ExxonMobil Refining & Supply Company Global Remediation – US Retail 4096 Piedmont Avenue #194 Oakland, California 94611 510.547.8196 510.547.8706 Fax jennifer.c.sedlachek@exxonmobil.com Jennifer C. Sedlachek Project Manager

RECEIVED By dehloptoxic at 1:31 pm, Aug 15, 2006

> ExonMobil Refining & Supply

July 10, 2006

Mr. Jerry Wickham, P.G., C.E.G. Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RE: Former Exxon RAS #7-3567/3192 Santa Rita Road, Pleasanton, California.

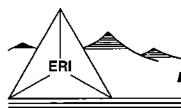
Dear Mr. Wickham:

Attached for your review and comment is a letter report entitled *Site Conceptual Model and Recommendation for Case Closure*, dated July 10, 2006, for the above-referenced site. The report was prepared by Environmental Resolutions, Inc. (ERI) of Novato, California, and details groundwater monitoring and sampling activities at the subject site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document is true and correct to the best of my knowledge.

If you have any questions or comments, please contact me at (510)547-8196.

Sincerely,


Jennifer C. Sedlachek Project Manager

Attachment: ERI's Site Conceptual Model and Recommendation for Case Closure, dated July 10, 2006.

cc: w/ attachment

Mr. Eddy So, California Regional Water Quality Control Board, San Francisco Bay Region Ms. Colleen Morf, Zone 7 Water Agency Mr. Robert C. Ehlers, M.S., P.E., The Valero Companies, Environmental Liability Management

w/o attachment Ms. Paula Sime, Environmental Resolutions, Inc.

ENVIRONMENTAL RESOLUTIONS, INC.

July 10, 2006 ERI 243114.R02

Ms. Jennifer C. Sedlachek ExxonMobil Refining & Supply – Global Remediation 4096 Piedmont Avenue #194 Oakland, California 94611

SUBJECT Site Conceptual Model and Recommendation for Case Closure Former Exxon Service Station 7-3567 3192 Santa Rita Road, Pleasanton, California

Ms. Sedlachek:

At the request of Exxon Mobil Corporation (Exxon Mobil), Environmental Resolutions, Inc. (ERI) has compiled geological, hydrogeological, and analytical data for the subject site and has prepared this Site Conceptual Model (SCM) and Recommendation for Case Closure. This SCM summarizes previous environmental work, site conditions, and the risk to human health and the environment posed by the occurrence of petroleum fuel hydrocarbons and related constituents in soil and groundwater underlying the site and vicinity.

The purpose of this SCM is to document the extent and stability of petroleum hydrocarbons and related constituents in soil and groundwater under and in the vicinity of the site, and the impact on public health and the environment.

BACKGROUND

The site (Assessor's Parcel Number 946-1105-38-4) is located on the southeastern corner of Las Positas Boulevard and Santa Rita Road in Pleasanton, California, as shown on the Site Vicinity Map (Plate 1). The locations of underground storage tanks (USTs), dispenser islands, groundwater monitoring wells, and select site features are shown on the Generalized Site Plan (Plate 2). The site lies at an elevation of approximately 341 feet above mean sea level (fmsl).

The site existed as a gasoline service station as early as 1969. Exxon Mobil owned the property as early as 1986. Property ownership was transferred from Exxon Mobil to Valero Energy Corporation (Valero) in June 2000. Currently, the property is owned by BNY Western Trust Company, and an independent dealer, Steve Asmann Incorporated, operates the site as a Valero-branded gasoline service station (ERI, 2002b). Properties in the vicinity of the site are commercial and residential.

Currently, there are eight groundwater monitoring wells (MW1 through MW8) at the subject site. Boring logs and well construction diagrams are included as Attachment A. Well construction details are summarized on Table 1. Cumulative monitoring and sampling data are summarized on Tables 2A and 2B.

SUMMARY OF ENVIRONMENTAL INVESTIGATIONS

UST Removal and Replacement

On December 20 and 21, 1988, Applied GeoSystems observed Telstar Constructors, Inc., of Houston, Texas, excavate and remove four USTs at the subject site. Tank removal and replacement activities were part of Exxon Mobil's planned remodel of the service station. A 1986 Application for Permit to

Operate Underground Storage Tanks on file with the Livermore-Pleasanton Fire Department indicates that the tanks were installed in 1969. The USTs consisted of one 10,000-gallon unleaded tank (T1), one 8,000-gallon regular leaded tank (T2), one 6,000-gallon super unleaded tank (T3), and one 500-gallon waste oil tank. All four tanks were constructed of single-wall carbon steel. Applied GeoSystems visually examined the tanks and observed the following (Applied GeoSystems, 1989):

- All four tanks were "moderately rusted."
- The tanks had "slight to moderate corrosion along seams at tank ends."
- No holes were observed in gasoline tanks.
- Two ½-inch diameter holes were observed in the east end of the waste oil tank approximately 2 inches above the base of the tank.

Following tank examination, Applied GeoSystems observed the soil at the base of the UST excavation to have "moderate discoloration" near tanks T2 and T3 (Applied GeoSystems, 1989). No groundwater was observed in the UST excavations. On December 20, 2006, Applied GeoSystems collected six soil samples from the UST excavations and submitted them for laboratory analyses of total petroleum hydrocarbons as gasoline (TPHg); benzene, toluene, ethylbenzene, and total xylenes (BTEX); total petroleum hydrocarbons as diesel (TPHd); total oil and grease (TOG); select volatile organic compounds (VOCs); and total organic lead. Residual TPHg was present in soil at a maximum concentration of 2,901 milligrams per kilogram (mg/kg). Benzene, toluene, ethylbenzene, and total xylenes were present at maximum concentrations of 18, 78, 116, and 803 mg/kg, respectively. TPHd, TOG, VOCs, and lead were not present in reportable concentrations. On December 30, 1988, the UST pit was over-excavated to an approximate depth of 14 to 17 feet below ground surface (fbgs), and three additional soil samples were collected from the base of the excavation. Constituent concentrations were below reporting limits in these additional soil samples. Analytical results of all soil samples collected during UST removal are included in Table 3 and summarized on Plate 3.

Following over-excavation and soil sampling activities, the gasoline UST excavation was extended to the north to accommodate new USTs. The new USTs included of one 12,000-gallon and one 10,000-gallon unleaded tank, one 10,000-gallon premium unleaded tank, one 6,000-gallon diesel tank, and one 1,000-gallon waste oil tank. The five new USTs are constructed of double-walled fiberglass.

More than 340 cubic yards of soil were excavated from the old and new UST excavations. Unknown quantities of soil were re-used to backfill around the new USTs. The remaining soil was reportedly sent to a Class III landfill (Applied GeoSystems, 1989).

Unauthorized Release – Surface Spill

On March 6, 1990, at approximately 4:00 pm, approximately 20 gallons of product were spilled during tank filling operations (Gibson, 1990). The product drained west off the site and into the gutter along Santa Rita Road where it traveled approximately 380 feet south to a storm drain inlet. The product entered the storm drain inlet and traveled further south where it emotied into the Arrovo Mocho Canal. The spill was reported to authorities at approximately 8:30 am on March 7, 1990. At that time, it appeared that absorbent material had been applied to the product in the gutter immediately adjacent to the subject site. Exxon Mobil summoned International Technology Corporation (IT) to the site at 9:30 am to commence cleanup activities. Cleanup activities were conducted from approximately 12:20 pm on March 7, 1990, to 11:00 am on March 8, 1990. Cleanup activities included digging a trench around the storm drain effluent pond and applying absorbent booms to the trench, installation of three rows of booms downstream on Arroyo Mocho, street and gutter cleaning, washing out of the storm drain inlet and lines leading to Arroyo Mocho, and venting of the storm drain line to clear out lingering vapors (IT, 1990). Water samples were collected prior to and following cleaning activities. TPHg was present at a concentration of 94,000 μg/L in the storm drain effluent near Arroyo Mocho, 1,200 μg/L at 100 feet downstream in Arroyo Mocho, and 2,400 µo/L at 400 feet downstream. Following cleanup activities. TPHg was present at a concentration of 1,200 μ g/L in the storm drain effluent and 64 μ g/L at 400 feet

downstream in Arroyo Mocho. Analytical results of the water samples collected before and after cleanup activities and a map showing sample locations are included as Attachment B.

Waste Oil Piping Replacement and Abandonment

Between November 16 and December 16, 1995, Dan Brenton Construction, Inc., of San Jose, California, conducted waste oil piping replacement and abandonment activities (PFD, 1995). Approximately 30 linear feet of waste oil drain line beneath the floor of the service bay were replaced with new line, and approximately 28 linear feet of waste oil drain line were abandoned in place after being pressure tested, rinsed, drained, and slurry-filled. The drain line was replaced because secondary containment was allowing water from an outside source to enter into the containment sump. A schematic drawing showing the approximate locations of replaced and abandoned waste oil piping is included as Attachment C.

Hoist Removal

On October 14, 1998, Delta Environmental Consultants, Inc. (Delta) of Rancho Cordova, California, observed the excavation and removal of one fiberglass-coated hoist and one fiberglass-coated 50-gallon underground hydraulic oil reservoir (Delta, 1998). Upon inspection, the hoist and reservoir appeared to be in relatively good condition, and no holes or cracks were observed. Two soil samples were collected from beneath the hoist at approximately 7.5 fbgs, and one soil sample was collected from beneath the reservoir at 5.5 fbgs. The two soil samples from beneath the hoist contained concentrations of total recoverable petroleum hydrocarbons (TRPH) at 1,700 and 1,500 mg/kg. TRPH was present at a concentration of 56 mg/kg in the soil sample from beneath the reservoir. Approximately 18 cubic yards of soil were generated during excavation associated with hoist and hydraulic oil reservoir removal and disposed of at the BFI-Vasco Road Sanitary Landfill in Livermore, California.

Product Line Removal and Replacement

On August 9, 2002, ERI observed dispenser island and product line replacement activities at the subject site (Horizon, 2002). The work was conducted by Horizon Environmental Inc. (Horizon) of El Dorado Hills, California, for Ultramar Ltd. (Ultramar), a wholly owned subsidiary of Valero. Work included replacement of single-walled product lines with double-walled product lines and installation of dispenser pans under dispensers. Horizon and ERI each collected 19 soil samples from beneath the dispenser islands and the base of the excavated product line trenches. Horizon submitted the 19 samples for analysis while ERI submitted 8 soil samples for analysis and 11 were submitted on hold. Seven of the eight samples submitted by ERI contained reportable concentrations of MTBE from 0.0072 to 0.189 mg/kg. Toluene and total xylenes were present at reportable concentrations (both 0.0023 mg/kg) in one sample. TPHd, TPHg, benzene, and VOCs were not present in reportable concentrations. Depths of analyzed soil samples ranged from 4 to 6.5 fbgs. Pea gravel excavated from the product line trenches was aerated and used to fill the trenches once the new product lines were installed. Analytical results of soil samples collected by ERI during product line removal are included in Table 3 and summarized on Plate 3. Analytical results of soil samples collected by Horizon are included in Attachment D.

Environmental Assessment Activities

In November 1998, ERI installed four groundwater monitoring wells (MW1 through MW4) at the site (ERI, 1998a).

On April 13, 2000, ERI observed soil boring activities at the subject site (ERI, 2000a). The work was conducted by Environ Corporation (Environ) for Valero in conjunction with the transfer of ownership of the property. Work included the advancement of three soil borings (B1 through B3) to total depths of approximately 52 to 55 fbgs. Environ and ERI collected groundwater samples for laboratory analysis from 52 fbgs in soil boring B1 and 55 fbgs in soil boring B3. Free groundwater was not encountered in soil boring B2. Soil samples were not collected from the soil borings. Analytical results of groundwater samples collected by ERI are summarized on Table 4. Locations of soil borings B1 through B3 are shown on Plate 2.

Groundwater monitoring wells MW5 through MW7 were installed by ERI in July 2000 (ERI, 2000b). In March 2001, ERI installed groundwater monitoring well MW8 at the site (ERI, 2001b).

Groundwater Monitoring

Groundwater monitoring began at the site in November 1998 (ERI, 1998a). Cumulative groundwater monitoring and sampling data are provided as Tables 2A and 2B.

Sensitive Receptor Surveys

In November and December 1998, as part of a baseline investigation, ERI conducted a limited sensitive receptor survey (SRS) at the site. The SRS consisted of a site visit to identify utility vaults locations and characteristics and a site vicinity search (1,000-foot radius) to identify surface water bodies, wells, basements, and underground parking garages (ERI, 1998a).

In June 2000, ERI conducted a search at Alameda County Environmental Health Services for water supply wells in the vicinity (3,000-foot radius) of the site (ERI, 2001a).

In May 2002, ERI conducted an SRS update. The update included a search of the DWR Well Driller's Report Archive; a site visit to map utility vault locations and characteristics; and a site vicinity search (1,000-foot radius) to confirm locations of municipal water supply wells, surface water bodies, and other sensitive receptors (ERI, 2002a).

In April 2004, ERI conducted an SRS update. The update included a search of the DWR Well Driller's Report Archive; a site visit to map utility vault locations and characteristics; and a site vicinity search (2,000-foot radius) to confirm locations of municipal water supply wells, surface water bodies, and other sensitive receptors.

In November 2005, ERI conducted an SRS update. The update included a search of the DWR Well Driller's Report Archive; a search of Zone 7 Water Agency's well database for wells within 2,000 feet of the site; a review of the City of Pleasanton (the City) water and storm sewer line maps; a site visit to map utility vault locations and characteristics; and a site vicinity search (2,000-foot radius) to confirm locations of municipal water supply wells, surface water bodies, and other sensitive receptors.

In June 2006, ERI conducted an SRS update. The update included a review of DWR Well Drillers' Reports obtained in November 2005; a search of Zone 7 Water Agency's well database for wells within 1,500 meters of the site; a site visit to confirm utility vault locations and characteristics; and a site vicinity search (1,500-meter radius) to confirm locations of municipal water supply wells, surface water bodies, and other sensitive receptors.

PREVIOUS CASE CLOSURE AND RE-OPENING

Exxon Mobil received notice of case closure from Alameda County Health Care Services (the County) in a letter dated November 25, 1997 (County, 1997). The letter confirmed completion of a site investigation and remedial action for the USTs removed in 1988 and indicated that no further action was required.

In a letter from the County dated February 28, 2000, Exxon Mobil was given a "Notice of Responsibility" and named as a responsible party (County, 2000a). The case was re-opened based on the discovery of methyl tertiary butyl ether (MTBE) in shallow groundwater in wells at the site on November 17, 1998, and the site's proximity to municipal water supply wells (County, 2000b).

SUMMARY OF SITE CONDITIONS

Geology and Hydrogeology

Regional Geology

The City is underlain by Quaternary valley sediments. Helley and Graymer (1997) identified both floodplain and basin deposits under the City and floodplain deposits under the subject site. Graymer et al (1996) mapped sediments beneath the City and subject site as undivided surficial deposits. The Livermore Formation underlies the valley alluvium (LLNL, 1995).

The City lies in the Amador Valley, which trends approximately northeast-southwest from Pleasanton Ridge, part of the Diablo Range, in the southwest to the Livermore Valley in the east. A right-lateral strike slip fault trending northwest-southeast is mapped at the base of Pleasanton Ridge, on the western edge of the Amador Valley (Graymer et al, 1996). The subject site lies approximately 2.75 miles east of this strike-slip fault. A concealed oblique fault with thrust or reverse motion is mapped northeast of the site along the northeast edge of the Amador Valley (Graymer et al, 1996), approximately 1.33 miles northeast of the site. Additionally, a concealed fault with undesignated motion is mapped approximately 0.72 mile west of the site, trending northwest-southeast through the Amador Valley (Graymer et al, 1996).

Regional Hydrogeology

The site is located within the Livermore Valley Groundwater Basin. This basin has been designated as having the following existing or potential beneficial uses: agriculture, industrial service water supply, industrial process water supply, and municipal and domestic supply (Regional Board, 2000). Groundwater is produced from the valley alluvium sediments, which extend from the surface to approximately 500 fbgs (Regional Board, 2000).

The Arroyo Mocho canal is located approximately 1,020 feet south of the site, Tassajara Creek is located approximately 1,830 feet west of the site, the Pleasanton Canal is located approximately 3,180 feet southwest of the site, and an unnamed canal is located approximately 3,770 feet northeast of the site. The unnamed canal flows south and merges into Arroyo Mocho approximately 3,770 feet northeast of the site. Tassajara Creek flows southwest and merges into Arroyo Mocho approximately 4,215 feet southwest of the subject site. Arroyo Mocho and the Pleasanton canal flow southwest and eventually merge into Arroyo de la Laguna, which flows south out of the Amador Valley.

Site Hydrostratigraphy

Based on review of the boring logs and field observations, ERI has identified two hydrostratigraphic units underlying the site and vicinity. Geologic cross sections drawn along traces A-A' and B-B' (Plate 4) showing the distribution of sediments and hydrostratigraphic units are included as Plates 5 and 6. Boring logs are included as Attachment A.

From surface grade to depth, the identified units are:

1. <u>UPPER CLAY UNIT</u>: A sequence of interbedded clayey sediments composed primarily of clay with varying amounts of silt and sand, with layers of clayey sand, silty sand, and clayey silt occurs at surface grade. The predominant characteristics of this unit are the high proportion of clay (even with the coarser-grained layers) and lateral homogeneity. In several borings, the entire sequence from surface grade to total depth is logged as clay with silt. Thickness of this unit is relatively consistent across the site, ranging from total depth in select borings (31 to 41.5 feet) to approximately 43 feet, and is present in the drilled locations. In the western and southern areas of the site, the upper clay unit is underlain by a 3- to 4-foot thick clayey silt layer. In addition, a 7-foot thick clayey sand layer was observed above this clayey silt layer in the boring for MW7. Groundwater saturation levels in this unit are variable. Free water was encountered in select borings between 25 and 39 fbgs.

 LOWER SAND AND GRAVEL UNIT: A unit consisting of interbedded sand and gravel layers with varying amounts of clay and silt underlies the upper clay unit. The predominant characteristics of this unit are the high proportion of fine-grained sand and lateral homogeneity. Layers are composed of clayey sand, silty sand, gravelly sand, and sandy gravel. The first-encountered depth of this unit is relatively consistent across the site ranging from 41 to 50.5 fbgs. Groundwater saturation levels in this unit are generally moist to wet. Free water in this unit was encountered in select borings at 50 and 62 fbgs.

Based on differences in depth to water measurements in wells screened exclusively in the upper clay unit (approximately 20 to 28.5 fbgs) and lower sand and gravel unit (approximately 55.5 fbgs), these two units do not appear to be hydraulically connected.

Occurrence of Groundwater

Hydrographs 1 through 8 summarize historical groundwater elevations and dissolved-phase constituent concentrations. Groundwater elevations fluctuate seasonally up to 7 feet with highest elevations occurring during the first quarter of the year and lowest elevations occurring during the second quarter.

Depth to groundwater in the upper clay unit (as measured in groundwater monitoring wells MW1, MW2, and MW5), is typically between approximately 20 and 28.5 fbgs. Historically, groundwater in monitoring wells MW1, MW2, and MW5 has been as shallow as 14.12 fbgs and as deep as 29.37 fbgs. Average depth to groundwater in the lower sand and gravel unit (as measured in groundwater monitoring well MW8), is approximately 55.5 fbgs. Historically, groundwater in monitoring well MW8), is approximately 55.5 fbgs. Historically, groundwater monitoring well MW8 has been as shallow as 46.63 fbgs and as deep as 65.15 fbgs. Groundwater monitoring wells MW3, MW4, and MW6 are screened across both the upper clay unit and the lower sand and gravel unit. Depth to groundwater in these wells is typically between approximately 37 and 41 fbgs. Historically, groundwater in monitoring well MW3, MW4, and MW6 has been as shallow as 29.34 fbgs and as deep as 50.20 fbgs. Groundwater monitoring well MW3, MW4, and clayey silt layers in the upper clay unit. Average depth to water in MW7 is approximately 26 fbgs. Historically, groundwater in monitoring well MW7 has been as shallow as 22.46 fbgs and as deep as 29.74 fbgs.

Groundwater Flow and Hydraulic Gradient

The regional groundwater flow in the Livermore Valley Groundwater Basin is westerly, toward the Arroyo de la Laguna, and then flows south into the Sunol Valley Groundwater Basin; however, subsurface flow has not continued into the Sunol Valley Groundwater Basin since 1945 due to groundwater pumping in the Livermore Valley Groundwater Basin (LLNL, 1995).

Based on recent groundwater elevation maps for the site, the groundwater flow direction under static conditions in the vicinity of the site in the upper clay unit is east to east-southeast, under hydraulic gradients of 0.123 to 0.267. The groundwater flow direction under static conditions in the vicinity of the site in the lower sand and gravel unit is southwest under hydraulic gradients of 0.039 to 0.238. Groundwater Flow Direction Rose Diagrams for the upper and lower hydrostratigraphic units are included as Plates 7 and 8, respectively. The well construction of MW7 is different from other wells screened in the upper clay unit; therefore, it was not used in construction of the Groundwater Flow Direction Rose Diagram.

Aquifer Characteristics

Based on review of boring logs, groundwater saturation levels within the upper clay unit are variable. Sediments were logged as dry, slightly damp, damp, moist, and wet. Free water was encountered in select borings between 25 and 39 fbgs. Groundwater saturation levels within the lower sand and gravel unit are consistent across the site. With the exception of one unit logged as dry to moist, sand and gravel layers in this unit were logged as wet. Free water in this unit was encountered in select borings at 50 and 62 fbgs. Based on sediment size and groundwater saturation levels included on the boring logs, hydraulic conductivity in the lower sand and gravel unit is likely higher than that of the upper clay unit.

Distribution of Chemicals of Concern in Soil and Groundwater

Residual Hydrocarbons in Soil

Cumulative results of laboratory analyses of soil samples collected at the subject site are summarized on Table 3. The concentrations and areal distribution of gasoline-range hydrocarbons (as TPHg), benzene, and MTBE are summarized on Plate 3 and indicate the following:

- Residual TPHg, benzene, and MTBE are spatially associated with the UST pit and dispenser islands. Residual TPHg, benzene, and MTBE were not present in soil samples collected from the soil borings for groundwater monitoring wells MW1 through MW8, except for MTBE in the sample from 21 fbgs in the soil boring for MW7 (0.001 mg/kg).
- Soil containing residual TPHg and benzene underlying the UST excavation were removed during over-excavation activities.
- Residual MTBE was present in soil samples collected by ERI and Horizon during product line and dispenser replacement. Maximum concentrations of residual MTBE are spatially associated with dispensers D5 and D8. BTEX compounds were not present in reportable concentrations in the 19 soil samples collected by Horizon (Attachment D). Toluene (0.0023 mg/kg) and xylenes (estimated at 0.0032 mg/kg) were present in one of eight samples collected by ERI.

Dissolved-Phase Hydrocarbons in Groundwater

Cumulative groundwater monitoring and sampling data are summarized on Tables 2A and 2B and are shown graphically on Hydrographs 1 through 8. Grab groundwater samples are summarized in Table 4. Isoconcentration maps constructed using first quarter 2006 data are included as Plates 9, 10, and 11. The distribution and concentration trends of dissolved-phase constituents indicate the following:

- Maximum current concentrations of dissolved-phase TPHg and MTBE are spatially associated with groundwater monitoring wells MW3, MW4, and MW5 on the eastern edge of the site.
- MTBE concentrations are at or near reporting limits in the southern portion of the site (MW2, MW7, and MW8).
- MTBE is present in MW1 west of the USTs but is below reporting limits in MW6.
- Dissolved-phase constituent concentrations, particularly MTBE, in MW1, MW3, MW4, MW6, and MW7 show decreasing trends since first quarter 2005. Dissolved-phase MTBE in MW2 appears to have episodic fluctuations, possibly associated with groundwater elevation fluctuations. Dissolved-phase MTBE in MW5 shows an increasing trend since fourth quarter 2004. Dissolved-phase MTBE has not been present in reportable concentrations in MW8 since its initial sampling in fourth quarter 2004, except for one sample (analyzed using EPA Method 8021B) at a concentration of 0.58µg/L.

The presence of dissolved-phase MTBE in groundwater monitoring wells MW3, MW4, and MW5 suggests that MTBE is present in the upper and clay transitional clayey sand hydrostratigraphic units. MTBE does not appear to be present in the lower sand and gravel unit (MW8).

Non-Aqueous Phase Liquids

Non-aqueous phase liquids (NAPL) have not historically been observed in soil or on groundwater at the subject site. Dissolved-phase and residual-phase hydrocarbon concentrations in groundwater and soil samples collected at the site do not suggest the presence of NAPL.

Sensitive Receptors

On June 23, 2006, ERI visited the subject site to identify and confirm reported sensitive receptors. Five active municipal water supply wells (Mocho #1 through Mocho #4 and Stoneridge) were identified within 1,500 meters (4,925 feet) of the site. The well search at Zone 7 Water Agency also revealed the presence of 11 inactive but not destroyed water supply wells (both domestic and municipal), and 18 "supplemental" water supply wells (primarily domestic) within 1,500 meters (4,925 feet) of the subject site. The map and table generated by Zone 7 Water Agency are included as Attachment E. In addition, ERI confirmed the presence of four surface water bodies (Arroyo Mocho Canal, Tassaiara Creek, Pleasanton Canal, and an unnamed canal) within 1,500 meters (4,925 feet) meters of the site. Locations of the active municipal supply wells and surface water bodies are shown on the Regional Area Map (Plate 9). ERI confirmed the presence of 23 utility vaults, four storm drains, and five irrigation control boxes on the subject site (Plate 10). Utility vault details are summarized on Table 5. No surface water bodies, wetlands, or private water supply wells were identified within 300 meters (984 feet) of the site. Five multi-unit residential buildings and two medical offices were identified within 100 meters (328 feet) of the site. No basements, tunnels or subways, or other public use areas were identified within 100 meters (328 feet) of the site. Locations of sensitive receptors identified within 300 meters (984 feet) of the site are shown on the Local Area Map (Plate 11).

SOURCE IDENTIFICATION AND RISK EVALUATION

Release History

The following observations summarize information regarding the timing and location of releases of petroleum hydrocarbons and related constituents at the site:

- In December 1988, the USTs were removed and replaced. Residual hydrocarbons were present in reportable concentrations in soil samples collected from the excavation; TPHg was present at a maximum concentration of 2,901 mg/kg. Soil samples collected following over-excavation activities did not contain reportable concentrations of petroleum hydrocarbons. Water was not observed in the excavation.
- On March 6, 1990, approximately 20 gallons of product were spilled during tank filling operations. Dissolved-phase TPHg was present in water samples collected along the storm drain and Arroyo Mocho canal at a maximum concentration of 94,000 µg/L prior to the cleanup effort. Following cleanup activities, dissolved-phase TPHg was present at a maximum concentration of 1,200 µg/L in the storm drain effluent entering Arroyo Mocho.
- In November 1998, ERI installed groundwater monitoring wells MW1 through MW4 at the subject site. The first groundwater samples collected from wells MW2, MW3, and MW4 on November 17, 1998, contained reportable concentrations of dissolved-phase petroleum hydrocarbons, including MTBE at concentrations of 23, 220 and 4.1 µg/L, respectively.
- In August 2002, product lines and dispensers were replaced at the subject site. Soil samples
 collected from beneath product line trenches and dispenser locations contained low
 concentrations of MTBE (0.0072 to 0.189 mg/kg).

Based on these observations, ERI concludes:

- A release most likely occurred from the old USTs prior to 1988.
- A release most likely occurred from the dispensers, product piping, or new USTs between 1988 and 1998.
- The surface spill in 1990 probably did not contribute to residual or dissolved-phase hydrocarbon or oxygenated compound concentrations in soil and groundwater underlying the site.

Constituents of Concern

ERI has identified gasoline hydrocarbons (as TPHg) and MTBE as potential constituents of concern (COCs) at the site.

Potential Sources

Current potential primary sources of COCs that could impact human health or the environment include the current UST and dispensing system. The current UST and dispensing system, operated by an independent dealer, is not currently known to leak.

Potential secondary sources of COCs that could impact human health and the environment include residual COCs in unsaturated vadose sediment within the upper clay unit and dissolved-phase COCs in groundwater in the upper clay and lower sand and gravel units.

Comparison of Current Site Conditions to Environmental Screening Levels

ERI has compared current residual and dissolved-phase COC concentrations in soil and groundwater at the site to environmental screening levels (ESLs) established by the California Regional Water Quality Control Board, San Francisco Bay Region (Regional Board, 2005).

Plate 12 summarizes the locations of soil samples with MTBE concentrations that exceed the ESL for groundwater protection under a residential exposure scenario. Soil samples collected from the UST excavation are excluded because samples collected following over-excavation activities did not contain reportable concentrations of residual petroleum hydrocarbons. This map indicates that MTBE concentrations in soil samples collected in the vicinity of dispensers D5 and D8 during product line and dispenser replacement activities exceed the ESL for groundwater protection.

Plates 13 through 15 summarize the locations of grab groundwater samples and first quarter 2006 groundwater monitoring and sampling data with benzene and MTBE that exceed the ESLs for toxicity and ceiling (laste and odor). These maps indicate the following:

- The area in which dissolved-phase benzene exceeds the ESL for toxicity is limited to the immediate vicinity of groundwater monitoring well MW8.
- The area in which dissolved-phase MTBE exceeds the ESL for taste and odor is limited to the northeastern quarter of the site.
- The area in which dissolved-phase MTBE exceeds the ESL for toxicity is limited to the northern half of the site.

TIER 2 HUMAN HEALTH RISK ASSESSMENT

ERI conducted a Tier 2 human health risk assessment (HHRA) for the site. The purpose of the HHRA was to evaluate potential baseline carcinogenic risk and baseline toxic effects posed by the chemicals of concern in soil and groundwater underlying the site.

ERI conducted the HHRA in general accordance with the standards and methods established by the American Society of Testing and Materials (ASTM) Designation E-1739 (ASTM, 1995) and the California Environmental Protection Agency (CalEPA) (CalEPA, 1994; 2005). ERI employed two models to calculate baseline risks and toxic effects:

• The RBCA Tool Kit for Chemical Releases, Version 1.3a, distributed by Groundwater Services, Inc. (GSI), used to evaluate risk posed by both soil and groundwater sources. This software incorporates the Johnson and Ettinger (1991) vapor intrusion model for soil and groundwater sources. The Johnson and Ettinger (1991) vapor intrusion model, as modified by CalEPA in January 2005, used to evaluate vapor intrusion risk posed by the groundwater source. The CalEPA version of the Johnson and Ettinger model does not include a module for soil sources.

Model output documentation is included as Attachment F.

Exposure Pathways and Receptors

ERI evaluated the following exposure pathways:

- Direct dermal contact with, and ingestion of, soil.
- Volatilization from soil and transport into indoor air.
- Volatilization from groundwater and transport into indoor air.

ERI evaluated vapor intrusion pathways for the residential exposure scenario. ERI evaluated the direct dermal contact and ingestion pathway for residential and construction worker exposure scenarios.

Model Input Parameters

Exposure Parameters, Target Risk Values, and Cumulative Risks

Exposure parameters used in the models are summarized in Table 6. ERI used a target risk of one in one million (1E-06) for carcinogenic effects. ERI used hazard indexes and hazard quotients of one for non-carcinogenic toxic effects. Total cumulative risks were calculated for the individual pathways and for the combined vapor intrusion pathway with both soil and groundwater sources.

Toxicological Properties

The toxicological properties for individual COCs are summarized in Table 7.

Source Media, Chemicals of Concern, and Representative Concentrations

ERI included soil and groundwater as source media. Chemicals of concern include BTEX compounds and MTBE. For the GSI model, the reported xylene concentrations were modeled as mixed xylenes. For the CalEPA version of the Johnson and Ettinger model, the reported mixed isomer concentrations were input for each individual isomer, which is a highly conservative measure.

For each COC, representative concentrations were selected as follows:

- For the direct dermal contact/soil ingestion and volatilization from soil to indoor air pathways, ERI
 selected the maximum residual concentration of each COC reported in all samples representative
 of soil remaining in place at the site or the nominal reporting limit (0.005 mg/kg), whichever was
 greater.
- For the vapor intrusion pathway for the groundwater source, ERI identified the monitoring wells
 with the highest dissolved-phase concentration of each COC reported during the last four
 monitoring events, and calculated the mean COC concentration in each well over those events.
 The highest mean concentration was selected as the representative concentration for each COC.

Soil Parameters

ERI reviewed boring logs compiled during subsurface assessment activities at the site and concludes that the predominate sediment underlying the site is clay, as classified under the USCS. The Johnson and Ettinger model uses the United States Soil Conservation Service classification system; the corresponding sediment type in this system is clay. For the GSI model, ERI selected default physical properties

specified by the ASTM (1998) for clay. For the Johnson and Ettinger model, ERI accepted the default physical properties for clay. Model input soil parameters are summarized in Table 8.

Building Parameters

The building parameters input into the models and sources are summarized in Table 8.

<u>Results</u>

The baseline carcinogenic risks, expressed as the Individual Excess Lifetime Cancer Risk (IELCR), and baseline toxic effects, expressed as the hazard index, for the modeled pathways are summarized in Table 9 through Table 11. The results indicate:

- For the direct dermal contact and ingestion of soil pathway, the cumulative IELCRs and hazard indexes do not exceed target risk values.
- For the exposure pathway involving volatilization from groundwater and vapor intrusion into indoor air, the cumulative IELCRs and hazard indexes do not exceed target risk values.
- For the exposure pathway involving volatilization from soil and vapor intrusion into indoor air, the cumulative IELCRs and hazard indexes do not exceed the target risk values.

CONCLUSIONS AND RECOMMENDATIONS

Based on the cumulative results of environmental investigations and our knowledge of site conditions, ERI concludes:

- Residual gasoline (as TPHg) and BTEX compounds are not present in soil underlying the site, except for one sample (S-5-PL8), which contained toluene (0.0023 mg/kg) and xylenes (0.0032 mg/kg).
- Residual MTBE was present in 15 of 45 samples collected from soil that remains in place at the site. Residual MTBE concentrations range from less than the reporting limits (0.0020 mg/kg to 0.025 mg/kg). Select residual MTBE concentrations exceed ESLs for groundwater protection.
- Residual diesel-range hydrocarbons (as TPHd) are present in six of 38 samples collected from soil that remains in place. TPHd concentrations range from less than the reporting limits (1.0 mg/kg to 10 mg/kg) to a maximum of 19 mg/kg.
- Dissolved-phase concentrations of fuel hydrocarbons (TPHd, TPHg), BTEX compounds, and MTBE show declining trends or stable trends at concentrations near the reporting limits, except for well MW5, which shows fluctuating concentrations.
- The current maximum concentration of TPHd (190 µg/L) does not exceed the ESL for toxicity (210 µg/L), but does exceed the ESL for taste and odor (100 µg/L). However, based on the laboratory reports, the diesel-range hydrocarbons are not representative of diesel fuel and probably represent the heavy components of weathered gasoline.
- The current maximum concentration of TPHg (63 µg/L) does not exceed ESLs for toxicity or taste and odor thresholds.
- Toluene and xylenes were not present in reportable concentrations during the most recent monitoring event. Benzene was not present in reportable concentrations, except for one well (MW8, 1.4 µg/L). Ethylbenzene was not present in reportable concentrations except for one well (MW8, 0.83 µg/L).
- Based on observed decreasing concentration trends of dissolved-phase constituents in most wells, natural attenuation is occurring at the site.
- Additional assessment, monitoring, and active remediation at the site are not warranted.

ERI recommends closure of the environmental investigation at the site, and destruction of the existing monitoring wells.

DOCUMENT DISTRIBUTION

ERI recommends forwarding copies of this report to:

Mr. Jerry Wickham, P.G., C.E.G. Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502-6577

Mr. Eddy So California Regional Water Quality Control Board San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, California 94612

Ms. Colleen Morf Zone 7 Water Agency 100 North Canyon Parkway Livermore, California 94551

Mr. Robert C. Ehlers, M.S., P.E. The Valero Companies Environmental Liability Management 685 West Third Street Hanford, California 93230

LIMITATIONS

This report was prepared in accordance with generally accepted standards of environmental practice in California at the time this investigation was performed. This report has been prepared for Exxon Mobil, and any reliance on this report by third parties shall be at such party's sole risk.

Please call Ms. Paula Sime, ERI's project manager for this site, at (707) 766-2000 with questions regarding this report.

Sincerely, Environme lutions, Inc. blogist John B. Bobbitt P.G. 4313 No. 4313 .

Attachments:

References	
Table 1: Table 2A: Table 2B: Table 3: Table 4: Table 5: Table 6: Table 6: Table 7: Table 8: Table 9: Table 10: Table 11:	Well Construction Details Cumulative Groundwater Monitoring and Sampling Data Additional Cumulative Groundwater Monitoring and Sampling Data Cumulative Analytical Results of Soil Samples Analytical Results of Grab Groundwater Samples Utility Vault Data Summary of Model Input Parameters, Exposure Parameters Summary of Model Input Parameters, Toxicological Properties Summary of Model Input Parameters, Soil and Building Parameters Summary of Risks and Hazards, Direct Contact and Ingestion of Soil Summary of Risks and Hazards, Volatilization from Groundwater into Indoor Air Summary of Risks and Hazards, Volatilization from Soil into Indoor Air
Plate 1: Plate 2:	Site Vicinity Map Generalized Site Plan
Plate 3:	Residual Hydrocarbons Concentrations in Soil
Plate 4:	Cross Section Location Map
Plate 5:	Cross Section A-A'
Plate 6:	Cross Section B-B'
Plate 7:	Groundwater Flow Direction Rose Diagram – Upper Unit
Plate 8:	Groundwater Flow Direction Rose Diagram – Lower Unit
Plate 9:	MTBE Isoconcentration Map, Shallow Zone
Plate 10:	Benzene Isoconcentration Map, Deep Zone
Plate 11:	MTBE Isoconcentration Map, Deep Zone
Plate 12:	Regional Area Map
Plate 13:	Utility Vault Map
Plate 14:	Local Area Map
Plate 15:	Locations Where Residual MTBE Exceeds the ESL for Groundwater Protection
Plate 16:	Locations Where Dissolved-Phase Benzene Exceeds the ESL for Toxicity
Plate 17:	Locations Where Dissolved-Phase MTBE Exceeds the ESL for
Plate 18:	Locations Where Dissolved-Phase MTBE Exceeds the ESL for Toxicity
Hydrographs 1 th	nrough 8
Attachment A: Attachment B: Attachment C:	United Soil Classification System, Symbol Key, and Boring Logs Analytical Results and Sample Location Map for 1990 Surface Spill Schematic Drawing of 1995 Waste Oil Piping Replacement and Abandonment

- Analytical Results of 2002 Product Line Soil Samples Collected by Attachment D: Horizon
- Attachment E:

REFERENCES

Alameda County Health Care Services (County). November 25, 1997. Remedial Action Completion Certification, Re: Exxon Station #7-3567, 3192 Santa Rita Road, Pleasanton.

Alameda County Health Care Services (County). February 28, 2000a. Notice of Responsibility, StID#: 1932, Exxon Station #7-3567, 3192 Santa Rita Road, Pleasanton, CA 94566.

Alameda County Health Care Services (County). March 28, 2000b. Re: Exxon Station #7-3567, 3192 Santa Rita Road, Pleasanton.

American Society for Testing and Materials (ASTM). 1995 (re-approved 2002). Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites; ASTM Designation E 1739-95.

Applied GeoSystems. May 27, 1989. Limited Subsurface Environmental Investigation Related to Tank Removal and Soil Aeration at Exxon Service Station 7-3567, 3192 Santa Rita Road, Pleasanton, California.

CalEPA. January 1994. *Preliminary Endangerment Assessment, Guidance Manual.* California Environmental Protection Agency, Department of Toxic Substances Control.

CalEPA. November 2004a (updated January 2005). *Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil*. California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, <u>http://www.oehha.org/risk/Sb32soils05.html</u>.

CalEPA. November 2004b (updated January 2005). *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air.* California Environmental Protection Agency, Department of Toxic Substances Control. <u>http://dtsc.ca.gov</u>.

City of Pleasanton Fire Department (PFD). 1995. UST Piping Installation Permit 95-003.

Delta Environmental Consultants, Inc. (Delta). November 25, 1998. Soil Excavation, Hoist Removal, and Soil Sampling Results, Exxon Service Station No. 7-3567, 3192 Santa Rita Road, Pleasanton, California, Delta Project No. D098-855.

Environmental Resolutions, Inc. (ERI). December 26, 1998a. Report for a Baseline Environmental Investigation at Exxon Station 7-3567, 3192 Santa Rita Road, Pleasanton, California.

Environmental Resolutions, Inc. (ERI). April 13, 2000a. Subsurface Investigation at Exxon Service Station 7-3567, 3192 Santa Rita Road, Pleasanton, California.

Environmental Resolutions, Inc. (ERI). October 9, 2000b. Soil and Groundwater Investigation and Quarterly Groundwater Monitoring for Third Quarter 2000, Former Exxon Service Station 7-3567, 3192 Santa Rita Road, Pleasanton, California.

Environmental Resolutions, Inc. (ERI). January 16, 2001a. Work Plan for Soil and Groundwater Investigation at Former Exxon Service Station 7-3567, 3192 Santa Rita Road, Pleasanton, California.

Environmental Resolutions, Inc. (ERI). July 11, 2001b. Groundwater Investigation and Quarterly Groundwater Monitoring Report, Second Quarter 2001, Former Exxon Service Station 7-3567, 3192 Santa Rita Road, Pleasanton, California.

Environmental Resolutions, Inc. (ERI). May 28, 2002a. Sensitive Receptor Survey Update Report, Former Exxon Service Station 7-3567, 3192 Santa Rita Road, Pleasanton, California.

Environmental Resolutions, Inc. (ERI). November 12, 2002b. Response to Comments, Former Exxon Service Station 7-3567, 3192 Santa Rita Road, Pleasanton, California.

Gibson, G.D. March 12, 1990. Letter from Exxon Company U.S.A. to Mr. Hossain Kazemi of California Regional Water Quality Control Board.

Graymer, R.W., D.L. Jones, and E.E. Brabb. 1996. Preliminary Geologic Map Emphasizing Bedrock Formations in Alameda County, California: Derived from the Digital Database Open-File 96-252.

Groundwater Services, Inc. (GSI). 2001. Risk-Based Corrective Action (RBCA) Tool Kit for Chemical Releases (ver. 1.3b).

Helley, E.J., and R.W. Graymer. 1997. Quaternary Geology of Alameda County and Surrounding Areas, California: Derived from the Digital Database Open-File 97-97.

Horizon Environmental, Inc. (Horizon). September 18, 2002. *Results of Fuel Pipeline and Dispenser Soil Sampling, Valero Service Station No.* 3827, *Former Exxon Service Station 7-3567, 3192 Santa Rita Road, Pleasanton, California.*

International Technology Corporation (IT). March 9, 1990. Emergency Response Activities, Exxon Station #7-3567, 3192 Santa Rita Road, Pleasanton, California.

Johnson, Paul C. 2002. Identification of Critical Parameters for the Johnson and Ettinger (1991) Vapor Intrusion Model. American Petroleum Institute (API), Summary of Research from API's Soil and Groundwater Technical Task Force, No. 17.

Lawrence Livermore National Laboratory (LLNL). 1995. LLNL Environmental Report for 1995, Chapter 9.

Risk Assessment Information System (RAIS). 2006. Toxicity Values. http://risk.lsd.ornl.gov/tox/tox_values.shtml.

San Francisco Bay Regional Water Quality Control Board (Regional Board). April 10, 2000. Final Draft – Proposed Changes to the Water Quality Control Plan for the San Francisco Bay Region.

San Francisco Bay Regional Water Quality Control Board (Regional Board). February 2005. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, 4th Edition.

TABLE 1 WELL CONSTRUCTION DETAILS Former Excon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 1 of 1)

Well ID	Date Well Instalied	Top of Casing Elevation (fmsl)	Borehole Diameter (inches)	Total Depth of Boring (fbgs)	Well Depth (fbgs)	Well Casing Diameter (inches)	Well Casing Malerial	Screened Interval (fbgs)	Slot Size (inches)	Filter Pack Interval (fbgs)	Filter Pack Material
MW1	11/12/98	340.86	8	36.5	35	2	NS	20-35	0.200	19-36.5	#3 Sand
MW2	11/12/98	340.16	8	41.5	35	2	NS	20-35	0.020	19-35	#3 Send
мwз	11/11/98	342.95	8	51.5	50	2	NS	35-50	0.020	34-51.5	#3 Sand
MW4	11/11/98	342.96	8	\$1.5	50	2	NS	35-50	0,020	34-51.5	#3 Sand
MW 5	07/18/00	342.87	8	31	30	2	NS	20-30	0.020	19-31	#3 Sand
MW6	07/19/00	341.05	8	54	53	2	NS	43-53	0.020	42-54	#3 Sand
MW7	07/18/00	341.73	8	50	49	2	NS	39-49	0.020	38-50	#3 Sand
MW8	03/16/01	341.44	8	70	70	2	NS	55-70	0.020	55-70	#3 Sand

 Notes:
 Feat above mean sea level.

 fmsl
 =
 Feat above mean sea level.

 fbgs
 =
 Feat below ground surface.

 NS
 =
 Not specified.

TABLE 2A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 1 of 7)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHd	трнд	MTBE 8021B	MTBE 8260B	В	Т	E	×
ID	Date	(ímsl)	(fbgs)	(fmsl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L
MW1	11/17/98	340.86	21.90	318.96	NLPH	<50	<50	<2.5	_	<0.5	<0.5	<0.5	<0.5
MW1	03/15/99	340.86	21.15	319.71	NLPH	<50	<50	<2.5	—	<0.5	<0.5	<0.5	<0.5
MW1	06/25/99	340.86	20.34	320.52	NLPH	а	<50	<2.0	_	<0.5	<0.5	<0.5	<0.5
MW1	09/24/99	340.86	20.42	320.44	NLPH	<50	<50	24.6		<0.5	<0.5	<0.5	<0.5
MW1	12/22/99	340.86	21.11	319.75	NLPH	<61	<50	<2	-	<0.5	<0.5	<0.5	<0.5
MW1	03/07/00	340.86	14.12	326.74	NLPH	57	<50	220		<0.5	<0.5	<0.5	<0.5
MW1	06/06/00	340.86	17.79	323.07	NLPH	<50	<50	5.4	—	<0.5	<0.5	<0.5	<0.5
MW1	06/16/00	340.86	Property tran	sferred to Vale	ro Refining Cos	mpany.							
MW1	07/31/00	340.86	19.02	321.84	NLPH	<50	<50	51	38	<0.5	<0.5	<0.5	<0.5
MW1	10/10/00	340.86	18.56	322,30	NLPH	<50	<50	63	_	<0.5	<0.5	<0.5	<0.5
MW1	01/11/01	340.86	21.43	319.43	NLPH	<50	<50	110	98	<0.5	<0.5	<0.5	<0.5
MW1	04/11/01	340.86	19.83	321.03	NLPH	960e	<50	29	33	<0.5	<0.5	<0.5	<0.5
MW1	07/20/01	340.86	20.50	320,36	NLPH	<50	<50	27	20	<0.5	<0.5	<0.5	<0.5
MW1	10/19/01	340.86	19.48	321.38	NLPH	<50	<50	390	420	<0.5	<0.5	<0.5	<0.5
MW1	Nov-2001	340.86		ed in compliance									
MW1	01/28/02	340.86	19.72	321.14	NLPH	<100	178	196	_	<0.50	<0.50	<0.50	<0.5
MW1.	04/17/02	340.86	22,17	318.69	NLPH	<50	124	116.1	131	<0.5	<0.50	<0.50	<0.5
MW1	07/17/02	340.86	22.51	318.35	NLPH	<50	<50.0	5.1	8.76	<0.5	<0.5	<0.5	<0.5
MW1	10/24/02	340.86	22.51	318.35	NLPH	<50	217	574	302	<0.5	<0.5	<0.5	<0.5
MW1	03/21/03	340.86	21.32	319.54	NLPH	<50	70.9	_	83.4	<0.50	<0.5	<0.5	<0.5
MW1	04/10/03	340,86	21.27	319.59	NLPH	<51	67.2		71.0	<0.50	<0.5	<0.5	<0.5
MW1	07/17/03	340.86	21.13	319.73	NLPH	<50	88.9		44.6	<0.50	<0.5	<0.5	<0.5
MW1	10/09/03	340.86	21.55	319.31	NLPH	<50	<50.0	32.3	41,2	<0.50	<0.5	<0.5	<0.5
MW1	01/21/04	340.86	19.96	320.90	NLPH	<50	625	970	974	<0.50	<0.5	<0.5	<0.5
MW1	05/25/04	340.86	22.11	318.75	NLPH	<50	196	234	204	<0.50	<0.5	<0.5	<0.5
MW1	08/26/04	340.86	21.28	319.58	NLPH	57	148	153	153	<0.50	<0.5	<0.5	<0.5
MW1	12/07/04 j	340.86	21.43	319.43	NLPH	<50	966	789	1,130	<0.50	<0.5	<0.5	<0.5
MW1	03/17/05	340.86	17.99	322.87	NLPH	57k	1,720	_	2,600	<0.50	<0.5	<0.5	<0.5
MW1	06/20/05	340.86	21,26	319.60	NLPH	<50	74.4	102	103	<0.50	<0.5	<0.5	1.0
MW1	09/20/05	340.86	17.33	323.53	NLPH	228k	<50.0	15.4	15.3	<0.50	<0.50	<0.50	<0,50
MW1	12/22/05	340.86	17.49	323.37	NLPH	<50.0	<50.0	12.0	14.6	<0.50	<0.50	<0.50	<0.50
MW1	03/23/06	340.86	16.81	324.05	NLPH	<47	<50	14	10.4	<0.50	<0.50	<0.50	<0.50
1.1.1.1	03/23/00	040.00	10.01	02-1.00				••					
MW2	11/17/98	340.61	20.42	320.19	NLPH	91	<50	17	23	1.5	<0.5	0.98	2.6
MW2	03/15/99	340.61	28.35	312.26	NLPH	90	<50	12	12.5	0.73	1.1	2.4	2.2
MW2	06/25/99	340.61	25.20	315.41	NLPH	a	<50	<2.0		<0.5	<0.5	<0.5	<0.5
MW2	09/24/99	340.61	23.93	316.68	NLPH	<50	<50	3.06	_	<0.5	<0.5	<0.5	<0.5
MW2	12/22/99	340.61	23.39	317.22	NLPH	<56	<50	<2		<0.5	<0.5	<0.5	<0.5
MW2	03/07/00	340.61	17.08	323.53	NLPH	52	<50	<2		<0.5	0.80	<0.5	<0.5
MW2	06/06/00	340.61	21.01	319.60	NLPH	<50	<50	<2		<0.5	<0.5	<0.5	<0.5
MW2	06/16/00	340.61		isferred to Valer			- WV	-					

TABLE 2A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 2 of 7)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHd	TPHg	MTBE 8021B	MTBE 8260B		т	Ξ.	x
	Date	(fmsl)	(logs)	(fmsl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ID MW2	07/31/00	340.61	22.08	318.53	NLPH	<50	<50	6.8	<5	<0.5	<0.5	<0.5	<0.5
MW2	10/10/00	340.61	22.35	318.26	NLPH	<50	<50	<2		<0.5	<0.5	<0.5	<0.5
	01/11/01	340.61	22.00	316.87	NLPH	<50	<50	<2		0.54	<0.5	<0.5	<0.5
MW2		340.01	22.34	318.27	NLPH	760e	<50	<2		<0.5	1.4	<0.5	<0.5
MW2	04/11/01	340.61	22.34	316.87	NLPH	<50	<50	<2		<0.5	<0.5	<0.5	<0.5
MW2	07/20/01	340.61	23.74	317.93	NLPH	<50	<50	<2		<0.5	<0.5	<0.5	<0.5
MW2	10/19/01			ed in compliance									
MW2	Nov-2001	340.16	-		NLPH	<50.0	<50.0	0.70		<0.50	<0.50	<0.50	<0.50
MW2	01/28/02	340.16	20.79	319.37	NLPH	<50	<50.0	4.20	4.35	<0.5	0.90	<0.50	<0.50
MW2	04/17/02	340.16	25.52	314.64		<50 <50	<50.0	9.4	10.3	<0.5	0.6	2.4	2.0
MW2	07/17/02	340.16	28.18	311.98	NLPH		<50.0	9.4 8.6	9.30	<0.5	<0.5	<0.5	<0.5
MW2	10/24/02	340.16	28.42	311.74	NLPH	<50			9.30 <0.50	1.10	~0.5 0.5	1.3	2.2
MW2	03/21/03	340.16	23.54	316.62	NLPH	<50	<50.0		2.10	0.60	0.5	0.8	1.0
MW2	04/10/03	340.16	28.19	311.97	NLPH	<50	<50.0				<0.5	<0.5	<0.5
MW2	07/17/03	340.16	24.13	316.03	NLPH	<50	<50.0	_	<0.50	<0.50			<0.5
MW2	10/09/03	340.16	26.21	313.95	NLPH	90	<50.0	0.6	0.60	<0.50	<0.5	<0.5	
MW2	01/21/04	340.16	22.40	317.76	NLPH	<50	<50.0	<0.5	<0.50	0.50	<0.5	<0.5	<0.5
MW2	05/25/04	340.16	25.17	314.99	NLPH	<50	<50.0	1.2	1.8	<0.50	<0.5	0.8	1.3
MW2	08/26/04	340.16	27.56	312.60	NLPH	<50	<50.0	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW2	12/07/04 j	340.16	25.36	314.80	NLPH	<50	<50.0	8.0	8.6	<0.50	<0.5	<0.5	<0.5
MW2	03/17/05	340.16	20.28	319.88	NLPH	<50	57.8		1,10	<0.50	<0.5	<0.5	<0.5
MW2	06/20/05	340.16	23.48	316.68	NLPH	<53	<50.0	<0.5	<0.50	<0.50	<0.5	<0.5	1.0
MW2	09/20/05	340.16	23.11	317.05	NLPH	<50.0	<50.0	3.50	2.31	<0.50	<0.50	<0.50	<0.50
MW2	12/22/05	340.16	23.96	316.20	NLPH	<50.0	<50.0	<0.50	<0.500	<0.50	<0.50	<0.50	<0.50
MW2	03/23/06	340.16	21.11	319.05	NLPH	<47	<50	<2.5	1,82	<0.50	<0.50	<0.50	<0.50
MW3	11/17/98	342.95	36.58	306.37	NLPH	120	<50	180	220	<0.5	<0.5	<0.5	<0.5
MW3	03/15/99	342.95	40.01	302.94	NLPH	180	<50	290	314	<0.5	<0.5	<0.5	<0.5
MW3	06/25/99	342.95	46.83	296.12	NLPH	а	<50	107	113	<0.5	<0.5	<0.5	<0.5
MW3	9/24/99 ⁶	342.95	47.71	295.24	NLPH		_	_	•			_	
MW3	12/22/99	342.95	43.82	299.13	NLPH	140	<50	65		<0.5	<0.5	<0.5	<0.5
MW3	03/07/00	342.95	32.75	310.20	NLPH	<50	<50	82		<0.5	0.88	<0.5	<0.5
MW3	06/06/00	342.95	36.05	306.90	NLPH	<50	<50	140		<0.5	<0.5	0.82	<0.5
	06/16/00	342.95		nsferred to Vale			• -						
MW3		342.95	36.77	306.18	NLPH	<50	<50	230	160	<0.5	<0.5	<0.5	<0.5
MW3	07/31/0D	342.95 342.95	36.77 35.82	307.13	NLPH	<50	<50	200	_	<0.5	<0.5	<0.5	<0.5
MW3	10/10/00			307.13	NLPH	<50	<50	280	230	<0.5	<0.5	<0.5	<0.5
MW3	01/11/01	342.95	38.08		NLPH	~50 1,000e	<50	240	280	<0.5	<0.5	<0.5	<0.5
MW3	04/11/01	342.95	36.03	306.92		<50	<50 270	240	190	<0.5	<0.5	<0.5	<0.5
MW3	07/20/01	342.95	36.05	306.90	NLPH	<50 <50	270 <50	240 180	190	<0.5	<0.5	<0.5	<0.5
MW3	10/19/01	342.95	34.58	308.37	NLPH			100	190	-0.0	-0.0	-0.0	-0.0
MW3	Nov-2001	342.95		ed in complianc		o requirements.	407	470		<0.50	<0.50	<0.50	<0.50
MW3	01/28/02	342.95	34.96	307.99	NLPH	<100	167	179		N0.50	SU.30	<0.50	-0.00

TABLE 2A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 3 of 7)

Well	Sampling	тос	DTW	GW Elev.	SUBJ	TPHd	TPHg	MTBE 80218	MTBE 8260B	8	т	Ē	X
ID	Date	(fmsl)	(fbgs)	(fmsl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW3	04/17/02	342.95	38.21	304.74	NLPH	<50	194	179.3	216	<0.5	<0.50	<0.50	<0.50
MW3	07/17/02	342.95	g	g	g	<50h	163h	185	198h	<0.5h	<0.5h	<0.5h	<0.5h
MW3	10/24/02	342.95	38.68	304.27	NLPH	<50	128	163	183	<0.5	<0.5	<0.5	<0.5
MW3	03/21/03	342.95	36,50	306.45	NLPH	<50	119		141	<0.50	<0.5	<0.5	<0.5
MW3	04/10/03	342,95	36.82	306.13	NLPH	<53	119	—	130	<0.50	<0.5	<0.5	<0.5
MW3	07/17/03	342.95	37.98	304,97	NLPH		—			-			
MW3	07/18/03	342.95	_		NLPH	<50	142	-	123	<0.50	<0.5	<0.5	<0.5
MW3	10/09/03	342.95	38.5	304.45	NLPH	<50	120	122	147	<0.50	<0.5	<0.5	<0.5
MW3	01/21/04	342,95	35.45	307.50	NLPH	94	90.6	118	148	<0.50	<0.5	<0.5	<0.5
MW3	05/25/04	342.95	36.07	304.88	NLPH	<0.50	139	170	146	<0.50	<0,5	<0.5	<0.5
MW3	08/26/04	342.95	36.00	306.95	NLPH	112	163	169	165	<0.50	<0.5	<0.5	<0.5
MW3	12/07/04 j	342,95	37.97	304.98	NLPH	<50	174	143	186	<0.50	<0.5	<0.5	<0.5
MW3	03/17/05	342.95	31.44	311.51	NLPH	<50	516	_	740	<0.50	<0.5	<0.5	<0.5
MW3	06/20/05	342.95	37.29	305.66	NLPH	<50	134	183	241	<0.50	<0.5	<0.5	0.5
MW3	09/20/05	342.95	36.11	306.84	NLPH	72.3e	129	116	125	<0.50	<0.50	<0.50	<0.50
MW3	12/22/05	342.95	34.52	308.43	NLPH	<50.0	87.5	73.0	92.9	<0.50	<0.50	<0.50	<0.50
MW3	03/23/06	342.95	32.04	310.91	NLPH	<47	630	76	72.0	<0.50	<0.50	<0.50	<0.50
MW4	11/17/98	342.96	50.20	292.76	NLPH	72	<50	4.1	3.5	<0.5	<0.5	<0.5	<0.5
MW4	03/15/99	342.96	47.93	295.03	NLPH	91	<50	280	260	<0.5	<0.5	<0.5	<0.5
MW4	06/25/99 b	342.96	48.15	294.81	NLPH					•••			
MW4	09/24/ 9 9 b	342.96	49.29	293.67	NLPH		_	<u> </u>	••-				_
MW4	12/22/99	342.96	49.33	293.63	NLPH	Ь	_	-			-		
MW4	03/07/00	342.96	49.05	293.91	NLPH	190	<50	710		<0.5	0.84	<0.5	<0.5
MW4	06/06/00	342.96	49.02	293.94	NLPH	110	<50	460		<0.5	<0.5	<0.5	<0.5
MW4	06/16/00	342.96		sferred to Vale									
MW4	07/31/00	342.96	49.13	293.83	NLPH	<50	<50	480	490	<0.5	<0.5	<0.5	<0.5
MW4	10/10/00	342. 9 6	40.08	302.88	NLPH	С	C	c	c	С	с	С	C
MW4	01/11/01	342.96	36.41	306.55	NLPH	110	<50	27	21	<0.5	<0.5	<0.5	<0.5
MW4	04/11/01	342.96	36.43	306.53	NLPH	870e	<50	3.6	14	<0,5	0.56	<0.5	<0.5
MW4	07/20/01	342,96			f			—		•••			
MW4	10/19/01	342.96	33.67	309.29	NLPH	71	<50	15	16	<0,5	<0.5	<0.5	<0.5
MW4	Nov-2001	342,96	Well surveye	d in compliance									
MW4	01/28/02	342,96	33.11	309.85	NLPH	148	<50.0	18.7		<0.50	<0.50	<0.50	<0.50
MW4	04/17/02	342.96	36,03	306.93	NLPH	<50	<50.0	19.10	23.4	<0.5	<0.50	<0.50	<0.50
MW4	07/17/02	342,96	37,65	305.31	NLPH	<50	<50.0	16.7	15.B	<0.5	<0.5	<0.5	<0.5
MW4	10/24/02	342.96	37.41	305.55	NLPH	<50	<50.0	8.7	8.90	<0.5	<0.5	<0.5	<0.5
MW4	03/21/03	342,96	36.18	306.78	NLPH	<56	<50.0	_	14.2	<0.50	<0,5	<0.5	<0.5
MW4	04/10/03	342.96	36.55	306.41	NLPH	<51	<50.0		15.3	<0.50	<0.5	<0.5	<0.5
MW4	07/17/03	342.96	36.45	306.51	NLPH	<50	<50.0		11.4	<0.50	<0.5	<0.5	<0.5
MW4	10/09/03	342.96	37.7	305.26	NLPH	<50	<50.0	8.5	6.90	<0.50	<0.5	<0.5	<0.5

TABLE 2A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 4 of 7)

				CIAL Elevi	EUD 1	ТРНа	TPHg	MTBE 8021B	MTBE 8260B	В	т	<u>— Е</u>	x
Well	Sampling	TOC	DTW	GW Elev.	SUBJ (µg/L)	(µg/L)	ιμg/L)	(µg/L)	(µg/L)	ο (μg/L)	י (µg/L)	(µg/L)	(μg/L)
ID	Date	(fmsl)	(lbgs)	(fmsl) 307.18	NLPH	<50	<50.0	8.4	9.40	<0.50	<0.5	<0.5	<0.5
MW4	01/21/04	342.96	35.78	307.78	NLPH	<50	<50.0	18.D	14.40	<0.50	<0.5	<0.5	<0.5
MW4	05/25/04	342.96	35.88	307.00 İ	i	<50	<50.0i	8.3	11.1i	<0.50i	<0.5i	<0.5i	<0.5i
MW4	08/26/04	342.96	Î 25.65	307.31	NLPH	∽JUi f	~50.0i f	0.0 f	f	۰۰.50i	-0.01 f	۰۵.۵۲ ۲	f
MW4	12/07/04 j	342.96	35.65	313.62	NLPH	67k	<50.0		63.0	, <0.50	<0.5	<0.5	<0.5
MW4	03/17/05	342. 9 6	29.34	308.35	NLPH	<50	70.4	97.1	116	<0.50	<0.5	<0.5	<0.5
MW4	06/20/05	342.96	34.61		NLPH	159k	70,4	85.1	87.4	<0.50	<0.50	<0.50	<0.50
MW4	09/20/05	342.96	33.73	309.23	NLPH	<50.0	74.9	62.1	78.9	<0.50	<0.50	<0.50	<0.50
MW4	12/22/05	342.96	31.99	310.97	NLPH	<47	530	64	57.1	<0.50	<0.50	<0.50	<0.50
MW4	03/23/06	342.96	31.63	311.33	NLPH	~ 41	530	04	57.1	NO.50	~0.00	40.00	40.00
MW5	06/16/00	342.87	Property trai	nsferred to Valer	o Refining Co	mpany.							
MW5	07/31/00 Б	342.87	_	<u> </u>					—	—			
MW5	10/10/00	342.87	29,12	313.75	NLPH	150	<50	4.2		<0.5	<0.5	<0.5	<0.5
MW5	01/11/01	342.87	28.89	313.98	NLPH	ь	b	Ь	-	ь	b	ь	ь
MW5	04/11/01	342.87	28.23	314.64	NLPH	b	ь	Ь		b	Ь	Ь	ь
MW5	07/20/01 f	342.87		-	-			_			•••		_
MW5	10/19/01	342.87	27.62	315.25	NLPH	86	<50	3.4	5	<0.5	<0.5	<0.5	<0.5
MW5	Nov-2001	342.87	Well survey	ed in compliance	with AB 2880	3 requirements.							
MW5	01/28/02	342.87	28.04	314.83	NLPH	<100	<50.0	5.90		<0.50	<0.50	<0.50	<0.50
MW5	04/17/02	342.87	29.10	313.77	NLPH	85	<50.0	5.60	6.7	<0.5	<0.50	<0.50	<0.50
MW5	07/17/02	342.87	29.37	313.50	NLPH	ь	b	Ь	b	b	ь	ь	ь
MW5	10/24/02	342.87	29.36	313.51	NLPH	b	ь	ь	b	b	ь	b	b
MW5	03/21/03	342.87	28.55	314.32	NLPH	ь	57.8		8.70	2.50	1.0	3.5	5.9
MW5	04/10/03	342.87	29.10	313.77	NLPH	ь	56.1		7.20	5.50	3.0	2.9	4.3
MW5	07/17/03	342.87	28.91	313.96	NLPH	Ь	<0.50		12.0	1.00	<0.50	0.7	1.2
MW5	10/09/03	342.87	29.17	313.70	NLPH	<100	<50.0	5.5	4.50	<0.50	<0.5	<0.5	<0.5
MW5	01/21/04	342.87	28.75	314.12	NLPH	<50	<50.0	3.7	4,00	1.30	1.40	<0.5	2.4
MW5	05/25/04	342.87	28.95	313,92	NLPH		<50.0	3.6	2,90	0.70	0.7	1.8	2.9
MW5	08/26/04	342.87	i	i	i	<50i	<50.0i	5.1	5,20i	<0.50i	<0.5i	<0.5 i	<0.5i
MW5	12/07/04 }	342.87	28.29	314.58	NLPH	106k, l	<50.0	1.9	2.00	0.70	<0.5	0.5	1.6
MW5	03/17/05	342.87	26.39	316.48	NLPH	143k	<50.0		4.40	<0.50	<0.5	<0.5	<0.5
MW5	06/20/05	342.87	28.01	314.86	NLPH	<59	<50.0	10.9	13.0	<0.50	<0.5	<0.5	0.5
MW5	09/20/05	342.87	28.61	314.26	NLPH	1,730k	75.3	8.06	6.38	<0.50	<0.50	<0.50	<0.50
MW5	12/22/05	342.87	28.67	314.20	NLPH	70.3k	104	8.76	9,00	4.95	4.69	2.34	39.0
MW5	03/23/06	342.87	28.03	314.84	NLPH	140k	<50	20	18.5	<0.50	<0.50	<0.50	<0.50
	004050	0.44.05	D		- Dafa! C								
MW6	06/16/00	341.05		nsferred to Valer			200	~ 2	Æ	<0.5	~0 F	<0.5	<0.5
MW6	07/31/00	341.05	39.72	301.33	NLPH	<50	<50	<2	<5		<0.5		
MW6	10/10/00	341.05	40.12	300.93	NLPH	<50	C	C	—	C -0.5	C	С -0 Б	C -0.5
MW6	01/11/01	341.05	46.13	294.92	NLPH	<50	<50	<2		<0.5	<0.5	<0.5	<0.5
MW6	04/11/01	341.05	45.40	295.65	NLPH	b	Ъ	ь		ъ	ь	Ь	ь

TABLE 2A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasenton, California (Page 5 of 7)

Well	Sampling	тос	DTW	GW Elev.	SUBJ	ТРН	TPHg	MTBE 8021B	MTBE 8260B	В	Ť	Ē	- x
ID	Date	(ímsl)	(fbgs)	(fmsl)	(µg/L)	(µg/L)	(µg/Ľ)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6	07/20/01	341.05	41.75	299.30	NLPH	<50	<50	<5		<0.3	<0.3	<0.6	<0.6
MW6	10/19/01	341.05	44.10	296.95	NLPH	<50	<50	<2		<0.5	<0.5	<0.5	<0.5
MW6	Nov-2001	341.05	Well survey	ed in compliance	with AB 2880	6 requirements.							
MW6	01/28/02	341.05	39.57	301.48	NLPH	<100	<50.0	<0.50		<0.50	<0.90	<0.50	<0.50
MW6	04/17/02	341.05	41.84	299.21	NLPH	52	<50.0	<0.50		<0.5	<0.50	<0.50	<0.50
MW6	07/17/02	341.05	42.85	298.20	NLPH	<50	<50.0	<0.5		<0.5	<0.5	<0.5	<0.5
MW6	10/24/02	341.05	42.10	298.95	NLPH	<50	<50.0	<0.5		<0.5	<0.5	<0.5	<0.5
MW6	03/21/03	341.05	44,81	296.24	NLPH	107	<50.0	<0.5		<0.50	<0.5	<0.5	<0.5
MW6	04/10/03	341.05	44.28	296.77	NLPH	60	<50.0	_	0.80	<0.50	<0.5	<0.5	<0.5
MW6	07/17/03	341.05	41.56	299.49	NLPH	<50	<50.0	—	<0.50	<0.50	<0.5	<0.5	<0.5
MW6	10/09/03	341.05	41.54	299.51	NLPH	452	<50.0	0.50	0.60	<0.50	<0.5	<0.5	<0.5
MW6	01/21/04	341.05	38.20	302.85	NLPH	<50	<50.0	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW6	05/25/04	341.05	40.35	300.70	NLPH	<50	<50.0	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW6	08/26/04	341.05	i	i	í	314i	<50.0i	0.6	1.00i	2.10i	0.9i	0.8i	2.9i
MW6	12/07/04 J, m	341.05									_		
MW6	03/17/05	341.05	37.44	303.61	NLPH	<50	<50.0	—	0.60	<0.50	<0.5	<0.5	<0.5
MW6	06/20/05	341.05	40.42	300.63	NLPH	<50	<50.0	<0.5	0.60	<0.50	<0.5	<0.5	<0.5
MW6	09/20/05	341.05	38.00	303.05	NLPH	117k	<50.0	0.66	0.570	<0.50	<0.50	<0.50	<0.50
MW6	12/22/05	341.05	37.55	303.50	NLPH	331k	<50.0	0.65	<0.500	0.86	1.39	<0.50	<0.50
MW6	03/23/06	341.05	35.72	305.33	NLPH	<47	<50	<2.5	<1.00	<0.50	<0.50	<0.50	<0.50
MW7	06/16/00	341.73	Property tran	nsferred to Valer	o Refining Cor	mpany.							
MW7	07/31/00	341.73	24.22	317.51	NLPH	150	<50	13	8	<0.5	<0.5	<0.5	<0.5
MW7	10/10/00	341.73	24.09	317.64	NLPH	1,500	c	c	c	c	с	C	c
MW7	01/11/01	341.73	25.86	315.87	NLPH	330	<50	6.9	7	0.55	<0.5	<0.5	<0.5
MW7	04/11/01	341.73	24.28	317.45	NLPH	980e	<250	<10		<2.5	<2.5	<2.5	<2.5
MW7	07/20/01	341,73	25.52	316.21	NLPH	300	<50	8.2	6	<0.5	<0.5	<0.5	<0.5
MW7	10/19/01	341.73	24.99	316.74	NLPH	120	<50	4.9	<5	<0.5	<0.5	<0.5	<0.5
MW7	Nov-2001	341.73	Well surveye	ed in compliance									
MW7	01/28/02	341.73	23.84	317.89	NLPH	<100	<50.0	8.50		<0.50	<0.50	<0.50	<0.50
MW7	04/17/02	341.73	28.19	313.54	NLPH	55	<50.0	9.70	11.6	<0.5	2.10	<0.50	<0.50
MW7	07/17/02	341.73	29.74	311.99	NLPH	69	<50.0	9.7	9.0	<0.5	<0.5	<0.5	<0.5
MW7	10/24/02	341.73	29.50	312.23	NLPH	262	<50.0	5.4	6.0	<0.5	<0.5	<0.5	<0.5
MW7	03/21/03	341.73	26.07	315.66	NLPH	<50	<50.0	6.00		<0.50	0.8	<0.5	<0.5
MW7	04/10/03	341.73	26.06	315.67	NLPH	<50	<50.0		9.00	<0.50	<0.5	<0.5	<0.5
MW7	07/17/03	341.73	27.18	314.55	NLPH	<50	<50.0	—	9.10	<0.50	<0.5	<0.5	<0.5
MW7	10/09/03	341.73	28.27	313.46	NLPH	<50	<50.0	12.5	5.60	<0.50	<0.5	<0.5	<0.5
MW7	01/21/04	341.73	24.51	317.22	NLPH	140	<\$0.0	15.1	17.6	<0.50	<0.5	<0.5	<0.5
MW7	05/25/04	341.73	28.87	312.86	NLPH		<50.0	17.6	13.10	<0.50	<0.5	<0.5	<0.5
MW7	08/26/04	341.73	i	Ĩ	i	322i	<50.0)	20.4	19.9i	<0.50i	<0.5i	<0.5i	<0.5i
MW7	12/07/04 j	341.73	27.68	314.05	NLPH	469k	<50.0	4.4	5.30	<0.50	<0.5	<0.5	<0.5
	-												

TABLE 2A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 6 of 7)

Well	Sampling	тос	DTW	GW Elev.	SUBJ	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	т	٤	X
ID	Date ·	(fmsl)	(fbgs)	(fmsl)	(µg/Ľ)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW7	03/17/05	341,73	22.80	318.93	NLPH	131k	<50.0		16.5	<0.50	<0.5	<0.5	<0.5
MW7	06/20/05	341.73	26.73	315.00	NLPH	68k	<50.0	9.4	11.1	<0.50	<0.5	<0.5	<0.5
MW7	09/20/05	341.73	24.28	317.45	NLPH	4,690k	<5,000n	<50.0n	<0.500	<50.0n	<50.0n	<50.0n	<50.0n
MW7	12/22/05	341.73	24.54	317.19	NLPH	799k	<50.0	<0.50	<0.500	<0.50	0.76	<0.50	0.64
MW7	03/23/06	341.73	22.46	319.27	NLPH	190k	<50	<2.5	<1.00	<0.50	<0.50	<0.50	<0.50
MW8	06/16/00	341.44	Property tran	nsferred to Valer	o Refining Co	трапу.							
MW8	10/10/00 - 08/2	6/04 Well d	lry.										
MW8	12/07/04 h, j	341.44	65.15	276,29	NLPH	b	<50.0	7.6	2.40	<0.50	<0.5	<0.5	<0.5
MW8	03/17/05	341.44	59.75	281.69	NLPH	<50	<50.0		<0.50	<0.50	<0.5	<0.5	<0.5
MW8	06/20/05	341.44	55.15	286.29	NLPH	<50	<50.0	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW8	09/20/05	341.44	55.39	286.05	NLPH	229k	<50.0	0.58	<0.500	<0.50	<0.50	<0.50	0.52
MW8	12/22/05	341.44	51.96	289.48	NLPH	<50.0	<50.0	<0.50	<0.500	<0.50	<0.50	<0.50	<0.50
MW8	03/23/06	341.44	46.63	294.81	NLPH	100k	<50	<2.5	<1.00	1.4	<0.50	0.83	<0.50

TABLE 2A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 7-3567 3192 Santa Rila Road Pleasanton, California (Page 7 of 7)

Notes:		
TOC	=	Top of well casing elevation; datum is mean sea level.
SUBJ	=	Results of subjective evaluation, liquid-phase hydrocarbon thickness (HT) in feet.
NLPH	=	No liquid-phase hydrocarbons present in well.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using modified EPA Method 8015.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using modified EPA Method 5030/8015 (modified).
MTBE 8021B	=	Methyl terliary butyl ether analyzed using EPA Method 8020 or 8021B.
MTBE 8260B	=	Methyl terliary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, loluene, ethylbenzene, and total xylenes analyzed using EPA Method 8021B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
TAME	Ξ	Tertlery amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertairy butyl alcohol analyzed using EPA Method 8260B.
EDB	Ŧ	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	Ħ	1,2-dichloroethane analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
µg/L	=	Micrograms per liter.
ſmsl	=	Feet above mean sea level.
fbgs	=	Feet below ground surface.
<	=	Not detected at or above the stated laboratory method reporting limit.
	=	Not analyzed/Not applicable.
а	=	No result because of sample loss during laboratory fire.
ъ	=	Not enough water to gauge and/or sample.
с	=	Samples were damaged during transportation to laboratory.
d	Ħ	Analyzed using EPA Method 8260.
е	=	Diesel-range hydrocarbons detected in bailer blank; result is suspect.
f	=	Well inacessible.
g	=	DTW was not measured due to equipment failure.
h	=	Grab sample.
i	=	Groundwater elevation data invalidated; analytical results suspect.
j	=	Incorrect date recorded on the Chain-of-Custody form and/or laboratory analytical report. The correct date is shown.
k	=	Diesel-range organic compounds reported in sample; however, chromatogram pattern is not representative of diesel fuel
1	Ŧ	Analyte detected in laboratory method blank; result is suspect.
m	=	Incorrect well monitored and sampled. Results invalidated.
n	=	Elevated reporting limit used due to sample matrix effects.
D	=	Result elevated due to single analyte peak in quantitation range.

TABLE 2B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, Callfornia (Page 1 of 5)

Well	Sampling	ETBE	TAME	TBA	EDB	1,2-DCA	DIPE	Ethano
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW1	11/17/98 - 06/16	/00 Not analyzed for the	ese analytes.					
MW1	07/31/00	<10	<10	<500	<5	<5	<10	
MW1	10/10/00 - 10/24	/02 Not analyzed for the	ese analytes.					
MW1	03/21/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW1	04/10/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW1	07/17/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW1	10/09/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	—
MW1	01/21/04	<0.50	2.20	57.9	<0.50	<0.50	<0.50	
MW1	05/25/04	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW1	08/26/04	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW1	12/07/04 j	<0.50	2.00	49.6	<0.50	<0.50	<0.50	—
MW1	03/17/05	<0.50	7.60	201	<0.50	<0.50	<0.50	
MW1	06/20/05	<0.50	<0.50	135	<0.50	<0.50	<0.50	P44
MW1	09/20/05	<0.500	<0.500	30.6	<0.500	<0.500	<0.500	
MW1	12/22/05	<0.500	<0.500	114	<0.500	<0.500	<0.500	
MW1	03/23/06	<1.00	<1.00	93.8	<1.00	<1.00	<1.00	<100
MW2	11/17/98 - D6/16	/00 Not analyzed for the	ese analytes.					
MW2	07/31/00	<10	<10	<500	<5	<5	<10	
MW2	10/10/00 - 10/24	/02 Not analyzed for the	ese analytes.					
MW2	03/21/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW2	04/10/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW2	07/17/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW2	10/09/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW2	01/21/04	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW2	05/25/04	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW2	08/26/04	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW2	12/07/04]	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW2	03/17/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW2	06/20/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW2	09/20/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW2	12/22/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW2	03/23/06	<1.00	<1.00	<10.0	<1.00	<1.00	<1.00	<100
MW3	11/17/98 - 06/16	/00 Not analyzed for the	ese analytes.					
MW3	07/31/00	<10	- <10	<500	<5	<5	<10	
MW3		/02 Not analyzed for the	ese analytes.					
MW3	03/21/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW3	04/10/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	

TABLE 2B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 7-3567 3192 Santa Rita Road

Pleasanton, California (Page 2 of 5)

Well	Sampling	ETBE	TÂME	TBA	EDB	1,2-DCA	DIPE	Ethanol
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW3	07/17/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW3	07/18/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	•••
MW3	10/09/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW3	01/21/04	<0.50	<0.50	<10	<0.50	<0.50	<0.50	—
MW3	05/25/04	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW3	08/26/04	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW3	12/07/04 j	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MWЭ	03/17/05	<0.50	<0.50	22.7	<0.50	<0.50	<0.50	
мwэ	06/20/05	<0.50	<0.50	13.3	<0.50	<0.50	<0.50	—
MW3	09/20/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	_
MW3	12/22/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW3	03/23/06	<1.00	<1.00	<10.0	<1.00	<1.00	<1.00	—
MW4	11/17/98 - 06/16/0	0 Not analyzed for the	ese analytes.					
MW4	07/31/00	<10	<10	<500	<5	<5	<10	•••
MW4	10/10/00 - 10/24/0	2 Not analyzed for the	ese analytes.					
MW4	03/21/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW4	04/10/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	—
MW4	07/17/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW4	10/09/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW4	01/21/04	<0.50	<d.50< td=""><td><10</td><td><0.50</td><td><0.50</td><td><0.50</td><td></td></d.50<>	<10	<0.50	<0.50	<0.50	
MW4	05/25/04	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	•••
MW4	08/26/04	<0.50i	<0.50	<10.0i	<0.50i	<0.50i	<0.50i	
MW4	12/07/04 f, J	P=4			—			
MW4	03/17/05	<0.50	0.70	<10.0	<0.50	<0.50	<0.50	
MW4	06/20/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW4	09/20/05	<0.500	<0.600	<10.0	<0.500	<0.500	<0.500	
MW4	12/22/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	•••
MW4	03/23/06	<1.00	<1,00	<10.0	<1.00	<1.00	<1.00	
MW5	06/16/0D				_	_		
MW5	07/31/00	<10	<10	<500	<5	<5	<10	
MW5	10/10/00 - 10/24/0	2 Not analyzed for the	se analytes.					
MW5	03/21/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW5	04/10/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW5	07/17/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW5	10/09/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	 _
MW5	01/21/04	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW5	05/25/04	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	

TABLE 2B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, Callfornia (Page 3 of 5)

Weil	Sampling	ETBE	TAME	TBA	ED8	1,2-DCA	DIPE	Ethano
ID	Date	(µ <u>g/L)</u>	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW5	08/26/04	<0.50i	<0.50i	<10.0i	<0.50i	<0.50i	<0.50i	-
MW5	12/07/04 j	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW5	03/17/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW5	06/20/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW5	09/20/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW5	12/22/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW5	03/23/06	<1,00	<1.00	<10.0	<1.00	<1.00	<1.00	
MW6	06/16/00		_					
MW6	07/31/00	<10	<10	<500	<5	<5	<10	
MW6	10/10/00 - 10/24/02	2 Not analyzed for the	ese analytés.					
MW6	03/21/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW6	04/10/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW6	07/17/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW6	10/09/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW6	01/21/04	<0.50	<0.50	<10	<0.50	<0.50	<0.50	_
MW6	05/25/04	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW6	08/26/04	<0.50i	<0.50i	<10.0i	<0.501	<0.50i	<0.50i	
MW6	12/07/04 j.m		***	_	—			
MW6	03/17/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW6	06/20/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW6	09/20/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW6	12/22/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW6	03/23/06	<1.00	<1.00	<10.0	<1.00	<1.00	<1.00	
MW7	06/16/00 - 10/24/02	2 Not analyzed for the	ese analytes.					
MW7	03/21/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW7	04/10/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW7	07/17/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW7	10/09/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW7	01/21/04	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW7	05/25/04	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW7	08/26/04	<0.50i	<0.50i	<10.0ì	<0.50i	<0.50i	<0.50i	
MW7	12/07/04 j	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW7	03/17/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW7	06/20/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	-
MW7	09/20/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW7	12/22/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW7	03/23/06	<1.00	<1.00	<10.0	<1.00	<1.00	<1.00	<100

TABLE 28 ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 4 of 5)

Well	Sampling	ETBE	TAME	ТВА	EDB	1,2-DCA	DIPE	Ethanol	
ID	ID Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
MW8	07/31/00	<10	<10	<500	<5	<5	<10		
MW8	10/10/00 - 08/26/04	Well dry.							
MW8	12/07/04 h, j	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50		
MW8	03/17/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50		
MW8	06/20/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50		
MW8	09/20/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500		
MW8	12/22/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500		
MW8	03/23/06	<1.00	<1.00	<10.0	<1.00	<1.00	<1.00	<100	

TABLE 2B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 5 of 5)

Notes:		
TOC	=	Top of well casing elevation; datum is mean sea level.
\$UBJ	=	Results of subjective evaluation, Ilquid-phase hydrocarbon thickness (HT) in feet.
NLPH	=	No liquid-phase hydrocarbons present in well.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level.
TPHd	-	Total petroleum hydrocarbons as diesel analyzed using modified EPA Method 8015.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using modified EPA Method 5030/8015 (modified).
MTBE 8021B	=	Methyl tertiary butyl ether analyzed using EPA Method 8020 or 80218.
MTBE 8260B	=	Mathyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8021B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertainy butyl alcohol analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1.2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
µg/L	=	Micrograms per liter.
fmst	=	Feet above mean sea level.
fogs	=	Feet below ground surface.
<	=	Not detected at or above the stated laboratory method reporting limit.
	=	Not analyzed/Not applicable.
а	=	No result because of sample loss during laboratory fire.
b	=	Not enough water to gauge and/or sample.
с	=	Samples were damaged during transportation to laboratory.
d	7	Analyzed using EPA Method 8260.
Θ	7	Diesel-range hydrocarbons detected in bailer blank; result is suspect.
f	-	Well inacessible.
g	=	DTW was not measured due to equipment failure.
ĥ	÷	Grab sample.
i	=	Groundwater elevation data invalidated; analytical results suspect.
i	=	Incorrect date recorded on the Chain-of-Custody form and/or laboratory analytical report. The correct date is shown.
ķ	=	Diesel-range organic compounds reported in sample; however, chromatogram pattern is not representative of diesel fuel.
	=	Analyte detected in laboratory method blank; result is suspect.
m	=	Incorrect well monitored and sampled. Results Invalidated.
n	=	Elevated reporting limit used due to sample matrix effects.
		Result elevated due to single analyte peak in quantitation range.

TABLE 3 CUMULATIVE ANALYTICAL RESULTS OF SOIL SAMPLES Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, Cellfornia (Page 1 of 2)

Sample	Deplh	Date	TPHd	TPHg	MTBE	6	т	E	х	Total Lead	TRPH	HVOCs	SVOCs	VOCs	TOG
D	(lbgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)_	(mg/kg)	(mg/kg)	(mg/kg)	(µg/kg)	(µg/kg)	(mg/kg)
UST Replacement															
S-13-T1E	13	12/20/88	_	169	_	3.08	10.06	3.33	26.52	—	—	-	-	-	_
S-13-T1W	13	12/20/88	_	16	—	0.42	0.39	0.33	0.61	-	P+4		_	-	_
S-13-T2E	13	12/20/88	—	8		0.70	0.69	Q.26	1.70	<0.16	•••		—	—	—
S-13-T2W	13	12/20/88	_	117		0.96	0.92	2.85	17.03	<0.16	—	—	—	-	
S-13-T3E	13	12/20/88	_	19		0.72	1.02	1.02	3.95		-+-		—	—	
S-13-T3W	13	12/20/88	—	2,901	-	18	78	116	803	_				—	—
S-16-T1E	16	12/30/88	—	<2	•	<0.05	<0.05	<0.05	<0.05	_	-		—	-	
S-13-T2E	13	12/30/88	_	_		_	—	-	-	_	—		—	-	
S-14-T2W	14	12/30/88	—	<2	-	<0.05	<0.05	<0.05	<0.05	<0.2	—	—	—		—
\$-17-T3W	17	12/30/88		<2	—	<0.05	<0.05	<0.05	<0.05	<0.2	•••			-	**-
S-10-WOT (T4)	10	12/20/88	<10	<1	_	_	-	_	_	_	-	•	_	_	<30
Monitoring Wellin	<u>ştallation</u>														
S-10-B1	10	11/11/98	<1.0	<1.0	<0.025	<0.005	<0.005	<0.005	<0.005		<50	-	ND	ND	_
S-15-B1	15	11/11/98	5.3	<1.0	<0.025	<0.005	<0.005	<0.005	<0.005		<50		ND	ND	
S-35-B1	35	11/11/98	<1.0	<1.0	<0.025	<0.005	<0.005	<0.005	<0.005	_	<50		ND	ND	1-4
S-15-B2	15	11/11/98	<1.0	<1.0	<0.025	<0.005	<0.005	<0.005	<0.005				—	—	
S-35-B2	35	11/11/98	<1.0	<1.0	<0.025	<0.005	<0.005	<0.005	<0.005	_	-		—	—	—
S-15-B3	15	11/12/98	1.3	<1.0	<0.025	<0,005	<0.005	<0.005	<0.005		—	_		—	—
S-25-B3	25	11/12/98	19	<1.0	<0.025	<0.005	<0.005	<0.005	<0.005	—	—		—		_
S-15-B4	15	11/12/98	<1.0	<1.0	<0.025	<0.005	<0.005	<0.005	<0.005	_	_	_	_	—	—
\$-25-B4	25	11/12/98	<1.0	<1.0	<0.025	<0.005	<0.005	<0.005	<0.005		—	—	_	—	
S-16-MW5	16	07/18/00	<2	<1	<0.001	<0.001	<0.001	<0.001	<0.001	—			—	_	
5-30-MW5	30	07/18/00	3.8	<1	<0.001	<0.001	<0.001	<0.001	<0.001		—		_	—	
S-18-MW6	18	07/19/00	<2	<1	<0.001	<0.001	<0.001	<0.001	<0.001	_	—		H-	—	—
S-30-MW6	30	07/19/00	<2	<1	<0.001	<0.001	<0.001	<0.001	<0.001					••	
S-15-MW7	15	07/16/00	<2	<1	<0.001	<0.001	<0.001	<0.001	<0.001	_	—			-+-	—
\$-21-MW7	21	07/18/00	<2	<1	0.001	<0.001	<0.001	<0.001	0.001	_				—	
S-15-MW8	15	03/16/01	<2	<1	<0.001	<0.001	<0.001	<0.001	<0,001	_		_	**-		
S-30-MW8	30	03/16/01	<2	<1	<0.0017	<0.001	<0.001	<0.001	<0.001					—	-
Product Line and I	Dispenser	Replacemen	<u>it</u>												
S-5.5-D1	5.5	08/09/02	<9.84	<25.0	0.0073	<0.0020	<0.0020	<0.0020	<0.0020	_	-	-		ND	
S-6.5-PL1	6.5	08/09/02	<9.96	<25.0	0.0098	<0.0020	<0.0020	<0.0020	<0.0020	—		←		ND	
S-4-PL3	4	08/09/02	<9.88	<25.0	0.0072	<0.0020	<0.0020	<0.0020	<0.0020	—	-	—	—	ND	
S-5-D5	5	08/09/02	<9.96	<25.0	0,0625	<0.0020	<0.0020	<0.0020	<0.0020		-	—	_	ND	
S-4-PL5	4	08/09/02	<9.84	<25.0	0.0222	<0.0020	<0.0020	<0.0020	<0.0020	—	_	_		ND	
S-4.5-PL7	4.5	08/09/02	<10.0	<25.0	0.0148	<0.0020	<0.0020	<0.0020	<0.0020		_	_		ND	
S-5-PL8	5	08/09/02	<10.0	<25.0	0.189	<0.0020	0.0023	<0.0020	0.0032h		_			ND	
S-6-PL10	6	09/09/02	<9.92	<25.0	<0.0200	<0.0020	<0.0020	<0.0020	<0.0020	_	_			ND	

TABLE 3 CUMULATIVE ANALYTICAL RESULTS OF SOIL SAMPLES Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasantori, California (Page 2 of 2)

Sample ID	Depth (fbgs)	Date	TPHd (mg/kg)	TPHg (mg/kg)	MTBE (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	Total Lead (mg/kg)	TRPH (mg/kg)	HVOCs (mg/kg)	SVOCs (µg/kg)	VOCs (µg/kg)	TOG (mg/kg) _
Stockpile Samples SP1-1 (1-4)		11/12/98	11	<1,0	<0.025	<0.005	<0.005	<0.005	<0.005	<5	<50	ND			_
SP-1-1	1	07/19/00	<2	<1	_	<0.001	<0.001	<0.001	<0.001	5.64	—	0.0023a	—	—	
SP-1-(1-4)	1	03/16/01	<2	<1	<0.0022	<0.001	<0.001	<0.001	0.001	8,11	-	ND		-	

Notes:		
S-10-B1	=	Soll sample-depth in feet below ground surface-boring number.
SP1-1(1-4)	=	Stockplie soil sample-depth in feet below ground surface.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015M.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015M.
MTBE	=	Methyl tertlary butyl ether analyzed using EPA Method 8021B or 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8021B.
TRPH	=	Total recoverable petroleum hydrocarbons analyzed using EPA Method 5520 E and F.
Total Lead	=	Total lead analyzed using EPA Method 6010B.
HVOCs	=	Halogenated volatile organic compounds analyzed using EPA Method 8010B.
SVOCs	=	SemI-volatile organic compounds analyzed using EPA Method 8270.
VOCs	=	Volatile organic compounds analyzed using EPA Method 8240 or 8260B.
TOG	=	Total oil and grease.
íbgs	=	Feet below ground surface.
ND	=	Not detected (various detection limits).
mg/kg	=	Milligrams per kliogram.
µg/kg	=	Microgrems per kilogram.
<	=	Less than the detection limit indicated.
***	=	Not analyzed/Not Applicable.
а	=	Methelyne Chloride.
Ь	=	Estimated value below reported limit.

TABLE 4 ANALYTICAL RESULTS OF GRAB GROUNDWATER SAMPLES Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 1 of 1)

Sample ID	Sampling Dale	Depth (fbgs)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	В (µg/L)	Τ (μg/L)	Е (µg/L)	Х (µg/L)			
W-52-7-3567SB1	04/13/00	52	а	68	56	<0.5	<0.5	<0.5	<0.5			
W-55-7-3567SB3	04/13/00	52	190	<50	290	<0.5	<0.5	<0.5	<0.5			
Notes:												
Sample ID	=	Water-Depth	-Site ID-Soil I	Boring Numbe	ır.							
Depth	=	Depth of san	ple below gro	ound surface.								
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using modified EPA Method 8015.										
18710	-	rougi peuvie	Total petroleum hydrocarbons as gasoline analyzed using modified EPA Method 5030/8015 (modified).									
TPHO	=		•		-	-			(modified)			
		Total petrole	um hydrocarb		ne analyzed ı	using modifie			(modified)			
TPHg	=	Total petrole Methyl terliar	um hydrocarb y butyl elher :	ions as gasoll	ne analyzed u g EPA Metho	using modifie d 8260B.	d EPA Metho	d 5030/8015 ((modified)			
TPHg MTBE	= =	Total petrole Methyl terliar	um hydrocarb y butyl elher : uene, ethylbe	юпз as gasoll analyzed usin	ne analyzed u g EPA Metho	using modifie d 8260B.	d EPA Metho	d 5030/8015 ((modified)			

<

_

а

Not detected at or above the stated laboratory method reporting limit. =

- Not analyzed/Not applicable. Ξ.
- There was insufficient sample quantity to perform analysis. =

TABLE 5 UTILITY VAULT DATA Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleesanton, California (Page 1 of 1)

Map Designation	Type of Vault	Provider	Approximate Depth (inchos)
V1	Telephone	Pacific Bell	18
V2	Electric	PG&E	26
V3	Electric	PG&E	
V4	Electric	PG&E	8
V5	TV Cable	Comcast	15
V6	Traffic Signal	City of Pleasanton	_
V7	Traffic Signal	City of Pleasanton	10
V8	Traffic Signal	City of Pleasanton	-
V9	Electric	PG&E	_
V10	Electric	PG&E	_
V11	Water	City of Pleasanton	9
V12	Water	City of Pleasanton	10
V13	Traffic Signal	City of Pleasanton	8.5
V14	Sanitary Sewer	Cily of Pleasanton	
V15	Sewer Clean Out	Private - Station	
V16	Sewer Clean Out	Private - Station	_
V17	Sewer Clean Out	Private - Station	_
V18	Sewer Clean Out	Private - Station	—
V19	Sewer Clean Out	Private - Station	—
V20	Sanitary Sewer	City of Pleasanton	
V21	Sewer Clean Out	Private - Station	_
V22	Sewer Clean Out	Private - Station	—
V23	Electric	PG&E	
IR1	Irrigation	Private - Station	8
IR2	Irrigation	Private - Station	7
IR3	Irrigation	Private - Station	5
IR4	Irrigation	Privale - Station	7
IR5	Irrigation	Private - Station	12
SD1	Storm drain	Private - Station	6
SD2	Storm drain	Private - Station	9
SD3	Storm drain	Private - Station	5
SD4	Storm drain	City of Pleasanton	66

Map designation corresponds to approximate location depicted on the Utility Vault Map.

V1 = Utility vault number 1.

IR1 = Irrigation control box number 1.

SD1 = Storm drain number 1.

- = Not applicable/Not determined.

TABLE 6SUMMARY OF MODEL INPUT PARAMETERSEXPOSURE PARAMETERSFormer Exxon Service Station 7-35673192 Santa Rita RoadPleasanton, California(Page 1 of 1)

	Г Т		MO	DEL INPUT VALUI			
EXPOSURE PARAMETER	UNITS	RESID	ENTIAL	COMMERCIAL	CONSTRUCTION	SOURCE	
		Adult	Child				
Averaging time for carcinogens	уг	70	70	70	70	CalEPA 2004a	
Averaging time for non-carcinogens	уг	30	—	25	1	CalEPA 2004a; model default	
Body Weight	Кg	70	15	70	70	CalEPA 2004a	
Exposure Duration	уг	30	6	25	1	CalEPA 2004a	
Exposure frequency	days/yr	350	350	250	180	CalEPA 2004a	
Exposure frequency, dermal exposure	days/yr	350	350	250	250	CalEPA 2004a	
Ingestion rate of soil	mg/day	100	200	100	100	CalEPA 2004a	
Skin surface area (dermal contact)	cm ²	5700	2800	3300	3300	CalEPA 2004a	
Skin absorption factor (chemical specific)	unitless	0.1	0.1	0.1	0.1	CalEPA 2004a	
Soil to skin adherence factor	mg/cm ² -day	0.2	0.2	0.2	0.2	CalEPA 2004a	

TABLE 7 SUMMARY OF MODEL INPUT PARAMETERS TOXICOLOGICAL PROPERTIES Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 1 of 1)

· · · · · · · · · · · · · · · · · · ·	1		G	SI/ASTM			JOHNSON AND ETTINGER		
	OR	AL [®]	DER	MAL ^b	INHALAT	ON ^a	INHALATION [®]		
CONSTITUENT OF	REFERENCE		REFERENCE	SLOPE	REFERENCE	UNIT RISK	REFERENCE	UNIT RISK	
CONCERN	DOSE	FACTOR	DOSE	FACTOR	CONCENTRATION		CONCENTRATION	FACTOR	
	mg/(kg-day)	(mg/kg-day) ⁻¹	mg/(kg-day)	(mg/kg-day)"	ug/m³	(ug/m ³) ⁻¹	ug/m³	(ug/m³) ^{*1}	
Benzene	3.00E-03	1.00E-01	3.88E-03	5.67E-02	3.00E-02	2.90E-05	3.00E-02	2.90E-05	
Toluene	2.00E-01		6.40E-02		3.00E-01		3,00E-01	—	
Ethylbenzene	1.00E-01		9.70E-02		1.00E+00		1.00E+00		
Xylenes, mixed isomers	2.00E-01		1,80E-01		1.00E-01			-	
m-Xylene							1,00E-01	-	
o-Xylene					1		1.00E-01		
p-Xylene	· _ ·						1.00E-01	-	
MTBE	8.60E-01	1.80E-03	8.00E-03	2.25E-03_	3.00E+00	2.60E-07	3.00E+00	2.60E-07	

Notes:

а

b

= Source: CalEPA, 2004a.

= Source: Risk Assessment Information System, 2006.

TABLE 8SUMMARY OF MODEL INPUT PARAMETERSSOIL AND BUILDING PARAMETERSFormer Exxon Service Station 7-35673192 Santa rita RoadPleasanton, California(Page 1 of 1)

· · · · · · · · · · · · · · · · · · ·	Т		MODEL IN	PUT VALUE		J
MODEL INPUT PARAMETER	UNITS	G\$I/	ASTM	Johnson a	and Ettinger	SOURCE
		RESIDENTIAL	COMMERCIAL	RESIDENTIAL	COMMERCIAL	
SOIL PARAMETERS						
Soll type		Clay	Clay	Clay	Clay	Site specific
Capillary zone thickness	cm	31	31	81.52	81.52	Model default for soil type
Vadose zone thickness	cm	688	688	637.48	637.48	Model default for soil type
Soil bulk density	g/cm ³	1.7	1.7	1.43	1.43	ASTM 1995; model default
Fraction organic carbon	unitless	0.01	0.01			Site specific (estimate)
Soil total porosity	unitless	0.38	0.38	0.399	0.399	Model default for soll type
Volumetric water content (vadose)	unitiess	0.37	0.37	0.148	0.148	Model default for soll type
Volumetric alr content (vadose)	unitless	0.01	0.01	0.244	0.244	Model default for soil type
Vertical hydraulic permeability	cm/d	0.00086	0.00086			Model default for soil type
Vapor permeability	cm ²	1.00E-14	1.00E-14	1.89E-09	1.89E-09	Model default for soil type
Depth to groundwater	cm	719	719	719	719	Site specific
Depth to top of affected soll	cm	61	61		—	Site specific
Depth to base of affected soll	cm	688	688	637.48	637.48	Site specific
Soll/groundwater pH	pH units	6.8	6.8	—		Site specific (estimate)
Average soil/groundwater temperature	С			22	22	Site specific (estimate)
BUILDING PARAMETERS						
Building volume/area ratio	cm .	244	244	_		CalEPA 2004a
Foundation area	cm ²	1.00E+06	1.00E+06	1.00E+06	1.00E+06	CalEPA 2004a
Foundation perimeter	cm	4000	4000	4000	4000	CalEPA 2004a
Building air exchange rate	d ⁻¹	12	24	0,75	0.75	CalEPA 2004a
Foundation thickness	cm	15	15	15		ASTM 1995; model default
Depth to bottom of foundation slab	cm	15	15	15		ASTM 1995; model default
Foundation crack fraction	unitless	0.0028	0.0028	0.005	0.005	Johnson 2002 (mid-range; upper value)
Soil gas advection rate	L/m			5	5	CalEPA 2004a

TABLE 9SUMMARY OF RISKS AND HAZARDSDIRECT CONTACT AND INGESTION OF SOILFormer Exxon Service Station 7-35673192 Santa Rita RoadPleasanton, California(Page 1 of 1)

		RESIDENTIAL		CONSTRUCTION	
CONSTITUENT OF CONCERN	Representative Concentration ^e	IELCR	Hazard Index	IELCR	Hazard Index
	(mg/Kg)	(unitless)	(unitless)	(unitless)	(unitless)
Benzene	0.005	4.8E-10	4.3E-05	7.6E-12	2.0E-06
Toluene	0.005		1.6E-07		6.8E-08
Ethylbenzene	0.005		1.5E-07		6.9E-08
Xylene (mixed isomers) m-Xylene o-Xylene	0.005		7.7E-08		3.5E-08
p-Xylene MTBE	0.19	4.8E-10	3.7E-05	7.3E-12	1.5E-05
TOTAL:		9.7E-10	4.2E-05	1.5E-11	1.8E-05

Notes:

mg/Kg = Miligrams per kilogram.

IELCR = Individual Excess Lifetime Cancer Risk.

a = Representative concentration based on maximum reported concentration or nominal reporting limit (0.005 mg/Kg), whichever is greater.

TABLE 10 SUMMARY OF RISKS AND HAZARDS VOLATILIZATION FROM GROUNDWATER INTO INDOOR AIR Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 1 of 1)

		RESIDENTIAL			
CONSTITUENT OF CONCERN	Representative Concentration in Groundwater ^a	IELCR	Hazard Index		
	(µg/L)	(unitless)	(unitless)		
Benzene	1.61	3.7E-08	9.9E-05		
Toluene	1.55		9,9E-06		
Ethylbenzene	0.96		1.8Ë-06		
Xylene (mixed isomers)					
m-Xylene	10.13		1.7E-04		
o-Xylene	10.13		1.8E-04		
p-Xylene	10.13		1.9E-04		
МТВЕ	133	1.2E-08	3.7E-05		
TOTAL	:	4.9E-08	6.9 E- 04		

Notes:

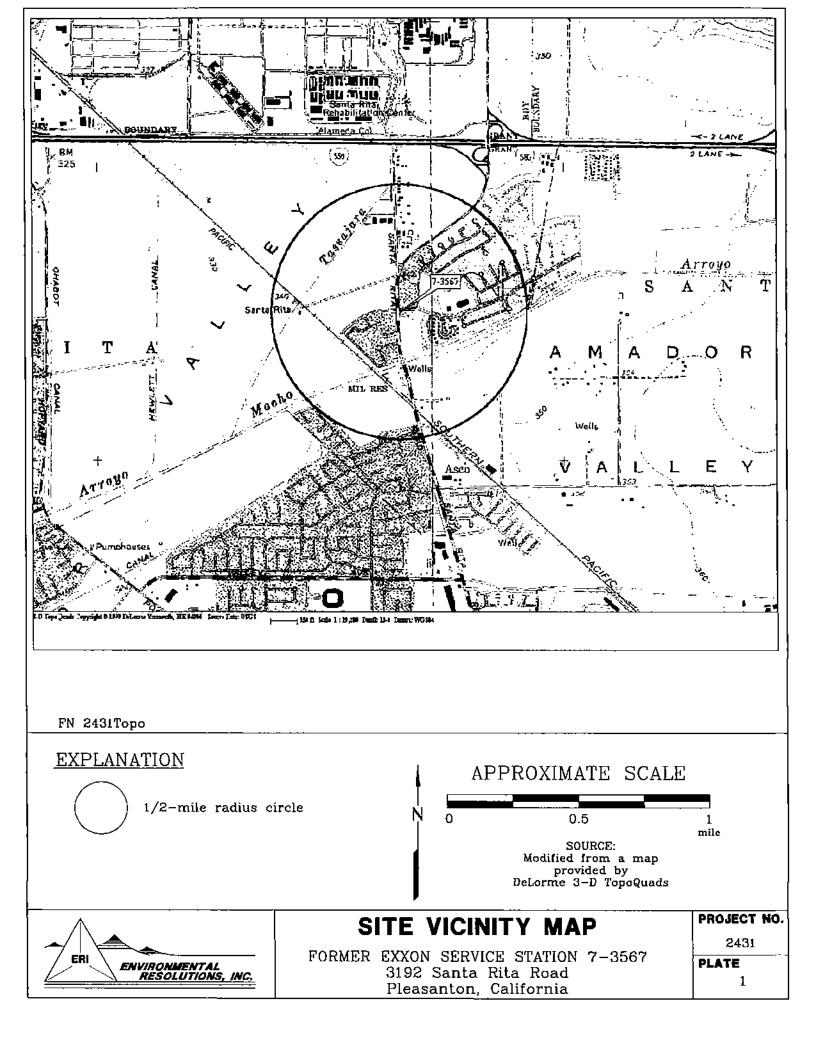
а

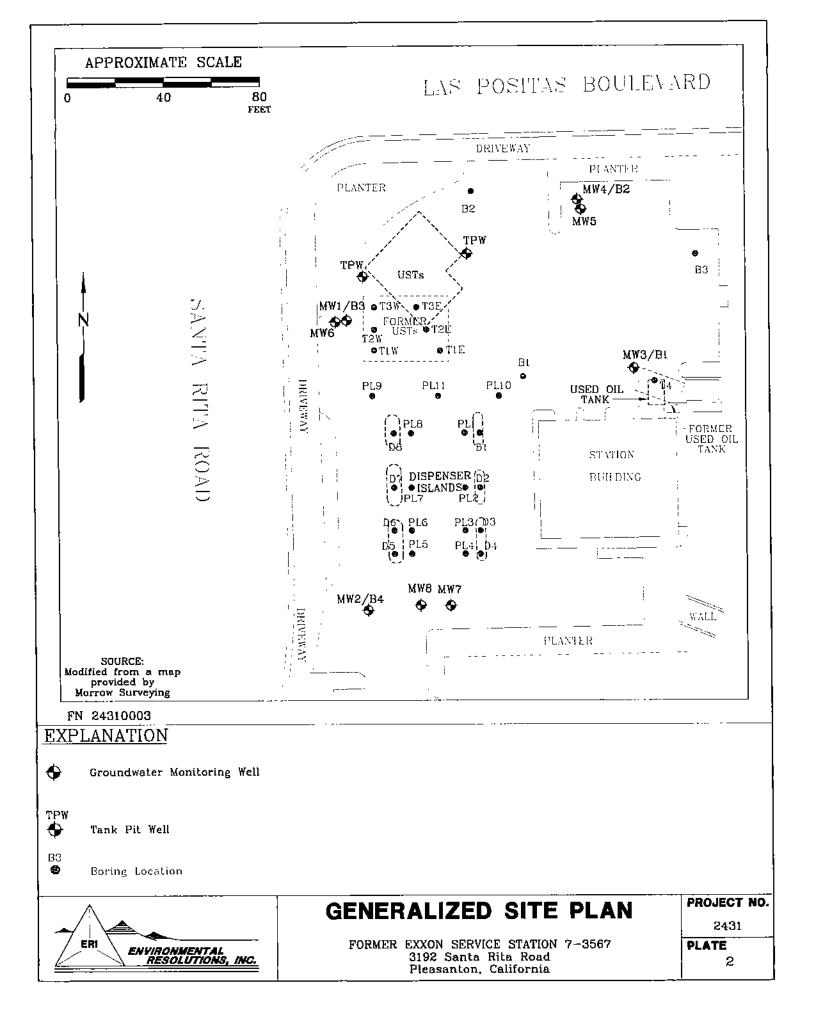
μg/L = Micrograms per liter.

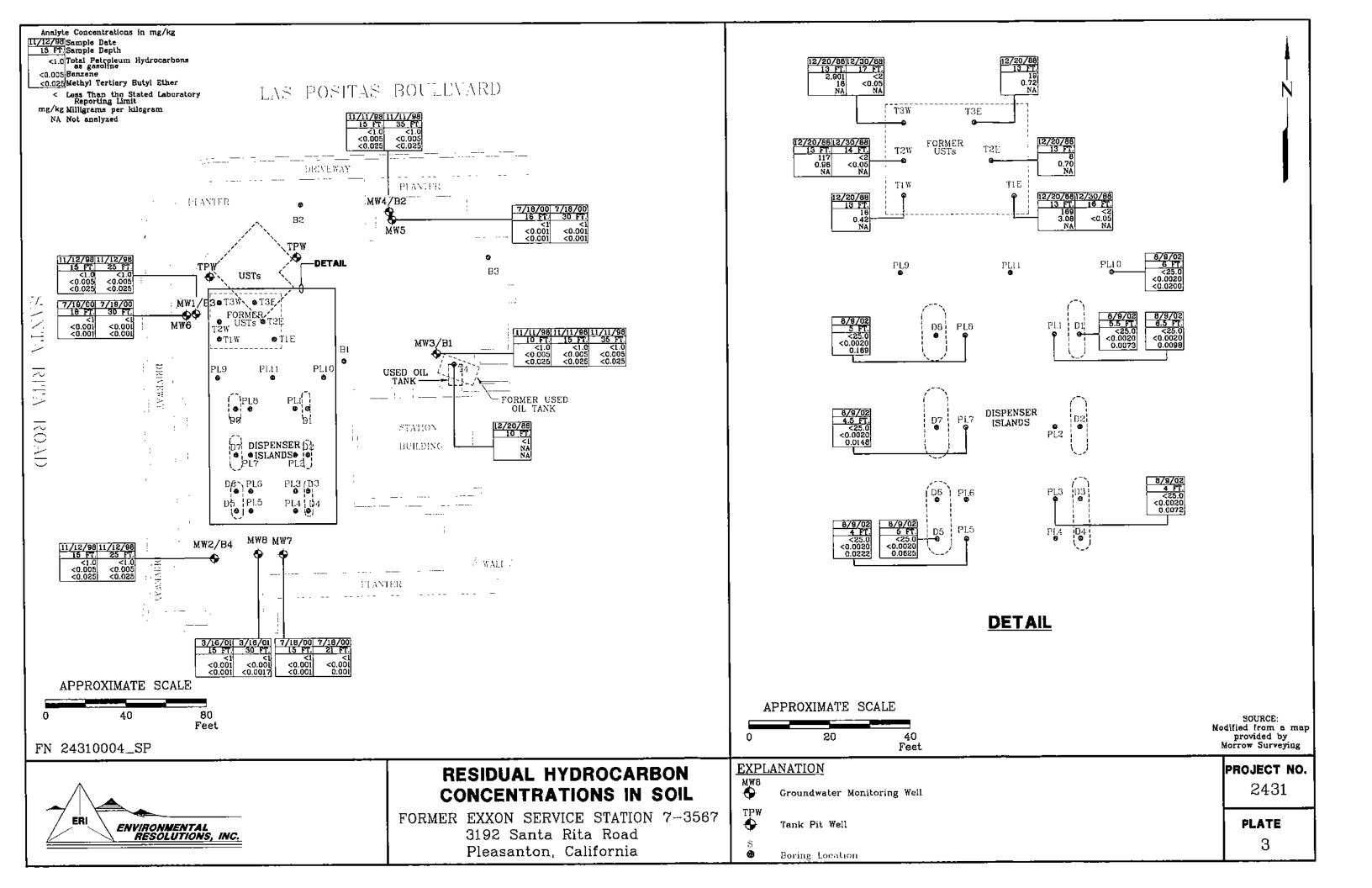
IELCR = Individual Excess Lifetime Cancer Rate.

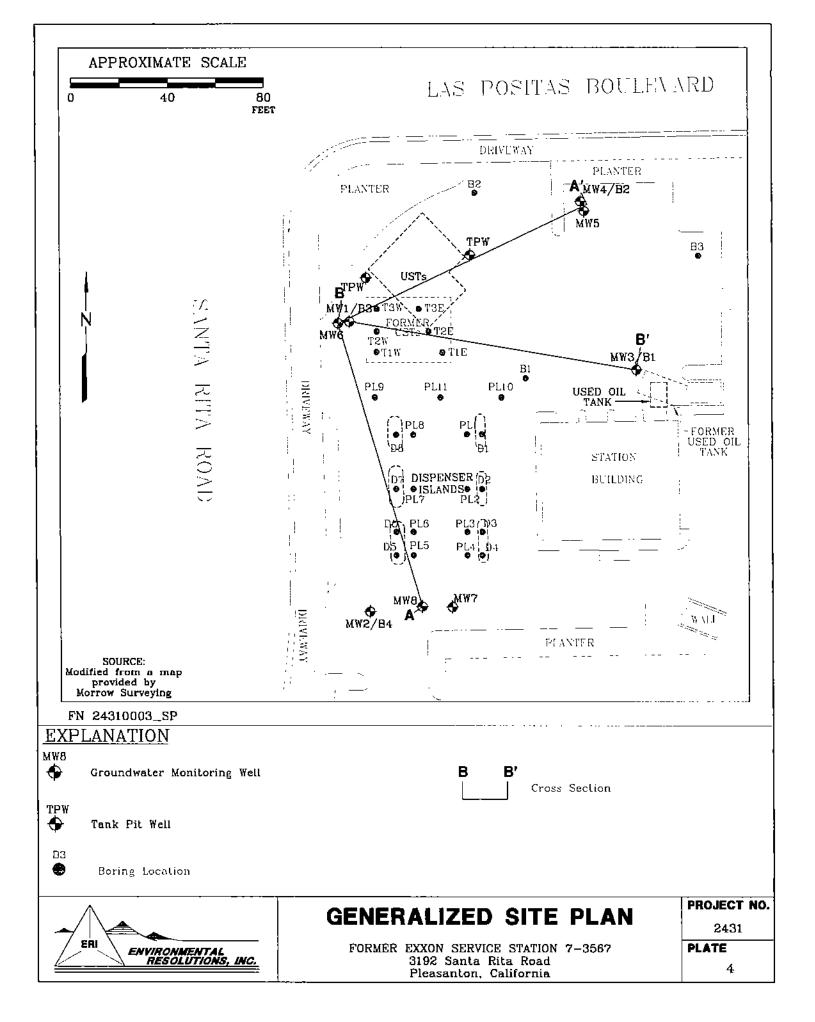
 Representative concentration obtained by calculating average COC concentration in each well over last four monitoring events, and selecting the maximum mean concentration.

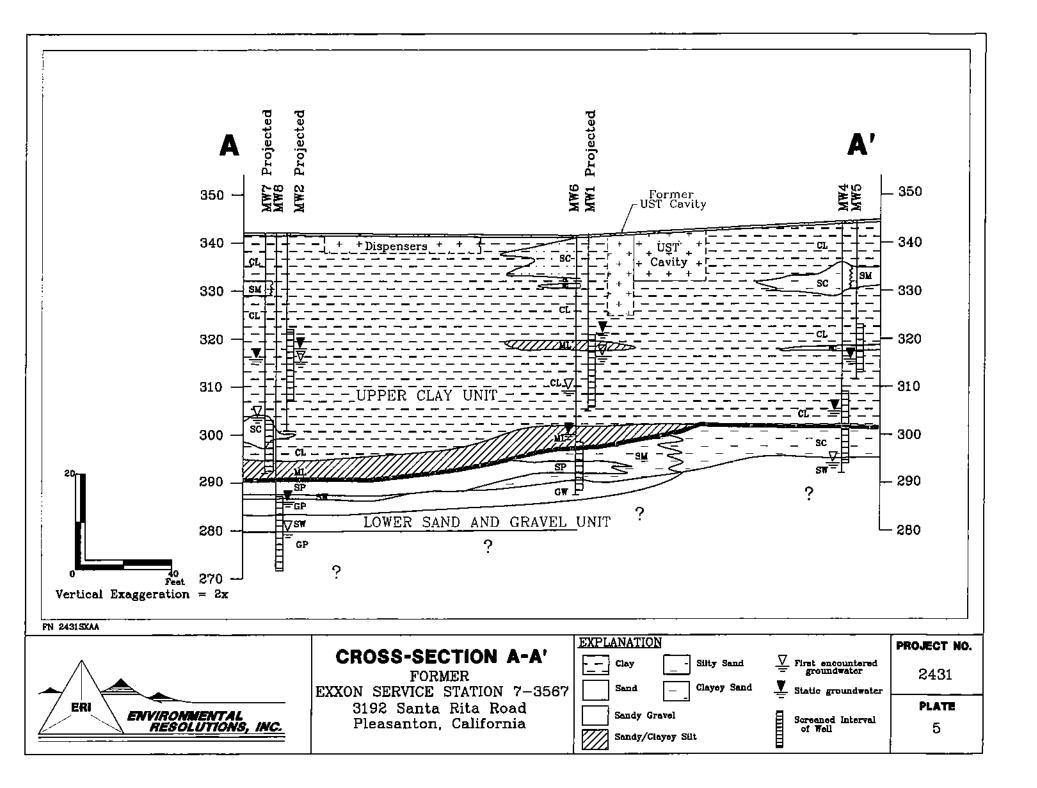
TABLE 11SUMMARY OF RISKS AND HAZARDSVOLATILIZATION FROM SOIL TO INDOOR AIRFormer Exxon Service Station 7-35673192 Santa Rita RoadPleasanton, California(Page 1 of 1)

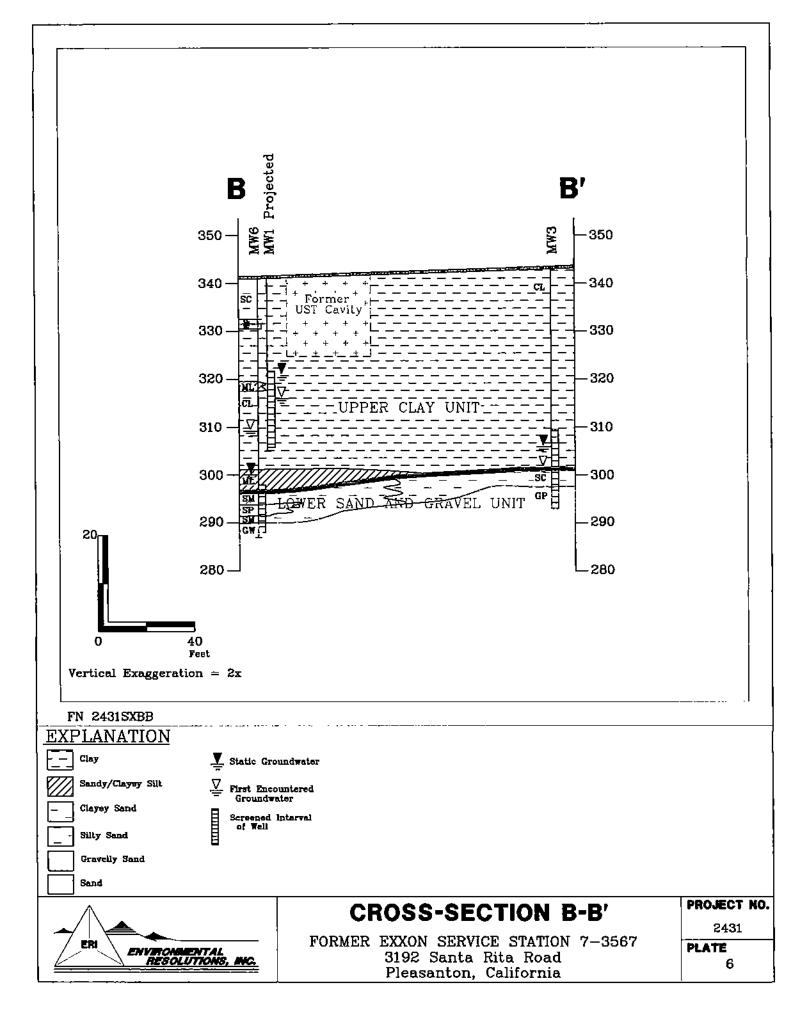

		RESIDENTIAL			
CONSTITUENT OF CONCERN	Representative Concentration ^a	IELCR	Hazard Index		
	(mg/Kg)	(unitless)	(unitless)		
Benzene	0.005	8.3E-08	2.2E-04		
Toluene	0,005		1.0E-05		
Ethylbenzene	0.005		2.0E-06		
Xylene (mixed isomers) m-Xylene o-Xylene p-Xylene	0.005		2.0E-05		
МТВЕ	0.19	1.7E-07	5.2E-04		
TOTAL:		2.6E-07	7.7E-04		

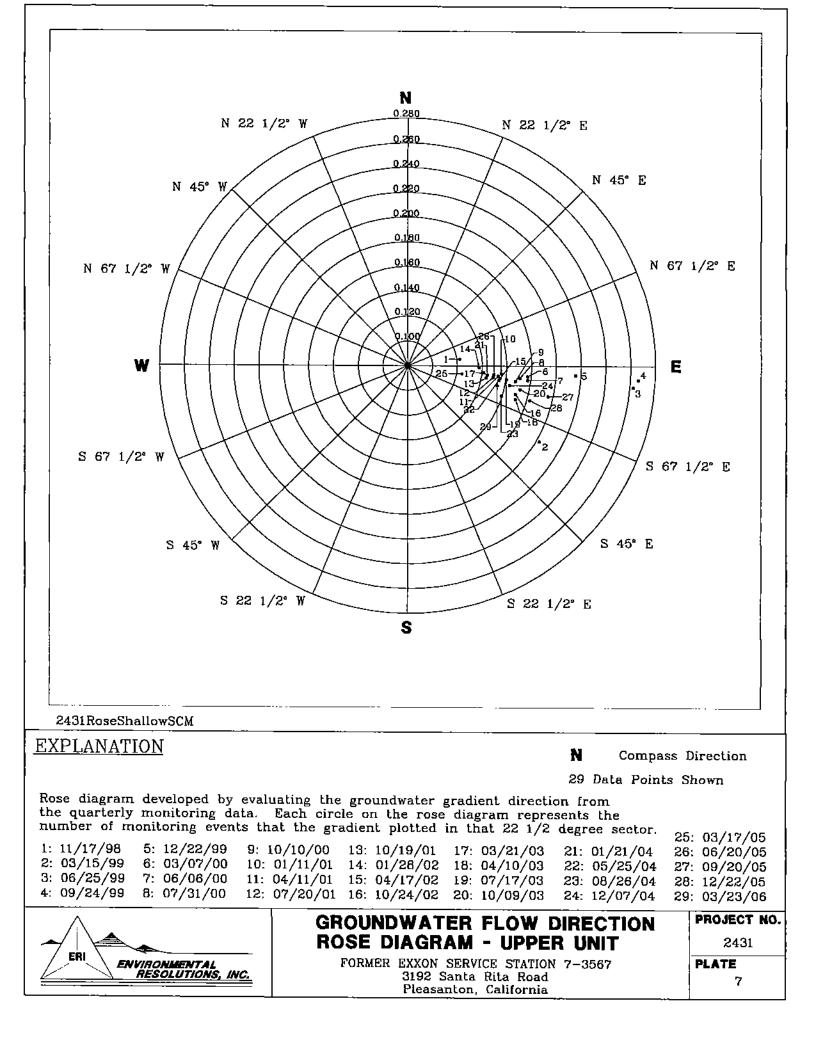

Notes:

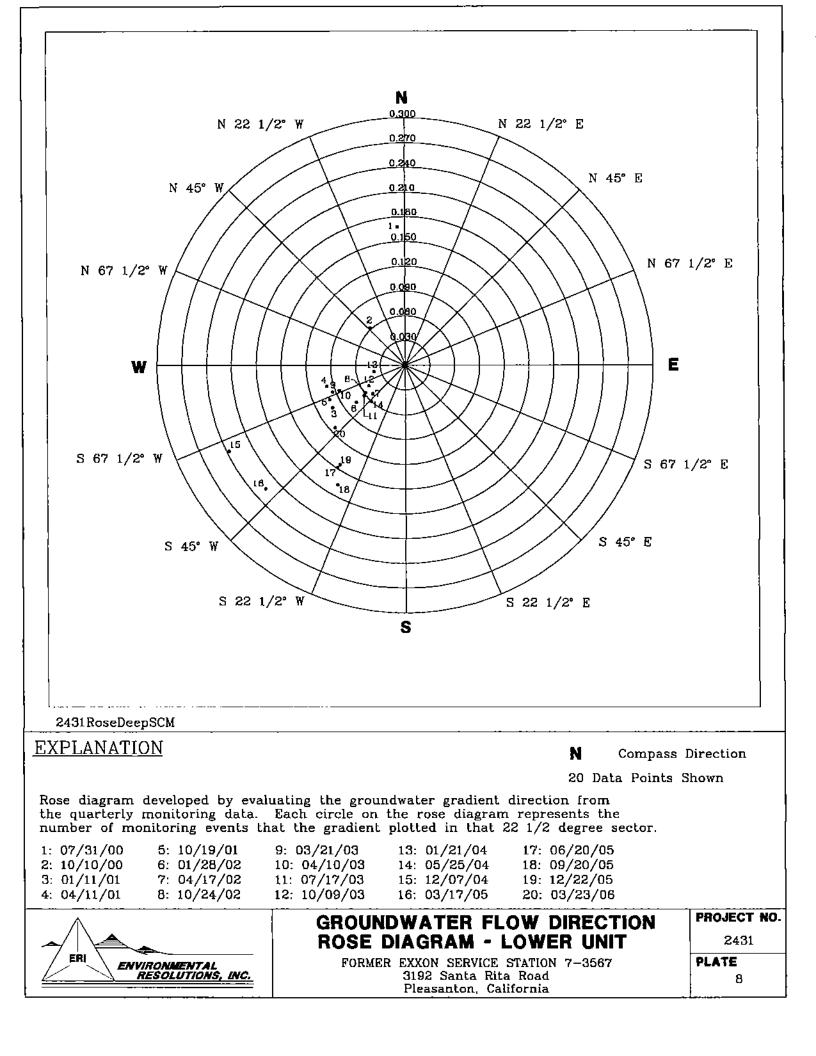

mg/Kg = Miligrams per kilogram.

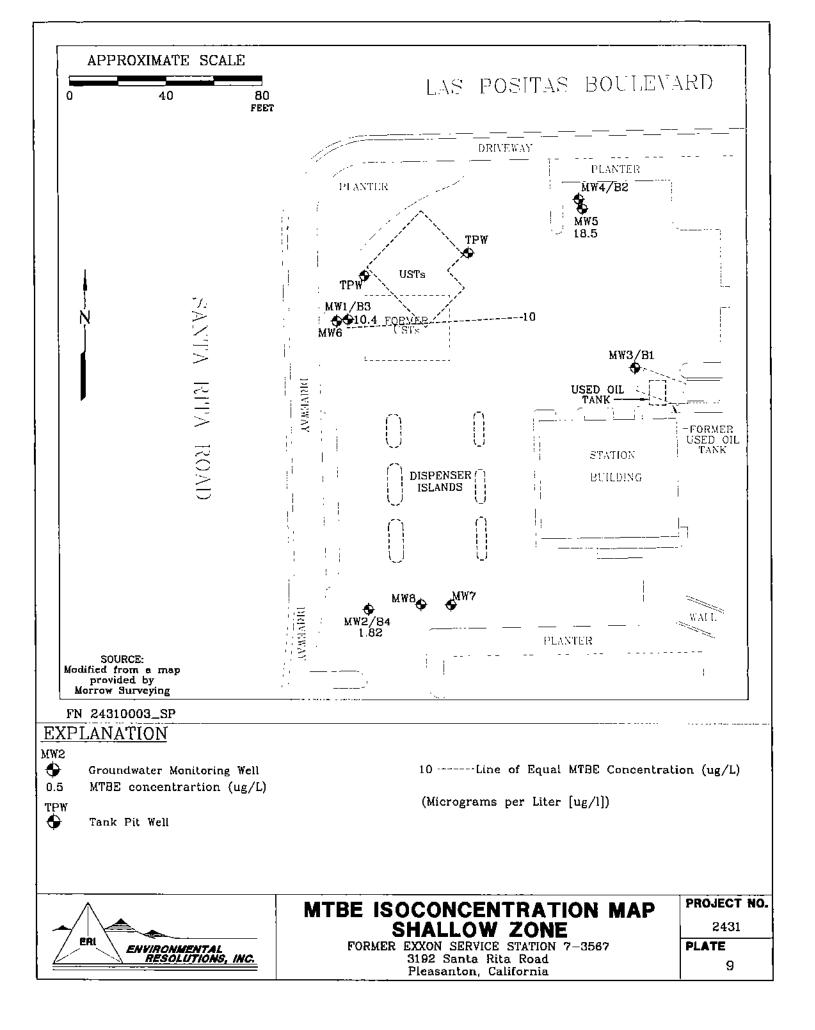

IELCR = Individual Excess Lifetim Individual Excess Lifetime Cancer Risk

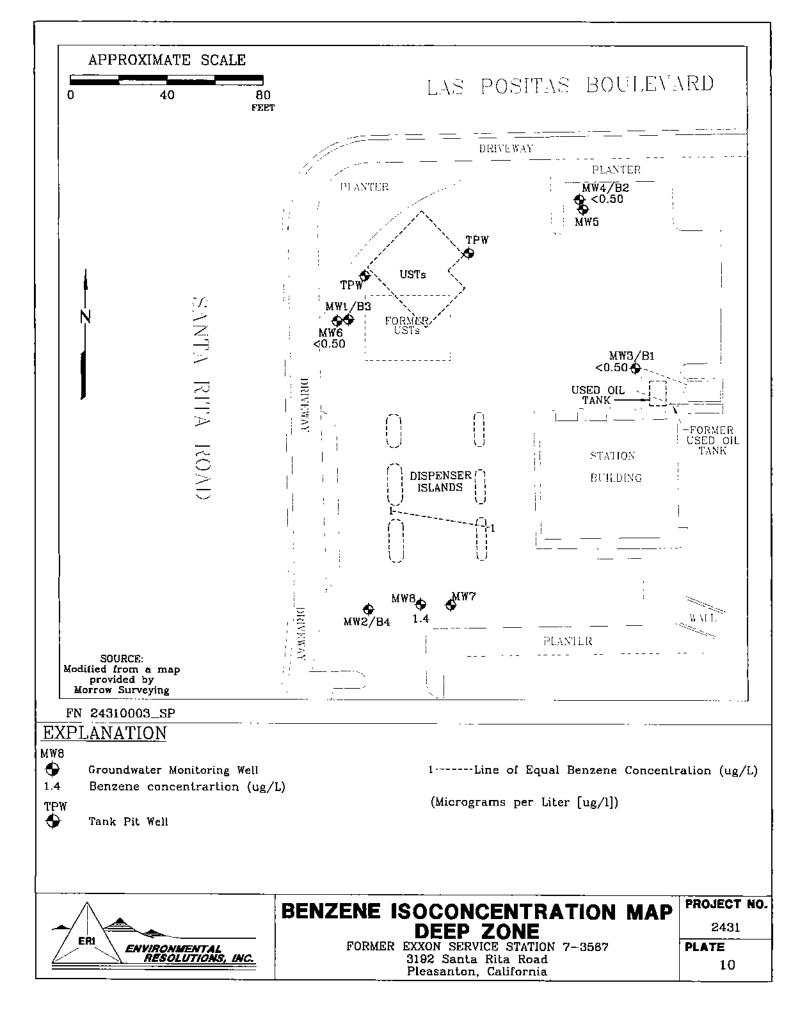

a = Representative concentration based on maximum reported concentration or nominal reporting limit (0.005 mg/Kg), whichever is greater.

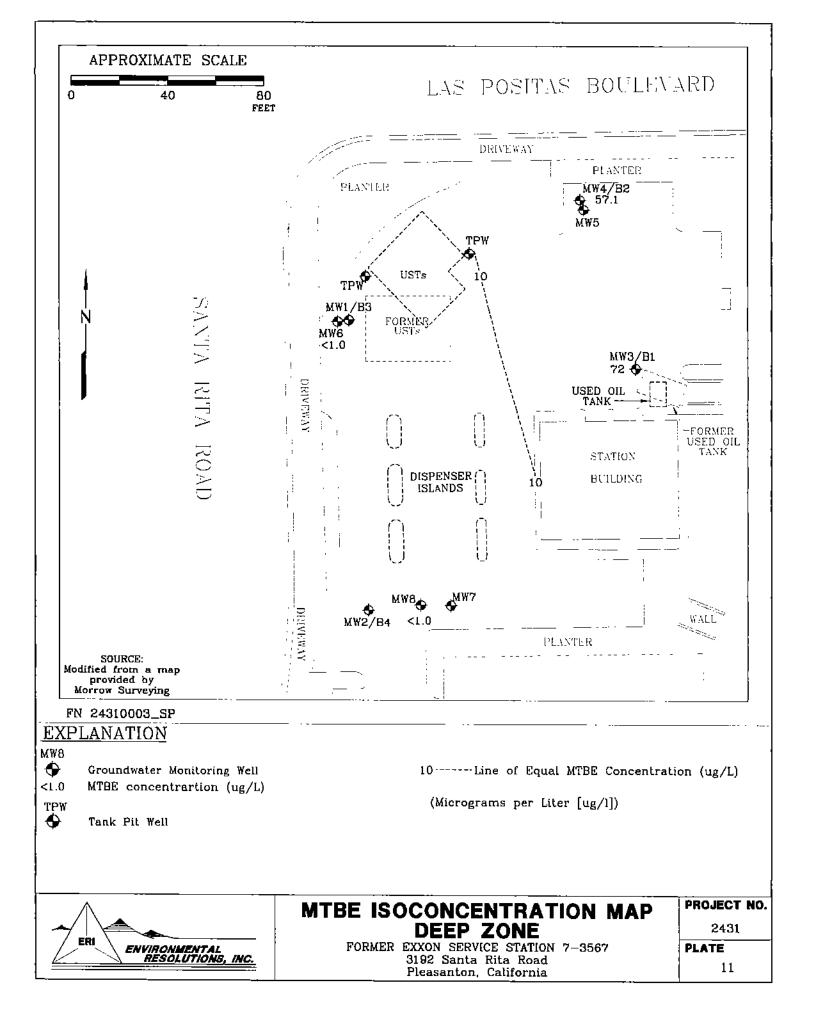




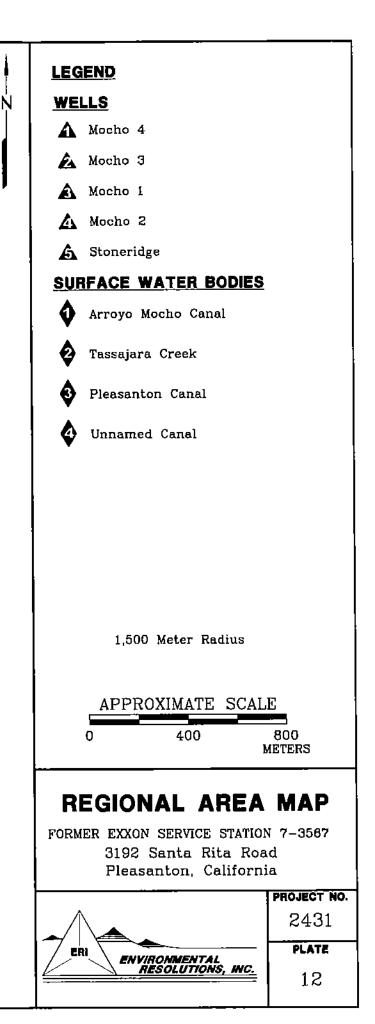


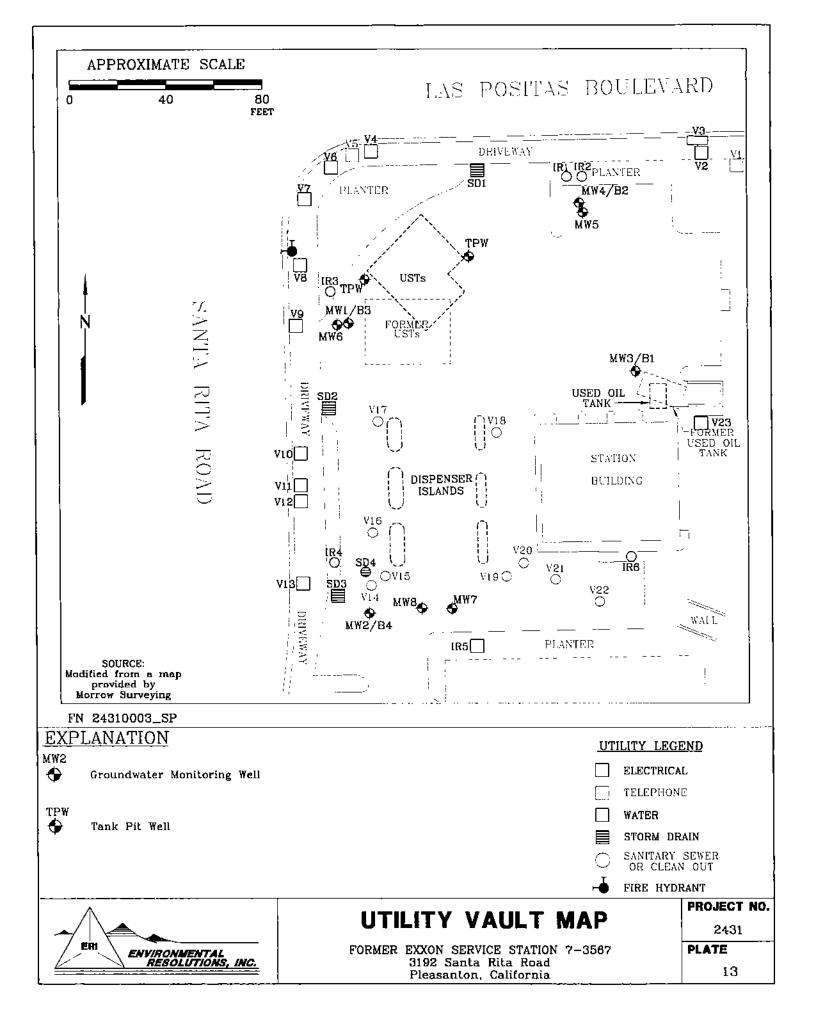


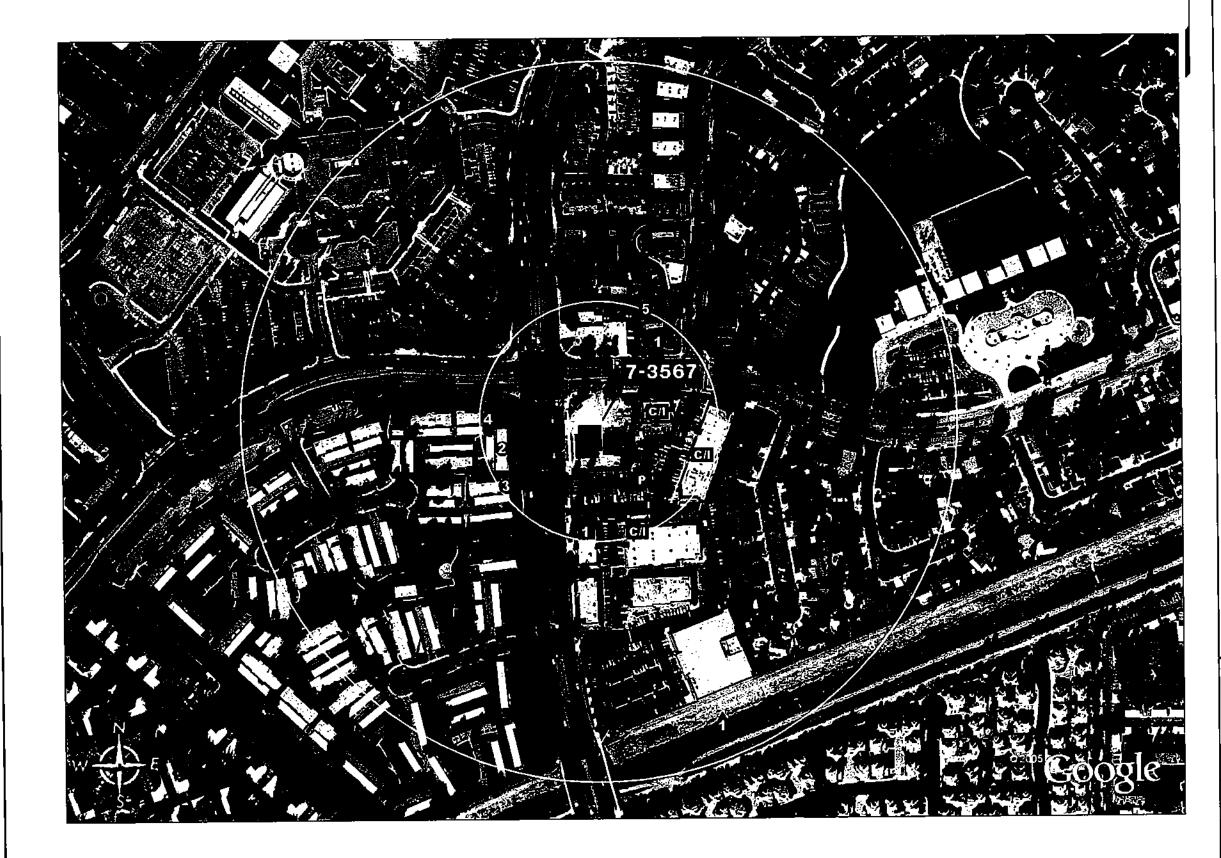












FN 2431_SP 06 SRS AERIAL

<u>LEGEND</u>

Commericial / Industrial C/I

VAC Vacant Lot

Ρ Parking Lot

0 Additional Residential

WELLS

There are no public or private wells within a 300m radius. See the Regional Area Map.

SURFACE WATER BODIES

Arroyo Mocho Canal

RESIDENCES

- **1** 4321/4337/4353 Las Positas Blvd., 4499 Fairlands Drive
- **2** 4401/4407/4411/4419/4425 Seminole Way

4405/4413/4421/4429/4437 Comanche Way 0

- 4429/4431/4433/4435 Seminole Way 0
- **G** 4469/4477/4481/4487 Fairlands Drive

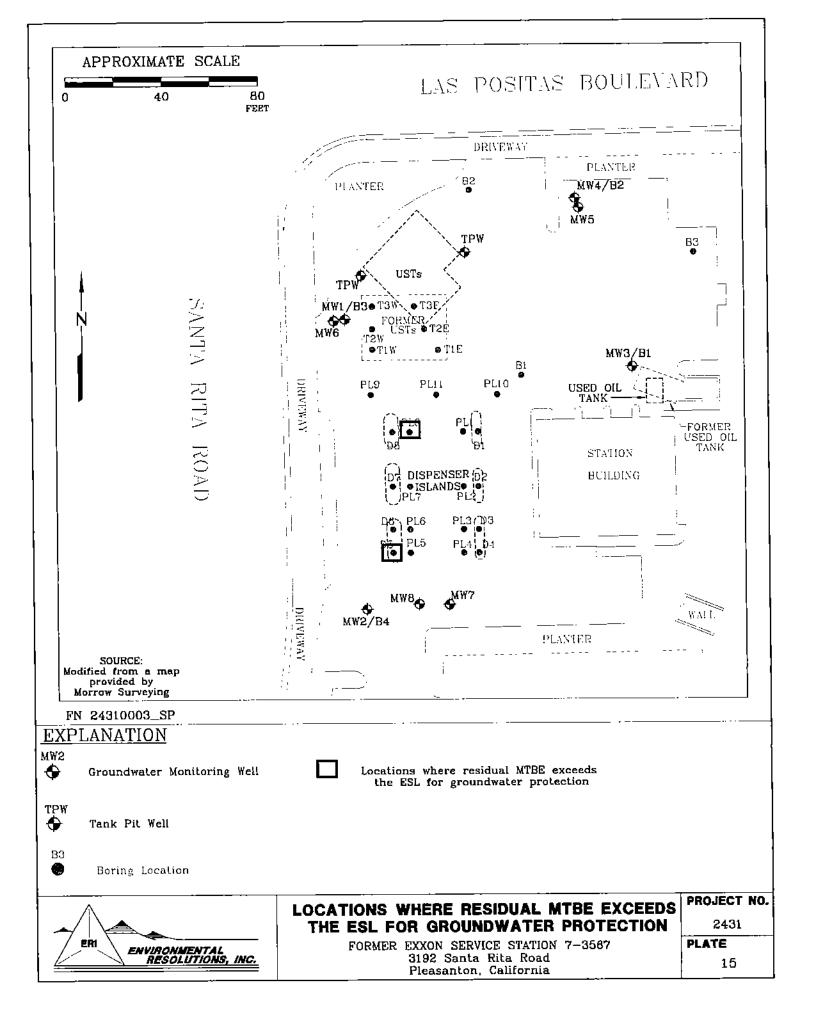
PUBLIC USE AREAS

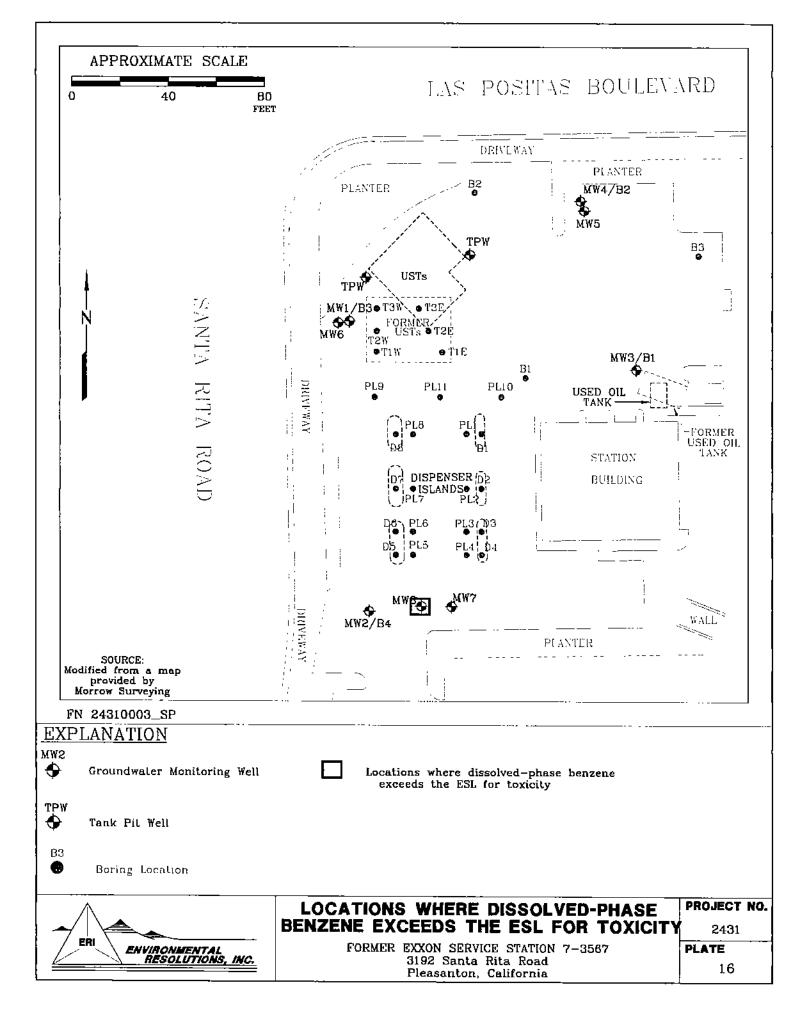
1 Pacific Dental Care

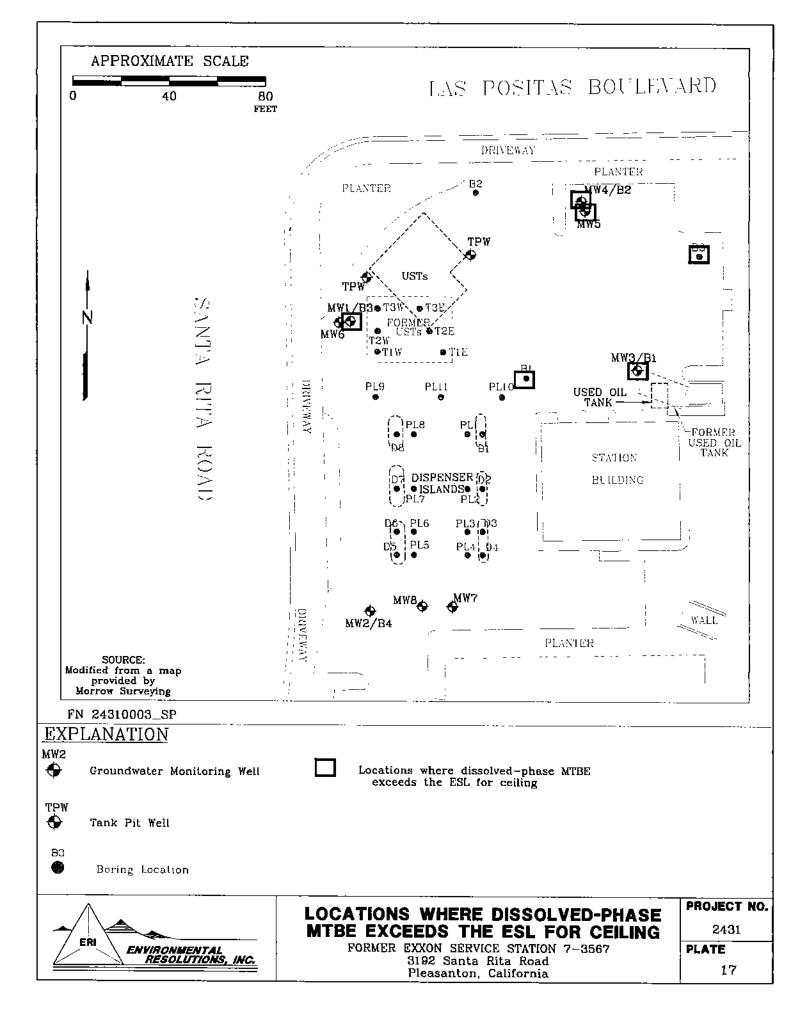
100 Meter and 300 Meter Radius

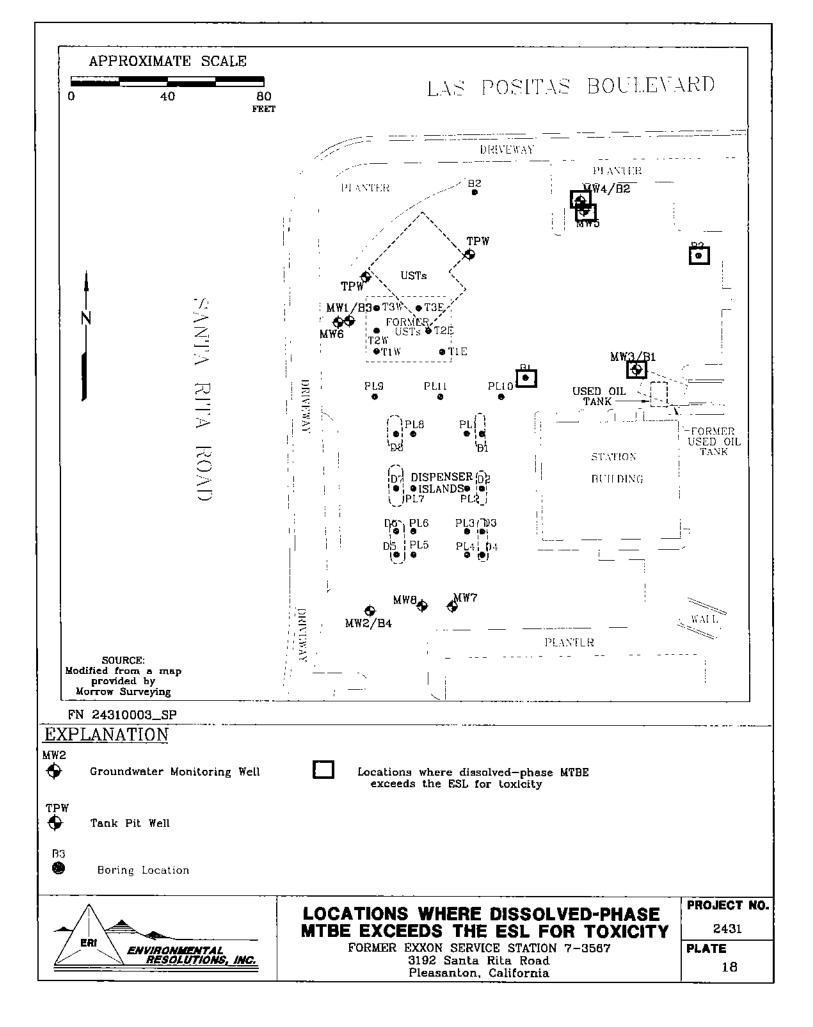
APPROXIMATE SCALE

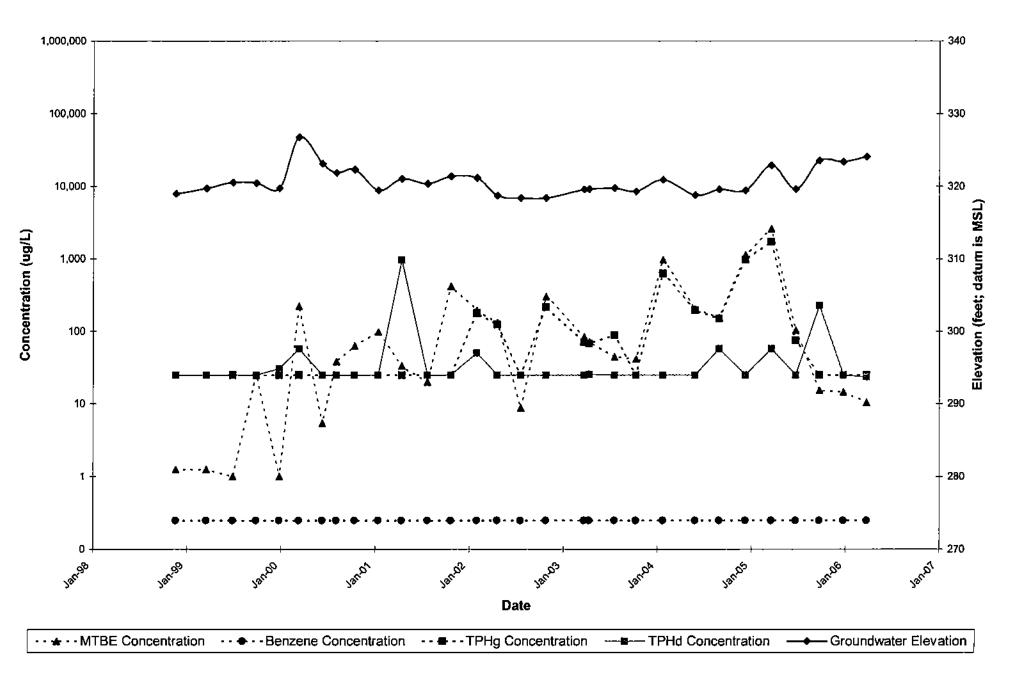
80

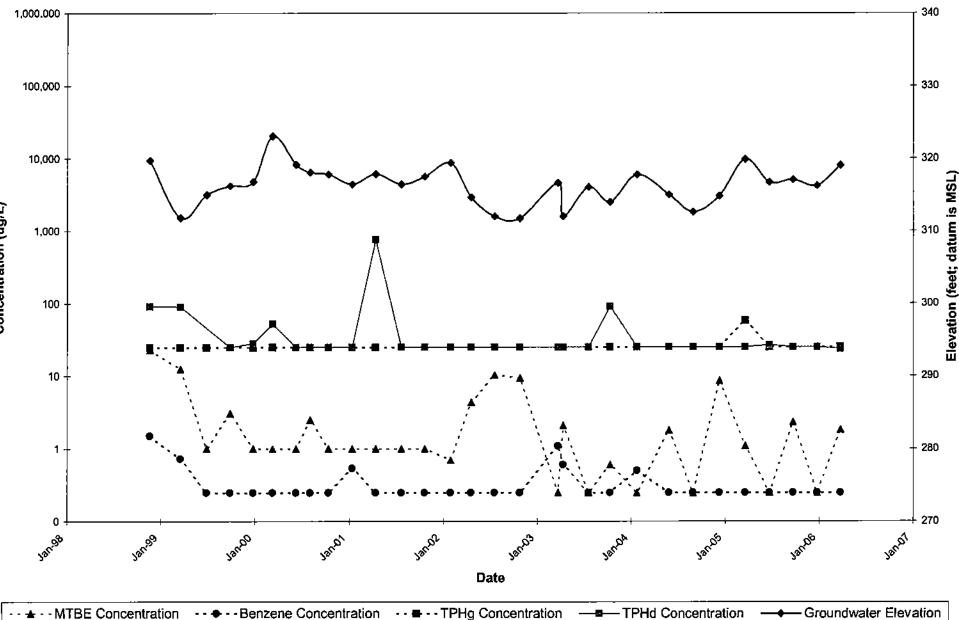



160 METERS

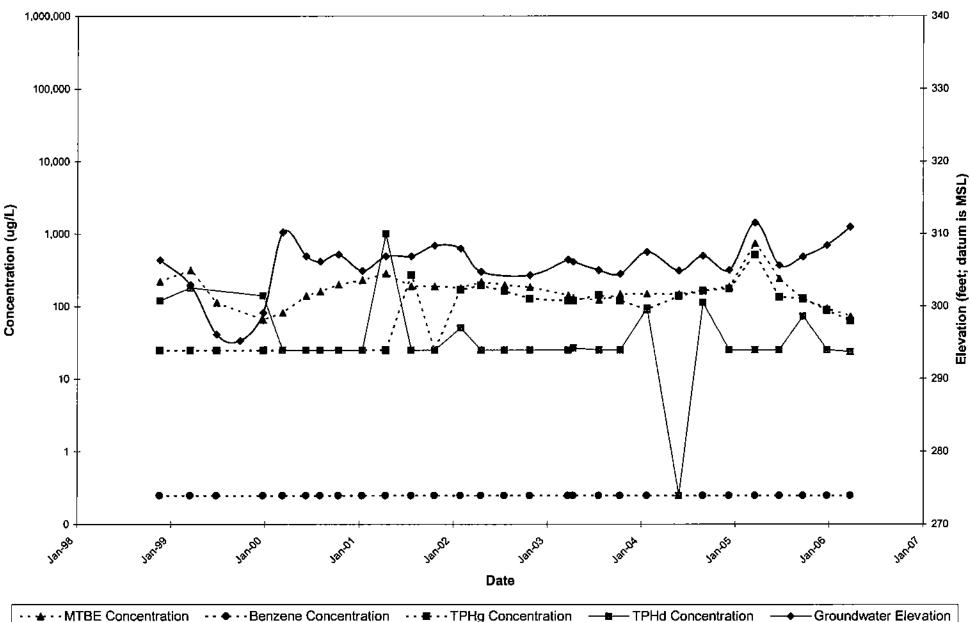

LOCAL AREA MAP


FORMER EXXON SERVICE STATION 7-3567 3192 Santa Rita Road Pleasanton, California

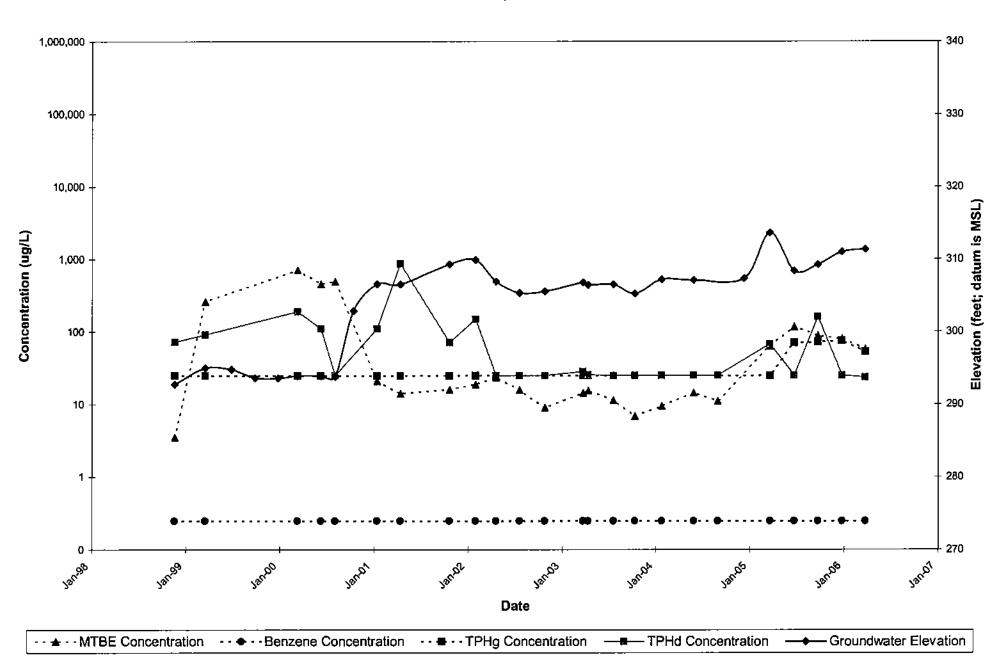




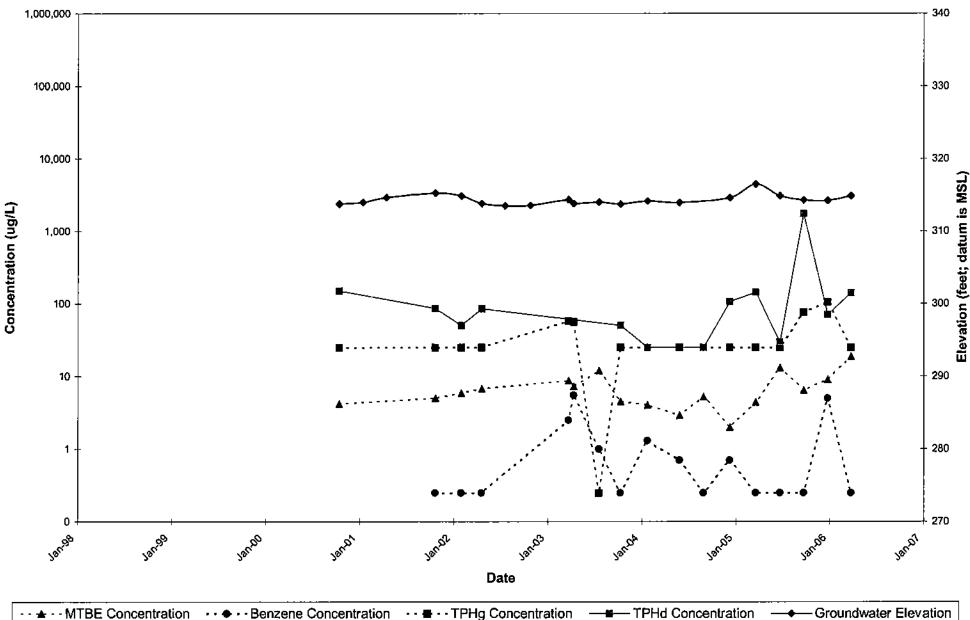
GRAPH 1 Well MW1 - Groundwater Elevation and TPHd, TPHg, MTBE, and Benzene Concentrations vs. Time Former Exxon Service Station 7-3567 Pleasanton, California

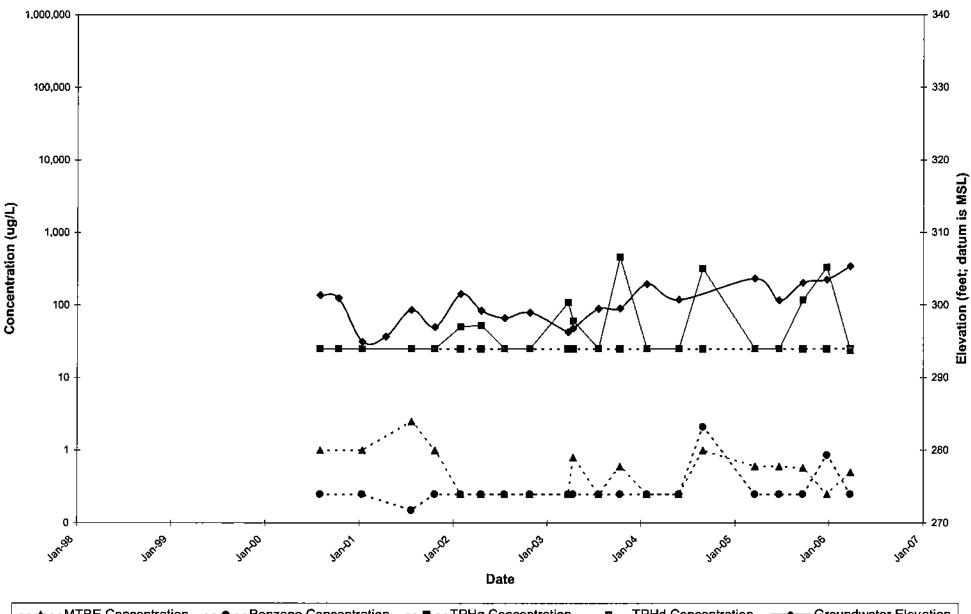


GRAPH 2 Well MW2 - Groundwater Elevation and TPHd, TPHg, MTBE, and Benzene Concentrations vs. Time Former Exxon Service Station 7-3567 Pleasanton, California

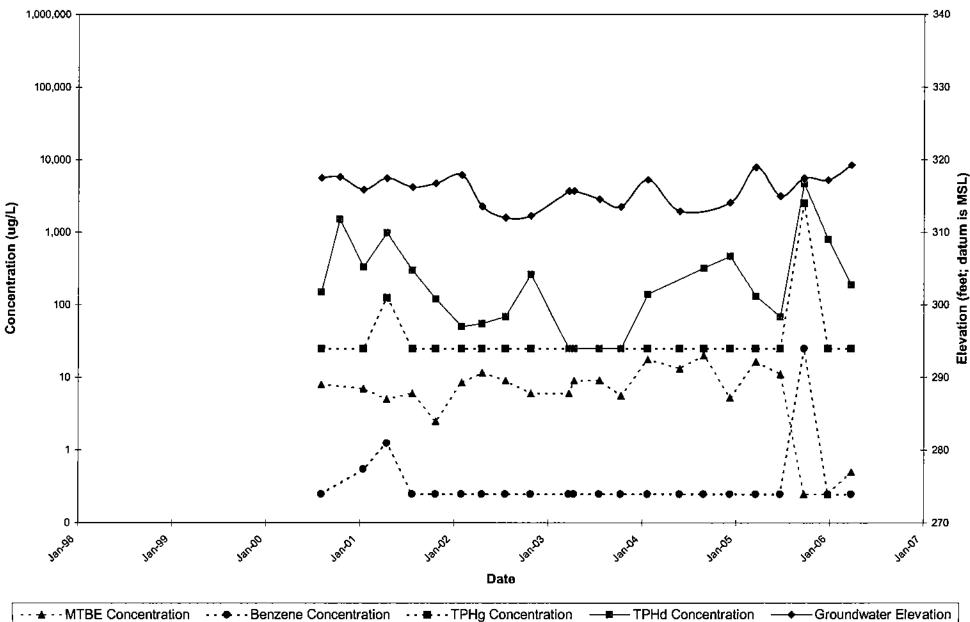


Concentration (ug/L)

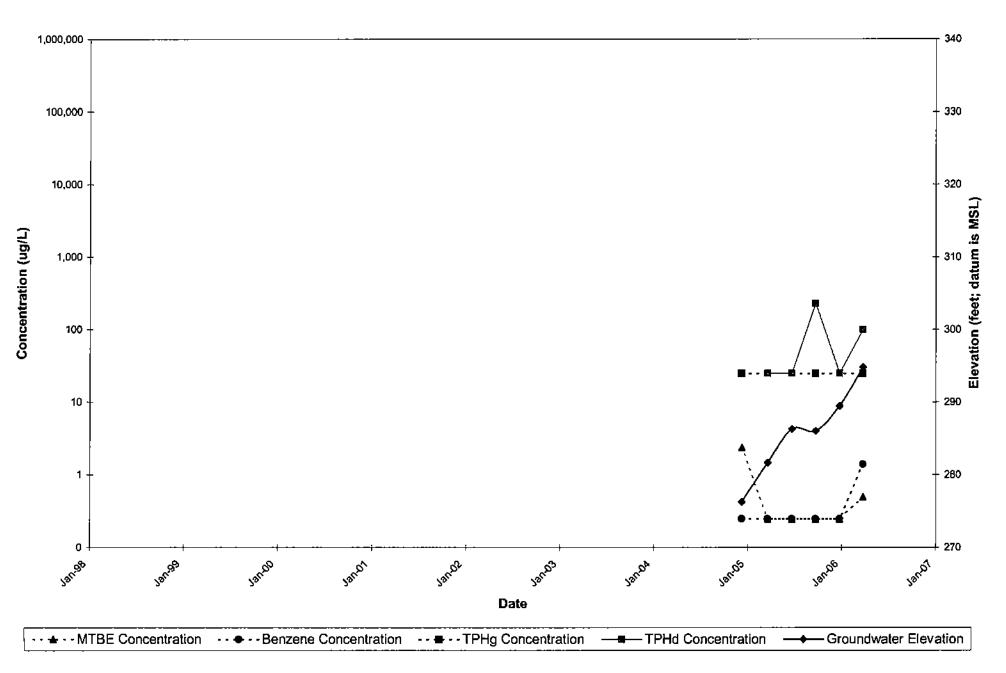

GRAPH 3 Well MW3 - Groundwater Elevation and TPHd, TPHg, MTBE, and Benzene Concentrations vs. Time Former Exxon Service Station 7-3567 Pleasanton, California


GRAPH 4 Well MW4 - Groundwater Elevation and TPHd, TPHg, MTBE, and Benzene Concentrations vs. Time Former Exxon Service Station 7-3567 Pleasanton, California

GRAPH 5 Well MW5 - Groundwater Elevation and TPHd, TPHg, MTBE, and Benzene Concentrations vs. Time Former Exxon Service Station 7-3567 Pleasanton, California



GRAPH 6 Well MW6 - Groundwater Elevation and TPHd, TPHg, MTBE, and Benzene Concentrations vs. Time Former Exxon Service Station 7-3567 Pleasanton, California



-- -- MTBE Concentration -- -- Benzene Concentration -- -- TPHg Concentration --- TPHd Concentration --- Groundwater Elevation

GRAPH 7 Well MW7 - Groundwater Elevation and TPHd, TPHg, MTBE, and Benzene Concentrations vs. Time Former Exxon Service Station 7-3567 Pleasanton, California

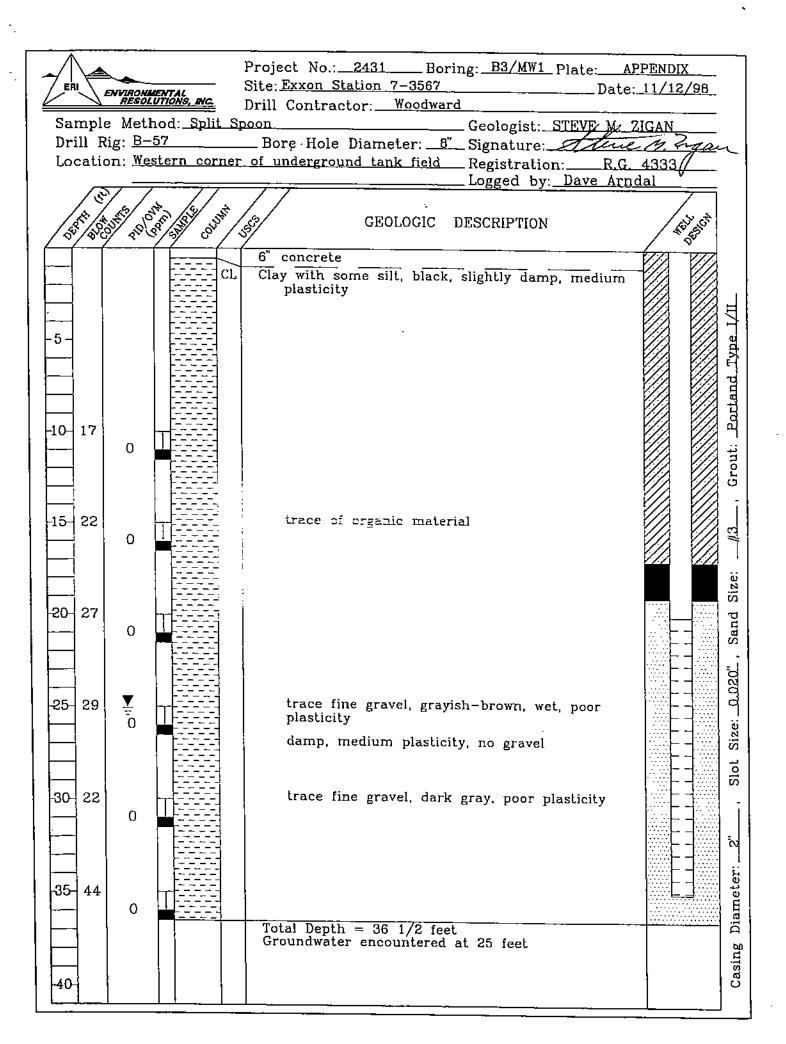
GRAPH 8 Well MW8 - Groundwater Elevation and TPHd, TPHg, MTBE, and Benzene Concentrations vs. Time Former Exxon Service Station 7-3567 Pleasanton, California

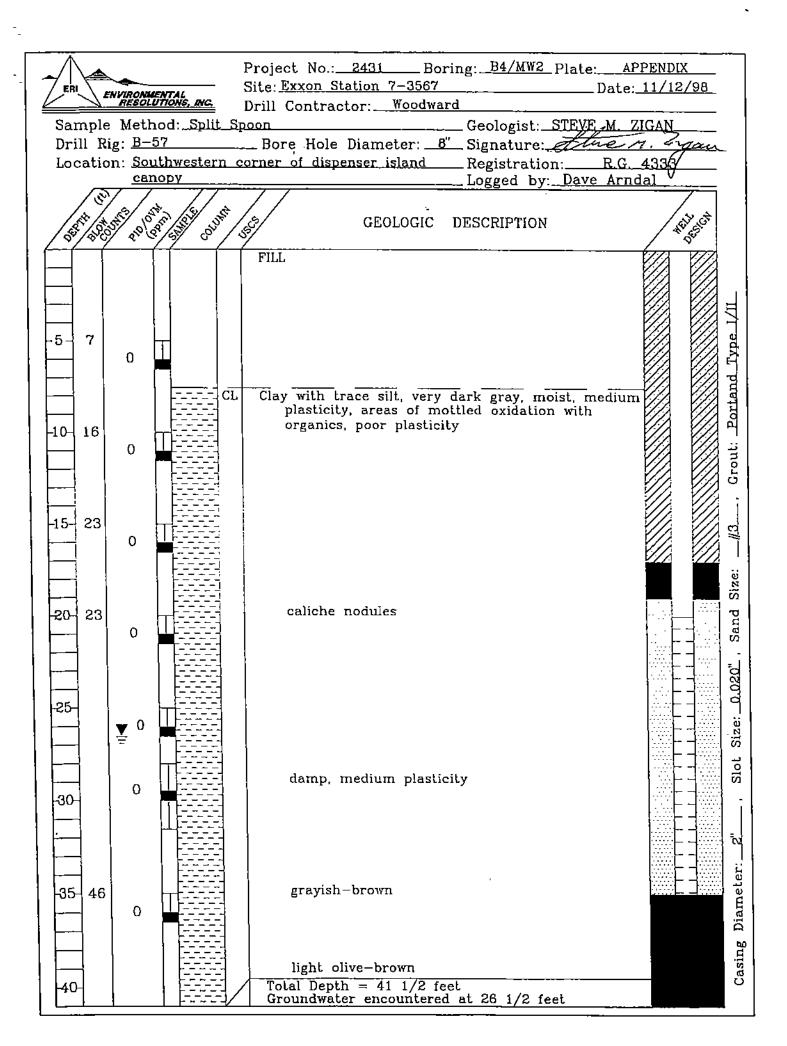
ATTACHMENT A

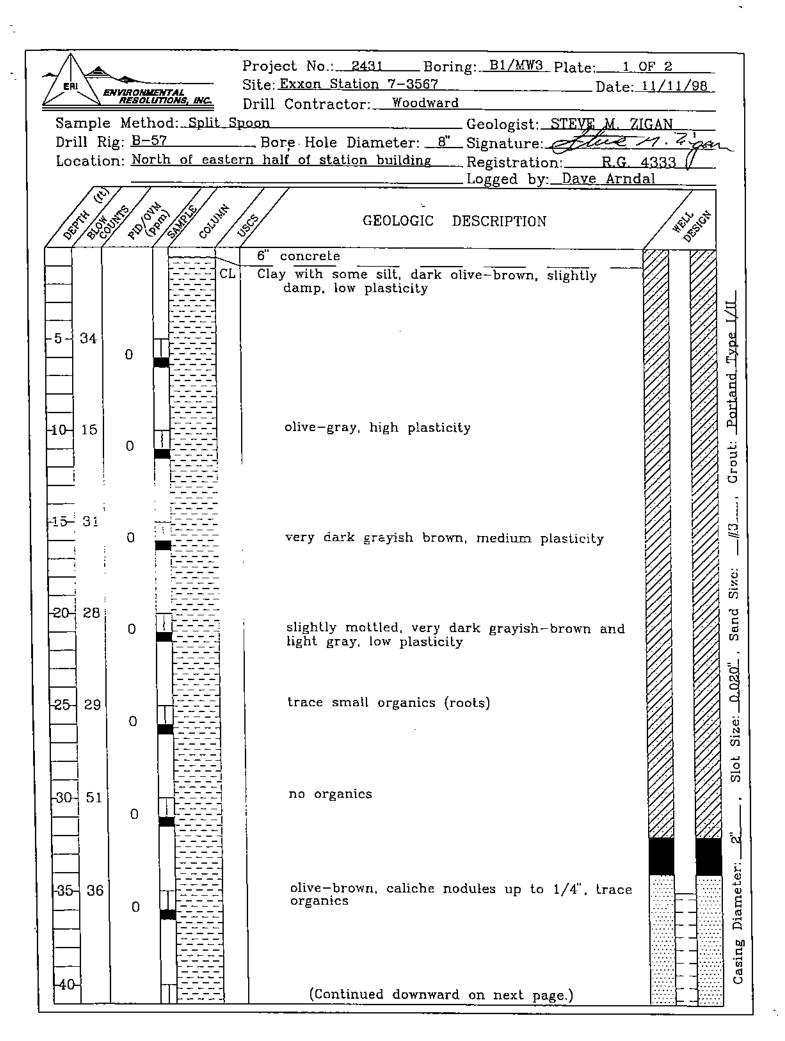
UNITED SOIL CLASSIFICATION SYSTEM, SYMBOL KEY, AND BORING LOGS

UNIFIED SOIL CLASSIFICATION SYSTEM

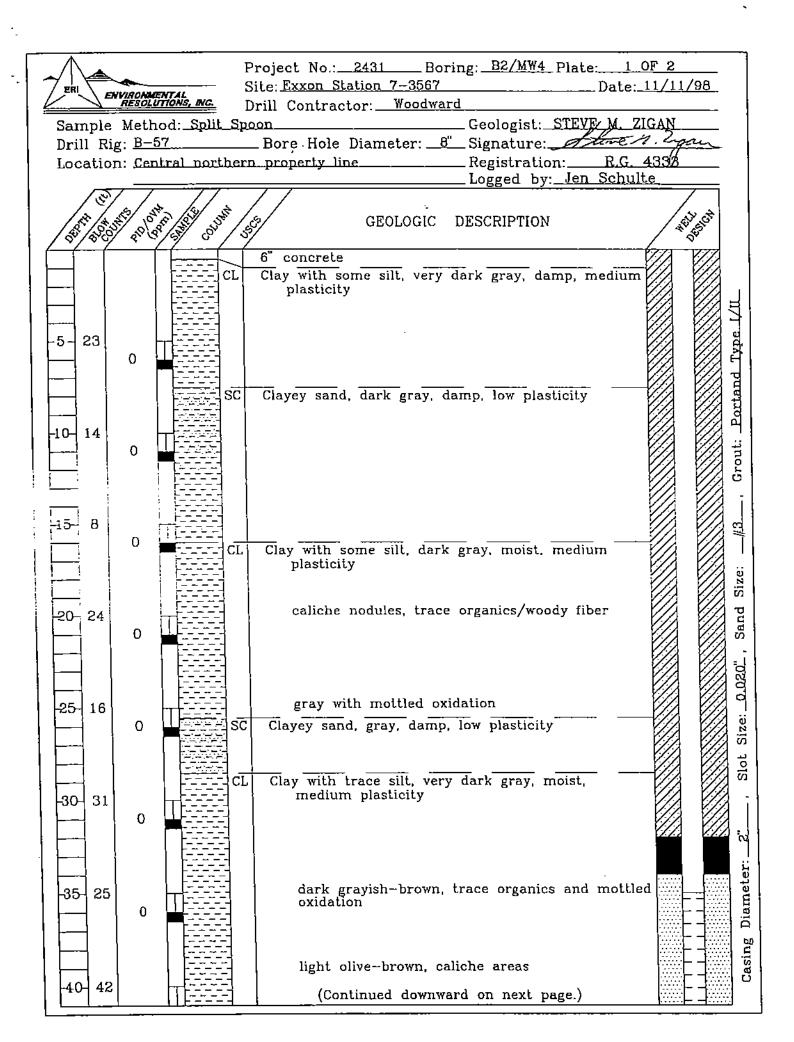
MAJOR I	IVISIONS	LTR	DESCRIPTION	MAJOR DIVISIONS LTR DESCRIPTION		DESCRIPTION	
COARSE GRAINED SOILS SOILS SAND SANDY SOILS		GW Well-graded gravels or gravel sand mixtures, little or no fines			МГ	Inorganic silts and very fine- grained sands, rock flour, silty	
		GP	Poorly-graded gravels or gravel sand mixture, little or no fines		SILTS AND CLAYS LL<50		or clayey fine sands or clayey silts with slight plasticity
	GRAVELLY SOILS	GM	Silty gravels, gravel—sand—clay mixtures			CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
	GC	Clayey gravels, gravel—sand—clay mixtures	FINE		OL	Organic silts and organic silt- clays of low plasticity	
		SW	Well-graded sands or gravely sands, little or no fines	GRAINED SOILS	SILTS AND CLAYS	мн	Inorganic silts, micaceous or diatomaceous fine-grained sandy or silty soils, elastic silts
	AND	SP	Poorly-graded sands or gravelly sands, little or no fines			СН	Inorganic clays of high plast- icity, fat clays
	SM	Silty sands, sand-silt mixtures		LL>50	ОН	Organic clays of medium to high plasticity	
		SC	Clayey sands, sand-clay mixtures	HIGHLY ORGANIC SOILS		Pt	Peat and other highly organic soils

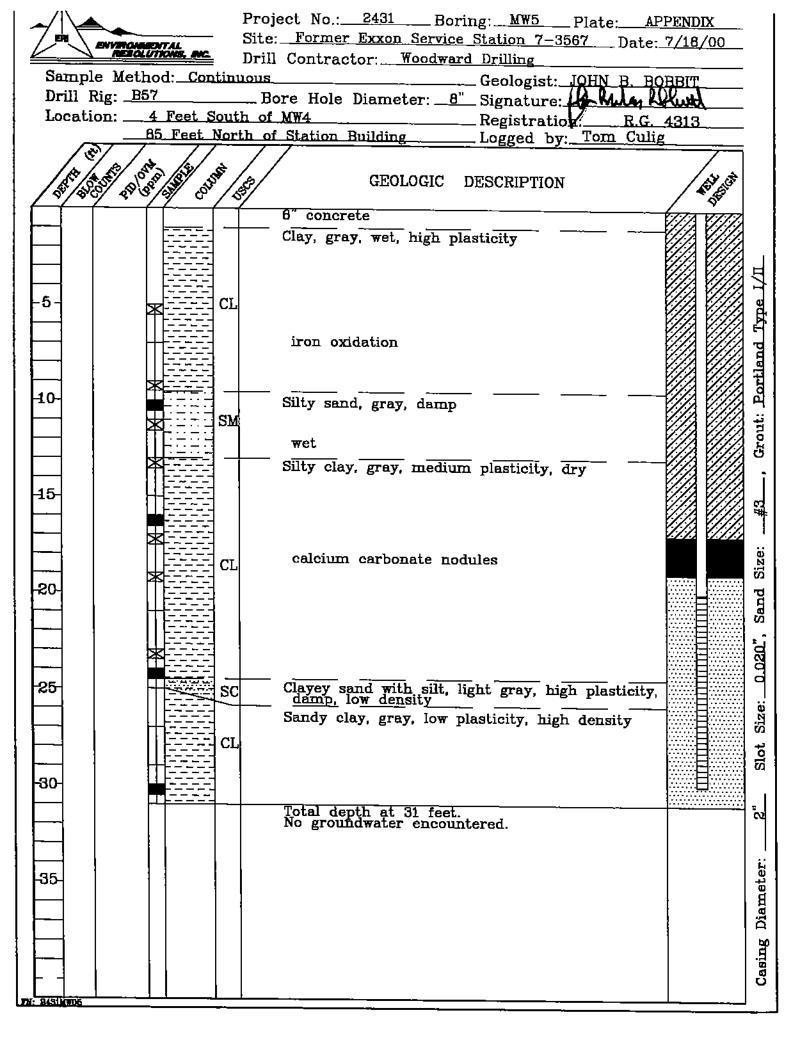


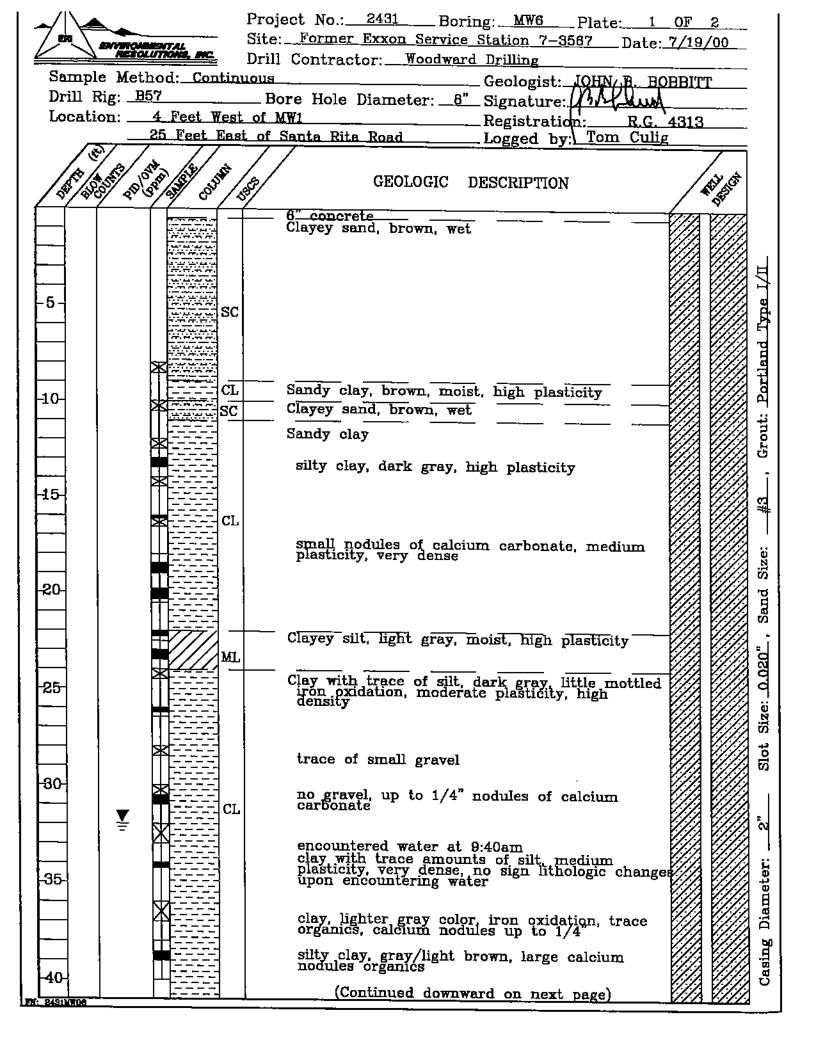

DEPTH THROUGH WHICH SAMPLER IS DRIVEN · ·

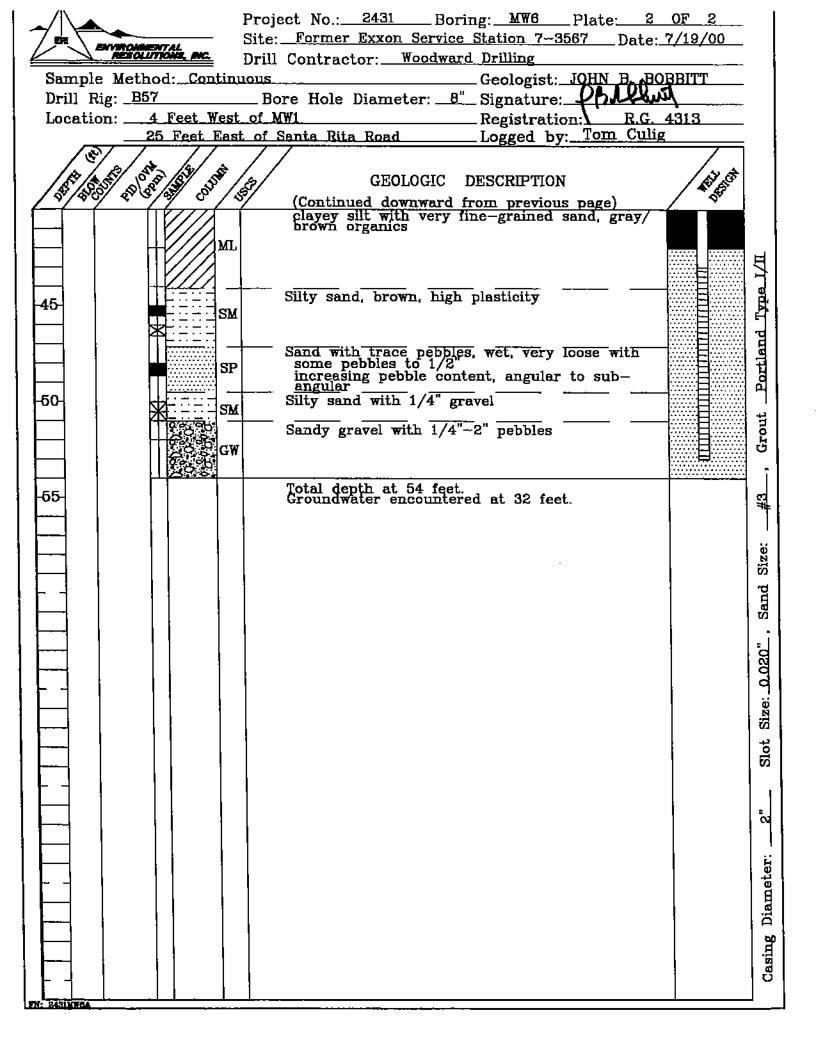

SAND PACK

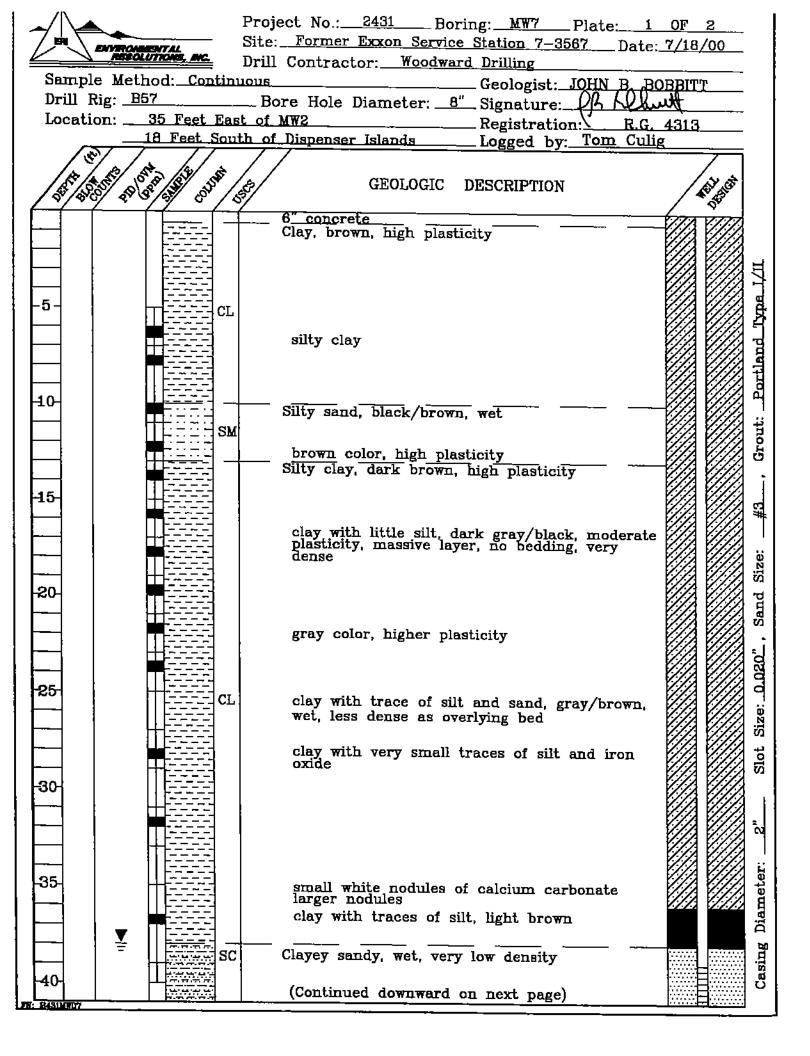
WELL DESIGN


T	RELATIVELY UNDISTURBED SAMPLE			BENTONITE ANNULAF	R SEAL
Ĭ	MISSED SAMPLE			NEAT CEMENT ANNU	LAR SEAL
$\overline{\underline{\nabla}}$	GROUNDWATER LEVEL OBSERVED FROM FIRST WET SOIL SAMPLE IN BORING			BLANK PVC	
▼	STATIC GROUNDWATER LEVE	L		MACHINE-SLOTTED PVC	
ονм	ORGANIC VAPOR METER REA IN PARTS PER MILLION	DING	S-10	SAMPLE LOCATION	
			NR	NOT RECORDED	
PID	PHOTO-IONIZATION DETECTOR READING IN PARTS PER MILLION		NA	NOT ANALYZED	
A 140 TO D	/FT. REPRESENTS THE NUMBER OF BLC D-POUND HAMMER FALLING 30 INCHES RIVE THE SAMPLER THROUGH THE LAST ICHES OF AN 18-INCH OR 24-INCH PER		REPRESEN ACTUAL B REPRESEN	INES SEPARATING UNITS ON T APPROXIMATE BOUNDARIES OUNDARIES MAY BE GRADUAL T SUBSURFACE CONDITIONS A OCATION AT THE TIME OF DR	ONLY. LOGS AT THE
-				SIFICATION SYSTEM	ATTACHMENT
ERI ENVIRONMENTAL RESOLUTIONS, INC.		FORMER EXXON SERVICE STATION 7-3567			
31				Rita Road California	A

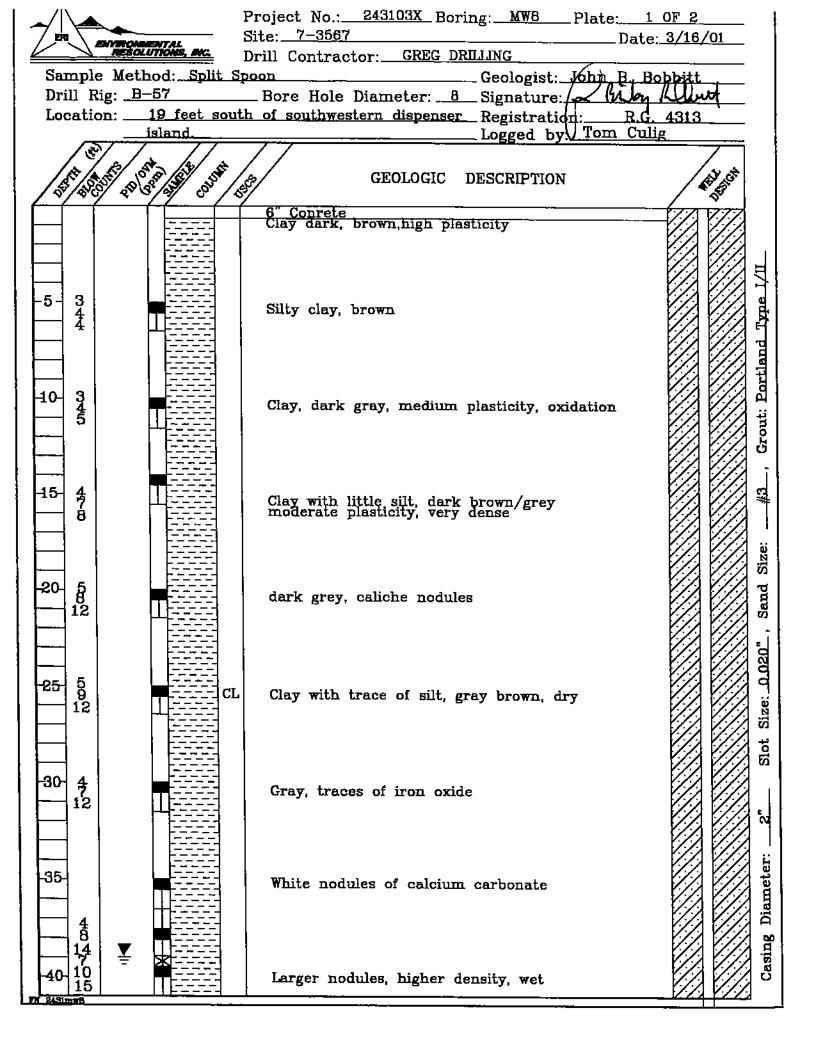


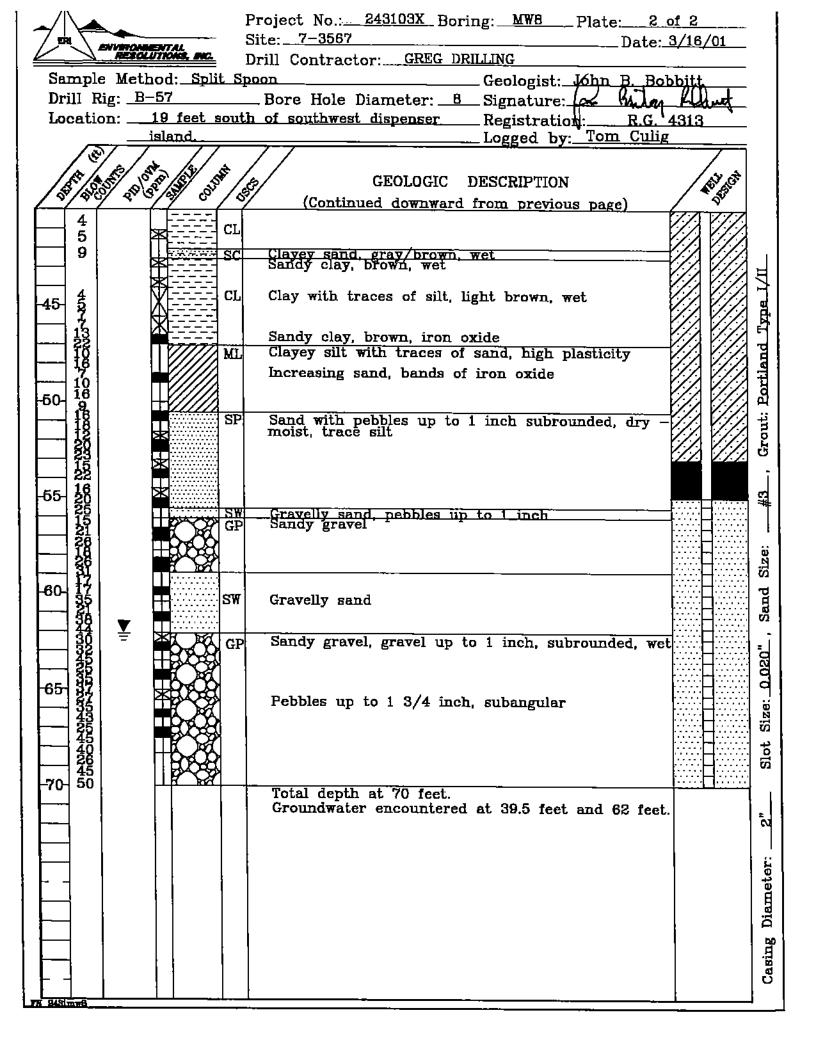


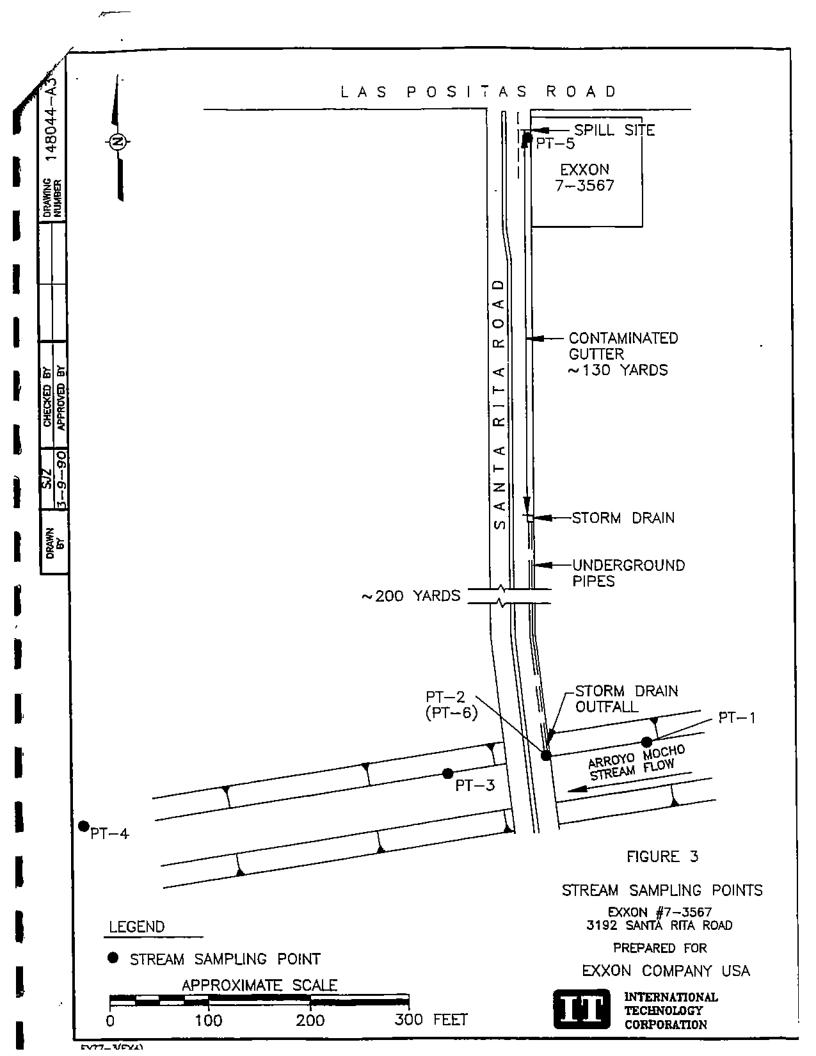

Project No.: _2431 Boring: B1/MW3 Plate: 2 OF 2	
ERI ENVIRONMENTAL Site: Exxon Station 7-3567 Date: 11/11/98	
Sample Method: <u>Split Spoon</u> Drill Contractor: <u>Woodward</u> Geologist: <u>STEVE, M. ZIGAN</u>	
Drill Rig: <u>B-57</u> Bore Hole Diameter: <u>8"</u> Signature: <u>Alune y hagan</u>	
Location: North of eastern half of station building Registration: R.G. 4333	
Logged by: <u>Dave Arndal</u>	
State of the second sec	
∇ up to 1/4" trace organics	
SC Clayey sand, fine-grained, dark yellowish-brown, wet	ا ئ
	1
	Туре
dark yellowish-brown, wet	
	Partand
	Ja L
	י
Total Depth = 51 1/2 feet	Groul:
Groundwater encountered at 41 1/2 feet	-
-55-	<i>"</i>
	1 -
	Siza:
-60-	Sand
	-
	<u>"020.0</u>
-65-	
	Size:
	Slot
-70-	i i
-75-	Diameter:
	ат
	Casing
-80-	C B
]



	Project No.: 2431 Boring: B2/MW4 Plate: 20	
	Site: Exxon Station 7-3567 Date: 1	<u>1/11/98</u>
	Orill Contractor: <u>Woodward</u>	
Sample Method: <u>Split_Sp</u>	oonGeologist: <u>STEVE_M_</u> ZI	GAN
Drill Rig: <u>B–57</u>	_ Bore Hole Diameter: Signature:	1. Ergan
Location: <u>Central norther</u>		
	Logged by: Jen Schult	<u>e</u>
ST S	යු/ GEOLOGIC DESCRIPTION	WE DESCRIPTION OF THE PROPERTY
		/ [*] 5 ⁹⁷
40 42 0 - CL	Clay with trace silt, light olive-brown, moist,	
	medium plasticity	
	Clayey sand, fine-grained, light olive-brown, moist	
		Type 1/1
45 28	with grayish-brown areas	
· 0 { <u>→ 22 22</u>		
SW SW	Gravelly sand, gravel up to 1", fine-grained, light	
	olive-brown, wet	
-50-74/ ¥ 10" 0		
	Total Depth = 51 1/2 feet	Giout:
	Groundwater encountered at 50 feet	
		-
-55-		13
	i	
		Sand Alzo:
-60-	:	× _
		ž.
		0.020"
-65-		b
		- 8
		Size:
		SloL
-70-		-
		er:
-75-		let
		Diameter:
┦╞╾┥ │		
		Casing
		asi
-80-		0

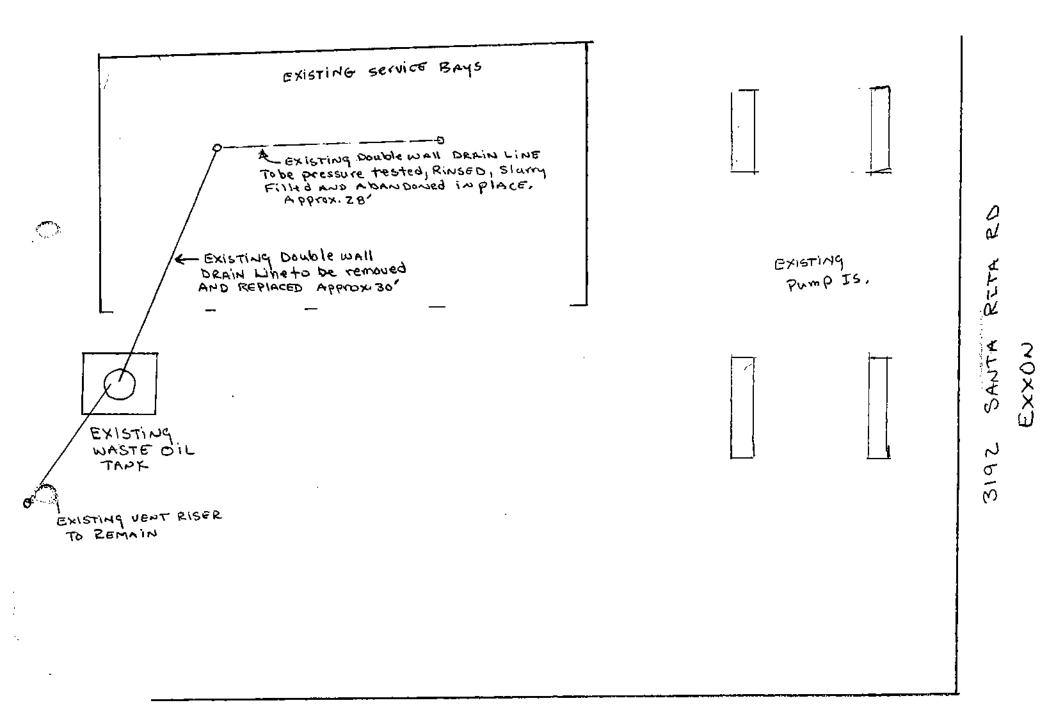





	Project No.: 2431 Boring: MW7 Plate: 2	<u>of</u> 2
EN ENVETONEENTAL	Site: <u>Former Exxon Service Station 7–3567</u> Date:	7/18/00
	Drill Contractor: <u>Woodward Drilling</u>	
Drill Rig. B57	Bore Hole Diameter: <u>8"</u> Signature: 10 Kaw	DBBITT
Location: <u>35 Feet East</u>		4313
	of Dispenser Islands Logged by: Tom Culig	<u>4010</u>
Strate State and State State State State	GEOLOGIC DESCRIPTION	A SUP LET
	(Continued downward from previous page)	- 5 ²
	higher density	
	clayey sand, dark brown, wet, very loose	
45 CL	Clay with traces of sand, light brown	
	Clayey sand, dark brown, wet, very loose	
	Sandy clay, light brown, very dense, moderate	
	Clayey silt with traces of sand, bands of iron oxide, high plasticity	
-50-		Portland
	Total depth at 50 feet. Groundwater encountered at 38 feet.	· · · · · · · · ·
	Groundwater encountered at 38 feet.	Grout:
		្រុំ
]
		6
		Size:
		<u>ד</u>
		Ser
		Size: _0.020 [*]
		a
		Siz
		Slot
		<u></u>
		r N
		"
		Diameter:
		Casing
		C PS
76: 2431M77A		

ATTACHMENT B

ANALYTICAL RESULTS AND SAMPLE LOCATION MAP FOR 1990 SURFACE SPILL


TABLE 1SURFACE WATER SAMPLE ANALYSISEXXON STATION #7-356713192 SANTA RITA ROAD; PLEASANTON, CALIFORNIARESULTS IN PARTS PER BILLION (PPB)

Date	Location	TPH	_		Ethyl-	
pare	LOCALION	as Gas	Benzene	Toluene	<u>Benzene</u>	<u>Xylene</u>
03/07,	/90 PT-1	. BDL	BDL	BDL.	BDL,	BDL
03/07/	/90 PT-2	94000	9 50	7100	2100	13000
03/07/	/90 PT-3	1200	BDL	1.5	2.8	1.6
03/07/	'90 PT-5	2400	49	270	80	390
03/07/	'90 PT-6	10000	23	140	88	480
03/08/	'90 PT-1	BDL	BDL	BDL	BDL	BDL
03/08/	90 PT-2	1200	12	140	52	260
03/08/		BDL	BDL	0.7	0.9	5.8
03/08/		64	BDL	1.9	2.1	10
03/08/	'90 FB	BDL	BDL	BDL	BDL	BDL

BDL = Below Detection Limits PT-1 = 100 feet upstream from drainage outflow pipe PT-2 = Drainage pipe outflow PT-3 = 100 feet downstream from drainage outflow pipe PT-4 = 400 feet downstream from drainage outflow pipe PT-5 = gutter at southern property boundary PT-6 = Drainage pipe outflow following rinsing efforts

ATTACHMENT C

SCHEMATIC DRAWING OF 1995 WASTE OIL PIPING REPLACEMENT AND ABANDONMENT

ATTACHMENT D

ANALYTICAL RESULTS OF 2002 PRODUCT LINE SOIL SAMPLES COLLECTED BY HORIZON

Table 1 - Soil Analytical Data Valero Station No. 3827 3192 Santa Rita Road, Pleasanton, California

.

Sample	Location	Date	Sample	TPHd	TPHg	в	Ť	E	x	MTBE	TÐA	DIPE	ÉTBÉ	TAME
Number	on Figure 2	Sampled	Depth (bsg)	(ppm)	(ppm)	(ppm)	(ррлт)	(ppm)						
C.C. S.7 PL1	PL 1	08/09/02	7 feet	<1.0	<1,0	<0.0050	<0.0050	<0,0050	<0.0050	0.0059	<0,0050	<0.0050	<0.0050	<0.0050
S-5-D1	D1 57	08/09/02	5 feet	<1.0	<1.0	<0,0050	<0,0050	<0.0050	<0,0050	<0,0050	<0.0050	<0,0050	<0.0050	<0.0050
AS5 PL2	PL2	08/09/02	5 feet	<1,0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.014	<0,0050	<0.0050	<0.0050
54-D2	D2	08/09/02	4 feet	<1.0	<1.0	<0.0050	<0,0050	<0,0050	<0.0050	<0.0050	<0,0050	<0.0050	<0.0050	<0.0050
S-3'-D3	D3 -	08/09/02	3 feet	<1.0	па	<0,0050	<0,0050	<0.0050	<0.0050	па	ла	na	na	na
S-4-PL3	PL-3	08/09/02	4 feet	<1.0	<1.0	<0,0050	<0.0050	<0.0050	<0,0050	0.015	<0.0050	<0,0050	<0,0050	<0.0050
\$ 4 .D4	D4	08/09/02	4 feet	па	<1.0	<0.0050	<0.0050	<0,0050	<0,0050	0.014	0,0050	<0.0050	<0.0050	<0.0050
S.4.PL4	5. PL 4	08/09/02	4 feet	na	<1.0	<0,0050	<0. 00 50	<0,0050	<0.0050	0.041	0,0068	<0.0050	<0.0050	<0,0050
54	PD57	08/09/02	4 feet	na	<1.0	<0,0050	<0,0050	<0.0050	<0,0050	0.035	0.019	<0.0050	<0,0050	<0.0050
S-5_D5	D-5	08/09/02	5 feet	па	<1.0	<0.0050	<0,0050	<0,0050	<0.0050	0, 12	0.040	<0.0050	<0.0050	<0.0050
S'4ºPL6	¢ĒL6-6-5	08/09/02	4 feet	1.2	<1.0	<0.0050	<0.0050	<0,0050	<0.0050	0,024	0.0081	<0.0050	<0.0050	<0.0050
S-4-D6	D.6	08/09/02	4 feel	<1.0	ла	<0,0050	<0,0050	<0.0050	<0,0050	na	na	па	па	' na
S45 PL7	PL7	08/09/02	4,5 feet	19	<1.0	<0.0050	<0,0050	<0.0050	<0.0050	0.011	0.013	<0,0050	<0,0050	<0.0050
54-07	с. на стали 1.5 D.7	08/09/02	4 feet	กอ	<1.0	<0,0050	<0.0050	<0.0050	<0.0050	0.019	<0,0050	<0,0050	<0.0050	<0.0050
S'5'-PLB	PL 8	08/09/02	5 feet	<1,0	<1.0	<0,0050	<0.0050	<0,0050	<0.0050	0.048	<0.0050	<0.0050	<0.0050	<0.0050
S-3'-D8	D 7	08/09/02	3 feet	па	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	0,19	0.063	<0,0050	<0.0050	<0.0050
S-6"-PL9	PL9	08/09/02	6 feet	<1.0	<1.0	<0.0050	<0.0050	<0,0050	<0.0050	<0.0050	<0,0050	<0.0050	<0.0050	<0,0050
S-6'-PL10	e PĽ 10	08/09/02	6 feet	<1.0	<1.0	<0,0050	<0,0050	<0.0050	<0.0050	<0.0050	<0.0050	<0,0050	<0.0050	<0.0050
S-7-PL-11	PL11	08/09/02	7 feet	<1.0	<1.0	<0.0050	<0.0050	<0,0050	<0,0050	0.0062	<0,0050	<0.0050	<0,0050	<0.0050
SP (ATBCD)	> Sõiji Piid*	08/23/02	Soit Pile	na	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	na	na	na	na	na

Notes:

-

TPHd = total petroleum hydrocarbons as diesel

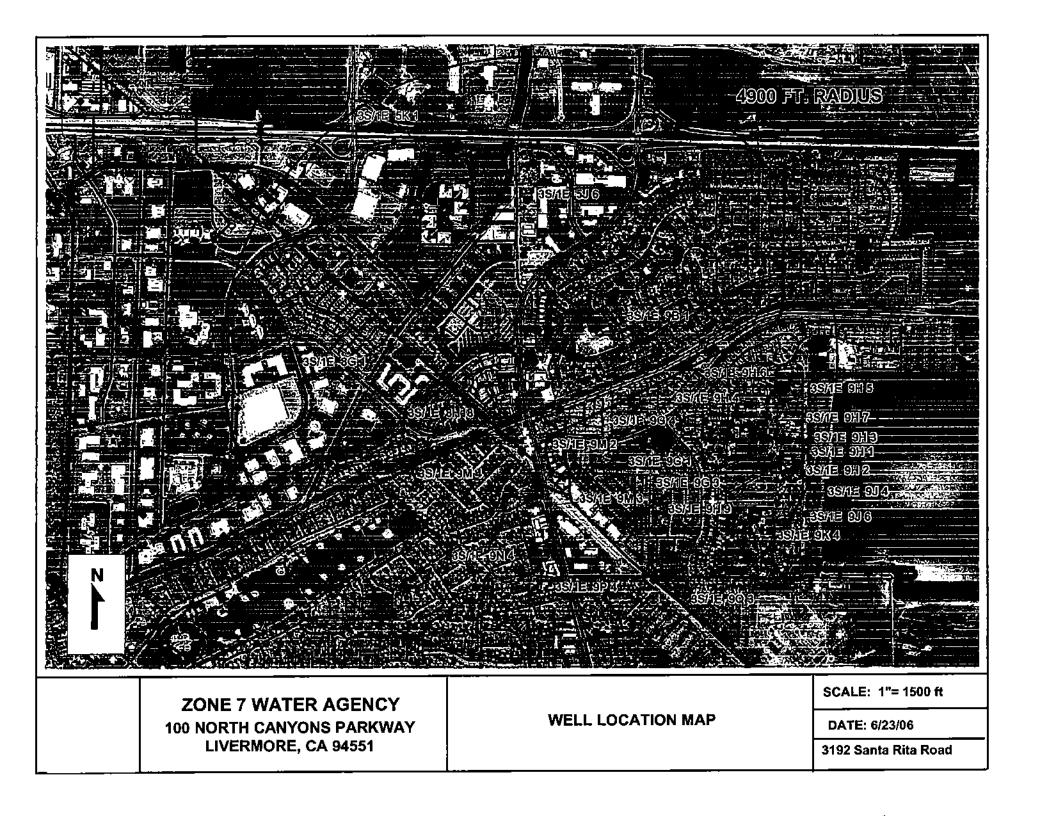
.

TPHg = total petroleum hydrocarbons as gasoline

B = benzene

T = toluene

E = ethylbenzene


X = xylenes

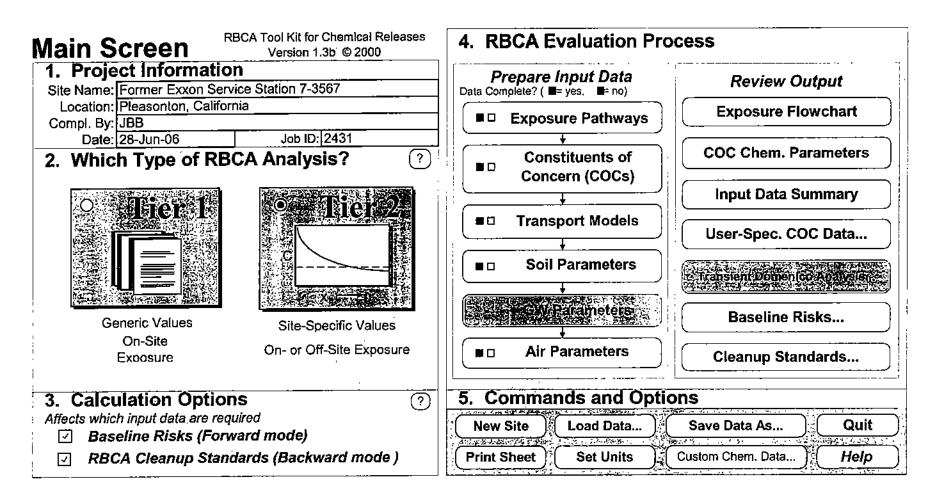
MTBE ≈ methyl lertlary butyl ether TBA ≈ lert butanof DIPE = dlisopropyl ether ETBE = ethyl tert butyl ether TAME = tert amyl methyl ether ppm = parts per million < = less than indicated detection level bsg = below surface grade

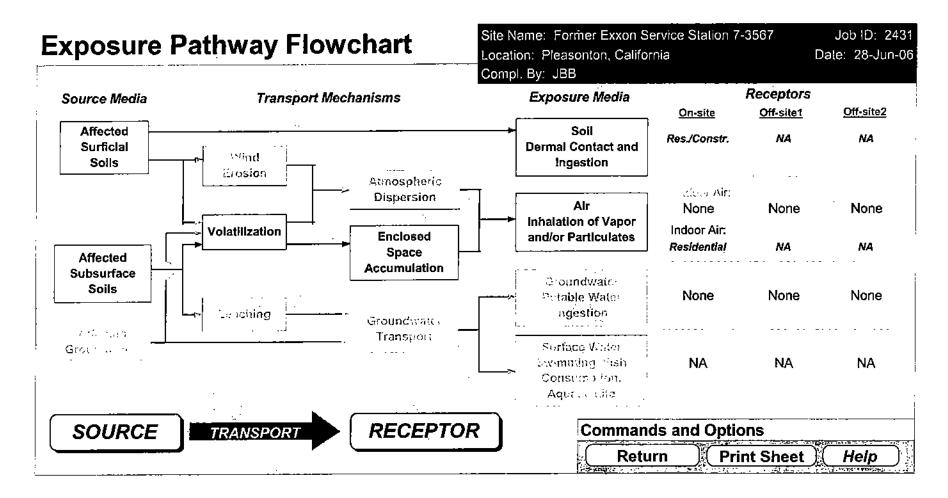
PL = fuel Pipe Line D = Dispenser

ATTACHMENT E

ZONE 7 WATER AGENCY WELL LOCATION MAP AND TABLE

WELL NO.		RP ADDRESS		OWNER	APN	<u>OTHER</u>	<u>CCE</u>		DATE SEA	L LOS	<u>o per</u>	<u>RFU PE</u>		DATE REMARK
3\$/1E 4L 1	42.0 2.0 mon	0.00 6750 SANTA RITA RD	PLEASANTON	SHELL OIL	998 1101 037 00			2080219.6 GREGG DRILLING & TEST	10/8/2002	25	0	27.0	42.0	42.5 0000000
35/1E4L2 35/1E4L3	42.0 2.0 mon 44.0 2.0 mon	0.00 6750 SANTA RITA RD 0.00 6750 SANTA RITA RD	PLEASANTON PLEASANTON	SHELL OIL SHELL OIL	996 1101 037 00 996 1101 037 00		1603507,4	2080217.9 GREGG ORILLING & TEST 439712.8 GREGG ORILLING & TEST	10/8/2002	25	0	27,0	42.0	42.5 00000000
35/1E 4L 4	44.0 2.0 mon	0.00 8750 SANTA RITA RO	PLEASANTON	SHELL OIL	996 1101 037 00	MW-4		2080118.9 GREGG ORILLING & TEST	10/8/2002 10/8/2002	27 27	0	29,0 29.0	44.0 44.0	44.5 00000000 44.5 00000000
35/1E 4L 5	32.0 2.0 mon	0.00 6750 SANTA RITA RD	PLEASANTON	SHELL OIL PRODUCTS	946 1101 037 00	MW-5	1603459.6		1/26/2005	24	1	27.0	32.0	35.0 00000000
3S/1E 4L 6	0.0 0.0 mon	0.00 6700 SANTA RITA RD	PLEASANTON	SHELL OIL		MW-6	1603412.7	439636.5 DELTA ENVIRONMENTAL	00000000	0	0	0.0	0.0	0.0 00000000
3S/1E 4L7	0.0 0.0 mon	0.00 6700 SANTA RITA RO	PLEASANTON	SHELL OIL		MW-7	1603506.8	439606,8 DELTA ENVIRONMENTAL	0000000	0	0	0.0	0.0	0.0 00000000
3S/1E 4Q 1	72.9 2.5 mon	342.20		Z7-MON				2078529,1 USGS HEW	10/25/1976	0	1	62.9	67,9	0.0 00000000 BURIED UNDER SIDEWLK
35/1E 4Q 2	90.0 2.5 mon	342.80 FC CHANNEL @ GULFSTREAM		Z7-MON				2078605,0 USGS HEW	00000000	0	1	80,Q	85.0	0.0 00000000
35/1E 5F 1 35/1E 5F 2	35.5 2.5 mon 150.0 4.0 mon	341.10 AT COUNTY STORES I580 FRONTAGE RD 341.60 SANTA RITA REHAB.		Z7-MON Z7-MON				2081084,3 USGS HEW	00000000	0	1	25.5 143.0	30,5 147,0	0.0 00000000
3S/1E 5H 2	35.0 4.0 mon	0.00 TASSAJARA ROAD & 1580	DUBLIN	ALAMEDA COUNTY		SR-9		2081561,0 VERSAR, INC.	6/10/1994	Ö	'n	20.0	35.0	0.0 00000000 35.0 6/22/1995 DTW 27.5
3S/1E 5H 3	35,0 4.0 mon	0.00 HACIENDA DRIVE	DUBLIN			OG1		2081289.0 ESE	11/4/1993	ŏ	i	15.0	35.0	35.0 5/5/1995
3S/1E 5H 4	35.0 4,0 mon	0.00 HACIENDA DRIVE	DUBLIN			OG2		2081289.5 ESE	11/4/1993	Ō	1	15.0	35.0	35.0 5/5/1995
3S/1E 5H 5	35.0 4.0 mon	0.00 HACIENDA DRIVE	DUBLIN			OG3	6161583,1	2081294.6 ESE	11/5/1993	Q	1	15.0	35.0	35.0 5/5/1995
3S/1E 5H 6	35.0 4.0 mon	0.00 HACIENDA DRIVE	DUBLIN			OG4		2081289.8 ESE	11/5/1993	Q	1	15.0	35.0	35.0 5/5/1 995
3\$/1E 5J 1	205.0 10.0 eup	342.00 OLD SANTA RITA RD	PLEASANTON					2080372.3 ACME	00000000	0	0	0.0	0.0	0.0 2/15/1963
3\$/1E 5J 2	100,0 2,5 mon 160,0 10,0 dom	345.00 3980 N.Santa Rita Rd 345.00 OLD SANTA RITA RD	PLEASANTON PLEASANTON	27-MON MASTER POOLS				2080182.0 USGS HEW 2080157.7	00000000	0	1	90.0		100.0 6/1/1987
3S/1E 5J 3 3S/1E 5J 4	0.0 8.0 sup	345.00 OLD SANTA RITA RD	PLEASANTON	AUTO JUNK YARD				2080(97.7	00000000	0	ů l	0.0 0.0	0.0 0.0	0.0 8/20/1985 0.0 10/1/1985
38/1E 5J 5	0.0 0.0 sup	348.00 3920 OLD SANTA RITA RD	PLEASANTON	CARLTON SULLINS				2080174.1	00000000	õ	õ	0.0	0.0	0.0 3/1/1984
3S/1E 5J 6	0.0 8.0 sup	346.00 3908 OLD SANTA RITA RD	PLEASANTON	RICHARD GUASCO				2080208.6	00000000	ō	0	0.0	0.0	0.0 00000000 HAVE GM DATA 22 NOV
3S/1E 5J7	0.0 0.0 unk	354.00 OLD SANTA RITA RD	PLEASANTON				6162944.0	2079786.1	00000000	0	0	0.0	0.0	0.0 00000000 HAVE GQ DATA 21 NOV
3S/1E 5J 8	35.0 0.0 mon	346,69	PLEASANTON	HACIENDA BUSINESS		HBP-P 5		2080589.0	00000000	0	Q	19.0	35.0	0.0 00000000
3S/1E 5J 9	0.0 8.0 sup	345.00 I-560 AT TASSAJARA RD	PLEASANTON	HACIENDA BUSINESS		HBP-		2080767.9	00000000	0	0	0.0	0.0	0.0 3/22/1998 RP FROM QUAD
3S/1E 5J10	69.0 0.0 unk	348,00 240 da DOCEMICOO AT OLD BANTA DITA DO	PLEASANTON	HACIENDA BUSINESS HACIENDA BUSINESS				2080384.2	00000000	0	0	0.0	0.0	0.0 00000000 HAVE GM DATA 22 NOV
35/1E 5J11 35/1E 5K 1	0.0 2.0 mon 130.0 0.0 sup	349,43 ROSEWOOD AT OLD SANTA RITA RD, 351,20 ROSEWOOD DR & OLD SANTA RITA RD	PLEASANTON PLEASANTON	ALAMEDA SUGAR CO.		НВР-Р 5А #42		2080634.4 WAHLER ASSOC.	9/29/1987 00000000	0	0	0,0 0,0	0.0 0.0	38.5 00000000 HAVE CO DATA 24 NOV
35/1E 5K 2	29.0 0.0 unk	35,20 ROSEWCOD DR & OLD BARRA RHARD 345,73	PLEASANTON	HACIENDA BUSINESS PARK		HBP-DH10		2060753.0	00000000	0	0	18.0	28.0	0.0 00000000 HAVE GQ DATA 21 NOV 29.0 00000000
35/1E 5K 4	30.0 0.0 mon	340,00 (-580 & HACIENDA DR	PLEASANTON	HACIENDA BUSINESS		HBP-P 4		2080657,0 WAHLER	00000000	ō	õ	15,0	30.0	0.0 6/12/1990
3S/1E 5K 5	66.0 4.0 mon	340,00 ROSEWOOD DR - INTERSTATE 580	PLEASANTON	HACIENDA BUSINESS PARK		MW-3		2080664.4 PACIFIC ENVIRON	11/30/1989	ō	1 -	43,0	66.0	68.0 11/20/1997
3S/1E 5K6	75.0 4.0 mon	343,41 N. OF ROSEWOOD DR.	PLEASANTON	ZONE 7			6161820,1	2080716,1 PITCHER DRILLIN	6/7/1990	0	1	40,0	70,0	75.0 00000000 REPLACES 5F2
3S/1E 5K7	150.0 4.0 mon	343.55 N. OF ROSEWOOD DR.	PLEASANTON	ZONE 7				2080716,1 PITCHER DRILLIN	6/6/1990	0	1	134.0		200.0 00000000 REPLACES 5F1
3S/1E 5K 8	50.0 2.0 mon	0,00 I-560 & TASSAJARA CREEK	PLEASANTON	HACIENDA BUSINESS PARK		MW-1	1601325,7		0000000	0	0	0,0	0,0	0.0 00000000 FROM WORK PLAN
3S/1E 5K 9	50.0 2.0 mon	0.00 I-580 & HACIENDA DR 336.78 OWENS DR & HACIENDA DR	PLEASANTON PLEASANTON	HACIENDA BUSINESS PARK ZONE 7		MW-1		2080734,5 WOODWARD-CLYDE	5/26/1993	0 13	1	10.0	50,0 40.0	120.0 00000000 DTW-22
35/1E 5L 3 35/1E 5M 1	40.0 2.0 mon 93.0 10.0 sup	336.30	PLEASANTON	HACIENDA BUSINESS PARK) 2079873,0 WOODWARD ORILLING	12/11/2001 00000000	0	ו 3	15.D 0.D	40,0 0,0	40.0 00000000 SMP WELL 0.0 00000000
35/1E 5N 1	47.0 4.0 mon	330.27 HACIENDA DR & GIBRALTAR DR	PLEASANTON	HACIENDA BUSINESS PARK		HBP-DH 3		2078489,7 WAHLER ASSOCIAT	2/7/1984	24	ĩ	27.0	47.0	51.5 2/8/1999
3S/1E 5N 2	39.0 2.0 mon	332.39 OWENS DR. & HACIENDA DR.	PLEASANTON	HACIENDA BUSINESS PARK		HBP-DH 11		2079515.8 WAHLER ASSOCIAT	11/26/1984	ō	1	24.0	39,0	39.0 00000000
3S/1E 5P 1	30.0 0.0 mon	334,26 HACIENDA DR. & OWENS DR.	PLEASANTON	HACIENDA BUSINESS		HBP-P 7	6159955.0	2079522.0	00000000	0	0	25.0	30,0	0.0 00000000
3S/1E 5P 2	35.0 0.0 mon	333.60	PLEASANTON	HACIENDA BUSINESS		H8P-P 11		2078272.0	00000000	0	0	14.0	35,0	0.0 00000000
3S/1E 5P 3	31.5 2.0 mon	340,53 HACIENDA DR. AT OWENS DR.	PLEASANTON	HACIENDA BUSINESS PARK		HBP-P 7A		2079520,3 WAHLER ASSOC.	10/1/1997	0	0	0.0	0.0	31,5 00000000
3S/1E 5P 4	32.5 2.0 mon	334.38 OWENS DR. NR. SP RR 0.00	PLEASANTON PLEASANTON	HACIENDA BUSINESS PARK		HBP-P 11A		2078516,3 WAHLER ASSOC. 2079464.4 HARDING LAWSON	10/2/1987	0 0	0	22.5 0.0	32.5	35.0 00000000
35/1E 5P 5 35/1E 5P 6	305.0 0.1 unk 35.0 2.0 mon	334.00 OWENS DR & ROSEWOOD DR	PLEASANTON	ZONE 7		BORING 1 SMP LOC-3		2078721,0 WOODWARD DRILLING	10/27/1981 12/19/2000	17	1.	25.0	0.0 35.0	305.0 10/20/1981 GEOTECH, DK TODD 0.0 00000000 SMP WELL
35/1E 5Q 1	41.5 0.0 mon	339.61	PLEASANTON	HACIENDA BUSINESS PARK		HBP-DH12		2078725,0	00000000	Ö	۰. ٥	31.5	41.5	42.0 00000000
35/1E 5Q 2	25.0 0.0 mon	336.60 ROSEWOOD DR. & OWENS DR.	PLEASANTON	HACIENDA BUSINESS		HBP-P 8		2079760.0 WAHLER	00000000	0	Ō	10.0	25.0	0.0 00000000
3S/1E 5Q 3	40.0 0.0 mon	337,50 OWENS DR. & TASSAJARA CK	PLEASANTON	HACIENDA BUSINESS PARK		HBP-P 12	6161152.0	2078125.0 WAHLER	10/12/1984	O	1	23.0	40.0	40.0 00000000
35/1E_5Q_4	31.5 2.0 mon	343,60 ROSEWOOD DR. NR. OWENS DR.	PLEASANTON	HACIENDA BUSINESS PARK		HBP-P 8A		2079559.9 WAHLER ASSOC.	10/2/1987		1	20.0	30.0	31.5 00000000
35/1E 5R 1	175.0 B.O sup	345.00 3744 OLD SANTA RITA RD	PLEASANTON	ERMA THEODORE				2079449.4 HAWTHORNE	1/1/1947	0	3	0.0		175.0 6/7/2004 LOG DIAMETER 12"??
35/1E 5R 2 35/1E 5R 3	230.0 10.0 sup 35.0 1.0 mon	345.00 3654 N.Sante Rite Rd. 343.50 TASSAJARA CREEK & ROSEWOOD DR.	PLEASANTON PLEASANTON	SKINNER CONSTRUCTION HACIENDA BUSINESS		HBP-P 9		0 2079225.2 ACME DRILLING 0 2079651.0 WAHLER ASSOCIAT	3/16/1955 10/15/1984	0 0	2	190.0 17.0	220,0 35,0	230.0 11/13/1986 0.0 00000000
3S/1E 5R 4	46.5 2.0 mon	0.00 ANDREWS DR & OLD SANTA RITA	PLEASANTON	HACIENDA BUSINESS PARK		MW-1		438439.6 KALDVEER & ASSOC	8/13/1987	n	ò	0.0	0.0	0.0 00000000
3S/1E 5R 5	49.0 2.0 mon	0.00 3830 OLD SANTA RITA RD	PLEASANTON	J.GORDON BINGHAM				2080126.9 GEOMATRIX	00000000	õ	ō	0.0	0,0	0.0 5/29/1990
3S/1E 5R 6	47.0 2.0 mon	0.00 3830 OLD SANTA RITA RD	PLEASANTON	J.GORDON BINGHAM				2080073.1 GEOMATRIX	0000000	Ð	ò	0.0	0.0	0.0 5/29/1990
3S/1E 5R 7	47,0 2.0 mon	0.00 3630 OLD SANTA RITA RD, PLEASANTON	PLEASANTON	J.GORDON BINGHAM, E.BAY		MW-1	6163010.0	2079584.0 ALL TERRAIN DRI	4/19/1990	0	0	0.0	0.0	49.0 10/31/1990
3\$/1E 8A 1	160.0 12.0 aup	0.00 OLD SANTA RITA RD	PLEASANTON	CPS				2078164.0 SILVA 8ROS.	00000000	0	Q	0.0	0.0	0.0 1/26/1985
3\$/1E 88 1	91.0 4.0 mon	335.62 TASSAJARA FC CHANNEL	PLEASANTON					0 2077394.0	0000000	0	1	55.0	82.0	0,0 0000000
3S/1E 8B 2	41.5 0.0 mon			HACIENDA BUSINESS PARK		HBP-DH17		2077833.0 2077204 5 MARLED ADDOCIAT	00000000	0	0	27,0	37.0	42.0 0000000
35/1E 8D 1 35/1E 8D 2	39.5 4.0 mon 40.0 2.0 mon	326,07 HACIEDA DR & GIBRALTER DR 326,07 HACIENDA DR & GIBRALTER DR	PLEASANTON PLEASANTON	HACIENDA BUSINESS PARK HACIENDA OWNERS ASSOC		HBP-P 15 HBP-P15A		2077391.5 WAHLER ASSOCIAT 2077392.3 WAHLER ASSOCIAT	10/10/1884 11/6/1986	0 19	1	0.0 24.0	39.0 40.0	39.5 2/16/1999 40.0 2/16/1999
35/1E 8E 1	50.0 0.0 mon	328.32 HACIENDA DR. & STONERIDGE DR.	PLEASANTON	HACIENDA BUSINESS PARK		HBP-DH18		2076419.0	00000000	0	0	20.0	48,0	50.0 00000000
3S/1E 8F 1	245.0 14.0 in	0.00		PRUDENTIAL INS CO				5 2076472.8	00000000	ō	2	0.0	0,0	0.0 00000000
3S/1E 8F 3	46.0 4.0 mon	333.95 GIBRALTAR DRIVE	PLEASANTON	HACIENDA BUSINESS PARK		HBP-DH 5		2076875.0 WAHLER ASSOCIAT	2/7/1984	25	1	27.0	42.0	46.0 00000000
35/1E 8F 4	700,0 0.0 oth	0.00 OWENS DR & TASSAJARA CREEK	PLEASANTON	DSRSD		M-2 TESTHO		2077877.8 BRADLEY & SONS	5/27/1997	0	1	0.0		700.0 00000000 FILLED IN
35/1E 8G 1	0.0 0.0 sup	0.00 STONERIDGE DR & W. LAS POSITAS BLVD	PLEASANTON					3 2076630,9	00000000	0	0	0,0	0.0	0.0 00000000 HAVE GQ DATA 21 NOV
3S/1E BG 3	47.0 4.0 mon	334.27 W LAS POSITAS BLVD & STONERIDGE DR	PLEASANTON PLEASANTON	HACIENDA BUSINESS PARK ZONE 7		HBP-DH 6		3 2076259,1 WAHLER ASSOCIAT) 2076895,0 WOODWARD DRILLING	2/7/1984	33 57	1	37,0	47.0 95.0	60.0 3/2/1899
3S/1E 8G 4 3S/1E 8H 1	85.0 2.0 mon 301.0 12.0 sup	338.61 1THACA WY & APACHE DR 336.30	PLEASANTON	JIMMY LEMOS				2076787.3	12/19/2001 00000000	ېد 0	1 0	60.0 50.0	65.0 291.0	85.0 00000000 SMP WELL 0.0 00000000 DESTROYED- NO DATE
	20.10 iz.0 dup							· ······		-	-			


-


	DEDTU															
<u>WELL NO.</u> 3\$/1E 8H 2	<u>DEPTH</u> 205.0	DIA USE 14.0 SUD	RP ADDRESS 340.87 SANTA RITA AT STONERIDGE (FAR NORTH)	<u>CITY</u> PLEASANTON	OWNER	<u>APN</u>	OTHER	<u>CCE</u>	CCN DRILLER	DATE S	SEAL I	<u>.0g pi</u>	<u>erf_u</u>	PERF_L DE	EPTH DATE	REMARK
35/1E 8H 3	203.0	•	342.00 SANTA RITA AT STONERIDGE (NEAR NORTH)	PLEASANTON			ARMY 1 ARMY 2		2076016.2	1/7/1943	o_	2	124.0	165.0	205.0 00000000	YLD 500 PER LEE HALL
3S/1E 8H 4	200.0	14.0 sup	339.36 SANTA RITA AT STONERIDGE (SOUTH)	PLEASANTON			ARMY 3		2075874.0 2075743.0	1/7/1943	0	2	124.0	171.0	203,0 00000000	
3S/1E 6H 5	215.0		0.00 SANTA RITA AT STONERIDGE (DEST)	PLEASANTON			ARMY 4		2075938.1	1/7/1943 00000000	0	2	130.0	181.0	200,0 00000000	YIELD 500 GPM
35/1E 8H 6 35/1E 8H 7	63,0 86,5	0.0 sup	0.00 SANTA RITA RD 1300' N OF RR XING	PLEASANTON	DONAHUE		SFWD 40		2076628.1	00000000	0	0	120.0	205.0	215.0 8/19/1988	
3S/1E8H8	85.0	2.0 mon 2.0 mon	339.03 5505 SPRINGHOUSE DR 339.03 5505 SPRINGHOUSE DR	PLEASANTON	NORTHWEST MUTUAL LIFE	941 2764 012 01	HBP-DH13		2076147.0 WAHLER ASSOCIAT	11/28/1984	0	4	0.0 47.0	0.0	0.0 00000000	HAVE GO DATA 21 NOV
3S/1E 6H 9	240,0	2.0 mon	336.48 NW COR STONERIDGE & SANTA RITA	PLEASANTON		941 2764 012 01		6162132.8	2076173.1 DANIEL SALAICES	11/5/1986	46	1	55.0	67.0 65.0	87.0 2/5/1999 85.0 2/5/1999	
3S/1E 6H10	440.0	2.0 mon	336.51 NW COR STONERIDGE & SANTA RITA	PLEASANTON PLEASANTON			MW 1		2076009.7 LUHDORF AND SCA	12/12/1996	ŏ	1	210.0	230.0	845.0 00000000	
3S/1E 8H11	730.0	2.0 mon	336.45 NW COR STONERIDGE & SANTA RITA	PLEASANTON			MW 2		2076009.4 LUHDORF AND SCA	12/12/1996	0	1	290.0	430.0	846.0 00000000	
3S/1E 8H12	846.0	0.0 oth	340.00 NW COR STONERIDGE & SANTA RITA	PLEASANTON	DSRSD		MW 3 TESTHOLE 1		2076009.1 LUHDORF AND SCA	12/12/1996	0	1	520.0	720.0	846.0 00000000	
3S/1E 8H13	600.0	2,0 mon	338.30 STONERIDGE DR & SANTA RITA RD	PLEASANTON		946 3325 095 03			2076010.0 LUHDORF AND SCA 2075674.9 FUGRO WEST	12/12/1996	0	1	0.0	0.0	845.0 00000000	
3S/1E 8H14	760.0	8,0 oth TH		PLEASANTON	ZONE 7	946 3325 095 03			2075704.9 FUGRO WEST	12/11/1998 2/13/1999	280	1	570.0	790.0	605.0 00000000	E-LOG, DXF, ASCII
35/1E 8H18 35/1E 8H19	745.0 0.0	20,0 muni 0,0 mon	338.60 SANTA RITA RD & STONERIDGE DR	PLEASANTON	Z7-MUNI	946 3200 005 02	MOCHO 4		2076045.0 BEYLIK DRILLING	8/9/2000	28 98	0 2	560.0 515.0	730.0	760.0 00000000	
35/18 8/1	156.0	14.0 mon	0.00 STONERIDGE DR & SANTA RITA RD 336.50	PLEASANTON	ZONE 7 WATER AGENCY			1601299.4	435631.0 GEOMATRIX	00000000	~ 0	â	0.0	730.0 0.0	800.0 0000000 0.0 00000000	E-log
3S/1E 6J 2	156.0	14.0 eup	338,60						2074800.3	0000000	Õ	ō	0.0	0.0	0.0 00000000	
35/1E BJ 3	0,0	0.0 unk	0.00						2074740.1	0000000	0	0	0.0	0.0	0.0 00000000	CHRISTY BX PAVED OVR
35/1E 8K 1	99.0	2.5 mon	329.70 NR PARKSIDE & SUTTERGATE		ZONE 7				2074462.0	0000000	0	0	0.0	0.0	0.0 00000000	SMITH NO. 36, SFWD
35/1E 8L 1	0.0	0.0 unk	0.00						2074805.0 USGS HEW 2074866.0	0000000	0	1	89.0	0 4.0	0.0 00000000	
3S/1E 8L 2	43.5	0.0 mon	329.30 W.LAS POSITAS/TASSAJARA CREEK		HACIENDA BUSINESS		HBP-P 20		2075506.0	00000000	0	0	0.0	0.0	0.0 00000000	ENT'D FR WELL LIST
35/1E 8L 4 35/1E 8L 5	0.0 0.0	6.0 mon 0.0	0.00 BELLEZA DR & STONERIDGE DR	PLEASANTON	SIGNATURE PROPERTIES		8-1		2075822.5 TREADWELL & ROLLO	00000000	0	0	25.0 0.0	37.0	0.0 00000000	
35/1E 8L 6	0,0	0.0	0.00 BELLEZA DR & CASADERO CT 0.00 BELLEZA LN & BELLEZA DR	PLEASANTON	SIGNATURE PROPERTIES		8-2	6160818.3	2075858.7 TREADWELL & ROLLO	00000000	0	Ď	0.0	0.0 0.0	0.0 00000000 0.0 00000000	
3S/1E 8L 7	0.0	0.0 mon	0.00 BELLEZA LN & BELLEZA DR	PLEASANTON PLEASANTON	SIGNATURE PROPERTIES		B-3		2075660.2 TREADWELL & ROLLO	00000000	Ō	ō	0.0	0.0	0.0 00000000	
3S/1E 6L 8	0.0	0.0 mon	0.00 BELLEZA LN & BELLEZA DR	PLEASANTON	SIGNATURE PROPERTIES SIGNATURE PROPERTIES		B-4		2075500.4 TREADWELL & ROLLO	0000000	0	0	0.0	0.0	0.0 00000000	
35/1E 6R 1	0,0	ni 0.0	0.00	1 Constantion	SIGNATURE PROPERTIES		B-5		2075529.6 TREADWELL & ROLLO	0000000	0	0	0.0	0.0	0.0 00000000	
35/1E 8R 2	0.0	0.0 In	0.00	PLEASANTON	THOMSEN		31E-38	6163046.4 6162583.0	2073526.0	00000000	0	0	0.0	0.0	0.0 00000000	
35/1E 8R 3	107.5	0.0 mon	337.33						2073505.3	00000000	0	0	0.0	0.0		DESTROYED BY HOUSING
35/1E 8R 4 35/1E 9A 1	264.0 145.0	14.0 Irr	0.00 VALLEY AVE & GREENWOOD RD	PLEASANTON	TONY DAVILLA				2073250.0 SILVA BROS.	7/15/1950	0	0	0.0 164,0	0,0	0.0 00000000	
35/1E 98 1	820.0	6.0 sup 20.0 muni	347.60 2485 MARTIN AV 348.38 4000' US OF SANTA R∤TA ON ARROYO MOCHO	PLEASANTON	STANDARD PACIFIC				2077204.9	00000000	ő	3	0.0	199.0 145.0	264.0 00000000 0.0 5/4/1895	
35/1E 9D 1	352.0	14.0 sup	339.75 LOS POSITAS ELEMENTARY SCHOOL	PLEASANTON PLEASANTON	Z7-MUNI		STONERIDGE		2077441.0 LANE WESTERN	4/7/1992	Ō	2	250.0	600.0		FORMERLY 9A 2
3S/1E 9D 2	180.0	10.0 sup	342.00 3442 SANTA RITA RD	PLEASANTON	ZONE 7 R & B EQUIPMENT				2077625.9 SILVA BROS	10/15/1949	0	2	50.0	347.0	352.0 4/30/2002	TORINERET 3A 2
3S/1E 9D 3	235,0	10.0 sup	0.00 3534 SANTA RITA RD	PLEASANTON					2077899.6 WESTERN WELL DR	6/2/1950	0	2	150.0	175.0	180.0 7/15/1997	
35/1E 9D 4	196.0	2.0 mon	339.60 4151 W, LAS POSITAS BLVD	PLEASANTON	ZONE 7				2077662.0 ACME 2077405.0 ZONE 7	0000000	0	0	0,0	0,0		ENTIO FR WELL LIST
35/1E 9D 5	270,0	2.0 mon	339.50 4151 W. LAS POSITAS BLVD	PLEASANTON	ZONE 7				2077624.8 ZONE 7	4/9/1969 4/9/1969	0 0	1	181.0	191,0		ELEMENTARY SCHOOL
35/1E 9D 6 35/1E 9D 7	47.0 0.0	0.0 cath 0.0 dom	0.00 3192 SANTA RITA RD	PLEASANTON	EXXON			6163059.0		00000000	0	ó	255.0 0.0	265.0 0.0		ELEMENTARY SCHOOL
35/1E 9D 8	78.0	2.0 mon	0.00 339,75 4151 W. LAS POSITAS 8LVD	DELOUTOU				6163150,7	2077112.7	00000000	ő	ŏ	0.0	0.0	_	ENT'D FR WELL LIST
35/1E 9D 9	16.0	6.0 UNk	342.00 3442 SANTA RITA RD	PLEASANTON PLEASANTON	ZONE 7 R & B CONSTRUCTION				2077618.8 ZONE 7	4/9/1969	Ō	1	61.0	71.0		may be deepened 9[03] ELEMENTARY SCHOOL
35/1E 9D10	50.0	2.0 mon	330.00 3192 SANTA RITA RD	PLEASANTON	EXON COMPANY	946 1105 038 04	Mag	6163035.9 5453035.4		00000000	0	0	0.0	0.0	0.0 7/15/1997	
35/1E 9D11	50.0	2.0 mon	330,00 3192 SANTA RITA RD	PLEASANTON	EXXON COMPANY	946 1105 038 04			2077250.7 ENVIRONMENTAL R 2077309.5 ENVIRONMENTAL R	11/11/1998	32	1	35.0	50.0	51.5 00000000	
3S/1E 9D12	35,0	2.0 mon	330.00 3192 SANTA RITA RD	PLEASANTON	EXXON COMPANY	946 1105 038 04			2077267.4 ENVIRONMENTAL R	11/11/1998	32	1	35.0	50.0	51.5 00000000	
35/1E 9D13	35,0	2.0 mon	330.00 3192 SANTA RITA RD	PLEASANTON	EXXON COMPANY	946 1105 038 04	MW2		2077137.0 ENVIRONMENTAL R	11/12/1998 11/12/1998	17 17	1	20.0 20.0	35.0	36.5 0000000	
35/1E 9D14 35/1E 9E 1	70.0 295.0	2.0 mon 0.0 olh cat	0.00 3192 SANTA RITA RD 0.00 SANTA RITA RD & STONERIDGE DR	PLEASANTON	EXXON/MOBIL	946 1105 038 04	MW-8	6162941,2	2077145.B GREG DRILLING	2/22/2001	0	ò	20,0 55.0	35.0 70.0	41.5 0000000 70.0 00000000	
35/1E 9E 2	277.0	0.0 oth cat	0.00 SANTA RITA RD & STONERIDGE DR	PLEASANTON			L-3	6163396.7	2076349,6 PITCHER	2/5/1879	Ō	ī	0.0	0.0	295.0 11/1/1993	
3S/1E 9F 1	170.0	8.0 dom	340.00 2365 OAKLAND AVE. PLEAS	PLEASANTON PLEASANTON	LAVWMA NEILSON			6163473.9	2076380.4 PITCHER	11/4/1993	0	1	0.0	0.0	277.0 0000000	
35/1E 9F 7	0.0	8.0 sup	350.00 3820 TRENERY	PLEASANTON	HEICOON		3820 TRENE		2075570.8 ACME DRILLING	7/26/1962	٥	2	134.0	162.0	0.0 12/19/1983	
35/1E 9G 1	160.0	9.0 sup	349.70 3775 Trenery (Катр)		MRS. KAMP		3020 TRONE	1604675,7 6166117,0	-	0000000	0	0	0.0	0.0	0.0 4/16/1991	
35/1E 9G 2		10.0 sup	353.80 3760 TRENERY DR	PLEASANTON	ROBERT MOLINARO				2075931.4 SILVA BRO	00000000 10/25/1960	0	2 0	77.0	149.0	0.0 00000000	
35/1E 9G 3 35/1E 9G 4	220.0 230.0	8.0 sup 8.0 sup	0.00 3737 TRENERY DR.	PLEASANTON	ALBERT WIEMKEN			6166698,1	2075664.7 LEITE BROS.	11/1/1977	0	0	99.0 0.0	227.0 0.0	240,0 7/5/1995	
3S/1E 9G 5		10.0 sup	350.00 3800 TRENERY 350.00 3752 TRENERY DR		JOHN MONTGOMERY			1604655.1	435651,1 HENNINGS BROS.	7/12/1978	ŏ	ŏ	0.0	0.0	0.0 0000000 0.0 00000000	
35/1E 9H 1		10.0 eup	354.00 3711 TRENERY	PLEASANTON	SUMITHRA RAMIREDDY				2075950.6 DELUCCH(8/3/1979	ō	2	199,0	232.0		DTW 100.75'
3S/1E 9H 2	172.0	6.0 sup	354.00 3711 TRENERY DR	PLEASANTON	COOPER		3711 TRENN	6167089.7		0000000	0	0	0.0	0.0	0.0 00000000	100.75
3S/1E 9H 3	240.0	10.0 sup	351.20 3710 TRENERY	PLEASANTON	PRESTON		3711 TRENN 3710 TRENN		2075589.8 ACME DRILLING	10/22/1957	0	2	0.0	0.0	172.0 0000000	
35/1E 9H 4		8.0 sup	0.00 2215 MARTIN	PLEASANTON	GONSALVES, DAVID		2215 MARTI	6167054, 1 6167339,5	2076443.4 LEITE PUMP SALE	11/2/1960	0	2	205,0	230.0	240.0 00000000	
3S/1E 9H 5	153.0	8.0 sup	346.00 2207 MARTIN		HERBERT SINGLETON			6167377,9		2/1/1976 00000000	0	0	0,0	0.0	0.0 00000000	
35/1E 9H 6 35/1E 9H 7	153.0	8.0 sup	351.00 2201 MARTIN					6167192,4		00000000	0	0	0.0 0.0	0.0 0.0	0.0 00000000	
35/1E 9H 9	241.0 0.0	6.0 dom 0.0 sup	363.50 2221 MARTIN 350.00		Evgene Lauer		2221 MARTI		2076192,1 Acme Drilling	3/28/1963	ŏ	ů	78.5	241.0	0.0 00000000	
35/1E 9H10	145.0	2.0 mon	350.00 MARTIN AVE & TRENERY DR			0 10 1		6166846.3	2075374,1	00000000	õ	ō	0.0	0.0	241.0 0000000 0.0 00000000	
35/1E 9H11	190.0	2.0 mon	350.30 MARTIN AVE & TRENERY DR	PLEASANTON PLEASANTON	ZONE 7 WATER AGENCY ZONE 7 WATER AGENCY	946 1151 011 03			435438.7 WDC EXPLORATION	11/22/2004	160	1	120.0	140.0	230.0 00000000	
3\$/1E_9J_3	225.0	6.0 dom	0.00 3623 CAMERON AVE	PLEASANTON	KENNETH WATERS	946 1151 011 03			435438.7 WDC EXPLORATION	11/22/2004	114	1	165,0	165,0	230.0 00000000	
3S/1E 9J 4	230.0	6.0 sup	355.00 2313 MARTIN	PLEASANTON	SELWAY			010/7522 8167154.9	2074629.8 HENNINGS BROS, 2075066.7 HENNINGS BROS,	11/6/1978	150	2	205,0	225.0	250.0 00000000	
35/1E 9J 5	237,0	8.0 sup	355.00 3710 CAMERON AVE		KENNETH ZOTTI		COLLAPSED	61670694	2075056.7 HENNINGS BROS. 2074678.5 BITNER DRILLING	1/24/1981	30	2	210.0	230.0	265.0 00000000	
35/1E 9J 6	192.0	8.0 sup	353,80 3926 CAMERON AVE, PLEAS	PLEASANTON	ZOTTE			6167074,5	2074714.4	9/29/1981 00000000	0	2 0	197.0 0.0	237.0		VILL REDRILL
											0	U	0.0	0.0	0.0 0000000	

WELL NO.	<u>DEPTH DIA USE</u>	RP ADDRESS	<u>ÇITY</u>	OWNER	<u>APN</u>	<u>other</u>	CCE	CCN	<u>DRILLER</u>	DATE	<u>SEAL</u>	<u>LQQ</u>	<u>PERF_U</u>	PERF_L	DEPTH DAT	<u>16</u>	REMARK
3S/1E 9K 1	155.0 8.0 dom	350.00		KAMP			6166657,7	2074411.8	l	00000000	(0	0.0) 0.0	0.0	5/20/1985	i
3\$/1E 9K 2	200,0 18,0 iπ	354.80		SHEFIELD			6165912.4	2074886.0)	00000000	(0	0,0) 0.0	0.0	5/27/1985	i
3S/1E 9K 3	82.0 6.0 sup	354,50		КАМР			6165946.3	2074886.3	i de la constante de	00000000	(0	0,0	I 0,0	0,0,000	00000	
35/1E 9K 4	217.0 6.0 dom	0,00 3750 CAMERON AVE	PLEASANTON	ROBERT BOUCHIER			6165680.6	2074423.2	WATER MAN DRILLING	5/16/1978	35	2	97,0	217,0	217.0 000	00000	
35/1E 9L 1	120.0 9.0 sup	350.20					6164794.4	2074840.8	l	00000000	(0	0,0	0,0	0.0	1/13/1983	1
35/1E 9L 2	150.0 12.0 lm	350,20		NELS NIELSON			6164783.9	2074791.9	1	00000000	(3	10.0	20,0	0.0	1/13/1983	I
35/1E_9M_1	200.0 12.0 mon	339.90					6163713.7	2075484.0	1	00000000	(0	0.0	0.0	0.0 000	00000	
35/1E 9M 2	530,0 16,0 muni	341.90 2722 SANTA RITA RD.	PLEASANTON	Z7-MUNI		MOCHO 1	6163288.0	2075356.0	WESTERN WELL	4/24/1964	(2	150.0	510.0	558.0 000	00000	
3S/1E 9M 3	575.0 18.0 muni	344.20 2552 SANTA RITA RD.	PLEASANTON	Z7-MUNI		MOCHO 2	6163371.0	2074828.0	I CAN PUMP & WELL	2/28/1967	(2	250.0	570.0	615.0 000	00000	
3S/1E_9M_4	498.0 20.0 muni	339.90 SANTA RITA RD & STONERIDGE DR	PLEASANTON	Z7-MUNI	946 3325 095 03	MOCHO 3	6162922.0	2075534.0	BEYLIK DRILLING	6/24/2000	103	2	315.0	493.0	514.0 000	00000	E-log
35/1E 9N 1	200.0 0.0 mon	338.90		TONY DAVILLA			6163550.2	2073343.9	1	00000000	(0	0.0	0.0	0.0 000	00000	-
3S/1E 9N 2	85.0 12.0 mon	342.00 2401 SANTA RITA RD.		CITY OF PLEASANTON			6163011.6	2074237.4	Ļ	00000000	(0	0.0	0.0	0.0 000	00000	
3S/1E 9N 3	0.0 0.0 unk	0.00					6163928.0	2074399.0	1	00000000	0	0	0.0	0.0	0.0 000	00000	ENTO FR WELL (
3S/1E 9N 4	0.0 0.0 sup	350.00					6163317.5	2073992,5	i	00000000	(0	0.0	0.0	0.0 000	00000	HAVE GQ DATA 2
3S/1E 9P 1	106.0 8.0 sup	345.90 4115 MOHR AVE	PLEASANTON	EDEN CONTRUCTION CO.	946 4550 018 02	SVWC MOHR6	6164557.1	2073859,9	SPRING VALLEY	1/1/1917	(2	0.0	115.0	116.0	4/1/1999	I
3S/1E 9P 2	115.0 12.0 mon	343.60 TRACT # 3184					6164317,9	2073545.2	•	00000000	(0	0.0	0.0	0,0	3/14/1975	
3S/1E 9P 4	246.0 12.0 aup	344.00 2500 SANTA RITA	PLEASANTON	CARPENTER'S HALL		TEMP. MOHR	6164376,2	2073885,0	1	00000000	(0	0.0	0.0	0,0 000	00000	sound 246 aug88
3S/1E 9P 5	105.0 2.5 mon	346.70 MOHR AVE & SANTA RITA RD	PLEASANTON	Z7-MON		MOHR KEY	1603841,6	433277.0	USGS HEW	11/3/1977	(1	95.0	100.0	105.0 000	00000	-
3S/1E_9P.6	150.0 2.0 mon	0.00 MOHR AVE & SPRR TRACKS	PLEASANTON	ZONE 7 WATER AGENCY			1603492.4	433290.6	MAGGIORA BROS.	5/9/2003	0	0	125.0	145.0	512.0 000	00000	
3S/1E 9P 7	305.0 2.0 mon	0.00 MOHR AVE & SPRR TRACKS	PLEASANTON	ZONE 7 WATER AGENCY			6184858,5	2073695.6	MAGGIORA BROS DRILLIN	5/9/2003	(0	285.0	305.0	512.0 000	00000	
3S/1E 9P 8	420.0 2.0 mon	0.00 MOHR AVE & SPRR TRACKS	PLEASANTON	ZONE 7 WATER AGENCY			6164858,5	2073695.6	MAGGIORA BROS DRILLIN	5/9/2003	(0	405.0	420.0	512,0 000	00000	
3S/1E 9P 9	210.0 2.0 mon	346.67 MOHR AVE & RR TRACK	PLEASANTON	ZONE 7 WATER AGENCY			1603618,5	433191,4	WDC WELLS & EXPLORATI	3/23/2005	20	1	185.0	205.0	440.0 000	00000	1 OF 3 NESTED
3S/1E 9P10	310.0 2.0 mon	346.79 MOHR AVE & RR TRACK	PLEASANTON	ZONE 7 WATER AGENCY			1603618,5	433191.4	WDC WELLS & EXPLORATI	3/23/2005	20	1	285.0	305.0	440,0 000	00000	2 OF 3 NESTED
3S/1E 9P11	425.0 2.0 mon	346.72 MOHR AVE & RR TRACK	PLEASANTON	ZONE 7 WATER AGENCY			1603618,5	433191.4	WDC WELLS & EXPLORATI	3/23/2005	20	1	405.0	420.0	440.0 000	00000	3 OF 3 NESTED
3S/1E 9Q 3	207.0 8.0 sup	345.32 3727 MOHR	PLEASANTON	JERALD JENNARO		3727 MOHR	6166308,2	2073986.0	WATER MAN DRILL	5/4/1978	37	0	104.0	204.0	207.0 000	00000	SOUNDED 205
3S/1E 9Q 4	0.0 0.0 sup	352.00 3500 Mohr Ave.	PLEASANTON	De Vour Nursery			6165905,6	2073949.3	delucchi	0000000	(0	0.0	0.0	0.0	7/1/1988	HAVE GM DATA 2
3S/1E 17A 3	65.0 12.0 sup	0.00 4687 VALLEY AVE	PLEASANTON	W. BUCK			6162197.0	2072798 0	1	00000000	C	0	0.0	0.0	0.0 000	00000	

ATTACHMENT F

HUMAN HEALTH RISK ASSESSMENT MODEL OUTPUT DOCUMENTATION

Input Parameter Summary

(-)

(-)

(-)

6

RBCA SITE ASSESSMENT

Completed By: JBB Job ID: 2431 Site Name: Former Exxon Service Station 7-3587 1 OF 1 Date Completed; 28-Jun-06 Site Location: Pleasonton, California Commercial/Industrial Construction (Units) Realdontial Surface Parameters General Exposure Parametore (cm²) NA NA Source zone erea (1-10 yes) Chronic Construc. Adult (1-\$vm) Length of source-zone area parallel to wind NA NA. (cm) w Averaging time for carcinogens (yr) 70 AT. Longin of source-zone area parellel to GW flow NA (cm) 25 Wee Avaraging time for non-carcinogona (yr) 30 AT. 70 ۲., Ambient air velocity in mixing zone NĄ (cm/d) 15 35 Body weight (kg) 70 BW 10 25 Air mixing zone height NA (cm) 30 6 8.00 ED Exposure duration (yr) (g/c/n*2/e) 25 Ρ. Areal particulate emission rate NA Averaging time for vapor flux (yr) 30 4 Thickness of alfocted surface sods NA (cm) 350 250 180 Exposute frequency (days/yr) FF Exposure frequency for darmal exposure 350 250 EF_D Surface Soll Column Parameters Value (Vola) 2 1 IR_ ingestion rate of water (L/day) Capillary zone thickness NA (cm) ingestion rate of soil (mg/day) 100 200 100 100 IR. NA 3300 Variase zone thickness (cm) Skin surface area (dormal) (cm*2) 5700 2800 3300 ħ, \$A 1.7E+0 (g/cm^3) Soil bulk density Soil to skin adherence fector 0.2 ሌ м Fraction proganic carbon 1.0E-2 f., ET_ Swimming exposure time (hr/eveni) з 0_T Soil total percently 3.8E-1 EV 12 12 12 Swimming event frequency (evente/yr) Vertical hydraulic conductivity 8.6E-4 (cm/d) IR. K. 0.05 0.5 Water Ingestion while swimming (U/hr) (cm*2) Vapor permeability 1.0E-14 23000 8100 ĸ. Skin surface area for swimming (cm*2) SA NA Depth to proundwater (cm) 0.025 Ingestion rate of fish (kg/yr) IR. L. Dopth to top of affected soils A 1E+1 (em) Conteminated fish fraction (unitiess) 1 Flue **ب** Depth to base of affected noils 3.0E+2 (cm) Off-site 1 Off-aits 2 Thicknose of affected soils 2.4E-2 (cm) On-site L Complete Exposure Pathways and Receptors pН SolVgroundwater pH 6 8E+0 (-) Groundwater capillary Vadosa foundation. None None Noon Groundwater Ingestion 0.375 Soil Leaching to Groundwater Ingestion None None None а., Volumetric water content 0.37 0 υ. Volumetric air content 0.005 0.01 Applicable Surface Water Exposure Routes: Building Parameters ReeldenUal Commercial (الطلح) Swimming NA NA Building volume/stee mile 244E+2 NA (cm) Fish Consumption (cm*2) Foundation area 1.00E+8 NA NA Aquatio Life Protection ٨. Foundation perimeter 4.00E - 3 NA (cm) X., 1.21E+1 NA (1/d) ER Building air eachange rate Solf: Foundation thickness 1.50E+1 NA (cm) Res/Constr. Direct Ingestion and Demtal Contect հա Depth to borrow of foundation slab 1.50E+1 NA (em) Zon Foundation crack fraction 1.00E-3 NA (-) Outdoor Air: п NA Nene dP Indoor/euldoor differential pressure 0.00E+0 (o/cm/a*2) Particulates from Surface Solis None None 0.00E+0 (cm^3/6) None а, Convective air flow through slab NA Volatilization from Soils Nonu None Volatilization from Groundwale None None None مرزلدي **Groundwater Parameters** (Units) NA 6.00 Groundwater mixing zone depth (cm) Indoor Air: Net proundwater infiltration rate NA (am/yr) Velablization from Subsurface Sells Residential NA NA Groundwater Darcy velocity NA (cm/d) Valatilization from Groundwater None NA NA υ_ NA V.... Groundwater ecopage velocity (cm/d) Saturated hydrautic conductivity NA (cm/d) Receptor Distance from Source Media On-4ile Q(1-alle 1 Off-eite 2 (Unite) к. Groundwater gradient NA (-) Groundwater receptor NÅ NA NA (cm) NA NA NA (cm) S Width of proundwater source zone NA (cm) Soil leaching to groundwater receptor Outdoor air inhalation receptor NA NA NA (cm) S, Depth of groundwater source zone NA (cm) U.a NA Effective percently in water-bearing unit (-) Cumulative Fraction organic carbon in water-bearing unit NA (-) Torget Health Risk Values Individual ſ...... NA TR. Target Risk (class A&B carcinogens) 1.0E-0 T.0E-4 PH_ Groundwater pH (-) Biodogradation considered? NA TR_ Target Risk (class C carcinogens) 1.0E-6 Target Hazard Quotiant (non-carcinogenic risk) 1.0E+0 1.06+0 THO Off-eite 2 Off-eite 1 Off-e/le 2 Off-site 1 Transport Parameters (Units) Modeling Optione Lateral Groundwaler Transport Groundwater Incession Soli Leaching to GW **RECA tior** Tior 2 Longitudinal dispersivity NA NA NA NA (cm) Outdoor air volaplization model NA a, Transverse dispersivity NA NA NA NA (cm) Indoor air volabilization model Johnson & Ettinger model Vortical dispersivity NA NA NA NA (¢m) Soil leaching model NA α, Lateral Outdoor Air Transport Use soil attanuation model (SAM) for lonchate? NA Boli to Ouldoor Air Inhal, GW to Dur Air Inhel, Transverse dispersion coefficient NA NA NA NA (cm) Air dulution factor NA σ, NA Vertical dispension coefficient NA NA NA (cm) Groundwater dilution-attenuation factor NA ADF Air dispension factor NA NA NĄ NA (-) Off-site 2 (United Surface Water Parametere Ô. Surface wellor flowmto NA (cm^3/d) NOTE NA = Not applicable W_{ef} Width of GW plume at SW discharge NA (cm) Thickness of GW plume at SW durcharge NA (cm) DF_ Groundwater-to-surface water dilution factor NA (-)

CHEMICAL DATA FOR SELECTED COCs

																		· · ·			
						Diffu	sion		k	og (Koc) or					Vapor						
			Molecul	Dr		Cooff	cients			log(Kd)		Honry's	Law Constant		Prossur	na -	Solubili	Y			
			Weight		in air		in wate	r	((22 - 25 C)		(@	20 - 25 C)		(@ 20 - 23	5 C)	(@ 20 - 25	(C)			
	CAS		(g/mole	1	(cm2/s)		(cm2/s)			log(L/kg)		(atm-m3)			(mm Kg))	(mg/L)		nçid	č85 0	
Constituent	Number	type	MW	ref	Delr	ref	Dwat	ref		partition	ref	mol	(unitiess)	ref		ref	<u> </u>	rel	рК∎	pKb	ref
Benzane"	71-43-2	A	78.1	PS	8.80E-02	82	9.80E-08	R2	1.79	Кос	R2	5.53E-03	2.28E-01	R2	9,52E+01_	PS	1.60E+03	R2	-	•	
Toluene	108-88-3	A	92.4	5	8.70E-02	R2	8.60E-06	R2	2.15	Koc	R2	8.57E-03	2.71E-01	R2	3.00E+01	4	5.28E+02	R2	-	<u> </u>	<u> </u>
Elhylbenzeno	100-41-4	A	106.2	PS	7.50E-02	R2	7.80E-06	R2	2.30	Koc	R2	7.63E-03	3.23E-01	R2	1.00E+01	PS	1,69E+02	_ R2 }	-	-	•
Xylene (mixed isomers)*	1330-20-7	Ă	106,2	5	7.00E-02	R2	7.805-08	R2	2.30	Koc	R2_	7.25E-03	2.99E-01	R2	7.00E+00	4	1.61E+02	R2	-		
Methyl 1-Butyl ether"	1634-04-4	A	88.146	5	8.10E-02	R2	9.41E-05	R2	1.07	Koc	R2	5.84E-04	2.41E-02	R2_	2.49E+02	-	4,80E+04	R2	-	<u> </u>	
* = Chomical with usor-specific	ed data																				
Site Name: Former Exxon Ser		87				Comp	fotod By: JBB							Job ID	0: 2431						
Site Location: Pleasonton, (Date	Completed: 2	8-Jun	-06												

Page 1 of 4

Physical Property Data

CHEMICAL DATA FOR SELECTED COCs

Toxicity Data

		Roferan	co Dose		Raferen <u>co C</u>	опс.		Slope I	actors		Unit Risk Fe	etor		
		- (mg/k	g/day)		(mg/m))		1/(mg/l	kg/day)		1/(µg/m3)			
		• -	(mg/kg/day)						1/(mg/kg/day)				EPA Weight	la
	Oral		Dermal		Inhalation		Oral		Dermäl		inhalation		of	Constituent
Constituent	R(D_oral	rof	RfD_dormal	rof	RfC_Inhal	rof	SF_oral	ref	SF_dom/A	ref	URF_Inhal	ref	Evidence	Carcinogenic ?
Benzene	3.00E-03	R2	3.88E-03	D	3.00E-02	JE	1.00E-01	R2	5.67E-02	83_	2.90E-05	JE	A	TRUE
Toluene"	2.00E-01	R2	8.40E-02	0.06	3.00E-01	JE		-	-	-	•	JE	D	FALSE
Ethylberizene	1.00E-01	R2	9.70E-02	0.1	1.00E+00	JΕ	-	-	-	-	· .	JE	D	FALSE
Xylone (mixed isomers)"	2.00E-01	R2	1.84E-01	0,18	1.00E-01	JE	-	-	-	-	•	JE	D	FALSE
Mothyl t-Butyl ether	8.60E-01	R2	8.00E-03	0.01	3.00E+00	JE	1.60E-03		2.25E-03	R3	2.60E-07	JE	A	TRUE
* = Chemical with usor-specific	ed be											"		
Site Name: Former Exxon Sor	vi													
Site Location: Pleasonton, (

_...-

4

Miscellaneous Chemical Data

		ximum Naent Level	leW-emiT We egenevA relinD	- xkplace	Aquatic Li Prot. Criter		Biocon- contration Factor
Constituent	MCL (mg/L)	rof	TWA (mg/m3)	raf	AQL (mg/L)	ref	<u>(L-wat/kg-fish)</u>
Benzeno*	1.00E-03	-	3.25E+00		4.60E-02	R2_	12.6
Toluene"	1.50E-01	- · -	1.47E+02	ACGIH	1.30E-01	R2	70
E(hylbonzene"	7.00E-01		4.35E+02	•	2.90E-01	R2	1
Xylene (mixed isomore)*	1.75E+00	·	4.34E+02	ACGIH	1.30E-02	R2	1
Methyl t-Butyl elher*	1.30E-02	-	6,00E+01	NIOSH	8.00E+00	Ř2	1
= Chemical with user-speci	fied						
Site Name: Former Exxon Se	ərvi	_					
Site Location: Pleasonton,	, Ca						

Page 3 of 4

CHEMICAL DATA FOR SELECTED COCs

_

Miscellaneous Chemical Data

--- ---

	Dormal		Wa	ter Dor <u>mel Per</u>	meability Data									
	Robin	Dormal	Lag time for	Critical	Relativa	Water/Skin			Detection	n Limits		ΗΔΙ	f Llío	
	Absorp.	Permoability	Dermel	Exposure	Contr of Darm	Derm Adsorp		Groundw	olor	Soli		(First-Ore	for Docsy}	
	Factor	Cpaff.	Exposure	Time	Perm Coeff	Factor		(mg/L)	1	(mg/kg	}	(d.	aya)	
Constituent	(unitiess)	(cm/hr)	(hr)	(br)	(unitiosa)	(cm/event)	ref		rof		rof	Saturated	Unsaturated	rof
Benzeno'	0,1	0.021	0.26	0.63	0,013	- 7.3E-2	R3	0.0005	S	0.001	S	720	720	н
Toluene"	0,1	0.045	0.32	0.77	0.054	1.6E-1	CA	0.0005	S	0,001	S	28	28	<u>H</u>
Ethylbenzene	0,1	0.074	0.39	1.3	0.14	2.7년-1	R3	0.0005	S	0,001	<u> </u>	228	228	н
Xylona (mixed isomers)*	0,1	0.08	0.39	1.4	0,16	2.9E-1	CA	0.0005	S	0,001	S	360		<u> </u>
Methyl I-Bulyl elher	0,1		-	-		-	CA	0.0005	-	0.001	L1	360	180	н і
= Chemical with user-specifie														
Site Name: Former Exxon Serv	_													
Sile Location: Pleasonion, C														

RBCA SITE ASSESSMENT

INDOOR AIR EXPOSURE PATHWAYS			(CHECKED IF PATHWAY IS ACTIVE)		
SQ(LS (61 - 305 cm); VAPOR	····	· · · · · · · · · · · · · · · · · · ·			
INTRUSION INTO ON-SITE BUILDINGS	1) Source Medium	2) NAF Value (m*3/kg) Receptor	3) Exposure Medium Indeor Air: POE Conc. (mg/m ⁺ 3) (1)/(2)	 Exposure Multiplier (EFxED)<u>(</u>ATx365) (unitiess) 	5) Average Inhalation Exposure Concentration (mg/m*3) (3) X (4)
Constituents of Concern	Soll Conc. (mg/kg)	Residential	Residential	Residential	Residential
Benzene*	5.0E-3	7.2E+2	7.0E-6	4.1E-1	2.9E-6
Toluene*	5.0E-3	1.6E+3	3.2E-6	9.6E-1	<u>3,1E-6</u>
Elhylbenzene*	5.0E-3	2.3E+3	2.1E-6	9.6E-1	2.0E-6
Xylene (mixed isomers)*	5.0E-3	2.4E+3	2.1E-6	9.6E-1	2.0E-6
Methyl t-Butyl ether*	1.9E-1	1,2E+2	1.6E-3	4.1E-1	6.6E-4

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr)	ED = Exposure duration (yr)	NAF = Natural attenuation factor	POE = Point of exposure	
Site Name: Former Excon Service Station 7-3567			Completed: 28-Jun-06	
Site Location: Pleasonton, California		l doL	D: 2431	
Completed By: JBB				

1 OF 3

RBCA SITE ASSESSMENT

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION

INDOOR AIR EXPOSURE PATHWAYS			(CHECKED IF PATHWAY IS ACTIVE)		
GROUNDWATER: VAPOR INTRUSIÓN	Exposure Concentration				
INTO ON-SITE BUILDING5	1) Source Medium	2) NAF Value (m*34) Receptor	 Exposure Medium Indeer Air: POE Conc. (mg/m*3) (1)/(2) 	4) Exposure Multiplier (EFxEDV(ATx365) (unitiess)	5) Average (nhalation Exposure Concentration (mg/m^3) (3) X (4)
Constituents of Concern	Groundwater Conc. (mg/L)	None	Nona	Nona	None
Benzene*	1.0E+0				
Toluene*	1.0E+0				
Ethylbenzene*	1.0E+0				
Xylene (mixed isomers)*	1.0E+0				
Methyl t-Butyl ether*	1.0E+0				
		-			

NOTE: AT = Averaging lime (days) EF = Exposure frequency (days/yr)	ED = Exposure duration (yr)	NAF = Natural attenuation factor	POE = Point of exposure	
Site Name: Former Exxon Service Station 7-3567	<u>.</u>		Date Completed: 28-Jun-06	
Site Location: Pleasonton, California			Job ID; 2431	
Completed By: JBB				

3

RBCA SITE ASSESSMENT

3 OF <u>3</u>

INDOOR AIR EXPOSURE PATHWAYS	···
	TOTAL PATHWAY EXPOSURE (mg/m^3)
	(Sum average expsosure concentrations from soli and groundwater routes.)
Constituents of Concern	Rosidential
Benzene*	2.9E-6
Toluene*	3.1E-6
Ethylbenzene*	2.0E-6
Xylene (mixed isomers)*	2.0E-6
Methyl I-Butyl ether*	6.6E-4

Sile Name: Former Exon Service Station 7-3567 Date Completed: 28-Jun-06 Site Location: Pleasonton, California Job ID: 2431 Completed By: JBB

RBCA SITE ASSESSMENT

3100-11	

INDOOR AIR EXPOSURE PATHWAYS			CHECKED IF PATHWAYS A	RE ACTIVE)		
	CARCINOGENIC RISK					
	(1) EPA Carcinogenic	(2) Total Carcinogenic Exposure (mg/m²3)	(3) Inhalation Unit Risk Factor	(4) Individual COC Risk (2) x (3) x 1000		
Constituents of Concern	Classification	Residential	(µg/m*3)*-1	Rosidonilai		
Benzene*	A	2.9E-6	2.9E-5	8.3E-8		
Toluene*	0					
Elhylbenzene*	D					
Xylene (mixed isomers)*	D					
Methyl t-Butyl ether*	A	6.6E-4	2.6 <u>E</u> -7	1.7E-7		
		Total Pathwav	Carcinogenic Risk =	2.6E-7		

Site Location: Pleasonton, California Completed By: JBB

Job ID: 2431

RBCA SITE ASSESSMENT

- 4	0F	10

INDOOR AIR EXPOSURE PATHWAYS		(CHECKED IF PATHWAYS A	RE ACTIVE)			
		TOXIC EFFECTS				
	(5) Total Toxicant Exposure (mg/m^3)	(6) Inhalation Reference Concentration	(7) Individual COC Hazard Quotient (5) / (6)			
Constituents of Concern	Residential	(mg/m*3)	Residential			
Benzene*	6.7E-6	3.0E-2	2.2E-4			
Toluene"	3.1E-6	3.0E-1	1.0E-5			
Ethylbenzene*	2.0E-6	1.0E+0	2.0E-6			
Xylene (mixed isomers)*	2.0E-6	1.0E-1	2.0E-5			
Methyl t-Butyl ether*	1.5E <u>-3</u>	3.0E+0	5.2E-4			
	Total P	athway Hazard Index =	7.7E-4			

Completed By: J8B

RBCA SITE ASSESSMENT

Site Name: Former Exxon Service Station	7-3 Site Location: Pleasonton, California	Completed By: JBB		Date Completed: 28-	Jun-06 1 C
	TIER 2 EXPOSURE CONCENT	RATION AND INT	AKE CALCULATIO	N	·
SOIL EXPOSURE PATHWAY		(CHECKED IF PAT	HWAY IS ACTIVE)		
SURFACE SOILS OR SEDIMENTS: ON-SITE INGESTION AND DERMAL CONTACT	1) Source/Exposure Medium	1) Source/Exposure Medium 2) Exposure Mulliplier (IR+SAKM+RAF)×EFxED/(BWxAT) (kg/kj		3) Average Daily Inlake Rate (mg/kg/day) (1) × (2)	
Constituents of Concern	Surface Soll Conc. (mg/kg)	Residential	Construction Worker	Residential	Construction Worke
Benzene*	5.0E-3	1.3E-6	1.9E- <u>8</u>	6.3E-9	9.6E-11
Toluene*	5.0E-3	2,9E-6	1.4E-6	1.5E-8	6.8E-9
Ethylbenzene*	5.0E-3	2,9E-6	1.4E-6	1.5E-8	6.8E-9
Xylene (mixed isomers)*	5.0E-3	2.9E-6	1.4E-6	1.5E-8	<u>6.8E-9</u>
Methyl t-Butyl ether*	<u>1.9E-1</u>	1.3E-6	<u>1.9E-8</u>	2 <u>.4E-7</u>	3.6E-9

NOTE: RAF = Relative absorption factor (-)	AT = Averaging Ume (days)	ED = Exposure duration (yrs)	IR = Soil Ingestion rate (mg/day)
M = Adherence factor (mg/cm^2)	BW = Body weight (kg)	EF = Exposure frequoncoy (days/yr)	SA ≈ Skin exposure area (cm^2/day)
Site Name: Former Excon Service Station 7-3567 Site Location: Pleasonton, California		Date Completed: 28- Job ID: 2431	Jun-06

Site Location: Pleason Completed By: JBB

RBCA SITE ASSESSMENT

		ĭ	IER 2 PATHWAY	RISK CALCU				<u> </u>	
SOIL EXPOSURE PATHWAY	<u> </u>			·	(CHECKED IF PATH	WAY IS ACT	TVE)		
				CAR	CINOGENIC RISK				
	(1) EPA Carcinogenic	(a) yis ingestion	(2) Total Carcinogeni (b) via Dermal Contact		day) (d) via Dermal Contact		pe Factor p/dny)*-1	(4) Individu _{(2a)x(3e) + (2b)x(3b)	ial COC Risk (2c)x(3a) + (2d)x(3b)
Constituents of Concern	Classification		dential	Construc	lion Worker	(a) Oral	(b) Dermal	Residential	Construction Worker
Benzene*	A	2.9E-9	3.3E-9	5.0E-11	4.6E- <u>11</u>	1.0E-1	5.7E-2	4.8E-10	7.6E-12
Toluene*	D		1						<u>.</u>
Ethylbenzene*	D					_	<u> </u>		
Xylene (mixed isomers)*	D							4 05 40	
Methyl t-Butyl ether*	Α	<u>1.1E-7</u>	<u>1.3E-7</u>	<u> </u>	1.7E-9	1.8Ë-3	2. <u>3</u> E-3	4.8E- <u>10</u>	1.00-12
· · · · · ·	 No dermal slope factor 	evallablo—oral slopo fac	ner usød.		Total Pathway	/ Carcinoge	enic Risk =	9.7E-10	1.5E-11
Site Name: Former Exxon Service Stat Site Location: Pleasonton, California Completed By: JBB	on 7-3567	. <u> </u>	<u></u>					Date Completed: 2 Job iD: 2431	8-Jun-06

5 OF 10

RBCA Tool Kit for Chemical Releases, Version 1.3b

RBCA SITE ASSESSMENT

£	OF.	40
D	UF.	10

OIL EXPOSURE PATHWAY				(CHECKED IF PATH	IWAY IS ACT	IVE)	-	
				TOXIC EFFEC	TS			
		(5) Total Toxicent Inta	ake Rate (mg/kg/da	ay)	(6)	Oral	(7) Individual COC	C Hazard Quotlen
	(a) via logestion	(b) via Dermal Contect	(c) via ingestion	(d) via Dermal Contact		ose (mg/kg-day)	(5a)/(6a) + (5b)/(6b)	(5c)/(6a) + (5d)/(6b
onstituents of Concern	Resk	denilal	Construc	tion Worker	(a) Oral	(b) Domial	Residential	Construction Worker
enzene*	6.8E-9	7.8E-9	3.5E-9	3.2E-9	3.0E-3	3.9E-3	4.3E-6	2.0E-6
oluene*		7.8E-9	3.5E-9	3.2E-9	2.0E-1	6.4E-2	1.6E-7	6.8E-8
ihylbenzene*	6.8E-9	7.8E-9	3.5E-9	3.2E-9	1.0E-1	9.7E-2	1.5E-7	6.9E-8
ylene (mixed isomers)*	6.8E-9	7.8E-9	3.5E-9	3.2E-9	2.0E-1	1.8E-1	7. <u>7E-8</u>	3.5E-8
tethyl t-Butyl ether*	2.6E-7	3.0E-7	1.3E-7	1.2E-7	8.6E-1	8.0E-3	3.7E-5	1.5E-5
		iose avoilable—oral referen	nce dose used.					
				Total Pat	hway Haza	rd Index =	4.2E-5	1.8E-5
					-			
			_	<u> </u>			Date Completed: 28	- lun-06
ite Name: Former Exxon Service Stallon Ite Location: Pleasonton, California	7-3567			Total Pat	hway Haza	ard Index = 	A.2E-5	

Completed By: JBB

RBCA Tool Kit for Chemical Releases, Version 1.3b

	RBCA SITE ASSESSMENT							e Risk Su	mmary-All I	Pathways
Site Name: F			on 7-3567	-	Completed B Date Comple	ted: 28-Jun-				1 of
		i	TIER 2	BASELIN	IE RISK SU	MMARY T			_	
		BASELINE	CARCINOG	ENIC RISK			BASELI		FFECTS	····
	Individual	COC Risk	Cumulativ	COC Risk	Risk	Hazard	Quotient	Hazai	d Index	Toxicity
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk	Limit(s) Exceeded?	Maximum Value	Applicable Limit	Total Value	Applicable Limit	Limit(s) Exceeded?
OUTDOOR AIR	EXPOSURE F	PATHWAYS								
Complete:	NA	NA	NA	NA		NA	NA	NA	NA	
INDOOR AIR E	XPOSURE PA	THWAYS								<u> </u>
Complete:	1,7E-7	1,0E-6	2.6E-7	1.0E-4		5.2E-4	1.0E+0	7.7E-4	1.0E+0	
SOIL EXPOSUI	RE PATHWAY	<u>s</u>		 						·
Complete:	4.8E-10	1.0E-6	9.7E-10	1.0E-4		3.7E-5	1.0E+0	4.2E-5	1.0E+0	
GROUNDWAT	ER EXPOSURI	E PATHWAYS							<u> </u>	
Complete:	NA	NA	NA	NA		NA	NA	NA	NA	
SURFACE WAT	TER EXPOSU	RE PATHWAY	S /							
Complete:	NA	NA	NA	NA		NA	NA	NA	NA	
		WAY (Máyim	um Values Fr	om Complete	Pathways)					
	1.7E-7	1.0E-6	2.6E-7	1.0E-4		5.2E-4	1.0E+0	7.7E-4	1.0E+0	
		or Air	Indo	or Alr	. <u> </u>	Indo	or Air	Indo	or Air	
		<u> </u>	<u> </u>	<u></u>	<u></u> .					

GW-SCREEN Version 3.0; 04/03	CALCULATE RISK-I	BASED GROUNDW YES		ιΥΙΟΝ (enter "X" in "YES" bi	ox) DTSC Vapor Intrusion Guidane Interim Final 12/04
Reset to Defaults	CALCULATE INCRE (antar "X" in "YES"			UNDWATER CONCENTRATI	(last modified 1/21/05) ON
		YES	X		
	ENTER	ENTER Initial			
	Chamical	groundwater			
	CAS No.	conc.,			
	(numbers only, no deshas)	С _w (µg/L)	с	hemical	
	71432	1,81E+00	B	502005	
- Hans	ENTER	ENTER	ENTER	EMTER	
MORE	Dapth below grade			Average	ENTER
	to bottom	Depth		soil/	Avaraga vapor
	of anclosed	below grade	SCS	groundwater	flow rate into bldg.
	space floor,	to water table,	soll type	tomperature,	(Leave blank to calculste)
	LF	٤wr	directly above	Τs	O _{sol}
	(cm)	(cm)	water table	(^o C)	(L/m)
	15	719	с. <u> </u>	22	5

ENTER Vadoso 2000 SCS soil type (used to estimate soil vepor permeability)	08	ENTER Usar-dafinad vandosa zana sall vapor pormoability, k, (cm ²)	ENTER Vadose zons SCS soil type Lookup Soil Parameters	ENTER Vadosa zona soil dry bulk density, 유, ^y (g/cm ³)	ENTER Vedase zane soil total poresity, n ^V (unitless)	ENTER Vadase zona sail watar-filled parosity, 0.,* (cm ³ /cm ³)
			c	1.43	0.459	0.215

Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitiess)	ENTER Avaraging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncercinagens, AT _{INC} (yrs)	ENTER Exposura duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)
1.0E-00	1	70	30	30	350

DTSC / HERO Last Update: 11/1/03

~

DTSC Indoor Air Guidance Unclassified Soil Scroening Model HERD_Groundwater_Screening_Model_2005 8/29/2006 11:10 AM

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure groundwater conc., carcinogen {µg/L}	Indoor exposure groundwater conc., noncarcinogen (µg/L)	Risk-based Indoor exposure ground water conc., (µg/L)	Pure component water solubility, S (µg/L)	Final Indeor exposure groundwater conc., {µg/L}	Incrementel risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotlent from vapor intrusion to indoor air, noncarcinogen (unitless)
4.38E+01	1.635+04	4.38E+01	1.79E+0 <u>6</u>	4.38E+01	NA	NA

MESSAGE SUMMARY BELOW:

MESSAGE: The values of Cource and Chuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

END

-

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

indöor expesure ground water conc., carcinogen (μg/L)	indoor exposure groundwater conC., noncarcinegen (μg/L)	Risk-based Indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (µg/L)	Final indoor exposure groundwater conc., (µg/L)	Incremental risk from vapor intrusion to indoor air, carcinogen (unitloss)	Hazard quotlent from vaper Intrusion to indoor air, noncarcinogen (unitless)
			1.79E + 06	<u> NA _</u> }	3.7E-08	9.9E-05

MESSAGE SUMMARY BELOW:

END

•

GW-SCREEN ersion 3.0; 04/03	CALCULATE RISK-E	ASED GROUNDW	ATER CONCENTRA	TION (enter "X" in "YES"	' box} DTSC Vapor Intrusion Guidance
		YES			Intorim Final 12/04
Reset to		I	OR		(last modified 1/21/05)
Defaults	CALCULATE INCRE (onter "X" in "YES"	MENTAL RISKS FR box and initial grou	OM ACTUAL GROU undwater conc. bala	UNDWATER CONCENTRA	ATION
		YES	x		
	ENTER	ENTER			
	Chamical	groundwater			
	CAS No.	conc.,			
	(numbers only,	C _W	0	nemical	
	no dashes)	(μg/L)		lamea	
	109893	1.56E+00	<u> </u>	oluano	
	ENTER	ENTER	ENTER	ENTER	
MORE	Dapth			6	ENTER
	below grade	0		Average soil/	Average vapor
	to bottom of enclosed	Depth below grade	scs	groundwater	flow rate into bidg.
	spaçe floor.	to water table.	soil type	tomporature,	(Leave blank to calculate)
	L	Lw	directly above	T.	O.al
	(cm)	(cm)	water teblo	(°C)	(L/m)
	15	719	c	22	Б
MORE					

ENTER Vadoso zone SCS coll type (used to estimate soil vapor permeability)	08	ENTER Usar-definad vandoso zona soil vapor parmaability, k _x (cm ²)	ENTER Vadosa zone SCS soil type Lookup Sall Perumolara	ENTER Vadosa zona soli dry bulk density, Pb ^V (g/cm ³)	ENTER Vadose zone soll total porosity, n ^Y (unitless)	EN'FEIt Vadose zone soit water-filled porosity, 0, ² (cm ³ /cm ³)
			C	1.43	0.459	0.215

MORE V

frequency, EF (days/yr)	duration, ED (yrs)	time for noncercinegens, AT _{HC} (yrs)	time for corcinogens, AT _C (yrs)	quotient for noncarcinogens, TRO (unitless)	risk for corcinegans, TR (unitles <u>s)</u>
350	30	30	70		
C			,	lgle risk-based	1.0E-00

HERD_Groundwater_Screening_Model_2005 6/29/2006 11:19 AM

TEERCITS SHEET

INCREMENTAL RISK CALCULATIONS:

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

90-36-6	
(ssol)inu)	(ssel)inu)
noncarcinogen	Carcinogan
Indoor sir,	indoor air,
ot dojsrutuj	or noisurrai
togev moth	vepor
tnaltoup	nont Ash
PlezeH	Incremental

∀N	6.26E+06		AN	ΨN
	<u> </u>		-	
(כ)/Brl)	(7/81)	(ר) (מין)	(קאר) (קאר)	(기/Brl)
"ouoo	S	CODC.	ແ ດນດອເດໄດດອອກ	carcinogen
around werer	'Atilionios	groundwater	" 000 0	(.anoo
exboante	Jelew	exboence	groundwater	groundwater
indoor	Jueuoduuoo	Joopuj	exboence	emsodxe
IBNi7	Pure	besed-AsiA	Joopuj	Joopuj

WESSAGE SUMMARY BELOW:

END

.

(ד0/ר)

"....ou

einsodxe

roobni

leri)

solubility, groundwater

-SNOITA ILIO I

INCREMENTAL RISK CALCULATIONS:

IН

ΑN

(asolinu)

noncarcinogen

indoor air,

ា ពល់ខហររារ

from vepor

IneiJoup

bieseH

COLUMNOU MOOD	B CONCENTRATION C	ALAWQUUDH5	G3SV8-XSIE
- SNULV II.J	7.) NULTVATINGONUOS A	TAUGUIDAA	00070 Maie

(דמ/ך)

";;uo::

groundwater

erusoqxe

indoor

Plsk-based

CONCENTRATION CALCULATIONS:	HALAWONDOHD	03SV8-)
- SUCITA ILI'S IA'S NOITAGTINESINOS	GHT AWOM HORA	97249

1.66E+06 1.66E+06 6.26E+06 1.66E+06

{ˈŋ/ᠪn}

S

1038W

rnenoqmoo

Pure

aouley intervent setual values of Ceource and Chulding on the INTERCACCS worksheet are based on unity and do not represent setual values.

ΑN

(ssellinu)

carchrogen

indoor air,

of noisuriful

vepor

mont yish

เคราอตาวกไ

END

MESSAGE SUMMARY BELOW:

(אמ/ך)

noncercinogen

"ouop

groundwater

enusoqxe

loobn

AN

{****/8ti}

carcinogen

"ouoo

зетем bruosg

exboance

loobal

GW-SCREEN Version 3.0; 04/03 Reset to Defaults		YES MENTAL RISKS FF	OR OR	TION (enter "X" in "YES" bo: UNDWATER CONCENTRATIC W/)	Vapor Intradon Guidanco Interim Finel 12/04 (last modified 1/21/06)
		YES			
	ENTEB Chemical CAS No. (numbers only, no deshes)	ENTER Initial groundwater conc., Cw (µg/L)	CF	omical	
	100414	9.60E-01	Elhy	lbonzonē	
	ENTER Dapth balow grade	EN7EA	ENTEN	ENT'ER Aveidge	ENTER
	to bottom of anciosed	Depth below grada	SCS	lioa groundwater	Average vapor flow rate into bldg.
	space floor,	to water table,	soil type	tompereture,	(Leave blank to calculate)
	L _F	Lwr	directly above	Τ ₅	O _{sci}
	(cm)	(cm)	water table	(°C)	(L/m)
	15	719		22	6
	····	· · · · ·			

MORE

ENTER Vadose zone SCS soli type (used to astimata soil vapor pormeability)	0R	ENTER User-defined vendese zone soil vepor permeability, k., (cm ²)	ENTER Vadose zone SCS soli typo Lookup Sol Parameters	ENTER Vedose zone soil dry bulk density, Pb ^V (g/cm ³)	ENTER Vedose zone soil total porobity, n ^V (unitless)	ENTER Vadoso 2000 soil wator-filled porasity, 0,, ^V (cm ³ /em ³)
<u>c</u>			Ċ	1,43	0.459	0.215

MORE

ENTER Targot risk for sercinogona, TR (unitless)	ENTER Tergot hazord quotlant for noncorcinogans, THQ (unitlass)	ENTER Averaging time for careinogens, AT _C (yrs)	ENTER Averaging time for noncercinogens, AT _{NC} (yrs)	ENTER Exposura duration, ED (yra)	ENTER Exposure fraquency, EF (days/yr)
1.05-06	1	70	30	30	360

HERD_Groundwater_Screening_Model_2005 6/29/2008 11:17 AM

-

.-

DTSC Indoor Air Guldance Unclassified Soil Screening Model

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor axposure ground water canc., carcinogan (μg/L)	ndoor exposure ground water conc., noncarcinogen (µg/L)	Risk-based Indeor exposure ground water conc., (µg/L)	Pure component water solubility, S [µg/L)	Final Indoor exposure groundwater conc., 	Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor alr, noncarcinogen (unitiess)
 NA	6.36E+05	5.36 <u>E</u> +06	1.69E+05	NOC	NA	NA

.

MESSAGE SUMMARY BELOW:

MESSAGE: The values of Cource and Chuilding on the INTERCALCS worksheet are based on unity and do not represent actual values. NOC = NOT OF CONCERN. The groundwater conc. at or above the solubility limit is not of concern for this pathway.

-

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure groundwater conc., carcinogen (µg/L)	Indoor exposure groundwater conc., noncarcinogen (µg/L)	Risk-based indoor exposure groundwater conc., {µg/L}	Pure component water solubility, S (µg/L)	Final Indeor exposure groundwater conc., {µg/L}	Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotlent from vepor Intrusion to indoor air, noncarcinogen (unitless)
	NA	NA	1.69E+05	NA	NA	1.8E-06

MESSAGE SUMMARY BELOW:

END

GW-SCREEN Version 3.0; 04/03 Reset to Defaults		YES MENTAL RISKS FF		NTION (enter "X" in "YES" UNDWATER CONCENTRA	Vapor intrusion Guidance (ntorim Final 12/04 (last modified 1/21/06)
	ENTER Chamical	YES ENTEB Initiol groundwater	X		
	CAS No.	conc.,			
	(numbers only, (numbers only)	С _w (µg/L)	C	nomical	
	108383	1,01E+01	<u>т</u> і-	Xylana	
MORE	EMIER Dapih	ENTER	ENTER	ENTER	
<u> </u>	balow grade to bottom of anciosed space floor, L _f	Dopth balow grada to water table, L _{wt}	SCS soil type directly above	Average soil/ groundwater temperature, Te	ENTER Avarage vapor flow rate into bldg. (Leave blank to calculate) Q _{ad}
	(cm)		water table	(°C)	(L/m)
	15	719	[]	22	

MORE 4

ENTER Vadose zone SCS soil type (used to estimate soll vapor permeability)	୦୫	ENTER User-defined vandose zone seil vepor permeability, k, (cm ²)	ENYER Vadase zone SCS soil type Lookup Sei Persmeter	ENTER Vedose zone soil dry bulk density, Pu ^V (g/cm ³)	ENTER Vedose zone soli total porosity, n ^v (unitioss)	ENTER Vedose zone soll water-filled porosity, 0,, ^v (em ³ /cm ³)
C				1.43	0.459	0.215

MORE ↓

ENTER Target risk for carcinogons, TR (unitless)	F:RFTER Torgot hazard quotiont for noncarcinogons, THQ (unitless)	ENTÉR Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinegons, AT _{NC} (<u>y:s)</u>	ENTER Exposuro duration, ED <u>(yro)</u>	ENTER Exposuro frequency, EF (deys/yr)
1.0E-06	1	70	30	30	350

HERD_Groundwater_Scrooning_Model_2005 6/29/2008 11:27 AM

- ----

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure groundwater conc., carcinegen (ug/L)	indoor exposure groundwater conc., noncarcinogen (μg/L)	Risk-based Indoor exposure ground water conc., (µg/L)	Pure component water solubility, S (µg/L)	Final Indoor exposure groundwater conc., (µg/L)	Incremental risk from vapor intrusion 10 indoor alr, carcinogen (unitless)	Hazard quotlant from vapor intrusion to indoor alr, noncarcinogen (unitloss)
NA		NA	1. <u>61</u> E+05	NA	NA	1.7E-04

MESSAGE SUMMARY BELOW:

END

· -

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor expecture groundwater conc., carcinogen (µg/L)	Indoor exposure ground water conc., noncercinogen (µg/L)	Risk-based Indeor exposure groundwater conc., (µg/L)	Pure component water solubility, S (µg/L)	Finel Indoor exposure ground water conc., (µg/L)	Incremental risk from vapor Intrusion to indoor alt, carcinogen (unitiess)	Hazard quotient from vapor Intrusion to indoor eir, noncarcinogon (unitless)
	6.89E+04	5.89 <u>E</u> +04	1.61E+05	5.89E+04	NA .	NA

MESSAGE SUMMARY BELOW:

MESSAGE: The values of Cource and Couilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

END

.

GW-SCREEN Version 3.0; 04/03 Reset to Defaults		YES MENTAL RISKS FF	OR OR	TION (enter "X" in "YES" UNDWATER CONCENTRA WI	Vapor Intrusion Guidanoo Interim Final 12/04 (last modified 1/21/05)
		YES	×		
	ENTER Chamicéi CAS No. (numbers only, no deshes)	FINTEB Initial groundwater cone., C _W (µg/L)	Cł	nanti Cel	
	10 013103/	1-0			
	96476	1.01E+01	0.	Xylene	
	ENTER Dapth below grade	ENTER	ENTER	ENTER Avaraga	ENTER
	to bottom	Depth		soil/	Avorage vapor
	of enclosed	below grade	SCS	groundwater	(low rate into bidg. (Leave blank to calculate)
	space floor,	to water table,	soli type	tomperature, T _R	Clark Indik to calcolotoy
	եր	Lwr	directly above	(°C)	
	<u>(cm)</u>	(cm)	water table		(L/m)
	15	719		22	б
		· · · · · · · · · · · · · · · · · · ·	· · · · ·		

Mori€ ↓

ENTER Vadose zone SCS soll type (used to estimate soil vapor permeability)	୦ጽ	ENTER Usar-dofined vandose zone solt vapor parmeeblity, k, (cm ²)	ENTEH Vadoso zona SCS soli typo Lookup Soli Patemeters	ENTER Vadose zone soil dry bulk density, Pb ^V (g/cm ³)	ENTER Vadosa zono soil total porosity, n ^v (unitless)	ENTER Vedose zone soil water-filled porosity, 0.,, ^v (cm ³ /cm ³)
C			c	1.43	0.459	0.215

MÖŘE ↓

Target Target hazard risk for quotiant for carcinogans, noncarcinogans, TR THO {unitless) (uni <u>tless)</u>	Avereging time for carcinogens, AT _C (yrs)	Avaraging tima for noncarcinogens, AT _{NC} (<u>yrs)</u>	Exposure duration, ED (yrs)	Exposura froquency, EF (days/yr)
1.0E-06 1		30		350

Unclessified Soil Screening Model

HERD_Groundwater_Screening_Model_2005 6/29/2008 11:24 AM

, `^

INCREMENTAL RISK CALCULATIONS:

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

1 8E-04	AN
(ssalijiju)	(ssellinu)
noncarcinogen	carcinogen
indoor air,	indoor air,
O) UOISINNU	ot noiautul
from vepor	Vapor
traŭoup	moni vain
P1626H	Intromental

.

. AN	1.78E + 06	₩N		∀N
	(ŋ/Brl)	(<u>1/8</u> 4)	(דן/8ז()	(ŋ/Bit)
(1/61) *:2002	s ("ouao	noncarcinogen	negonioreo
Otorugwere exboarte	water solubility,	groundwater exposure	αιόπυς»" Βιόπυς Μετει	conc., groundwater
exedence (Vqool	Component	(Dqool	expoente	eunsodxe
leri]	Pure	besad-yaiA	Judobri	ισάρυι

WOJEB YRAMMUS EDA223M

END

•

•

biezeH

Г

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

VN	AN	+0+
(aael)inu)	(ចុនទក្រុមក)	······
บอยอนเราะอบอน	carcinogen	i.
indoor alr,	indoor air,	70\$0L
ດງມດເຮັບນາກ	or nakeurian	enu Bill
from vapor	vebou	30
treitoup	nisk from	1

ไดงกอกอาวกไ

-7	- AN	6.78E + 04	1.78E+06	6.78E+04	P[16E+04	<u>∀N</u>
-						
u	negonioteo	(ק/נא))	(דא8א)	(hð\r)	noncercinogen	(ๆ/8ห)
	(ozeltinu)	כסטכיי	ארן (ד	couc''	noncercinogen	นอชิอบเวเชจ
	Intrusion to	groundweter	water	Bround weter	ground water	groundwater
	indoor air,	exposure	solubility,	exposure	grone.,	groundwater
	nsk from	Final	еошролел <i>т</i>	Risk-based	exbosate	axbosure
	vapor	Indoor	Рите	Indoor	Judoor	Indoor

Sector actual values of Ceource and Chullding on the INTERCALCS worksheet are based on unity and do not represent actual values. WESSAGE SUMMARY BELOW:

END

GW-SCREEN Version 3.0; 04/03 Reset to Defaults		YES MENTAL RISKS F	OR OR	ATION (enter "X" in "Y IUNDWATER CONCEN ow)		DTSC Vapor Intrusion Gui Intorim Final 12/04 (last modified 1/21	
	no dashaa)	(µg/L)		hemical	_		
		_			_		
	108423	1_01E+01	P	Xylene			
More _↓	ENTER Depth below grade to bottom of enclosed space floor,	ENTER Dapth below grade to water table,	ENTER SCS soil type	ENTER Avaraga soil/ groundwater tamperature,		ENTER Averege vapor flow rate into bidg, ave blank to calculat	(a)
	LF	Lwr	directly above	Τs		O _{sel}	
	(cm)	(cm)	yvater toblo	(°C)		(L/m)	
					_		
	15	719		22		5	
MORE ↓	ENTER Vadose zona SCS		ENTER Usar-dolinad vandosa zona	ENTER Vadose zone	ENTER Vadose zono coli dur	ENTER Vadose zone soli satok	ENTER Vedose zona soli water-filled

soil vapor

permeabliny,

k.

(cm²)

08

MORE ¥ soil type

(used to estimate

soli vapor

permeability)

C

Target risk for sarcinogens, TR (unitiess)	Targot hazard quotiant for noncarcinogons, THQ (unitless)	Averaging time (or carcinogons, AT _C (yrs)	Avaraging time for noncercinogens, AT _{NC} (yrs)	Exposure duration, ED (yrs)	Exposure frequency EF {days/yr}
1.0E-05	1 1	70	30	30	360

SCS

soil type

Leolup Soli

Parametera

С

soil dry

bulk density,

۴v

(¢m²)

1.43

soll totol

perosity,

۳

(unitiess)

0.469

HERO_Groundwator_Screening_Model_2005 6/29/2006 11:25 AM

soil water-filled

perosity,

0.,^v

(cm³/cm³)

0.215

-

-

DTSC Indeer Air Guidance Unclassified Soll Screening Model

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure groundwater conc., cercinegen (μg/L)	Indoor exposure groundwater conc., noncercinogen {µg/L}	Risk-based Indoor exposure ground water conc., (µg/L)	Pure component water solubility, S {µg/L}	Final Indeer exposure groundwater conc., (µg/L)	Incremental risk from vapor Intrusion to indoor alr, carcinogen (unitloss)	Hazord quotient from vepor intrusion to Indoor str, noncarcinogen (unitless)
NA	5.24E+04	6.24E+04	1.86E + 05	5.24E + 04	NA	NA

MESSAGE SUMMARY BELOW:

MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

END

.

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

•

1

Indoor exposure groundwater conc., carcinogen {µg/L}	Indoor exposure groundwater conc., poncarcinogen (ug/L)	Alsk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (µg/L)	Final indoor exposure ground water conc., (¤g/L)	incremental risk from vapor Intruelon to indoor air, carcinogen (unidass)	Hazard quotlent from vapor intrusion to indoor sir, noncarclnogen (unitless)
1µ9/⊏/	(49/11	(199) 11	(2912)	(#Я(⊏)	(0110668)	(unitiess)
1.07E + 04	3.67E+06	1.078 + 04	6.10E+07	1.07E+04	NA	NA

MESSAGE SUMMARY BELOW:

MESSAGE: The values of Cource and Coulding on the INTERCALCS worksheet are based on unity and do not represent actual values,

.

END