Fax: 415-547-5043

Phone: 415-547-5420

5500 Shellmound Street, Emeryville, CA 94608 91 MAY 15 AM 10: 48

May 14, 1991

Mr. Lowell Miller Alameda County Department of Environmental Health Hazardous Materials Division 80 Swan Way, Room 200 Oakland, CA 94621-1426

Re: Shell Service Station
WIC #204-0072-0403
1601 Webster Street
Alameda, California 94501
WA Job #81-434-01

Dear Mr. Miller:

This letter describes Weiss Associates' (WA) second quarter 1991 activities at the Shell service station referenced above. This status report satisfies the quarterly reporting requirements outlined in our March 19, 1990 workplan, and prescribed by California Administrative Code Title 23 Waters, Chapter 3, Subchapter 16, Article 5, Section 265.d. Included below are:

- Descriptions and results of activities performed to date in the second quarter 1991,
- Proposed work for the third quarter 1991.

WA recommended ground water sampling frequency modifications for this site which are on hold pending approval of the Alameda County Department of Environmental Health.¹

SECOND QUARTER 1991 ACTIVITIES

During this quarter, WA:

Collected ground water samples from the three site wells,

¹WA, March 5, 1991, Quarterly status report letter to Lowell Miller, Alameda County Department of Environmental Health, 5 pages and 6 attachments.

A Division of AguaTierra Associates Incorporated

Mr. Lowell Miller May 14, 1991

 Measured ground water depths and determined ground water elevations and the flow direction, and

Analyzed the ground water samples and tabulated the analytic results.

These activities are described below.

Ground Water Sampling

WA collected ground water samples from all three monitoring wells on April 11, 1991 as part of the quarterly ground water monitoring program at Shell Service Station WIC #204-0072-0403 in Alameda, California. Ground water samples from monitoring well MW-2 (Figure 2) contained benzene above the California Department of Health Services (DHS) maximum contaminant level (MCL) for drinking water.

Sampling Personnel: WA Environmental Technician Paul Cardoza

Monitoring Wells Sampled: MW-1, MW-2, and S-1

Method of Purging Wells: Dedicated PVC bailers

Volume of Water Purged Prior to Sampling:

• Wells were purged of four well-casing volumes, about 18 to 37 gallons each.

Method of Collecting Ground Water Samples:

Wells

Drawn through sampling ports on the side of dedicated PVC bailers

MW-1 and MW-2

• Decanted from the dedicated PVC bailer

S-1

Methods of Containing Ground Water Samples:

• 40 ml glass volatile organic analysis (VOA) vials, preserved with hydrochloric acid and packed in protective foam sleeves

All samples were refrigerated and transported under chain-of-custody to the analytical laboratory.

Mr. Lowell Miller May 14, 1991

Water Samples Transported to:

• International Technology Analytical Services, Inc. (IT), San Jose, California, and were received on April 12, 1991

Quality Assurance / Quality Control:

- A travel blank was submitted for analysis.
- An equipment blank was not necessary because all bailers are dedicated to specific
 wells.

Water sample collection records and chain-of-custody forms are included in Attachments A and B, respectively.

Ground Water Elevations and Flow Direction

- The depth to water was measured in all wells on April 11, 1991. Ground water elevations have increased about 3 ft from the previous quarter to the highest levels since monitoring began.
- Ground water flows north-northeastward. The flow direction has varied from north-northwest to northeast over the past year.

Depth to water measurements and ground water elevations are presented in Table 1. Ground water elevation contours are plotted on Figure 2. Previous ground water elevation contour maps are included in Attachment C.

Chemical Analyses

The Ground Water Samples were Analyzed for:

Wells

- Total petroleum hydrocarbons as gasoline (TPH-G) all wells by modified EPA Method 8015
- Benzene, ethylbenzene, toluene and xylenes (BETX) all wells by EPA Method 8020
- Halogenated volatile organic compounds (HVOCs)
 by EPA Method 601

The laboratory analyzed the samples on April 19, 21, and 22, 1991. The results are presented in Table 2 and the analytic reports are included in Attachment B.

4

Discussion of Analytic Results of Ground Water for this Quarter:

- The ground water sample from monitoring well MW-2 contained benzene above the DHS MCL for drinking water.
- Toluene and xylene concentrations in the sample from well MW-2 decreased from the previous quarter from 1.2 to 0.15 ppm and 2.6 to 0.33 ppm, respectively.
- No 1,2-dichloroethane was detected in the sample from well MW-2 for the first time.
- No TPH-G or BETX have been detected in samples from wells MW-1 and S-1 for five consecutive quarters.

ANTICIPATED WORK FOR THIRD QUARTER 1991

During the third quarter 1991, on behalf of Shell Oil, WA plans to:

- Continue quarterly monitoring of ground water at this site, and
- Prepare a quarterly status report presenting all data generated during the third quarter including water sampling results and analysis.

We trust that this submittal satisfies your requirements. Please contact Tom Fojut or Eric Anderson if you have any questions.

Sincerely,

Weiss Associates

Thomas J. Fojut Staff Geologist

Joseph P. Theisen, R.G.

Senior Project Hydrogeologist

TJF/JPT:jg

E:\ALL\SHELL\425\434QMMY1.WP

Attachments:

Figures

Tables

No. 4981

A - Water Sample Collection Records

B - Analytic Reports and Chain-of-Custody Form

C - Previous Ground Water Elevation Contour Maps

FIGURES

Figure 1. Site Location Map - Shell Service Station, WIC# 204-0072-0403, 1601 Webster Street, Alameda, CA

Figure 2. Monitoring Well Locations and Ground Water Elevation Contours - April 11, 1991 - Shell Service Station WIC #204-0072-0403, 1601 Webster Street, Alameda, California

TABLES

TABLE 1. Ground Water Elevation Data - Shell Service Station WIC #204-0072-0403, 1601 Webster Street Alameda, California

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Ground Water Elevation (ft above msl)
MW-1	04-11-90	13.80	8.22	5.58
	07-18-90		9.14	4.66
	10-18-90		10.37	3.43
	01-25-91		10.41	3.39
	04-11-91		7.37	6.43
MW-2	04-11-90	13.20	7.69	5.51
	07-18-90		8.56	4.64
	10-18-90		9.76	3.44
	01-25-91		9.78	3.42
	04-11-91		6.87	6.33
S-1	09-11-89	13.77	9.82	3.95
	04-11-90		8.41	5.36
	07-18-90		9.31	4.46
	10-18-90		10.43	3.34
	01-25-91		10.49	3.28
	04-11-91		7.68	6.09

TABLE 2.	Analytic Results for	Ground Water -	Shell Service Station,	WIC #204-0072-0403	. 1601 Webster Street,	, Alameda, California
----------	----------------------	----------------	------------------------	--------------------	------------------------	-----------------------

Sample ID	Date Sampled	Depth to Water (ft)	TPH-G <	TPH-D	В	E parts pe	T er million (m	X 1g/L)	c-1,2-DCE	1,2-DCA	TOG
							····				
MW-1	04-11-90 ^a	8.22	<0.050	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<10
	0 7-18-90	9.14	<0.050		<0.0005	<0.0005	<0.0005	<0.0005	0.003	<0.0005	<5
	10-18-90	10.37	<0.050		<0.0005	<0.0005	<0.0005	<0.0005	0.0079	<0.0005	<5
	01-25-91	10.41	<0.050		<0.0005	<0.0005	<0.0005	<0.0005	0.0056	<0.0005	
	04-11-91	7.37	<0.050		<0.0005	<0.0005	<0.0005	<0.0005	0.0009	<0.0005	
MW-2	04-11-90 ^a	7.69	0.58	0.43	0.020	0.0012	0.0049	0.073	<0.0005	0.0011	<10
	07-18-90	8.56	1.4		0.11	0.071	0.31	0.31	<0.0005	0.0007	<5
	10-18-90	9.76	1.9	1.3 ^b	0.11	0.089	0.47	0.40	<0.0005	0.0009	<5
	01-25-91	9.78	8.1		0.43	0.48	1.2	2.6	<0.0005	0.0008	
	04-11-91	6.87	2.6		0.13	0.25	0.15	0.33	<0.0005	<0.0005	
S-1	09-04-87 ^C	d			<0.005	<0.005	<0.005	<0.005	<0.0005	<0.0005	
5 ,	09-11-89 ^e	9.82	<0.050	<0.10	<0.005	<0.001	<0.001	<0.003	<0.0005	<0.0005	<1
	04-11-90 ^a	8.41	<0.050	<0.050	<0.0005	<0.0005	<0.0005	<0.005	<0.0005	<0.0005	<10
	07-18-90	9.31	<0.050		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<5
	10-18-90	10.43	<0.050		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<5
	01-25-91	10.49	<0.050		<0.0005	<0.0005	<0.0005	<0.0005		10.0005	
	04-11-91	7.68	<0.050		<0.0005	<0.0005	<0.0005	<0.0005			
T1	04-11-91	1.00	\0.030		~0.000 5	\0.0003	10.000 3	\0.0003			
Travel	07 10 00		40.0E0		-0.000E	<0.000E	<0.0005	-0.0005			
Blank	07-18-90		<0.050		<0.0005	<0.0005		<0.0005			
	10-18-90		<0.050		<0.0005	<0.0005	<0.0005	<0.0005			
	01-25-91		<0.050		<0.0005	<0.0005	<0.0005	0.0008			
	04-11-91		<0.050		<0.0005	<0.0005	<0.0005	<0.0005			
DHS MCLs			NE	NE	0.001	0.680	0.100 ^f	1.750	0.0060	0.0005	NE

Abbreviations:

- TPH-G = Total petroleum hydrocarbons as gasoline by Modified EPA Method 8015
- TPH-D = Total petroleum hydrocarbons as diesel by Modified EPA Method 8015
- B = Benzene by EPA Method 602, 624, or 8020
- E = Ethylbenzene by EPA Method 602, 624, or 8020
- T = Toluene by EPA Method 602, 624, or 8020
- X = Xylenes by EPA Method 602, 624, or 8020
- c-1.2-DCE = cis-1.2-dichloroethylene by EPA Method 601 or 624
- 1,2-DCA = 1,2-dichloroethane by EPA Method 601 or 624
- TOG = Total non-polar oil and grease by American Public Health
 Association Standard Method 503E
- <n = Not detected at detection limit of n ppm</pre>
- DHS MCL = Department of Health Services Maximum Contaminant Level for drinking water
- NE = DHS action levels not established
- --- = Not analyzed

Analytical Laboratory:

International Technology Analytical Services, San Jose, California

Notes:

- a = Samples analyzed by National Environmental Testing Pacific, Inc., Santa Rosa, California
- b = Compounds detected and calculated as diesel appear to be the less volatile constituents of gasoline.
- C = Sampled by Pacific Environmental Group, Santa Clara, California; acetone detected at 0.12 ppm by EPA Method 624; no other volatile organic compounds detected
- d = Depth to water measurement not available
- e = Analyzed for metals by EPA Method 6010: cadmium <0.010 ppm; chromium, 0.020 ppm; lead, 0.060 ppm; zinc, 0.030 ppm; and analyzed for PCBs (<0.0005 ppb) and semi-volatile organic compounds (<0.010-0.050 ppm) by EPA Method 625.
- f = DHS recommended action level for drinking water, MCL not established

ATTACHMENT A

WATER SAMPLE COLLECTION RECORDS

WATER SAMPLING DATA
Well Name Mw-1 Date 4/11/91 Time of Sampling 13:09
Job Name Shell- Markedy I Job Number 81-434-01 Initials 20
Sample Point Description M (M = Monitoring Well Location South side of site, near building weall.
Location south side of site, near building weall,
WELL DATA: Depth to Water 7.37 ft (static pumping) Depth to Product f
Product Thickness Well Depth 210ft (spec) Well Depth 20.77 ft(sounded) Well Diameter 4 in
Initial Height of Water in Casing 13.40 ft. = volume 5.75 ga
4 Casing Volumes to be Evacuated. Total to be evacuated 35.0 ga
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type 3" 36" Dedicated / (Y/N)
Other
Evacuation Time: Stop 12.54
Start 12:36 Formulas/Conversions
Total Evacation Time $18min$ r = well radius in ft.
Total Evacuated Prior to Sampling 37.0 gal. h = ht of water col in ft.
Evacuation Rate 2.05 gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft time 7.48 gal/ft ³
Donath to Water at Committee & A. C. 17-11
Transported David A/A AC
900/ 70
0/ December 4 Commits T:
4.5
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0 10.0
Volume Evacuated (gail)
SAMPLE Color Stickely along the
SAMPLE: Color Stightly closurly Odor None Description of matter in sample: Very Pin particles
Sampling Method: from sample part on side of declinated bailer
Sample Port: Rate gpm Totalizer gal.
Time
of Sample Cont. Vol2' Fil3 Ref4 Preservative Analytic Turn5 LAR
Cont. ID Type 1 Ref Preservative Analytic Turn LAB (specify) Method
(openity) Method
3 041-01 wich 40m1 N Y HCL EPA 80/5/8020 N IT
1 1 1 1 1 FOR 601 1 1

I Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;

Cap Codes: F1 = Flastic, 1elion lined; 2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N) 5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)] ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DA				ASSOCIATES V
Well Name Musa	Datc 4/11/9/	Time	of Sampling /	4:34
Job Name Shell-Reamed	Job Number	81-434-01	Initials	PC
Sample Point Description	1 <u>M</u>		(M	= Monitoring Well
Location SW area c	of site in driver	Dav		Trouting Wort,
WELL DATA: Depth to	o Water 6.87 ft (stat	ic, pumping)		oduct ft
Product Thickness	Well Depth 200ft	(spec) Well Depth /	9.92 ft(sounded) We	Il Diameter # in
Initial	Height of Water in Ca	sing 13.05	ft = volume 8.3	52 60 001
4	Casing Volumes to	be Evacuated.	Total to be evacua	ted 260 and
EVACUATION METHO	D: Pump # ar	nd type	Hose # and type	gat.
Bailer	# and type 3"x 36" PUC	Dedicated	$\frac{y}{y}$ (Y/N)	
Other				1
Evacuation Time: Stop	14:18			
	14:02		Formulas/Ca	
·-	Evacation Time 16mi	<u></u>	Formulas/Co	
	Evacuated Prior to Sam		r = well radio	
	ation Rate			
Depth to Water during Ev	vacuation — ft	gai. per i	•	πr ^a h
Depth to Water at Sampli	ng 7.97 ft	/4/ · 7 / time	= •	
Evacuated Dry? _No_	After and Ti	772.) 6 time	•	
80% Recovery =	- gai. 11	mc	-	
% Recovery at Sample Ti	· · · · · · · · · · · · · · · · · · ·		V ₄ " casing =	
w Recovery at Bample 11	me rime			= 0.826 gal/ft
CHEMICAL DATA: Mat	an Duand (Nivershau	y	V ₆ " casing =	
CHEMICAL DATA: Mete Calibration:	·		V8 casing = 2	2.61 gal/ft
		10.0		
Measured: SC/	μ mhos pH β	C°C Time	Volume Evacuate	d (gal.)
	——————————————————————————————————————			
				
				*
	<i></i>			
CANADI D. C.I.	,			
SAMPLE: Color	Sample: 4	Oc	lor Slight	
Description of matter in s Sampling Method: <u>from</u>	sample: None	do st d.d.	N/4 miles	
Sample Port: Rate g	pm Totalizer —	gal.	N & CO 1 CM	
Time —				
# of Sample Co	77.12' 75'13 P			
	ont. Vol ² ' Fil ³ Re		Analytic	Turn ⁵ LAB
15	/pe	(specify)	Method	
3 041-02 W/	CV 40NI N S	HCL.	EPA 8015/8020	N IT
			EPA 601	$\frac{1}{\nu}$
				
				
				

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
P= Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING							
Well Name		_ Datc <i>4//</i>	1191	Time	of Sampling/.	5523	
Job Name Sheil-Ala	rnala II	_ Job Numbo	er <u>8</u> ,	1-434-01	Initials	PC	
Sample Point Descrip	otion <u>11</u>						ring Well)
Location North sick	of S	edian, pe	ur s	toruse use	e.		0 ,
WELL DATA: Dep	th to Water	7.68 ft (static) p	umping)	Depth to Pr	oduct	ft
Product Thickness _	Well	Depth 30.0	ft (spec) Well Depth	9.8 ft(sounded) We	ell Diamer	ter 7 in
In	itial Heigh	t of Water in	Casing	12.12	_ft. = volume _	4.45	oal
	4 Ca	sing Volume	s to be	Evacuated.	Total to be evacua	ted 17.	79 gal
EVACUATION MET	HOD:	Pump #	# and ty	/pe	Hose # and type		<u> gal.</u>
Ва	iler# and t	ype 11/2 48	PAC [Dedicated <u>F</u>	(Y/N)		
	ther				`		1
Evacuation Time: St	061315:48	14157			· · · · · · · · · · · · · · · · · · · 		
	art _/J:37				Formulas/Co	nversions	
Te	otal Evacat	ion Time	Imin		r = weil radi	·	
		ted Prior to		g	gal. $h = ht of wa$		
		late		gal. per n	- -	_	
Depth to Water durin				time	7.48 gal/ft ³	X II	
Depth to Water at Sa					V ₂ " casing =	0.1691/6	
Evacuated Dry? Ye.	S After	<i>iO</i> gal.	Time	15:48	-		
80% Recovery =	10,10 (27	w)		79 10	V ₃ " casing =		
% Recovery at Sampl			me	15:25	V ₄ " casing =		
•					V _{4.5} " casing	-	'tt
CHEMICAL DATA:	Meter Bran	d/Number			V ₆ " casing =		
	4.0	7.0	/-	10.0	V8 casing =	2.61 gai/ft	
Measured:	SC/µmhos		T°C		Volume Evenuete	.d (1)	
	σο, μιπιοσ	(1)	1 0	i iniç	Volume Evacuate	ca (gai.)	
		11/4			<u></u>		
		 		-			
		•					
			·				
/		*	· <u>.</u>				
SAMPLE: Color	Shahlly	cloudy		Od	or None		
Description of matter			U sile	tur material	70070		
Sampling Method: <u>D</u>	ecunted	From end	of de	dicator bai	1er		
Sample Port: Rate	gpm To	talizer		gal.			
Time		······································	 .				
# of Sample	Cont.	Vol ² ' Fil ³	Ref ⁴	Preservative	Analytic	Turn ⁵	LAB
Cont. ID	Type ¹			(specify)	Method	1 4111	LAD
7 0111.51			,				
3 041-31	W/CV	40m/ N	<u> </u>	HCL	EPA 8015/8020	_N	17
							· · · · · · · · · · · · · · · · · · ·
							
							

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

Truel Blanks

WEISS ASSOCIATES

J	ŀ	Ļ	1
	•	0	

WATER SAMPLING DATA
Well Name Date 4/1/91 Time of Sampling 10:45 Job Name Shell Manche I Job Number 81-434-01 Initials PC
Job Name Shell Alameda I Job Number 81-434-01 Initials PC
Sample Point Description (M = Monitoring Well
Location
WELL DATA: Depth to Water ft (static, pumping) Depth to Product ft
Product Thickness Well Depth ft (spec) Well Depth ft (sounded) Well Diameter in
Initial Height of Wester in Claims well Depth It (sounded) well Diameterin
Initial Height of Water in Casingft. = Volumegal
Casing Volumes to be Evacuated. Total to be evacuatedgal
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type Dedicated (Y/N)
Other
Evacuation Time: Stop
Start Formulas/Conversions
Total Evacation Time r = well radius in ft.
Total Evacuated Prior to Sampling gal. h = ht of water col in ft.
Evacuation Rate gal. per minute vol. in cyl. = $\pi r^2 h$
Donah to Water during Transport
Depth to Water at Sampling ft time 7.48 gal/ft Depth to Water at Sampling ft time V ₂ " casing = 0.163 gal/ft
000/ 7
0/ 70
% Recovery at Sample Time V _{4.5} " casing = 0.826 gal/ft
V_6 " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0 10.0
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
SAMPLE: Color Odor
Description of matter in sample:
Sampling Method:
Sample Port: Rate gpm Totalizer gal.
Time
of Sample Cont. Vol ² ' Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAR
The state of the s
Cont. ID Type (specify) Method
3 041-21 W/CU 40NI W Y HCM EPP 8015/8020 N Z7

¹ Sample Type Codes. W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other

Cap Codes: PT = Plastic, Teflon lined; 2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N) 5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)] ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

ATTACHMENT B

ANALYTIC RESULTS AND CHAIN-OF-CUSTODY FORM

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

Shell Oil Company Weiss Associates 5500 Shellmound Street Emeryville, CA 94608 Tom Fojut Date: 04/30/91

Work Order: T1-04-208

P.O. Number: MOH 880-021 Vendor #10002402

This is the Certificate of Analysis for the following samples:

Client Work ID: 81-434-01 1601 Webster St., Alameda

Date Received: 04/12/91 Number of Samples: 4 Sample Type: aqueous

TABLE OF CONTENTS FOR ANALYTICAL RESULTS

PAGES	LABORATORY #	SAMPLE IDENTIFICATION
3	T1-04-208-01	041-01
5	T1-04-208-02	041-02
6	T1-04-208-03	041-51
7	T1-04-208-04	041-21
10	T1-04-208-05	Quality Control

Reviewed and Approved:

Suzanne Veaudry Project Manager

> American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

Company: Shell Oil Company

Date: 04/30/91

Client Work ID: 81-434-01 1601 Webster St.

Work Order: T1-04-208

TEST NAME: Halocarbons by 8010/601

SAMPLE ID: 041-01 SAMPLE DATE: 04/11/91 LAB SAMPLE ID: T104208-01 SAMPLE MATRIX: aqueous RECEIPT CONDITION: Cool EXTRACTION DATE: N/A ANALYSIS DATE: 04/21/91

RESULTS in Milligrams per Liter

_	DETECTION	
PARAMETER	LIMIT	DETECTED
Bromodichloromethane	0.0005	None
Bromoform	0.0005	None
Bromomethane	0.0005	None
Carbon tetrachloride	0.0005	None
Chlorobenzene	0.0005	None
Chloroethane	0.0005	None
Chloroform	0.0005	None
Chloromethane	0.0005	None
Dibromochloromethane	0.0005	None
1,2-Dichlorobenzene	0.0005	None
1,3-Dichlorobenzene	0.0005	None
1,4-Dichlorobenzene	0.0005	None
Dichlorodifluoromethane	0.0005	None
1,1-Dichloroethane	0.0005	None
1,2-Dichloroethane	0.0005	None
1,1-Dichloroethene	0.0005	None
cis-1,2-Dichloroethene	0.0005	0.0009
trans-1,2-Dichloroethene	0.0005	None
1,2-Dichloropropane	0.0005	None
cis-1,3-Dichloropropene	0.0005	None
trans-1,3-Dichloropropene	0.0005	None
Methylene chloride	0.0005	None
1,1,2,2-Tetrachloroethane	0.0005	None
Tetrachloroethene	0.0005	None
1,1,1-Trichloroethane	0.0005	None
1,1,2-Trichloroethane	0.0005	None
Trichloroethene	0.0005	None
Trichlorofluoromethane	0.0005	None
1,1,2-Trichlorotrifluoroethane	0.0005	None
Vinyl chloride	0.0005	None

Company: Shell Oil Company

Date: 04/30/91

Client Work ID: 81-434-01 1601 Webster St.

Work Order: T1-04-208

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: 041-01
SAMPLE DATE: 04/11/91
LAB SAMPLE ID: T104208-01
SAMPLE MATRIX: aqueous

RECEIPT CONDITION: Cool pH < 2

RESULTS in Milligrams per Li	ter:			
		EXTRACTION	ANALYSIS	
	METHOD	DATE	DATE	
BTEX	8020		04/19/91	
Low Boiling Hydrocarbons Mod.8015			04/19/91	
		DETECTION		
PARAMETER		LIMIT	DETECTED	
Low Boiling Hydrocarbons			·	
calculated as Gasoline		0.05	None	
BTEX				
Benzene		0.0005	None	
Toluene		0.0005	None	
Ethylbenzene		0.0005	None	

Company: Shell Oil Company

Date: 04/30/91

Client Work ID: 81-434-01 1601 Webster St.

Work Order: T1-04-208

TEST NAME: Halocarbons by 8010/601

SAMPLE ID: 041-02 SAMPLE DATE: 04/11/91 LAB SAMPLE ID: T104208-02 SAMPLE MATRIX: aqueous RECEIPT CONDITION: Cool EXTRACTION DATE: N/A ANALYSIS DATE: 04/21/91

RESULTS in Milligrams per Liter

	DETECTION	
PARAMETER	LIMIT	DETECTED
Bromodichloromethane	0.0005	None
Bromoform	0.0005	None
Bromomethane	0.0005	None
Carbon tetrachloride	0.0005	None
Chlorobenzene	0.0005	None
Chloroethane	0.0005	None
Chloroform	0.0005	None
Chloromethane	0.0005	None
Dibromochloromethane	0.0005	None
1,2-Dichlorobenzene	0.0005	None
1,3-Dichlorobenzene	0.0005	None
1,4-Dichlorobenzene	0.0005	None
Dichlorodifluoromethane	0.0005	None
1,1-Dichloroethane	0.0005	None
1,2-Dichloroethane	0.0005	None
1,1-Dichloroethene	0.0005	None
cis-1,2-Dichloroethene	0.0005	None
trans-1,2-Dichloroethene	0.0005	None
1,2-Dichloropropane	0.0005	None
cis-1,3-Dichloropropene	0.0005	None
trans-1,3-Dichloropropene	0.0005	None
Methylene chloride	0.0005	None
1,1,2,2-Tetrachloroethane	0.0005	None
Tetrachloroethene	0.0005	None
1,1,1-Trichloroethane	0.0005	None
1,1,2-Trichloroethane	0.0005	None
Trichloroethene	0.0005	None
Trichlorofluoromethane	0.0005	None
1,1,2-Trichlorotrifluoroethane	0.0005	None
Vinyl chloride	0.0005	None

Company: Shell Oil Company

Date: 04/30/91

Client Work ID: 81-434-01 1601 Webster St.

Work Order: T1-04-208

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: 041-02 SAMPLE DATE: 04/11/91 LAB SAMPLE ID: T104208-02 SAMPLE MATRIX: aqueous

RECEIPT CONDITION: Cool pH < 2

RESULTS in Milligrams per Liter:

RESOLIS IN MILITYTAMS PET	Hicer:	EXTRACTION	ANALYSIS
	METHOD	DATE	DATE
BTEX	8020		04/19/91
Low Boiling Hydrocarbons	Mod.8015		04/19/91
DADAMETED		DETECTION	DETECTED

PARAMETER	DETECTION LIMIT	DETECTED
Low Boiling Hydrocarbons		
calculated as Gasoline	0.5	2.6
BTEX		
Benzene	0.005	0.13
Toluene	0.005	0.15
Ethylbenzene	0.005	0.25
Xylenes (total)	0.005	0.33

Page: 6

IT ANALYTICAL SERVICES

SAN JOSE, CA

Company: Shell Oil Company

Date: 04/30/91

Client Work ID: 81-434-01 1601 Webster St.

Work Order: T1-04-208

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: 041-S1 SAMPLE DATE: 04/11/91 LAB SAMPLE ID: **T104208-03** SAMPLE MATRIX: aqueous

RECEIPT CONDITION: Cool pH < 2

RESULTS in Milligrams per Liter:		
	EXTRACTION	ANALYSIS
METHOD	DATE	DATE
BTEX 8020		04/22/91
Low Boiling Hydrocarbons Mod.8015		04/22/91
	DETECTION	,
PARAMETER	LIMIT	DETECTED
* * * * * * * * * * * * * * * * * * *	1111111	DEILCIED
Low Boiling Hydrocarbons	MANTI	
	0.05	None
Low Boiling Hydrocarbons		
Low Boiling Hydrocarbons calculated as Gasoline		
Low Boiling Hydrocarbons calculated as Gasoline BTEX	0.05	None
Low Boiling Hydrocarbons calculated as Gasoline BTEX Benzene	0.05	None None

Page: 7

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company

Date: 04/30/91

Client Work ID: 81-434-01 1601 Webster St.

Work Order: T1-04-208

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: 041-21
SAMPLE DATE: 04/11/91
LAB SAMPLE ID: T104208-04
SAMPLE MATRIX: aqueous

RECEIPT CONDITION: Cool pH < 2

RESULTS in Milligrams per	Liter:		
		EXTRACTION	ANALYSIS
	METHOD	DATE	DATE
BTEX	8020		04/22/91
Low Boiling Hydrocarbons	Mod.8015		04/22/91
<u> </u>		DETECTION	
PARAMETER		LIMIT	DETECTED
Low Boiling Hydrocarbons			
Low Boiling Hydrocarbons calculated as Gasolin	e	0.05	None
- -	e	0.05	None
calculated as Gasolin	e	0.05	None None
calculated as Gasolin	e		
calculated as Gasolin BTEX Benzene	e	0.0005	None

Company: Shell Oil Company

Date: 04/30/91

Client Work ID: 81-434-01 1601 Webster St.

Work Order: T1-04-208

TEST NAME: Spike and Spike Duplicates

SAMPLE ID: Quality Control

SAMPLE DATE: not spec

LAB SAMPLE ID: T104208-05A

EXTRACTION DATE:

ANALYSIS DATE: 04/20/91 ANALYSIS METHOD: 601/8010

QUALITY CONTROL REPORT

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Analyses

RESULTS in Micrograms per Liter

PARAMETER	Sample Amt	Spike Amt	MS Result	MSD Result	MS %Rec	MSD %Rec	RPD
Chlorobenzene	None	20.0	19.7	20.4	99.	102.	3.
1,1-Dichloroethene	None	20.0	18.9	20.0	95.	100.	5.
Trichloroethene	None	20.0	18.5	19.3	93.	97.	4.
		,	,		MS	MSD	
SURROGATES					%Rec	%Rec	
1-Chloro-2-Fluorobenzene			-		113.	116.	

Page: 9

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company

Date: 04/30/91

Client Work ID: 81-434-01 1601 Webster St.

Work Order: T1-04-208

TEST NAME: Spike and Spike Duplicates

SAMPLE ID: Quality Control

SAMPLE DATE: not spec

LAB SAMPLE ID: T104208-05B

EXTRACTION DATE:

ANALYSIS DATE: 04/19/91 ANALYSIS METHOD: Mod.8015

QUALITY CONTROL REPORT

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Analyses

RESULTS in Micrograms per Liter

PARAMETER	Sample Amt	Spike Amt	MS Result	MSD Result	MS %Rec	MSD %Rec	RPD
Gasoline	ND<50.	500.	444.	428.	89.	86.	3.
SURROGATES					MS %Rec	MSD %Rec	
1,3-Dichlorobenzene					117.	128.	

Page: 10

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company

Date: 04/30/91

Client Work ID: 81-434-01 1601 Webster St.

Work Order: T1-04-208

TEST NAME: Spike and Spike Duplicates

SAMPLE ID: Quality Control

SAMPLE DATE: not spec

LAB SAMPLE ID: T104208-05C

EXTRACTION DATE:

ANALYSIS DATE: 04/20/91 ANALYSIS METHOD: 8020

QUALITY CONTROL REPORT

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Analyses

RESULTS in Micrograms per Liter

PARAMETER	Sample Amt	Spike Amt	MS Result	MSD Result	MS %Rec	MSD %Rec	RPD
Benzene	ND<0.5	50.0	50.0	44.5	100.	89.	12.
Toluene	ND<0.5	50.0	47.0	42.5	94.	85.	10.
Ethyl benzene	ND<0.5	50.0	45.1	41.1	90.	82.	9.
Xylenes	ND<0.5	150.	107.	97.3	71.	65.	9.
					MS	MSD	
SURROGATES					%Rec	%Rec	
1,3-Dichlorobenzene			,		96.	96.	

Company: Shell Oil Company

Date: 04/30/91

Client Work ID: 81-434-01 1601 Webster St.

Work Order: T1-04-208

TEST CODE 601 TEST NAME Halocarbons by 8010/601

The method of analysis for volatile halocarbons is taken from EPA Methods 601 and 8010. Samples are examined using the purge and trap technique. Final detection is by gas chromatography using an electrolytic conductivity detector.

TEST CODE TPHVB TEST NAME TPH Gas, BTEX by 8015/8020

The method of analysis for low boiling hydrocarbons is taken from EPA Methods modified 8015, 8020 and 5030. The sample is examined using the purge and trap technique. Final detection is by gas chromatography using a flame ionization detector in series with a photoionization detector. The result for total low boiling hydrocarbons is calculated as gasoline. Results in soils are corrected for moisture content and are reported on a dry soil basis unless otherwise noted.

WEISS ASSOCIATES 5500 Shellmound SL, Emeryville, CA 94608 Phone: 415-547-5420 FAX: 415-547-5043	Shell Service Station Address: 1601 WEBSTER STREET ALAMEDA CA Shell Contact: KURT MILLER WIC #: 204-0072-0502	Please send analytic results and a copy of the signed character and a copy of the sign	in of custody form to:	And the state of t
CHAIN-OF-CUSTODY RECORD AND ANALYTIC INSTRUCTIONS Sampled by: Paul Curres	AFE #:	in report 2) Notify us on GC or	analytic method and detection limit	A to the second of the second
No. of Sample ID Container Sample Type Date 3 041-01 www 4/4/4/4/ 041-02 041-21	Vol ² Fil ³ Ref ⁴ Preservative (specify)	Analyze for Analytic Method TPH-ColBETX EPA 8015 HVOC'S EPA 8015 HVOC'S EPA 8015 TPH-ColBETX EPA 8015 TPH-ColBETX EPA 8015	5/8020 N -/8020 N	
1 Paul Carlon 4/1/9/ Released by (Signature), Date 1 Weise Associates Affiliation 2 Manufacture), Date 2 West Associates Affiliation Affiliation Affiliation	3 Marett Su 4/2/2 Released by (Signature), Date 3 Marett Su 4/2/2 Affiliation Affiliation Affiliation Affiliation	Released by (Signature), Date 5 Affiliation 6 Received by Lab Personnel, Date 6 Affiliation, Telephone	x Seal intact?	

1 Sample Type Codes: W = Water, S = Soil, Describe Other; Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B - Clear/Brown Glass, Describe Other; Cap Codes: PT = Plastic, Teflon Lined 2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)

5 Turnaround [N = Normal, W = 1 Week, R = 24 Hour, HOLD (write out)]

ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

locked secure ared 4/11/91 -> 4/12/9/

-> Samples

ATTACHMENT C

PREVIOUS GROUND WATER ELEVATION CONTOUR MAPS

Figure 3. Ground Water Elevation Contours - January 25, 1991 - Shell Service Station WIC #204-0072-0403, 1601 Webster Street, Alameda, California

Figure 2. Monitoring Well Locations and Ground Water Elevation Contours - October 18, 1990 - Shell Service Station WIC #204-0072-0403, 1601 Webster Street, Alameda, California

Figure 2. Monitoring Well Locations and Ground Water Elevation Contours - July 18, 1990 - Shell Service Station WIC #204-0072-0403, 1601 Webster Street, Alameda, California

Figure 3. Monitoring Well Locations and Ground Water Elevation Contours - April 11, 1990 - Shell Service Station WIC #204-0072-0403, 1601 Webster Street, Alameda, California