$07/27/07^3$	16.52	11.38	5.14	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
$10/22/07^3$	16.52	4		<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/26/07	16.52	11.35	5.17						
$01/21/08^3$	16.52	11.16	5.36	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$04/04/08^3$	16.52	11.15	5.37	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$07/21/08^3$	16.52	11.38	5.14	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$10/09/08^3$	16.52	11.49	5.03	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$01/21/09^3$	16.52	11.52	5.00	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
04/29/09	16.52	11.10	5.42	<50	<0.5	<0.5	<0.5	<0.5	<0.5

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS CHEVRON SERVICE STATION 9-3600 2200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-G	B (1-27)	T	E	X	MTBE
DATE	(ft.)	(ft.)	(ft.)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)
TRIP BLANK									
QA									
04/05/02				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
07/01/02				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
10/08/02				<100	<2.0	<2.0	<2.0	<5.0	<10
01/11/03				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
04/01/03				< 50	< 0.5	< 0.5	< 0.5	<1.5	<2.5
$07/01/03^3$				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$10/02/03^3$				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$01/05/04^3$				< 50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
$04/05/04^3$				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$07/01/04^3$				< 50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
$10/05/04^3$				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$01/04/05^3$				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$04/14/05^3$				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$07/08/05^3$				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$10/27/05^3$				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$01/12/06^3$				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$04/13/06^3$				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$07/13/06^3$				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$10/16/06^3$				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$01/20/07^3$				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$04/11/07^3$				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$07/27/07^3$				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$10/22/07^3$				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$01/21/08^3$				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$04/04/08^3$				<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
$07/21/08^3$				<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
$10/09/08^3$				<50	<0.5	< 0.5	< 0.5	<0.5	< 0.5
$01/21/09^3$				< 50 ⁵	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
04/29/09				<50	<0.5	<0.5	<0.5	<0.5	<0.5

TABLE 1 Page 5 of 5

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS CHEVRON SERVICE STATION 9-3600 2200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA

	11107/1 1

EXPLANATIONS:

TOC = Top of Casing	B = Benzene	$(\mu g/L)$ = Micrograms per liter
(ft.) = Feet	T = Toluene	= Not Measured/Not Analyzed
DTW = Depth to Water	E = Ethylbenzene	QA = Quality Assurance/Trip Blank
GWE = Groundwater Elevation	X = Xylenes	

TPH-G = Total Petroleum Hydrocarbons as Gasoline MTBE = Methyl Tertiary Butyl Ether

- Well development performed.
- MTBE by EPA Method 8260.
- BTEX and MTBE by EPA Method 8260.
- DTW measurements were not recorded correctly.
- Laboratory report indicates the original analysis was performed on an instrument where the ending calibration standard failed the method criteria. The sample was originally analyzed approximately 30 minutes after the LCS/LCSD. The LCS/LCSD showed good GRO recovery and the surrogate recovery for this sample was 85%. The sample was reanalyzed from a vial with headspace since only 1 vial was submitted. The results for the original and the reanalysis were similar. The reanalysis was reported.

^{*} TOC elevations were surveyed on April 17, 2002, by Morrow Surveying. The elevations are based on a City of Oakland Benchmark No. 37JC, (Benchmark Elevation = 17.68 Feet).

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS CHEVRON SERVICE STATION 9-3600 2200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA

WELL ID	DATE	ETHANOL (μg/L)	TBA (μg/L)	MTBE (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)
MW-1	04/05/02		200	370	<2	<2	10
	07/01/02		190	420	<2	<2	9
	10/08/02		110	360	<2	<2	8
	01/11/03		<100	270	<2	<2	7
	04/01/03		22	210	< 0.5	< 0.5	5
	07/01/03	<50	26	170	< 0.5	< 0.5	5
	10/02/03	< 500	2,600	9,800	<5	<5	6
	01/05/04	<50	21	140	< 0.5	< 0.5	3
	04/05/04	<50	17	120	< 0.5	< 0.5	3
	07/01/04	<50	13	130	< 0.5	< 0.5	2
	10/05/04	<50	14	130	< 0.5	<0.5	2
	01/04/05	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	04/14/05	<50	15	61	< 0.5	< 0.5	1
	07/08/05	<50	15	71	< 0.5	<0.5	1
	10/27/05	<50	10	76	< 0.5	< 0.5	1
	01/12/06	<50	12	47	< 0.5	<0.5	< 0.5
	04/13/06	<50	8	36	< 0.5	<0.5	0.6
	07/13/06	<50	7	44	< 0.5	<0.5	0.7
	10/16/06	<50	6	59	< 0.5	<0.5	1
	01/20/07	<50	8	47	< 0.5	<0.5	0.8
	04/11/07	<50	9	39	< 0.5	<0.5	0.7
	07/27/07	<50	8	56	< 0.5	<0.5	0.8
	10/22/07	<50	5	65	< 0.5	<0.5	0.7
	01/21/08	<50	5	48	< 0.5	< 0.5	0.7
	04/04/08	<50	6	53	< 0.5	< 0.5	0.6
	07/21/08	<50	11	72	< 0.5	< 0.5	0.7
	10/09/08	<50	5	59	< 0.5	< 0.5	0.5
	01/21/09	<50	5	31	< 0.5	< 0.5	0.5
	04/29/09	<50	5	25	<0.5	<0.5	<0.5
MW-2	04/05/02		<100	<2	<2	<2	<2
	07/01/02		<100	<2	<2	<2	<2
	10/08/02		<100	<2	<2	<2	<2
	01/11/03		<100	<2	<2	<2	<2
	04/01/03	<50	<5	<0.5	<0.5	<0.5	<0.5

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS CHEVRON SERVICE STATION 9-3600 2200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA

	2200 TELEGRATH AVENUE, OARLAND, CALIFORNIA											
WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME					
		(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)					
MW-2 (cont)	07/01/03	<50	<5	< 0.5	< 0.5	< 0.5	<0.5					
` ,	10/02/03	< 50	<5	< 0.5	< 0.5	< 0.5	< 0.5					
	01/05/04	< 50	<5	< 0.5	< 0.5	< 0.5	< 0.5					
	04/05/04	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5					
	07/01/04	<50	<5	< 0.5	< 0.5	<0.5	< 0.5					
	10/05/04	<50	<5	<0.5	< 0.5	< 0.5	< 0.5					
	01/04/05	<50	14	87	< 0.5	< 0.5	2					
	04/14/05	<50	<5	<0.5	< 0.5	< 0.5	< 0.5					
	07/08/05	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5					
	10/27/05	<50	<5	< 0.5	<0.5	< 0.5	<0.5					
	01/12/06	<50	<5	< 0.5	<0.5	< 0.5	<0.5					
	04/13/06	<50	<5	< 0.5	< 0.5	< 0.5	<0.5					
	07/13/06	<50	<5	<0.5	<0.5	< 0.5	<0.5					
	10/16/06	<50	<5	< 0.5	<0.5	< 0.5	<0.5					
	01/20/07	<50	<2	< 0.5	< 0.5	< 0.5	<0.5					
	04/11/07	<50	<2	< 0.5	< 0.5	< 0.5	<0.5					
	07/25/07	<50	<2	< 0.5	<0.5	< 0.5	<0.5					
	10/22/07	<50	<2	< 0.5	<0.5	< 0.5	<0.5					
	01/21/08	<50	<2	< 0.5	<0.5	< 0.5	<0.5					
	04/04/08	<50	<2	< 0.5	<0.5	<0.5	<0.5					
	07/21/08	<50	<2	< 0.5	<0.5	<0.5	<0.5					
	10/09/08	<50	<2	<0.5	<0.5	<0.5	<0.5					
	01/21/09	<50	<2	<0.5	<0.5	<0.5	<0.5					
	04/29/09	<50	<2	<0.5	<0.5	<0.5	<0.5					
MW-3	04/05/02		<100	<2	<2	<2	<2					
14144-3	04/03/02		<100	<2	<2	<2	<2					
	10/08/02		<100	<2	<2	<2	<2					
	01/11/03	 	<100	<2	<2	<2	<2					
	04/01/03		<5	<0.5	<0.5	<0.5	<0.5					
	07/01/03	<50	< 5	2	<0.5	<0.5	<0.5					
	10/02/03	<50	< 5	<0.5	<0.5	<0.5	<0.5					
	01/05/04	<50	<5	<0.5	<0.5	<0.5	<0.5					
	04/05/04	<50	<5	0.6	<0.5	<0.5	<0.5					
	07/01/04	<50	<5 <5	0.8	<0.5	<0.5	<0.5					
	07/01/04	\ 50	\	0.0	\0. 5	\0.5	\0. 5					

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS CHEVRON SERVICE STATION 9-3600 2200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA

WELL ID	DATE	ETHANOL (μg/L)	TBA (μg/L)	MTBE (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)
MW-3 (cont)	10/05/04	<50	< 5	<0.5	<0.5	<0.5	<0.5
, ,	01/04/05	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	04/14/05	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	07/08/05	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	10/27/05	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	01/12/06	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	04/13/06	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	07/13/06	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	10/16/06	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5
	01/20/07	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	04/11/07	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	07/27/07	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	10/22/07	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	01/21/08	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	04/04/08	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	07/21/08	<50	<2	< 0.5	< 0.5	< 0.5	<0.5
	10/09/08	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	01/21/09	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5
	04/29/09	<50	<2	< 0.5	< 0.5	< 0.5	< 0.5

EXPLANATIONS:

TBA = t-Butyl alcohol

MTBE = Methyl Tertiary Butyl Ether

DIPE = di-Isopropyl ether

ETBE = Ethyl t-butyl ether

TAME = t-Amyl methyl ether

 $(\mu g/L)$ = Micrograms per liter

-- = Not Analyzed

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

ATTACHMENT A

BLAINE TECH'S MAY 1, 2009 SECOND QUARTER MONITORING

May 1, 2009

Chevron Environmental Management Company Aaron Costa 6111 Bollinger Canyon Rd. San Ramon, CA 94583

> Third Quarter 2006 Monitoring at Chevron Service Station 93600 2200 Telgraph Ave. Oakland, CA

Monitoring performed on 4/29/2009

Blaine Tech Services, Inc. Groundwater Monitoring Event 090429-DR1

This submission covers the routine monitoring of groundwater wells conducted on 4/29/2009 at this location. 3 monitoring wells were measured for depth to groundwater (DTW). 3 monitoring wells were sampled. All sampling activities were performed in accordance with local, state and federal guidelines.

Water levels and separate-phase measurements were collected using an electronic water or oil-water interface detector. All sampled wells were purged of three case volumes or until water temperature, pH and conductivity stabilized. Purging was accomplished using electric submersible pumps, positive air-displacement pumps or stainless steel, Teflon or disposable bailers. Subsequent sample collection and sample handling was performed in accordance with EPA protocols using disposable bailers. Alternately, where applicable, wells were sampled utilizing no-purge methodology. All reused equipment was decontaminated in an integrated stainless steel sink with de-ionized water supplied Hotsy pressure washer and Liquinox or equivalent.

Samples were delivered under chain-of-custody to Lancaster Laboratories of Lancaster, Pennsylvania, for analysis. Monitoring well purgewater and equipment rinsate water was collected and transported under bill-of-lading to US Filters of Los Angeles, California.

Second Quarter Groundwater Monitoring at Chevron 93600, 2200 Telgraph Ave., Oakland, CA

Enclosed documentation from this event includes copies of the Well Gauging Sheet, Well Monitoring Data Sheets, and Chain-of-Custody.

Blaine Tech Services, Inc.'s activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrogeologic conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Pete Cornish Blaine Tech Services, Inc. Project Manager

attachments: SOP

Well Gauging Sheet

Individual Well Monitoring Data Sheets

Chain of Custody

Wellhead Inspection Form

Bill of Lading Calibration Log

cc: CRA

Attn: Charlotte Evans 5900 Hollis St. Suite A Emeryville, CA 94608

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT CHEVRON SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Chevron comply with Chevron's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Chevron site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. GeoTech). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be

evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed approximately 2 hours to recharge prior to sampling or will be sampled at site departure. All wells requiring off-site traffic control in the public right-of-way, the 80% recharge rule may be disregarded in the interests of Health and Safety. The sample may be collected as soon as there is sufficient water. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Chevron approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using disposable bailers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Duplicate sample is collected, typically from the well containing the most measurable contaminants. The Duplicate sample is labeled the same as the original.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with deionized water.

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 550) or HACH field test kits.

The YSI meters are able to collect accurate in-situ readings. The probe allows downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe is lowered into the water column and the reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS

All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

WELL GAUGING DATA

Project # <u>690429 - DR1</u> Da	te <u>4/29/09</u>	_ Client _ <i>Cl</i> ı	irnn 9-3600
Site 2200 Telegraph Mu.	Calland Cf		

			T	T	Thiolman	V-1	T	1	1		
		Well		Depth to	Thickness of	Volume of Immiscibles			Survey		
1		Size	Sheen /		Immiscible		Depth to water	Donth to wall	Point:		
WellID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	TOB or	Notes	
					1 ()	()			100	Notes	
mw-1	1229	2					11-68	20.11			
mw-Z Mw-3	1234	2					11,06	20.07			
MW-3	1238	2					11.10	20.06	V		
											-
											4
											-
											-
				4							-
						:					
											1
											1
											1
											-

CHEVI A WELL MONITORING DAT SHEET

Project #	t: 0904°	29-DRI		Station #:	9-3600			
Sampler	: DR			Date: 4/29/				
Weather	: (lier		Ambient Air Temperature: 60° F				
Well I.D	.: Mw-	- 1		Well Diameter: (2) 3 4 6 8				
Total We	ell Depth:	2.0	O · 11	Depth to Wate	er: 11.68			
Depth to	Free Prod	uct:	***************************************	Thickness of I	Free Product (fe	et):		
Referenc	ed to:	PVC	Grade	D.O. Meter (if	·	YSI HACH		
DTW wi	th 80% Re	charge [(]	Height of Water	Column x 0.20) + DTW]: 1	3.37		
Purge Meth	Bailer ⊄Disposable B	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method Other:	XDisposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier		
1.3 I Case Volum	(Gals.) X ne	3 pecified Volume	= 3.9 mes Calculated Vo	Gals.	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 radius ² * 0.163		
Time	Temp (°F)	рН	Cond. (mS of uS)	Turbidity (NTUs)	Gals. Removed	Observations		
1334	66.0	6.8	949	764	1.3	cloudy loder		
1336	65.9	6.8	898	912	2.6	11 / 11		
1338	65.7	8.8	892	71000	3.9	(1 / 1)		
Did well	dewater?	Yes	(Nô)	Gallons actuall	y evacuated:	3.9		
Sampling	Date: 4/2	19/09	Sampling Time	e: 1345	Depth to Water	r: 12 3 7		
Sample I.	D.: Mu	1_ \		Laboratory:	Lancaster Oth	ner		
Analyzed	for: TPH-	-G BTEX	MTBE OXYS	Other: Scc. (CoC			
Duplicate	I.D.:		Analyzed for:	TPH-G BTEX N	ATBE OXYS	Other:		
D.O. (if re	eq'd):		Pre-purge:	mg/L	Post-purge:	mg/L		
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:	mV		

CHEVI A WELL MONITORING DAT SHEET

Project #	: 09047	29-DRI		Station #: 9-3600						
Sampler: DR					Date: 4/29/09					
Weather: (kar					ient Air T	Temperature:	60°F			
Well I.D	.: MW-			Well	Diameter	r: (2) 3 4				
Total We	ell Depth:	20.0	07	Deptl	n to Wate	er: 11.06				
Depth to	Free Prod	uct:		Thick	eness of F	Free Product (fe	eet):			
Referenc	ed to:	PVC	Grade		Meter (if		YSI HACH			
DTW wit	th 80% Re	charge [(F		· Colur	nn x 0.20) + DTW]: 17	2.86			
Purge Meth	Bailer (Disposable B	Displacement	Waterra Peristaltic Extraction Pump Other	Sampli	Other:	XDisposable Bailer Extraction Port Dedicated Tubing	-			
l Case Volum	(Gals.) X ne Sp	3 ecified Volum	$_{\text{nes}} = \frac{4.2}{\text{Calculated Vo}}$	Gals.	Well Diamet 1" 2" 3"	er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 er radius ² * 0.163			
Time	Temp (°F)	рН	Cond. (mS oi(uS)	į	rbidity VTUs)	Gals. Removed	Observations			
1318	65.9	6.8	1147	L	194	1.4	Cleady			
1320	65.7	6.7	1145	7	28	2.8	4			
1322	65.8	6.6	1143	9	05	4.2	4 DIW =15.91			

Did well	dewater?	Yes	No	Gallor	ns actuall	y evacuated:	4.2			
Sampling	Date: 4/2	9/09	Sampling Time	e: 13	55	Depth to Water	r: 12-86			
Sample I.	D.: Mu	1-2		Labor	atory:	Lancaster Otl	ner			
Analyzed	for: TPH-	G BTEX	MTBE OXYS	Other:	Sic.	CoC				
Duplicate	I.D.:		Analyzed for:	TPH-G		MTBE OXYS	Other:			
D.O. (if re	eq'd):		Pre-purge:	X	mg/L	Post-purge:	mg/ _L			
O.R.P. (if	rea'd).		Pre-nurge		mV	Post-nurge: mV				

CHEVRUN WELL MONITORING DATA SHEET

					BILLIE CARAGO.	Д			
Project #	: 09047	29-DRI		Station #: 9-3600					
Sampler:	DR	79.79.4444		Date: 4/29/09					
Weather:	!	Clier		Ambient Air T	emperature: 0	is° F			
Well I.D.	: MW-	3		Well Diameter	: (2) 3 4	6 8			
Total We	ell Depth:	20.06	7	Depth to Wate	r: (1.16				
Depth to	Free Produ	uct:		Thickness of F	Free Product (fee	et):			
Referenc	ed to:	PVC	Grade	D.O. Meter (if		YSI HACH			
DTW wit	:h 80% Red	charge [(F	Height of Water	Column x 0.20)+DTW]: 12	- 69			
Purge Meth	Bailer (Disposable Ba	Displacement	Waterra Peristaltic Extraction Pump Other		XDisposable Bailer Extraction Port Dedicated Tubing :				
l Case Volum	_(Gals.) X _ ne Sp	3 pecified Volum	$= \frac{4.2}{\text{Calculated Vo}}$	Gals. Jume	er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 er radius ² * 0.163			
Time	Temp (°F)	рН	Cond. (mS of uS)	Turbidity (NTUs)	Gals. Removed	Observations			
1251	66.8	6-6	753	418	1.4	Cleudy			
1253	67-1	6.7	756	722	2-8	e _r			
1255	67-2	6-8	771	832	4.2	· f			
Did well	dewater?	Yes	No	Gallons actuall	y evacuated:	4.2			
Sampling	Date: 4/2	29/09	Sampling Time	e: _{12.59}	Depth to Water	r: 12-26			
Sample I.	D.: Mu	1.3		Laboratory:	Lancaster Oth	her			
Analyzed	for: трн-	-G BTEX	MTBE OXYS	Other: Sec (CoC				
Duplicate	I.D.:		Analyzed for:			Other:			
D.O. (if re	eq'd):		Pre-purge:	mg/L	Post-purge:	mg/ _L			
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:	mV			

Blaine Tech Services, Inc., 1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

CHAIN OF CUSTODY FORM

C	hevron	Environn	nental Mana	gement Compan		inger Canyon	Ru.	San	Ra	1110	11, \	· 	7436	33			<u> </u>	
nevron Site Number:	93600			Chevron Consultant: CRA				Н			F	INAL	YSE	SREC	ZUIK	ED	Preservation	n Codes
hevron Site Global II	D: <u>T060016</u>	<u>1613</u>		Address: 5900 Holli	s St. Suite A Em	neryville,	H	•									H=HCL T=	
hevron Site Address	: 2200 Telo	raph Ave.,		CAConsultant Contact: Charlotte Evans			НХОСП							H			Thiosulfate	
akland, CA				Consultant Phone No. 510-420-3351				Screen				ALKALINITY		GREASE			N =HNO ₃ E	3 = NaOH
hevron PM: <u>AARON COSTA</u>			Consultant Project	No. <u>090429-DR1</u>		20 3	HC S.				LKA!		OIL & (S = H ₂ SO ₄ Other	O =	
hevron PM Phone N	o.: <u>(925)54:</u>	3 - 2961		Sampling Compan	y: Blaine Tech Se	rvices	رث ATE				STLC [- 1		413.10				
Retail and Termina Construction/Retail	l Business I Job	Unit (RTBU)	Job	Sampled By (Print Sampler Signature			Efthand) (対 5 OYGENATESID				TTLC 🗆 s	EPA 310.1		EPA 41				
harge Code: NWRTB-0093600-0-OML NWRTB 00SITE NUMBER-0- WBS WBS ELEMENTS: ITE ASSESSMENT: A1L REMEDIATION IMPLEMENTATION: R5L ITE MONITORING: OML OPERATION MAINTENANCE & MONITORING: M1L			Lancaster Laboratories ☑ Lancaster, PA Lab Contact: Jill Parker	Other Lab	Temp. Blank Check Time Temp.	MTBEX	DRO □	MTBE 🗆	Mg, Mn, Na	22 METALS □		CONDUCTIVITY				Spe- Instruct Must meet lo detection limi for 8260 Con	otions west its possible	
THIS IS A LEGAL DOC CORRE		<u>.L</u> FIELDS MUS COMPLETE I		2425 New Holland Pike, Lancaster, PA 17601 Phone No: (717)656-2300			60B/GC/MS	5B GRO国	8021B BTEX	Ca, Fe, K,	EPA6010/7000 TITLE	1 PH 🗆	SPECIFIC	.1 TRPH 🗆				
SAMPLE ID					1 23 0	80.1	802	6010	601	150	510	418.						
Field Point Name	Matrix	Top Depth	Date (yymmdd)	Sample Time	# of Containers	Container Type	EPA	EPA 8015B	EPA	EPA	EPA	EPA150.1	SM2510B	EPA			1	omment S
/W-1	W	1	090429	1345	6	40 ml VOA	х	X										
ЛW-2	W		090429	1355	6	40 ml VOA	X	Х										
ЛW-3	W		090429	1259	6	40 ml VOA	Х	Х						2				
QA	Т		090429	1245	2	40 ml VOA	X	X						K			No Oxys	c. Ethansi
										Can	1				\forall	-		
										1								
											-	-	-		$\perp \downarrow$			
									-				-	_	H	_		
Dolinguish ad Du		l l l l l l l l l l l l l l l l l l l	Date/Time:	Relinguished To	Company	Date/Time			Tu	marc	und	Time:		<u></u>				
Relinquished By	27		29/09 /4/c	10 1	Cashedien 87	5 4/29/09	18	10	Sta	andai ours[l J	: Oth	24 Ho ier⊟	oursE		48 hou		72
Relinquished By	Com	npany	Date/Time	Relinquished To	Company	Date/Time			Sa	mple	Inte			ck by	/ lab d	on arriv	al)	
									Int	act:		On	Ice:			mp:		
Relinquished By	Con	npany	Date/Time	Relinquished To	Company	Date/Time									COC	#		

WELLHEAD INSPECTION CHECKLIST Page _____ of ____ Site Address 2200 Tolegraph Ine. Cakland CA

Job Number 090429- DRI WELL IS Other CLEARLY Well Well Not Water WELL IS Action Repair Wellbox MARKED WITH Inspected -Сар Lock Inspected Bailed SECURABLE Order Components Taken No Corrective THE WORDS (explain Replaced Replaced From BY DESIGN Submitted (explain Cleaned "MONITORING Action below) Wellbox (12"or less) below) Required WELL" Well ID (12"or less) X Mw-1 X mw-2

NOTES:	MW-1	1 hb bokn.	other tab stripped.	MW-2	40FZ	tabs showed.
• •			£ 8			71

SOURCE RECORD **BILL OF LADING**FOR NON-HAZARDOUS PURGEWATER RECOVERED FROM GROUNDWATER WELLS AT CHEVRON FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY IWM TO THEIR FACILITY IN SAN JOSE, CALIFORNIA.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Ave. San Jose CA (408)573-0555). Blaine Tech Services, Inc. is authorized by CHEVRON PRODUCTS COMPANY (CHEVRON) to recover, collect, apportion into loads, and haul the Non-Hazardous Well Purgewater that is drawn from wells at the CHEVRON facility indicated below and to deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one Chevron facility to BTS; from one Chevron facility to BTS via another Chevron facility; or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of CHEVRON.

This **Source Record BILL OF LADING** was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

9-3600		
CHEVRON #	Chevron Engineer	
2200 Telegraph Are.	Oakland	CA
street number U street name	city	state

WELL I.D. GALS.	WELL I.D. GALS.
MW+ 139	
mw-2/42	
mu-3,42	/
	/
	/
added equip. rinse water / 3 0	any other adjustments /
TOTAL GALS. 153	loaded onto BTS vehicle #
BTS event # 0904 29 - DR 1 signature	time date _/405 <u>4 / 29/09</u>
signature)
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *
REC'D AT	time date / /
unloaded by signature	

TEST EQUIPMENT CALIBRATION LOG

NAME NUMBER TEST USED READING OR WITHIN 10%: TEMP. " INITIALS Myran L L Hameler 6215727 4/29/69 1220 3900	PROJECT NAM	ME 2200 12	eligreiph Mr.	Oakland (A	PROJECT NUM	MBER 090429-1) ()	
Myon C 4 Hamele 6215727 4/29/69 1220 3900 3900 3900 3002 T 63.2 DR Hach Turbidimilar Turbidimilar	EQUIPMENT NAME	NUMBER	TEST	USED	READING	OD MITHIN 4004	TEMP &	INITIALS
	Myren L 41 Manuter	6215727	4/29/09 1220	7.c 10.0 4.0	702 9.99 40 3902	Ť		De
	Turbidimely	071100026534	4/29/09 1230	560 55 5.7	59854 S	<i>U</i>		DR
			,					
					e ^r .			
							·	
								1

ATTACHMENT B

LANCASTER LABORATORIES MAY 11, 2009 ANALYTICAL REPORT

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

May 11, 2009

SAMPLE GROUP

The sample group for this submittal is 1143025. Samples arrived at the laboratory on Saturday, May 02, 2009. The PO# for this group is 0015040460 and the release number is COSTA.

Client Description	<u>Lancaster Labs Number</u>
MW-1-W-090429 NA Water	5661648
MW-2-W-090429 NA Water	5661649
MW-3-W-090429 NA Water	5661650
QA-T-090429 NA Water	5661651

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Chronicle.

ELECTRONIC	Conestoga Rovers & Associates	Attn: Gregory Buchanan
COPY TO		
ELECTRONIC	Conestoga Rovers & Associates	Attn: Allison Cone
COPY TO		
ELECTRONIC	Chevron c/o CRA	Attn: Report Contact
COPY TO		_
ELECTRONIC	Conestoga Rovers & Associates	Attn: Jim Schneider
COPY TO		
ELECTRONIC	Conestoga Rovers & Associates	Attn: Chase Whalen
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ELECTRONIC
COPY TO
FLECTRONIC

Conestoga Rovers & Associates

Attn: Derek Wilken

ELECTRONIC COPY TO Conestoga Rovers & Associates

Attn: Katrina Zigan

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300

Respectfully Submitted,

Marla S. Lord Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5661648

Group No. 1143025

CZ

MW-1-W-090429 NA Water Facility# 93600 BTST

2200 Telegraph-Oakland T0600161613 MW-1

Collected: 04/29/2009 13:45 by DR Account Number: 10991

Submitted: 05/02/2009 10:15 Chevron

Reported: 05/11/2009 at 09:58 6001 Bollinger Canyon Rd L4310

Discard: 06/11/2009 San Ramon CA 94583

TA001

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SW-846	5 8260B	GC/MS V	olatiles	ug/l	ug/l	ug/l	
06059	t-Amyl methyl ether		994-05-8	N.D.	0.5	1	1
06059	Benzene		71-43-2	N.D.	0.5	1	1
06059	t-Butyl alcohol		75-65-0	5	2	5	1
06059	Ethanol		64-17-5	N.D.	50	250	1
06059	Ethyl t-butyl ether		637-92-3	N.D.	0.5	1	1
06059	Ethylbenzene		100-41-4	3	0.5	1	1
06059	di-Isopropyl ether		108-20-3	N.D.	0.5	1	1
06059	Methyl Tertiary Buty	l Ether	1634-04-4	25	0.5	1	1
06059	Toluene		108-88-3	N.D.	0.5	1	1
06059	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
SW-846	5 8015B	GC Vola	tiles	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	1,800	50	100	1

General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	BTEX+5 Oxygenates+ETOH	SW-846 8260B	1	Z091254AA	05/06/2009 02:2	0 Michael A Ziegler	
	GC/MS VOA Water Prep	SW-846 5030B	1	Z091254AA	05/06/2009 02:2		
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09126F20A	05/07/2009 19:2	3 Tyler O Griffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	09126F20A	05/07/2009 19:2	3 Tyler O Griffin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5661649

Group No. 1143025

CA

Chevron

MW-2-W-090429 NA Water Facility# 93600 BTST

2200 Telegraph-Oakland T0600161613 MW-2

Collected: 04/29/2009 13:55 by DR Account Number: 10991

Submitted: 05/02/2009 10:15

Reported: 05/11/2009 at 09:58 6001 Bollinger Canyon Rd L4310

Discard: 06/11/2009 San Ramon CA 94583

TA002

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SW-846	5 8260B GC	/MS Vola	tiles	ug/l	ug/l	ug/l	
06059	t-Amyl methyl ether		994-05-8	N.D.	0.5	1	1
06059	Benzene		71-43-2	N.D.	0.5	1	1
06059	t-Butyl alcohol		75-65-0	N.D.	2	5	1
06059	Ethanol		64-17-5	N.D.	50	250	1
06059	Ethyl t-butyl ether		637-92-3	N.D.	0.5	1	1
06059	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06059	di-Isopropyl ether		108-20-3	N.D.	0.5	1	1
06059	Methyl Tertiary Butyl B	Ether	1634-04-4	N.D.	0.5	1	1
06059	Toluene		108-88-3	N.D.	0.5	1	1
06059	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
SW-846	5 8015B GC	Volatil	es	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-	-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	BTEX+5 Oxygenates+ETOH	SW-846 8260B	1	Z091254AA	05/06/2009 02:45	Michael A Ziegler	
	GC/MS VOA Water Prep	SW-846 5030B	1	Z091254AA Z091254AA	, ,	2	
	· -		1		05/06/2009 02:45	2	1
	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09126F20A	05/07/2009 19:44	-	1
01146	GC VOA Water Prep	SW-846 5030B	1	09126F20A	05/07/2009 19:44	Tyler O Griffin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5661650

Group No. 1143025

CA

Chevron

MW-3-W-090429 NA Water Facility# 93600 BTST

2200 Telegraph-Oakland T0600161613 MW-3

Collected: 04/29/2009 12:59 by DR Account Number: 10991

Submitted: 05/02/2009 10:15

Reported: 05/11/2009 at 09:58 6001 Bollinger Canyon Rd L4310

Discard: 06/11/2009 San Ramon CA 94583

TA003

Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
6 8260B (GC/MS Vo	latiles	ug/l	ug/l	ug/l	
t-Amyl methyl ether		994-05-8	N.D.	0.5	1	1
Benzene		71-43-2	N.D.	0.5	1	1
t-Butyl alcohol		75-65-0	N.D.	2	5	1
Ethanol		64-17-5	N.D.	50	250	1
Ethyl t-butyl ether		637-92-3	N.D.	0.5	1	1
Ethylbenzene		100-41-4	N.D.	0.5	1	1
di-Isopropyl ether		108-20-3	N.D.	0.5	1	1
Methyl Tertiary Butyl	l Ether	1634-04-4	N.D.	0.5	1	1
Toluene		108-88-3	N.D.	0.5	1	1
Xylene (Total)		1330-20-7	N.D.	0.5	1	1
6 8015B	GC Volat	iles	ug/l	ug/l	ug/l	
TPH-GRO N. CA water (C6-C12	n.a.	N.D.	50	100	1
	t-Amyl methyl ether Benzene t-Butyl alcohol Ethanol Ethyl t-butyl ether Ethylbenzene di-Isopropyl ether Methyl Tertiary Butyl Toluene Xylene (Total)	t-Amyl methyl ether Benzene t-Butyl alcohol Ethanol Ethyl t-butyl ether Ethylbenzene di-Isopropyl ether Methyl Tertiary Butyl Ether Toluene Xylene (Total)	### Company of Company	Analysis Name CAS Number Result 5 8260B GC/MS Volatiles ug/1 t-Amyl methyl ether Benzene 71-43-2 N.D. t-Butyl alcohol 64-17-5 N.D. Ethanol 64-17-5 N.D. Ethyl t-butyl ether 637-92-3 N.D. Ethylbenzene 100-41-4 N.D. di-Isopropyl ether 108-20-3 Methyl Tertiary Butyl Ether 108-88-3 N.D. Xylene (Total) GC Volatiles ug/1	Analysis Name CAS Number As Received Result Method Detection Limit* 6 8260B GC/MS Volatiles ug/l t-Amyl methyl ether 994-05-8 N.D. 0.5 Benzene 71-43-2 N.D. 0.5 t-Butyl alcohol 64-17-5 N.D. Ethyl t-butyl ether 637-92-3 N.D. 50 Ethyl t-butyl ether 637-92-3 N.D. 0.5 Ethylbenzene 100-41-4 N.D. 0.5 Methyl Tertiary Butyl Ether 108-20-3 N.D. 0.5 Methyl Tertiary Butyl Ether 108-88-3 N.D. 0.5 Xylene (Total) GC Volatiles ug/l ug/l	Analysis Name CAS Number Result As Received Result Method Detection Limit* Detection Limit* Method Detection Limit* Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Method Detection Limit* Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Method Detection Limit* Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Method Detection Limit* Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Method Detection Limit* Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Method Detection Limit* Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Method Detection Limit* Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Method Detection Limit* Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Meg/1 Method Detection Limit* Meg/1 Meg/1 Meg/1 Meg/1 Method Detection Limit* Meg/1 Meg/1 Meg/1 Meg/1 Method Detection Limit* Meg/1 Meg/1 Meg/1 Method Detection Limit* Meg/1 Meg/1 Med. Method Detection Limit* Meg/1 Meg/1 Method Detection Limit* Meg/1 Med. Me

General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06059	BTEX+5 Oxygenates+ETOH	SW-846 8260B	1	Z091254AA	05/06/2009 03:10	Michael A Ziegler	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091254AA	05/06/2009 03:10	Michael A Ziegler	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09127A08A	05/07/2009 18:46	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	09127A08A	05/07/2009 18:46	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5661651 Group No. 1143025

CA

QA-T-090429 NA Water Facility# 93600 BTST

2200 Telegraph-Oakland T0600161613 QA

Collected: 04/29/2009 12:45 Account Number: 10991

Submitted: 05/02/2009 10:15 Chevron

Reported: 05/11/2009 at 09:58 6001 Bollinger Canyon Rd L4310

Discard: 06/11/2009 San Ramon CA 94583

TAOQA

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SW-846	8260B GC/MS Vol	atiles	ug/l	ug/l	ug/l	
06054	Benzene	71-43-2	N.D.	0.5	1	1
06054	Ethylbenzene	100-41-4	N.D.	0.5	1	1
06054	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	1
06054	Toluene	108-88-3	N.D.	0.5	1	1
06054	Xylene (Total)	1330-20-7	N.D.	0.5	1	1
SW-846	5 8015B GC Volati	les	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	Z091252AA	05/05/2009 09:5	L Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091252AA	05/05/2009 09:5	Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09127A08A	05/07/2009 17:0	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	09127A08A	05/07/2009 17:0	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1143025

Reported: 05/11/09 at 09:58 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank <u>LOO</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: Z091252AA	Sample numb	per(s): 56	61651						
Benzene	N.D.	0.5	1	ug/l	100		80-116		
Ethylbenzene	N.D.	0.5	1	uq/l	100		80-113		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	89		78-117		
Toluene	N.D.	0.5	1	ug/l	103		80-115		
Xylene (Total)	N.D.	0.5	1	ug/l	97		81-114		
Batch number: Z091254AA	Sample number(s): 5661648-5661650								
t-Amyl methyl ether	N.D.	0.5	1	uq/l	84		78-117		
Benzene	N.D.	0.5	1	ug/l	99		80-116		
t-Butyl alcohol	N.D.	2.	5	ug/l	102		74-116		
Ethanol	N.D.	50.	250	ug/l	90		40-158		
Ethyl t-butyl ether	N.D.	0.5	1	ug/l	90		75-118		
Ethylbenzene	N.D.	0.5	1	ug/l	97		80-113		
di-Isopropyl ether	N.D.	0.5	1	ug/l	93		71-124		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	87		78-117		
Toluene	N.D.	0.5	1	ug/l	101		80-115		
Xylene (Total)	N.D.	0.5	1	ug/l	95		81-114		
Batch number: 09126F20A	Sample numb	per(s): 56	61648-566	1649					
TPH-GRO N. CA water C6-C12	N.D.	50.	100	ug/l	100	109	75-135	9	30
Batch number: 09127A08A	Sample numb	per(s): 56	61650-566	1651					
TPH-GRO N. CA water C6-C12	N.D.	50.	100	ug/l	91	100	75-135	10	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: Z091252AA	Sample	number(s)	: 5661651	UNSPK:	P6616	54			
Benzene	108	109	80-126	1	30				
Ethylbenzene	106	108	77-125	2	30				
Methyl Tertiary Butyl Ether	92	93	72-126	1	30				
Toluene	111	112	80-125	1	30				
Xylene (Total)	104	105	79-125	1	30				
Batch number: Z091254AA	Sample	number(s)	: 5661648	-566165	0 UNSP	K: P659384			
t-Amyl methyl ether	88	90	75-122	2	30				
Benzene	108	109	80-126	0	30				
t-Butyl alcohol	101	100	67-119	1	30				

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1143025

Reported: 05/11/09 at 09:58 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Ethanol	95	103	37-164	7	30				
Ethyl t-butyl ether	97	99	74-122	2	30				
Ethylbenzene	107	106	77-125	1	30				
di-Isopropyl ether	98	99	70-129	1	30				
Methyl Tertiary Butyl Ether	94	100	72-126	2	30				
Toluene	108	107	80-125	1	30				
Xylene (Total)	103	102	79-125	0	30				
Batch number: 09126F20A TPH-GRO N. CA water C6-C12	Sample 109	number(s	s): 5661648 63-154	3-56616	49 UNSI	PK: P659337	7		
Batch number: 09127A08A TPH-GRO N. CA water C6-C12	Sample 118	number(s	63-154	0-56616	51 UNSI	PK: P662013	3		

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: TPH-GRO N. CA water C6-C12

Batch number: 09126F20A
Trifluorotoluene-F

5661648	123
5661649	96
Blank	95
LCS	112
LCSD	111
MS	122
Limits:	63-135
	ume: TPH-GRO N. CA water C6-C12 er: 09127A08A Trifluorotoluene-F
5661650	104

5661650	104			
5661651	106			
Blank LCS LCSD	105			
LCS	122			
LCSD	122			
MS	117			
Limits:	63-135			

Analysis Name: BTEX+MTBE by 8260B

Batch number: Z091252AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5661651	85	85	84	79

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

	ame: Chevron : 05/11/09 at 09:58		Group Number: 1143025				
		Surrogate Qu	uality Control				
Blank	85	83	84	79			
LCS	84	84	84	82			
MS	84	83	85	82			
MSD	84	83	84	82			
Limits:	80-116	77-113	80-113	78-113			
	ame: BTEX+5 Oxygenates+ET er: Z091254AA Dibromofluoromethane	OH 1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene			
5661648	83	82	84	83			
5661649	85	84	85	79			
5661650	86	83	83	78			
Blank	85	84	84	78			
LCS	84	85	83	80			
MS	84	83	84	83			
MSD	85	84	84	82			
Limits:	80-116	77-113	80-113	78-113			

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

CHAIN OF CUSTODY FORM

Chevron Environmental Management Company ■ 6111 Bollinger Canyon Rd.■ San Ramon, CA 94583 ANALYSES REQUIRED Chevron Consultant: CRA Chevron Site Number: 93600 Preservation Codes H Chevron Site Global ID: T0600161613 Address: 5900 Hollis St. Suite A Emeryville, H =HCL T= HVOC Thiosulfate Chevron Site Address: 2200 Telgraph Ave., CAConsultant Contact: Charlotte Evans GREASE EPA 310.1 ALKALINITY N =HNO₃ B = NaOH Oakland, CA Consultant Phone No. 510-420-3351 S = H₂SO₄ O = Consultant Project No. 090429-DR1 త Chevron PM: AARON COSTA 5 OYGENATESK å STLC acct * 10991 Sampling Company: Blaine Tech Services Chevron PM Phone No.: (925)543-2961 413.1 Sampled By (Print): ____D. Raynal Retail and Terminal Business Unit (RTBU) Job 11.C EPA □ Construction/Retail Job Sampler Signature: Temp. Blank Check Special Other Lab Charge Code: NWRTB-0093600-0-OML Lancaster Instructions MTBEK SM2510B SPECIFIC CONDUCTIVITY Mg, Mn, Na **EPA6010/7000 TITLE 22 METALS** NWRTB 00SITE NUMBER-0-WBS Laboratories Must meet lowest (WBS ELEMENTS: 200 MTBE detection limits possible SITE ASSESSMENT: A1L REMEDIATION IMPLEMENTATION: R5L for 8260 Compounds ☑ Lancaster, PA 1800 SITE MONITORING: OML OPERATION MAINTENANCE & MONITORING: M1L Lab Contact: Jill Parker BTEX [¥ THIS IS A LEGAL DOCUMENT. ALL FIELDS MUST BE FILLED OUT 2425 New Holland Pike. 8260B/GC/MS 1 TRPH 6010 Ca, Fe, CORRECTLY AND COMPLETELY. Lancaster, PA 17601 표 Phone No: (717)656-2300 **EPA 8021B EPA 8015B** EPA150.1 F 418 SAMPLE ID # of Containers Notes/Comment Date Sample Time Container Type Field Point Name Matrix Top Depth (vymmdd) MW-1 Х 1345 6 40 ml VOA Х 090429 W 40 ml VOA Х Х MW-2 W 090429 1355 Х Х 40 ml VOA 090429 1259 MW-3 W No Oxys . Ethani Х Х 40 ml VOA QA Τ 090429 1245 Company **Turnaround Time:** Date/Time: Relinguished To Date/Time Company Relinguished By 72 Standard . 24 Hours□ 48 hours□ 1810 129/09 Hours [] Other □ Sample Integrity: (Check by lab on arrival) Date/Time Relinguished By Company Relinquished To Intactitys On Ice: Les Temp: 4.9-5.7°C. Relinquished To Company Date/Time Relinquished By Kate Narture 5/2/09 10:15

COC

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- less than The number following the sign is the limit of quantitation, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. ppm For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- parts per billion dqq
- Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight basis concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Α

В

С

D

Ε

J

Ν

Ρ

Organi	กเลา	ifiar	•
Organi	luai	IIIEI	3

TIC is a possible aldol-condensation product Analyte was also detected in the blank	B E	Value is <crdl, but="" due="" estimated="" interference<="" th="" to="" ≥idl=""></crdl,>
Pesticide result confirmed by GC/MS	М	Duplicate injection precision not met
Compound quatitated on a diluted sample	N	Spike amount not within control limits
Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
the instrument		for calculation
Estimated value	U	Compound was not detected
Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Concentration difference between primary and	*	Duplicate analysis not within control limits

Correlation coefficient for MSA < 0.995

Inorganic Qualifiers

U Compound was not detected

confirmation columns >25%

X,Y,ZDefined in case narrative

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have guestions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.