

January 3, 1996

at
Former Alameda Max's
1357 High Street
Alameda, California 94501

Prepared for: Mr. James A. Phillipsen 3111 Marina Drive Alameda, CA 94501

Prepared by:
AQUA SCIENCE ENGINEERS, INC.
2411 Old Crow Canyon Road, #4
San Ramon, CA 94583
(510) 820-9391

1.0 INTRODUCTION

Site Location (Site), See Figure 1
Former Alameda Max's
1357 High Street
Alameda, CA 94501

Property Owner
Mr. James A. Phillipsen
3111 Marina Drive
Alameda, CA 94501

Environmental Consulting Firm
Aqua Science Engineers, Inc. (ASE)
2411 Old Crow Canyon Road, #4
San Ramon, CA 94583
Contact: Robert Kitay, Project Manager
(510) 820-9391

Agency Review
Alameda County Health Care Services Agency (ACHCSA)
1131 Harbor Bay Parkway
Alameda, CA 94502
Contact: Ms. Juliet Shin
(510) 567-6700

California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region 2101 Webster Street, Suite 500 Oakland, CA 94612 Contact: Mr. Kevin Graves (510) 286-4359

. The following is a report detailing the results of the December 5, 1995, quarterly groundwater sampling at the above referenced site.

2.0 OIL SKIMMER

An oil skimmer operated in monitoring well MW-2 between September 15, 1995 and November 7, 1995 in order to remove the free-floating oil that has been present in this well. Approximately 65 gallons of oil and water were removed from the well during this period. Only a slight sheen is now present on the surface of groundwater in that well.

3.0 GROUNDWATER FLOW DIRECTION AND GRADIENT

On December 5, 1995, ASE environmental specialist Scott Ferriman measured the depth to water in each site well using an electric water level sounder. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen. A slight sheen was present on the surface of the groundwater in monitoring well MW-2. No free-floating hydrocarbons or sheen was present on the surface of water from monitoring wells MW-1, MW-3 or MW-4. Depths to groundwater are presented in Table One.

Groundwater elevation contours are presented on Figure 2. On December 5, 1995, groundwater flowed to the southeast beneath the site at a gradient of 0.006-feet/foot, which is consistent with previous findings.

4.0 GROUNDWATER SAMPLE COLLECTION AND ANALYSIS

Prior to sampling, each monitoring well was purged of four well casing volumes of water using a 12 volt electric PVC pump. The pH, temperature and conductivity of the water were monitored during the purging, and samples were not collected until these parameters stabilized. Groundwater samples were then collected using dedicated polyethylene bailers. The samples were decanted from the bailers into 40-ml volatile organic analysis (VOA) vials and 1-liter amber glass bottles. The samples were preserved with hydrochloric acid, capped, labeled and placed into an ice chest containing wet ice for transport to American Environmental Network (AEN) of Pleasant Hill, California (DOHS #1172) under chain-of-custody.

The analytical results for this and previous quarters are presented in Tables Two and Three, and the certified laboratory report and chain-of-custody form are included as Appendix A.

The well purge water was placed in 55-gallon steel DOT 17H drums, labeled, and left on-site for temporary storage.

Alameda Max's Quarterly Monitoring Report - December 1995 Sampling

The groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-G) by modified EPA Method 5030/8015, total petroleum hydrocarbons as diesel (TPH-D) by modified EPA Method 3510/8015, total and hydrocarbon oil and grease (O&G) by Standard Method 5520 C&F, benzene, toluene, ethylbenzene and total xylenes (BTEX) and methyl t-butyl ether (MTBE) by EPA Method 8020, and volatile organic compounds (VOCs) by EPA Method 8010.

5.0 CONCLUSIONS

Only a slight sheen was present on the groundwater surface in monitoring well MW-2. Hydrocarbon concentrations in groundwater samples collected from monitoring wells MW-3 and MW-4 decreased slightly this quarter. TPH-G and BTEX concentrations in groundwater samples collected from monitoring well MW-1 increased slightly this quarter, but the TPH-D concentrations decreased to non-detectable this quarter. All of these concentrations are generally consistent with previous quarters results. Benzene concentrations in the groundwater samples collected from monitoring wells MW-1, MW-3 and MW-4 exceeded the California Department of Toxic Substances Control (DTSC) maximum contaminant level (MCL) for drinking water.

6.0 RECOMMENDATIONS

A workplan to destroy monitoring well MW-2, overexcavate and dispose of contaminated soil in the vicinity of the former waste oil tank, and replace monitoring well MW-2 following the backfilling will be submitted to the Alameda County Health Care Services Agency in January 1996. The field work is tentatively scheduled for late January or February 1996.

The next quarterly groundwater sampling is scheduled for March 1996.

7.0 REPORT LIMITATIONS

The results of this report represent the conditions at the time of the groundwater sampling at the specific locations where the groundwater samples were collected, and for the specific parameters analyzed for by the laboratory. It does not fully characterize the site for contamination resulting from sources other than the former underground storage tanks and associated plumbing at the site, or for parameters not analyzed for by the laboratory. All of the laboratory work cited in this report was prepared under the direction of independent Cal-EPA certified laboratory.

The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

Aqua Science Engineers appreciates the opportunity to provide environmental consulting services to you, and trust that this report meets your needs. Please feel free to call us at (510) 820-9391 if you have any questions or comments.

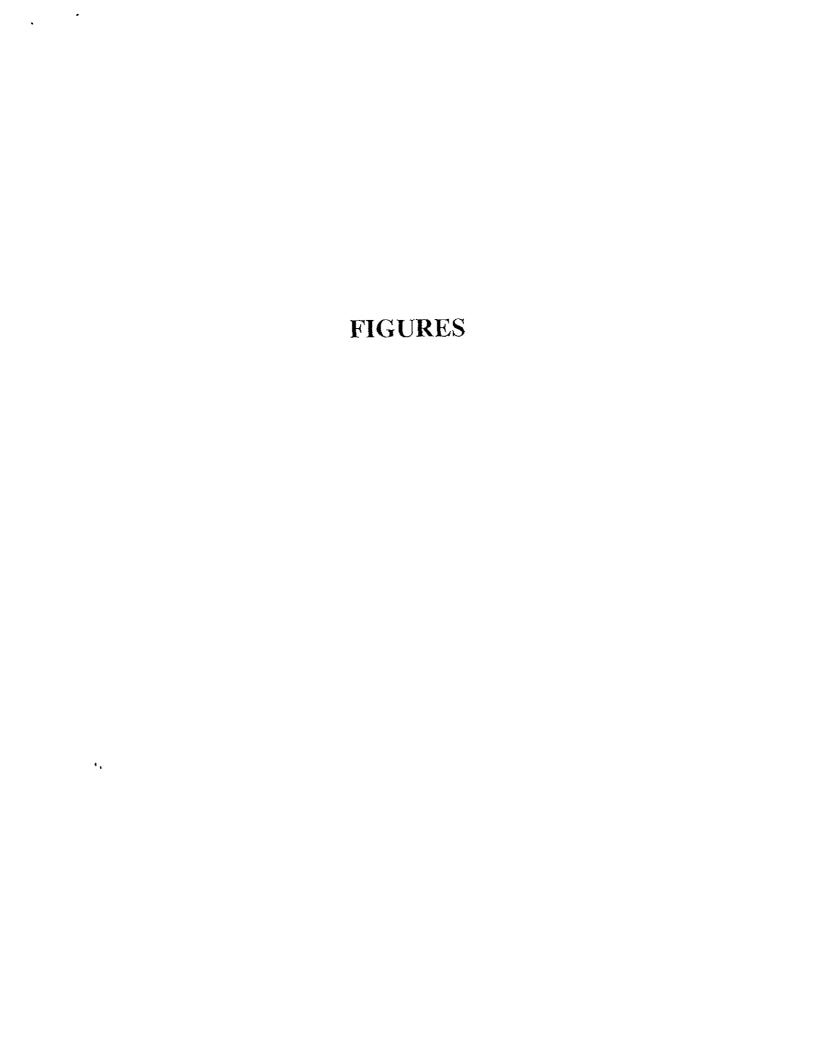
Respectfully submitted,

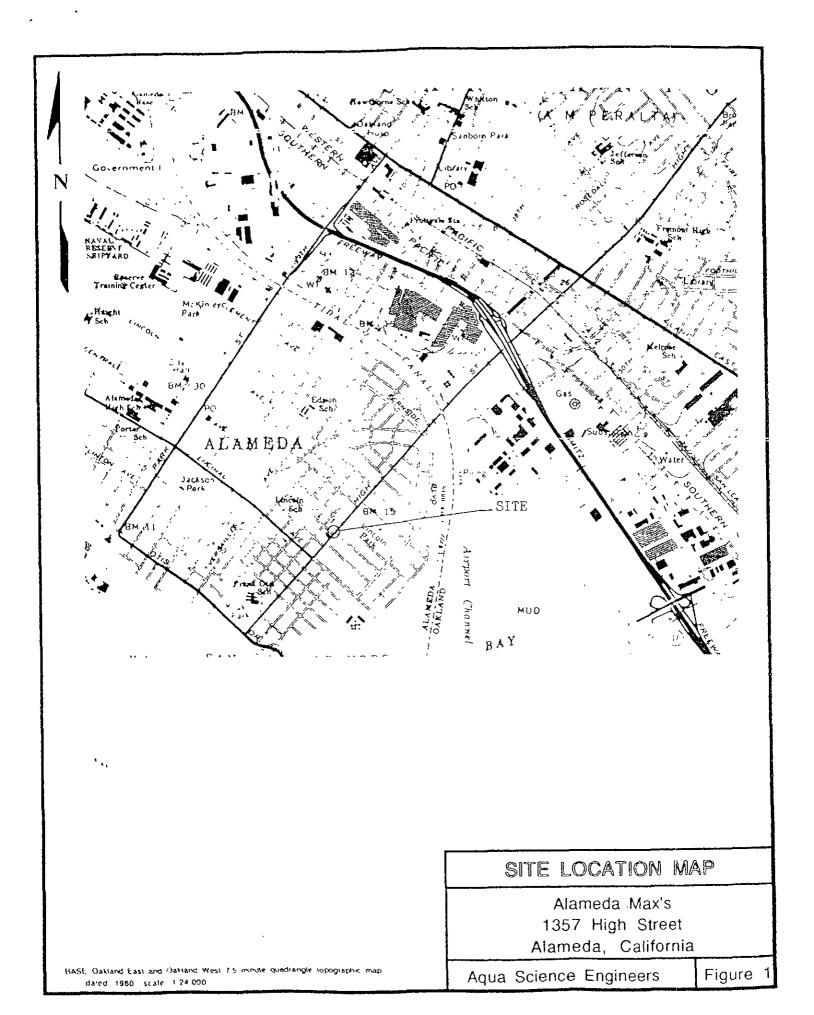
AQUA SCIENCE ENGINEERS, INC.

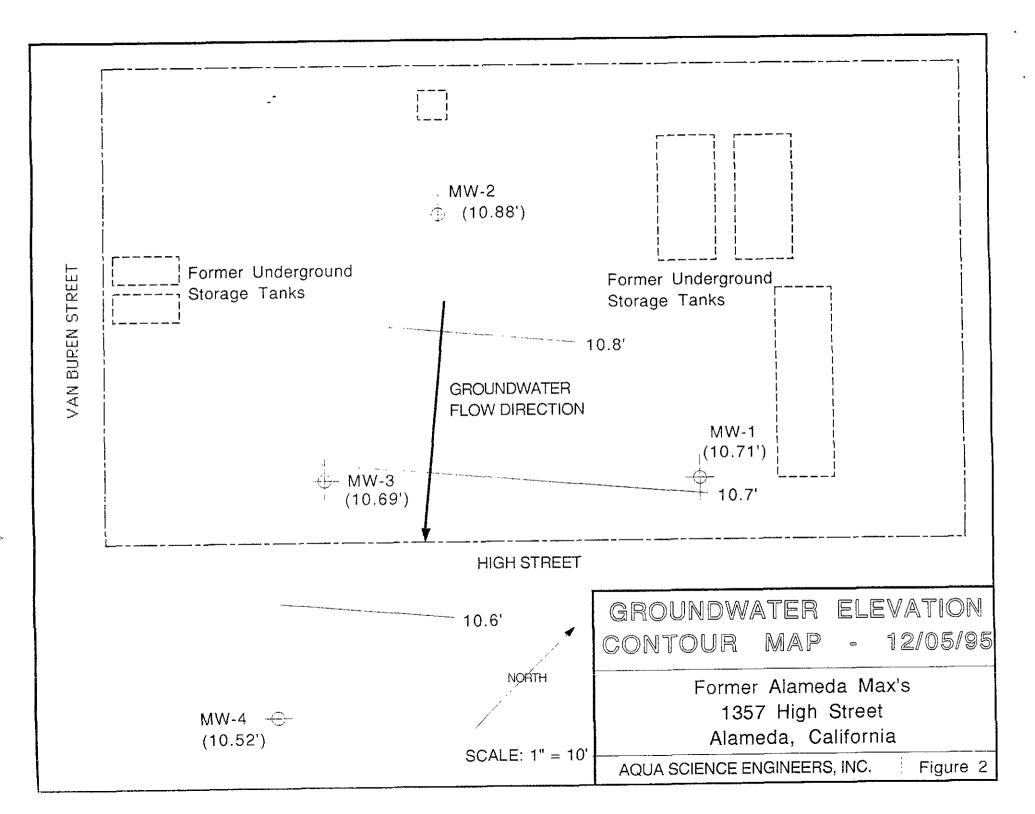
Robert E. Kitay, R.E.A.

Project Geologist

Attachments: Figures 1 and 2


Tables 1, 2 and 3


Appendices A and B


cc: Ms. Juliet Shin, Alameda County Health Care Services Agency

Mr. Kevin Graves, RWQCB, San Francisco Bay Region

-4-

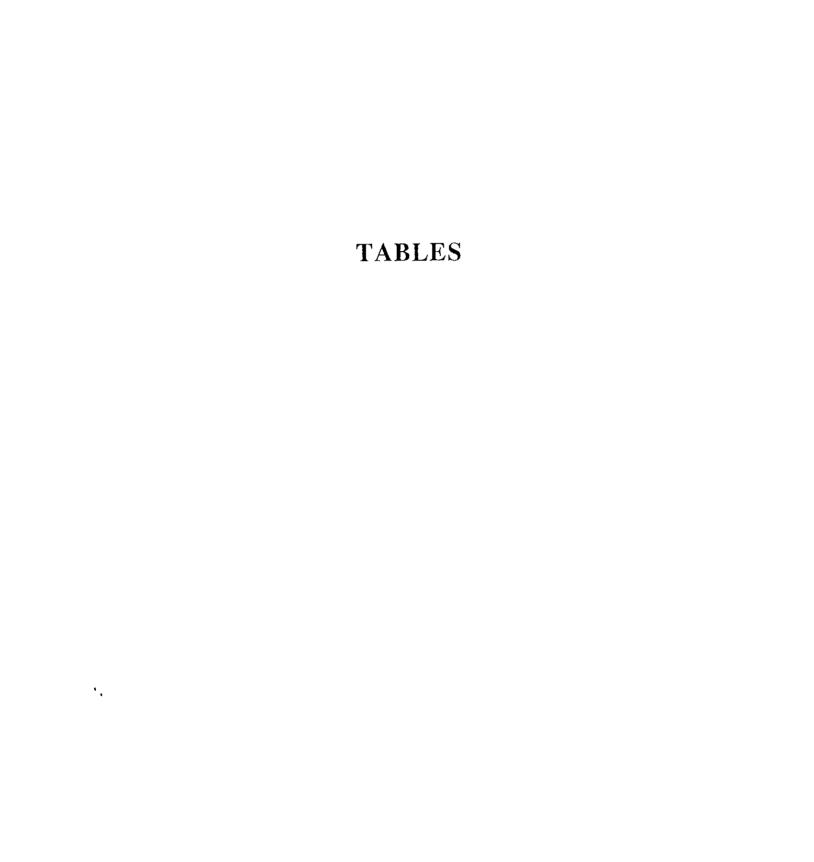


TABLE ONE
Summary of Groundwater Well Survey Data

Well I.D.	Date of Measurement	Top of Casing Elevation (relative to project datum)	Water	Elevation
MW-1	04-06-94	15.00	3.92	11.08
	08-02-94		4.10	10.90
	10-04-94		4.42	10.58
	12-14-94		3.42	11.58
	03-16-95		3.21	11.79
	06-06-95		3.84	11.16
	09-14-95		4.18	10.82
	12-05-95		4.28	10.72
MW-2	04-06-94	14.37	3.02	11.35
	08-02-94		3.32	11.18*
	12-14-94		2.90	11.52*
	03-16-95		Unknown	Unknown
	06-06-95		Unknown	Unknown
	09-14-95		Unknown	Unknown
	12-05-95		3.49	10.88
MW-3	04-06-94	14.56	3.51	11.05
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	08-02-94		3.68	10.88
	10-04-94		3.97	10.59
	12-14-94		3.04	11.52
	03-16-95		2.84	11.72
	06-06-95		3.44	11.12
	09-14-95		3.76	10.80
	12-05-95		3.87	10.69
MW-4	10-04-94	14.70	4.31	10.39
, ,	12-14-94		3 62	11.08
	03-16-95		3.48	11 22
	06-06-95		3.86	10 84
	09-14-95		4 10	10.60
	12-05-95		4.18	10.52

[&]quot;.* = Adjusted for the presence of free-floating oil by the equation: Adjusted Groundwater Elevation = Top of Casing Elevation - Depth to Groundwater + (0.8 x Floating Hydrocarbon Thickness)

TABLE TWO Summary of Chemical Analysis of GROUNDWATER Samples
All results are in parts per billion

Sample & Date	TPH Gasoline	TPH Diesel	Oil & Grease	Benzene	Toluene	Ethyl Benzene	Total Xylenes	MTBE
<u>MW-1</u>	0.0	-50	-500	-0.5	<0.5	0.5	2	
04/04/94	80	<50	<500	<0.5 <0.5	<0.5	<0.5	<2	
08/02/94	60	500	<1,000 <1,000	<0.5	<0.5	6	~ ~2	
12/14/94	200 200	1,500 1,600	<500	<0.5	< 0.5	3	$\stackrel{\sim}{\sim}$	
03/16/95 06/06/95	<50	680	<500	<0.5	<0.5	< 0.5	<2	** ** **
09/14/95	<50	500	<500	<0.5	< 0.5	0.8	< <u>2</u>	
1215195	69	< 50	<1,000	1	6	2	1 2	< 50
1213173	0 7	1.10	11,000	1	V	_		. .
MW-2								
04/04/94	150	<50	6,200	0.6	I	2	6	
08/02/94				EE-FLOATIN	NG HYDRO	CARBONS		
12/14/94				EE-FLOATIN				
03/16/95	NOT S	SAMPLED I	DUE TO FR	EE-FLOATIN	NG HYDRO	CARBONS		
06/06/95	NOT S	SAMPLED I	DUE TO FR	EE-FLOATIN	NG HYDRO	CARBONS		
09/14/95	NOT S	SAMPLED I	DUE TO FR	EE-FLOATIN				
1215195	0 1 1	< 50	2,000*	< 0.5	< 0.5	< 0.5	<2	< 50
<u>MW-3</u>				_			222	
04/04/94	1,200	180	<500	3	27	44	230	
08/02/94	2,700	<50	<1,000	6	16	70	470	
12/14/94	2,600	80	<1,000	9	30	78	430	
03/16/95	1,200	300	<500	4	16	38	270	
06/06/95	500	300	<500	2	l	13 28	61 94	
09/14/95	730	300	<500	3	5 5	28 8	3 3	< 50
1215195	360	< 50	<1,000	3	5	0	33	>50
MW-4								
10/04/94	500	200	<1,000	2	19	14	70	
10/04/94	1,500	200	<1,000	8	37	68	190	
, 03/16/95	500	300	<500	3	5	23	41	
06/06/95	1,600	620	<500	5.9	48	83	240	
09/14/95	2,900	300	600	13	79	180	450	
1215195		500	<1,000	9	27	7 2	130	< 50
			,	0000	0.02.0	0.000	0.020	9020
EPA	5030/	3510/	5520	8020	8020	8020	8020	8020
METHOD	8015	8015	B&F					

Notes:

MTBE = Methyl t-butyl ether
--- = Not analyzed
* = Hydrocarbon oil and grease; total oil and grease is 3,000 ppb

TABLE THREE Summary of Chemical Analysis of GROUNDWATER Samples Volatile Organic Compounds All results in parts per billion

Sample I.D.	Date of Sampling	TCE	Other VOCs	
MW-1	08-02-94 12-14-94 03-16-95 06-06-95 12-05-95	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5-2	
MW-2	04-04-94 08-02-94 12-14-94 03-16-95 06-06-95 12-05-95	0.7 NOT SAMPLED DUE TO NOT SAMPLED DUE TO NOT SAMPLED DUE TO NOT SAMPLED DUE TO <0.5	FLOATING HYDF FLOATING HYDF	ROCARBONS ROCARBONS
M W - 3	08-02-94 12-14-94 03-16-95 06-06-95 12-05-95	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5-2	
M W - 4	10-04-94 12-14-94 03-16-95 06-06-95 12-05-95	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5-2	
EPA METHOD		8010	8010	

TCE = Trichloroethene

VOCs = volatile organic compounds

APPENDIX A

California EPA Certified Laboratory Report of Groundwater Samples

American Environmental Network

Certificate of Analysis

DOHS Cembeation 1172

AIHA Accreditation 11134

PAGE 1

AQUA SCIENCE ENGINEERS, INC 2411 OLD CROW CANYON RD #4 SAN RAMON. CA 94583

ATTN: SCOTT FERRIMAN CLIENT PROJ. ID: 2545 CLIENT PROJ. NAME. PHILLIPSEN REPORT DATE 12/26/95

DATE(S) SAMPLED. 12/05/95

DATE RECEIVED 12/06/95

AEN WORK ORDER: 9512066

PROJECT SUMMARY.

On December 6, 1995, this laboratory received 4 water sample(s)

Client requested sample(s) be analyzed for organic parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement

If you have any questions, please contact Client Services at (510) 930-9090

Larry Klein

Laboratory Director

AQUA SCIENCE ENGINEERS, INC

AEN JOB NO: 9512066 DATE SAMPLED: 12/05/95 DATE RECEIVED: 12/06/95 CLIENT PROJ ID: 2545

Client Sample [d	AEN Lab 1d	Purgeable Hydrocarbons as Gasoline (ug/L)	Extractable Hydrocarbons as Diesel (ug/L)	Oil & Grease (ug/L)	Hydrocarbons (ug/L)
MW- 1	01	69	ИD	ND	ИD
MW-2	02	110	ND	3,000	2,000
MH-3	03	360	NO	DM	ND
MW-4	04	1,500	500	ДИ	ОИ
Reporting	Lîmit	50	50	1000	1000
EPA Method:		5030 GCFID	3510 GEFID	5520C	5520F
Date Extracted:		NA	12/11/95	12/12/95	12/12/95
Date Analyzed:		12/11/95 12/13-14/9		12/12/95	12/12/95

Client Sample !d	AEN Lab Id	Benzene (ug/L)	Toluene (ug/l)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	Methyl t-Butyl Ether (ug/L)
MW-1	01	1	6	2	12	ИО
MW - 2	02	ND	ND	ИD	סא	סא
MW-3	03	3	5	8	33	ИД
MW-4	04	9	27	72	130	ИО
Reporting	Limit	0.5	0.5	ø.5	2	50
EPA Method	1:	8020	8020	8020	8020	8020
Date Analyzed:		12/11/95	12/11/95	12/11/95	12/11/95	12/11/95

NA = Not Applicable ND = Not Detected

AQUA SCIENCE ENGINEERS, INC

SAMPLE ID: MW-1 AEN LAB NO: 9512066-01 AEN WORK ORDER: 9512066 CLIENT PROJ. ID: 2545

DATE SAMPLED: 12/05/95 DATE RECEIVED: 12/06/95 REPORT DATE: 12/26/95

ND = Not detected at or above the reporting limit
 * = Value above reporting limit

AQUA SCIENCE ENGINEERS, INC

SAMPLE ID: MW-2 AEN LAB NO: 9512066-02 AEN WORK ORDER: 9512066 CLIENT PROJ. ID: 2545

DATE SAMPLED: 12/05/95 DATE RECEIVED: 12/06/95 REPORT DATE: 12/26/95

	WETHOD /		DEDODITANO		DATE
ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
EPA 8010 - Water matrix E Bromodichloromethane Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl Vinyl Ether Chloroform	PA 8010 75-27-4 75-25-2 74-83-9 56-23-5 108-90-7 75-00-3 110-75-8 67-66-3	ND ND ND ND ND ND ND	0.5 0.5 0.5 0.5 0.5 0.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	12/11/95 12/11/95 12/11/95 12/11/95 12/11/95 12/11/95 12/11/95
Chloromethane Dibromochloromethane 1.2-Dichlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene Dichlorodifluoromethane 1.1-Dichloroethane 1.2-Dichloroethane	74-87-3 124-48-1 95-50-1 541-73-1 106-46-7 75-71-8 75-34-3 107-06-2	DN ON ON NO NO NO NO	2 0 5 0 5 0 5 0 5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	12/11/95 12/11/95 12/11/95 12/11/95 12/11/95 12/11/95 12/11/95
1.1-Dichloroethene cis-1.2-Dichloroethene trans-1.2-Dichloroethene 1.2-Dichloropropane cis-1.3-Dichloropropene trans-1.3-Dichloropropene Methylene Chloride	75-35-4 156-59-2 156-60-5 78-87-5 10061-01-5 10061-02-6 75-09-2	DN DN DN DN DN ON	0 5 0.5 0.5 0.5 0 5 0 5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	12/11/95 12/11/95 12/11/95 12/11/95 12/11/95 12/11/95 12/11/95
1.1.2.2 Tetrachloroethane Tetrachloroethene 1.1.1 Trichloroethane 1.1.2 Trichloroethane Trichloroethene Trichlorofluoromethane 1.1.2Trichlorotrifluoroethane Vinyl Chloride	79-34-5 127-18-4 71-55-6 79-00-5 79-01-6 75-69-4 2 76-13-1 75-01-4	ND ND ND ND ND ND ND	0 5 0 5 0 5 0 5 0 5 0 .5 2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	12/11/95 12/11/95 12/11/95 12/11/95 12/11/95 12/11/95

ND = Not detected at or above the reporting limit
* = Value above reporting limit

AQUA SCIENCE ENGINEERS, INC

SAMPLE ID: MW-3 AEN LAB NO: 9512066-03 AEN WORK ORDER: 9512066 CLIENT PROJ. ID: 2545

DATE SAMPLED: 12/05/95 DATE RECEIVED: 12/06/95 REPORT DATE: 12/26/95

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane	PA 8010 75-27-4 75-25-2 74-83-9 56-23-5 108-90-7 75-00-3 110-75-8	NO ND ND ND ND ND	0.5 0.5 2 0.5 0.5 2	ug/L ug/L ug/L ug/L ug/L ug/L	12/11/95 12/11/95 12/11/95 12/11/95 12/11/95 12/11/95 12/11/95
2 Chloroethyl Vinyl Ether Chloroform Chloromethane Dibromochloromethane 1.2-Dichlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene Dichlorodifluoromethane	67-66-3 74-87-3 124-48-1 95-50-1 541-73-1 106-46-7 75-71-8	ND ND ND ND ND ND	0.5 2 0.5 0.5 0.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	12/11/95 12/11/95 12/11/95 12/11/95 12/11/95 12/11/95 12/11/95
1.1-Dichloroethane 1.2-Dichloroethane 1.1-Dichloroethane 1.1-Dichloroethene cis-1.2-Dichloroethene trans-1.2-Dichloroethene 1.2-Dichloropropane	75-34-3 107-06-2 75-35-4 156-59-2 156-60-5 78-87-5	ND ND ND ND ND ND	2 0.5 0.5 0.5 0.5 0.5	ug/L ug/L ug/L ug/L ug/L ug/L	12/11/95 12/11/95 12/11/95 12/11/95 12/11/95
cis-1,3-Dichloropropene trans 1,3-Dichloropropene Methylene Chloride 1,1,2,2 Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane	10061-01-5 10061-02-6 75-09-2 79-34-5 127-18-4 71-55-6	ON ON ON ON ON	0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/L ug/L ug/L ug/L ug/L ug/L	12/11/95 12/11/95 12/11/95 12/11/95 12/11/95
<pre>1.1.2-Trichloroethane 1richloroethene Trichlorofluoromethane 1.1.2Trichlorotrifluoroethane Vinyl Chloride</pre>	79-00-5 79-01-6 75-69-4 76-13-1 75-01-4	ND ND ND ND	0.5 0.5 2 0.5 2	ug/L ug/L ug/L ug/L ug/L	12/11/98 12/11/98 12/11/98 12/11/98 12/11/98

ND = Not detected at or above the reporting limit
 * = Value above reporting limit

AQUA SCIENCE ENGINEERS, INC

SAMPLE ID: MW-4 AEN LAB NO: 9512066-04 AEN WORK ORDER: 9512066 CLIENT PROJ. ID: 2545

DATE SAMPLED: 12/05/95 DATE RECEIVED: 12/06/95 REPORT DATE: 12/26/95

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
EPA 8010 - Water matrix E	PA 8010		0.5		10/11/05
Bromodichloromethane	75-27-4	ND	0.5	ug/L	12/11/95
Bromoform	75-25-2	ND	0 5 2	ug/L	12/11/95
Bromomethane	74-83-9	ND	2	ug/L	12/11/95
Carbon Tetrachloride	56-23-5	ND	0.5	ug/L	12/11/95
Chlorobenzene	108-90-7	ND	0.5	ug/L	12/11/95
Chloroethane	75-00-3	ND	2	ug/L	12/11/95
2-Chloroethyl Vinyl Ether	110-75-8	ND	0.5	ug/L	12/11/95
Chloroform	67-66-3	ND	0.5 2 0.5 0.5	ug/L	12/11/95
Chloromethane	74-87-3	ND	2	ug/L	12/11/95
Dibromochloromethane	124-48-1	ND	0.5	ug/L	12/11/95
1 2-Dichlorobenzene	95-50-1	ND	0.5	ug/L	12/11/95
1 3-Dichlorobenzene	541 - 73 - 1	ND	U 5	ug/L	12/11/95
1 4-Dichlorobenzene	106-46-7	ND	0.5	ug/L	12/11/95
Dichlorodifluoromethane	75-71-8	ND	2 0.5	ug/L	12/11/95
1 1-Dichloroethane	75-34-3	ND	0.5	ug/L	12/11/95
1 2-Dichloroethane	107-06-2	ND	0.5	ug/L	12/11/95
l l-Dichloroethene	75-35-4	ND	0.5	ug/L	12/11/95
cis-1,2-Dichloroethene	156-59-2	ND	0 5	ug/L	12/11/95
trans-1.2-Dichloroethene	156-60-5	ND	0.5	ug/L	12/11/95
1 2-Dichloropropane	78-87-5	ND	0.5	ug/L	12/11/95
cis-1.3-Dichloropropene	10061-01-5	ND	0.5 0.5 2	ug/L	12/11/95
trans 1,3-Dichloropropene	10061-02-6	ND	0 5	ug/L	12/11/95
Methylene Chloride	75-09-2	ND	2	ug/l.	12/11/95
1 1.2.2 Tetrachloroethane	79-34-5	ИD	0 5	ug/L	12/11/95
letrachloroethene	127-18-4	DИ	0 5 0.5 0.5	ug/L	12/11/95
l l.l-Trichloroethane	71-55-6	ND	0.5	ug/L	12/11/95
•1.1.2-Trichloroethane	79-00-5	ND	0.5 0.5 2 0.5	ug/L	12/11/95
Trichloroethene	79-01-6	ND	0 5	ug/L	12/11/95
Irichlorofluoromethane	75-69-4	ND	2	ug/L	12/11/95
1.1.2Trichlorotrifluoroethane	2 76-13-1	ИD	0.5	ug/L	12/11/95
Vinyl Chloride	75-01-4	ND	2	ug/L	12/11/95

ND = Not detected at or above the reporting limit
 * = Value above reporting limit

AEN (CALIFORNIA) OUALITY CONTROL REPORT

AEN JOB NUMBER 9512066
CLIENT PROJECT ID. 2545

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

<u>Definitions</u>

(aboratory Control Sample (LCS)/Method Spike(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

• Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analysis.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behavior, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrumental performance.

- D: Surrogates diluted out.
- #: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL DATA

METHOD: SM 5520

AEN JOB NO: 9512066

DATE EXTRACTED: 12/01/95 DATE ANALYZED: 12/01/95 SAMPLE SPIKED: DI WATER INSTRUMENT GRAVIMETRIC

MATRIX: WATER

Method Spike Recovery Summary

		Duplicate			QC Limi	ts
Analyte	Spike Added (mg/L)	Spike Added (mg/L)	Average Percent Recovery	RPD	Percent Recovery	ŔPD
011	91 1	86.3	94	2	83-102	5

QUALITY CONTROL DATA

METHOD: EPA 3510 GCFID

AEN JOB NO: 9512066

DATE EXTRACTED: 12/11/95

INSTRUMENT: C MATRIX: WATER

Surrogate Standard Recovery Summary

Date			Percent Recovery
Date Analyzed	Client Id.	Lab Id.	n-Pentacosane
12/13/95 12/14/95 12/14/95 12/14/95	MW-1 MW-2 MW-3 MW-4	01 02 03 04	115 111 97 100
QC Limits.			59-118

DATE EXTRACTED: 12/11/95 DATE ANALYZED: 12/13/95 SAMPLE SPIKED: DI WATER INSTRUMENT. C

Method Spike Recovery Summary

				QC Limit	ts
Analyte	Spike Added (mg/L)	Average Percent Recovery	RPD	Percent Recovery	RPD
Diesel	2 03	76	12	58-107	15

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit

QUALITY CONTROL DATA

METHOD: EPA 8010

AEN JOB NO: 9512066 INSTRUMENT: G, I MATRIX: WATER

Surrogate Standard Recovery Summary

			Percer	t Recovery
Date Analyzed	Client Id	Lab Id.	Bromochloro- methane	1-Bromo-3-chloro- propane
12/11/95 12/11/95 12/11/95 12/11/95	MW-1 MW-2 MW-3 MW-4	01 02 03 04	81 90 72 79	78 84 94 97
QC Limits			70-130	70-130

DATE ANALYZED: 12/10/95 SAMPLE SPIKED: 9512016-11

INSTRUMENT G

٠.,

Matrix Spike Recovery Summary

		,		QC Limit	is.
Analyte	Spike Added (ug/L)	Average Percent Recovery	RPD	Percent Recovery	RPD
1.1-Dichloroethene Trichloroethene Chlorobenzene	50 50 50	83 101 86	3 3 <1	37-156 54-122 54-141	20 20 20

QUALITY CONTROL DATA

METHOD: EPA 8020, 5030 GCFID

AEN JOB NO: 9512066

INSTRUMENT: H MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id	Lab Id	Percent Recovery Fluorobenzene
12/11/95 12/11/95 12/11/95 12/11/95	MW-1 MW-2 MW-3 MW-4	01 02 03 04	99 98 97 94
QC Limits.			70-130

DATE ANALYZED 12/10/95 SAMPLE SPIKED 9512039-01 INSTRUMENT H

١.,

Matrix Spike Recovery Summary

Name and the second sec				QC Limi	ts
Analyte	Spike Added (ug/L)	Average Percent Recovery	RPD	Percent Recovery	RPD
Benzene Toluene	46.4 109	102 103	3 2	85-109 87-111	17 16
Hydrocarbons as Gasoline	1000	112	3	66-117	19

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

Aqua Science Engineers, Inc.
2411 Old Crow Canyon Road, #4,
San Ramon, CA 94583
(SIO: 820-9391 - FAX (SIO: 837-4853

Chain of Custody 9512066

DATE 12-5-95 PAGE _ 1 OF _ (

(510) 820-9391 - FAX (510) 837-4853					DATE_14_3_1	3 AGE	
SAMPLERS (SIGNATURE)	(PHONE NO.)	PROJECT N	IAMEF	hillipsen		NO	2545
Scott 7, 5 510 85	20-9391	ADDRESS	1357		Alameda, C/	 -	
ANALYSIS REQUEST SPECIAL INSTRUCTIONS:	5x 16	103	CE CE	MAT 128	(c)		
NO C	TPH GASOLLIE (EPA \$030/8015) TPH-GASOLINE/BTEX 46 (EPA \$030/8015-8020)	TPH- DIESEL (C) (EPA 3510/8015) PURGABLE AROWATICS (EPA 602/0020)	PURGABLE HALOCARBONS (EPA 601(8010)) GZ. VOLATILE ORGANICS (EPA 624/8240)	BASE/NUETRALS, ACT DS (EFA 625/8270; OIL & CREASE (FP) (EPA 5520 EAF OR (BAF)) LUFT METALS (5) (EPA 6010+7000)	TITLE 22 (CM 17) (EPA 6010+7000) TCLP (EPA 1311/1310) STLC- CAM WET (EPA 1311/1310)	CORROSIVITY IGITABILITY	
SAMPLE ID. DATE TIME MATRIX SAMPL	F ES PAGE	19 (19 (19 (19 (19 (19 (19 (19 (19 (19 (OY CEL		585	
MW-1 12-5-95+10:44 Lan 7	X	X	X	X		X	
MW-Z 12:42 7	X	X	<u> </u>	X_	_	X X	
MW-Z 12:42 7 MW-3 11:40 7		X	X	×,- -		1 12	
MW-4 N 14.05 7	X		X	 		 	
			-	-			
		+	 				
	_		 				
		1				<u> </u>	
RELINQUISHED BY RECEIVED BY (signature) (time) (signature) (time) (signature) (printed name) (date) (printed name)	9-117	RELINQUES AW /	ляйн вү	RECEIV	ED BY LABORATORY	COMMENT	rs al TAIT
(signature) (time) (signature)	(lim 41615 12-6	e) Asignature	EARICK	(lime) (signatur	rende fluce	100	
(printed name) (date) (printed name Company-) (dn) 1611	c) (printed t	y	(date) (printed Compar	name) (dat	6)	

APPENDIX B

Well Sampling Field Logs

aqua science

Project Name and Address Job #: 2545 Well Name: 400 - 1 Total depth of well (feet Depth to water before so Thickness of floating properties of gallons per Number of gallons per Number of well casing Req'd volume of ground Equipment used to pure Time Evacuation Began Approximate volume of Did the well go dry?: Time samples were collected with Samples collected with Sample color. 6	Sampled 18.14 ampling (feet): oduct if any: water (feet): well casing volume volumes to be rem water to be purged the well: 12.11 I groundwater purg no lected: of sampling: Dedicated	by: SA Well diamete. 4.78 none 13.86 (gallons): Saved: Sampling Evacuation and Sampling SA In the sampling Sampling SA In the sampling SA In	g (gallons): 36 Finished: 10:37 gallons.
CHEMICAL DATA Volume Purged 1 2 3 4 SAMPLES COLLECTE	Temp pH 68.8 7.67 69.0 7.63 69.2 7.53 69.4 7.53	Conductivity 856 791 734 671	
Sample # of containers My- Z Z L	Volume & type contained 40 ml voAs 11 11 1 e Amber	HCI YES HCI HCI HCI HCI HCI HCI HCI	TPHG/BTEX 801D TPHO 0+4 5520 BF

aqua science

	Project Name and Address: Phillipsen Date of sampling: 12-5-95
	Project Name and Address:
	Job #: 2545 Well Name: $N\omega - Z$ Well diameter (inches): 9"
	Total depth of well (feet):
	Depth to water before sampling (rect). Thickness of floating product if any: Sheep Sheep 10.35
	Doub of well casing in water (feet): 10.25
	Thickness of floating product if any. Depth of well casing in water (feet): Number of gallons per well casing volume (gallons) 6.8
,	
	11111C LYGCUGUUII I IIII SUOO.
	Approximate volume of groundwater purget Did the well go dry?: 10 After how many gallons
	Time samples were collected: 12:42
	Depth to water at time of sampling: 93% Percent recovery at time of sampling. 93%
	Percent recovery at time or sampling.
	Samples collected with. Dedicated Barler Sample color. Cloudy Odor: Strong HC Odor Strong HC Odor
	Sample color. Cloudy Odol. Strong Soft
	Description of sediment in sample <u>Small amount of Brown Silt</u>
	CHEMICAL DATA
	Volume Purged Temp pH Conductivity
	$70.1 \qquad 7.91 \qquad 906$
	2 71.2 7.85 384
	3 71.3 7.90 380
	71.2 7.89 383
	SAMPLES COLLECTED
	Sample # of containers Volume & type container Pres leed? Analysis
	MW- Z youl voAs Ha Yes TRHG/BIGX
	2 11 11 Hay 8010
	2 1e Amber non TPHO
	HIL V 0+6 5520 BF

Depth to water before sar Thickness of floating prod Depth of well casing in work Number of gallons per work Number of well casing vor Req'd volume of groundw Equipment used to purge Time Evacuation Began. Approximate volume of Did the well go dry?: Time samples were colleged.	Date of sampling Sampled by: 16.84 Well dia Inpling (feet): Nuct if any: Nucl if	8,6 y mpling (gallons): 34 c Pump atton Finished 1132 34 many gallons.
Percent recovery at time	of sampling: 90 /2	a 170 <u> </u>
3 1 1	Deallastic Balls U Odor / In sample: Small an	Moderate He Color
3	70.0 7.58 69.8 7.53 59.9 7.50	360 323 314.
SAMPLES COLLECTED		 .
Sample # of containers Ve MW- Z Z Z	olume & type container Pres Ice yound vots HCI Ye 11 "1 HCI 1 e Amber non	7845/BTEX 8010 TP40
¥	in the V	0+6 5520 BF

Project Name and Addr Job #: 2545 Well Name:	roduct if any: roduct if any: well casing volume volumes to be remo dwater to be purged ge the well: if groundwater purge no All ollected: e of sampling: ne of sampling 1: Dedicade(now 8,9 (gallons): before sampling 12 volt pro me Evacuation d 8 ter how many 05 4,54 96% Banker dor Moder	1,5 1 g (gallons): 6 C Pump Finished: 13:46 gallons
Volume Purged 1 2 3 4	Temp pH 70.6 7.37 69.3 7.20 69.6 7.13 70.1 7.09 70.2 7.22		
SAMPLES COLLECT	ED		
Sample # of coolsiners MW- Z Z L	Volume & expe container 40 ml voAs 11 11 1 e Ambre	Pres leed? Ao HG Yes HG non	18/4515 TPHG/BTEX 8010 TPHO 0+G 5520 BF