ecology and environment, inc.

160 SPEAR STREET, SAN FRANCISCO, CALIFORNIA 94105, TEL. 415/777-2811
International Specialists in the Environment

October 4, 1990

Mr. John Moe
Southern Pacific Environmental Systems One Market Plaza
San Francisco, California 94105

Dear John:

Re: September 6, 1990 Groundwater Sampling Results at Southern Pacific Transportation Company's (SPTCo.'s) High Street Property in Oakland, California

This letter presents the results of groundwater sampling conducted by Ecology and Environment, Inc., (E \& E) on September 6, 1990 at SPTCo.'s property at 744 High Street in Oakland, California. Groundwater samples were obtained from six monitoring wells and a total of eight water samples (including one duplicate and one blank) were analyzed for PCB according to EPA Method 608 by SPTCo.'s subcontract laboratory, ENSECO Analytical, West Sacramento, California. Sample locations are shown in Figure 3-2, which is taken from the Phase II Environmental Assessment Report (E \& E, January 26, 1990). To briefly summarize the results, PCB (Aroclor 1260) were detected at 0.59 ppb in monitoring well C-6. PCB were not detected in the other monitoring wells. The remainder of this letter discusses the field activities and results in greater detail.

Groundwater sampling consisted of measuring the water level in each well, purging each well, and collecting groundwater samples. Groundwater level elevations measured on September 6, 1990 are presented in Table 1. The water level elevations in wells A-1 and B-2 were several feet higher than the levels observed in the other wells; the lowest water level was measured in well $C-2$. Groundwater flow.

 measured during the different sampling events. Groundwater levels were "The graudurativ lower in all of the wells on September 6, 1990 than on June 25, 1990. Water level declines ranged from 1.49 feet in well C-6 to 2.99 feet in well C-2. The average drop was 2.24 feet. The groundwater flow beneath the prateth direction on September 6, 1990 was similar to that observed on June 25 , May te to the orth 1990.
mbe/sp/1

Mr. John Moe
October 4, 1990
Page Two

During purging of groundwater prior to sampling, the water quality parameters temperature, electrical conductivity, and pH were measured periodically. These measurements are presented in Table 3. During evacuation, all of the wells except B-2 bailed dry. The temperature and pH of groundwater was fairly constant throughout the property. At the end of evacuation, the temperature ranged from 18.0 to $19.5^{\circ} \mathrm{C}$ and the pH was 6. Electrical conductivities at the end of purging ranged from 860 to 1,250 umhos $/ \mathrm{cm}$. The lowest conductivity was measured in A-1 and the highest was measured in C-6. Generally, the conductivities decreased slightly during evacuation, however, in B-2, the conductivity increased from about 800 umhos/cm at the beginning of purging to 1,050 umhos $/ \mathrm{cm}$ at the end after 20 gallons had been evacuated. This trend had rot previously been observed in B-2 and it should be noted that or June 25, 1990, the conductivity of groundwater was markedly lower (approximately 500 umhos $/ \mathrm{cm}$). The reason for this difference is unclear, although, the lower conductivity in June, 1990 most likely is a seasonal variation related to recharge by infiltrating rainfall during the winter.

PCB results for the period of sampling are presented in Table 4 and the laboratory report is attached. The laboratory report submitted by ENSECO was reviewed for accuracy, precision, and completeness. Based on the level of quality control required by the method, the criteria for method blanks, accuracy, precision, sample holding times and method detection limits were met by the laboratory. In addition, the results for sample number MWC-6 was confirmed by dual-column confirmation for the detection of Aroclor-1260. All sample results are therefore considered valid based on the information provided by ENSECO.

0 n September 6, 1990;-PCBs consisting entirety of Aroctor 1260 were
 the other monitoring wells. During the period of sampling (May 26, 1989 through September 6, 1990), PCBs were previously detected on May 26 and July 28, 1989 in monitoring well C-2. On both dates, Aroclor 1260 was the only PCB detected. On May 26, 1989, Aroclor 1260 was detected at 1.0 ppb and on July 28, 1989, it was detected at 0.61 and 0.78 ppb (duplicates samples).

The PCB groundwater results that have been observed at the property indicate that PCBs in shallow groundwater are intermittent and localized. Although the levels that have been detected are slightly above the EPA proposed maximum contaminant level (PMCL) of 0.5 ppb (EPA Office of Drinking Water, May 1990), the unusable nature of the shallow groundwater, due primarily to low yields, indicates that the PCB levels detected are not environmentally significant.

Mr. John Moe
October 4, 1990
Page Three

The September 6, 1990 sampling was the last scheduled monitoring at the High Street property. In view of the intermittent occurrence and the low levels of PCBs in groundwater and the unusable nature of the shallow groundwater, additional monitoring is not warranted.

It has been our pleasure to provide environmental consulting services to you at the High Street property. If you have any questions concerning the findings and recommendations presented above, feel free to call me at 777-2811.

Sincerely,
ECOLOGY AND ENVIRONMENT, INC.

Robert H. Enkeboll
Project Geologist
cc: C. Moy
CN/RT Files

Table 1

GROITNDWATER LEVEL EI.EVATIONS
September 6, 1990

Monitoring Well	Time	Depth to Water (bmp) ${ }^{1}$	Datum Adjustment	Depth to water 2 (bgs)	Ground Surface Elevation (msl)	Groundwater Elevation (msl)
A-1	0855	8.14	0.31	8.45	15.57	7.12
A-5	0857	10.74	0.60	11.34	14.94	3.60
B-2	0852	7.92	0.36	8.28	14.37	6.09
C-2	0912	14.03	0.52	14.55	15.30	0.75
c-5	0915	11.58	0.18	11.76	13.78	2.02
c-6	0843	11.25	0.25	11.50	14.01	2.51

1. bmp $=$ below measuring point
2. bgs $=$ below ground surface
3. msl = mean sea level

Table 2
SURDARY OF GROUNDMATER LEVEI, ELEVATIONS (fean sea level datue)

Monitoring Well	$\begin{aligned} & \text { May } 26, \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { July } 28, \\ & 1989 \end{aligned}$	November 22. 1989	December 4 1989	$\begin{aligned} & \text { June } 25, \\ & 1990 \end{aligned}$	$\begin{aligned} & \text { September } 6 \text {, } \\ & 1990 \end{aligned}$
A-1	8.47	7.27	7.39	8.07	8.73	7.12
A-5	--	--	--	3.05	6.10	3.60
B-2	8.00	6.36	6.23	7.15	8.04	6.09
c-2	4.06	0.58	,	1.80	3.74	0.75
C-5	--	--	--	3.47	4.93	2.02
C-6	--	--	--		4.00	2.51

Table 3

WATER QUALITY PARAMFTFRS MEASURFD DURING SAMPLING
Septenber 6, 1990

Monitoring Well	Gallons Evacuated	Temperature (${ }^{\circ} \mathrm{C}$)	Electrical Conductivity (umhos/cm)	pH	Notes
A-1	2.5	20.0	1,000	6	
	7.5	20.0	930	6	
	12.5	19.5	950	6	
	17.0	19.5	860	6	bailed dry; silty, turbid
A-5	2.5	18.5	1,200	6	slightly turbid
	5.0	18.5	1,000	6	slightly turbid
	9.0	18.0	1,050	6	bailed dry
B-2	0.5	21.0	800	7	
	2.5	20.0	750	6	
	5.0	20.0	800	7	
	7.5	19.0	850	7	
	10.0	19.0	900	6	
	12.5	19.0	980	6	
	15.0	18.5	1,020	6	
	17.5	18.5	1,050	6	
	20.0	18.5	1,050	6	
C-2	2.5	18.0	950	6	
	5.0	18.0	920	6	
	7.0	18.0	940	6	bailed dry
C-5	5.0	18.0	990	6	turbid
	7.0	18.0	980	6	turbid, sand; bailec dry
C-6	0.5	18.0	1,280	7	
	2.5	18.5	1,280	6	
	5.0	18.0	1,250	7	
	7.0	--	--	--	bailed dry

Table 4
SUYPAAR OF GROUNDNATER PCB RESULTS
(ppb, ug/1)

Monitoring Well	$\begin{aligned} & \text { May } 26, \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { July } 28, \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { December } 4, \\ & 1990 \text {, } \end{aligned}$	$\begin{aligned} & \text { June } 25, \\ & 1990 \end{aligned}$	$\begin{aligned} & \text { September } 6, \\ & 1990 \end{aligned}$
A-1	ND	--	ND		ND
A-1 *	ND	-	--		--
A-5	--	--	ND		ND
B-2	ND	--	ND		ND
B-2*	--	--	--	等	ND
c-2	-	Wermat	ND		ND
C-2*	--		ND		--
C-5	--	--	ND	I	ND
C-5*	--	\rightarrow	\cdots		--
c-6	--	--	ND		
Field Blank	ND	--	ND	19	ND

* -- Duplicate Sample

September 28, 1990
Lab ID: 054710

Bob Enkeboll
Ecology and Environment 160 Spear Street
14th Floor
San Francisco, CA 94105
Dear Mr. Enkeboll:
Enclosed is the report for the eight aqueous samples for your SPHigh Street Project, \#SP-8060, which were received at Enseco-Ca] Lab on 7 September 1990.

The report consists of the following sections:

```
I Sample Description
II Analysis Request
III Quality Control Report
IV Analysis Results
```

Data for this project was transferred to you via facsimile on 25 September 1990.

If you have any questions, please feel free to call.

du

```
CC: John Moe - S.P. Environmental
```


1 Sample Description

See the attached Sample Description Information.
The samples were received under chain-of-custody.

II Analysis Request

The following analytical test was requested.
Lab ID Analysis Description
054710-1 thru 8 PCBs

III Quality Control

A. Project Specific QC. No project specific QC (i.e., spikes and/or duplicates) was requested.
B. Method Blank Results. A method blank is a laboratory-generated sample which assesses the degree to which laboratory operations and procedures cause false-positive analytical results for your samples.

No target parameters were detected in the method blank associated with your samples at the reporting limit levels noted or the attached Method Blank Report.
C. Laboratory Control Samples - The LCS Program

Duplicate Control Samples. A DCS is a well-characterized matrix (blank water, sand or celite) which is spiked with certain target parameters and analyzed at approximately 10% of the sample load in order to establish method-specific control limits. The DCS results associated with your samples are on the attached Duplicate Control Sample Report.

Accuracy is measured by Percent Recovery as in:

$$
\% \text { recovery }=\frac{(\text { measured concentration) }}{\text { (actual concentration) }} \times 100
$$

Precision is measured using duplicate tests by Relative Percent Difference (RPD) as in:

$$
\mathrm{RPD}=\frac{(\% \text { recovery test } 1-\% \text { recovery test } 2)}{(\% \text { recovery test } 1+\% \text { recovery test } 2) / 2} \times 100
$$

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery $+/-3$ standard deviation units. Controt limits for precision (relative percent difference) range from 0 (identical duplicate DCS results) to the average, historical relative percent difference +3 standard deviation units. In cases where there is not enough historical data, EPA limits or advisory limits are set, with the approval of the Quality Assurance department.

IV Analysis Results

Test methods may include minor modifications of published EPA Methods such as reporting limits or parameter lists. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis; i.e., no correction is made for moisture content, unless the method requires or the client requests that such correction be made.

Results are on the attached data sheets.

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC

Laboratory
Sample Number
054710-0001-SA
054710-0002-SA 054710-0003-SA
054710-0004-SA
054710-0005-SA
054710-0006-SA
054710-0007-SA
054710-0008-SA

QC Matrix	QC Category
AQUEOUS	PCB-A
AQUEOUS	PCB-A
AQUEOUS	PCB-A
AQUEOUS	PCBBA
AQUEOUS	PCB-A

QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
12 SEP 90-A	12 SEP 90-A
12 SEP 90-A	12 SEP 90-A
12 SEP 90-A	12 SEP 90-A
12 SEP 90-A	12 SEP 90-A
12 SEP 90-A	12 SEP 90-A
12 SEP 90-A	12 SEP 90-A
12 SEP 90-A	12 SEP 90-A
12 SEP 90-A	12 SEP 90-A

METHOD BLANK REPORT
Semivolatile Organics by GC
Analyte \quad Result Units Reporting

Test: 608-PCB-A
Matrix: AQUEOUS
QC Lot: 12 SEP 90-A QC Run: 12 SEP 90-A
Aroclor 1016
Aroclor 1221
Aroclor 1232
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260
ND
ND
ND
ND
ND
ND
ND

ug / L	0.065
ug / L	0.065
ug / L	0.50
ug / L	0.50

DUPLICATE CONTROL SAMPLE REPORT
Semivolatile Organics by GC

Analyte

Category: PCB-A
Matrix: AQUEOUS
QC Lot: 12 SEP 90-A
Concentration Units: ug/L

Calculations are performed before rounding to avoid round-off errors in calculated results.

SAMPLE DESCRIPTION INFORMATION
for
Ecology and Environment

Lab ID	Client ID	Matrix	$\begin{aligned} & \text { Sampled } \\ & \text { Date } \quad \text { Time } \end{aligned}$	Received Date
054710-0001-SA	MWA-1	AQUEOUS	06 SEP 90	07 SEP 90
054710-0002-SA	MWA-5	AQUEOUS	06 SEP 90	07 SEP 90
054710-0003-SA	MWB-2	AQUEOUS	06 SEP 90	07 SEP 90
054710-0004-SA	MWB-3	AQUEOUS	06 SEP 90	07 SEP 90
054710-0005-SA	MWB-4	AQUEOUS	06 SEP 90	07 SEP 90
054710-0006-SA	MWC-2	AQUEOUS	06 SEP 90	07 SEP 90
054710-0007-SA	MWC-5	AQUEOUS	06 SEP 90	07 SEP 90
054710-0008-SA	MWC-6	AQUEOUS	06 SEP 90	07 SEP 90

PCBs
Method 608
Client Name: Ecology and Environment
Client ID: MWA-1

Lab ID: 054710-0001-SA Enseco ID: 164820
Matrix: AQUEOUS
Authorized: 10 SEP 90

Parameter

Aroclor 1016
Aroclor 1221
Aroclor 1232
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260

Enseco ID: 164820
Sampled: 06 SEP 90
Prepared: 12 SEP 90

Result	Units	Reporting Limit
ND	ug / L	0.065
ND	ug / L	0.065
ND	ug / L	0.065
ND	ug / L	0.065
ND	ug / L	0.065
ND	ug / L	0.50
ND	ug / L	0.50

Received: 07 SEP 90 Analyzed: 18 SEP 90

Reporting
0.065
0.065
0.065
0.065
0.50
0.50
$N D=$ Not detected
$N A=$ Not applicable
Reported By: Lisa Weiskopf
The cover letter is

Approved By: Lisa Stafford an integral part of this report. Rev 230787


```
ND = Not detected
NA = Not applicable
```

```
Reported By: Lisa Weiskopf
    The cover letter is an integral part of this report.
        Rev 230787
```

PCBs

Method 608

Client Name: Ecology and Environment
Client ID: MWB-2
Lab ID: 054710-0003-SA Enseco ID: 164822

Matrix: AQUEOUS Sampled: 06 SEP 90
Authorized: 10 SEP $90 \quad$ Prepared: 12 SEP 90

Parameter
Aroclor 1016
Aroclor 1221
Aroclor 1232
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260

Result	Units	Reporting imit
ND	ug / L	0.065
ND	ug / L	0.065
ND	ug / L	0.065
ND	ug / L	0.065
ND	ug / L	0.065
ND	ug / L	0.50
ND	ug / L	0.50

Received: 07 SEP 90
Analyzed: 18 SEP 90

Reporting

0.065
0.065
0.065
0.065
0.065
0.50

```
Reported By: Lisa Weiskopf
Approved By: Lisa Stafford
    The cover letter is an integral part of this report.


\footnotetext{
\(N D=\) Not detected
}
\(N A=\) Not applicable

\section*{Reported By: Lisa Weiskopf \\ The cover letter is an integral part of this report. Rev 230787}

\section*{PCBs}

\section*{Method 608}

Client Name: Ecology and Environment
Client ID: MWB-4
Lab ID: 054710-0005-SA Enseco ID: 164824
Matrix: AQUEOUS
Authorized: 10 SEP 90
Sampled: 06 SEP 90
Prepared: 12 SEP 90
Received: 07 SEP 90
Analyzed: 18 SEP 90
Result Units

\section*{Reporting Limit}

Aroclor 1016
Aroclor 1221
Aroclor 1232
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260
ND
ND
ND
N
ND
ND
ND
ND
ND
ND
\begin{tabular}{ll}
\(\mathrm{ug} / \mathrm{L}\) & 0.065 \\
\(\mathrm{ug} / \mathrm{L}\) & 0.50 \\
\(\mathrm{ug} / \mathrm{L}\) & 0.50
\end{tabular}

ND \(=\) Not detected
\(N A=\) Not applicable
Reported By: Lisa Weiskopf
Approved By: Lisa Stafford*

PCBs

\section*{Method 608}

Client Name: Ecology and Environment
Client ID: MWC-2
Lab ID: 054710-0006-SA Enseco ID: 164825
Matrix: AQUEOUS
Authorized: 10 SEP 90
Sampled: 06 SEP 90
Prepared: 12 SEP 90
Received: 07 SEP 90 Analyzed: 18 SEP 90
\begin{tabular}{clc} 
Result & Units & \begin{tabular}{c} 
Reporting \\
Limit.
\end{tabular} \\
ND & \(u g / L\) & 0.065 \\
ND & \(u g / L\) & 0.065 \\
ND & \(u g / L\) & 0.065 \\
ND & \(u g / L\) & 0.065 \\
ND & \(u g / L\) & 0.065 \\
ND & \(u g / L\) & 0.50 \\
ND & \(u g / L\) & 0.50
\end{tabular}

Parameter
Aroclor 1016
Aroclor 1221
Aroclor 1232
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260
ND
\(u g / L\)

\section*{porting}
0.065
0.065
0.065
0.065
0.50
0.50
```

Reported By: Lisa Weiskopf
Approved By: Lisa Stafford
The cover letter is an integral part of this report.
Rev 230787

```

\(N D=\) Not detected
\(N A=\) Not applicable
Reported By: Lisa Weiskopf
Approved By: Lisa Stafford

\section*{PCBs}

\section*{Method 608}

Client Name: Ecology and Environment
Client ID: MWC-6

Lab ID: 054710-0008-SA Enseco ID: 164827
Matrix: AQUEOUS
Authorized: 10 SEP 90

\section*{Parameter}

Aroclor 1016
Aroclor 1221
Aroclor 1232
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260

Sampled: 06 SEP 90
Prepared: 12 SEP 90
\begin{tabular}{cc} 
Result & Units \\
ND & \(u g / L\) \\
0.59 & \(u g / L\)
\end{tabular}

Received: 07 SEP 90 Analyzed: 18 SEP 90

Reporting Limit 0.065
0.065
0.065
0.065
0.065
0.50
0.50
\(N D=\) Not detected
NA \(=\) Not applicable
ecology and environment, inc.

CHAIN-OF-CUSTODY RECORD
Page _ Lof 1

\section*{ecology and environment, inc.}

\author{
160 SPEAR STREET, SAN FRANCISCO, CALIFORNIA 94105, TEL. 415/777-2811
}

Intemational Specialists in the Environment

October 4, 1990

\author{
Mr. John Moe \\ Southern Pacific Environmental Systems \\ One Market Plaza \\ San Francisco, California 94105
}

Dear John:
Re: September 6, 1990 Groundwater Sampling Results at Southern Pacific Transportation Company's (SPTCo.'s) High Street Property in Oakland, California

This letter presents the results of groundwater sampling conducted by Ecology and Environment, Inc., (E \& E) on September 6, 1990 at SPTCo.'s property at 744 High Street in Oakland, California. Groundwater samples were obtained from six monitoring wells and a total of eight water samples (including one duplicate and one blank) were analyzed for PCB according to EPA Method 608 by SPTCo.'s subcontract laboratory, ENSECO Analytical, West Sacramento, California. Sample locations are shown in Figure 3-2, which is taken from the Phase II Environmental Assessment Report (E \& E, January 26, 1990). To briefly summarize the results, PCB (Aroclor 1260) were detected at 0.59 ppb in monitoring well C-6. PCB were not detected in the other monitoring wells. The remainder of this letter discusses the field activities and results in greater detail.

Groundwater sampling consisted of measuring the water level in each well, purging each well, and collecting groundwater samples. Groundwater level elevations measured on September 6, 1990 are presented in Table 1. The water level elevations in wells \(\mathrm{A}-1\) and \(\mathrm{B}-2\) were several feet higher than the levels observed in the other wells; the lowest water level was measured in well C-2. Groundwater flow, therefore, appears to be toward the southeast in the northern portion of the property, and toward the east and northeast in the central and southern portions, respectively. Table 2 compares groundwater levels measured during the different sampling events. Groundwater levels were lower in all of the wells on September 6, 1990 than on June 25, 1990. Water level declines ranged from 1.49 feet in well C-6 to 2.99 feet in well C-2. The average drop was 2.24 feet. The groundwater flow direction on September 6, 1990 was similar to that observed on June 25, 1990.

Mr. John Moe
October 4, 1990
Page Two

During purging of groundwater prior to sampling, the water quality parameters temperature, electrical conductivity, and pH were measured periodically. These measurements are presented in Table 3. During evacuation, all of the wells except B-2 bailed dry. The temperature and pH of groundwater was fairly constant throughout the property. At the end of evacuation, the temperature ranged from 18.0 to \(19.5^{\circ} \mathrm{C}\) and the pH was 6. Electrical conductivities at the end of purging ranged from 860 to 1,250 umhos \(/ \mathrm{cm}\). The lowest conductivity was measured in A-1 and the highest was measured in C-6. Generally, the conductivities decreased slightly during evacuation, hovever, in B-2, the conductivity increased from about 800 umhos \(/ \mathrm{cm}\) at the beginning of purging to 1,050 umhos \(/ \mathrm{cm}\) at the end after 20 gallons had been evacuated. This trend had not previously been observed in B-2 and it should be noted that on June 25, 1990, the conductivity of groundwater was markedly lower (approximately 500 umhos \(/ \mathrm{cm}\) ). The reason for this difference is unclear, although, the lower conductivity in June, 1990 most likely is a seasonal variation related to recharge by infiltrating rainfall during the winter.

PCB results for the period of sampling are presented in Table 4 and the laboratory report is attached. The laboratory report submitted by ENSECO was reviewed for accuracy, precision, and completeness. Based on the level of quality control required by the method, the criteria for method blanks, accuracy, precision, sample holding times and method detection limits were met by the laboratory. In addition, the results for sample number MWC-6 was confirmed by dual-column confirmation for the detection of Aroclor-1260. All sample results are therefore considered valid based on the information provided by ENSECO.

On September 6, 1990, PCBs consisting entirely of Aroclor 1260 were detected at 0.59 ppb in monitoring well C-6; PCBs were not detected in the other monitoring wells. During the period of sampling (May 26, 1989 through September 6, 1990), PCBs were previously detected on May 26 and July 28, 1989 in monitoring well C-2. On both dates, Aroclor 1260 was the only PCB detected. On May 26, 1989, Aroclor 1260 was detected at 1.0 ppb and on July 28, 1989, it was detected at 0.61 and 0.78 ppb (duplicates samples).

The PCB groundwater results that have been observed at the property indicate that PCBs in shallow groundwater are intermittent and localized. Although the levels that have been detected are slightly above the EPA proposed maximum contaminant level (PMCL) of 0.5 ppb (EPA Office of Drinking Vater, May 1990), the unusable nature of the shallow groundwater, due primarily to low yields, indicates that the PCB levels detected are not environmentally significant.

Mr. John Moe
October 4, 1990
Page Three

The September 6, 1990 sampling was the last scheduled monitoring at the High Street property. In view of the intermittent occurrence and the low levels of CBs in groundwater and the unusable nature of the shallow groundwater, additional monitoring is not warranted.

It has been our pleasure to provide environmental consulting services to you at the High Street property. If you have any questions concerning the findings and recommendations presented above, feel free to call me at 777-2811.

Sincerely,
ECOLOGY AND ENVIRONMENT, INC.
Bolt H. Enure
Robert H. Enkeboll
Project Geologist
cc: C. May
CN/RT Files

- PHASE I MONTORING WELL
\(\wedge\) PHASE I MONITORING WELL
Figure 3-2 SPTCo. HIGH STREET
PHASE II GROUNDWATER SAMPLING LOCATIONS

Table 1

GROTMTNATER LEVEL EI.RVATIONS
September 6. 1990
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Monitoring Well & Time & Depth to Water (bmp) \({ }^{1}\) & \begin{tabular}{l}
Datum \\
Adjustment
\end{tabular} & Depth to. Water 2 (bgs) & Ground Surface Elevation (msi) & Groundwater Elevatsion (mal) \\
\hline A-1 & 0855 & 8.14 & 0.31 & 8.45 & 15.57 & 7.12 \\
\hline A-5 & 0857 & 10.74 & 0.60 & 11.34 & 14.94 & 3.60 \\
\hline 8-2 & 0852 & 7.92 & 0.36 & 8.28 & 14.37 & 6.09 \\
\hline C-2 & 0912 & 14.03 & 0.52 & 14.55 & 15.30 & 0.75 \\
\hline c-5 & 0915 & 11.58 & 0.18 & 11.76 & 13.78 & 2.02 \\
\hline c-6 & 0843 & 11.25 & 0.25 & 11.50 & 14.01 & 2.51 \\
\hline
\end{tabular}
1. bmp \(=\) below measuring point
2. bgs \(=\) below ground surface
3. msl mean sea level

Table 2

SUTOURI OF GROTMPMATER LEVET, ELEVATIONS
(mean sea level dintua)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Monitoring \\
Well
\end{tabular} & \[
\begin{aligned}
& \text { May } 26, \\
& 1989
\end{aligned}
\] & \[
\begin{aligned}
& \text { July } 26, \\
& 1989
\end{aligned}
\] & \[
\begin{aligned}
& \text { November } 22 \text {. } \\
& 1989
\end{aligned}
\] & \[
\begin{aligned}
& \text { December } 4 \\
& 1989
\end{aligned}
\] & \[
\begin{aligned}
& \text { June } 25, \\
& 1990
\end{aligned}
\] & \[
\begin{aligned}
& \text { September } 6 \text {. } \\
& 1990
\end{aligned}
\] \\
\hline A-1 & 8.47 & 7.27 & 7.39 & 8.07 & 8.73 & 7.12 \\
\hline A-5 & -- & -- & -- & 3.05 & 6.10 & 3.60 \\
\hline B-2 & 8.00 & 6.36 & 6.23 & 7.15 & 8.04 & 6.09 \\
\hline \(c-2\) & 4.06 & 0.58 & -0.28 & 1.80 & 3.74 & 0.75 \\
\hline C-5 & -- & -- & -- & 3.47 & 4.93 & 2.02 \\
\hline c-6 & -- & - -- & -- & -2.24 & 4.00 & 2.51 \\
\hline
\end{tabular}

Table 3
MATER QUALTTI PARAMFTFRS MEASImE: DURIMG SAMPLITG
September 6. 1990
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Monitoring } \\
& \text { Well }
\end{aligned}
\] & Gallons Evacuated & Tomperature (:C) & Eloctrical Conductivity (uahos/cm) & pH & Notes \\
\hline \multirow[t]{4}{*}{A-1} & 2.5 & 20.0 & 1,000 & 6 & \\
\hline & 7.5 & 20.0 & 930 & 6 & \\
\hline & 12.5 & 19.5 & 950 & 6 & \\
\hline & 17.0 & 19.5 & 860 & 6 & bailed dry; silty, turbid \\
\hline \multirow[t]{3}{*}{A-5} & 2.5 & 18.5 & 1,200 & 6 & slightly turbid \\
\hline & 5.0 & 18.5 & 1,000 & 6 & slightly turbid \\
\hline & 9.0 & 18.0 & 1,050 & 6 & bailed dry \\
\hline \multirow[t]{9}{*}{B-2} & 0.5 & 21.0 & 800 & 7 & \\
\hline & 2.5 & 20.0 & 750 & 6 & \\
\hline & 5.0 & 20.0 & 800 & 7 & \\
\hline & 7.5 & 19.0 & 850 & 7 & \\
\hline & 10.0 & 19.0 & 900 & 6 & \\
\hline & 12.5 & 19.0 & 980 & 6 & \\
\hline & 15.0 & 18.5 & 1,020 & 6 & \\
\hline & 17.5 & 18.5 & 1,050 & 6 & \\
\hline & 20.0 & 18.5 & 1,050 & 6 & \\
\hline \multirow[t]{3}{*}{C-2} & 2.5 & 18.0 & 950 & 6 & \\
\hline & 5.0 & 18.0 & 920 & 6 & \\
\hline & 7.0 & 18.0 & 940 & 6 & bailed dry \\
\hline \multirow[t]{2}{*}{C-5} & 5.0 & 18.0 & 990 & 6 & turbid \\
\hline & 7.0 & 18.0 & 980 & 6 & turbid, sand: bailed dry \\
\hline \multirow[t]{4}{*}{C-6} & 0.5 & 18.0 & 1.280 & 7 & \\
\hline & 2.5 & 18.5 & 1.280 & 6 & \\
\hline & 5.0 & 18.0 & 1,250 & 7 & \\
\hline & 7.0 & -- & -- & -- & bailed dry \\
\hline
\end{tabular}

Table 4

\section*{SUNRURI OF GROUNDWATER PCB RESULTS}
(ppb, ug/l)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Monitoring Well & \[
\begin{aligned}
& \text { May } 26, \\
& 1989
\end{aligned}
\] & \[
\begin{aligned}
& \text { July } 28, \\
& 1980
\end{aligned}
\] & December 4,
\[
1990
\] & \[
\begin{aligned}
& \text { June } 25, \\
& 1990
\end{aligned}
\] & \[
\begin{aligned}
& \text { September } 6 \text {. } \\
& 1990
\end{aligned}
\] \\
\hline A-1 & ND & - & ND & ND & ND \\
\hline A-1* & ND & -- & -- & -- & -- \\
\hline A-5 & -- & -- & ND & ND & ND \\
\hline B-2 & ND & -- & ND & ND & ND \\
\hline 8-2* & -- & \(\cdots\) & \(\sim\) & -- & ND \\
\hline c-2 & 1.0 & 0.61 & ND & ND & ND \\
\hline C-2* & -- & 0.78 & ND & - & -- \\
\hline c-5 & -- & -- & ND & ND & ND \\
\hline C-5* & - & -- & -- & ND & -- \\
\hline c-6 & -- & -- & ND & ND & 0.59 \\
\hline Field Blank & ND & -- & ND & ND & ND \\
\hline
\end{tabular}
* -- Duplicate Sample

September 28, 1990
Lab ID: 054710

Bob Enkeboll
Ecology and Environment
160 Spear Street
14th Floor
San Francisco, CA 94105
Dear Mr. Enkeboll:
Enclosed is the report for the eight aqueous samples for your SPHigh Street Project, \#SP-8060, which were received at Enseco-Cal Lab on 7 September 1990.

The report consists of the following sections:
I Sample Description
II Analysis Request
III Quality Control Report
IV Analysis Results
Data for this project was transferred to you via facsimile on 25 September 1990.

If you have any questions, please feel free to call.
 Program Administrator
du
cc: John Moe - S.P. Environmental

\section*{1 Sample Description}

See the attached Sample Description Information.
The samples were received under chain-of-custody.

\section*{11 Analysis Request}

The following analytical test was requested.
Lab \(10 \quad\) Analysis Description
054710-1 thru 8 PCBs

\section*{III Quality Control}
A. Project Specific QC. No project specific QC (i.e., spikes and/or duplicates) was requested.
B. Method Blank Results. A method blank is a laboratory-generated sample which assesses the degree to which laboratory operations and procedures cause false-positive analytical results for your samples.

No target parameters were detected in the method blank associated with your samples at the reporting limit levels noted on the attached Method Blank Report.
C. Laboratory Control Samples - The LCS Program

Duplicate Control Samples. A DCS is a well-characterized matrix (blank water, sand or celite) which is spiked with certain target parameters and analyzed at approximately \(10 \%\) of the sample load in order to establish method-specific control limits. The DCS results associated with your samples are on the attached Duplicate Control Sample Report.

Accuracy is measured by Percent Recovery as in:
```

% recovery = (measured concentration)}\times10
(actual concentration)

```

Precision is measured using duplicate tests by Relative Percent Difference (RPD) as in:
\[
R P D=\frac{(\% \text { recovery test } 1-\% \text { recovery test } 2)}{(\% \text { recovery test } 1+\% \text { recovery test } 2) / 2} \times 100
\]

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery \(+/-3\) standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate OCS results) to the average, historical relative percent difference +3 standard deviation units. In cases where there is not enough historical data, EPA limits or advisory limits are set, with the approval of the Quality Assurance department.

\section*{IV Analysis Results}

Test methods may include minor modifications of published EPA Methods such as reporting limits or parameter lists. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis; i.e., no correction is made for moisture content, unless the method requires or the client requests that such correction be made.

Results are on the attached data sheets.

\section*{QC LOT ASSIGNMENT REPORT}

Semivolatile Organics by GC

Laboratory
Sample Number
054710-0001-SA 054710-0002-SA 054710-0003-SA 054710-0004-SA 054710-0005-SA 054710-0006-SA 054710-0007-SA 054710-0008-SA
\begin{tabular}{ll} 
QC Matrix & QC Category \\
AQUEOUS & PCB-A \\
AQUEOUS & PCB-A \\
AQUEOUS & PCBB-A \\
AQUEOUS & PCB-A \\
AQUEOUS & PCB-A \\
AQUEOUS & \(P C B-A\) \\
AQUEOUS & \(P C B-A\) \\
AQUEOUS & \(P C B-A\)
\end{tabular}

QC Lot Number QC Run Number (DCS) (SCS/BLANK)

12 SEP 90-A 12 SEP 90-A

METHOD BLANK REPORT
Semivolatile Organics by GC
Analyte Result Units \begin{tabular}{c} 
Reporting \\
Limit
\end{tabular}

Test: 608-PCB-A
Matrix: AQUEOUS
QC Lot: 12 SEP 90-A QC Run: 12 SEP 90-A
Aroclor 1016
Aroclor 1221
Aroclor 1232
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260
\begin{tabular}{lll} 
ND & \(\mathrm{ug} / \mathrm{L}\) & 0.065 \\
ND & \(\mathrm{ug} / \mathrm{L}\) & 0.50 \\
ND & \(\mathrm{ug} / \mathrm{L}\) & 0.50
\end{tabular}

DUPLICATE CONTROL SAMPLE REPORT
Semivolatile Organics by GC
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Analyte} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Spiked Concentration Measured}} & & \multirow[t]{2}{*}{\begin{tabular}{l}
Accuracy \\
Average (\%
\end{tabular}} & \multirow[t]{2}{*}{Precisio} \\
\hline & & & & & & \\
\hline & & DCS1 & DCS2 & AVG & DCS Limits & DCS Limi \\
\hline
\end{tabular}

Category: PCB-A
Matrix: AQUEOUS
QC Lot: 12 SEP 90-A
Concentration Units: ug/L
Aroclor 1254
\(5.0 \quad 3.93\)
4.11
4.02
\(80 \quad 52-136\)
4.53

Calculations are performed before rounding to avoid round-off errors in calculated results.

\title{
SAMPLE DESCRIPTION INFORMATION \\ for \\ Ecology and Environment
}
\begin{tabular}{|c|c|c|c|c|}
\hline Lab ID & Client ID & Matrix & \[
\begin{aligned}
& \text { Sampled } \\
& \text { Date Time }
\end{aligned}
\] & Received Date \\
\hline 054710-0001-SA & MWA-1 & AOUEOUS & & \\
\hline 054710-0002-SA & MWA-5 & AQUEOUS & 06 SEP 90 & 07 SEP 90 \\
\hline 054710-0003-SA & MWB-2 & AQUEOUS & 06 SEP 90 & 07 SEP 90 \\
\hline 054710-0004-SA & MWB-3 & AQUEOUS & 06 SEP 90 & 07 SEP 90 \\
\hline 054710-0005-SA & MWB-4 & AOUEOUS & 06 SEP 90 & 07 SEP 90 \\
\hline 054710-0006-SA & MWC-2 & AQUEOUS & 06 SEP 90 & 07 SEP 90 \\
\hline 054710-0007-SA & MWC-5 & AQUEOUS & 06 SEP 90 & 07 SEP 90 \\
\hline 054710-0008-SA & MWC-6 & Aqueous & 06 SEP 90 & 07 SEP 90 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{PCBs} \\
\hline \multicolumn{5}{|c|}{Method 608} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{llll} 
Client Name: & Ecology and Environment & & \\
Client ID: & MWA-1 & \\
Lab ID: & O54710-0001-SA & Enseco ID: 164820 & \\
Matrix: & AQUEOUS & Sampled: 06 SEP 90 & Received: 07 SEP 90 \\
Authorized: & 10 SEP \(90 \quad\) Prepared: 12 SEP 90 & Analyzed: 18 SEP 90
\end{tabular}}} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline Parameter & & Result & Units & Reporting Limit \\
\hline Aroclor 1016 & & ND & ug/L & 0.065 \\
\hline Aroclor 1221 & & ND & ug/L & 0.065 \\
\hline Aroclor 1232 & - & ND & ug/L & 0.065 \\
\hline Aroclor 1242 & & ND & ug/L & 0.065 \\
\hline Aroclor 1248 & & ND & ug/L & 0.065 \\
\hline Aroclor 1254 & & ND & ug/L & 0.50 \\
\hline Aroclor 1260 & & ND & ug/L & 0.50 \\
\hline
\end{tabular}

ND \(=\) Not detected
\(N A=\) Not applicable
Reported By: Lisa Weiskopf
Approved By: Lisa Stafford
The cover letter is an integral part of this report.


ND \(=\) Not detected
NA = Not applicable

Reported By: Lisa Weiskopf
The cover letter is an integral part of this report. Rev 230787

PCBs
Method 608
Client Name: Ecology and Environment
Client ID: MWB-2
Lab ID: 054710-0003-SA Enseco ID: 164822
Matrix: AQUEOUS Sampled: 06 SEP 90
Authorized: 10 SEP 90 . Prepared: 12 SEP 90

Parameter
Aroclor 1016
Aroclor 1221
Aroclor 1232
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260

\section*{Result Units}

ND
ND
ND
ND
ND
ND
ND
\(u g / L\)

Received: 07 SEP 90 Analyzed: 18 SEP 90

Reporting Limit
0.065
0. 065
0.065
0.065
0.065
0.50
0.50

ND = Not detected \(N A=\) Not applicable
PCBs
Method 608

Client Name: Ecology and Environment
Client ID: MWB-3
Lab ID: 054710-0004-SA Enseco 10: 164823
Matrix: AQUEOUS Sampled: 06 SEP 90
Authorized: 10 SEP 90 - Prepared: 12 SEP 90

Parameter
Aroclor 1016
Aroclor 1221
Aroclor 1232
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260

Result Units
\begin{tabular}{lll} 
ND & \(\mathrm{ug} / \mathrm{L}\) & 0.065 \\
ND & \(\mathrm{ug} / \mathrm{L}\) & 0.50 \\
ND & \(\mathrm{ug} / \mathrm{L}\) & 0.50
\end{tabular}

ND = Not detected
NA = Not applicable
Reported By: Lisa Weiskopf
Approved By: Lisa Stafford The cover letter is an integral part of this report. Rev 230787

PCBs
Method 608
Client Name: Ecology and Environment
Client ID: MWB-4
Lab ID: 054710-0005-SA Enseco ID: 164824
Matrix: AQUEOUS . Sampled: 06 SEP 90
Authorized: 10 SEP 90 Prepared: 12 SEP 90

\section*{Parameter}

Aroclor 1016
Aroclor 1221
Aroclor 1232
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260
Result Units

Received: 07 SEP 90
Analyzed: 18 SEP 90
Reporting
Limit
\begin{tabular}{lll} 
ND & \(u g / L\) & 0.065 \\
ND & \(u g / L\) & 0.065 \\
ND & \(u g\) & 0.065 \\
ND & \(u g / L\) & 0.065 \\
ND & \(u g / L\) & 0.065 \\
ND & \(u g / L\) & 0.50 \\
ND & \(u g / L\) & 0.50
\end{tabular}

ND \(=\) Not detected
\(N A=\) Not applicable
Reported By: Lisa Weiskopf
Approved By: Lisa Stafford
The cover letter is an integral part of this report.


ND = Not detected
NA = Not applicable
Reported By: Lisa Weiskopf
Approved By: Lisa Stafford
The cover letter is an integral part of this report. Rev 230787
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{PCBs} \\
\hline \multicolumn{5}{|c|}{Method 608} \\
\hline \multicolumn{5}{|l|}{ient Name: Ecology and Environment} \\
\hline Client ID: & MWC-5 & & & \\
\hline Lab ID: & 054710-0007-SA & Enseco ID: 164826 & & \\
\hline Matrix: & AQUEOUS & Sampled: 06 SEP & & Received: 07 SEP 90 \\
\hline Authorized: & 10 SEP 90 & Prepared: 12 SEP & & Analyzed: 18 SEP 90 \\
\hline Parameter & & Result & Units & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} \\
\hline Aroclor 1016 & & ND & ug/L & 0.065 \\
\hline Aroclor 1221 & & ND & ug/L & 0.065 \\
\hline Aroclor 1232 & & ND & ug/L & 0.065 \\
\hline Aroclor 1242 & & ND & ug/L & 0.065 \\
\hline Aroclor 1248 & & ND & ug/L & 0.065 \\
\hline Aroclor 1254 & & ND & ug/L & 0.50 \\
\hline Aroclor 1260 & & ND & ug/L & 0.50 \\
\hline
\end{tabular}

ND = Not detected
NA = Not applicable
PCBs \begin{tabular}{c} 
Method 608
\end{tabular}

Client Name: Ecology and Environment
Client ID: MWC-6
Lab ID: 054710-0008-SA Enseco ID: 164827
Matrix: AQUEOUS
Authorized: 10 SEP 90 . \(\quad \begin{aligned} & \text { Sampled: } 06 \text { SEP } 90 \\ & \text { Prepared: } \\ & 12\end{aligned}\)
Received: 07 SEP 90 Analyzed: 18 SEP 90 Reporting
Parameter
Aroclor 1016
Aroclor 1221
Aroclor 1232
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260
\begin{tabular}{ccc} 
Result & Units & \begin{tabular}{c} 
Reporting \\
Limit
\end{tabular} \\
ND & \(\mathrm{ug} / \mathrm{L}\) & 0.065 \\
ND & \(\mathrm{ug} / \mathrm{L}\) & 0.50 \\
0.59 & \(\mathrm{ug} / \mathrm{L}\) & 0.50
\end{tabular}

NO \(=\) Not detected
NA = Not applicable
Reported By: Lisa Weiskopf
Approved By: Lisa Stafford
The cover letter is an integral part of this report.
\(\operatorname{Rev} 230787\)
ecology and environment, inc.

CHAIN-OF-CUSTODY RECORO

```

