

Atlantic Richfield Company (a BP affiliated company)

P.O. Box 6549 Moraga, California 94570 Phone: (925) 299-8891 Fax: (925) 299-8872

April 3, 2006

Re:

ARCO Service Station # 11120

6400 Dublin Blvd. Dublin, California

First Quarter 2006 Groundwater Monitoring Report

ACEH Case # RO0002431

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

Submitted by:

Paul Supple

Environmental Business Manager

RECEIVED

By lopprojectop at 9:43 am, Apr 17, 2006

ED GEO

BARBARA J JAKUB No. 7304

April 3, 2006

Mr. Don Hwang Alameda County Environmental Health (ACEH) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re:

First Quarter 2006 Groundwater Monitoring Report

Former BP Service Station # 11120

6400 Dublin Road Dublin, California

ACEH Case No. RO0002431

Dear Mr. Hwang:

On behalf of Atlantic Richfield Company, a BP affiliated company, URS Corporation (URS) is submitting the *First Quarter 2006 Groundwater Monitoring Report* for the Former BP Service Station #11120, located at 6400 Dublin Road, Dublin, California.

If you have any questions regarding this submission, please call me at (510) 874-1758.

Sincerely,

URS CORPORATION

Lynelle T. Onishi Project Manager

Senior Geologist

Enclosure:

First Quarter 2006 Groundwater Monitoring Report

cc:

Mr. Paul Supple, Atlantic Richfield Company (RM), electronic copy uploaded to ENFOS

Barbara J. Jakub, P.G.

Ms. Shelby Lathrop, ConocoPhillips, electronic copy uploaded to URS ftp server Mr. Rob Miller, Broadbent & Associates, Inc., electronic copy uploaded to ENFOS

RECEIVED

By lopprojectop at 9:43 am, Apr 17, 2006

FIRST QUARTER 2006 GROUNDWATER MONITORING REPORT

FORMER BP SERVICE STATION #11120 6400 DUBLIN ROAD DUBLIN, CALIFORNIA

Prepared for RM

April 3, 2006

URS Corporation 1333 Broadway, Suite 800 Oakland, California 94612

Date: April 3, 2006

Quarter: 1Q 06

Former Facility No.:	11120	Address:	6400 Dublin Road, Dublin, CA	
RM Environmental Busi	ness Manager:		Paul Supple	
Consulting Co./Contact l	Person:		URS Corporation / Lynelle T. Onishi	
Primary Regulatory Age	ncy:		Alameda County Environmental Health (ACEH)	
ACEH Case No:			RO0002431	

FIRST QUARTER 2006 GROUNDWATER MONITORING REPORT

WORK PERFORMED THIS QUARTER

(First - 2006):

- 1. Prepared and submitted the Fourth Quarter 2005 Groundwater Monitoring Report.
- 2. Performed the first quarter 2006 groundwater monitoring event on March 1, 2006.

WORK PROPOSED FOR NEXT QUARTER (Sec

(Second - 2006):

- 1. Prepare and submit this First Quarter 2006 Groundwater Monitoring Report.
- 2. Perform the second quarter 2006 groundwater monitoring event.

SITE SUMMARY:

Current Phase of Project:	GW monitoring/sampling
Frequency of Groundwater Sampling:	Quarterly: Wells MW-8 through MW-11
Frequency of Groundwater Monitoring:	Quarterly: Wells MW-8 through MW-11
Is Free Product Present On-Site:	No
Current Remediation Techniques:	None
Approximate Depth to Groundwater:	5.67 (MW-10) to 8.06 (MW-9) feet
Groundwater Gradient (direction):	Southwest
Groundwater Gradient (magnitude):	0.003 feet per foot

DISCUSSION:

Methyl tert-butyl ether was detected at or above the laboratory reporting limit in three of the four wells sampled this quarter at concentrations ranging from 0.59 micrograms per liter (μ g/L) (MW-10) to 21 μ g/L (MW-11). No other fuel components were detected at or above their respective laboratory reporting limits in any of the wells sampled this quarter.

ATTACHMENTS:

- Figure 1- Groundwater Elevation Contour and Analytical Summary Map March 1, 2006
- Table 1 Groundwater Elevation and Analytical Data
- Table 2 Fuel Additives Analytical Data
- Attachment A Field Procedures and Field Data Sheets
- Attachment B Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody Records
- Attachment C Error Check Reports and EDF/GeoWell Submittal Confirmations
- Attachment D Historical Groundwater Analytical Data for Former Wells Abandoned in 1999 (Source: Alisto Engineering)

6400 Dublin Boulevard

Dublin, California

1

First Quarter 2006 (March 1, 2006)

Table 1
Groundwater Elevation and Analytical Data

Former BP Station #11120 6400 Dublin Blvd., Dublin, CA

Well No.	Date	P/ NP	TOC (ft MSL)	DTW (ft bgs)	Product Thickness (feet)	GWE (ft MSL)	GRO/ TPH-g (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	DO (mg/L)	Lab	рН	Comments
MW-8	02/25/2002		328.94	6.02	_	322.92	<50	<0.5	<0.5	<0.5	<0.5	1.98		PACE		
	09/30/2002		328.94	6.16		322.78	<50	<0.5	<0.5	<0.5	<0.5	2.9/4.8		SEQM		а
	12/13/2002		328.94	5.81		323.13	<50	<0.5	<0.5	<0.5	<0.5	5.9/6.4		SEQM		а
	03/12/2003	_	328.94	5.80		323.14	<50	<0.50	<0.50	<0.50	<0.50	4.3/3.8		SEQM		
	06/28/2003		328.94	5.70		323.24	<50	<0.50	<0.50	<0.50	<0.50	4.1		SEQM		b
	09/30/2003	_	328.94	5.90		323.04	<50	<0.50	<0.50	<0.50	<0.50	4.1		SEQM		
	12/05/2003	Р	328.94	5.89		323.05	<50	<0.50	<0.50	<0.50	<0.50	6.7	-	SEQM	7.2	
	03/10/2004	Р	328.94	4.74		324.20	<50	<0.50	<0.50	<0.50	<0.50	5.1	-	SEQM	6.7	
	06/21/2004	Р	328.94	6.12		322.82	<50	<0.50	<0.50	<0.50	<0.50	7.5		SEQM	7.0	
	09/17/2004	P	328.94	6.38		322.56	<50	<0.50	<0.50	<0.50	<0.50	6.6		SEQM	7.2	
	12/13/2004	Р	328.94	5.47		323.47	<50	<0.50	<0.50	<0.50	<0.50	6.7		SEQM	6.8	-
	03/03/2005	Р	328.94	4.43		324.51	<50	<0.50	<0.50	<0.50	<0.50	5.6		SEQM	6.9	
	06/10/2005	Р	328.94	5.35		323.59	<50	<0.50	<0.50	<0.50	<0.50	6.2		SEQM	6.9	
	09/16/2005	Р	328.94	6.58		322.36	<50	<0.50	<0.50	<0.50	<0.50	5.7	-	SEQM	6.9	
	12/15/2005	Р	328.94	8.54		320.40	<50	<0.50	<0.50	<0.50	<0.50	2.6		SEQM	7,0	
	03/01/2006	P	328.94	7.55		321.39	<50	<0.50	<0.50	<0.50	<0.50	2.8		SEQM	7.1	
MW-9	02/25/2002		329.96	5.90		324.06	<250	<2.50	<2.50	<2.50	<5.00	<2.50		PACE		
	09/30/2002		329.96	6.92		323.04	<50	<0.5	<0.5	<0.5	<0.5	1.4/3.3	 	SEQM		a
	12/13/2002		329.96	6.51		323.45	<50	<0.5	<0.5	<0.5	<0.5	0.53/<2.5		SEQM		а
	03/12/2003		329.96	6.86		323.10	<50	<0.50	<0.50	<0.50	<0.50	0.59/<2.5		SEQM		
	06/28/2003		329.96	5.95		324.01	<50	<0.50	<0.50	<0.50	<0.50	1.0		SEQM		b
	09/30/2003		329.96	6.24		323.72	<50	<0.50	<0.50	<0.50	<0.50	. 16		SEQM		
	12/05/2003	Р	329.96	7.21		322.75	<50	<0.50	<0.50	<0.50	<0.50	33		SEQM	7.6	
	03/10/2004	Р	329.96	5.37		324.59	<50	<0.50	<0.50	<0.50	<0.50	2.4		SEQM	7.1	
	06/21/2004	Р	329.96	6.67		323.29	<50	<0.50	<0.50	<0.50	<0.50	1.6	-	SEQM	7.8	
	09/17/2004	Р	329.96	7.89		322.07	<50	<0.50	<0.50	<0.50	<0.50	0.72		SEQM	7.5	•
	12/13/2004	Р	329.96	5.22		324.74	<50	<0.50	<0.50	<0.50	<0.50	<0.50	-	SEQM	7.6	
	03/03/2005	P	329.96	5.12		324.84	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.6	
	06/10/2005	Р	329.96	5.90		324.06	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.5	
	09/16/2005	Р	329.96	6.99		322.97	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.6	
	12/15/2005	Р	329.96	8.52		321.44	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.7	
	03/01/2006	Р	329.96	8.06		321.90	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.7	
MW-10	02/25/2002		327.44	4.21		323.23	53	2.58	<0.5	2.83	8.46	<0.5		PACE		

Table 1
Groundwater Elevation and Analytical Data

Former BP Station #11120 6400 Dublin Blvd., Dublin, CA

Well No.	Date	P/ NP	TOC (ft MSL)	DTW (ft bgs)	Product Thickness (feet)	GWE (ft MSL)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	рН	Comments
MW-10	09/30/2002		327.44	4.71		322.73	<50	<0.5	<0.5	<0.5	<0.5	0.51/2.8		SEQM		а
	12/13/2002		327.44	6.36		321.08	<50	<0.5	<0.5	<0.5	<0.5	<0.5/<2.5		SEQM		а
	03/12/2003		327.44	7.96		319.48	<50	<0.50	<0.50	<0.50	<0.50	0.76/<2.5		SEQM		
	06/28/2003		327.44	7.70		319.74	<50	<0.50	<0.50	<0.50	<0.50	0.68		SEQM		b
	09/30/2003		327.44	7.57		319.87	<50	<0.50	<0.50	<0.50	<0.50	0.71		SEQM		
•	12/05/2003	Р	327.44	6.64		320.80	<50	<0.50	<0.50	<0.50	<0.50	0.78		SEQM	7.1	
	03/10/2004	Р	327.44	5.20		322.24	<50	<0.50	<0.50	<0.50	<0.50	0.58		SEQM	6.4	
	06/21/2004	Ρ	327.44	7.45		319.99	<50	<0.50	<0.50	<0.50	<0.50	1.1		SEQM	7.0	
	09/17/2004	P	327.44	7.49		319.95	<50	<0.50	<0.50	<0.50	<0.50	0.82		SEQM	7.0	
	12/13/2004	Р	327.44	5.19		322.25	<50	<0.50	<0.50	<0.50	<0.50	0.73		SEQM		
	03/03/2005	Р	327.44	4.86		322.58	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	6.9	
	06/10/2005	Р	327.44	4.00		323.44	<50	<0.50	<0.50	<0.50	<0.50	1.2		SEQM	6.8	
	09/16/2005	Ρ	327.44	4.78		322.66	<50	<0.50	<0.50	<0.50	<0.50	0.98		SEQM	6.9	
	12/15/2005	Р	327.44	6.67		320.77	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.0	
	03/01/2006	Р	327.44	5.67		321.77	<50	<0.50	<0.50	<0.50	<0.50	0.59		SEQM	7.1	
MW-11	02/25/2002		329.75	6.02		323.73	1,800	1.34	<0.5	<0.5	<1.0	2,550		PACE		
	09/30/2002		329.75	7.12	**	322.63	<50	<0.5	<0.5	<0.5	<0.5	1,500/1,400		SEQM		а
	12/13/2002		329.75	6.60		323.15	1,300	<10	<10	<10	<10	1,400/2,000		SEQM		а
	03/12/2003	_	329.75	5.79		323.96	<500	<5.0	<5.0	<5.0	<5.0	650/2,900		SEQM		
	06/28/2003		329.75	5.68		324.07	<5,000	<50	<50	<50	<50	2,500		SEQM		b
	09/30/2003		329.75	6.68		323.07	5,100	<25	<25	<25	<25	3,200		SEQM		
	12/05/2003	Р	329.75	6.69		323.06	<5,000	<50	<50	<50	<50	3,500	-	SEQM	7.2	
	03/10/2004	Р	329.75	5.29		324.46	3,000	<25	<25	<25	<25	1,800		SEQM	6.8	
	06/21/2004	Р	329.75	6.65		323.10	<5,000	<50	<50	<50	<50	1,900		SEQM	7.1	
	09/17/2004	Р	329.75	7.02		322.73	<2,500	<25	<25	<25	<25	1,700		SEQM	7.1	
	12/13/2004	₽	329.75	6.01		323.74	650	<5.0	<5.0	<5.0	<5.0	610		SEQM	6.9	
	03/03/2005	Р	329.75	5.13		324.62	250	<2.5	<2.5	<2.5	<2.5	190		SEQM	7.0	С
	06/10/2005	Р	329.75	6.00	-	323.75	<100	4.1	<1.0	<1.0	<1.0	100		SEQM	7.0	
	09/16/2005	Р	329.75	7.24		322.51	<100	<1.0	<1.0	<1.0	<1.0	52		SEQM	7.0	
	12/15/2005	Р	329.75	8.91		320.84	<50	<0.50	<0.50	<0.50	<0.50	9.0		SEQM	7.1	·
	03/01/2006	Р	329.75	8.05		321.70	<50	<0.50	<0.50	<0.50	<0.50	21		SEQM	7.2	

Table 1

Groundwater Elevation and Analytical Data

Former BP Station #11120 6400 Dublin Blvd., Dublin, CA

ABBREVIATIONS AND SYMBOLS:

TOC = Top of casing in ft MSL

DTW = Depth to water in ft bgs

GWE = Groundwater elevation in ft MSL

GRO = Gasoline range organics

TPH-g = Total petroleum hydrocarbons as gasoline

MTBE = Methyl tert butyl ether by EPA method 8021B (prior to 6/28/03) or 8260B

DO = Dissolved oxygen

μg/L = Micrograms per liter

mg/L = Milligrams per liter

< = Not detected at or above laboratory reporting limit

-- = Not sampled/applicable/analyzed/measured

PACE = Pace, Inc.

SEQM = Sequoia Analytical Laboratory

P/NP = Well purged/not purged prior to sampling

ft bas = Feet below ground surface

ft MSL = Feet above mean sea level

FOOTNOTES:

a = Analyzed by EPA method 8260 B; fuel oxygenates include ethanol, tert-butyl alcohol, di-isopropyl ether, ethyl tert-butyl ether, tert-amyl methyl ether; lead scavengers include: 1,2-dichloroethane & ethylene dibromide.

b = Beginning on the second quarter 2003 monitoring event (6/28/03), TPH-g, benzene, toluene, ethylbenzene, total xylenes, MTBE and fuel oxygenates analyzed by EPA method 8260B.

c = The hydrocarbon result for GRO was partly due to individual peaks in the quantitative range.

NOTES:

TOC elevations surveyed relative to an elevation of 18.409 ft MSL.

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential inclusion of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12.

The data within this table collected prior to June 2002 was provided to URS by RM and their previous consultants. URS has not verified the accuracy of this information.

Table 2

Fuel Additives Analytical Data

Former BP Station #11120 6400 Dublin Blvd., Dublin, CA

			EDB	Footnotes/
/L) (/L)) (µg/L)	(µg/L)	Comments
50 <	50	<0.50	<0.50	
50 <	50	<0.50	<0.50	
50 <	50	<0.50	<0.50	
50 <	50	<0.50	<0.50	
50 <	50	<0.50	<0.50	а
50 <	50	<0.50	<0.50	
50 <	50	<0.50	<0.50	b
50 <	50	<0.50	<0.50	
50 <	50	<0.50	<0.50	
50 <	50	<0.50	<0.50	
50 <	50	<0.50	<0.50	
50 <	50	<0.50	<0.50	
50 <	50	<0.50	<0.50	
50 <	50	<0.50	<0.50	
	50		<0.50	
	50		<0.50	
	50		<0.50	
	50		<0.50	а
	50		<0.50	
	50		<0.50	b
	50		<0.50	
	50		<0.50	
50 <	50	<0.50	<0.50	
	50		<0.50	
50 <	50	<0.50	<0.50	
	50		<0.50	
50 <	50	<0.50	<0.50	
		· · · · · · · · · · · · · · · · · · ·		
			-	a
50 < 50 < 50 < 50 <	50 50	<0.50 <0.50 <0.50 <0.50	<br </td <td>0.50 0.50 0.50 0.50 0.50 0.50</td>	0.50 0.50 0.50 0.50 0.50 0.50

Table 2

Fuel Additives Analytical Data

Former BP Station #11120 6400 Dublin Blvd., Dublin, CA

Well Number	Date Sampled	Ethanol (μg/L)	TBA (µg/L)	MTBE (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)	Footnotes/ Comments
MW-10	09/17/2004	9.4	<20	0.82	<0.50	<0.50	<0.50	<0.50	<0.50	b
	12/13/2004	<100	<20	0.73	<0.50	<0.50	<0.50	<0.50	<0.50	
	03/03/2005	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
	06/10/2005	<100	<20	, 1.2	<0.50	<0.50	<0.50	<0.50	<0.50	
	09/16/2005	<100	<20	0.98	<0.50	<0.50	<0.50	<0.50	<0.50	
	12/15/2005	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
	03/01/2006	<300	<20	0.59	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-11	03/12/2003	<1,000	<200	650/2,900	<5.0	<5.0	<5.0	<5.0	<5.0	
	06/28/2003	<10,000	<2,000	2,500	<50	<50	<50	<50	<50	
	09/30/2003	<5,000	<1,000	3,200	<25	<25	<25	<25	<25	
	12/05/2003	<10,000	<2,000	3,500	<50	<50	<50	<50	<50	
	03/10/2004	<5,000	<1,000	1,800	<25	<25	<25	<25	<25	а
	06/21/2004	<10,000	<2,000	1,900	<50	<50	<50	<50	<50	
	09/17/2004	13	<1,000	1,700	<25	<25	<25	<25	<25	b
	12/13/2004	<1,000	<200	610	<5.0	<5.0	<5.0	<5.0	<5.0	
	03/03/2005	<500	<100	190	<2.5	<2.5	<2.5	<2.5	<2.5	
	06/10/2005	<200	<40	100	<1.0	<1.0	<1.0	<1.0	<1.0	a, c
	09/16/2005	<200	<40	52	<1.0	<1.0	<1.0	<1.0	<1.0.	
	12/15/2005	<100	<20	9.0	<0.50	<0.50	<0.50	<0.50	<0.50	
	03/01/2006	<300	<20	21	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 2

Fuel Additives Analytical Data

Former BP Station #11120 6400 Dublin Blvd., Dublin, CA

ABBREVIATIONS AND SYMBOLS:

TBA = tert-Butyl alcohol

MTBE = Methyl tert-butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

TAME = tert-Amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

µg/L = micrograms per liter

< = Not detected at or above laboratory reporting limits

FOOTNOTES:

a = The continuing calibration verification was outside of client contractual acceptance limits. However, it was within method acceptance limits. The data should still be useful for its intended purpose. b = Split samples were analyzed for ethanol by EPA Method 8260B SIM; ethanol was detected in trip blank at 34 micrograms per liter. Ethanol was not detected in confirmatory analysis of samples and trip blank on a different instrument; however, holding time had expired by then.

c = LCS recorded above methanol control limits. Analyte not detected. Data not impacted.

NOTES:

All volatile organic compounds analyzed using EPA Method 8260B.

ATTACHMENT A FIELD PROCEDURES AND FIELD DATA SHEETS

FIELD PROCEDURES

Sampling Procedures

The sampling procedure for each well consists first of measuring the water level and depth to bottom, and checking for the presence of free phase petroleum product (free product), using either an electronic indicator and a clear TeflonTM bailer or an oil-water interface probe. Wells not containing free product are purged approximately three casing volumes of water (or until dewatered) using a centrifugal pump, gas displacement pump, or bailer. Equipment and purging method used for the current sampling event is noted on the attached field data sheets. During purging, temperature, pH, and electrical conductivity are monitored to document that these parameters are stable prior to collecting samples. After purging, water levels are allowed to partially (approximately 80%) recover. Groundwater samples (both purge and no purge) are collected using a Teflon bailer, placed into appropriate Environmental Protection Agency- (EPA) approved containers, labeled, logged onto chain-of-custody records, and transported on ice to a California State-certified laboratory. Wells with free product are not sampled and free product is removed according to California Code of Regulation, Title 23, Div. 3, Chap. 16, Section 2655, UST Regulations.

WELL GAUGING DATA

Project # OGO 30	1-WC-1 Date 0	0/01/08	Client URS@11120
	~ 1	010	
Site 6400	Dublin.	Bluds,	Q.blm
			,

Well ID	Well Size (in.)	Sheen / Odor		Thickness of Immiscible Liquid (ft.)	(ml)	Depth to water (ft.)	bottom (ft.)	Survey Point: TOB or TOC	
MW-8	2					7.55	9.60		
mw-9	2					8.06	9.61		
mw-10	2					7.55 8.06 S.67 8.05	19.57		
mw·11	2					805	9.40	4	
	·					ŀ			THE RESIDENCE OF THE PROPERTY
			_					II. January and the state of th	The state of the s
	1>	Let	Nale	1 e	rels	Shoto	lize (mion	10
			_a	2444	2.				
	•			ب د					
		·							
		·							
				-					
			'						-
					7 1				
			_						

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

BTS #:06	0301	·wc-		Station #	120)		:
Sampler: (vc			Date: 03	(01	106		
	mw.			Well Diame		_	6	8
rotal Well	Depth:	19.6	0	Depth to Wa	iter:	7.55		
Depth to F	ree Produc	ot:		Thickness o	f Free	Product (fee	et):	
Reference	d to:	Fy C	Grade.	D.O. Meter	(if req'	d):	YSI	НАСН
Purge Method		Bailer	0.04 0.16 0.37	ell Diameter 4" 6" Other Sampling Meth		163 Bailer		
		sposa ife Baile e Air Displac				sposable Bailer extraction Port		
		e Air Dispiac tric Submersi		Oti		xtraction Port		
		traction Pum		<i>-</i>	******		,	
	Other:							
Top of Scree	n:		If well is listed as a				below th	he top
ſ			of screen. Otherwi	se, the wen mus	st be pur	gea.	*****	
	1.9	(0.1.)	x	<u> </u>	<u>ح .</u>	Gals.		
	1 Case Vol	ıme (Gals.)	Specified Vo	lumes	Calculat	ed Volume		
Time	Temp (°F)	pН	Conductivity (mS or	Gals. Remov	ved C	Observations		
1538	63.8	7.1	2829	1.9		loud		
1542	64.7	7-1	3226	.3.%		1		
	65.1	7-1	3177	5.7	·	V		,
Did well	dewater?	Yes	₩	Gallons ac	tually	evacuated:	5,	7
Sampling	g Time: \	55	0	Sampling I	Date:	03/01/0	26	
Sample I	.D.: M	w-9	5	Laboratory		ice Sequoia	7	Other
Analyzec	l for:	ORO BTEX M	ATBE DRO Oxy's 1,2-1	OCA BDB Effianol) 0	ther:		
D.O. (if 1	req'd):		Pre-purge	:	mg/ _L	Post-purg	e:	mg
O.R.P. (i	f req'd):		Pre-purge):	mV	Post-purg	e:	m ^v
Blaine 7	Tech Ser	vices, In	c. 1680 Roge	rs Ave., Sa	n Jos	e, CA 951	12 (40)8) 573-055£

BTS#: 060301-WC	:-/	Station # \(\(\)	20	:
Sampler: we		Date: 0603	01-W 03	5/01/06
Well I.D.: ww-9		Well Diameter:	_	6 8
Total Well Depth: 19.6	, [Depth to Water	8.06	
Depth to Free Product:		Thickness of Fr	ree Product (feet):	
Referenced to:	Grade.	D.O. Meter (if 1	req'd): ys	НАСН
<u>Well Diameter</u> 1" 2" 3"	<u>Multiplier y</u> 0.04 0.16 0.37	Vell Diameter M 4" 0 6" 1	uttiplier .65 .47 ² * 0.163	
Purge Method: Disposable Ba Positive Air Displa		Sampling Method:	Bailer Disposable Bailer Extraction Port	
Electric Submer Extraction Pur Other:		Other:		
Top of Screen:	If well is listed as a of screen. Otherw	no-purge, confirm ise, the well must be	that water level is belo purged.	w the top
1 Case Volume (Gals.)	X Specified Vo	olumes Calc	Gals.	
Time Temp (°F) pH	Conductivity (mS or µS)	Gals. Removed	Observations	
1515 63.6 77	1788	1.9	doudy	
1514 64.1 7.7	1316	3.8		
1521 64.3 7.7	1157	5.7	1	
Did well dewater? Yes	60			
	<u>(Na)</u>	× /	ly evacuated: S	
Sampling Time: 1526) . ·	Sampling Date	: 03/01/02	<u> </u>
Sample I.D.: MW-9		Laboratory:	Pace Sequoia	Other
	MTBE DRO Oxy's 1,2-0	The state of the s	Other:	
D.O. (if req'd):	Pre-purge	: mg/L	Post-purge:	mg/[
O.R.P. (if req'd): Blaine Tech Services. In	Pre-purge			mV

BTS #:	0603	501-1	WC-1	Station #	20	:
Sampler:	wc			Date: 0 3 / 6	6-01/06	
Well I.D.:	mu	-10		Well Diameter:	6 3 4 6	5 8
Total Wel	l Depth:	19.5	7	Depth to Water	: 5.67	
Depth to 1	Free Produ	ct:			ree Product (feet):	
Reference	ed to:	PVC	Grade.	D.O. Meter (if a	eq'd): ysı	НАСН
Purge Metho		Bailer	0.04 0.16 0.37	Vell Diameter M 4" 0. 6" 1.	ultiplier 65 47 2 * 0.163 Bailer	
		sposable Baile e Air Displac			Disposable Bailer	
	Ele	etric Submersi xtraction Pum	ble	Other:	Extraction Port	
Top of Scree	en:		If well is listed as a	a no-purge, confirm	that water level is below	w the top
			of screen. Otherwi	ise, the well must be	purged.	
	2.1 Case Vol	ume (Gals.)	x Specified Vo	= 6-6	Gals.	
			Conductivity		marca A Oldine	
Time	Temp (°F)	pН	(mS or is)	Gals. Removed	Observations	1
1452	64-3	7.1	7533	3.2	doudy	
1456	64.1	2.1	7813	4.4		
1500	64.2	7-1	7855	6.6	V	
D: 1 11	1					
	dewater?		<u> </u>	Gallons actuall	ly evacuated: 6	-6
Sampling	g Time: /	505		Sampling Date	: 03/01/0	6
Sample I	.D.: W	(W-1	0	Laboratory:	Pace Sequoia 1	Other
Analyzed	l for	ORO BTEX M	TBE DRO Oxy's 1,2-D	CA EDB Ethanol	Qther:	
D.O. (if 1	req'd):		Pre-purge	: mg/L	Post-purge:	mg/L
O.R.P. (i			Pre-purge			mV
Blaine 1	Tech Serv	rices, Inc	. 1680 Rogei	's Ave., San Jo	se. CA 95112 (108\ 572.0EEE

BTS#: (260301-	wci		Station #	20	;
Sampler:	DA			Date: 3/166		
Well I.D.:	mu~	·1		Well Diameter:	OZ 3 4	6 8
Total Wel		19.4	′ ပ	Depth to Water	8.05	
Depth to I	Free Produ			Thickness of Fr		
Reference	d to:	PVZ	Grade	D.O. Meter (if r		rsi hach
	Well Diamete 1" 2" 3"	-		Vell Diameter M 4" 0. 6" 1.	ultiplier 65 47 ² * 0.163	I I I I I I I I I I I I I I I I I I I
Purge Metho	d:	Bailer		Sampling Method:	Bailer	
	≁ Di	sposable Baile	er		Disposable Bailer	
		e Air Displac			Extraction Port	
		tric Submersi		Other:		
		xtraction Pum	p			
	Other:		· · · · · · · · · · · · · · · · · · ·			
Top of Scree	:n:		If well is listed as a	ı no-purge, confirm t	hat water level is be	low the top
			of screen. Otherwi	se, the well must be	purged.	•
		8	x <u>3</u>		. 4 Gals.	
	I Case Voli	ıme (Gals.)	Specified Vo	lumes Calc	ulated Volume	
T:	Town (°E)	**	Conductivity			
Time	Temp (°F)	pH	(mS ortis)	Gals. Removed	Observations	
1526	63.6	7.2	1963	2		
1522	63.4	7.2	1902	Ч		
1524	6410	7.2	1831	5.5		
Did well	dewater?	Yes	<u> </u>	Gallons actuall	y evacuated: 🐧	5.4
Sampling	Time:	15	526	Sampling Date	:03/01/06	
Sample I	.D.: W	W-11		Laboratory:	Pace Sequoia	
Analyzed	l for:	RO BTEX M	TBE DRO Oxy's 1,2-D		Other:	
D.O. (if r	eq'd):		Pre-purge	: mg/L	Post-purge:	mg/
O.R.P. (i			Pre-purge		Post-purge:	m\
Blaine 1	ech Serv	ices. Inc	. 1680 Roger	s Ave., San Jo	SA CA 95112	ł.

BP GEM OIL COMPANY TYPE A BILL OF LADING

BILL OF LADING FOR NON-SOURCE RECORD PURGEWATER RECOVERED FROM **HAZARDOUS** GROUNDWATER WELLS AT BP GEM OIL COMPANY FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY DILLARD ENVIRONMENTAL TO THE ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY IN LIVERMORE, CALIFORNIA.

The contractor performing this work is PLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Avenue, San Jose, CA 95112 (phone [408] 573-0555). Blaine Tech Services, Inc. is authorized by BP GEM OIL COMPANY to recover, collect, apportion into loads the Non-Hazardous Well Purgewater that is drawn from wells at the BP GEM Oil Company facility indicated below and deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one BP GEM facility to the designated destination point; from one BP GEM facility; from a BP GEM facility to the designated destination point via another BP GEM facility; from a BP GEM facility, or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of BP GEM Oil Company.

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the BP GEM Oil Company facility described below:

11120	
Station#	\cap \wedge 1
Station Address	. WS161eV
Station Address	
Total Gallons Collected From Groun	- 11
added equip. 6.6 Gal	
TOTAL GALS. 24 CONTRECOVERED 25 CONTRECO	loaded onto BTS vehicle #
BTS event#	time date
060301-WC-1	1600 03/01/06
signature	
*************	*****
REC'D AT	time date
Blanktech	1645 03/01 06
unloaded by signature	
	·

ATTACHMENT B

LABORATORY PROCEDURES, CERTIFIED ANALYTICAL REPORTS, AND CHAIN-OF-CUSTODY RECORDS

LABORATORY PROCEDURES

Laboratory Procedures

The groundwater samples were analyzed for the presence of the chemicals mentioned in the chain of custody using standard EPA methods. The methods of analysis for the groundwater samples are documented in the certified analytical report. The certified analytical reports and chain-of-custody record are presented in this attachment. The analytical data provided by the laboratory approved by RM have been reviewed and verified by that laboratory.

24 March, 2006

Lynelle Onishi URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland, CA 94612

RE: BP Heritage #11120, Dublin, CA

Work Order: MPC0096

Enclosed are the results of analyses for samples received by the laboratory on 03/02/06 17:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lisa Race

Senior Project Manager

CA ELAP Certificate #1210

The results in this laboratory report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the BPGCLN Technical Specifications, applicable Federal, State, local regulations and certification requirements as well as the methodologies as described in laboratory SOPs reviewed by the BPGCLN. This entire report was reviewed and approved for release.

URS Corporation [Arco]	Project:BP Heritage #11120, Dublin, CA	MPC0096
1333 Broadway, Suite 800	Project Number: G07TM-0013	Reported:
Oakland CA, 94612	Project Manager:Lynelle Onishi	03/24/06 14:12

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-8	MPC0096-01	Water	03/01/06 15:50	03/02/06 17:30
MW-9	MPC0096-02	Water	03/01/06 15:26	03/02/06 17:30
MW-10	MPC0096-03	Water	03/01/06 15:05	03/02/06 17:30
MW-11	MPC0096-04	Water	03/01/06 15:26	03/02/06 17:30
TB-11120-03012006	MPC0096-05	Water	03/01/06 00:00	03/02/06 17:30

The carbon range for the TPH-GRO has been changed from C6-C10 to C4-C12. The carbon range for TPH-DRO has been changed from C10-C28 to C10-C36. EPA 8015B has been modified to better meet the requirements of California regulatory agencies. These samples were received with custody seals.

Project:BP Heritage #11120, Dublin, CA Project Number:G07TM-0013 Project Manager:Lynelle Onishi MPC0096 Reported: 03/24/06 14:12

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

Tert-Amyl methyl ether ND 0.50 wg/l 1 6C14010 03/14/06 03/14/06 EPA 8260B Benzene ND 0.50 " " " " " " " " " " " " " "	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Benzene ND 0.50 " " " " " " " " " " " " " " " " " " "	MW-8 (MPC0096-01) Water 5	Sampled: 03/01/06 15:50	Received:	03/02/06 1	7:30	***************************************	· · · · · · · · · · · · · · · · · · ·		,	
Test-Butyl alcohol ND 20	tert-Amyl methyl ether	ND	0.50	ug/l	1	6C14010	03/14/06	03/14/06	EPA 8260B	
Di-isopropyl ether ND 0.50 " " " " " " " " " " " " "	Benzene	ND	0.50	rr .	II	"	**	**	**	
1,2-Dibromoethane (EDB)	tert-Butyl alcohol	ND	20	IF.	п	II .	**	"	te	
1,2-Dichloroethane	Di-isopropyl ether	ND	0.50	tt .	п	"	**	**	**	
Ethylotert-butyl ether ND 0.50 " " " " " " " " " " " " " " " " " " "	1,2-Dibromoethane (EDB)	ND	0.50	**	II	lr .	17	11	**	
Ethyl tert-butyl ether ND 0.50 " " " " " " " " " " " Methyl tert-butyl ether ND 0.50 " " " " " " " " " " " " " " " " " " "	1,2-Dichloroethane	ND	0.50	rt .	IJ		"	"	**	
Ethylbenzene ND 0.50 " " " " " " " " " " " " " " " " " " "	Ethanol	ND	300	H	II .	11	11	19	**	
Methyl tert-butyl ether 2.8 0.50 """"""""""""""""""""""""""""""""""""	Ethyl tert-butyl ether	ND	0.50	n	II .	1)	17	**	**	
Toluene ND 0.50 " " " " " " " " " " " " " " " " " " "	Ethylbenzene	ND	0.50	ti	II	II .	#1	**	11	
ND	Methyl tert-butyl ether	2.8	0.50	n	*11	**	11	**	"	
Surrogate: 1,2-Dichloroethane-d4	Toluene	ND	0.50	rr	ır		71	"	**	
Surrogate: 1,2-Dichloroethane-d4 94 % 60-135 / 70-120 " " " " " " Surrogate: Toluene-d8 101 % 70-120 " " " " " " " " " " Surrogate: Dibromofluoromethane 95 % 65-130 " " " " " " " " " " " " Surrogate: 4-Bromofluorobenzene 98 % 70-120 " " " " " " " " " " " " " " MW-9 (MPC0096-02) Water Sampled: 03/01/06 15:26 Received: 03/02/06 17:30 Vertain the properties of the	Xylenes (total)	ND	0.50	n	11		**	**	**	
Surrogate: Toluene-d8 101 % 70-120 " " " " Surrogate: Dibromofluoromethane 95 % 65-130 " " " " " Surrogate: 4-Bromofluorobenzene 98 % 70-120 " " " " MW-9 (MPC0096-02) Water Sampled: 03/01/06 15:26 Received: 03/02/06 17:30 tert-Amyl methyl ether ND 0.50 ug/l 1 6C14010 03/14/06 03/14/06 EPA 8260B Benzene ND 0.50 " <td>Gasoline Range Organics (C4-C1)</td> <td>2) ND</td> <td>50</td> <td>Or .</td> <td>II.</td> <td>U</td> <td>11</td> <td>"</td> <td>Ħ</td> <td></td>	Gasoline Range Organics (C4-C1)	2) ND	50	Or .	II.	U	11	"	Ħ	
Surrogate: Dibromofluoromethane	Surrogate: 1,2-Dichloroethane-d4	1	94 %	60-13	3.5	n	"	"	"	
Surrogate: 4-Bromofluorobenzene 98 % 70-120 "	Surrogate: Toluene-d8		101 %	70-12	20	n	#	#	"	
MW-9 (MPC0096-02) Water Sampled: 03/01/06 15:26 Received: 03/02/06 17:30 tert-Amyl methyl ether ND 0.50 ug/l 1 6C14010 03/14/06 03/14/06 EPA 8260B Benzene ND 0.50 "	Surrogate: Dibromofluoromethan	e	95 %	65-13	30	,,	"	"	rr ·	
tert-Amyl methyl ether ND 0.50 ug/l 1 6C14010 03/14/06 03/14/06 EPA 8260B Benzene ND 0.50 " " " " " " " " " " " " " " " " " " "	Surrogate: 4-Bromofluorobenzene	2	98 %	70-12	20	n	"	"	, n	
Benzene ND 0.50 " " " " " " " " " " " " " " " " " " "	MW-9 (MPC0096-02) Water S	Sampled: 03/01/06 15:26	Received:	03/02/06 1	7:30					
Benzene	tert-Amyl methyl ether	ND	0.50	ug/l	1	6C14010	03/14/06	03/14/06	EPA 8260B	
Di-isopropyl ether	Benzene	ND	0.50	II.	11	n	"	"		
1,2-Dibromoethane (EDB) ND 0.50 " " " " " " " " " " " " " " " " " " "	tert-Butyl alcohol	ND	20	ų	11	Ħ	**	"	•	
1,2-Dibromoethane (EDB) ND 0.50 " " " " " " " " " " " " " " " " " " "	Di-isopropyl ether	ND	0.50	II .	11	11	**	**	"	
Ethanol ND 300 " " " " " " " " " " " " " " " " " "	1,2-Dibromoethane (EDB)	ND	0.50	II .	11	11	**	"	. "	
Ethyl tert-butyl ether ND 0.50 " " " " " " " " " " " " " " " " " " "	1,2-Dichloroethane	ND	0.50	ij	11	11	"	,	Ħ	
Ethylbenzene ND 0.50 " " " " " " " " " " " " " " " " " " "	Ethanol	ND	300	II .	н	n'	**	**	**	
Methyl tert-butyl ether ND 0.50 "<	Ethyl tert-butyl ether	ND	0.50	n	11	11	"	"	n	
Toluene ND 0.50 " <th< td=""><td>Ethylbenzene</td><td>ND</td><td>0.50</td><td>n.</td><td>11</td><td>11</td><td>**</td><td>**</td><td>**</td><td></td></th<>	Ethylbenzene	ND	0.50	n.	11	11	**	**	**	
Toluene ND 0.50 " <th< td=""><td>Methyl tert-butyl ether</td><td></td><td></td><td>п</td><td>11</td><td>11</td><td>**</td><td>**</td><td>"</td><td></td></th<>	Methyl tert-butyl ether			п	11	11	**	**	"	
Gasoline Range Organics (C4-C12) ND 50 "	Toluene			ŋ	"	11	••	"	**	
Gasoline Range Organics (C4-C12) ND 50 "	Xylenes (total)	ND	0.50	п	11	11	**	**	**	
Surrogate: Toluene-d8 104 % 70-120 " " " " " " " " " " " " " " " " " " "				u	n	11	**	"	Ħ	
Surrogate: Dibromofluoromethane 100 % 65-130 " " " "	Surrogate: 1,2-Dichloroethane-d4	1	95 %	60-1	35	n	"	,,	"	
	Surrogate: Toluene-d8		104 %	70-12	20	n	n	n	n	
	Surrogate: Dibromofluoromethan	e	100 %	65-13	30	"	"	77	"	
	Surrogate: 4-Bromofluorobenzene		101 %			n	"	rt	n	

Sequoia Analytical - Morgan Hill

Project:BP Heritage #11120, Dublin, CA Project Number:G07TM-0013 Project Manager:Lynelle Onishi MPC0096 Reported: 03/24/06 14:12

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-10 (MPC0096-03) Water	Sampled: 03/01/06 15:05	Received	: 03/02/06	17:30					
tert-Amyl methyl ether	ND	0.50	ug/l	1	6C14010	03/14/06	03/14/06	EPA 8260B	
Benzene	ND	0.50	11	ır	n	**	11	u	
tert-Butyl alcohol	ND	20	11	n	11	n	11	II	
Di-isopropyl ether	ND	0.50	11	II	н	11	11	n	
1,2-Dibromoethane (EDB)	ND	0.50	11	tr	II	11	n	rr	
1,2-Dichloroethane	ND	0.50	11	tr	11	. 11	11	tt	
Ethanol	ND	300	11	н	ij	n	if	er .	
Ethyl tert-butyl ether	ND	0.50	11	tt	Ħ	11	II	tt	
Ethylbenzene	ND	0.50	11	n	II .	II .	IJ	n	
Methyl tert-butyl ether	0.59	0.50	11	"	"	н	IJ	"	
Toluene	ND	0.50	II	n	P .	II .	II	W .	
Xylenes (total)	ND	0.50	Ц	*	(r	ır	h	**	
Gasoline Range Organics (C4-C12	2) ND	50		**	н	D.	It	**	
Surrogate: 1,2-Dichloroethane-d4		96 %	60-13	5	"	" .	n	"	
Surrogate: Toluene-d8		100 %	70-12	0	"	n	11	"	
Surrogate: Dibromofluoromethan	е	94 %	65-13	0	n	n	n	" ,	
Surrogate: 4-Bromofluorobenzene	?	97%	70-12	0	"	,,	"	"	
MW-11 (MPC0096-04) Water	Sampled: 03/01/06 15:26	Received	: 03/02/06	17:30					
tert-Amyl methyl ether	ND	0.50	ug/l	1	6C14016	03/14/06	03/15/06	EPA 8260B	
Benzene	ND	0.50	tí	"	17	ur .	**	11	
tert-Butyl alcohol	ND	20	tt	"	17	n	**	11	
Di-isopropyl ether	ND	0.50	Ħ	11	Ħ	rr rr	Ħ	11	
1,2-Dibromoethane (EDB)	ND	0.50	tt	17	17	"	"	11	
1,2-Dichloroethane	ND	0.50	**	"	**	**	**	11	
Ethanol	ND	300	n	17	**	**	**	11	
Ethyl tert-butyl ether	ND	0.50	17	**	π.	"	"	п	
Ethylbenzene	ND	0.50	tr	11	"	**	**	11	
Methyl tert-butyl ether	21	0.50	n	**	11	**	**	11	
Toluene	ND	0.50	"	11		"	"	н	
Xylenes (total)	ND	0.50	**	11	**	**	**	11	
Gasoline Range Organics (C4-C12	2) ND	50	. "	"	"	11	11	п	
Surrogate: 1,2-Dichloroethane-d4	•	94 %	60-13	5	"	"	"	п	
Surrogate: Toluene-d8		104 %	70-12	0	"	"	"	n	
Surrogate: Dibromofluoromethan	e	96 %	65-13	0	"	"	"	#	
Surrogate: 4-Bromofluorobenzene	?	97%	70-12	0	"	"	"	n	
- · ·									

Sequoia Analytical - Morgan Hill

Project:BP Heritage #11120, Dublin, CA Project Number:G07TM-0013 Project Manager:Lynelle Onishi

Spike

Source

MPC0096 Reported: 03/24/06 14:12

RPD

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6C14010 - EPA 5030B P/T / EPA	8260B									
Blank (6C14010-BLK1)				Prepared	& Analyze	ed: 03/14/0	06			
tert-Amyl methyl ether	ND	0.50	ug/l							
Benzene	ND	0.50	"							
tert-Butyl alcohol	ND	5.0	**							
Di-isopropyl ether	ND	0.50	**							
1,2-Dibromoethane (EDB)	ND	0.50								
1,2-Dichloroethane	ND	0.50	** .							
Ethanol	ND	300	17							
Ethyl tert-butyl ether	ND	0.50	17							
Ethylbenzene	ND	0.50	11							
Methyl tert-butyl ether	ND	0.50	"							
Toluene	ND	0.50	**							
Xylenes (total)	ND	0.50	11							
Gasoline Range Organics (C4-C12)	ND	50	***							
Surrogate: 1,2-Dichloroethane-d4	4.86		r	5.00		97	60-135			
Surrogate: Toluene-d8	5.23		"	5.00		105	70-120			
Surrogate: Dibromofluoromethane	5.01		n	5.00		100	65-130			
Surrogate: 4-Bromofluorobenzene	4.74		. "	5.00		95	70-120			
Laboratory Control Sample (6C14010-BS1)				Prepared	& Analyze	ed: 03/14/0	06			
tert-Amyl methyl ether	15.4	0.50	ug/l	16.3		94	80-115			
Benzene	5.23	0.50	17	5.04		104	65-115			
tert-Butyl alcohol	157	20	11	169		93	75-150			
Di-isopropyl ether	15.1	0.50	II.	16.2		93	75-125			
1,2-Dibromoethane (EDB)	16.0	0.50	п	16.6		96	85-120			
1,2-Dichloroethane	15.2	0.50	n n	15.5		98	85-130			
Ethanol	153	300	п	165		93	70-135			
Ethyl tert-butyl ether	15.7	0.50	n n	16.4		96	75-130			
Ethylbenzene	7.33	0.50	п	7.28		101	75-135			
Methyl tert-butyl ether	7.79	0.50	u	7.84		99	65-125			
Toluene	34.0	0.50	II .	38.0		89	85-120			
Xylenes (total)	42.7	0.50	II .	40.8		105	85-125			
Gasoline Range Organics (C4-C12)	412	50	u	440		94	60-140			
Surrogate: 1,2-Dichloroethane-d4	4.71		"	5.00		94	60-135			
Surrogate: Toluene-d8	5.08		n	5.00		102	70-120			
Surrogate: Dibromofluoromethane	4.72		"	5.00		94	65-130			
Surrogate: 4-Bromofluorobenzene	5.11		"	5.00		102	70-120			

Sequoia Analytical - Morgan Hill

Project:BP Heritage #11120, Dublin, CA Project Number:G07TM-0013 Project Manager:Lynelle Onishi MPC0096 Reported: 03/24/06 14:12

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6C14010 - EPA 5030B P/T / E	PA 8260B									
Matrix Spike (6C14010-MS1)	Source: MI	PC0068-05		Prepared	& Analyze	ed: 03/14/0	06			
tert-Amyl methyl ether	342	10	ug/l	326	4.4	104	80-115			
Benzene	219	10	n	101	140	78	65-115			
tert-Butyl alcohol	3200	400	"	3380	ND	95	75-120			
Di-isopropyl ether	325	10	11	325	ND	100	75-125			
1,2-Dibromoethane (EDB)	333	10	н :	333	ND	100	85-120			
1,2-Dichloroethane	318	10	"	310	ND	103	85-130			
Ethanol	2700	6000	**	3300	ND	82	70-135			
Ethyl tert-butyl ether	344	10	n	328	ND	105	75-130			
Ethylbenzene	468	10	"	146	360	74	75-135			LN
Methyl tert-butyl ether	204	- 10	n	157	44	102	65-125			
Toluene	715	10	rr	760	30	90	85-120			
Xylenes (total)	1790	10	II.	816	1100	85	85-125			
Gasoline Range Organics (C4-C12)	19100	1000	n	8800	11000	92	60-140			
Surrogate: 1,2-Dichloroethane-d4	4.93		n	5.00		99	60-135			
Surrogate: Toluene-d8	5.14		ff.	5.00		103	70-120			
Surrogate: Dibromofluoromethane	4.74		"	5.00		95	65-130			
Surrogate: 4-Bromofluorobenzene	5.08		#	5.00		102	70-120			
Matrix Spike Dup (6C14010-MSD1)	Source: MI	PC0068-05		Prepared a	& Analyze	ed: 03/14/0	06			
tert-Amyl methyl ether	344	10	ug/l	326	4.4	104	80-115	0.6	15	
Benzene	208	10	0	101	140	67	65-115	5	20	
tert-Butyl alcohol	3460	400	11	3380	ND	102	75-120	8	25	
Di-isopropyl ether	316	10	n .	325	ND	97	75-125	3	15	
1,2-Dibromoethane (EDB)	326	10	**	333	ND	98	85-120	2	15	
1,2-Dichloroethane	313	10	"	310	ND	101	85-130	. 2	20	
Ethanol	3470	6000	ij	3300	ND	105	70-135	25	35	
Ethyl tert-butyl ether	324	10	n .	328	ND	99	75-130	6	25	
Ethylbenzene	471	10	77	146	360	76	75-135	0.6	15	
Methyl tert-butyl ether	174	10	**	157	44	83	65-125	16	20	
Toluene	680	10	**	760	30	86	85-120	5	20	•
Xylenes (total)	1740	10	**	816	1100	78	85-125	3	20	LN
Gasoline Range Organics (C4-C12)	17600	1000	"	8800	11000	75	60-140	8	25	
Surrogate: 1,2-Dichloroethane-d4	4.88	· · · · · · · · · · · · · · · · · · ·	n	5.00		98	60-135			
Surrogate: Toluene-d8	4.97		n	5.00		99	70-120			
Surrogate: Dibromofluoromethane	4.64		n	5.00		93	65-130			
Surrogate: 4-Bromofluorobenzene	4.91		,,	5.00		98	70-120			

Sequoia Analytical - Morgan Hill

Project:BP Heritage #11120, Dublin, CA
Project Number:G07TM-0013
Project Manager:Lynelle Onishi

MPC0096 Reported: 03/24/06 14:12

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6C14016 - EPA 5030B P/T	EPA 8260B									
Blank (6C14016-BLK1)				Prepared	& Analyze	ed: 03/14/0	06			
tert-Amyl methyl ether	ND	0.50	ug/l							
Benzene	ND	0.50	11							
tert-Butyl alcohol	ND	5.0	11							
Di-isopropyl ether	ND	0.50	п							
1,2-Dibromoethane (EDB)	ND	0.50	IF							
1,2-Dichloroethane	ND	0.50	'n							
Ethanol	ND	300	11							
Ethyl tert-butyl ether	ND	0.50	u							
Ethylbenzene	ND	0.50	If							
Methyl tert-butyl ether	ND	0.50	н .							
Toluene	ND	0.50	D							
Xylenes (total)	ND	0.50	п							
Gasoline Range Organics (C4-C12)	ND	50	п							
Surrogate: 1,2-Dichloroethane-d4	4.94		,,	5.00		99	60-135			
Surrogate: Toluene-d8	<i>5.11</i>		"	5.00		102	70-120			
Surrogate: Dibromofluoromethane	4.96		"	5.00		99	65-130			
Surrogate: 4-Bromofluorobenzene	4.87		"	5.00		97	70-120			
Laboratory Control Sample (6C14016	i-BS1)			Prepared	& Analyze	ed: 03/14/0	06			
tert-Amyl methyl ether	15.8	0.50	ug/l	16.3		97	80-115			
Benzene	5.77	0.50	п	5.04		114	65-115			
tert-Butyl alcohol	148	5.0	n	169		88	75-150			
Di-isopropyl ether	17.3	0.50	Ħ	16.2		107	75-125			
1,2-Dibromoethane (EDB)	17.4	0.50	**	16.6		105	85-120			
1,2-Dichloroethane	17.2	0.50	Ħ	15.5		111	85-130			
Ethanol	149	300	н	165		90	70-135			
Ethyl tert-butyl ether	17.5	0.50	tt	16.4		107	75-130			
Ethylbenzene	7.57	0.50	Ħ	7.28		104	75-135			
Methyl tert-butyl ether	8.61	0.50	tt	7.84		110	65-125			
Toluene	35.2	0.50	H	38.0		93	85-120			
Xylenes (total)	42.4	0.50	n	40.8		104	85-125			
Gasoline Range Organics (C4-C12)	434	50	n	440		99	60-140			
Surrogate: 1,2-Dichloroethane-d4	5.01		"	5.00		100	60-135			
Surrogate: Toluene-d8	4.98		"	5.00		100	70-120			
Surrogate: Dibromofluoromethane	4.90		. ,,	5.00		98	65-130			
Surrogate: 4-Bromofluorobenzene	5.13		"	5.00		103	70-120			

Sequoia Analytical - Morgan Hill

Project BP Heritage #11120, Dublin, CA Project Number:G07TM-0013 Project Manager:Lynelle Onishi MPC0096 Reported: 03/24/06 14:12

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6C14016 - EPA 5030B P/T / E	PA 8260B									
Matrix Spike (6C14016-MS1)	Source: M	PC0001-04R	E1	Prepared	& Analyze	ed: 03/14/	06			
ert-Amyl methyl ether	79.4	2.5	ug/l	81.6	1.6	95	80-115			
Benzene	56.6	2.5	**	25.2	30	106	65-115			
ert-Butyl alcohol	858	25	IF	844	ND	102	75-120			
Di-isopropyl ether	84.1	2.5	н	81.2	ND	104	75-125			
1,2-Dibromoethane (EDB)	82.2	2.5	11	83.2	ND	99	85-120			
1,2-Dichloroethane	80.0	2.5	11	77.6	0.85	102	85-130			
Ethanol	847	1500	11	824	ND	103	70-135			
Ethyl tert-butyl ether	83.8	2.5	11	82.0	ND	102	75-130			
Ethylbenzene	56.2	2.5	11	36.4	18	105	75-135			
Methyl tert-butyl ether	39.0	2.5	n	39.2	ND	99	65-125			
Гoluene	174	2.5	11	190	2.2	90	85-120			
Xylenes (total)	212	2.5	11	204	5.9	101	85-125			
Gasoline Range Organics (C4-C12)	6490	250	11	2200	4100	109	60-140			
Surrogate: 1,2-Dichloroethane-d4	5.88	•	"	5.00		118	60-135			
Surrogate: Toluene-d8	5.01		"	5.00		100	70-120			
Surrogate: Dibromofluoromethane	4.72		n	5.00		94	65-130			
Surrogate: 4-Bromofluorobenzene	5.09		"	5.00		102	70-120			
Matrix Spike Dup (6C14016-MSD1)	Source: M	PC0001-04R	Œ1	Prepared:	03/14/06	Analyzed	l: 03/15/06			
ert-Amyl methyl ether	73.8	2.5	ug/l	81.6	1.6	88	80-115	7	15	
Benzene	52.8	2.5	**	25.2	30	90	65-115	7	20	
ert-Butyl alcohol	796	25	**	844	ND	94	75-120	7	25	
Di-isopropyl ether	76.8	2.5	tt	81.2	ND	95	75-125	9	15	
1,2-Dibromoethane (EDB)	78.2	2.5		83.2	ND	94	85-120	5	15	
1,2-Dichloroethane	74.2	2,5	u u	77.6	0.85	95	85-130	8	20	
Ethanol	874	1500	H .	824	ND	106	70-135	3	35	
Ethyl tert-butyl ether	80.0	2.5	**	82.0	ND	98	75-130	5	25	
Ethylbenzene	54.2	2.5	Ħ	36.4	18	99	75-135	4	15	
Methyl tert-butyl ether	35.8	2.5	u	39.2	ND	91	65-125	9	20	
Toluene	170	2.5	II	190	2.2	88	85-120	2	20	
Xylenes (total)	212	2.5	IF	204	5.9	101	85-125	0	20	
Gasoline Range Organics (C4-C12)	5780	250	**	2200	4100	76	60-140	12	25	
Surrogate: 1,2-Dichloroethane-d4	5.51		"	5.00		110	60-135			
Surrogate: Toluene-d8	5.00		"	5.00		100	70-120			
Surrogate: Dibromofluoromethane	4.46		"	5.00		89	65-130			

Sequoia Analytical - Morgan Hill

URS Corporation [Arco]	Project:BP Heritage #11120, Dublin, CA	MPC0096
1333 Broadway, Suite 800	Project Number: G07TM-0013	Reported:
Oakland CA, 94612	Project Manager:Lynelle Onishi	03/24/06 14:12

Notes and Definitions

LN MS and/or MSD below acceptance limits. See Blank Spike(LCS).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Chain of Custody Record

Project Name: Analytical for QMR sampling

BP BU/AR Region/Enfos Segment:

BP > Americas > West Coast > Retail > WCBU >

CA > Central > 11120 > HistoricalBL

State or Lead Regulatory Agency:

California Regional Water Quality Control Board - San Fre (mm/dd/yy): 10 Day TAT

Requested Due Date (mm/dd/yy):

·	Page_1 of								
On-site Time: 1415	Тетр:								
Off-site Time: 606	Temp:								
ky Conditions:									
Meteorological Events:									
Vind Sneed:	Direction:								

Lab Name: Sequoia	BP/AR Facility No.: 11120	Consultant/Contractor: URS			
Address: 885 Jarvis Drive	ddress: 1333 Broadway, Suite 800				
Morgan Hill, CA 95037	Oakland, CA 94612				
Lab PM: Lisa Race / Katt Min	California Global ID No.: T0600101432	onsultant/Contractor Project No.: 38487130			
Tele/Fax: 408.782.8156 / 408.782.6308	Enfos Project No.: G07TM-0013	onsultant/Contractor PM: Lynelle Onishi			
BP/AR PM Contact: Kyle Christie	Provision or RCOP: Provision T	ele/Fax: 510.874.1758 / 510.874.3268			
Address: 4 Centerpointe Dr.	Phase/WBS: 04 - Mon/Remed by Natural Attenuation R	eport Type & QC Level: Level 1 with EDF			
La Palma, CA 90623		-mail EDD To: Donna_Cosper@urscorp.com			
Tele/Fax: (714) 670-5303 / (714) 670-5195		voice to: Atlantic Richfield Company			
Lab Bottle Order No: 11120 Ma	Aatrix Preservative Reques	sted Analysis			
	Water/Liquid Air Air OM. OO Containers Unpreserved HA2SO, HNO3 HCI Methanol Methanol Methanol Methanol METBE TAME, ETBE DIPR, TBA (\$250) MTBE, TBA (\$250)	Sample Point Lat/Long and Comments			
1 WW-6 1550 Blogs 7	7 01 3 XXXX				
2 MW-9 1526 1 1	i n				
2 1/10 1/20					
3 mw-10 1505					
4 AM-1) 1526	11 64 V 1 1 X X X				
5 TB-11120-03012006 - V	V 65 2 1	onhold			
6					
7					
8					
9					
10					
Sampler's Name:	Relinquished By Affiliation Date Time	Accepted By / Affiliation Date Time			
Sampler's Company:	(A) (D) (0) (6) (6) (5)	(2) Stoke 3//06 1645			
Shipment Date:	SHALE OSTENOMI 34/21 1841 (35 8 // (A 7266 164)			
Shipment Method:	C 7 3/1 TA 726 1730	ain 34/64 1730			
Shipment Tracking No:		7757 7750			
Special Instructions:					
	•				
Custody Seals In Place Yes 7 No Temp	np Blank Yes No Cooler Temperature on Receipt	32 C Trip Blank Yes V No			

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

CLIENT NAME: REC. BY (PRINT) WORKORDER:	URS EB HPC0091		TIME REC'D AT LAB: //3 32 DATE LOGGED IN:						For Regulatory Purposes? DRINKING WATER YES NO WASTE WATER YES NO			
CIRCLE THE APPROI	PRIATE RESPONSE	LAB SAMPLE#	DASH #	CLIENT ID	CONTAINER DESCRIPTION	PRESERY ATIVE	рН	SAMPLE MATRIX	DATE SAMPLED	REMARKS: CONDITION (ETC.)		
1. Custody Seal(s)	Present / Absent Intact / Broken*		<u></u>									
2. Chain-of-Custody	Present Absent*		- 									
Traffic Reports or Packing List:	Present / Absent			•								
4. Airbill:	Airbill / Sticker Present / Absent					1						
5. Airbill #:										•		
6. Sample Labels: 7. Sample IDs:	Present/ Absent			•			. 18	7				
7. Sample IDS.	on Chain-of-Custody	•					Jul					
8. Sample Condition:	Intect / Broken* / Leaking*					12/4						
9. Does information on					8.			<u> </u>				
traffic reports and sa agree?	Yes) No*				100							
10. Sample received withi hold time?	n (es) No*		·	t t	<i>v</i>							
11. Adequate sample volu	ime Yes/ No*		-									
12. Proper-preservatives-								<u> </u>				
13. Trip Blank Temp Bla	nk Received?	· · · · · · · · · · · · · · · · · · ·	ļ.—			<u> </u>		· · · · · · · · · · · · · · · · · · ·	<u> </u>	•		
(circle which, if yes)	(Yes/No*		1		<u> </u>		ļ		 	·		
14. Read Temp: Corrected Temp:	3.2.0			,		<u> </u>		1				
ls corrected temp 4 +		. /	1			·						
(Acceptance range for samples					·			ļ				
**Exception (if any): MET			1						,			
or Problem COC	oppowersonolika szecem a telepatra szecem a		1000	CONTACT PROJECT	AANA OEO ANI	DATTACH	DECO	D OF PE	SOLUTION			

SRL Revision 7 Replaces Rev 5 (07/13/04) Effective 07/19/05

ATTACHMENT C

ERROR CHECK REPORTS AND EDF/GEOWELL SUBMITTAL CONFIRMATIONS

Main Menu | View/Add Facilities | Upload EDD | Check EDD

SUCCESSFUL GEO_WELL CHECK - NO ERRORS

ORGANIZATION NAME:

URS Corporation-Oakland Office

USER NAME:

URSCORP-OAKLAND

DATE CHECKED:

3/28/2006 1:34:30 PM

Processing is complete. No errors were found! You may now proceed to the <u>upload</u> page.

Back to Main Menu

Logged in as URSCORP-OAKLAND (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title:

1Q 2006 BP/ARCO 11120

GEOWELL

Submittal Date/Time: 3/28/2006 1:35:30 PM

Confirmation

5039777994

Number:

Back to Main Menu

Logged in as URSCORP-OAKLAND (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.

Main Menu | View/Add Facilities | Upload EDD | Check EDD

SUCCESSFUL EDF CHECK - NO ERRORS

ORGANIZATION NAME:

URS Corporation-Oakland

Office

USER NAME:

URSCORP-OAKLAND

DATE CHECKED:

3/28/2006 1:36:51 PM

GLOBAL ID:

T0600101432

FILE UPLOADED:

BP#11120-EDF-MPC0096.zip

No errors were found in your EDF upload file.

If you want to submit this file to the SWRCB, choose the "Upload EDD" option in the above menu and follow the instructions.

When you complete the submittal process, you will be given a confirmation number for your submittal.

Click here to view the detections report for this upload.

ВP

Regional Board - Case #: 01-1556

6400 DUBLIN BLVD DUBLIN, CA 94568

SAN FRANCISCO BAY RWQCB (REGION 2)

Local Agency (lead agency) - Case #: 2095

ALAMEDA COUNTY LOP - (BC)

SAMPLE DETECTIONS REPORT

- # FIELD POINTS SAMPLED
- # FIELD POINTS WITH DETECTIONS
- # FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL
- SAMPLE MATRIX TYPES

WATER

3

n

METHOD QA/QC REPORT

METHODS USED TESTED FOR REQUIRED ANALYTES? 8260FA

LAB NOTE DATA QUALIFIERS

Υ

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS	0
METHOD HOLDING TIME VIOLATIONS	0
LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT	0
LAB BLANK DETECTIONS	0
DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING?	
- LAB METHOD BLANK	Υ

- MATRIX SPIKE
- MATRIX SPIKE DUPLICATE
- BLANK SPIKE
- SURROGATE SPIKE

WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30% SURROGATE SPIKES % RECOVERY BETWEEN 85-115%

Υ Ν

Υ

BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130%

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%									
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30% n/a SURROGATE SPIKES % RECOVERY BETWEEN 70-125% n/a BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130%									
	S COLLECTED	DETECTIONS >	REPDL						
FIELD QC SAMPLES		DETECTIONS >	REPDL						
FIELD QC SAMPLES	COLLECTED	DETECTIONS > 0 0	REPDL						

CONTACT SITE ADMINISTRATOR.

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 4652329683

Date/Time of Submittal: 3/28/2006 1:37:45 PM

Facility Global ID: T0600101432

Facility Name: BP

Submittal Title: 1Q 2006 BP/ARCO 11120 EDF

Submittal Type: GW Monitoring Report

Click <u>here</u> to view the detections report for this upload.	us. र ४ अर्थनेकासम् विश्वीसम्बद्धाः सम्बद्धाः स्टब्स्
BP 6400 DUBLIN BLVD DUBLIN, CA 94568 Regional Board - Case #: 01-1556 SAN FRANCISCO BAY RWQCB (REGION Local Agency (lead agency) - Case #: 2095 ALAMEDA COUNTY LOP - (BC)	√ 2)
	ARTER 2006
SAMPLE DETECTIONS REPORT	
# FIELD POINTS SAMPLED	4
# FIELD POINTS WITH DETECTIONS	3
# FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL	0
SAMPLE MATRIX TYPES	WATER
METHOD QA/QC REPORT	
METHODS USED	8260FA
TESTED FOR REQUIRED ANALYTES?	Υ
LAB NOTE DATA QUALIFIERS	Υ
QA/QC FOR 8021/8260 SERIES SAMPLES TECHNICAL HOLDING TIME VIOLATIONS METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? - LAB METHOD BLANK - MATRIX SPIKE - MATRIX SPIKE DUPLICATE	0 0 0 0 7 Y
- BLANK SPIKE DOPLICATE - BLANK SPIKE	Y Y
- SURROGATE SPIKE	Ϋ́Υ
WATER SAMPLES FOR 8021/8260 SERIES	
MATER SAMPLES FOR 602 1/0200 SERIES MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135	% Y
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135 MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%	70 T Y
SURROGATE SPIKES % RECOVERY BETWEEN 85-115%	Y N
BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130%	Y
SOIL SAMPLES FOR 8021/8260 SERIES MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135	% n/a
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 63-133	70 li/a n/a
SURROGATE SPIKES % RECOVERY BETWEEN 70-125%	n/a
SOURCOME STREET IN RECOVERT BETWEEN 70-12370	117 a

***************************************	KE DUPLICATES % RECOVERY	BETWEEN 70-130% n/a
FIELD QC SAMPLES		
<u>SAMPLE</u>	COLLECTED	<u>DETECTIONS > REPDL</u>
QCTB SAMPLES	, N	0
QCEB SAMPLES	N	0
OCAB SAMPLES	N	n

Logged in as URSCORP-OAKLAND (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.

ATTACHMENT D

HISTORICAL GROUNDWATER ANALYTICAL DATA FOR FORMER WELLS ABANDONDED IN 1999 (SOURCE ALISTO ENGINEERING)

ALISTO PROJECT NO. 10-170

WELL		DATE OF SAMPLING/ MONITORING	CASING ELEVATION (a) (Feel)	DEPTH TO WATER (Feet)	GROUNDWATER ELEVATION (b) (Feel)	TPH-G (ug/l)	, TPH-D (ug/l)	B (ug/l)	T (ug/l)	(nō⁄l) E∵	X (ug/l)	MTBE (ug/l)	ĐO (ppm)	LAB
MW-1	(c)	10/27/92	328,96	8.19	320.77	ND<50	ND<50	ND<0.5	ND on					
MW-1		04/09/93	328.96	4.79	324.17	ND<50	100	ND<0.5	ND<0.5	ND<0.5	ND<0.5			PACE
MW-1		08/25/93	328.96	6,85	322.11	NO<50	70	ND<0.5	NÖ<0,5	ND<0.5	ND<0.5	_		PACE
MW-1		11/22/93	328.96	7.38	321.58	ND<50	ND<50	ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND<0.5	****		PACE
MW-1		03/07/94	328.96	5.89	923.07	ND<50	ND<50	ND<0.5		ND<0.5	ND<0.5	-		PACE
MW-1		06/09/94	328.96	6.42	322.54	ND<50	NO<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	4.3	PACE
MW-1		09/12/94	328.96	7.33	321.63	ND<50	ND<50		ND<0.5	ND<0.5	ND<0.5	_	8.8	PACE
MW-1		12/20/94	328.96	6.34	322.62	-	NDCOU	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	7,6	PACE
MW-1		03/16/95	328,96	4.37	324.59	ND<50	ND<500	****		-	_		_	
MW-1		06/28/95	328.96	5.35	323,61	111/200	ND<000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5,6	ATI
MW-1		09/06/95	328.96	6.44	322.52	ND<50	340	****			-			
MW-1		12/22/95	328.96	6.04	322,92			ND<0.50	`ND<0.50	ND<0.50	ND<1.0	ND<5.0	7.4	ATI
MW-1		08/20/96	328.96	5.65	323.31		~~			_	_	_	_	
MW-1		08/21/96	328.96		***	ND<50		-	·				_	
MW-1		10/31/96	328.96	5,99	322,97	NUKOU	160	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	6.8	SPL.
	(d)	12/02/96	328.96			-	-	· —		****	_	_		— ·
MW-1	(d)	06/26/98	328,96		_	_		****	-	_	_	_		-
							-	****	-			_		
MVV-2		10/27/92	328.50	7.64	320.86	ND<50	Alm mo						•	
MW-2		04/09/93	328.50	4.12	324.38	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_		PACE
MW-2		08/25/93	328,50	6.31	322,19		80	ND<0.5	ND<0,5	ND<0.5	ND<0.5	_	7.75	PACE
MW-2		11/22/93	328.50	7.12	321.38	ND<50 ND<50	70	ND<0.5	ND<0.5	ND<0.5	ND<0.5			PAGE
MW-2		03/07/94	328.50	5.60	322,90		ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_		PACE
MW-2		06/09/94	328,50	5.91		NDc50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	4.3	PACE
WM-S		09/12/94	328,50	6.87	321.63	ND<50	70	ND⊲0.5	ND<0.5	ND<0.5	ND<0.5	_	4.3 8.2	
MW-2		12/20/94	328.50	5.86	322.64	ND<50	160	ND<0.5	ND<0.5	ND<0.5	ND<0.5			PACE
MW-2		03/16/95	328,50	3.77		KIPS In a		***					7.5	PACE
MW-2		03/16/95	328.50	3.77		ND<50	ND<500	ND<0.50	ND<0.50	ND<0.50	ND<1.0	-		=
MW-2		06/28/95	328.50	4.33	324.17	ND<50	ND<500	ND<0.50	ND<0,50	ND<0.50			6,6	ATI
WM-5		09/06/95	328.50	5.65	322.65					11270.50	ND<1.0	_	6.6	ATE
MW-2		12/22/95	328,50	5.50		ND<50	210	ND<0.50	ND<0.50	ND<0.50		****	~~	- ·
MW-2		08/20/96	328,50	5.07	323.00		-				ND<1.0	ND<5.0	7.0	ATI
MW-2		08/21/96	328,50	` —	323,43	LID Ma		-	***	_	_	_		
WM-5		10/31/96	328.50	5.44	323,06	ND<50	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND 45		
MW-2		12/02/96	328.50	5.50	323.00	-	,					ND<10	7.0	SPL
MW-2		03/27/97	328.50	4.61	500.00			_				- .		
WM-5		06/03/97	328,50	7.14	321,36	NO<50	ND<100	ND<0.5	ND<1.0	ND<1,0	ND<1.0	MD 40	_	-
MW-2		09/16/97	328.50	6.10	200			- i		11.5<1.0		ND<10	5.8	SPL
MW-2		12/03/97	328,50	6.22	322.28	VD<50	ND<100	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND 40	_	
MW-2		06/26/98	328,50	4.86			-	-		-ADC1,0		ND<10	5.2	SPL
					060,04	√D<50	. .	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	4.6	SPL

ALISTO PROJECTNO, 10-170

NELT NO	DATE OF SAMPLING/ MONITORING	CASING ELEVATION (a) (Feel)	DEPTH TO WATER (Feel)	GROUNDWATER ELEVATION (b) (Feet)	TPH-G (ug/l)	17PH-D (VgV)	· B (ug/l)	T (Ug/l)	E (ug/l)	X (ug/i)	MTBE (ug/l)		DO pm)	LAB
MW-3 MW-3 MW-3 MW-3 MW-3 MW-3 OC-1 (I) MW-3 MW-3 OC-1 (I) MW-3	10/27/92 04/09/93 08/25/93 11/22/93 03/07/94 06/09/94 06/09/94 05/12/94 12/20/94 12/20/94 12/20/94 03/16/95 06/28/95 06/28/95 08/21/96 08/21/96 08/21/96 10/31/96 12/02/96 12/02/96 12/02/96 12/02/96 12/02/96 12/02/96 12/02/96 12/02/96 12/02/96 12/02/96 12/02/96 12/02/96 12/02/96 12/02/96 12/02/96 12/02/97 06/03/97 06/03/97 06/03/97 06/03/97 06/03/97 12/03/97 12/03/97	329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36	8.43 4.90 7.13 7.60 6.08 6.51 — 7.63 — 6.41 — 4.39 — 5.50 — 6.31 5.87 — 6.20 — 6.27 — 6.27 — 6.67 6.81 — 5.08	323.09 323.97 321.44 322.69 322.55	210 400 2000 1800 1300 8500 8500 8600 2100 18000 18000 17000 6300 9000 8800 10000 9700 9200 — 3700 3500 ND<250 ND<250 ND<250 ND<250 ND<250 ND<50 ND 50	ND<50 260 440 360 5000 2600 3200 9600 7000 2800 1900 1900 ND<500 50 ND<100 100 330 ND<200		0.7 ND<0.5 ND<0.5 ND<2.5 ND<2.5 4.0 8.3 6.3 ND<5.0 ND<5.0 ND<5.0 ND<10 ND<10 ND<50 ND 50 N	0.9 ND<0.5 ND<0.5 ND<2.5 0.5 0.5 0.5 0.5 0.5 0.6 80 210 230 ND<10 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<5.0	30 ND-0.5 ND-0.5 ND-0.5 ND-2.5 3.8 15 10 20 10 9.3 ND-2.5 9.9 13 ND-2.0 ND-100 ND-100 ND-100 ND-50 ND-50 ND-5.0 ND-6.0	3300 910 7200 13000 13000 3800 3900 	(e) - (e) 3 (e) 7 (e) - (e) 7	4 1 7 9 3	PACE PACE PACE PACE PACE PACE PACE PACE

ALISTO PROJECT NO. 10-170

WELL ID		DATE OF SAMPLING/ MONITORING	CASING ELEVATION (a) (Feel)	DEPTH TO WATER (Feet)	GROUNDWATER ELEVATION ((Fee!)	TPHG b) (ug/l)	TPH-D (ug/l)	e (ug		T (ug/l)	E (ug/l)	X (ug/1)	MTBE (ug/l)		(ppm)	LAB
MW-4		10/27/92	329.45	8.61	770.04											
MW-4		04/09/93	329,45	5.25	320.84 324.20	2300	190	23	;	54	50	gon.				
MW-4		08/25/88	329.45	7.32	322.13	1600	500	78		3.5	68	320			_	PACE
QC-1	(1)	08/25/93				1800	380	ND⊲		ND<0.5	ND<0.5	1.0 ND<0.5	0400			PACE
MVV-4		11/22/93	329,45	7.83	321,62	1600		ND<	0.5	ND<0.5	ND<0.5	ND<0.5	2100	(e)		PACE
QC-1	(I)	11/22/93		_	JE1,UZ	510	260	ND<		ND<0.5	ND<0.5	ND<0.5	2100	(e)		PACE
MW-4		03/07/94	329,45	6.29	323,16	1700	-	ND<		ND<2.5	ND<2.5	ND<2.5				PACE
QC-1	(1)	03/07/94	_	•	CE0.10	710	` 1400	0.5		8.0	ND<0.5	ND<0.5	3500	(e)	_	PACE
MW-4		06/09/94	329.45	6.76	322.69	1600		. ND<0	1.5	ND<0.5	1.4	0.6	5900	(e)	3.8	PACE
MW-4		09/12/94	329.45	7.83	321.62	6400	1800	ND<1		ND<10	ND<10	ND<10	4200	(8)	-	PACE
MW-4		12/20/94	329.45	6.68	322.77	2009 9200	2700	ND<0	2.5	ND<0.5	ND<0.5	ND<0.5	10000	(6)	7.5	PACE
MW-4		03/16/95	329.45	4.66	324.79		2400	ND<5		ND<5.0	ND<5.0	ND<5.0	4200	(e)	7.2	PACE
MW-4		06/28/95	329,45	5.93	323.52	1400 5000	960	140	1	VD<2.5	58	14	-		6.1	PACE
MW-4		09/06/95	329.45	6.83	322.62		5400	(9) 240		VD<5.0	220	ND<10			5.5	ATT
MW-4	/n	12/22/95	329,45	6.42	323.03	4400 3800	4500	ND<1	3 1	ND<13	ND<13	ND<25	40000		7.4	ΑП
CC-1 MW-4	(I)	12/22/95		-	-		4700	15		ND<13"	ND<13	ND<25	12000		7.6	ATI
₩IVV~4 MW-4		08/20/96	329,45	6.01	323.44	3900	_	16		VD<13	ND<13	ND<25	9200		7.1	AΠ
MW-4		08/21/96 10/31/96	329.45	_	_	ND-250				-		110(23)	8600			AΠ
MW-4		12/02/96	329.45	6.37	323.08	ND<250	470	ND<1:		VD<25	ND<25	ND<25	ND-250			
MW-4		03/27/97	329.45	6.71	322.74	ND<50	1600 13000	ND<2		ID<5.0	ND<5.0	ND<5.0	ND<50		7.7	SPL
	(f)	03/27/97	329.45	5.70	323,75	8300	1500	ND<5	N	ID<10	ND<10	ND<10	2200		7.1	SPL
MW-4	7	06/03/97	329.45			6900	1500	44		ID-25	ND<25	ND<25	8000		7.3	SPL.
MW-4		09/16/97	329,45	8.37	321,08	2800	270	51		ID<25	ND<25	ND<25	8500		6.2	SPL
QC-1 ((1)	09/16/97	-	6.91	322.54	110	1800	62 0,80		D<1.0	ND<1.0	ND<1.0	7000		7.1	SPL SPL
MW-4		12/03/97	329.45	7.40		130				D<1.0	ND<1.0	ND<1.0	7700		6.2	SPL
MW-4		06/26/98	329,45	7.16 5.15	322.29	ND<50	ND<200	1.2 ND<0.5		D<1.0	ND<1.0	1.1	7100			SPL
				3,15	324.30	520	-	0.52		D<1.0	ND<1.0	ND<1.0	ND<10		6.0	SPL
MW-5		04/09/93	329.60	5,18	504.0			0.02	140	D<1.0	ND<1.0	ND<1.0	1100		5.3	SPL
MW-5		08/25/93	329.60	7.28	324,42	ND<50	ND<50	ND<0.5	. No	 .					0.0	OI L
MW-5		11/22/93	329.60	7.82	322.32	ND<50	70	ND<0.5	,,,	D<0.5	ND<0.5	ND<0.5				PACE
MW-5		03/07/94	329,60	6.27	321.78	ND-50	ND<50	ND<0.5		D<0.5 D<0.5	ND-0.5	ND<0.5				PACE
MW-5 MW-5		06/09/94	329.60	6.73	323,33 322,87	ND<50	120	ND<0.5		D<0.5	ND<0.5	ND<0.5	- '			PACE
MW-5		09/12/94	329.60	7.78	321.82	ND<50	70	ND<0.5	1,10	7<0.5 7<0.5	ND<0.5	ND<0.5	· 		5.7	PACE
MV-5		12/20/94 03/16/95	358'60	6.63	322.97	ND<50	120	NO<0.5	::-)<0.5	ND<0.5	ND<0.5	_			PACE
4W-5		06/28/95	329.60	4.65	324.95	ND .co		_			ND<0.5	ND<0.5	-	7		PACE
AW-5		09/06/95	329.60	5.69	323.91	ND<50	ND<500	ND<0.50	ND.	<0.50	ND<0,50		-		_	
/W-5		12/22/95	329.60	6,82	322.78	ND<50			í -			ND<1.0		4	1.9	ATI
/W-5		08/20/96	329,60	6.40	323.20		200	ND<0.50	ND.	<0.50	ND<0.50	MD -4 o	—-			
₩-5		08/21/96	329,60	5.98	323.62		, —		_			ND<1.0	ND<5.0	7	.3	ATi
1W-5			329.60					-	_	_			_	-	_	
		10/31/96	329,60	6.29	000 0	ND<50	NDc50	ND<0.50	Lin				-	-		~~
W-5		12/02/96	329.60	6.37	323,31			110(0,00		<1.0	ND<1.0	ND<1.0	ND<10	^	_	
W-5		03/27/97	200.00	5.33	323.23						,	_	NOCIO			SPL
W-5		06/03/97	000 mm	8.00	324.27	ND<50	ND<100	ND<0,5	4.15			_		-		٠ ،
W-5		09/16/97	OOD OO	6.89	321.60			NU<0.5	ND<		ND<1,0	ND<1.0	ND<10	~		
W-5		12/03/97	222.00	6.99	322.71	ND<50	ND<100				-		-	5.		SPL
W-5		06/26/98		5.11	322.61	~-		ND<0.5	ND<	:1.0	ND<1.0	ND<1.0	.27			
				J. 1 1	324.49	ND<50		**************************************						5.		SPL
								ND<0.5	ND<	:1.0	ND<1.0	ND<1.0				~~
ıg-98												, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND<10	4.	7 5	SPL

ALISTO PROJECT NO. 10-170

ID MEIT	DATE OF SAMPLING/ MONITORING	CASING ELEVATION (a) (Feel)	DEPTH TO WATER (Feet)	GROUNDWATER ELEVATION ((Feel)	TPH-G b) (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/i)	(ug/l)	X (ug/1)	MTBE (ug/l)	ĐO (ppm	LAB
MW-6	04/09/93	329.55	5.37	70.1.40									
MW-6	08/25/93	329.55	7.42	324.10	ND<50	ND<50	ND<0.5	ND<0.5	No as			,	
MW-6	11/22/93	329,55	7.93	322.13	ND<50	170	ND<0.5	ND<0.5	ND<0.5	ND<0,5			PACE
WW-6	03/07/94	329.55	6.25	321.62	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_		PACE
MW-6	06/09/94	329.55	6,85	323,30	ND<50	90	ND<0.5	ND<0.5	ND<0.5	ND<0.5			PACE
MW-6	09/12/94	329.55	7,91	322.70	ND<50	ND<50	ND<0.5		ND<0.5	ND<0,5		4.2	PACE
MW-6	12/20/94	329.55	6.82	321.64	ND<50	240	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	7.0	PACE
MW-6	03/16/95	329,55		322.73	****	_		ND<0.5	ND<0.5	ND<0.5		6.7	PACE
MW-6	06/28/95	329.55	4.78	324,77	ND<50	ND<500	ND<0.50	——————————————————————————————————————		مىڭ .			_
MW-6	09/06/95	329,55	5.97	323.58				ND<0.50	ND<0.50	ND<1.0	-	6.1	ATI
MW-6	12/22/95	329,55	6.94	322.61	ND<50	940	—. ND 0.50				·		
MW-6	08/20/96	329.55	6.53	323,02	****		ND<0.50	ND<0.50	ND<0,50	ND<1.0	ND<5.0	7.2	TTA
MW-6	08/21/96	329.55	6,18	323.37		-		770	-	-	-10-40,0	1.2.	
MW-6	10/31/96	329.55		-	ND<50	120	NID ou		_				
MW-6	12/02/96		6.52	323.03		1	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		
MW-6	03/27/97	.329.55 329.55	6.55	323.00	_	_	-				~		SPL
WW-e	06/03/97	329,55 329,55	5.50	324.05	ND<50	ND<100							
MW-G	09/16/97	329,55	8.19	321.36		110<100	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		
MW-6	12/03/97	329.55	6,95	322.60	NO<250						MD<10	6.3	SPL
MW-6	06/26/98	329.55	7.22	322.33		680	ND≪2.5	ND<5.0	ND<5.0	NO<5.0	ND<50		
		0.0.00	5.20	324.35	ND<50	-	, , , , , ,			~	74C-C3U	5,5	SPL
MW-7	04/09/93	329.49					ND<0,5 .	ND<1.0	ND<1.0	ŃD<1.0	ND<10		
MW-7	08/25/93		5.36	324.13	ND<50	ND<50					110<10	4.6	SPL
MW-7	11/22/93	329,49 329,49	7.44	322.05	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5			
MW-7	03/07/94		7.92	321.57	ND<50	150	ND<0.5	ND<0.5	ND<0,5	ND<0.5	_		PACE
MW-7	06/09/94	329,49 329,49	6.20	323.29	ND<50	ND<50	ND<0.5	ND<0,5	ND<0.5	ND<0.5	_		PACE
MW-7	09/12/94	329,49 329,49	6.89	322.60	ND<50	ND-450	ND<0.5	ND<0.5	ND<0.5	ND<0.5	- .		PACE
MW-7	12/20/94		7.87	321.62	ND<50	70	ND<0.5	ND<0.5	ND<0.5	ND<0.5		3.7	PAGE
MW-7	03/16/95	329.49	6.77	322.72	ND<50	50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	6.8	PACE
MW-7	06/28/95	329.49	4.77	324,72	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5			6.8	PACE
MW-7	09/06/95	329,49 329,49	5.94	323.55	ND<50	ND<500	ND<0.50	ND<0.50	ND<0.50	ND<0.5 ND<1.0		6.5	PACE
MW-7	12/22/95	329.49	6.98	322,51	ND<50	320 240	ND<0.50	ND<0.50	ND<0.50	ND<1.0	~	5.9	ATI
MW-7	08/20/96	329,49	6.65	322.84	ND<50		ND<0.50	ND<0.50	ND<0,50	ND<1.0	-	7.6	ΑΊΤ
MW-7	08/21/96	329,49	6.22	323.27		ND<50	ND<0.50	ND<0.50	ND<0.50		8,5	7.5	ATI
MW-7	10/31/96	329.49	*		ND<50	ND<50				ND<1.0	7.2	6.9	ATI
MW-7	12/02/96	329.49	5.56	322.93	ND<50		ND<0,5	ND<1.0	ND<1.0	ND<1.0		→	
MW-7	03/27/97	329.49	6.13	323.36	ND<50	ND<100	ND<0.5	ND<1.0	ND<1.0		ND<10	_	SPL
MW-7	06/03/97	329.49 329.49	5.09		ND<50	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	86	6.8	SPL
MW-7	09/16/97		7.80	321,69	650	ND<100	ND<0.5	ND<1.0		ND<1.0	59	7.3	SPL
VW-7	12/03/97	329,49	6,50	322.99		ND<100	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	6.6	SPL
/W-7 (h)	06/26/98	329,49	6.66	ood	120 ND<50	ND<100	ND<0.5	ND<1.0	NO<1.0	ND<1.0	630	6.8	SPL
	- WEGGO	329,49	4.96	00100		ND<200	NO<0.5	ND<1.0	ND<1.0 ND<1.0	ND<1.0	2200	6.0	SPL
					ND<50		ND<0.5	ND<1.0		ND<1.0	ND<10	5.0	SPL
								HDZ1V	ND<1.0	ND<1.0	ND<10	e ,	
										112 110	HINCIN	5.1	SPL

ALISTO PROJECT NO. 10-170

NETT ID	DATE OF SAMPLING/ MONITORING	CASING ELEVATION (a) (Feat)	DEPTH TO WATER (Feet)	GROUNDWATER ELEVATION (b) (Feet)	TPH-G (ug/l)	TPI-I-D (ug/l)	B (ug/l)	T (ug/i)	E (ug/l)	X (ug/l)	MTBE (ug/l)	DO (ppm)	LAB
CC-2 (i)	08/25/93 11/22/93 03/07/94 06/09/94 09/12/94 12/20/94 03/16/95 06/28/95 12/22/95				ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50		ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.50 ND<0.50 ND<0.50	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.50 ND<0.50 ND<0.50	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.50 ND<0.50	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<1.0 ND<1.0			PACE PACE PACE PACE PACE PACE ATI ATI
ABBREVIATIO		· · · · · · · · · · · · · · · · · · ·		NOTES					ND<0.50	ND<1.0	ND<5.0		ATI

TPH-G	Total petroleum hydrocarbons as gasoline
TPH-D	Total petroleum hydrocurbons as diesel
В	Benzene
T	Toluene
E	Ethyibenzene
Х	Total xylenes
MTBE	Methyl tert butyl ether
DO	Dissolved oxygen
ug/l	Micrograms per liter
ppm	Parts per million
ND	Not detected above reported detection limit
_	Not analyzed/applicable/measured
PACE	Pace, Inc.
ሳ ፐ፣	Analytical Technologies, Inc.
SPL	Southern Petroleum Laboratories

- Top of casing elevations surveyed to an arbitrary datum.
- Groundwater elevations relative to an arbitrary datum.
- Analysis did not delect total oil and grease and halogenated volatile organic compounds above reported detection limits.
- Well inaccessible.
- A copy of the documentation for this data is included in Appendix C of Alisto report 10-170-05-001.
- Blind duplicate.
- MTBE peak. Refer to documentation for this data in Appendix C of Alisto report 10-170-05-001.
- Analysis did not detect volatile organic compounds above reported detection limits.
- Travel blank.

FX01\10-170\170-5-4.WQ2

TABLE 2 - SUMMARY OF RESULTS OF GROUNDWATER SAMPLING FOR EPA METHOD 8260 ANALYSIS BP OIL COMPANY SERVICE STATION NO. 11120 6400 DUBLIN BOULEVARD, DUBLIN, CALIFORNIA

'ALISTO PROJECT NO. 10-170

WELL ID	DATE OF SAMPLING/ MONITORING	B (ug/l)	T (ug/l)	(ug/l)	X (ug/l)	MTBE (ug/l)	DIPE (ug/l)	ETBE (ug/l)	TBA (ug/l)	TAME (ug/l)	LAis
Harris and Control of the Control of						-					
MW-4	06/26/98	ND F							**************************************		
1414.4-4	00/20/30	ND<5	ND<5	ND<5	ND<5	ND<10	ND<10	ND<10	ND<500	ND 40	5 .
MW-7	06/26/98	ND F			*		110110	NDCIU	MD<200	ND<10	SPc
1414 #-7	OULLYSD	ND<5	ND<5	ND<5	ND<5	ND<10	ND<10	ND<10	ND<500	AID 40	.
							110 110	110<10	MD<200	ND<10	SPL

ABBREVIATIONS:

В	Benzene
Т	Toluene
Ε	Ethylbenzene
Χ ,	Total xylenes
RATTOR L	A 4 . 41 . 1

MTBE 1 Methyl tert butyl ether
DIPE Di-isopropyl ether
ETBE Lihyl t-butyl ether

TBA t-butyl ether

TAME tert-arryl methyl ether ug/l Micrograms per liter

ND Not detected above reported detection limit

SPL Southern Petroleum Laboratories

F:\01\10-170\10-170EC.WQ2