

LETTER OF TRANSMITTAL

TO:	Ms. Juliette Shin Alameda County Health Care S Hazardous Materials Division 80 Swan Way, Room 200 Oakland, CA 94621	
DATE: PROJECT SCI JOB NUMBER:	June 2, 1992 College of Alameda/555 Atlan 469.005 and 469.006	ntic Avenue, Alameda
WE ARE SENDING Y 1 copies eac X of our final report a draft of our report a Service Agreement a proposed scope of specifications grading/foundation pl soil samples/groundv an executed contract	h services lans water samples	if you have any questions, please call for your review and comment please return an executed copy for geotechnical services with our comments with Chain of Custody documents for your use
REMARKS:	4 (
COPIES TO:	d is one copy of two reports: Groundwater Investigation ar Underground Tank Closure and	
BY: May	ianne Watada (Cul)	

Subsurface Consultants, Inc.

GROUNDWATER INVESTIGATION COLLEGE OF ALAMEDA 555 ATLANTIC AVENUE ALAMEDA, CALIFORNIA SCI 469.006

Prepared for:

Mr. Robert Mibach Director of Physical Plant Peralta Community College District 333 East 8th Avenue Oakland, California 94606

By:

R. William Rudolph

ames P. Bowers

Geotechnical Engineer 741 (expires 12/31/92)

James P. Bowers

Geotechnical Engineer 157 (expires 3/31/95)

Subsurface Consultants, Inc. 171 12th Street, Suite 201 Oakland, California 94607 (510) 268-0461

April 3, 1992

I INTRODUCTION

This report presents the results of a groundwater investigation conducted by Subsurface Consultants, Inc. (SCI) at the College of Alameda, 555 Atlantic Avenue in Alameda, California. The investigation was required by the Alameda County Health Care Services Agency (ACHCSA) to evaluate whether groundwater quality has been impacted by hydrocarbon releases from previous underground storage tanks. The study area is shown on Plate 1.

On August 15 and 20, 1991, five underground storage tanks (identified as tanks A1, A2, A3, A4 and A5) were removed from the site. The tanks stored gasoline, fuel oil and waste oil. The analytical test results of soil and groundwater from beneath tanks A-1 through A-4 and their associated piping indicated that releases had occurred. Soil remediation, consisting of excavation and offsite disposal of contaminated soil, was successful in removing soils containing contaminant concentrations above analytical detection limits. Based upon a telephone conversation with Mr. Dennis Byrne, of the ACHCSA, an investigation of groundwater quality would be required near tanks A1 through A4. The results of tank closure and soil remediation, and a groundwater investigation work plan were presented in our report dated October 31, 1991.

As outlined in our proposal dated January 15, 1992, the scope of the groundwater investigation included:

 Obtaining a permit to install three wells from the Alameda County Flood Control and Water Conservation District, Zone 7,

- 2. Performing a utility check to clear drilling locations,
- 3. Drilling 3 test borings approximately 15 to 20 feet deep,
- 4. Constructing a groundwater monitoring well in each of the test borings,
- 5. Developing, purging and sampling the wells in accordance with Regional Water Quality Control Board guidelines,
- 6. Performing analytical tests on selected soil and groundwater samples from each well,
- 7. Performing a level survey of the top of well casings, and
- 8. Preparing a written report recording the results of the investigation.

II FIELD INVESTIGATION

Groundwater monitoring wells were installed in three test borings drilled near the previous tanks. Well locations were selected in consultation with Mr. Byrne and are shown on the Study Area Plan, Plate 2. A discussion of procedures followed during drilling, soil sampling, monitoring well installation, well development and sampling is provided in Appendix A. Permits and field reports are presented in Appendix B.

A level survey was performed to determine the elevation of the top of the well casings. The elevations were referenced to the top of the curb adjacent to the fire hydrant shown on Plate 2. The elevation reference was assumed to be 100.00 feet.

III ANALYTICAL TESTING

Selected soil and groundwater samples were analyzed by Curtis & Tompkins, Ltd., a laboratory certified by the California Department of Health Services (DHS) for hazardous waste and water testing. The samples were analyzed for the following:

- 1. Total volatile hydrocarbons (TVH),
- 2. Benzene, toluene, xylene, and ethylbenzene (BTXE),
- 3. Total extractable hydrocarbons (TEH),
- 3. Oil and Grease, and
- Purgeable halocarbons.

The results of the soil and groundwater analyses are presented in Tables 1 and 2, respectively. Analytical test reports and chain-of-custody documents are presented in Appendix C.

IV SITE CONDITIONS

A. Regional Setting

The College of Alameda is situated on the north side of Alameda, an island located south of the Oakland inner harbor. In the 1800's, about 1/3 of the northern portion of Alameda was marshland, traversed by meandering tidal channels. The College occupies an area on the edge of these former marshlands. Maps from

the late 1800's indicate that the shoreline existed at what is currently Atlantic Avenue, just south of the site. Reclamation of the marshlands by fill placement began in the late 1800's.

B. Surface Conditions

The College of Alameda encompasses the northwest corner of the intersection of Webster Street and Atlantic Avenue. The study area is at the west end of the campus, as shown on the Site Plan. The study area is relatively level and covered with a lawn, asphalt concrete pavement and several school buildings. Well and previous tank locations are shown on Plate 2.

C. Subsurface Conditions

Our investigation and the conditions exposed during tank removal activities confirm that the study area is underlain by fill overlying bay and marsh deposits (Bay Mud). The fill varies from 2 to 5 feet thick and consists of sands, clays and gravel. In Borings MW-1 and MW-2, the fill is underlain by a thin layer (about 2 feet thick) of clayey sand. The fill in Boring MW-3 and the clayey sands in MW-1 and MW-2 are underlain by soft bay/marsh deposits, locally known as Bay Mud. Characteristically, the Bay Mud possesses relatively low permeability.

D. Groundwater Conditions

Groundwater was encountered at depths of about 5 feet in Borings MW-1 and MW-2 during drilling. Groundwater was not encountered while drilling MW-3, yet was present four days later in the monitoring well. Groundwater levels have been periodically measured. However stabilized groundwater measurements have not

Tidal letvation?

been obtained to date in MW-3. As a result, we are unable to develop any conclusions regarding the direction of groundwater flow at the site at this time.

V CONCLUSIONS

A. Fuel Oil Tank Area

MW-1 is located near two previous fuel oil (diesel #2) tanks. Diesel was detected in both the soil and groundwater samples at concentrations of 3.8 mg/kg and 94 ug/l, respectively. Groundwater appears to have been impacted by hydrocarbon releases in this area.

B. Gasoline Tank Area

MW-2 is situated near a former gasoline tank. Neither gasoline, nor its constituents benzene, toluene, xylene and ethylbenzene (BTXE) were detected in the soil and groundwater samples at concentrations in excess of analytical detection limits.

C. Waste Oil Tank Area

1. Soil Conditions

MW-3 is located near the former waste oil tank. Oil and grease and extractable hydrocarbons, reported as diesel, were detected in the soil sample obtained from this boring.

2. Groundwater Conditions

Groundwater from MW-3 contained 680 ug/l of total extractable hydrocarbons in the kerosene range. However, due to the slow rate of recharge of this well, a low volume of water was removed prior to sampling. For this reason, we consider the sampling results to

be inconclusive since they may not be representative. Additional development and sampling should be conducted before conclusions regarding impacts to groundwater can be developed.

D. Recommendations

In accordance with ACHCSA and Regional Water Quality Control Board (RWQCB) guidelines, we recommend that the wells be monitored on a quarterly basis for TVH, BTXE, TEH, and oil and grease, as appropriate. The wells should be sampled and analytically tested as outlined in Appendix A. Due to widely fluctuating groundwater readings, we recommend that groundwater levels be monitored monthly for the next six months. In addition, we recommend that MW-3 be developed further prior to the next sampling event.

VI REPORTING

This investigation was required by the ACHCSA. We recommend that this report be provided to them at the following address:

Mr. Dennis Byrne Alameda County Health Care Services Agency Hazardous Materials Program 80 Swan Way, Room 200 Oakland, California, 94621

List of Attached Plates:

Plate 1 Site Plan

Plate 2 Study Area Plan

Plates 3 and 4 Logs of Test Borings MW-1 through MW-3

Plate 5 Unified Soil Classification System

Tables:

Table 1 Contaminant Concentrations in Soil

Table 2 Contaminant Concentrations in Groundwater

Table 3 Groundwater Elevations

Appendix:

Appendix A Investigation Protocol

Appendix B Well Permits

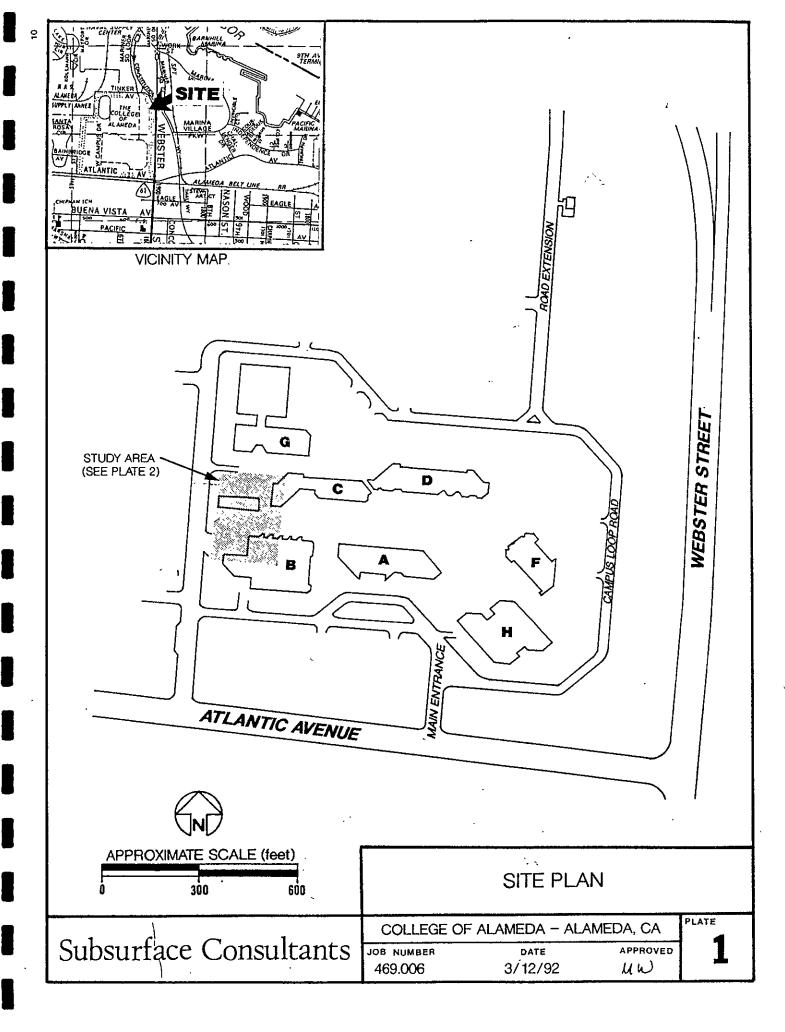
Well Development Forms Well Sampling Forms

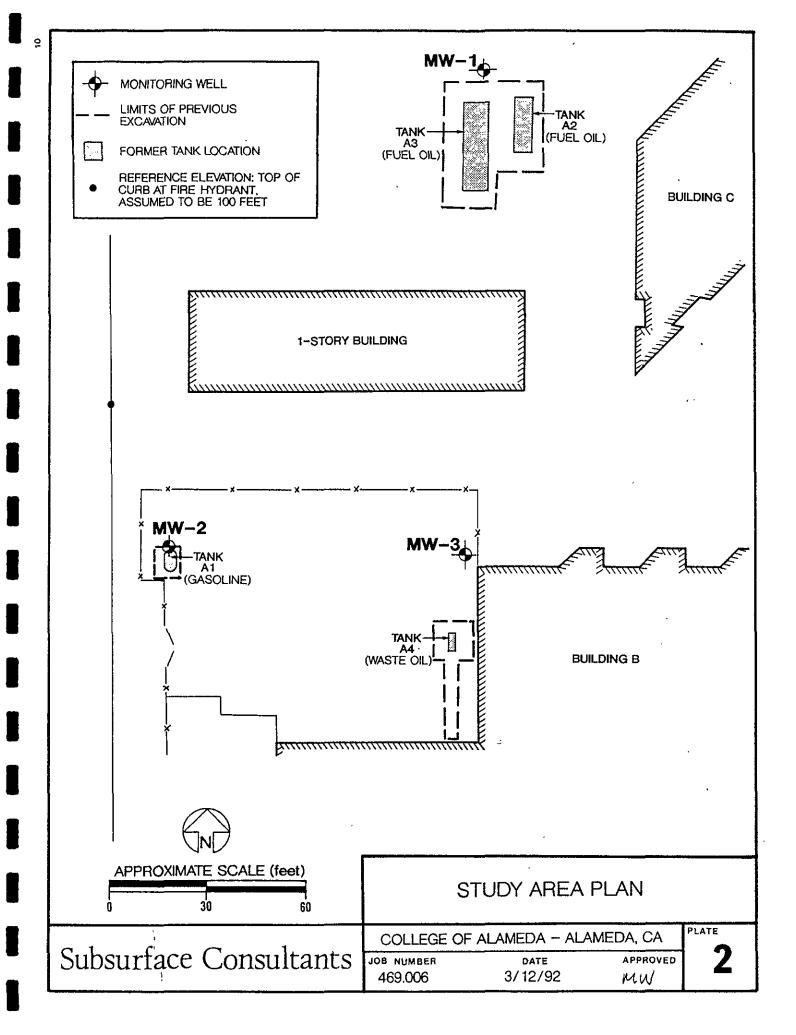
Appendix C Analytical Test Reports

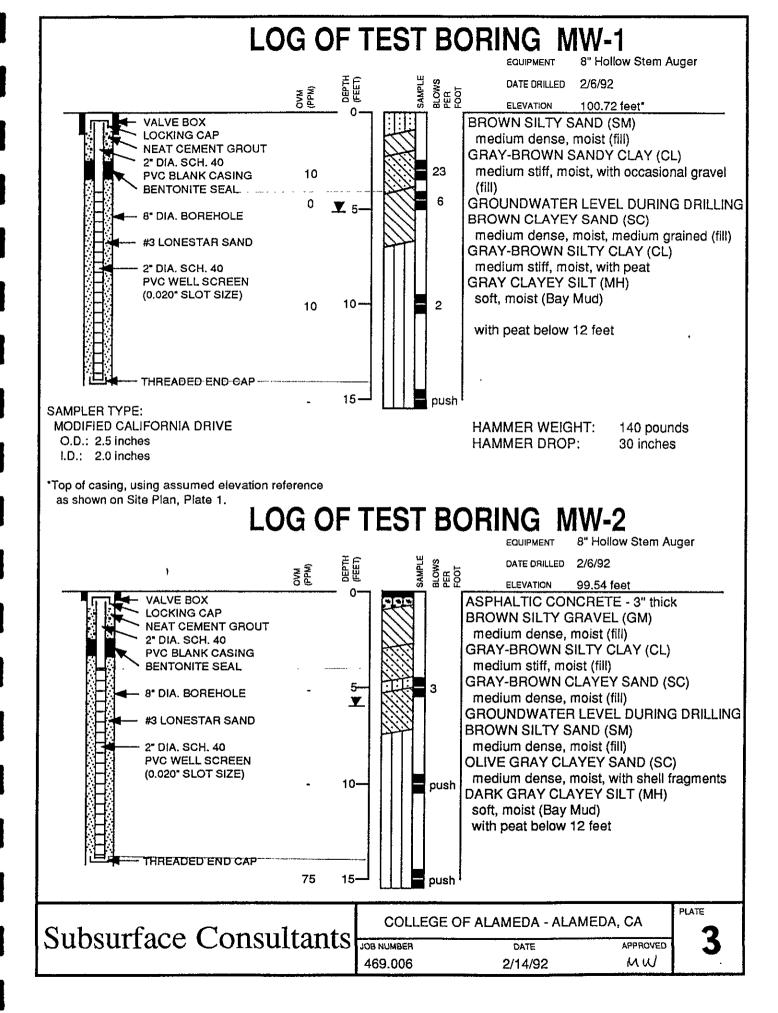
Chain-Of-Custody Documents

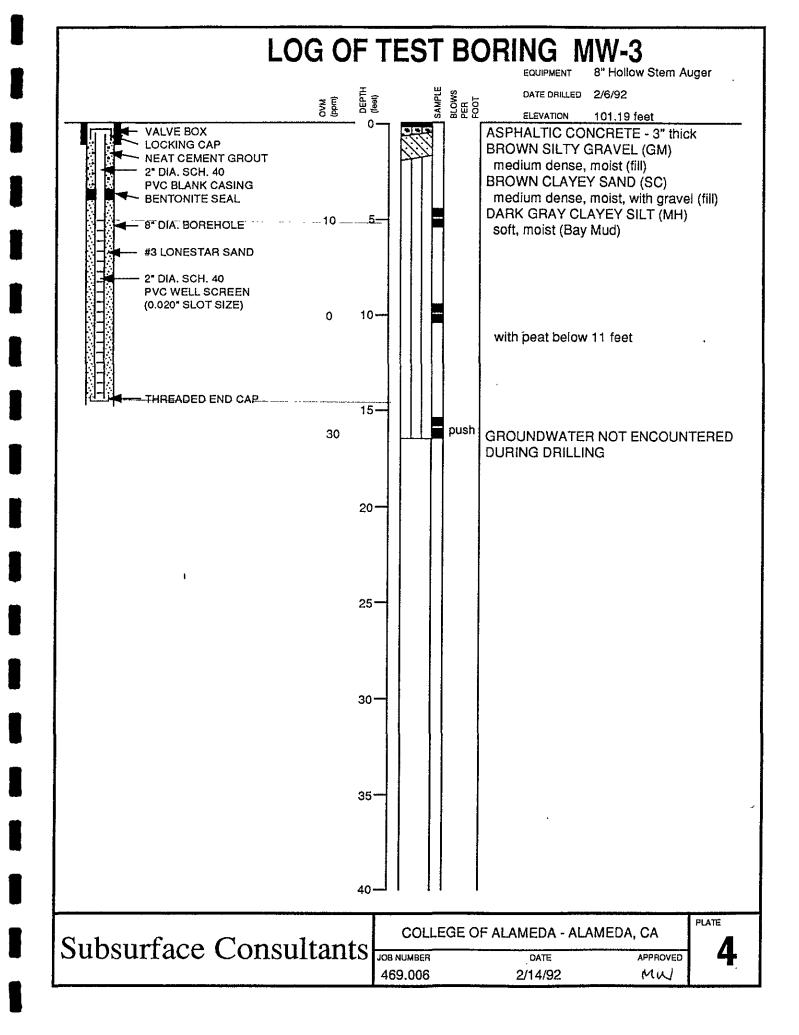
Distribution:

4 copies Mr. Robert Mibach


Director of Physical Plant


Peralta Community College District


333 East 8th Avenue


Oakland, California 94606

MFW:RWR:JPB:ddh

GEN	IERAL SOIL C	ATEGORIES	SYMI	BOLS	TYPICAL SOIL TYPES
		Clean Gravel with	GW		Well Graded Gravel, Gravel-Sand Mixtures
LS	GRAVEL More than half	little or no fines	GP		Poorly Graded Gravel, Gravel-Sand Mixtures
SOIL.9	coarse fraction is larger than No. 4 sieve size	Gravel with more	GM		Silty Gravel, Poorly Graded Gravel-Sand-Silt Mixtures
GRAINED SOI		than 12% fines	GC		Clayey Gravel, Poorly Graded Gravel-Sand-Clay Mixtures
E GR/		Clean sand with little	sw		Well Graded Sand, Gravelly Sand
COARSE More than half i	SAND More than half coarse fraction	or no fines	SP		Poorly Graded Sand, Gravelly Sand
O aoM	is smaller than No. 4 sleve size	han	SM		Silty Sand, Poorly Graded Sand-Silt Mixtures
		than 12% fines	sc		Clayey Sand, Poorly Graded Sand-Clay Mixtures
sieve			ML		Inorganic Sitt and Very Fine Sand, Rock Flour, Sitty or Clayey Fine Sand, or Clayey Silt with Slight Plasticity
SOILS n No. 200	-	AND CLAY it Less than 50%	CL		Inorganic Clay of Low to Medium Plasticity, Gravelly Clay, Sandy Clay, Silty Clay, Lean Clay
	1		OL		Organic Clay and Organic Silty Clay of Low Plasticity
FINE GRAINED			мн		Inorganic Silt, Micaceous or Diatomaceous Fine Sandy or Silty Soils, Elastic Silt
		AND CLAY Greater than 50%	СН		Inorganic Clay of High Plasticity, Fat Clay
More			он		Organic Clay of Medium to High Plasticity, Organic Silt
	HIGHLY ORG	ANIC SOILS	РΤ		Peat and Other Highly Organic Soils

	UNIFIED S	SOIL CLASSIFI	CATION S	YSTEM
	COLLEGE	OF ALAMEDA - ALA	MEDA, CA	PLATE
Subsurface Consultants	JOB NUMBER 469.006	DATE 2/14/92	APPROVED MW	5 .

Table 1. Contaminant Concentrations In Soil

Sample	TVH ¹ (mg/kg) ⁴	TEH Kerosene Range (mg/kg)	Diesel Range (mg/kg)	TOG ³ (mg/kg)	Benzene (ug/kg) ⁵	Toluene (ug/kg)	Ethyl- Benzene (ug/kg)	Total Xylenes (ug/kg)	EPA 8010 Chemicals
MW 1 @ 4.5'	6	<1.0	3.8		<5.0 ⁷	<5.0	<5.0	<5.0	-
MW 2 @ 5'	<1.0				<5.0	<5.0	<5.0	<5.0	
MW 3 @ 5'	<1.0	NR ⁸	13	190	<5.0	<5.0	<5.0	<5.0	ND ⁹

Total volatile hydrocarbons, as gasoline, EPA Method 5030/8015 modified

Total extractable hydrocarbons, EPA 3550/8015 modified

Total oil and grease, EPA 3550 and SMWW 17:5520 E&F

Milligrams per kilogram or parts per million (ppm)

Micrograms per kilogram or parts per billion (ppb)

⁶ Test not requested

Less than detection limit shown

Kerosene range not reported

None detected, less than detection limits with range from 5 to 20 ug/kg; 2 - chloroethylvinyl ether failed the calibration criteria, therefore there are no results for this compound

Table 2. Contaminant Concentrations in Groundwater

	Sampling	TVH ¹	TEH Kerosene	Diesel	TOG ³	Pongono	Toluono	Ethyl-	Total	EPA 8010
Tank Area		(ug/1)4	Range (ug/1)	Range (ug/l)	$\frac{(mg/1)^5}{(mg/1)^5}$			(ug/1)		Chemicals
Fuel Oil MW-1	2/19/92	6	<50	94		<0.5	<0.5	<0.5	<0.5	
Gasoline MW-2	2/19/92	<50		ياحد سنت		<0.5	<0.5	<0.5	<0.5	
Waste Oil MW-	3 2/19/92	^ر ې ۲۶۵۵۵ ^۶	680	< 50	< 5	<50	<50	< 50	84	ND ⁸

Total volatile hydrocarbons as gasoline, EPA 8015/5030 modified

Total extractable hydrocarbons, EPA 3550/8015 modified

Total oil and grease, EPA 3550 and SMWW 17:5520 E&F

Micrograms per liter or parts per billion (ppb)

Milligrams per liter or parts per million (ppm)

Test not requested

Sample diluted due to foaming during purge and trap extraction

Not detected at or above reporting limits. Reporting limits vary from 1.0 to 20 ug/l. See test reports for individual reporting limits.

Table 3. Groundwater Elevations

<u>Well</u>	TOC ¹ Elevation	<u>Date</u>	Groundwater Depth ² (feet)	Groundwater Elevation (feet)
MW-1	100.72	2/24/92 3/09/92 3/24/92	8.04 4.28 4.33	92.68 96.44 96.39
MW-2	99.54	2/24/92 3/09/92 3/24/92	4.45 3.70 3.73	95.09 95.84 95.81
MW-3	101.19	2/24/92 3/09/92 3/24/92	13.12 8.75 6.87	88.07 92.44 94.32

Top of casing. Referenced to top of curb at fire hydrant with an assumed elevation of 100.00 feet. Measured below TOC.

2

Appendix A

Investigation Protocol

APPENDIX A INVESTIGATION PROTOCOL

A. Test Borings

Prior to drilling the test borings, SCI obtained a groundwater protection ordinance permit from the Alameda County Flood Control and Water Conservation District, Zone 7. The project permit number is 92022. A copy of the permit is included in Appendix B.

The test borings were drilled using a truck-mounted drill rig equipped with 8-inch-diameter hollow stem augers. Our field engineer observed drilling operations, prepared detailed logs of the test borings and obtained undisturbed samples of the materials encountered. Test boring logs are presented on Plates 3 and 4. Soils are classified in accordance with the Unified Soil Classification System described on Plate 5.

A California Drive Sampler having an outside diameter of 2.5 inches and an inside diameter of 2.0 inches was used to obtain soil samples. The number of blows required to drive the sampler the final 12 inches of each 18-inch penetration was recorded and is presented on the test boring logs. Drilling and sampling equipment was thoroughly steam-cleaned prior to each use to reduce the likelihood of cross-contamination between samples and/or borings.

Soil samples were retained in 2.0-inch-diameter brass liners. Teflon sheeting was placed over the ends of the soil liners; the liners were subsequently capped and sealed with duct tape. The shoe sample from each drive was retained in a plastic bag and screened for volatile organics using an Organic Vapor Meter (OVM).

OVM measurements are recorded on the test boring logs. The sealed liners were placed in ice-filled coolers and remained iced until delivery to the analytical laboratory. Chain-of-Custody records accompanied the samples to the laboratory.

The test borings were completed as groundwater monitoring wells, as detailed in the following section. Soil cuttings generated during drilling were stockpiled on-site and covered with plastic sheeting.

B. Groundwater Monitoring Wells

At the completion of drilling, monitoring wells were installed in the test borings. Well schematics are shown on the respective test boring logs. In general, the wells consist of 2 -inchdiameter, Schedule 40 PVC pipe having flush-threaded joints. pipe was steam-cleaned prior to being placed in the borehole. lower 10 feet of the wells consists of machine-slotted well screen having 0.02-inch slots. The remaining portion of the wells consist of blank pipe. The wells were provided with bottom caps and locking top caps. The well screen is encased in a filter composed of Lonestar No. 3 washed sand. The filter sand was placed by carefully pouring it through the annulus between the hollow stem of the auger and the well casing. Periodically, the augers were raised to allow the sand to fill the annulus between the casing and the borehole. The filter extends from just below the bottom of the well to at least one foot above the top of the screened section. A one-foot thick bentonite pellet seal was placed above the sand The annulus above the bentonite seal was backfilled with filter.

cement grout. The grout mixture consists of Portland cement mixed with clean water. It was placed in a manner similar to the sand filter. The monitoring well was completed below grade and is protected by a traffic-rated valve box.

The wells were developed at least 24 hours after the grout seal was placed to allow for proper set up. Initially, the depth to water was measured below the top of the well casing using an electronic sounder. The wells were then developed by removing water with a hand bailer. During the initial sampling event, the wells were allowed to sit for approximately 72 hours after development before sampling. They were then purged of about 2 to 4 well casing volumes of water and sampled with a disposable sampling device. Well development and purge water was placed in 55 gallon drums which are stored on-site. Well development and sampling forms are presented in Appendix B.

Groundwater samples were retained in chilled, pre-cleaned containers supplied by the laboratory. The type of containers used is dependent on the type of analysis to be performed. A summary of containers used is presented below.

Groundwater Sample Containers

Analysis	Container
Total Volatile Hydrocarbons (TVH) EPA 8015 modified/5030	Glass, 40 milliliter vials
Benzene, Toluene, Xylene and Ethylbenzene (BTXE) EPA 8020/5030	Glass, 40 milliliter vials
Purgeable Halocarbons EPA 8010	Glass, 40 milliliter vials
Total Extractable Hydrocarbons (SLED) EPA 8015 modified/3550	Glass, 1 liter bottle
Oil and Grease SMWW 17:5520	Glass, 1 liter bottle

Water samples were placed in ice-filled coolers and remained iced until delivery to the analytical laboratory. Chain-of-Custody records accompanied the samples to the laboratory.

Appendix B

Well Permits Well Development Forms Well Sampling Forms

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

5997 PARKSIDE DRIVE

Sen O Campoto 1/13/92

APPLICANT'S

PLEASANTON, CALIFORNIA 94566

(415) 484-2600

GROUNDWATER PROTECTION ORDINANCE PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT College of Alameda 255 Atlantic Areste Alameda, California	PERMIT NUMBER 92022 LOCATION NUMBER
Address 333 East 8 Ave Phone 466-7340 City Oakland CA Zip 94606	Tony Gracial Permit CONDITIONS Circled Permit Requirements Apply
Nome Sean Carson Substitute Consultants Tac Substitute C	A. GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well projects, or drilling logs and location sketch for geotechnical projects. 3. Permit is void if project not begun within 90
PROPOSED WATER WELL USE Innestic Industrial Irrigation Monicipal Monitoring Other POSED CONSTRUCTION Illing Method:	days of approval date. B. WATER WELLS, INCLUDING PIEZOMETERS 1. Minimum surface seal thickness is two inches of cement grout placed by tremie. 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and
Mud Rotary Air Rotary Auger Auger Other Other DRILLER'S LICENSE NO C 57-596309	 Irrigation wells unless a lesser depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected
Orili Hole Diameter 8 in. Maximum Caxing Diameter 2 in. Depth 20ft. Surface Seal Depth 4 ft. Number 3 GEOTECHNICAL PROJECTS Number of Borings Maximum Hole Diameter in. Depth ft.	contamination, tremied cement grout shall be used in place of compacted cuttings. D. CATHODIC. Fill hole above anode zone with concrete placed by tremie. E. WELL DESTRUCTION. See attached.
ENTIMATED STARTING DATE 1/2 /92 1/22/72 hereby agree to comply with all requirements of this	Approved Myman Hong Date 14 Jan 92 Wyman Hong
mit and Alamada County Ordinance No. 73-68.	" " " " " " " " " " " " " " " " " " "

WELL DEVELOPMENT FORM

-	ZEE OI FILLIM	OFFICE HOLL Hamb	er: <u>NW-('</u>	
Project Number: <	169 006	Well Casi	ng Diameter: Z	inches
Developed By: F	V, JB	Date:_ <u></u>	110/92	•
TOC Elevation: (00,72	Weather:	Cloudy, Pain	ring .
. Depth to Casing Bo	ttom (below	7 TOC)	12,0	feet
Depth to Groundwat	er (below T	OC)	7.01	feet
Feet of Wter in We	ell		4.99	feet
Casing Volume (fee	et of water	x Casing DIA	$A^2 \times 0.0408)$	_ gallons
Depth Measurement	MethodT	ape & Paste/	Elect. Sounder/	Other
Development Method	d Dispos	sable Bai	lev	
	FIEL	D MEASUREMEN	TS	
Gallons Removed	<u>.</u> p <u>H</u>	Temp (°C)	Conductivity (micromhos/cm)	Comments
Gallons Removed	рн	Temp (°C)		Clean; No Oc
Gallons Removed	6.9 9.13		(micromhos/cm)	
Gallons Removed	9.80 9.13	17.5	(micromhos/cm)	Clean; NOO
Gallons Removed	6.9	17.5	(micromhos/cm) 70×100 150×100	Clean; NOO
Gallons Removed	6.9	17.5	(micromhos/cm) 70×100 150×100	Clean; NOO
Gallons Removed	6.9	17.5	(micromhos/cm)	Clean; NOO

WELL DEVELOPMENT FORM

Project Name: Col	lege of Alar	wed Well Numb	er: <u>NW-Z</u>	·
Project Number: <	<u> 169,000</u>		ng Diameter:	inches
Developed By: F	V, JB	Date: <u>Z</u>	10/92	
TOC Elevation:		Weather:	Cloudy, Rain	ing
Depth to Casing Bo			•	•
Depth to Groundwat	er (below T	.OC)	1.23	feet
Feet of Wter in We	11		5,0	feet
Casing Volume (fee	et of water	x Casing DI	$A^2 \times 0.0408) 1.6$	7 gallons
Depth Measurement	Method 1	ape & Paste/	Elect. Sounder/) Other
Development Method	i han	d punyo)	
	FIEL	D MEASUREMEN	TS .	
Gallons Removed	; <u>p</u> H	Temp (°C)	Conductivity (micromhos/cm)	Comments
	7.01	17.6	90×100	610.5040
				<u>Gray Sand</u>
0_	9.50	17.7	150×100	Lmurky)
30	9,50	17.5		
	9.50	17.5	150×100	Lmurky)
	9,50	17.7	150×100	Lmurky)
	9,50	17.5	150×100	Lmurky)
30	9,50	17.5	150×100	Lmurky)
	9.50	17.5	150×100	Lmurky)

WELL DEVELOPMENT FORM

Project Name:	lege of Alame	deWell Numbe	r: <u>MW-3'</u>		
Project Number: 4	69.006	Well Casir	ng Diameter: $_$	inches	
Developed By: F	V, JB	Date: Z/	10/92		
TOC Elevation: _	01,19	Weather:_	Cloudy, Ra	ining	
Depth to Casing Bo	ttom (below T	roc) <u>14</u>	103/4"	feet	
Depth to Groundwat	er (below TO	2)13	3.60	feet	
Feet of Wter in We	11		1.3	feet	
Casing Volume (fee	et of water x	Casing DIA	2 x 0.0408) <u>, Zl</u>	gallons	
Depth Measurement	Method Tar	oe & Paste/	(Elect. Sounder)	Other	
Development Method	l <u>disoos</u>	able bo	ailer		
	FIELD	MEASUREMENT	rs		
Gallons Removed	<u>рн</u>	Temp (°C)	Conductivity (micromhos/cm)	Comments	
2	9.8	16.8	170 × 100	strong	odor
***				. "	
				· · · · · · · · · · · · · · · · · · ·	-
			•	•	·
		.			`
			***	**************************************	
	-				
Total Gallons Remov	7ed	2 222 7 7 2		gallons	

WELL SAMPLING FORM

		: <u>MW-1</u>	
Project Number: 469.006		g Diameter: 2	inch
Sampled By: FV, JR	Date: Z	/19/92	
TOC Elevation:	Weather:	Zaining	
		15.6	C
Depth to Casing Bottom (below To	oc)	12.0	reet
Depth to Groundwater (below TOC		7.10	feet
Feet of Water in Well		4.9	feet
Depth to Groundwater When 80 %	Recovered _		feet
Casing Volume (feet of water x	Casing DIA ²	x 0.0408) <u> </u>	gallons
Depth Measurement Method Tar	oe & Paste/	Elect. Sounder)	Other
Free Product			
Purge Method Disposable	boiler		
· ereto			
ETEMP.	MEASUREMENT:	S	
) · · · · · · · · · · · · · · · · · · ·	MEASUREMENT	<u>.</u>	
	MEASUREMENT	S Conductivity (micromhos/cm)	Comments
1		Conductivity	Comments
1	Temp (°C)	Conductivity (micromhos/cm)	Comments
1	Temp (°C)	Conductivity (micromhos/cm)	Comments
1	Temp (°C)	Conductivity (micromhos/cm)	Comments
1	Temp (°C)	Conductivity (micromhos/cm)	Comments
1	Temp (°C)	Conductivity (micromhos/cm)	Comments
Gallons Removed pH 9,5	Temp (°C)	Conductivity (micromhos/cm)	
Total Gallons Purged Depth to Groundwater Before Sar	Temp (°C)	Conductivity (micromhos/cm)	gallons
Gallons Removed pH 9,5	Temp (°C)	Conductivity (micromhos/cm)	gallons

WELL SAMPLING FORM

Project Name: College of	Chruda Well Number: MW-Z
Project Number: 469.C	
Sampled By: FV, JB	Date: 2/19/92
TOC Elevation:	
	elow TOC) 14 5 /4 / feet
	ow TOC) 3.74 feet
Feet of Water in Well	10.7· feet
Depth to Groundwater Whe	80 % Recovered feet
Casing Volume (feet of w	ater x Casing DIA ² x 0.0408) 1.75 gallons
	Tape & Paste/ (Elect. Sounder) Other
•	
Free Product	
Purge Method Disco	sable Baller
:	FIELD MEASUREMENTS
1	Conductivity
Gallons Removed pH	Temp (°C) (micromhos/cm) Comments
	17.7 160×100
	gallons
Total Gallons Purged	
Depth to Groundwater Be	ore Sampling (below TOC)feet
Sampling Method	posable Bailer
Containers Used	liter pints

WELL SAMPLING FORM

Project Name: College of Alan	uaa nerr namo.	1-11/	
Project Number: 469,006		ng Diameter:	inch
Sampled By: FV,TB	Date:	/19/92	•
TOC Elevation:		Raining	•
Depth to Casing Bottom (belo	w TOC)	4'103/4"	feet
Depth to Groundwater (below			
Feet of Water in Well			
Depth to Groundwater When 80			
Casing Volume (feet of water		·	
Depth Measurement Method	•		
Free Product			
Purge Method Discosal	le Zailer		-
FIE	LD MEASUREMEN	ıTS	
1		Conductivity (micromhos/cm)	Connents
Gallons Removed pH	Temp (°C)	Conductivity (micromhos/cm)	Comments
1		Conductivity (micromhos/cm)	Comments
Gallons Removed pH	Temp (°C)	Conductivity (micromhos/cm)	Comments
Gallons Removed pH	Temp (°C)	Conductivity (micromhos/cm)	Comments
Gallons Removed pH	Temp (°C)	Conductivity (micromhos/cm)	Comments
Gallons Removed pH 9.6	Temp (°C)	Conductivity (micromhos/cm)	Comments
Gallons Removed pH 9.6	Temp (°C)	Conductivity (micromhos/cm)	
Gallons Removed pH 9.6 Total Gallons Purged Depth to Groundwater Before	Temp (°C)	Conductivity (micromhos/cm)	
Gallons Removed pH 9.6	Temp (°C)	Conductivity (micromhos/cm)	

Appendix C

Analytical Test Reports Chain-of-Custody Documents

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (415) 486-0900

DATE RECEIVED: 02/10/92 DATE REPORTED: 02/21/92

LABORATORY NUMBER: 106520

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 469.006

LOCATION: COLLEGE OF ALAMEDA

RESULTS: SEE ATTACHED

Revi

Los Angeles

LABORATORY NUMBER: 106520

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 469.006

LOCATION: COLLEGE OF ALAMEDA

DATE RECEIVED: 02/10/92 DATE ANALYZED: 02/11/92

DATE REPORTED: 02/21/92

Total Volatile Hydrocarbons with BTXE in Soils & Wastes TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (mg/Kg)	BENZENE (ug/Kg)	TOLUENE (ug/Kg)	ETHYL BENZENE (ug/Kg)	TOTAL XYLENES (ug/Kg)
106520-2	MW2@5 '		ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
106520-3	MW3@5 '		ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

QA/QC SUMMARY

9 RPD, % 94 RECOVERY, % LABORATORY NUMBER: 106520

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 469.006

LOCATION: COLLEGE OF ALAMEDA

DATE RECEIVED: 02/10/92 DATE EXTRACTED: 02/14/92 DATE ANALYZED: 02/16/92 DATE REPORTED: 02/21/92

Extractable Petroleum Hydrocarbons in Soils & Wastes
California DOHS Method
LUFT Manual October 1989

LAB ID SAMPLE ID		KEROSENE RANGE (mg/Kg)	" DIESEL RANGE (mg/Kg)	REPORTING LIMIT* (mg/Kg)		
106520-1	MW-1@4.5'	ND	3.8	1.0		
106520-3	MW3@5 '	* *	13	1.0		

ND = Not Detected at or above reporting limit.

*Reporting limit applies to all analytes.

**Kerosene range not reported.

QA/QC SUMMARY

LCS RECOVERY, %

LCS RECOVERY, %

Client: Subsurface Consultants Laboratory Login Number: 106520

Project Name: College of Alameda Report Date: 21 February 92

Project Number: 469.006

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520EF

ab ID	Sample 1D	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Batc
	Sample ID						<i>F</i> -			
06520-003	Mu3a5*	Soil	06-FEB-92	10-FEB-92	14-FEB-92	190	mg/Kg	50	TR	424
		v.) . . .								
		u.) V.								
		(%) (*) (*)								
		*								
		:								
	ana di Babatan di Kabatan di Kabatan Kabatan di Kabatan di									
	na kulturi milandi malah sedili S menjelasah sedili Siringah sedili Siringah	S 				्रतेत्री क्षेत्रकारीते । स्थानसम्बद्धाः				
	ા પ્રાથમિક કે પ્રાથમિક કરી તે કહે કહે છે. કે કે ફોર્ડ કે છે. - મુંદ્ર કે કે ફોર્ડ કે ફોર્ડ કરાયા ફોર્ડ કે ફેર્ડ ફોર્ડ	<u>(</u>								
		e i Pe								
		/å								
		73 64 65								
		15 88								
)	٠							
		7.4 - }								
		. 9 . 9								
		6. 2.								
		8 7 6.7				7000000 2000000				
		9 (8 (
				ı						
		1 9 02 20								

ND = Not Detected at or above Reporting Limit (RL).

QC Batch Report

Client:

Project Name:

Subsurface Consultants

College of Alameda

Project Number: 469.006

Laboratory Login Number: 106520

Report Date:

21 February 92

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) QC Batch

4246 Number:

Blank Results

Sample ID Result

MDL Units Method

Date Analyzed

BLANK

ND

mg/Kg 50

SMWW 17:5520EF

14-FEB-92

Spike/Duplicate Results

Sample ID Recovery

Method

Date Analyzed

BS

86%

14-FEB-92

BSD

82%

SMWW 17:5520EF SMWW 17:5520EF

14-FEB-92

Average Spike Recovery Relative Percent Difference

84%

Control Limits 80% - 120%

4.5%

< 20%

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 469.006

LOCATION: COLLEGE OF ALAMEDA

DATE RECEIVED: 02/10/92 DATE ANALYZED: 02/11/92

DATE REPORTED: 02/21/92

Benzene, Toluene, Ethyl Benzene, Xylenes by EPA 8020 Extraction by EPA 5030 Purge and Trap

LAB ID SAMPLE ID	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	REPORTING LIMIT *
	(ug/kg)		(ug/kg)	(ug/kg)	(ug/kg)
106520-1 MW-1@4.5'	ND	ND	ND	ND	5.0

ND = Not detected at or above reporting limit.

* Reporting Limit applies to all analytes.

QA/QC SUMMARY

DATE RECEIVED: 02/10/92 LABORATORY NUMBER: 106520-3 CLIENT: SUBSURFACE CONSULTANTS DATE ANALYZED: 02/12/92 DATE REPORTED: 02/21/92

PROJECT ID: 469.006

LOCATION: COLLEGE OF ALAMEDA

SAMPLE ID: MW3@5'

EPA 8010: Volatile Halocarbons in Soil & Wastes Extraction Method: EPA 5030 - Purge & Trap

Compound	RESULT ug/Kg	REPORTING LIMIT ug/Kg
Chloromethane	ND	10
Bromome than e	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	2 0
Trichlorofluoromethane	ND	5.0
l, l-Dichloroethene	ND	5.0
■1,1-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
-Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
l,l,I-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
1,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethylene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
2-Chloroethylvinyl ether	*	10
Bromoform	ND	5.0
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
* 1 4 - DICHIDIONOHACHO	• 100	

ND = Not detected at or above reporting limit.

* = 2-Chloroethylvinyl ether failed calibration criteria. Cannot qualify or quantify this compound.

QA/QC SUMMARY

107 Surrogate Recovery, %

DATE ANALYZED: 02/12/92

DATE REPORTED: 02/21/92

LABORATORY NUMBER: 106520-METHOD BLANK

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 469.006

LOCATION: COLLEGE OF ALAMEDA

EPA 8010: Volatile Halocarbons in Soil & Wastes Extraction Method: EPA 5030 - Purge & Trap

	Compound	RESULT ug/Kg ND	REPORTING LIMIT ug/Kg
_	Chloromethane	ND ND	10
	Bromomethane	ND	10
-	Vinyl chloride	ND	10
	Chloroethane	ND	20
	Methylene chloride Trichlorofluoromethane	ND	5.0
		ND ND	5.0
	l, l-Dichloroethene	ND ND	5.0
	1,1-Dichloroethane		5.0
	cis-1,2-Dichloroethene	ND	5.0
_	trans-1,-2-Dichloroethene	ND	5.0
_	Chloroform	ND	5.0
	Freon 113	ND	5.0
	1,2-Dichloroethane	ND	5.0
	I, I, I-Trichloroethane	ND	5.0
	Carbon tetrachloride	ND	5.0
	Bromodichloromethane	ND	
	1,2-Dichloropropane	ND	5.0
	cis-1,3-Dichloropropene	ND	5.0
	Trichloroethylene	ND	5.0
-	1,1,2-Irichioroethane	ND	5.0
_	trans-1,3-Dichloropropene	ND	5.0
	Dibromochloromethane	ND	5.0
	2-Chloroethylvinyl ether	*	10
	Bromoform	ND	5.0
	Tetrachloroethylene	ND	5.0
	1,1,2,2-Tetrachloroethane	ND	5.0
_	Chlorobenzene	ND	5.0
-	l,3-Dichlorobenzene	ND	5.0
	1,2-Dichlorobenzene	ND	5.0
	l, 4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

* = 2-Chloroethylvinyl ether failed calibration criteria. Cannot qualify or quantify this compound.

Surrogate Recovery, % 111

LABORATORY CONTROL SAMPLE SUMMARY SHEET FOR EPA 8010/8020

Operator:

CW

Spike file:

043G/H003

Analysis date: Sample type: 2/12/92 SOIL Instrument:

GC05 (QUANT COLUMN)

Sequence Name FEB12

LCS SPIKE DATA (spiked at 20 ppb)

	TC2 SETYE DETY	(552300			
8010 COMPOUNDS 1,1-Dichloroet Trichloroether Chlorobenzene	chene ne	READING 15.20 22.96 22.77	RECOVERY 76 % 115 % 114 %	STATUS OK OK OK	LIMITS 28 - 167 35 - 146 38 - 150
SURROGATES Bromobenzene		114.00	114 %	OK	98 - 115
8020 COMPOUNDS Benzene Toluene Chlorobenzene	1	READING 20.87 20.99 20.70		OK	LIMITS 39 - 150 46 - 148 55 - 135
SURROGATES Bromobenzene		100.00	100 %	, OK	91 - 107

SPIKE RECOVERY LIMITS FROM SW-846 METHODS 8010/8020 TABLE 3; SURROGATE RECOVERY LIMITS FROM LCS WATER CONTROL CHARTS (NOV. 91).

MS/MSD SUMMARY SHEET FOR EPA 8010/8020

Curtis & Tompkins, Ltd.

CW Operator: Analysis date: 2/12/92
Sample type: SOIL
Sample Number: 106436-014 5G Spike file: 043G/H004 Spike dup file: 043G/H005

Instrument: GC05

ample type: SO1 ample Number: 106436-014			1110 011 01110	•				
010 MS/MSD DATA (spiked		ppb)		Ave	Rec=	103 %		==
	:=====		RECOVERY	S	TATUS	LIMITS	3	
PIKE COMPOUNDS		READING 17.29	_		OK	46 -	- 17	2
1.1-Dichloroethene		18.49			OK	58 •	- 13	7
Trichloroethene		20.97			OK	60 -	- 13	3
Chlorobenzene		20.97		•				
PIKE DUP COMPOUNDS		-= 00	s 89	s.	OK	46	- 17	72
1,1-Dichloroethene		17.86			OK	58	- 13	37
Trichloroethene		20.77			NOT OK	60	- 13	33
Chlorobenzene		28.38	742					
SURROGATES				يو	OK	74	- 13	32
Bromobenzene (MS)		103.00			OK		- 13	
Bromobenzene (MSD)		117.00	11/	70	OIC			
nama (anikad	at 20	(לממ		Ave	e Rec=	108 %		
8020 MS/MSD DATA (spiked	======		RECOVER	=== v	====== STATUS	LIMITS	 }	
SPIKE COMPOUNDS		READING		_	OK		- 1	42
Benzene		20.7			OK	59	- 1	39
Toluene		20.9 20.3			OK	60	- 1	33
Chlorobenzene		20.3	, 102	·				
SPIKE DUP COMPOUNDS		22.4	0 112	%	oĸ		- 1	
Benzene		22.4	· -		OK		- ~1	
Toluene		22.2	-		OK	60	- 1	.33
Chlorobenzene		22.2		-				
SURROGATES		700 0	۱۸ <u>۲</u>) %	OK		- 1	
Bromobenzene (MS)		100.0	. •)	OK	74	- 1	L32
Bromobenzene (MSD)		100.0)() <u>1</u> ()	, ,				
		8010 RPD=	= 15.0	%	8020	RPD=	8.3	3 %
RPD DATA		==========		احدد	======	LIMII	==== 'S	===
8010 COMPOUNDS	SPIKE	SPIKE D		PD 3 %	STATUS	717777	. S	22
1,1-Dichloroethene	17.		• •	-	OK		<	23
Trichloroethene	18.		• •	2°0		K	<	21
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20.	.97 28.	no n	√ •	1,01 0			
Chlorobenzene		L						
			40	g %	OK		<	
8020 COMPOUNDS		.71 22.		8 % 8 %			< <	2:
	20	.71 22. .99 22. .39 22.	83	8 % 8 % 9 %	OK			

REVIEWED BY:

CHAIN OF C	USTODY FO	R	M		,									-							,								F	PAC	Œ.				. Ol	F	1		<u> </u>
	alte (41,1	44	E	AC																						_ [_	A	NAL	YS	IS R	EQI	JES.	TED		-
PROJECT NAME:	419 006	<u></u>		114	10					1 4	ם.	Cı	JE	71	5	5	77	Y	1P1	4 11	٤	ŝ							_					习			ļ		
JOB NUMBER: _	469.006	110	4 YI							LA	ъ.	 RAI				6	 TA	J)A'	Dr	 >				-									E A					
PROJECT CONTA	ICT: BILL WI	K-VI	<u> </u>	/0						TU	IRN	IAR	OU	JNL): _		1	<u>د .</u> اد .	1/1	<u>سایت</u> ۱.			_						_					Š				1	
SAMPLED BY: 🕏	SOHN WOLL	FE								RE	QI	UES	STE	ED !	BY	': <u> </u>	<u> </u>	<u>, </u>		2									_					HADOMERAY					
		Γ		MAT	RIX				CON	NTAI	NE	RS	T	Pf	ME'	THO	D VEC	,				A B 4	DI IN	i (2	DAT	=						 W		1					
	SCI	 				Т	1	1		\neg	\neg			7							3	ZAIVII	I. M	NÇI I	JA1 :	_					lu	NX X	,	18					
LABORATORY I.D. NUMBER	SAMPLE NUMBER	WATER	S S	WASTE	AIR			8	TER	PINT	TUBE			로	H2SO4	SONI	IQE	NONE	мо	NTH	D	ΑY	YE	AR		TIN	ΛE		NOTES	H H	がイズ	TYTY TYTH	7.40	RESONAE					
	MW-1045	-	7	-		7	1	\dashv	-		\dot{Z}						Z		0	2	0	6	9	Z						Z	\mathbb{Z}	1_	_	_	-		_		
	100 (0 10														-	_		_			_	_		_		-	 	-	-	_	-	-	}	-	-			\dashv	
	MWZ 0 5	1_	\bigvee	_			_	_	_	_	_			_	-			-	(2	2	\mathcal{Q}	6	4	2	-	-	 	-	-		+	r	╁╴	 	_			-	_
		1,	 	 			\dashv	-	1					-	\dashv		7	-	<u></u>	Z	(7)	6	9	7	-	-	-	 	-	17	1	17	17	1	十				_
	HW3 05	- -	ľ	╁	}-	\vdash			٠!٠		/			\dashv				-	۲	=	۲			2		-	†	1	1	۲									
		+	+	┼	1		1							寸		-	<u> </u>																1_			<u> </u>			
		†	_			_															_		_	_	<u> </u>	<u> </u>	<u> .</u>	↓_	igapha	 	ļ. <u>-</u>	_	╀	-	\vdash			┟╌┼	
																				-	_	<u> </u>	ļ	-	-	-	+-	-	-	╀	+	-	┼-	-	+	-			
	1,2											Ш				<u>_</u> .	<u></u>	<u>l_</u>		<u>l_</u>	<u> </u>	<u> </u>	<u> </u>	<u>L</u> .	1_	 _		ـــــــ		1_	_}_	٦.	1_			<u></u>	ئـــــا	<u>L</u>	
y																						CI	-1 Δ1	N.	OF	CI	197	rOl	ΣΥ	RF	CC	RE)						
COMMENTS & NO	OTES:														RE	LEA	(S€	D B	Y/(s ig h	atu				7711		Ĭ	REC	EIV	ΣĐ	BY:	(Sig	ďα	ture:)	DAT	E/J	IME // 6	19
Ì																14	W	رر	Δ	ĮD	> 0	14	12/				4			<u> </u>			Ž						
															RE	ŹΕ	ASE	DΕ	Y: (Sign	atu	r⁄e)	/c	ATE	Z/TU	ME		REC	CEIV	ΈD	BY:	(Sig	jna	ture)	DAT	E/T l	IME	
																1 6	A C E	n 6	1V+ 1	Sigr	atu	rel		ATE		ME		RFO)FIV	/FD	BY:	(Sid	ona	ture)	DA	L_ [E/T	ГІМЕ	
		•													HE	/	~ o c	. D C) i. (oigi	iatu	0)	L	7 XI L		· * + i					••	•	_ ~						
															 -														_										
J															ļ															-					_				

Subsurface Consultants, Inc.

171 12TH STREET, SUITE 201, OAKLAND, CALIFORNIA 94607 (510) 268-0461 • FAX: 510-268-0137

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (415) 486-0900

DATE RECEIVED: 02/19/92 DATE REPORTED: 02/25/92

LABORATORY NUMBER: 106593

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 469.006

LOCATION: COLLEGE OF ALAMEDA

RESULTS: SEE ATTACHED

Rey

Los Angeles

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 469.006

LOCATION: COLLEGE OF ALAMEDA

DATE RECEIVED: 02/19/92 DATE ANALYZED: 02/21/92

DATE REPORTED: 02/25/92

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	(ug/L)	(ug/L)	BENZENE (ug/L)	TOTAL XYLENES (ug/L)
106593-2 106593-3	MW - 2 MW - 3 *	ND(0.5)	ND(0.5)	ND(0.5) ND(50)	•

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.
 * Sample diluted due to foaming during purge.

QA/QC SUMMARY

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 469.006

LOCATION: COLLEGE OF ALAMEDA

DATE RECEIVED: 02/19/92

DATE ANALYZED: 02/24/92

DATE REPORTED: 02/25/92

Benzene, Toluene, Ethyl Benzene, Xylenes by EPA 8020 Extraction by EPA 5030 Purge and Trap

106593-1			ND	ND	ND	ND	0.5
			g/L) (ug/L)	(ug/L)	XYLENES (ug/L)	LIMIT * (ug/L)
LAB ID	CLIENT	ID BEN	ZENE TO	LUENE	ETHYL		REPORTING

ND = Not detected at or above reporting limit.

* Reporting Limit applies to all analytes.

QA/QC SUMMARY

2 RPD, % RECOVERY, %

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 469.006

LOCATION: COLLEGE OF ALAMEDA

DATE RECEIVED: 02/19/92
DATE EXTRACTED: 02/21/92
DATE ANALYZED: 02/22/92

DATE REPORTED: 02/25/92

Extractable Petroleum Hydrocarbons in Aqueous Solutions
California DOHS Method
LUFT Manual October 1989

LAB ID	CLIENT	10	KEROSENE RANGE (ug/L)	DIESEL RANGE (ug/L)	REPORTING LIMIT* (ug/L)
106593-1 106593-3			ND 680	9 4 ND	5 0 5 0

ND = Not detected at or above reporting limit.

*Reporting limit applies to all analytes.

QA/QC SUMMARY

	 =======================================
RPD, %	<1
RECOVERY, %	9 0

DATE RECEIVED: 02/19/92

DATE ANALYZED: 02/20/92

DATE REPORTED: 02/25/92

LABORATORY NUMBER: 106593-3

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 469.006

LOCATION: COLLEGE OF ALAMEDA

SAMPLE ID: MW-3

EPA 8010

Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit
	•	ug/L
Chloromethane	ND	2.0
Bromomethane	ND	2.0
_Vinyl chloride	. ND	2.0
Chloroethane	ND	2.0
Methylene chloride	ND	2 0
Trichlorofluoromethane	ND	1.0
1, 1-Dichloroethene	ND	1.0
1,1-Dichloroethane	ND	1.0
cis-1, 2-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
Chloroform	ND	1.0
Freon 113	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1,1-Trichloroethane	ND	1.0
Carbon tetrachloride	ND	1.0
Bromodichloromethane	ND	1.0
1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Trichloroethylene	ND	1.0
1,1,2-Trichloroethane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
2-Chloroethylvinyl ether	ND	2.0
Bromoform	ND	1.0
Tetrachloroethene	ND	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
Chlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
1,4-Dichioropeazene		

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

Surrogate Recovery, %

DATE ANALYZED: 02/20/92

DATE REPORTED: 02/25/92

LABORATORY NUMBER: 106593

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 469.006

LOCATION: COLLEGE OF ALAMEDA

SAMPLE ID: METHOD BLANK

EPA 8010

Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit ug/L
Chloromethane	ND	2.0
Bromome than e	ND	2.0
Vinyl chloride	_ ND	2.0
Chloroethane	ND	2.0
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1.0
1,1-Dichloroethene	ND	1.0
l,l-Dichloroethane	·ND	1.0
cis-1,2-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
Chloroform	ND	1.0
Freon 113	ND	1.0
1,2-Dichloroethane	ND	1.0
l, l, l-Trichloroethane	ND	1.0
Carbon tetrachloride	ND	1.0
Bromodichloromethane	ND	1.0
l 1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Trichloroethylene	ND	1.0
l, 1, 2-Trichloroethane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
2-Chloroethylvinyl ether	ND	2.0
Bromoform	ND	1.0
Tetrachloroethene	ND	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
Chlorobenzene	ND	1.0
l,3-Dichlorobenzene	ND	1.0
1,2-Dichlorobenzene	ND	1.0
l, 4-Dichlorobenzene	ND	1.0

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

MS/MSD SUMMARY SHEET FOR EPA 8010/8020

Spike file: 051E/F005 Operator: CW Spike dup file: 051E/F006 2/20/92 Analysis date: Instrument: GC05 WATER

Sample type: Sample Number: 106585-001 5ml

8010 MS/MSD DATA (spiked at 20 ppb)	9010	MS/MSD	DATA	(spiked	at	20	(dga	
-------------------------------------	------	--------	------	---------	----	----	------	--

3010 MS/MSD DATA (spiked	d at 20 ppb)		Av	e Rec=	105 %	
SPIKE COMPOUNDS 1,1-Dichloroethene	 R	EADING 21.23 22.81	RECOVERY 106 114	%	STATUS OK OK	LIMITS 1 - 55 -	
Trichloroethene Chlorobenzene		19.96	100		oK	66 -	
SPIKE DUP COMPOUNDS		18.49	92	%	OK	1 -	183
1,1-Dichloroethene Trichloroethene		22.06	110		OK	55 -	155
Chlorobenzene		21.58	108,	%	OK	66 -	133
SURROGATES	(MG)	90.00	90	2	OK	72 -	131
1-bromo-4-fluorobenze 1-bromo-4-fluorobenze	ene (MSD)	90.00	90		OK	72 -	
I-DIOMO-4-LIGOLODENZ	ane (mbb)	30.00		•			
8020 MS/MSD DATA (spiked	đ at 20 ppb)		Av	re Rec=	117 %	
======================================		READING	RECOVER'S	ζ	STATUS	LIMITS	
Benzene		22.96	115		OK	76 -	
Toluene		23.43	117	-	OK	76 - 66 -	
Chlorobenzene		23.61	118	8	OK	66 -	7.0.
SPIKE DUP COMPOUNDS		00 77	114	٥	OK	76 -	121
Benzene		22.77 23.17	116		OK	76 -	
Toluene		23.17	120		OK	66 -	
Chlorobenzene		24,71	±20	Ů		-	
SURROGATES		100.00	100	%	οĸ	72 -	13:
Bromobenzene (MS) Bromobenzene (MSD)		100.00			oĸ	72 -	
Bromobenzene (MSD)							
RPD DATA	80	10 RPD=	8.3 %		8020	RPD= 1	.1
8010 COMPOUNDS	SPIKE S	PIKE DUP	RP!	 D	STATUS	LIMITS	
1,1-Dichloroethene	21.23	18.49			OK	<	
Trichloroethene	22.81	22.06		%	OK	<	
Chlorobenzene	19.96	21.58	8	%	OK	<	Ţ
8020 COMPOUNDS				٥.	ок	<	1
Benzene	22.96	22.77			OK OK	<	
Toluene	23.43	23.17 23.91		જ જ	OK	~	
Chlorobenzene	23.61	63.3T	. 4	0	_		

REVIEWED BY:

Client: Subsurface Consultants

Laboratory Login Number: 106593

Project Name: College of Alameda

Report Date: 26 February 92

Project Number: 469.006

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520BF

ab IO	Sample ID Ma	atrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Batch
			10-550-02	10-FER-02	20-FEB-92	ND:	 wa∖r	5	TR	429
06593-003	WW-3	ater	13-158-32	19-120-72	20-100 70			•		
							:			
				•						

ND = Not Detected at or above Reporting Limit (RL).

QC Batch Report

Client:

Subsurface Consultants

Laboratory Login Number: 106593

Report Date:

Project Name:

College of Alameda

26 February 92

Project Number: 469.006

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric)

QC Batch Number:

4299

Blank Results

Sample ID Result MDL Units Method Date Analyzed

BLANK ND 5 mg/L SMWW 17:5520BF 20-FEB-92

Spike/Duplicate Results

Sample ID Recovery Method Date Analyzed

BS 91% SMWW 17:5520BF 20-FEB-92

BSD 88% SMWW 17:5520BF 20-FEB-92

Control Limits
89% 80% - 120%

Average Spike Recovery 89% 80% - 120% Relative Percent Difference 2.5% < 20%

	LICTORY E)			}			!			1	<i>,</i>			ş	}						P.	AG	. E.			B	OF			
CHAIN OF C	DJECT NAME: COLLEGE OF MAMEDA LAB: CUETIS & TOMPKINS																Γ	ANALYSIS I						ED														
PROJECT NAME: JOB NUMBER: _ PROJECT CONTA SAMPLED BY: _	469.006 ACT: BILLU	DIKI	1	JD.	Œ		<u></u>			TU	IRN	C NAR UES	ΟL	JNI	D: _		<u> </u>	7/1	UD	ME	N. 2D	<u>S</u>							-					PLECEABLE HITCHEBAYS				
LABORATORY I.D. NUMBER	SCI SAMPLE			MAT	RIX						NE			PI	MET	THC	VED				SAMPLING				DATE					TVH/BIXE		X	ٯ	CEABLE HI				
	NUMBER		SOIL	WASTE	AR					PIN	TUBE			걸	OS7H	SON I	빙	NON.	MOI		D.	AY 9	 ,	۸R	1	TIN	/E		NOTE	7	TEH	7 BTXE	10	12.2		-	-	-
	MW-Z	V V	-	_			2	2 7	Z.				-	V	-	_	v		0 0			9					3			Z								
	MW-3		-						3					7			V	 	0	Z	1	9	9	Z	l	0	4	5		Z	1	-	/	7				+
													-							-		-	-	-			-	-	-	-	-	-		-				
				-	-		_	-			-			_			-		-	_			-	-		-												
COMMENTS & NOTES:							4	m	. ,	۸.,		-	-4	re)) []	ATE	/TI	12 WE	- 1	REC	EIV	ED-	CC BY:	(Sig	nat			DAT										
															RE	LE	ASE	D E	BY: (Sior	ato	ne)		DATE	 	ME		RE(EIV	50	BY:	(Si	na P	lure)	DAJ 2'	E/TI	IME 2 14
																		S	5u	1b	Sl eth	STI	REE	T. 9	SUIT	E 20	C 01, 0	DAK	(AL	۷D,	CAL	_IFC	its Bri	S,	Ir. 9460	1C 7	•	