

HQ Bay Area Office 950 Tower Lane, Ste. 1225 Foster City, CA 94404 Sacramento Office 1415 L Street, Ste. 450 Sacramento, CA 95814

AntonDev.com

August 29, 2016

RECEIVED By Alameda County Environmental Health 11:26 am, Aug 31, 2010

Alameda County Department of Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502-6577

Attention: Mr. Mark Detterman, PG, CEG, Senior Hazardous Materials Specialist

TRANSMITTAL LETTER RESULTS OF PILOT STUDY FOR SOIL VAPOR EXTRACTION 6701, 6705, and 6707 SHELLMOUND STREET EMERYVILLE, CALIFORNIA Fuel Leak Case No. RO0000548 Geotracker Global ID T0600100894

Dear Mr. Detterman:

Submitted herewith for your review is the *Results of Pilot Study for Soil Vapor Extraction*, 6701, 6705, and 6707 Shellmound Street, Emeryville, California dated August 29, 2016, prepared by PES Environmental, Inc.

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-referenced document for the subject property are true and correct to the best of my knowledge.

Very truly yours,

ANTON EMERYVILLE, LLC

Rachel Green Development Manager

A Report Prepared For:

Anton Emeryville, LLC 950 Tower Lane, Suite 1225 Foster City, California 94404

RESULTS OF PILOT STUDY FOR SOIL VAPOR EXTRACTION 6701, 6705, and 6707 SHELLMOUND STREET EMERYVILLE, CALIFORNIA FUEL LEAK CASE NO. RO0000548 GEOTRACKER GLOBAL ID T0600100894

AUGUST 29, 2016

By:

Christopher J. Baldassari, P.G. No. 8920 Senior Geologist

Kyle S. Flory, P.G. No. 6472 Principal Geologist

1448.001.02.004

TABLE OF CONTENTS

LIST OF TABLESiv
LIST OF ILLUSTRATIONSiv
1.0 INTRODUCTION 1 1.1 Scope of Report 1
2.0 SITE BACKGROUND22.1 Current Site and Vicinity Characteristics22.2 Historical Site Use22.3 Site Geology and Hydrogeology3
3.0 PILOT TEST PROGRAM
4.0 SUMMARY OF PILOT STUDY RESULTS84.1 Soil Vapor Extraction Pilot Tests84.1.1 Passive Baseline Monitoring84.1.2 Vacuum Step Tests84.1.3 Constant Rate Test94.1.4 Radius of Influence Evaluation104.1.5 Vinyl Chloride Mass Removal104.2 Installation of the Full-Scale Soil Vapor Extraction/Air Inlet Wells10
5.0 CONCLUSIONS AND RECOMMENDATIONS
6.0 REFERENCES

TABLES

ILLUSTRATIONS

APPENDICES A SCHEMATIC DRAWING OF SVE SYSTEM

- B ACPWA PERMIT AND COMPLETION LOGS FOR SVE/AIR INLET WELLS AND VAPOR MONITORING PROBES
- C FIELD MEASUREMENTS COLLECTED DURING STEP AND CONSTANT RATE TESTS
- D SOIL VAPOR SAMPLE LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION (ON CD-ROM)
- E SVE WELL RADIUS OF INFLUENCE GRAPH

DISTRIBUTION

Table 1	Summary of SVE and Air Inlet Well Construction Details
Table 2	Summary of Soil Vapor Monitoring Probe Construction Details
Table 3	Summary of Soil Vapor Analytical Results

Table 4Summary of Pilot Study Mass Removal Estimate

LIST OF ILLUSTRATIONS

Plate 1	Site Location Map
Plate 2	Site Plan and Soil Vapor Extraction/Air Inlet Well and Probe Locations
Plate 3	Estimated Vapor Extraction ROI for SVE Wells, with Isoconcentration Contours – Vinyl Chloride at 5 ft bgs
Plate 4	Estimated Vapor Extraction ROI for SVE Wells, with Isoconcentration Contours – Vinyl Chloride at 10 ft bgs

PES Environmental, Inc.

1.0 INTRODUCTION

This report has been prepared by PES Environmental, Inc. (PES), on behalf of Anton Emeryville, LLC (Anton), for the property located at 6701, 6705, and 6707 Shellmound Street in Emeryville, California ("Site", as shown on Plates 1 and 2). The Site consists of a single legal parcel identified by Alameda County Assessor's Parcel Number (APN) 049-14906-02, covering approximately 2.27 acres. The Site location and a Site plan are shown on Plates 1 and 2, respectively. The subject property is currently listed as an open Spills, Leaks, Investigation and Cleanup (SLIC) case¹ with Alameda County Environmental Health (ACEH) as the lead environmental regulatory agency. PES understands Anton is seeking to acquire the Site for redevelopment purposes and the development plans include: demolition of existing buildings; grading and soil excavation for utilities and building foundations; and construction of a new multi-story multi-use building and associated parking, driveway, and landscaped areas.

The activities described herein were conducted in accordance with PES' *Work Plan for Soil Vapor Extraction* (Work Plan; PES, 2016c), which was approved by ACEH in a letter entitled *Conditional Interim Remedial Work Plan Approval and Work Plan Request* (ACEH, 2016). The objective of the Work Plan was to describe procedures evaluation of soil vapor extraction (SVE) technology through performance of an SVE pilot study.

1.1 Scope of Report

The following sections in this report include:

- Section 2.0, Site Background presents a description of the Site and Site history, previous environmental investigations, and an overview of pertinent local geology and hydrogeology;
- Section 3.0, Pilot Test Program presents a description and methodologies of the SVE pilot test;
- Section 4.0, Summary of SVE Pilot Study Results discusses the results of the SVE pilot study;
- Section 5.0, Conclusions and Recommendations provides a summary of the SVE pilot test results and discusses recommendations for future Site activities; and
- Section 6.0, References presents references utilized in this report.

144800102R001.doc

¹ The case is identified as Mike Roberts Color Production (6707 Bay Street), ACEH Case No. RO0000548; California State Water Resource Control Board Geotracker Global ID T0600100894.

2.0 SITE BACKGROUND

Summary descriptions of the Site location, physical setting, Site history and operations, geologic and hydrogeologic settings are presented below. Additional details were presented in the Conceptual Site Model (CSM) and Site Management Plan (SMP) documents (PES, 2015a and 2015b).

2.1 Current Site and Vicinity Characteristics

The Site is located at 6701, 6705, and 6707 Shellmound Street (previously known as Bay Street), in a mixed industrial, commercial, and residential area of Emeryville, Alameda County, California. The Site consists of a single legal parcel covering approximately 2.27 acres and identified by Alameda County APN 049-1490-002. The current Site buildings consist of a two-story office building and a warehouse building (Plate 2). A second story mezzanine-level is located in the northern portion of the warehouse. The warehouse and office building are connected by a 1-story lobby/receptionist area. The footprints of the office and warehouse buildings occupy approximately 7,470 and 43,850 square feet, respectively (see Plate 2), and both buildings have concrete slab-on grade floors. The exterior of the subject property consists of landscaped areas and asphalt paved parking and driving areas.

The Site is bounded to the west and north by the Ashby Avenue off-ramp from Interstate 80, to the south by a commercial building, and to the east by Shellmound Street and a railroad right-of-way. The Site buildings and adjacent areas are shown on Plate 2.

According to the United States Geological Survey (USGS) Oakland West, California Quadrangle 7.5 minute series topographic map dated 1993, the Site is situated at an elevation of approximately 18 feet above mean sea level. The Site is relatively flat, but the vicinity slopes gently to the west/southwest. The nearest surface water body is San Francisco Bay, located approximately 1,000 feet west of the subject property.

2.2 Historical Site Use

An extensive discussion of historical Site use was presented in the SMP dated May 19, 2015. A brief summary of Site historical use is presented below.

The Site land historically consisted of San Francisco Bay tidal mud flats and was below sea level until the mid- to late-1930s, when a levee was built west of the subject property and a highway (Eastshore Highway, now Interstate 80) was constructed on the levee. From that time until the early to mid-1950s the area between the highway and the former shoreline, including the subject property and vicinity, were intermittently filled using non-native materials to create buildable land. The existing Site buildings were constructed over the fill materials in approximately 1963.

A label tape manufacturer (Dymo) operated at the Site from approximately 1963 to 1979, and reportedly used chemicals including methyl isobutyl ketone (MIBK, which is also known as 4-methyl-2-pentanone) and methyl ethyl ketone (MEK, also known as 2-butanone) stored in

three underground storage tanks (USTs), previously located in the eastern portion of the Site. The USTs were removed in 1989. Mike Roberts Color Production (MRCP) operated at the Site from 1979 to 1989, and initially manufactured and printed colored postcards before later incorporating color printing, lithography, and off-set printing operations. Nady Systems, Inc. (Nady) purchased the property from MRCP in 1990 and utilizes the Site for office use and for storage of electronic sound equipment, product shipping and receiving, and minor equipment repair. Nady relocated its warehouse operations in July 2016. Nady reportedly used only limited amounts (e.g., bench scale) of chemicals in its operations.

2.3 Site Geology and Hydrogeology

Based on the results of investigations performed on the subject property and in the vicinity, the Site is underlain by fill material overlying deposits of native silts and clays known locally as Old Bay Mud. The fill material ranges in thickness from approximately 10 to 19 feet and consists primarily of coarse-grained sands and gravels that contain varying amounts of fines, and fine-grained silts and clays. The fill material has been encountered throughout the Site and is generally most abundant on the western half of the Site and at depths below approximately 8 to 10 feet below ground surface (bgs). The fill material often contains abundant debris (e.g., brick, concrete, metal, asphalt, glass, wood, fabric, and rubber). Fine-grained soils are present directly below the fill material. These soils generally consist of dark-colored clays and occasional silts with organic material that represent Old Bay Mud deposits.

Depth to groundwater varies locally across the Site but is generally shallow. Shallow groundwater at the Site has been encountered at the Site at depths ranging from approximately 8 to 12 feet bgs. Based on topography and the results of historical groundwater investigations, the predominant groundwater flow direction beneath the Site is to the south-southwest toward the San Francisco Bay, with localized flow towards the west-northwest in the area of the former USTs located in the eastern portion of the Site.

Previous investigations have shown that the fill materials at the Site and other similarly filled properties in the vicinity contain residual contamination. Contamination found and attributed to the non-native fill materials originally used to create the land along the bay-shore area of Emeryville, including the Site and immediate vicinity, includes impacts related to total petroleum hydrocarbons (TPH), volatile organics compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and metals.

3.0 PILOT TEST PROGRAM

The activities associated with the SVE pilot test are summarized below, and the results are presented in Section 4.0. SVE is a remediation technology that uses vacuum blowers and extraction wells for the purpose of creating pressure (vacuum) gradients in the vadose zone to induce airflow to extraction wells. SVE pilot tests are intended to provide data for the evaluation of the pressure (vacuum) field developed by vacuum applied to SVE wells, and to assess the variation of vacuum gradients around the operating SVE wells by observing the responses to extraction in vapor monitoring probes. As described in the approved Work Plan, 144800102R001.doc 3

the vacuum data collected during a SVE pilot test are used to estimate the radius of effective vacuum influence (ROI) for each SVE well or set of SVE wells (U.S. ACE, 2002; USEPA 1991a; USEPA 1991b). In addition, SVE testing provides an assessment of the quantity and concentration of extracted VOCs for use in designing a SVE treatment system.

In order to test the feasibility of implementing SVE at the Site and to develop an appropriate Site-specific design for a full-scale SVE system, the investigative pilot study was performed to assess key SVE system design parameters including: (1) optimum vacuum and air-flow rates from the SVE well configuration; (2) the ROI measured during the constant rate test; and (3) a quantitative estimate of the VOC emissions over time. Determination of these design parameters was conducted using field and laboratory data, and were utilized for confirmation and optimization of the design parameters for the full-scale SVE system.

3.1 Field Planning Activities and Subcontractor Services

Prior to initiating field activities at the Site, PES updated the Site-specific Health and Safety Plan (HSP). Prior to installation of the SVE well and probes, Underground Service Alert was contacted to schedule visits by public and private utility companies to locate their underground utilities. Pilot study SVE system services were provided by Environmental Engineering Consulting & Remediation, Inc. (E2CR) of Roseville, California; a general engineering contractor licensed by the State of California.

The pilot study SVE equipment is owned and operated by E2CR. In accordance with BAAQMD Regulation 8 for Organic Compounds, Rules 8-47-109, 8-47-113 and 8-47-402, as well as E2CR consultation with BAAQMD staff, due to the following: (1) the pilot study duration was less than five days; (2) less than 1 pound of VOC per day was emitted; and (3) emissions of benzene were less than 0.05 pounds per day, emissions of vinyl chloride were less than 0.2 pounds per day, and TCE and PCE emissions were less than 0.5 pounds per day, the pilot study was exempt from BAAQMD permitting requirements. Additionally, as cited in BAAQMD Regulation 2-1-106 and Table 2-5-1, based on the estimated emissions the full-scale SVE plant will be eligible for expedited permitting from BAAQMD. A schematic drawing of the SVE system is provided in Appendix A.

3.2 Installation of Soil Vapor Extraction Well and Soil Vapor Monitoring Probes

The SVE pilot study well (SVE-1) and soil vapor monitoring probes were installed on June 8, 2016 under permit from Alameda County Public Works Agency (ACPWA) (Appendix B). A summary of well and probe construction details is provided in Tables 1 and 2, and locations are shown on Plate 2.

3.2.1 Installation of Pilot Study Well SVE-1

Well SVE-1 was installed using a track-mounted, limited access, hollow-stem auger drilling rig. The boring was advanced using a 10-inch outside diameter hollow-stem auger. Lithologic conditions were based on previous soil borings drilled in relatively close proximity to SVE-1 (e.g., SVP-22) and therefore no soil samples were collected. A PES geologist supervised the

drilling activities and prepared a well completion log, presented in Appendix B. As shown on the well completion log, SVE-1 was constructed with 2-inch diameter Schedule 40 polyvinyl chloride (PVC) casing and screened from approximately 5 to 10 feet bgs, with blank PVC casing from 5 feet bgs to approximately 2 feet above ground surface (ags). The filter pack consisted of No. 3 sand extending 6 inches above the top of the screened interval. Uncoated bentonite chip seals were placed between the filter pack interval and subsequently hydrated using potable tap water. A bentonite seal was placed from the top of the hydrated bentonite seal (approximately 2.5 feet bgs) extending to the surface.

3.2.2 Installation of Soil Vapor Monitoring Probes

Twelve (12) soil vapor monitoring probes (SVPs) were installed at six locations (SVP-1 through SVP-6, as shown on Plate 2) in an array around well SVE-1 for use in the pilot study. Installation procedures are summarized below. Soil vapor monitoring probe lithologic logs and construction details are presented in Table 2 and Appendix B.

Two probes were nested within each boring. The borings were continuously cored using a track-mounted, direct-push drill rig by driving a 4-foot long by 2-inch outside-diameter sampler into undisturbed soil. A PES geologist supervised the drilling activities and prepared a lithologic and well completion log.

A total of six (6) shallow vapor monitoring probes were placed at approximately 3.5 bgs (SVP-1-3.5 through SVP-6-3.5). A total of six (6) deeper vapor monitoring probes were screened at 7.5 feet bgs (SVP-1-7.5 through SVP-6-7.5), the approximate midpoint of the screened interval of well SVE-1.

The monitoring probes were constructed of Geoprobe AT86 vapor sampling implants with a 6-inch screen length (placed from approximately 3.25 to 3.75 feet bgs in the shallow probes, and 7.25 to 7.75 feet bgs in the deeper probes), fitted with 0.25-inch outside-diameter nylon tubing. The filter pack consisted of No. 3 sand extending 3 inches below to 6 inches above the top of each screened probe interval. Uncoated bentonite chip seals were placed between each filter pack interval and subsequently hydrated. A bentonite-cement seal was placed from the top of the shallow probe filter pack to the surface. Each monitoring probe was labeled and fitted with a compression fitting.

It is anticipated that the vapor monitoring probes installed for the pilot study will allow for future monitoring of VOC concentrations and vacuum pressure at various locations and depths.

3.2.3 Equipment Decontamination

Equipment that contacted chemical-affected soil was decontaminated before and after use to reduce the potential for cross-contamination, in accordance with the Work Plan. Decontamination procedures were implemented and downhole equipment was steam-cleaned or washed with a Liquinox/deionized water solution and double-rinsed with distilled water prior to use at the Site, before each boring, and before demobilization from the work area.

3.2.4 Handling, Storage, and Disposal of Investigation-Derived Wastes

Decontamination rinsate and soil cuttings generated during the investigation was contained in secured and labeled Department of Transportation (DOT)-approved 55-gallon steel drums and temporarily stored on-Site until proper off-Site management in accordance with applicable State and Federal laws can be arranged. The decontamination rinsate and soil were characterized by analyzing representative samples of the materials for VOCs and TPH quantified as gasoline (TPHg) by EPA Test Method 8260B, TPH quantified as diesel (TPHd) and TPH quantified as motor oil (TPHmo) by EPA Test Method 8015M, and the Title 22 California Code of Regulations list of seventeen metals (Title 22 metals) by USEPA Method 6010B and 7471A.

Arrangements for the removal, transportation, and off-Site recycling or disposal of the decontamination fluids and soil will be made following the completion of waste characterization and profiling.

3.3 Description of the Pilot-Scale Soil Vapor Extraction System

Well SVE-1 was connected by above ground piping and directed through a moisture entrainment separator and particulate air filter to remove entrained water or particulates from the air stream. The skid-mounted system blower was rated for flow rates up to 900 standard cubic feet per minute (scfm), and was connected to a variable frequency drive and control panel. The system blower draws the vapor through granular activated carbon (GAC) to remove VOCs contained in the extracted vapors. The activated carbon contained within two 2,000-pound vessels connected in series. After treatment by GAC, the extracted airstream is conveyed through the vacuum blower to an exhaust stack. A schematic drawing of the SVE system is presented in Appendix A.

3.4 SVE Pilot Test Sequence

The SVE pilot test was conducted on July 13 and 14, 2016. The SVE pilot test sequence consisted of collecting passive baseline monitoring samples, followed by step and constant rate tests. The passive monitoring baseline sampling was performed on July 12 and 13 to provide a reference for VOC concentrations in the subsurface areas represented by SVE-1 and the soil vapor monitoring probes prior to initiating SVE at the Site. Additionally, a soil vapor sample was collected from SVE-1 at the conclusion of the pilot study test sequences on July 14, 2016.

3.4.1 Passive Baseline Monitoring

Prior to the SVE step and constant rate test, passive baseline monitoring of well SVE-1 and soil vapor monitoring probes was conducted on July 12 and 13, 2016. Prior to sampling, the SVE system was briefly operated to evacuate the SVE well casing of at approximately three purge volumes. Samples were collected using batch-certified 1-liter Summa canisters and flow regulators and submitted to TestAmerica of Sacramento, California for analysis of VOCs using U.S. EPA Test Method TO-15.

3.4.2 Vacuum Step Tests

Vacuum step tests are designed to test the range of vacuum that can be imposed on the vadose zone through an individual SVE well and to observe the resulting vapor flow rates and vacuum response in soil vapor monitoring probes and the SVE system. The purpose of the step tests is to collect data for use in selecting appropriate vacuum for the constant rate test. On July 13 four SVE step tests (under vacuums of approximately 20, 40, 80, and 120 inches of water) were performed on SVE-1.

Field VOC monitoring using Tedlar bags and a photionization detector (PID) using a 10.6 electrovolt (eV) lamp was conducted periodically during the vacuum step tests. Vacuum responses were periodically recorded at the SVE influent and soil vapor monitoring probes.

3.4.3 Constant Rate Test

The constant rate test was performed after the step tests were completed and flow/vacuum combinations were evaluated. The constant rate test was performed for approximately 6.4 hours on July 14, 2016.

Field VOC monitoring of the combined soil vapor (measured at the influent sample location with Tedlar bags and a PID) and vacuum responses at each soil vapor monitoring probe were periodically collected throughout the test.

On July 14, 2016, a soil vapor sample was collected from the SVE influent at the end of the constant rate test and submitted for laboratory analysis of VOCs.

3.4.4 Instrumentation and Monitoring

Parameters that were monitored during the pilot test included: air pressure (vacuum), air flow rate, extracted air temperature, oxygen, carbon dioxide, and methane levels, and VOC concentrations. Vacuum pressure measurements were obtained at the soil vapor monitoring probes to evaluate the subsurface pressure response to vapor extraction. A digital manometer was used to measure the applied vacuum and vacuum pressure responses at SVE-1 and the vapor monitoring probes. The vapor flow rate of the extraction system (total SVE flow) and near the wellhead of SVE-1 was monitored with a hand-held anemometer that provided flow rates in actual cubic feet per minute (acfm).

3.4.5 Field Monitoring

Field monitoring samples were collected from SVE-1 and the vapor probes during and at the end of each SVE test sequence. These samples were collected in 1-liter Tedlar bags using a vacuum pump connected to a vacuum chamber housing the Tedlar bag. The Tedlar bag was connected to the SVE well sampling port using inert Teflon tubing that passed through the wall of the vacuum chamber. Once filled, the Tedlar bag was connected to a calibrated PID using a 10.6 electron volt (eV) lamp and a total VOC measurement was made.

Oxygen, carbon dioxide, and methane levels were measured in samples collected in Tedlar bags from the SVE wells during each testing sequence using a Gastech meter. The purpose of the oxygen/carbon dioxide/methane monitoring was to monitor for potential changes in biogenic gas composition during SVE pilot testing and to assess the movement of atmospheric air in the subsurface. Barometric pressure data from Oakland International Airport² collected during the SVE pilot test are presented in Appendix C.

4.0 SUMMARY OF PILOT STUDY RESULTS

4.1 Soil Vapor Extraction Pilot Tests

The results of the SVE pilot tests are summarized below. Field data collected during the SVE pilot tests, laboratory analytical reports, and an ROI evaluation graph, are presented in Appendices C, D, and E, respectively.

4.1.1 Passive Baseline Monitoring

Baseline VOC data (i.e., soil vapor samples prior to application of vacuum associated with pilot study activities) was obtained from SVE-1 and select soil vapor monitoring probes. A summary of the laboratory analytical results are presented in Table 3. Primary VOCs detected in the soil vapor samples above laboratory reporting limits included: trichloroethene (TCE); cis-1,2-dichloroethene (cis-1,2-DCE); trans-1,2-dichloroethene (trans-1,2- DCE), vinyl chloride, 1,1,1-trichloroethane (TCA); 1,1,2,2-tetrachloroethane (PCA); MEK; MIBK; acetone; BTEX compounds; 1,2,4-trimethylbenzene (TMB); 1,3,5-TMB; 1,3-dichlorobenzene (1,3-DCB), 4-ethyltoluene; carbon disulfide; and chloroform.

Comparison of the results with California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) risk-based Environmental Screening Levels (ESLs) indicate the presence vinyl chloride, cis-1,2-DCE, benzene, and carbon disulfide at concentrations above soil gas ESLs for evaluation of potential vapor intrusion in residential and commercial land uses.

The soil vapor sample laboratory analytical report and chain-of-custody forms are presented in Appendix D.

4.1.2 Vacuum Step Tests

The results of the vacuum step tests are summarized below. A summary of field measurements obtained during the step test sequences are presented in Appendix C. A graphical plot showing the effect of increased wellhead vacuum on the vapor extraction flow rate for well SVE-1 during the step test sequences is also presented in Appendix C (Chart C-1).

 ² Station ID: KOAK; located approximately 9 miles southeast of the Site.
 144800102R001.doc

- Flow rates in SVE-1 ranged from approximately 9.55 acfm to 36.5 acfm (the maximum flow achievable with the pilot study SVE equipment), with sustained applied vacuums ranging from approximately 21.4 to 119.8 inches of water;
- The step tests indicated a maximum final probe vacuum response of 9.64 inches of water (at probe location SVP-2-7.5, located 15 feet from well SVE-1) during operation of the SVE system at a vacuum of 120.6 inches of water;
- The vacuum response in all six deeper probes at the 7.5 foot bgs depth during the • maximum vacuum step test (SVE system operated at approximately 120 inches of water) ranged from 0.14 to 9.64 inches of water. The average vacuum response observed in the deeper probes located within 15 feet of SVE-1 (probes SVP-2-7.5, SVP-3-7.5, and SVP-6-7.5) was 5.09 inches of water during the maximum vacuum step test; and the average vacuum response observed in the deeper probes located approximately 30 feet from SVE-1 (probes SVP-2-7.5, SVP-3-7.5, and SVP-6-7.5) was 2.29 inches of water. The variation in observed vacuum appears to be attributable to distance from well SVE-1; and
- The vacuum response in probes at the 3.5 foot bgs depth during the maximum vacuum step test (SVE system operated at approximately 120 inches of water) ranged from 0.76^3 to 5.39 inches of water. The measured range in vacuum is attributed to the relatively shallow depth of the probes and possible soil heterogeneities.

Based on the vacuum step test results, the maximum stable blower vacuum for the constant rate test, approximately 120 inches of water vacuum, was selected.

4.1.3 Constant Rate Test

The constant rate test was performed on well SVE-1 on July 14, 2016 for approximately 6.4 hours. A summary of field measurements obtained during the constant rate test sequence is presented in Appendix C. Results of the constant rate test indicate the following:

- A sustained average vacuum flow rate of approximately 26.0 scfm (ranging from 25.3 to 26.97 scfm) was achieved at SVE-1 with vacuum ranging from 110.5 to 118.3 inches of water: and
- Observed vacuum responses in probes during the constant rate test was similar to those • observed during Step Test 4 during which vacuum was also applied at approximately 120 inches of water (see Appendix C). The variations in observed vacuum in the individual probes is attributed to distance from well SVE-1 and soil heterogeneities.

³ Due to apparent blockage within probe SVP-4-3.5, no measurable vacuum readings were obtained. 144800102R001.doc 9

4.1.4 Radius of Influence Evaluation

Graphical techniques were used to assess the estimated radius of influence (ROI) of SVE based on the constant rate test results. The ROI was conservatively evaluated using a log-plot of normalized vacuum (measured vacuum/wellhead vacuum) versus distance from SVE-1, and a best fit trend line was fitted to the plot. The ROI is defined as the distance at which a target response of 0.01 inches of water occurs (indicative of vacuum influence), as indicated by the best-fit line drawn through the plotted data (U.S. ACE, 2002). A plot indicating the estimated ROI, based on measurements collected during the constant rate test sequence, is presented in Appendix E.

The estimated ROI (approximately 28.6 feet) is shown on Plates 3 and 4 (for all SVE wells). The ROI evaluation further indicates: (1) the conservative design ROI for SVE wells of 20 feet was appropriate; and (2) SVE technology is a viable option for remediation of the vadose zone at the Site.

4.1.5 Vinyl Chloride Mass Removal

The mass of vinyl chloride (the predominant VOC) removed during the pilot test was estimated based on: (1) laboratory reported vinyl chloride concentration of 40,000 micrograms per cubic meter of air (μ g/m³) in the vapor sample collected from SVE-1 on July 14, 2016 (Table 3) at the end of the constant rate test; (2) SVE-1 vapor flow rates; and (3) duration of pilot study operation.

As summarized in Table 4, based on the final influent concentration, cumulative mass removed during the 2-day pilot test is estimated to be approximately 0.033 pounds of vinyl chloride were removed, inclusive of approximately 9.5 total hours of SVE system operation.

4.2 Installation of the Full-Scale Soil Vapor Extraction/Air Inlet Wells

Based on the results of the pilot study and estimated ROI, the full-scale SVE/air inlet wells (SVE-2 through SVE-19, and AI-1 through AI-10) to be utilized during full-scale application of SVE were installed under ACPWA permit between July 26 and 29, 2016. A summary of well construction details is provided in Table 1, well locations are shown on Plate 2, and a copy of the ACPWA permit and well construction diagrams are presented in Appendix B. The SVE/air inlet wells were each constructed with 5 feet of screen within the vadose zone. As indicated in Table 1, wells AI-7, SVE-3, and SVE-17 were constructed with slightly shallower screen intervals due to refusal encountered during drilling.

The wells were installed using a track-mounted, limited access, hollow-stem auger drilling rig. The borings were advanced using a 10-inch outside diameter hollow-stem auger. Lithologic conditions were based on previous soil borings drilled in relatively close proximity to the wells and therefore no soil samples were collected. A PES geologist or engineer supervised the drilling activities and prepared well completion logs. Well completion diagrams are presented in Appendix B. The wells were constructed with 2-inch diameter Schedule 40 PVC casing and screened from approximately 5 to 10 feet bgs, with blank PVC casing from 5 feet bgs to 144800102R001.doc 10

approximately 2 feet above ground surface (ags). The filter pack consisted of No. 3 sand extending 6 inches above the top of the screened intervals. Uncoated bentonite chip seals were placed between the filter pack interval and subsequently hydrated. A bentonite seal was placed from the top of the hydrated bentonite seal (approximately 2.5 feet bgs) extending to the surface.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of this SVE pilot study, PES concludes the following:

- The induced vacuum response measured during the constant rate test indicates an estimated ROI of approximately 28.6 feet;
- Pilot study field measurements and vapor concentrations detected in baseline and postpilot study vapor samples indicate that soil vapor extraction technology is a viable technology for vadose zone remediation of VOCs (primarily vinyl chloride) at the Site; and
- As shown on Plates 3 and 4, the estimated ROI indicates that the SVE well network has sufficient coverage within the target area.

On the basis of the findings of this and previous investigations, PES recommends the following:

- Update the Site-specific human health risk assessment (HHRA). The results of the revised HHRA will be used in the development of Site-specific risk-based interim remedial measure performance criteria; and
- In accordance with the approved Work Plan, and following ACEH approval, complete construction of the full-scale SVE system and commence application of SVE as an approved IRM.

6.0 REFERENCES

- Alameda County Environmental Health Services (ACEH), 2016. PES, 2016b. Conditional Interim Remedial Work Plan Approval and Work Plan Request; SCP Case RO000548 and Geotracker Global ID T0600100894, Mike Roberts Color Production, 6707 Bay Street, Emeryville, CA 94608. April 26.
- California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB), 2010. San Francisco Bay Basin (Region 2) Water Quality Control Plan (Basin Plan). December 31.
- California RWQCB, 2016. San Francisco Bay Region, Update to Environmental Screening Levels. February 22.

- Department of Toxic Substances Control (DTSC), 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air – Final. California Environmental Protection Agency. October.
- DTSC, 2015. Advisory Active Soil Gas Investigations. Jointly developed by the California Environmental Protection Agency Department of Toxic Substances Control (DTSC), and the California Regional Water Quality Control Board – Los Angeles Region (LARWQCB) and RWQCB - San Francisco Region (RWQCB). July.
- ENVIRON International Corporation (ENVIRON), 2013a. Summary of Environmental Findings, Nady Systems, Inc., 6701 Shellmound Street or 6707 Bay Street, Emeryville, California. May 29.
- Graymer, R.W., 2000. Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and san Francisco Counties, California, USGS Miscellaneous Field Studies MF-2342.
- Nichols, D.R. and Wright, N.A., 1971. Preliminary map of historic margins of marshland, San Francisco Bay, California, U.S. Geological Survey Open-File Report.
- PES Environmental, Inc. (PES), 2014a. Supplemental Subsurface Investigation Report, 6701, 6705, and 6707 Shellmound Street, Emeryville, California. January 13.
- PES, 2015a. Conceptual Site Model, 6701 6707 Shellmound Street, Emeryville, California. February 6.
- PES, 2015b. Site Management and Contingency Plan for Redevelopment Construction, 6701-6707 Shellmound Street, Emeryville, California. May 19.
- PES, 2015c. Revised Work Plan for Pre-Construction Subsurface Investigation, 6701, 6705, and 6707 Shellmound Street, Emeryville, California, Fuel Leak Case No. RO0000548, GeoTracker Global ID T0600100894. August 28.
- PES, 2016a. Work Plan for Supplemental Pre-Construction Subsurface Investigation, 6701, 6705, and 6707 Shellmound Street, Emeryville, California, Fuel Leak Case No. RO0000548, GeoTracker Global ID T0600100894. January 21.
- PES, 2016b. Pre-Construction Subsurface Investigation Report, 6701, 6705, and 6707 Shellmound Street, Emeryville, California, Fuel Leak Case No. RO0000548, GeoTracker Global ID T0600100894. April 8.
- PES, 2016c. Work Plan for Soil Vapor Extraction, 6701, 6705, and 6707 Shellmound Street, Emeryville, California, Fuel Leak Case No. RO0000548, GeoTracker Global ID T0600100894. April 8.
- SLR International Corporation (SLR), 2015. Human Health Risk Assessment Report, 6701-6707 Shellmound Street, Emeryville, California. May.

- U.S. Army Corps of Engineers (U.S. ACE), 2002. Soil Vapor Extraction and Bioventing, Engineer Manual, EM1110-1-4001. June 3.
- United States Environmental Protection Agency (U.S. EPA), 1989. *Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part A), Interim Final.* Office of Emergency and Remedial Response, Washington D.C., EPA/540/1-89/002. July.
- United States Environmental Protection Agency (USEPA), 1991a. Soil Vapor Extraction Technology: Reference Handbook. EPA/540/2-91/003. September.
- United States Environmental Protection Agency (USEPA), 1991b. *Guide for Conducting Treatability Studies Under CERCLA: Soil Vapor Extraction. EPA/540/2-91/019A.* September.
- United States Environmental Protection Agency (USEPA), 1992. Guidance for Data Usability in Risk Assessment, Publication 9285.7-09A, PB92-963356. April.

TABLES

Table 1Summary of SVE and Air Inlet Well Construction DetailsResults of SVE Pilot Study6701 - 6707 Shellmound StreetEmeryville, California

Well Identification	Date Installed	Borehole Depth (feet bgs)	Borehole Diameter (inches)	Well Screen Interval (feet bgs)	Sand Pack Interval (feet bgs)	Well Screen Diameter (inches)	Well Screen Slot Size (inches)
AI-1	7/27/16	10.7	10.0	5 to 10	4.5 to 10.66	2.0	0.020
AI-2	7/27/16	10.8	10.0	5 to 10	4.5 to 10.75	2.0	0.020
AI-3	7/27/16	10.5	10.0	5 to 10	4.5 to 10.5	2.0	0.020
AI-4	7/28/16	10.7	10.0	5 to 10	4.5 to 10.66	2.0	0.020
AI-5	7/27/16	10.7	10.0	5 to 10	4.5 to 10.66	2.0	0.020
AI-6	7/28/16	10.6	10.0	5 to 10	4.5 to 10.625	2.0	0.020
AI-7	7/25/16	10.4	10.0	4.79 to 9.79	4.25 to 10.42	2.0	0.020
AI-8	7/25/16	10.5	10.0	5 to 10	4.5 to 10.5	2.0	0.020
AI-9	7/26/16	10.7	10.0	5 to 10	4.5 to 10.66	2.0	0.020
AI-10	7/28/16	10.7	10.0	5 to 10	4.5 to 10.66	2.0	0.020
SVE-1	7/8/16	10.0	10.0	5 to 10	4.5 to 10.66	2.0	0.020
SVE-2	7/26/16	10.7	10.0	5 to 10	4.5 to 10.66	2.0	0.020
SVE-3	7/27/16	9.4	10.0	3.96 to 8.96	3.42 to 9.42	2.0	0.020
SVE-4	7/27/16	10.6	10.0	5 to 10	4.5 to 10.625	2.0	0.020
SVE-5	7/27/16	10.6	10.0	5 to 10	4.5 to 10.625	2.0	0.020
SVE-6	7/28/16	10.8	10.0	5 to 10	4.5 to 10.75	2.0	0.020
SVE-7	7/28/16	10.8	10.0	5 to 10	4.5 to 10.75	2.0	0.020
SVE-8	7/28/16	10.7	10.0	5 to 10	4.5 to 10.66	2.0	0.020
SVE-9	7/27/16	10.6	10.0	5 to 10	4.5 to 10.58	2.0	0.020
SVE-10	7/27/16	10.6	10.0	5 to 10	4.5 to 10.58	2.0	0.020
SVE-11	7/26/16	10.6	10.0	5 to 10	4.5 to 10.46	2.0	0.020
SVE-12	7/26/16	11.2	10.0	5 to 10	4.5 to 11.17	2.0	0.020
SVE-13	7/26/16	10.6	10.0	5 to 10	4.5 to 10.58	2.0	0.020
SVE-14	7/25/16	10.7	10.0	5 to 10	4.5 to 10.66	2.0	0.020
SVE-15	7/25/16	10.7	10.0	5 to 10	4.5 to 10.58	2.0	0.020
SVE-16	7/25/16	10.7	10.0	5 to 10	4.5 to 10.66	2.0	0.020
SVE-17	7/25/16	10.4	10.0	4.79 to 9.79	4.25 to 10.42	2.0	0.020
SVE-18	7/26/16	11.1	10.0	5 to 10	4.5 to 11.08	2.0	0.020
SVE-19	7/26/16	10.7	10.0	5 to 10	4.5 to 10.66	2.0	0.020

Notes:

feet bgs = feet below ground surface.

Table 2Summary of Soil Vapor Monitoring Probe Construction Details
Results of SVE Pilot Study
6701 - 6707 Shellmound Street
Emeryville, California

Well Identification	Date Installed	Borehole Depth (feet bgs)	Borehole Diameter (inches)	Well Screen Interval (feet bgs)	Sand Pack Interval (feet bgs)	Well Screen Diameter (inches)
SVP-1-3.5	7/8/16	8.00	2.0	3.25 to 3.75	3 to 4	0.375
SVP-1-7.5	7/8/16	8.00	2.0	7.25 to 7.75	7 to 8	0.375
SVP-2-3.5	7/8/16	8.00	2.0	3.25 to 3.75	3 to 4	0.375
SVP-2-7.5	7/8/16	8.00	2.0	7.25 to 7.75	7 to 8	0.375
SVP-3-3.5	7/8/16	8.00	2.0	3.25 to 3.75	3 to 4	0.375
SVP-3-7.5	7/8/16	8.00	2.0	7.25 to 7.75	7 to 8	0.375
SVP-4-3.5	7/8/16	8.00	2.0	3.25 to 3.75	3 to 4	0.375
SVP-4-7.5	7/8/16	8.00	2.0	7.25 to 7.75	7 to 8	0.375
SVP-5-3.5	7/8/16	8.00	2.0	3.25 to 3.75	3 to 4	0.375
SVP-5-7.5	7/8/16	8.00	2.0	7.25 to 7.75	7 to 8	0.375
SVP-6-3.5	7/8/16	8.00	2.0	3.25 to 3.75	3 to 4	0.375
SVP-6-7.5	7/8/16	8.00	2.0	7.25 to 7.75	7 to 8	0.375

Notes:

feet bgs = feet below ground surface.

Table 3 Summary of Soil Vapor Analytical Results Results of SVE Pilot Study 6701, 6705, and 6707 Shellmound Street, Emeryville, California

Sample Location	Sample ID	Date	Sample Depth (feet bgs)	TCE (µg/m ³)	cis-1,2-DCE (µg/m³)	trans-1,2-DCE (μg/m³)	Vinyl chloride (µg/m³)	1,1,1-TCA (µg/m³)	1,1,2,2-PCA (μg/m³)	MEK (µg/m³)	MIBK (µg/m³)	Acetone (μg/m³)	Benzene (µg/m³)	Toluene (µg/m³)	Ethylbenzene (µg/m³)	m,p-Xylene (µg/m³)	o-Xylene (µg/m³)	1,2,4-TMB (μg/m³)	1,3,5-TMB (μg/m³)	1,3-DCB (µg/m³)	4-Ethyltoluene (µg/m³)	Carbon disulfide (µg/m³)	Chloroform (µg/m³)	Other VOCs (μg/m³)
SVE-1	SVE-1	7/13/2016	5 to 10	< 140	< 110	< 110	3,400	< 110	< 180	< 160	< 110	< 790	< 85	< 100	< 120	< 230	< 120	< 260	< 130	< 160	< 130	< 170	< 98	
SVE-1	SVE-1	7/14/2016	5 to 10	< 1600	3,500	1,900	40,000	< 1200	< 2000	< 1700	< 1200	< 8600	< 930	< 1100	< 1300	< 2500	< 1300	< 2900	< 1400	< 1800	< 1400	< 1800	< 1100	
SVP-1-7.5	SVP-1-7.5	7/12/2016	7.5	< 250	250	< 180	13,000	< 190	< 310	< 270	< 190	< 1400	250	< 170	< 200	< 400	< 200	< 450	< 220	< 270	< 220	< 280	< 170	
SVP-2-3.5	SVP-2-3.5	7/12/2016	3.5	< 17	< 12	< 12	920	< 13	< 21	< 18	< 13	< 92	28	31	14	55	23	< 31	< 15	< 19	< 15	83	78	
SVP-2-7.5	SVP-2-7.5	7/12/2016	7.5	< 1300	< 990	< 990	75,000	< 1000	< 1700	< 1500	< 1000	< 7400	< 800	< 950	< 1100	< 2200	< 1100	< 2500	< 1200	< 1500	< 1200	< 1600	< 920	
SVP-3-7.5	SVP-3-7.5	7/12/2016	7.5	< 38	< 28	< 28	2,400	< 29	< 49	57	< 29	260	310	170	< 31	< 61	< 31	< 70	< 35	< 43	< 35	130	< 26	
SVP-4-3.5	SVP-4-3.5	7/12/2016	3.5	6.9	< 1.6	< 1.6	< 1	9.5	4.8	19	11	44	19	18	23	120	54	17	8.7	< 2.4	3.9	3.1	57	2.0 (BDCM), 2.4 (Freon 12), 1.5 (MC), 2.6 (Freon 11)
SVP-4-7.5	SVP-4-7.5	7/12/2016	7.5	19	57	9.1	180	< 4.5	< 7.6	23	< 4.5	84	230	59	21	210	24	20	10	59	< 5.4	20	< 4.1	72 (1,4-DCB), 23 (NAPH)
SVP-5-7.5	SVP-5-7.5	7/12/2016	7.5	< 510	< 370	< 370	22,000	< 390	< 650	< 560	< 390	< 2800	490	< 360	< 410	< 820	< 410	< 930	< 460	< 570	< 460	< 590	< 350	
SVP-6-3.5	SVP-6-3.5	7/12/2016	3.5	< 1700	14,000	6,100	100,000	< 1300	< 2200	< 1900	< 1300	< 9600	< 1000	< 1200	< 1400	< 2800	< 1400	< 3200	< 1600	< 2000	< 1600	< 2000	< 1200	
SVP-6-7.5	SVP-6-7.5	7/12/2016	7.5	< 1800	16,000	6,300	98,000	< 1400	< 2300	< 2000	< 1400	< 10000	< 1100	< 1300	< 1500	< 3000	< 1500	< 3400	< 1700	< 2000	< 1700	< 2100	< 1200	
	Resid	lential Land	Use ESL ¹	240	4,200	31,000	4.7	520,000	24	2,600,000	1,600,000	16,000,000	48	160,000	560	52,000	52,000	NE	NE	NE	NE	61	NE	NE
Cor	nmercial/Indu	ustrial Land	Use ESL ²	3,000	35,000	260,000	160	4,400,000	210	22,000,000	13,000,000	140,000,000	420	1,300,000	4,900	440,000	440,000	NE	NE	NE	NE	530	NE	NE

Notes:

Detections are shown in bold. Results equal to or exceeding applicable regulatory screening levels are shaded.

Only detected analytes are summarized on table. Refer to Appendix D for laboratory report to access entire list of compounds analyzed.

SVE = Soil vapor extraction

BDCM = Bromodichloromethane

DCB = Dichlorobenzene

DCE = Dichloroethene.

Freon 11 = Trichlorofluoromethane

Freon 12 = Dichlorodifluoromethane

MC = Methylene Chloride

MEK = Methyl Ethyl Ketone

MIBK = Methyl Isobutyl Ketone

NAPH = Naphthalene

PCA = Tetrachloroethane

TCA = Trichloroethane. TCE = Trichloroethene.

TMB = Trimethylbenzene.

VOCs = Volatile organic compounds.

bgs = Below ground surface.

 μ g/m³ = Micrograms per cubic meter.

< 2.9 = Not detected at or above the indicated laboratory method reporting limit.

NE = Not established.

-- = Not applicable/not analyzed.

1. February 2016 Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) Environmental Screening Levels (ESLs), Table SG-1 Subslab/Soil Gas Vapor Intrusion: Human Health Risk Levels. Residential.

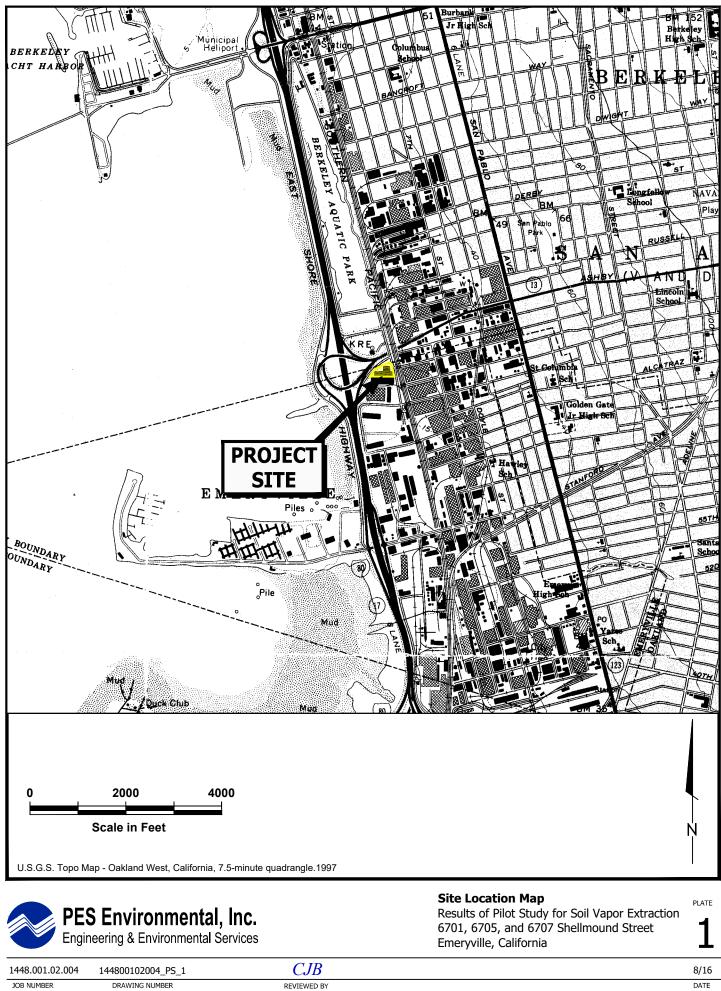
2. February 2016 Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) Environmental Screening Levels (ESLs), Table SG-1 Subslab/Soil Gas Vapor Intrusion: Human Health Risk Levels. Commercial/Industrial.

Table 4 Summary of Pilot Study Mass Removal Estimate Results of SVE Pilot Study 6701 - 6707 Shellmound Street Emeryville, California

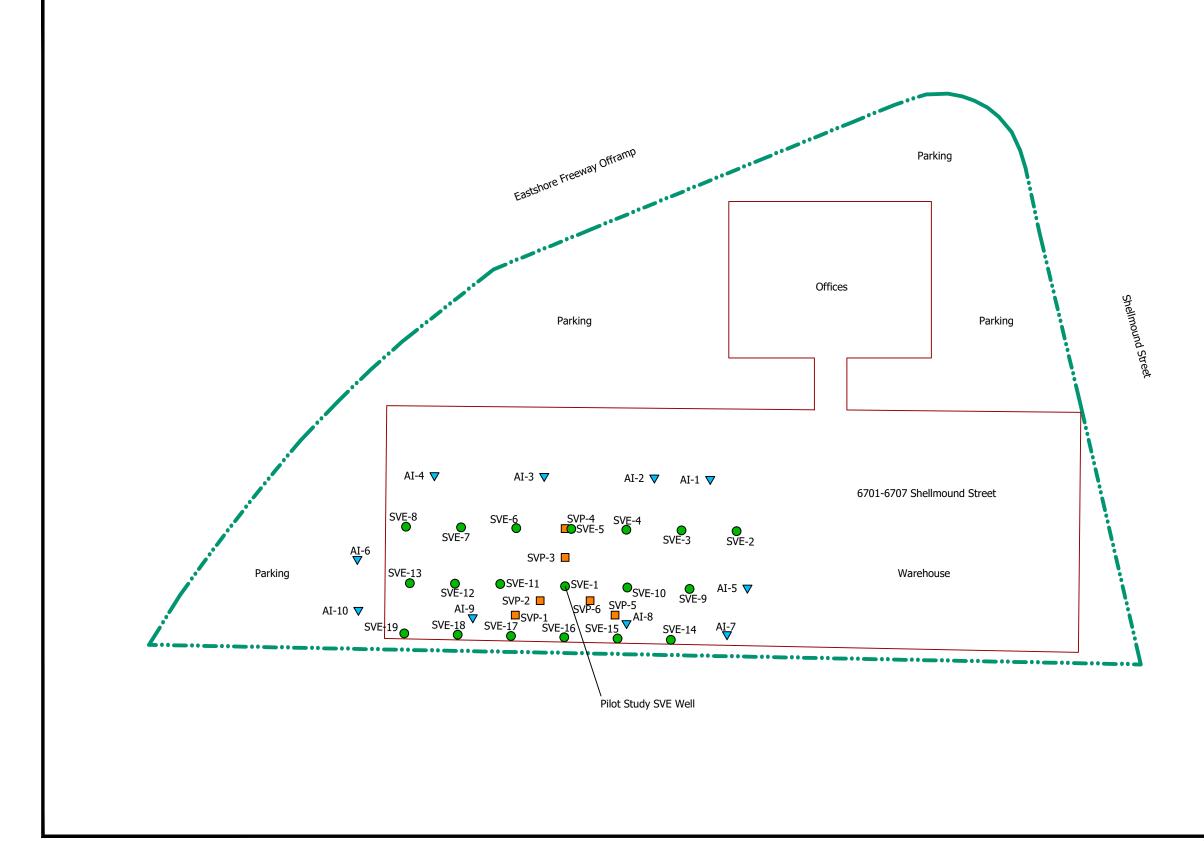
Date and Time	Test Phase	Runtime Since Previous Date/Time Recording (hours)	Cumulative Runtime (hours)	Sample Date	Sample ID	SVE Sytem Influent VC Concentration (µg/m3)	Average Flow Rate from SVE-1 (SCFM)	Mass of Vinyl Chloride Removed Since Previous Date/Time Recording (Ibs)	Cumulative Mass of Vinyl Chloride Removed Since Previous Date/Time (Ibs)	Estimated Vinyl Chloride Mass Removal Rate (Ibs/day)
7/13/16 11:00 AM	Step Test 1	0.5				40,000	9.7	0.0007	0.0007	
7/13/2016 14:20:00 PM	Step Test 2	1.5	2.0			40,000	16.2	0.0036	0.0044	
7/13/2016 15:20:00 PM	Step Test 3	0.5	2.5			40,000	21.0	0.0016	0.0059	
7/13/2016 16:15:00 PM	Step Test 4	0.6	3.1			40,000	24.4	0.0021	0.0081	
7/14/2016 14:55:00 PM	Constant	6.4	9.5	7/14/2016	SVE-1	40,000	25.5	0.0244	0.0325	0.0916

Notes:

 $\mu g/m3$ - micrograms per cubic meter of air


lbs/day - pounds per day

SCFM - Standard cubic feet per minute


VC - Vinyl Chloride

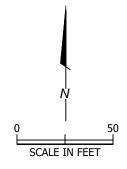
-- - Not applicable/not analyzed

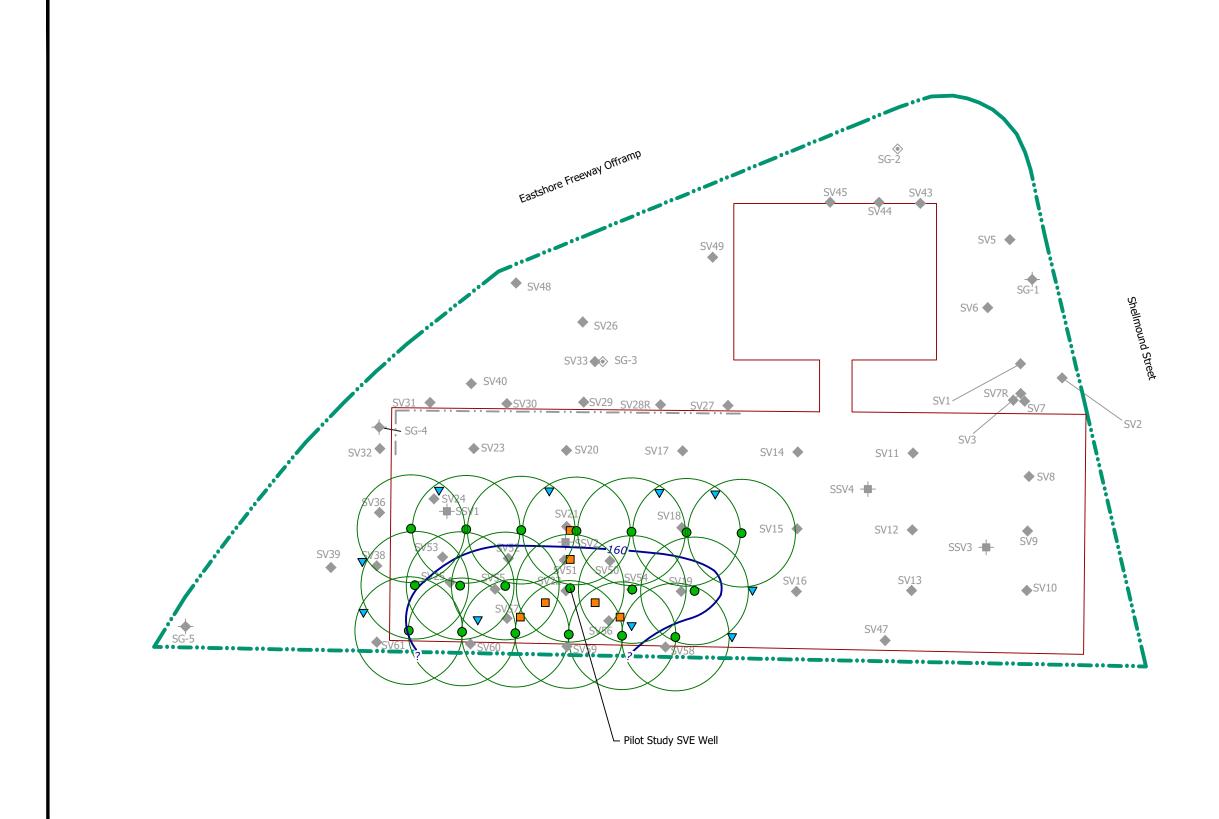
ILLUSTRATIONS

DATE

 1448.001.02.004
 144800102004_PS_2
 CJB

 JOB NUMBER
 DRAWING NUMBER
 REVIEWED BY


---- Approximate Property Boundary


Existing Building Outline

Soil Vapor Extraction (SVE) Well Location

- Soil Vapor Monitoring Probe Location
- Air Inlet Well Location

Site Plan and SVE/Air Inlet Well and Probe Locations Results of Pilot Study for Soil Vapor Extraction 6701, 6705, and 6707 Shellmound Street

6701, 6705, and 6707 Shellmou Emeryville, California

PES Environmental, Inc.		Estimated Va Isoconcentra
PES Environmental, Inc.		Results of Pilo
Engineering & Environmental Services		6701, 6705, a
		Emeryville, Ca
1448.001.02.004 144800102004_PS_3-4	СЈВ	
JOB NUMBER DRAWING NUMBER	REVIEWED BY	

Explanation

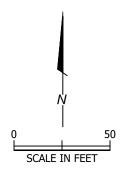
---- Approximate Property Boundary

------ Existing Building Outline

Prior Soil Gas Sample Locations

- SG-5 + Soil, Soil Gas and Groundwater Sampling Location - Destroyed (Environ)
- SG-3
 Soil Gas and Soil Sampling Location - Destroyed (Environ)
- SV1 ♦ Soil Vapor Sampling Location (PES)
- SSV1 + Sub-Slab Vapor Sampling Location (PES) Soil Vapor Sampling Location (PES)

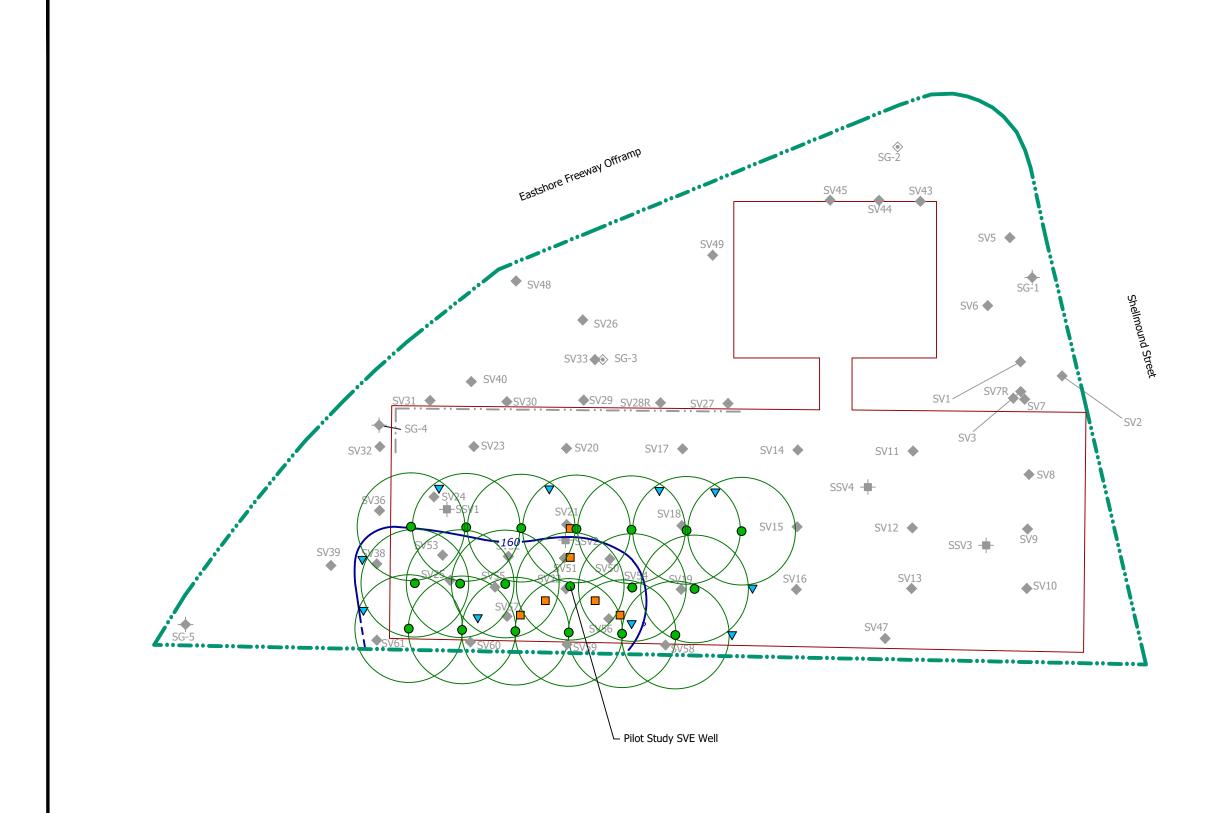
SVE/Air Inlet Wells and Probes



SVE Well Location with Estimated 28-ft Radius of Influence Soil Vapor Monitoring Probe Location

Air Inlet Well Location

SVE - Soil Vapor Extraction ROI - Radius of Influence ft bgs. - Feet Below Ground Surface

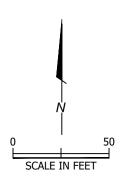

— 160 Vinyl Chloride isoconcentration contour for soil vapor exceeding February 2016 commercial Environmental Screening Level (ESL)in micrograms per cubic meter (µg/m³) at 5 ft bgs in µg/m³ (dashed where inferred)

Eed Vapor Extraction ROI for SVE Wells, with Centration Contours - Vinyl Chloride at 5 ft bgs of Pilot Study for Soil Vapor Extraction 705, and 6707 Shellmound Street lle, California

PLATE

3

PES Environmental, In Engineering & Environmental Serv	C. es	Estimated Vapor Ex Isoconcentration C Results of Pilot Study 6701, 6705, and 6707 Emeryville, California
1448.001.02.004 144800102004_PS_3-4	СЈВ	
JOB NUMBER DRAWING NUMBER	REVIEWED BY	

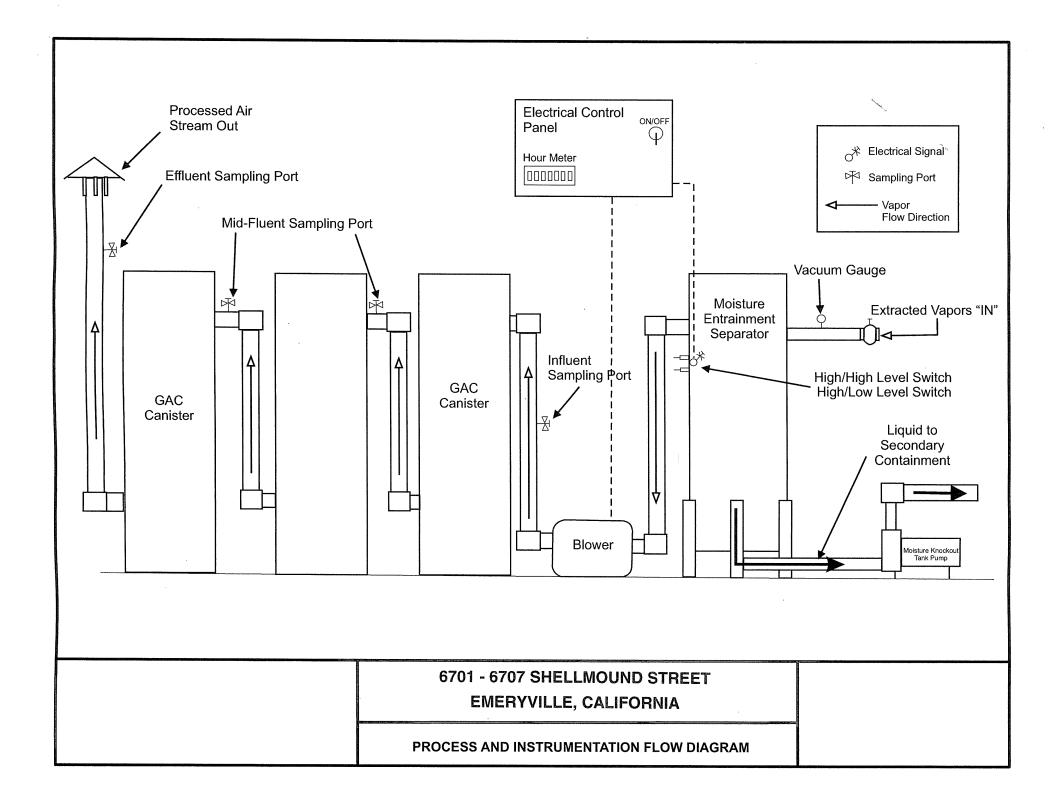

Explanation

	Approximate Property Boundary				
? ss	Approximate Location of Existing Sewer Line (queried where uncertain) Existing Building Outline				
	Prior Soil Gas Sample Locations				
SG-5 🔶	Soil, Soil Gas and Groundwater Sampling Location - Destroyed (Environ)				
SG-3 🗇	Soil Gas and Soil Sampling Location - Destroyed (Environ)				
SV1 🔶	Soil Vapor Sampling Location (PES)				
SSV1 -	Sub-Slab Vapor Sampling Location (PES)				
	Soil Vapor Sampling Location (PES)				
_	SVE/Air Inlet Wells and Probes				
	SVE Well Location with Estimated 28-ft Radius of Influence				
	Soil Vapor Monitoring Probe Location				
$\mathbf{\nabla}$	Air Inlet Well Location				
	Soil Vapor Extraction Radius of Influence				

ft bgs. - Feet Below Ground Surface

— 160 Vinyl Chloride isoconcentration contour for soil vapor exceeding February 2016 commercial Environmental Screening Level (ESL)in micrograms per cubic meter (μg/m³) at 5 ft bgs in μg/m³ (dashed where inferred) Notes:

- SV7 and SV7R sampled only at 10-ft bgs.
 SV47 sampled only at 5-ft bgs.
 Sample depths for SV-15 are 5-ft and 8-ft bgs.



4

APPENDIX A

SCHEMATIC DRAWING OF SVE SYSTEM

APPENDIX B

COMPLETION LOGS FOR SVE/AIR INLET WELLS AND SOIL VAPOR MONITORING PROBES

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/29/2016 By jamesy Permit Numbers: W2016-0467 to W2016-0468 Permits Valid from 06/30/2016 to 07/29/2016 City of Project Site: Emeryville Application Id: 1466527861561 Site Location: 6701-6707 Shellmound Street, Emeryville **Project Start Date:** 06/30/2016 Completion Date:07/29/2016 Contact Marcelino Valpando at (510) 670-5760 or Marcelino@acpwa.org Assigned Inspector: **Applicant:** PES Environmental, Inc - Chris Baldassari Phone: 415-899-1600 1682 Novato Blvd., STE 100, Novato, CA 94947 John Nady **Property Owner:** Phone: 510-652-2411 6701 Shellmound Street, Emeryville, CA 94608 **Client:** Rachel Green Phone: 916-715-4785 1415 L Street, Ste 450, Sacramento, CA 95814

	Total Due:	\$530.00
Receipt Number: WR2016-0326	Total Amount Paid:	<u>\$530.00</u>
Payer Name : PES Environmental	Paid By: CHECK	PAID IN FULL

Works Requesting Permits:

Remediation Well Construction-Extraction - 25 Wells Driller: Cascade Drilling - Lic #: 938110 - Method: hstem

Specifications

opeemeanor	13						
Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2016- 0467	06/29/2016	09/28/2016	SVE-1	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVE-10	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVE-11	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVE-12	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVE-13	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVE-14	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVE-15	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVE-16	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVE-17	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVE-18	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVE-19	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016-	06/29/2016	09/28/2016	SVE-2	10.00 in.	2.00 in.	4.50 ft	10.25 ft
0467 W2016-	06/29/2016	09/28/2016	SVE-3	10.00 in.	2.00 in.	4.50 ft	10.25 ft
0467 W2016-	06/29/2016	09/28/2016	SVE-4	10.00 in.	2.00 in.	4.50 ft	10.25 ft
0467 W2016-	06/29/2016	09/28/2016	SVE-5	10.00 in.	2.00 in.	4.50 ft	10.25 ft

Work Total: \$265.00

0467							
W2016- 0467	06/29/2016	09/28/2016	SVE-6	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVE-7	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVE-8	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVE-9	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0467	06/29/2016	09/28/2016	SVP-1	2.00 in.	0.25 in.	6.50 ft	8.50 ft
W2016- 0467	06/29/2016	09/28/2016	SVP-2	2.00 in.	0.25 in.	6.50 ft	8.50 ft
W2016- 0467	06/29/2016	09/28/2016	SVP-3	2.00 in.	0.25 in.	6.50 ft	8.50 ft
W2016- 0467	06/29/2016	09/28/2016	SVP-4	2.00 in.	0.25 in.	6.50 ft	8.50 ft
W2016- 0467	06/29/2016	09/28/2016	SVP-5	2.00 in.	0.25 in.	6.50 ft	8.50 ft
W2016- 0467	06/29/2016	09/28/2016	SVP-6	2.00 in.	0.25 in.	6.50 ft	8.50 ft

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

4. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.

5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

7. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).

8. Minimum surface seal thickness is two inches of cement grout placed by tremie.

9. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

10. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

11. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Remediation Well Construction-Injection - 10 Wells Driller: Cascade Drilling - Lic #: 938110 - Method: hstem

... ..

Work Total: \$265.00

Specification	ns						
Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2016- 0468	06/29/2016	09/28/2016	AIW-1	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0468	06/29/2016	09/28/2016	AIW-10	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0468	06/29/2016	09/28/2016	AIW-2	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0468	06/29/2016	09/28/2016	AIW-3	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0468	06/29/2016	09/28/2016	AIW-4	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0468	06/29/2016	09/28/2016	AIW-5	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0468	06/29/2016	09/28/2016	AIW-6	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0468	06/29/2016	09/28/2016	AIW-7	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0468	06/29/2016	09/28/2016	AIW-8	10.00 in.	2.00 in.	4.50 ft	10.25 ft
W2016- 0468	06/29/2016	09/28/2016	AIW-9	10.00 in.	2.00 in.	4.50 ft	10.25 ft

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

4. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.

5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

7. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).

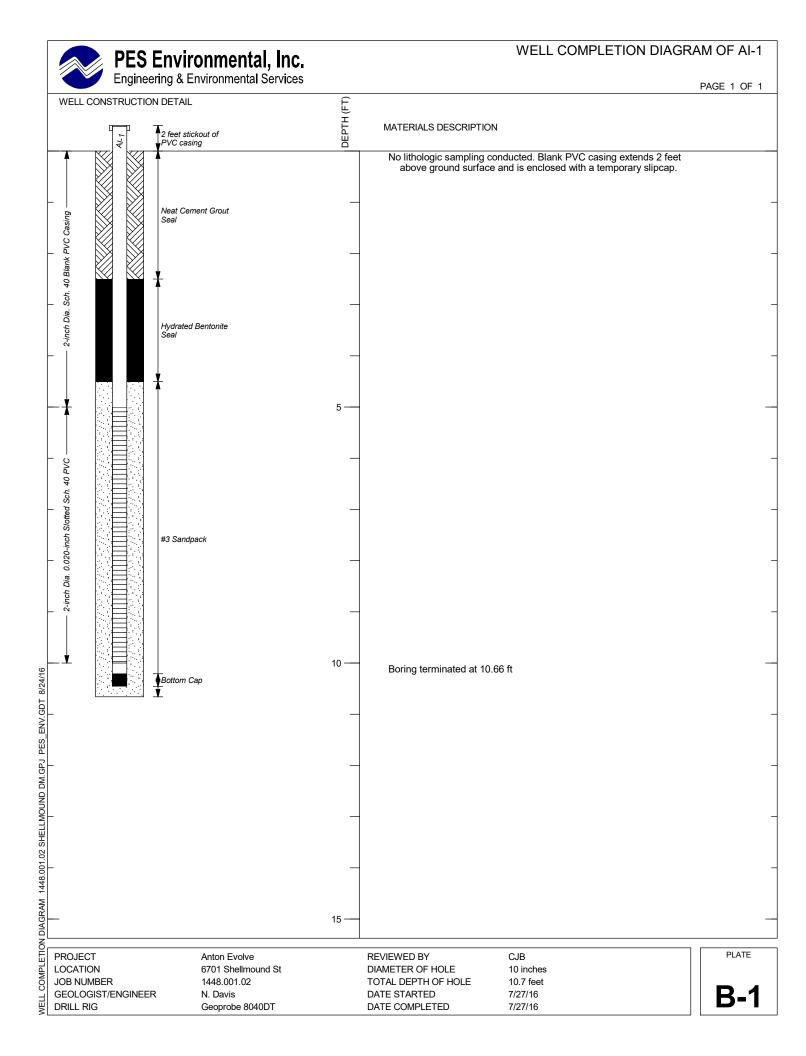
8. Minimum surface seal thickness is two inches of cement grout placed by tremie.

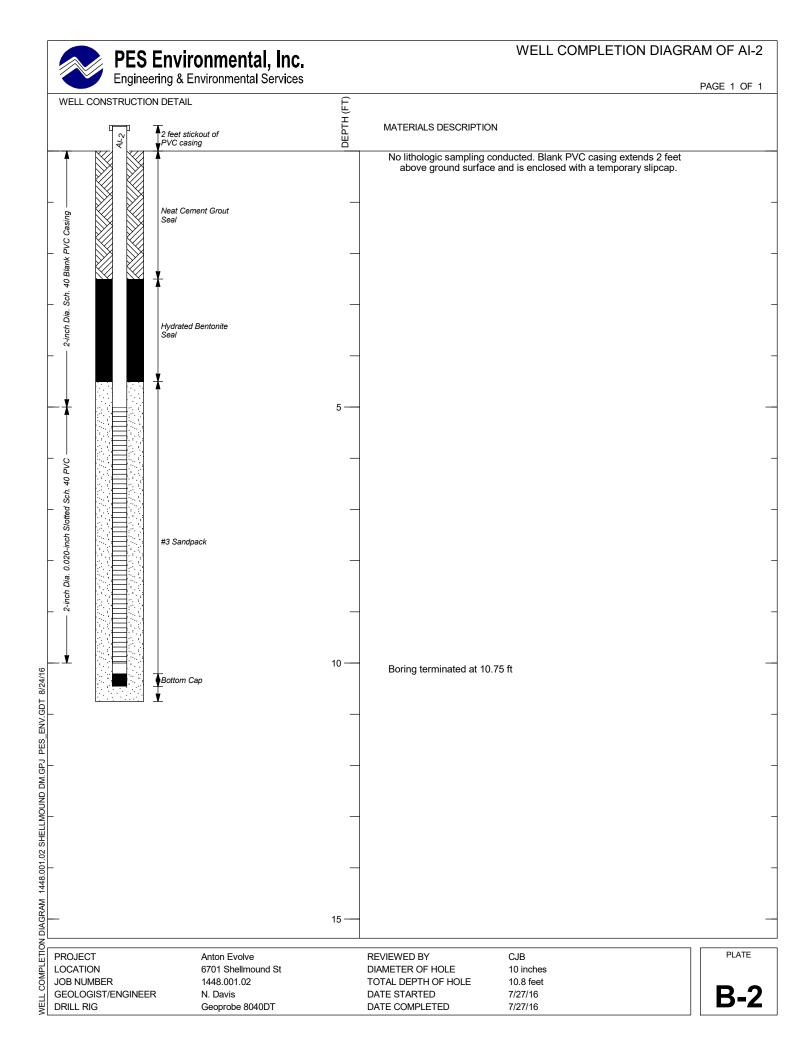
9. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

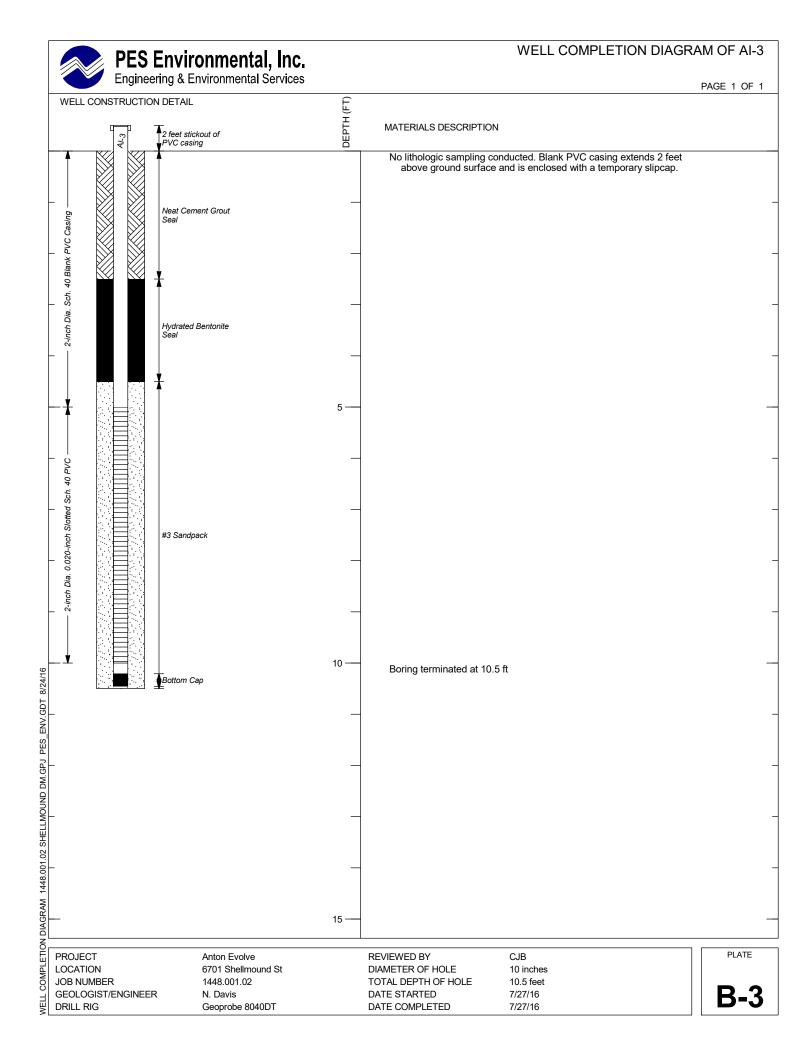
10. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

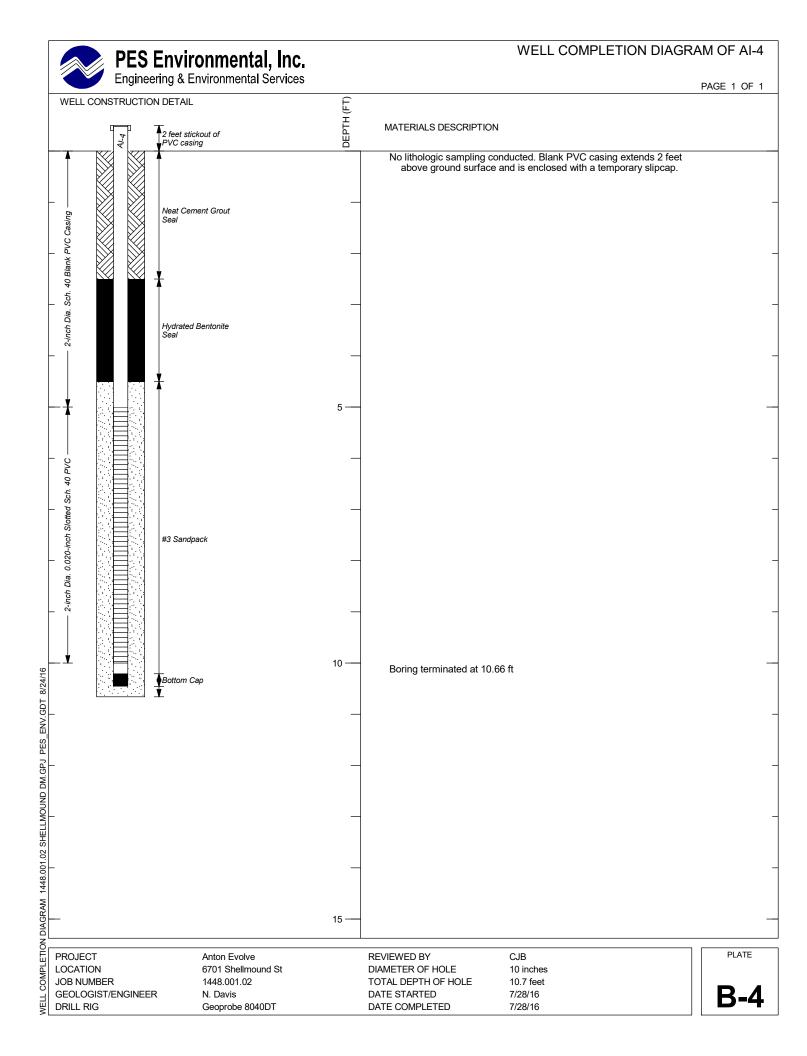
11. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

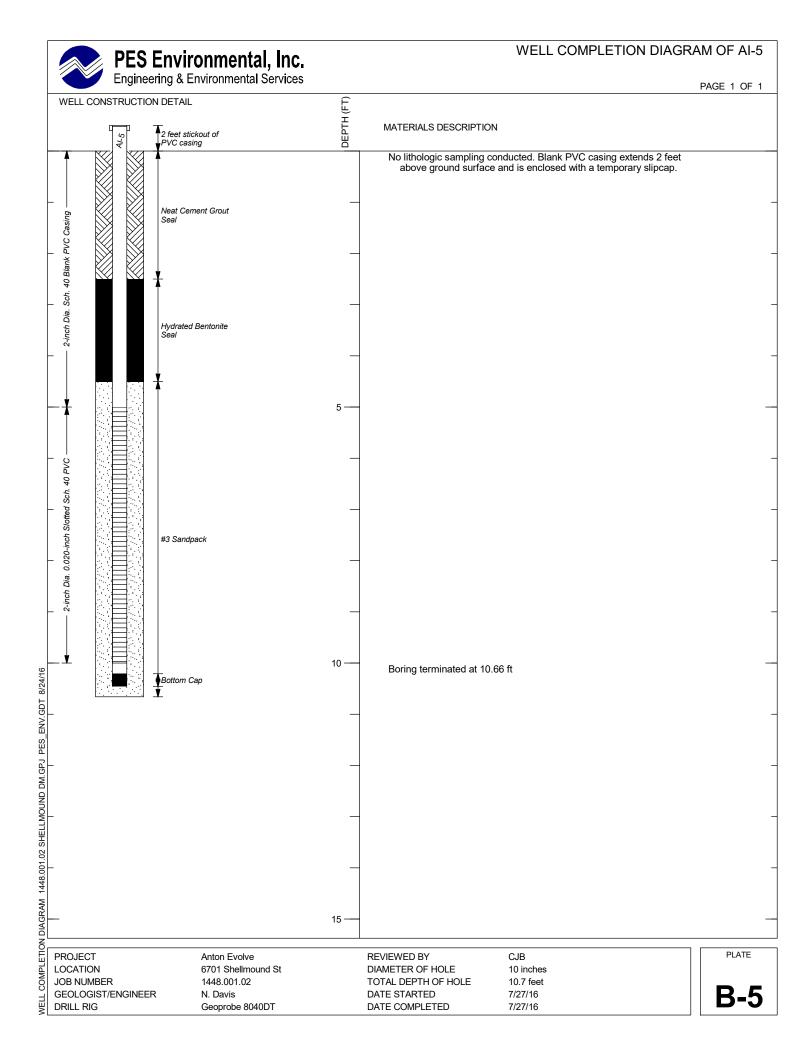
	MAJOR DIVI	SIONS			TYPICAL NAMES
		CLEAN GRAVELS WITH LESS THAN 15% FINES	GW		WELL-GRADED GRAVELS WITH OR WITHOUT SAND
) SIEVE	GRAVELS MORE THAN HALF COARSE FRACTION IS LARGER THAN NO. 4 SIEVE		GP		POORLY-GRADED GRAVELS WITH OR WITHOUT SAND
ILS N NO. 200		GRAVELS WITH 15% OR MORE FINES	GM		SILTY GRAVELS WITH OR WITHOUT SAND
AINED SO RSER THA			GC		CLAYEY GRAVELS WITH OR WITHOUT SAND
ARSE-GR/		CLEAN SANDS WITH LESS THAN 15% FINES	sw		WELL-GRADED SANDS WITH OR WITHOUT GRAVEL
COARSE-GRAINED SOILS MORE THAN HALF IS COARSER THAN NO. 200 SI	SANDS MORE THAN HALF		SP		POORLY-GRADED SANDS WITH OR WITHOUT GRAVEL
MORE T	COARSE FRACTION IS FINER THAN NO. 4 SIEVE SIZE	SANDS WITH 15% OR MORE FINES	SM		SILTY SANDS WITH OR WITHOUT GRAVEL
			sc		CLAYEY SANDS WITH OR WITHOUT GRAVEL
SIEVE	SILTS AND CLAYS LIQUID LIMIT 50% OR LESS		ML		INORGANIC SILTS OF LOW TO MEDIUM PLASTICITY WITH OR WITHOUT SAND OR GRAVEL
FINE-GRAINED SOILS THAN HALF IS FINER THAN NO. 200 SIEVE			CL		INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY WITH OR WITHOUT SAND OR GRAVEL
			OL		ORGANIC SILTS OR CLAYS OF LOW TO MEDIUM PLASTICITY WITH OR WITHOUT SAND OR GRAVEL
INE-GRAI			мн		INORGANIC SILTS OF HIGH PLASTICITY WITH OR WITHOUT SAND OR GRAVEL
ш	SILTS AND CLAYS LIQUID LIMIT GREATER THAN 50%		СН		INORGANIC CLAYS OF HIGH PLASTICITY WITH OR WITHOUT SAND OR GRAVEL
MORE			он		ORGANIC SILTS OR CLAYS OF HIGH PLASTICITY WITH OR WITHOUT SAND OR GRAVEL
	HIGHLY ORGANI	CSOILS	PT		PEAT AND OTHER HIGHLY ORGANIC SOILS
	ABBREVIA	TION KEY			SYMBOLS KEY
PID (PPI		etector readings in part eadspace sample scree			No Soil Sample Recovered Partial Soil Sample Recovered
BLOWS/	indicated on the lo	drive sampler 6 inches a ogs using sample drive h nds falling 30 inches.	as Iammer		Undisturbed Soil Sample Recovered
(10,60,30) - Percent gravel, pe	ercent sand, percent silt/	clay	-	Soil Sample Submitted for Laboratory Analysis
2.5YR 6/	 Soil Color according (1994 Revised Ed) 	ng to Munsell Soil Color ition)	Charts	⊞ -	Hydropunch Sample
feet MSL	- feet above Mean				First Encountered Groundwater Level
feet BGS	 Feet below ground 	surface		⊻ -	Piezometric Groundwater level

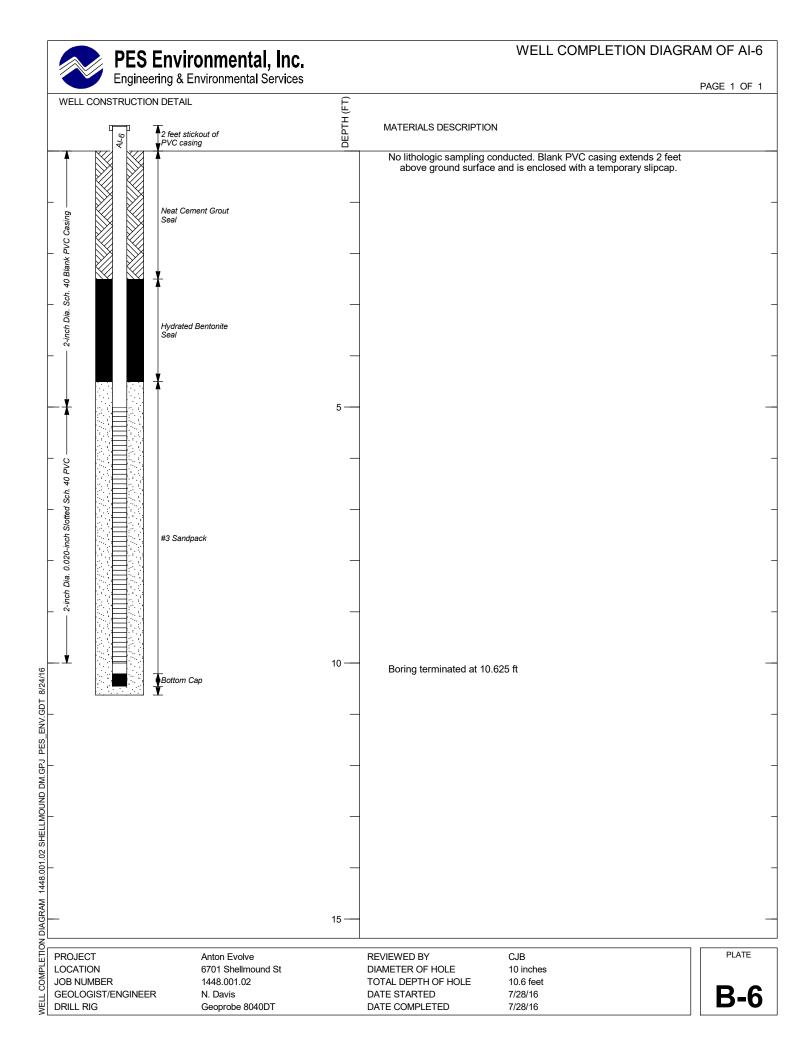


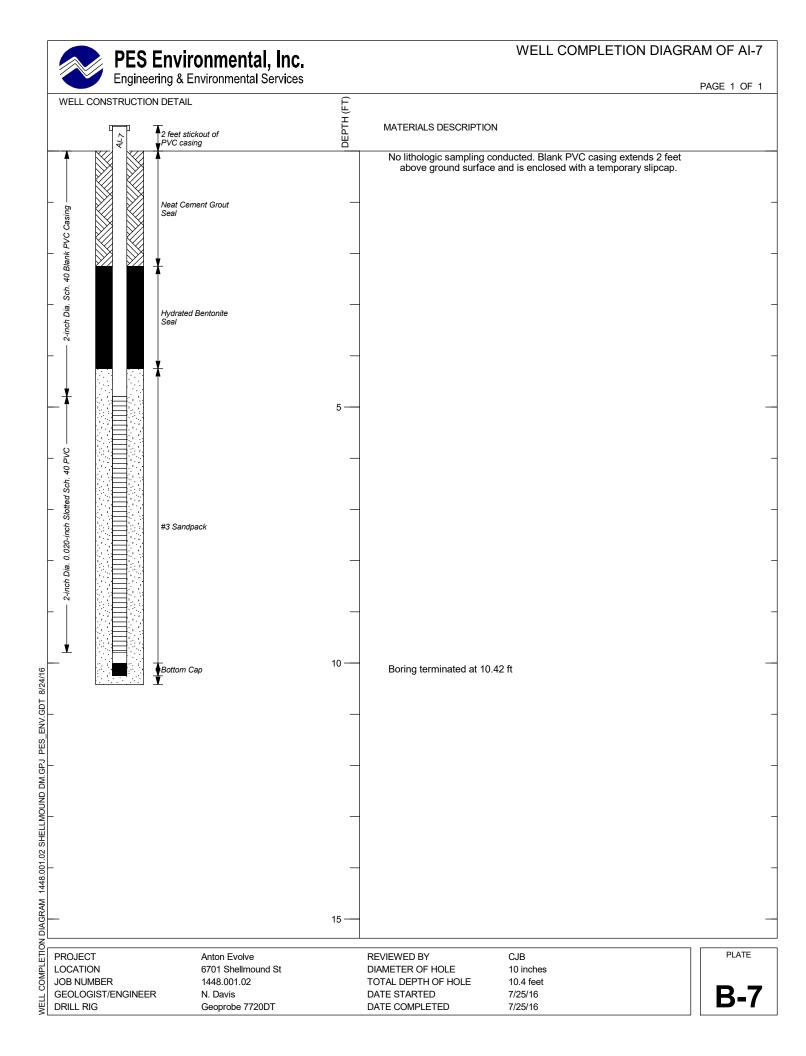

USCS CHART 1448.001.02 SHELLMOUND DM.GPJ PES ENV.GDT 8/24/16

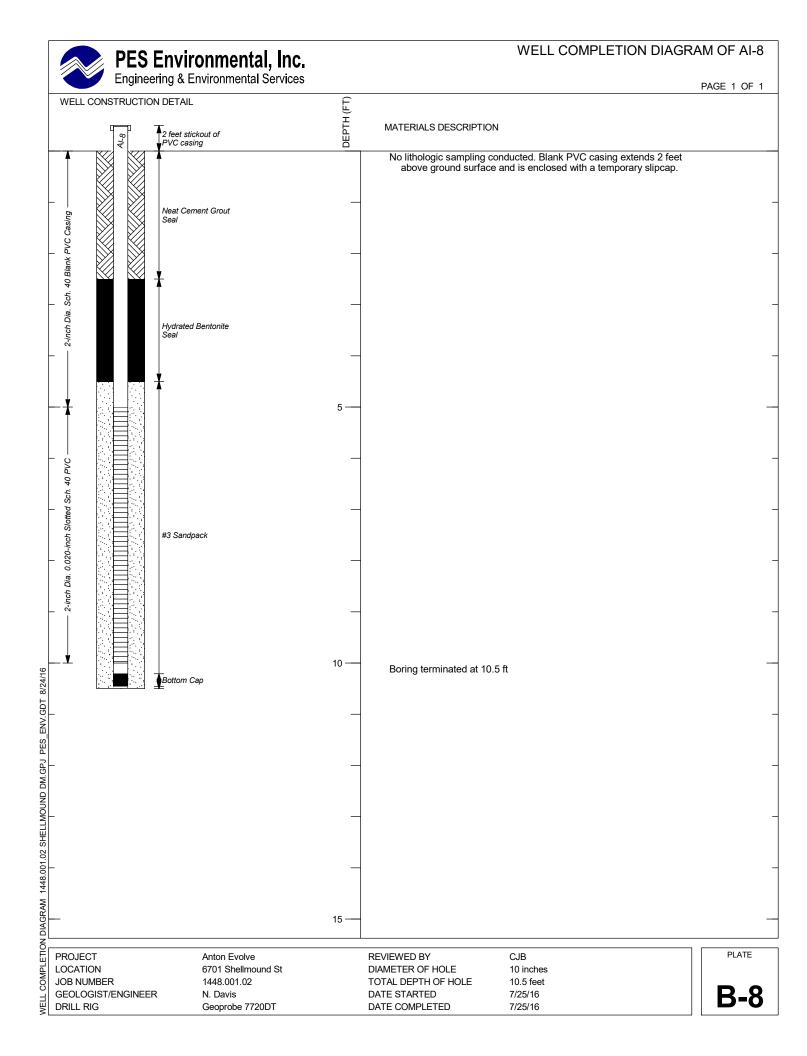

PES Environmental, Inc. Engineering & Environmental Services

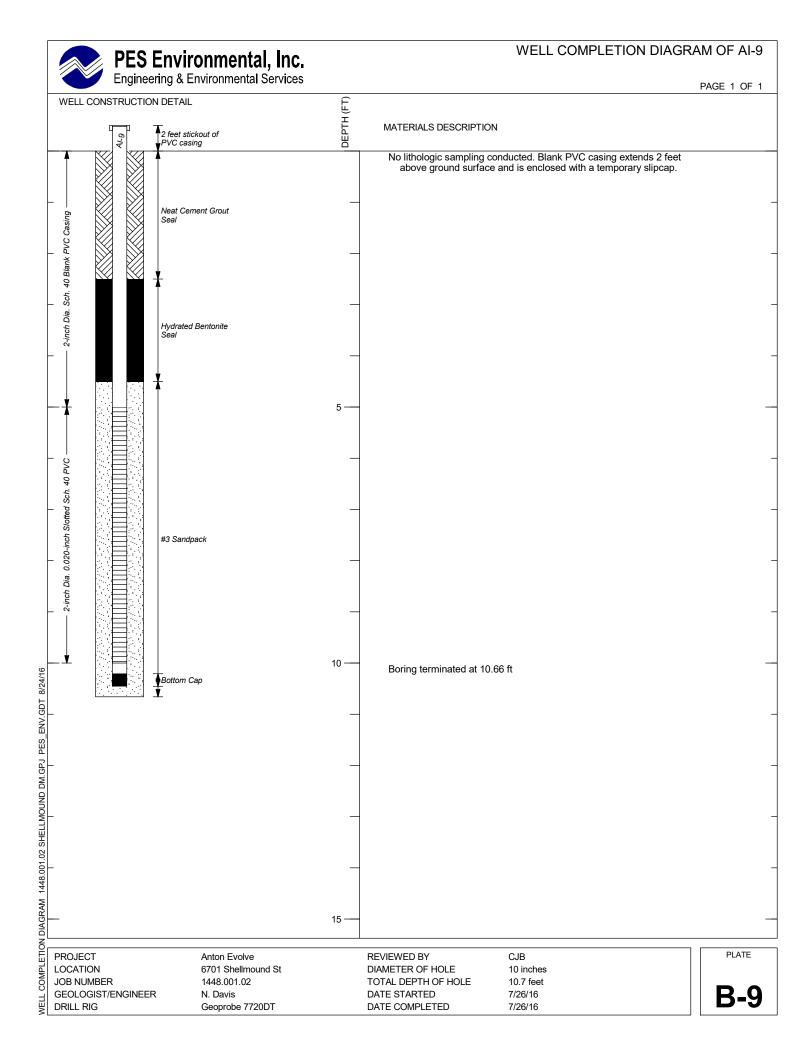

Anton Evolve 6701 Shellmound St

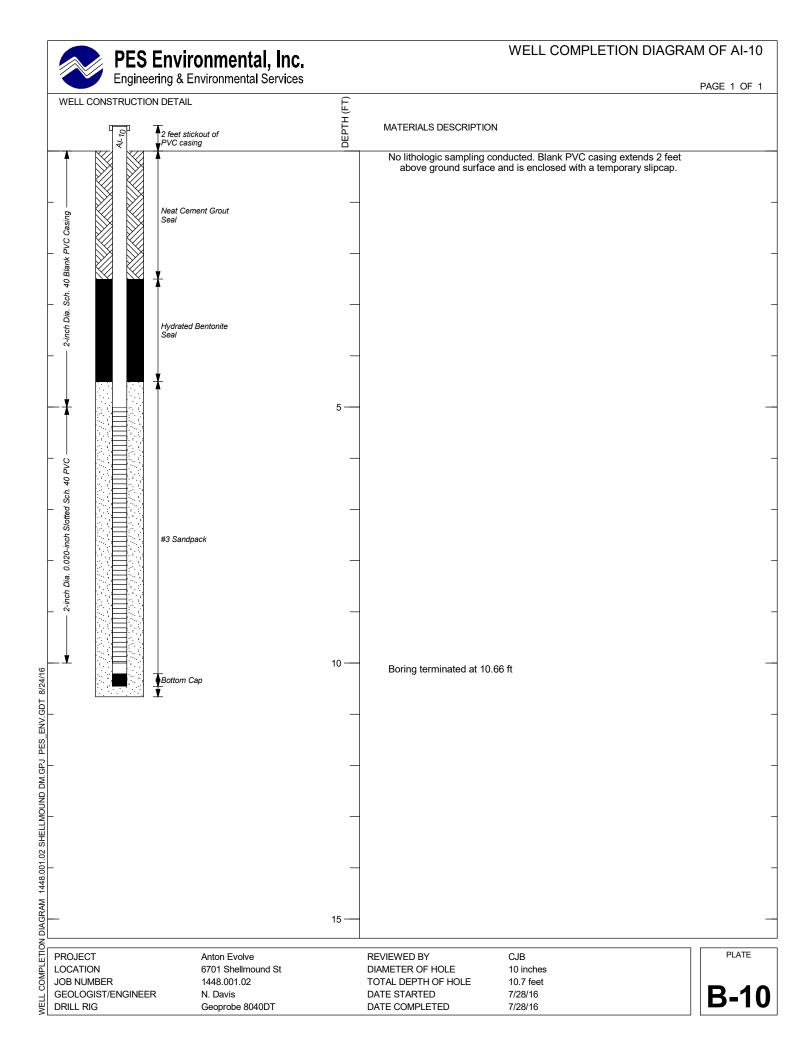

1448.001.02 JOB NUMBER **B-0**

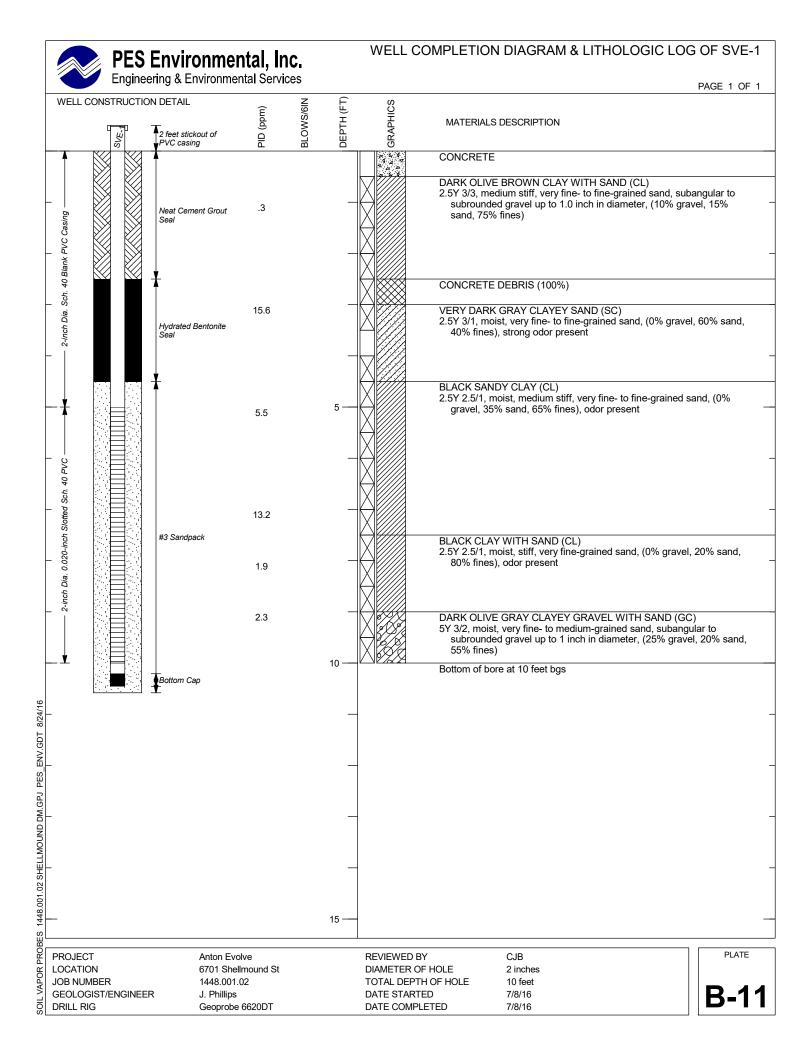


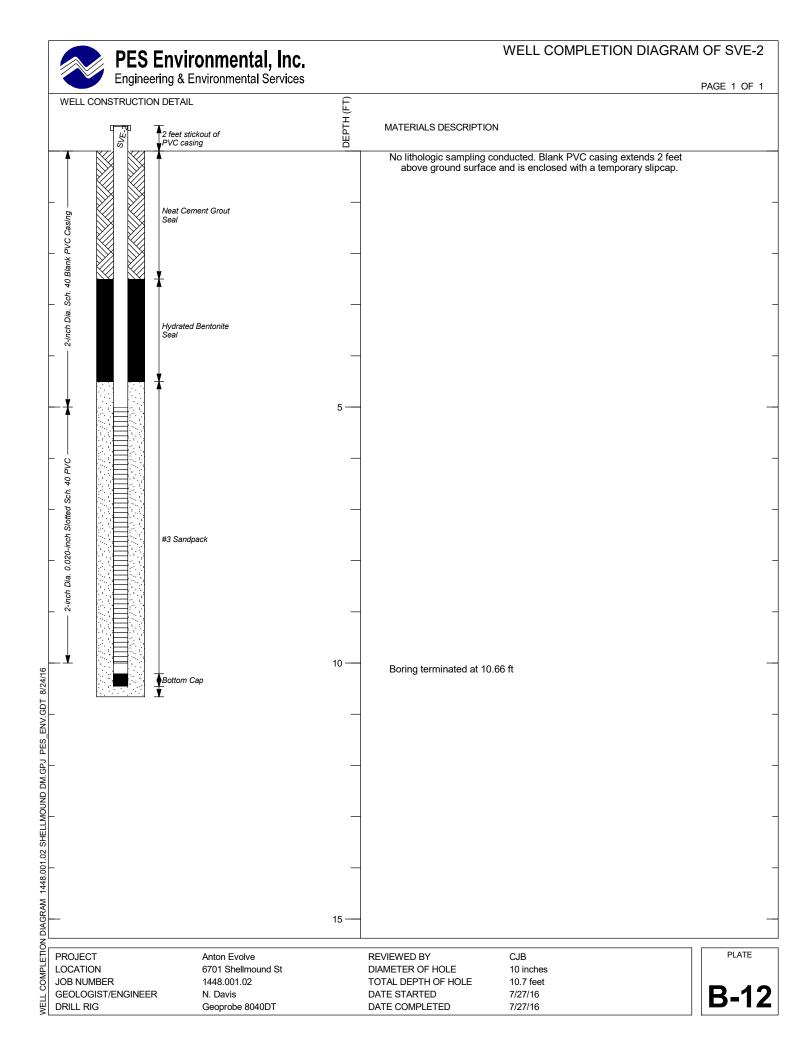


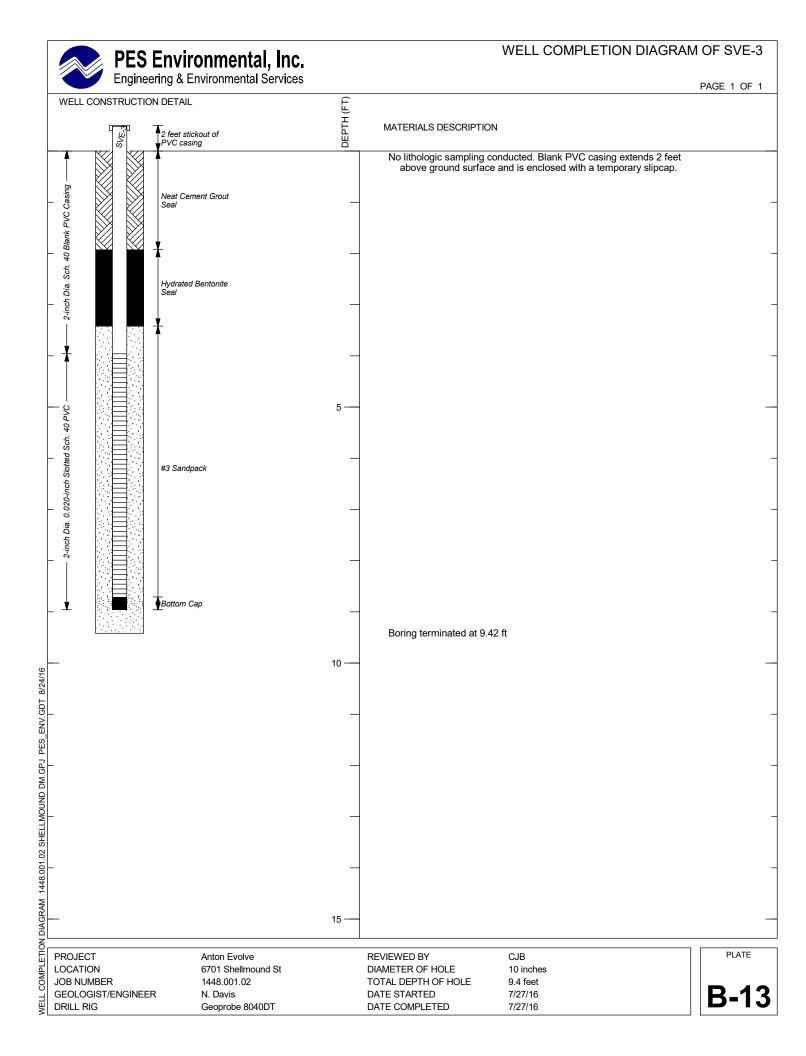


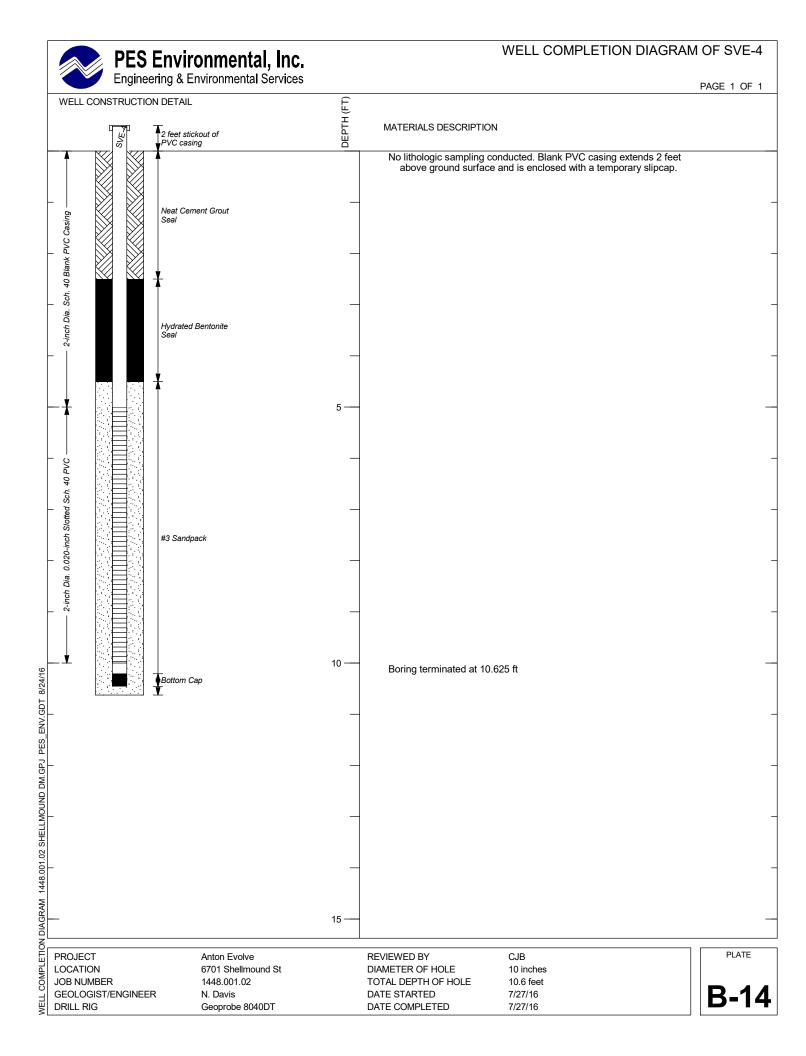


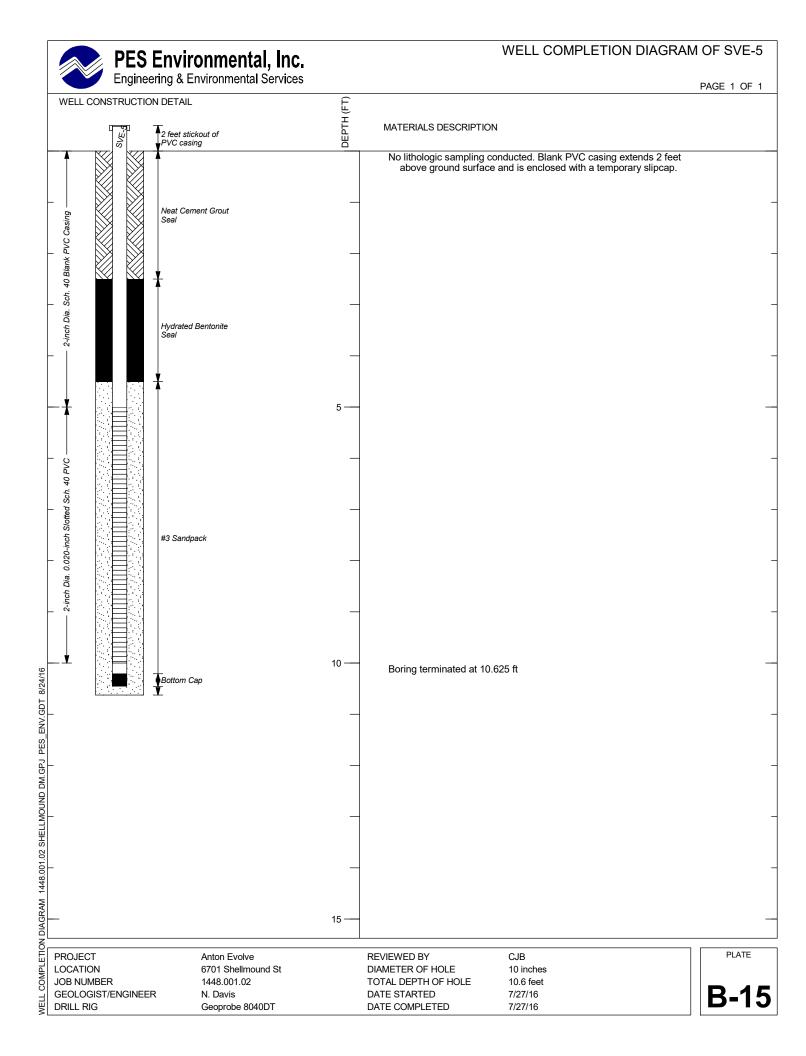


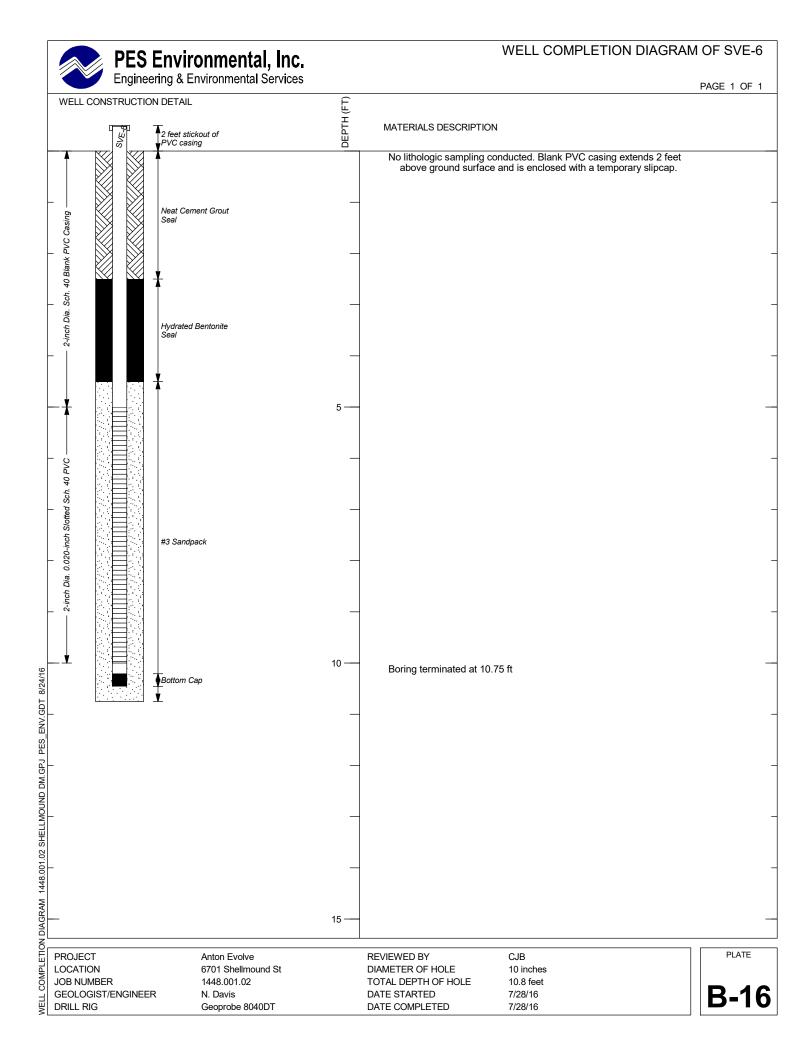


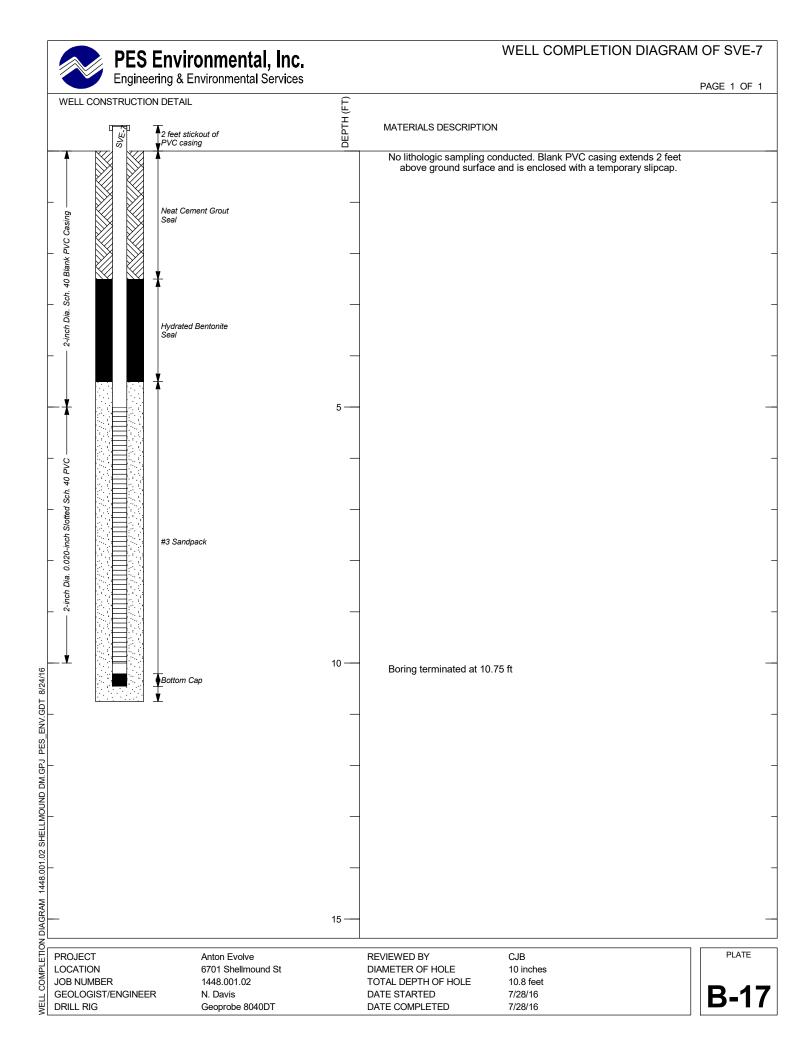


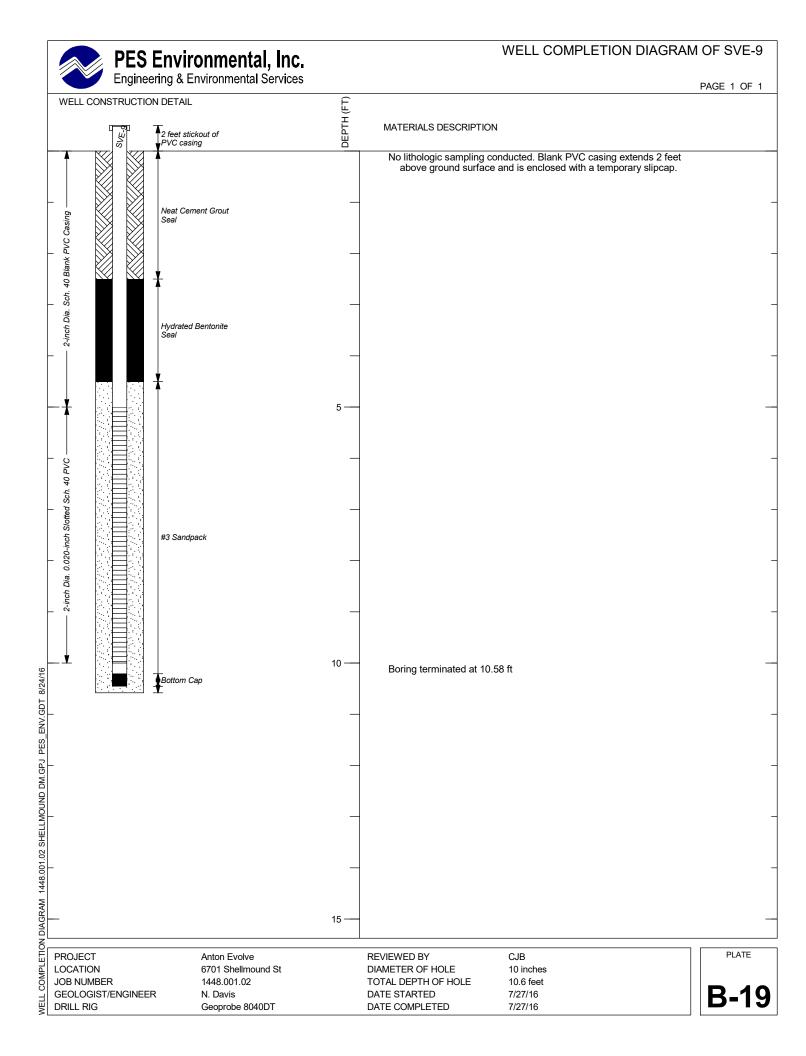


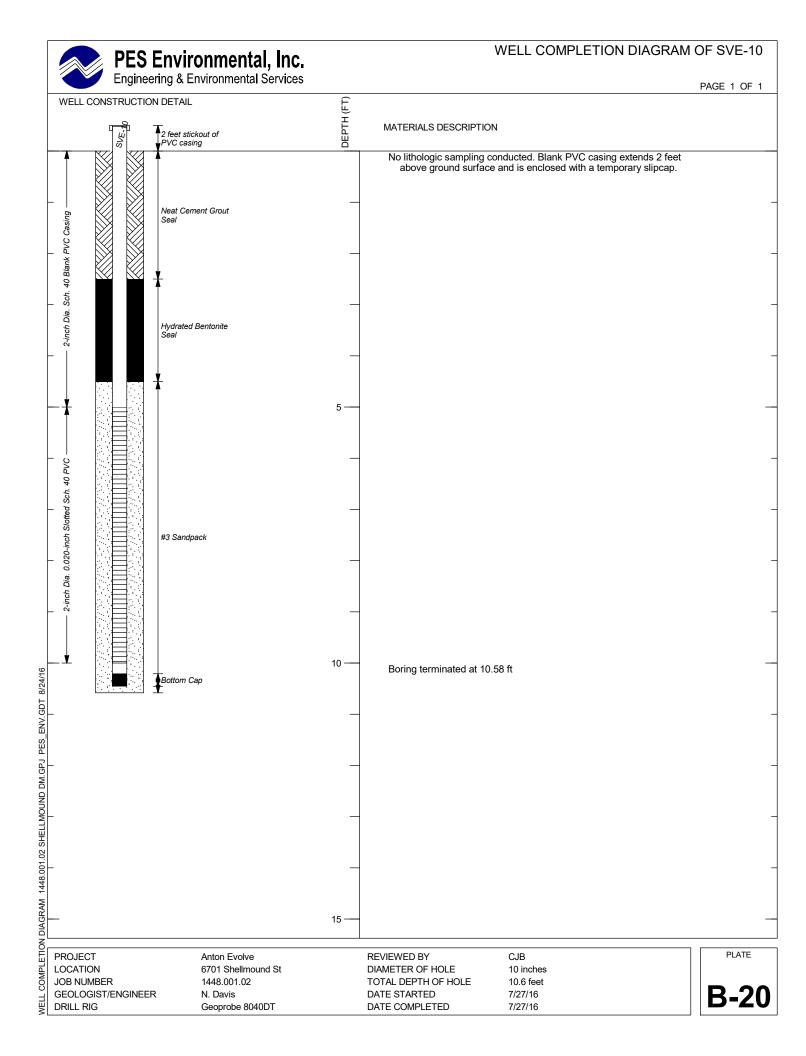


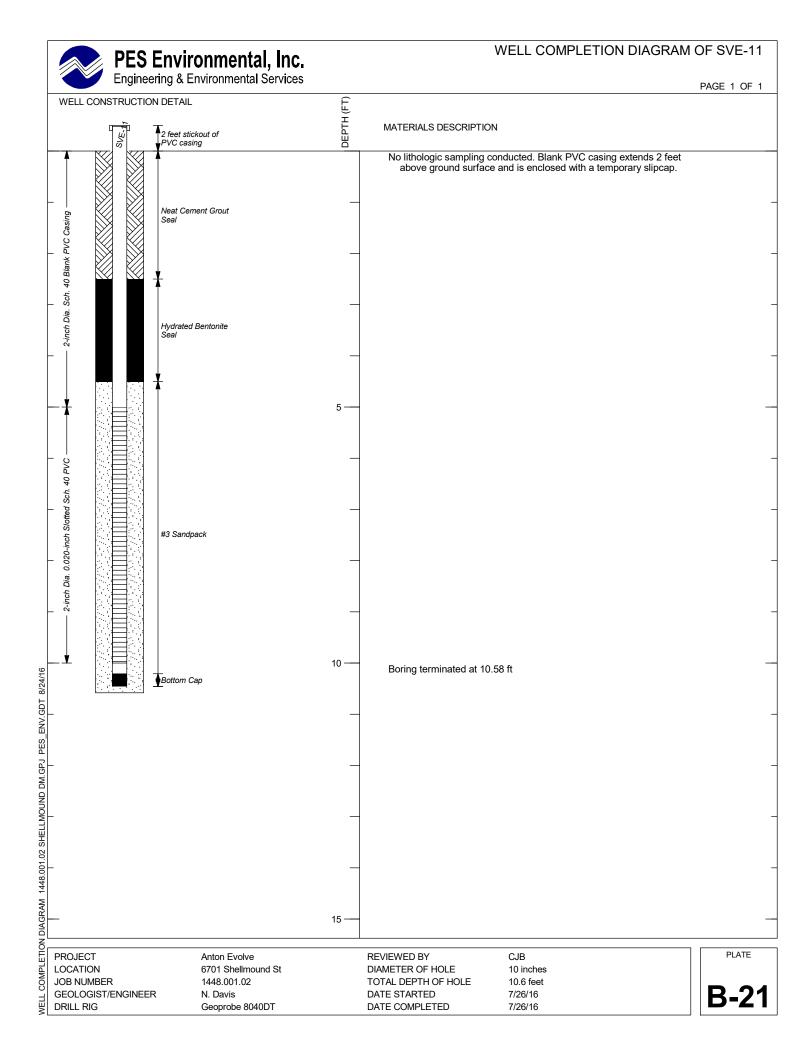


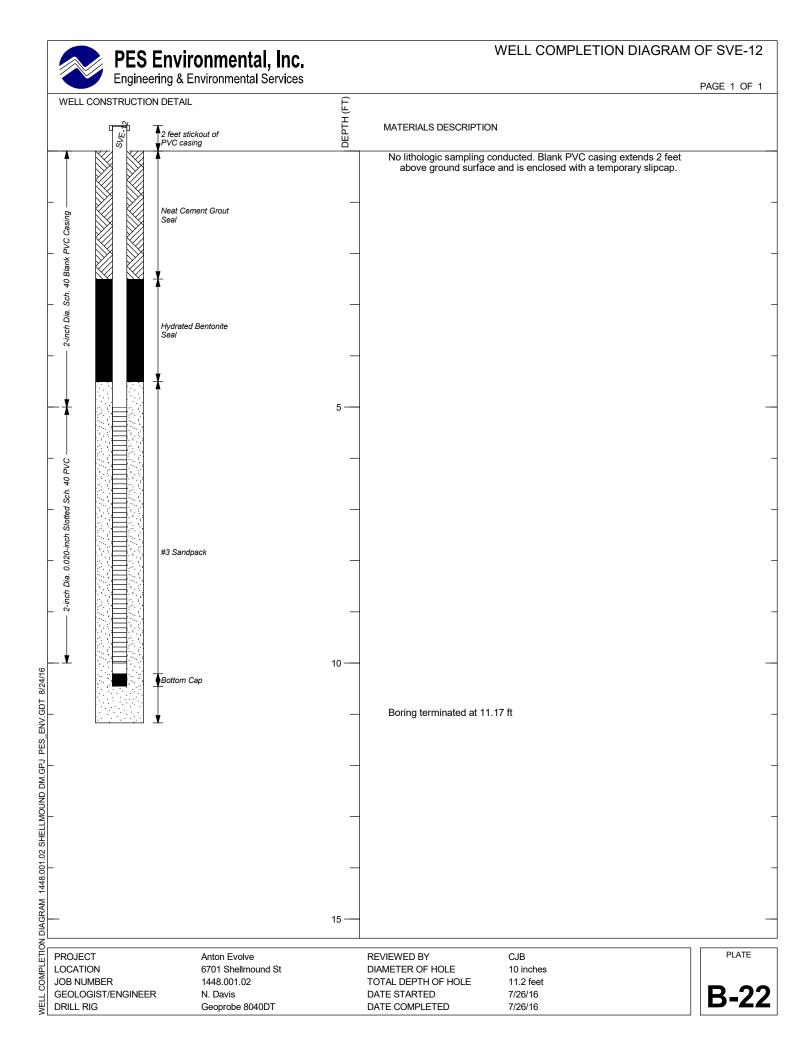


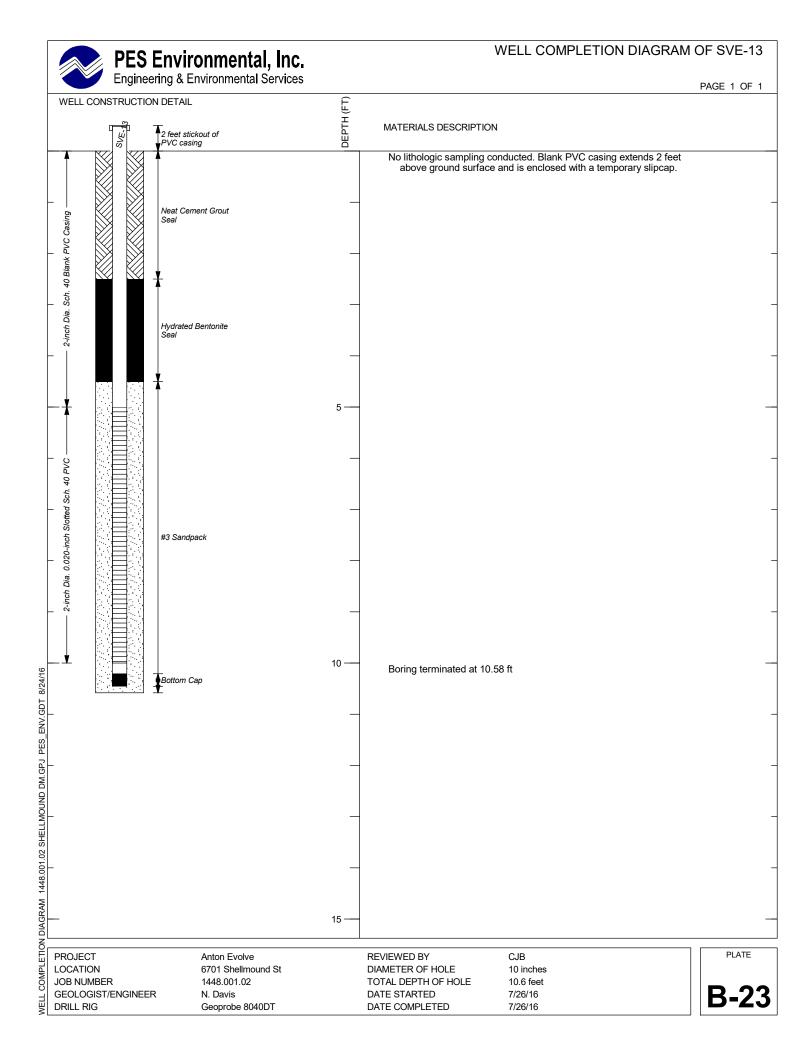


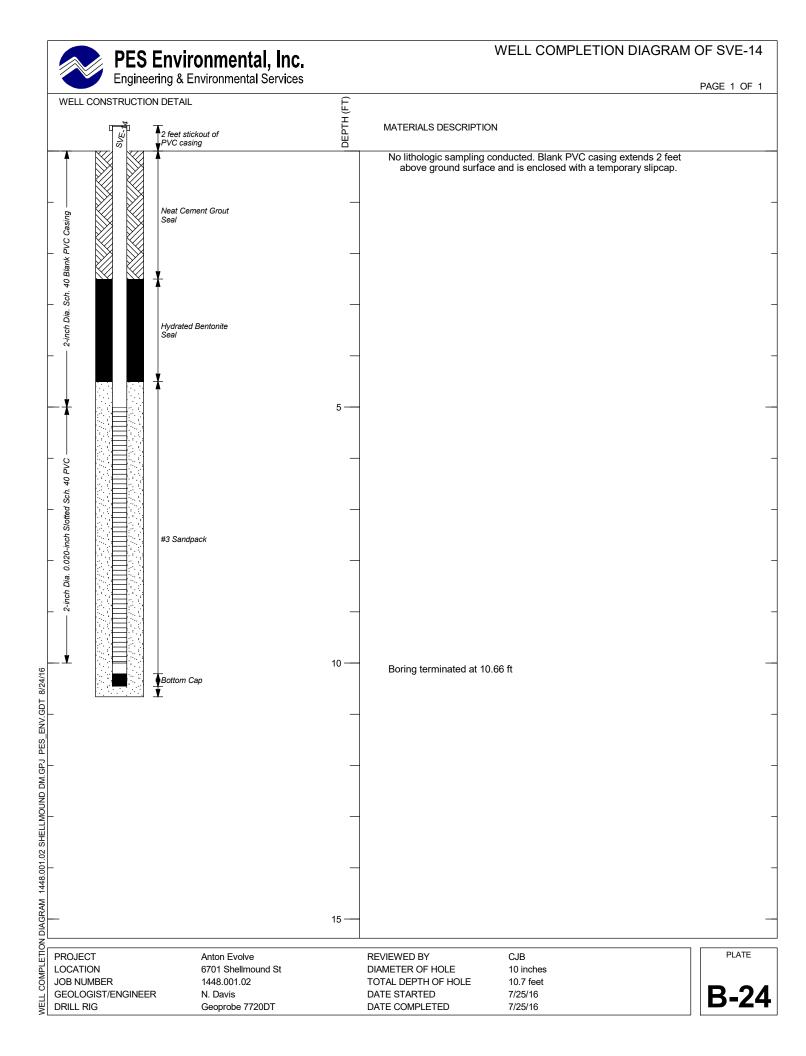


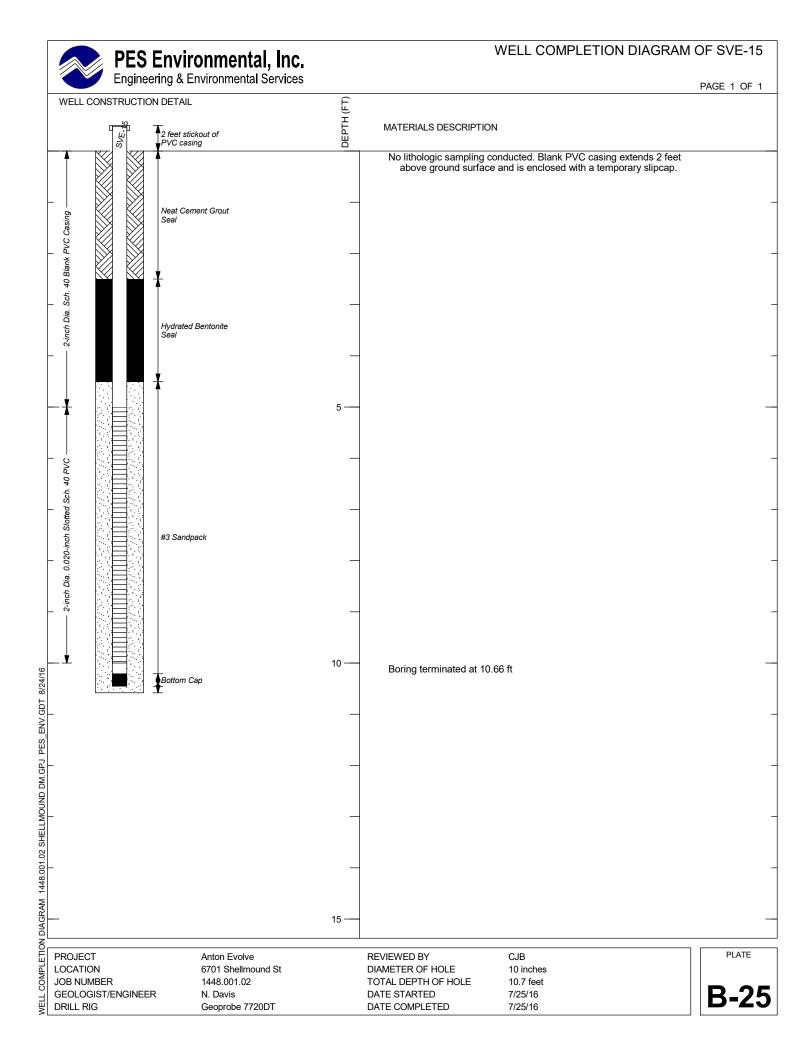


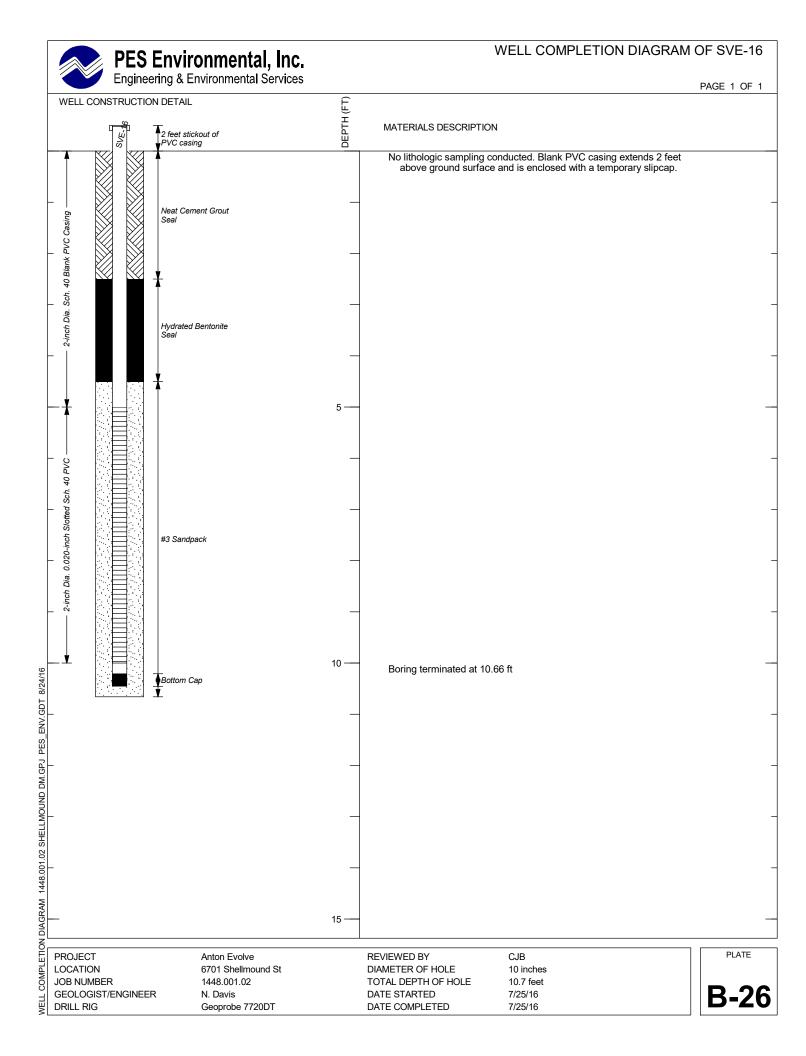


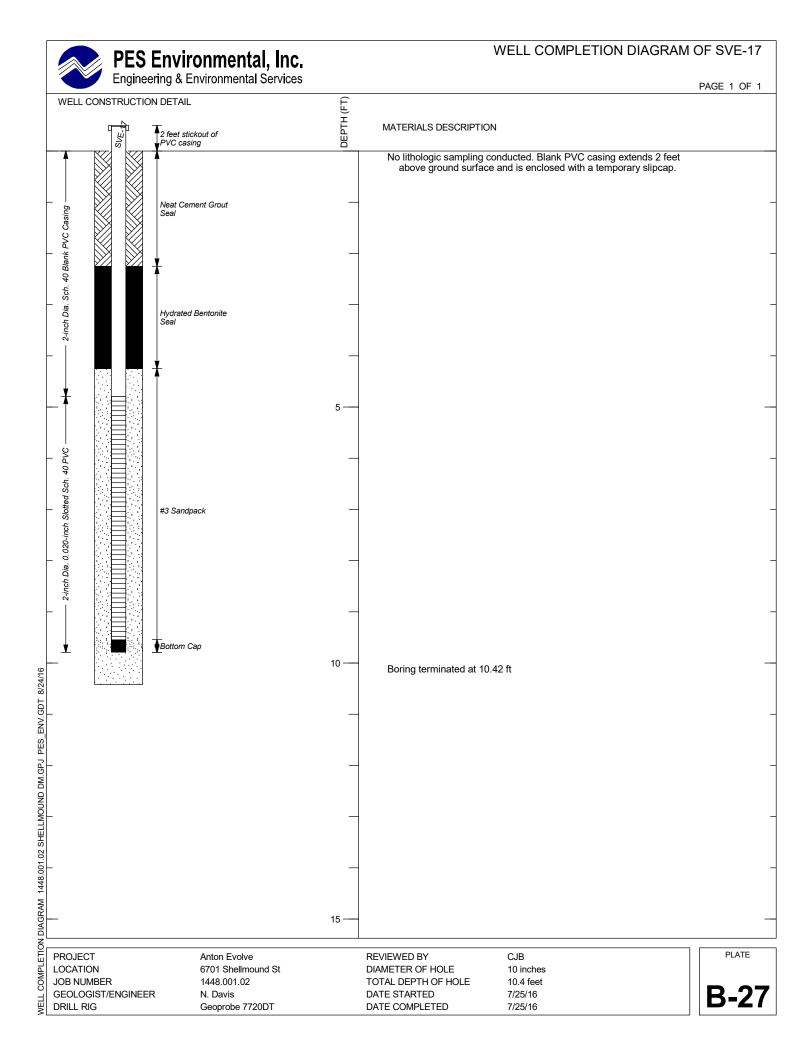


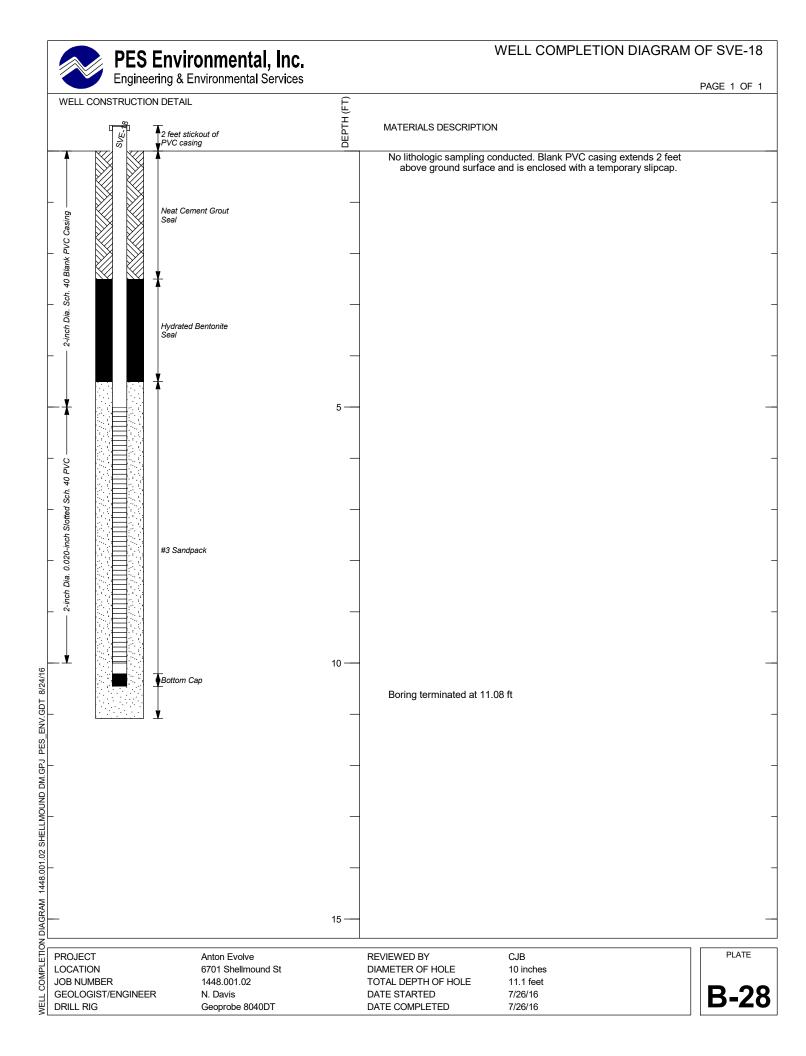


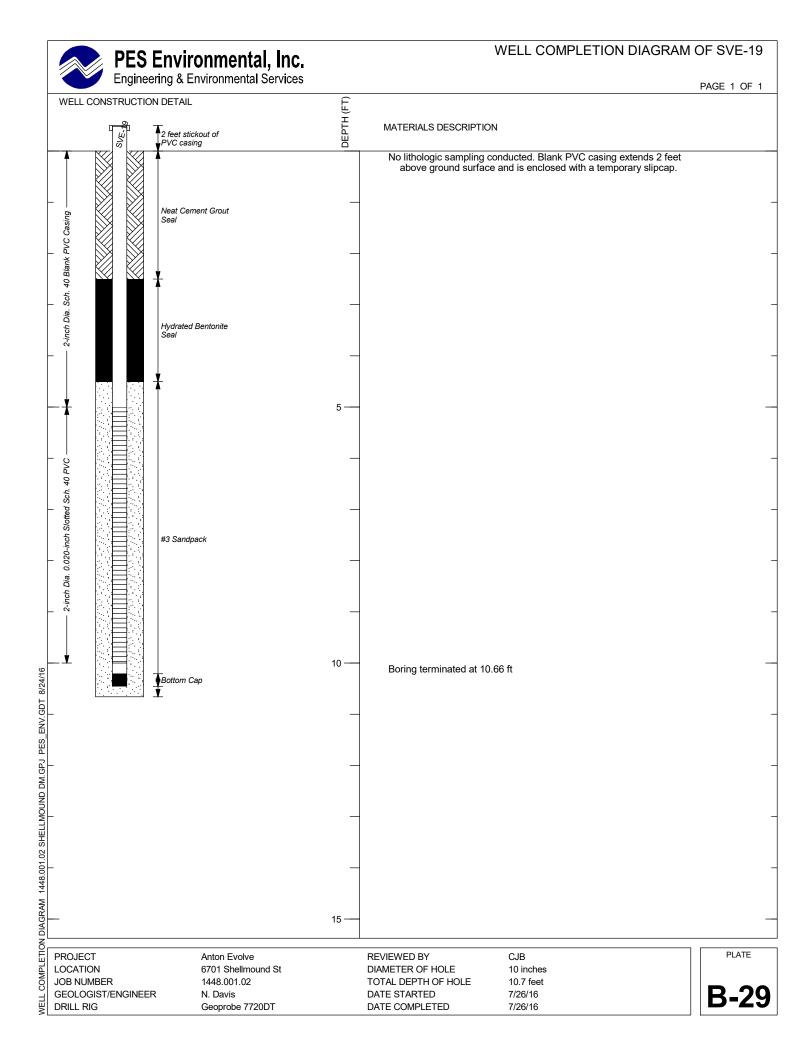


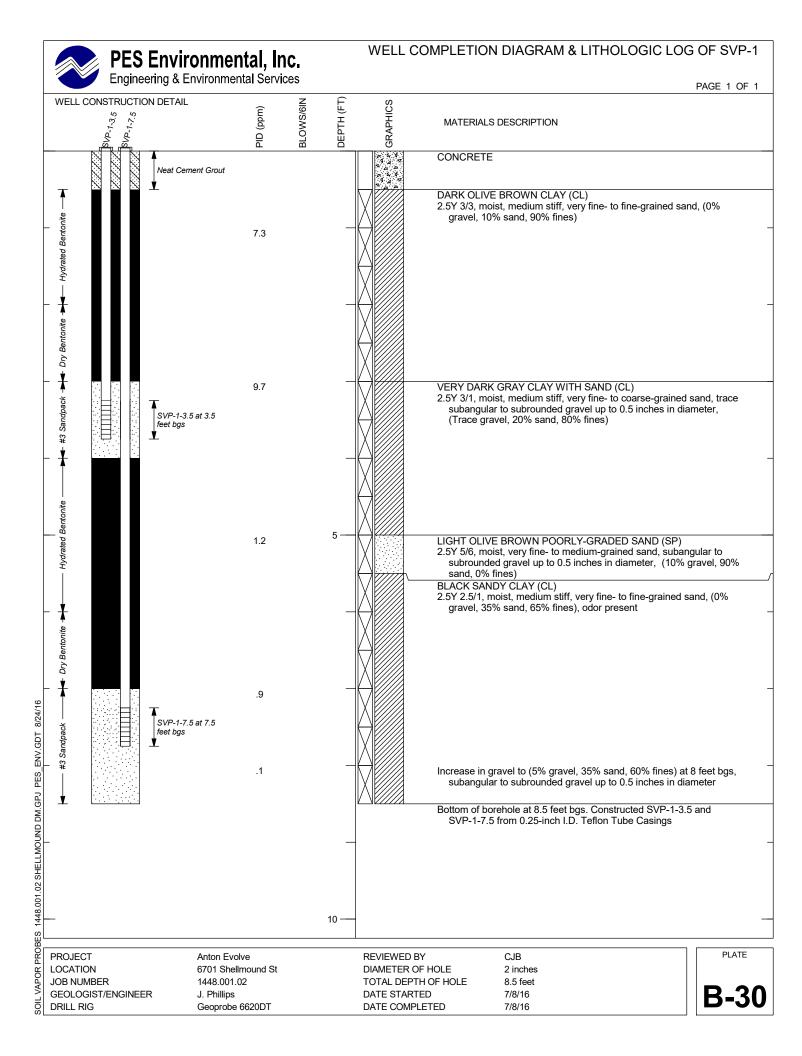


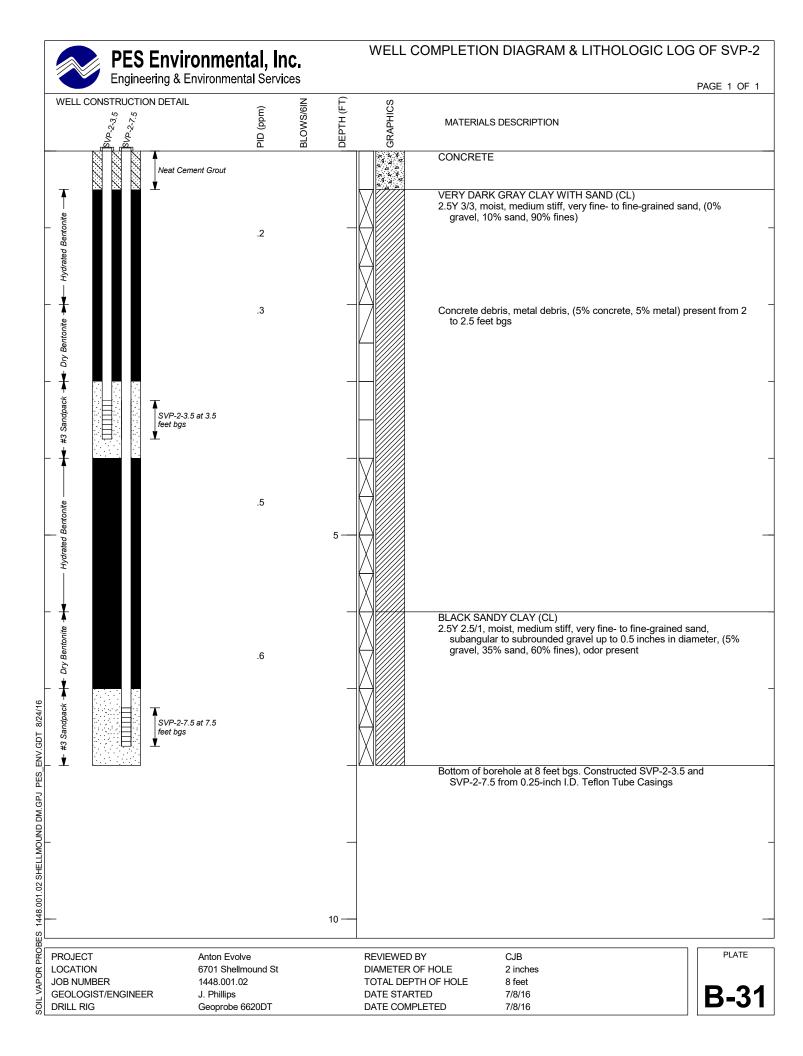


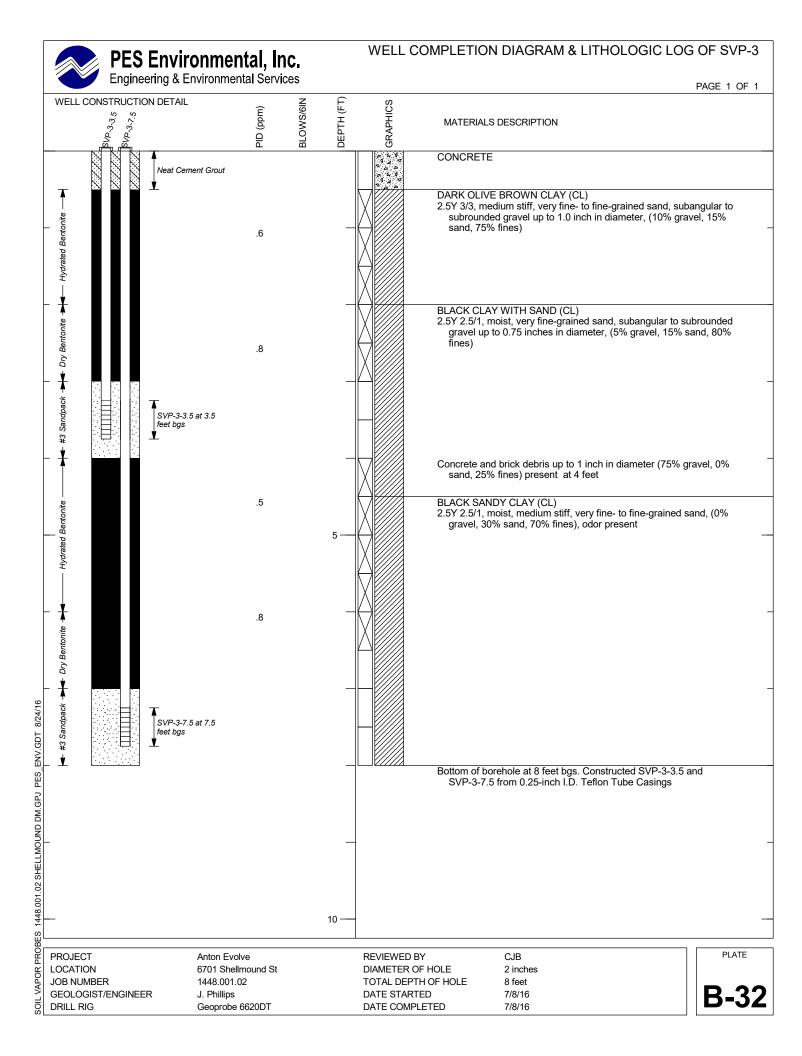


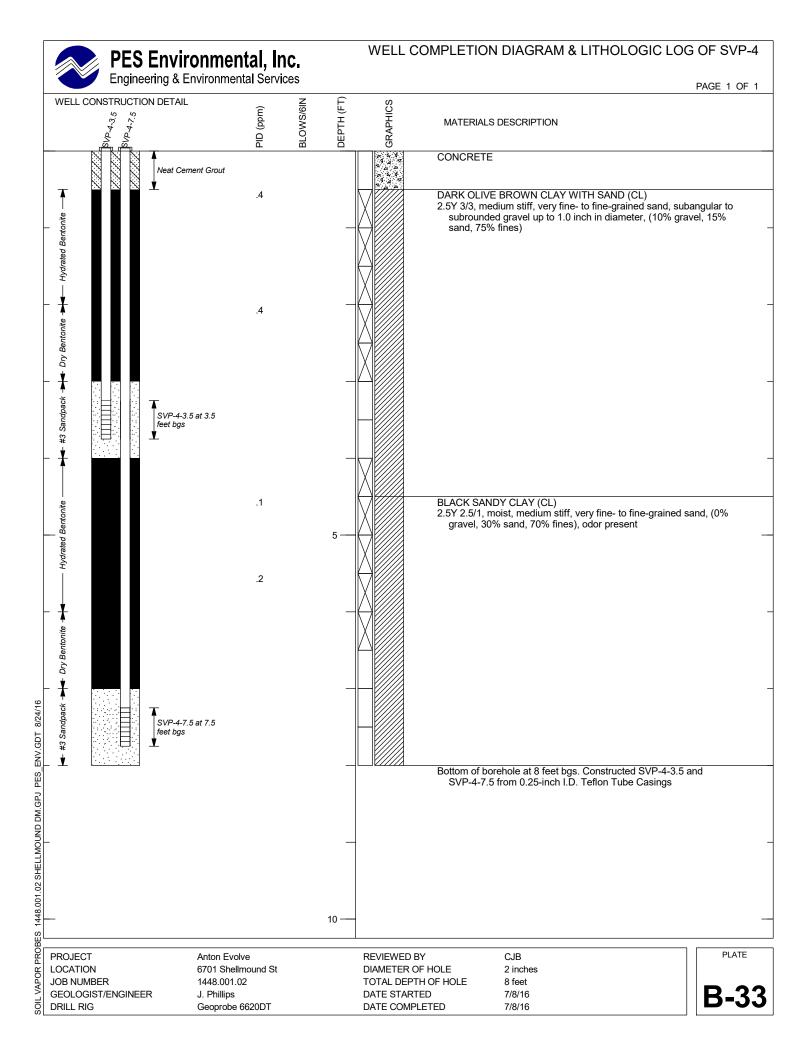


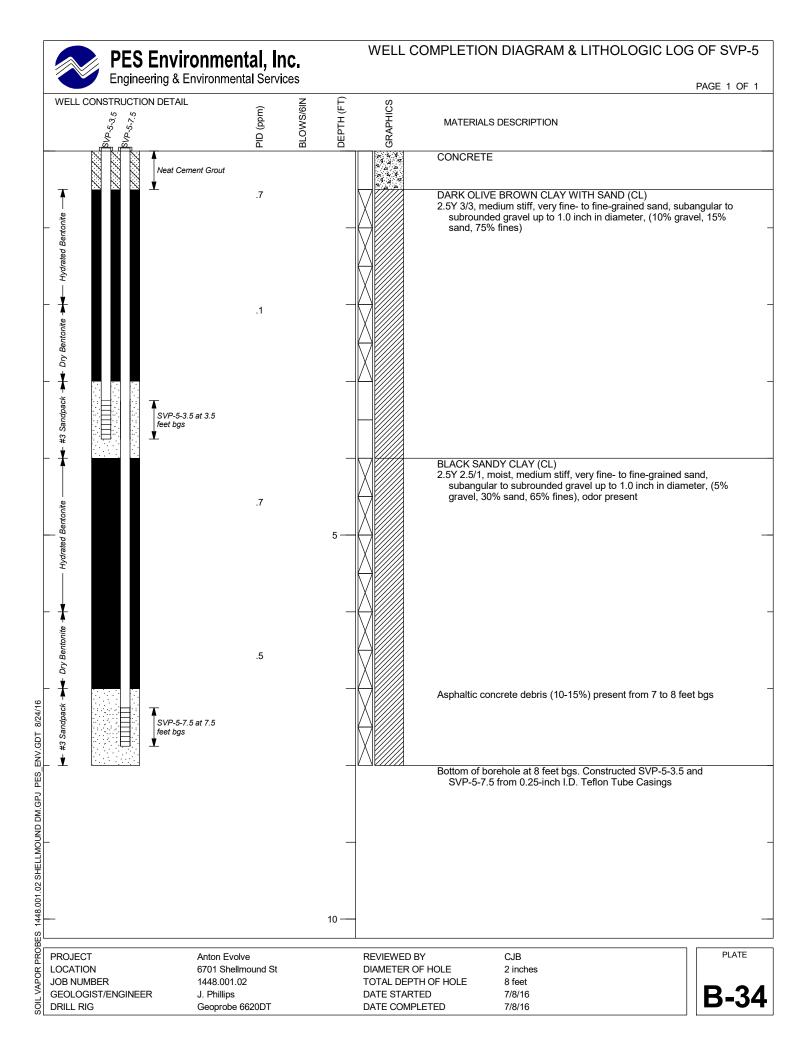


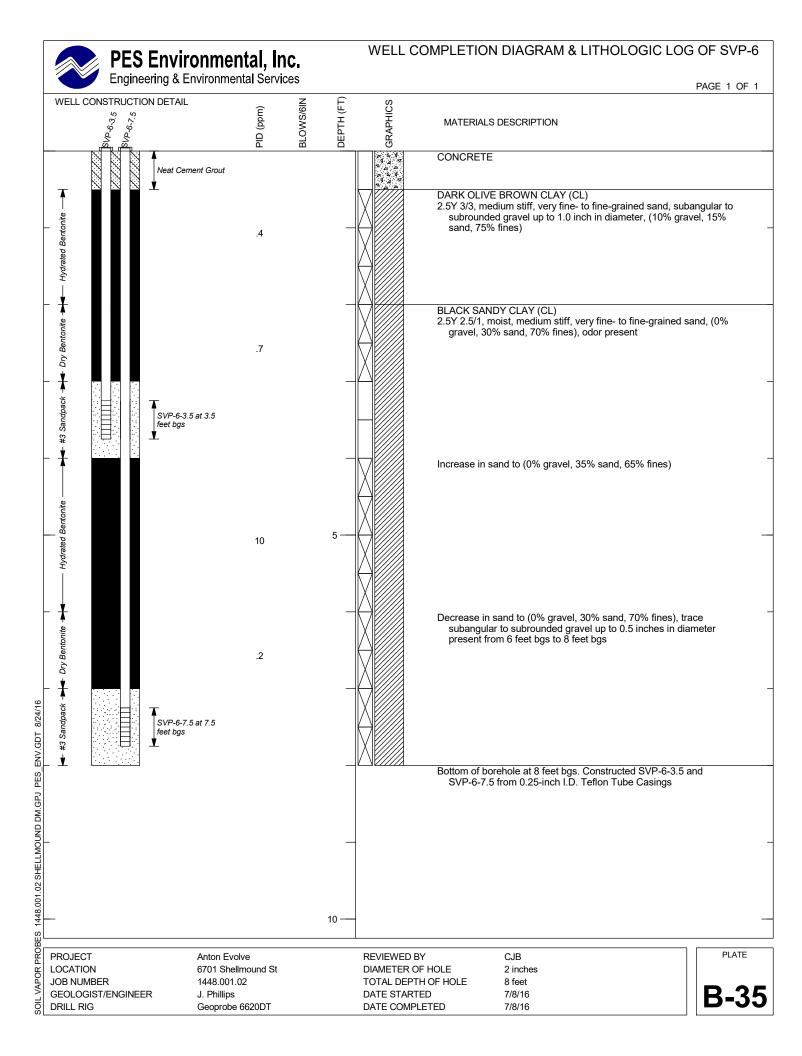












PES Environmental, Inc.

APPENDIX C

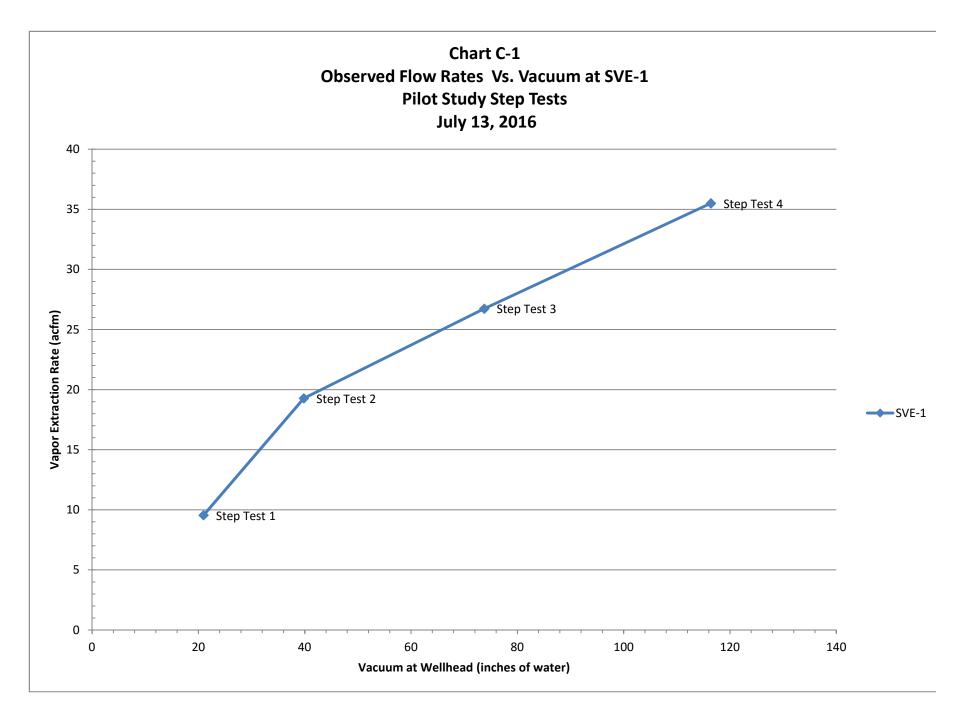

FIELD MEASUREMENTS COLLECTED DURING STEP AND CONSTANT RATE TESTS

Table C-1 Summary of Field Measurements Step Test Data - Well SVE-1 and Soil Vapor Monitoring Probes on July 13, 2016 Results of SVE Pilot Study 6701-6707 Shellmound Street Emeryville, California

								PID (p	pmv)	Bioge	enic Gases (I	nfluent)					Soil Vapor	Monitoring I	Probe Vacuu	ım (in. H₂O)				
Test Phase	Date	Time	Temperature (deg F)	SVE-1 Vacuum (in. H₂O)	Flow Rate at SVE-1 (ACFM)	Flow Rate at SVE-1 (SCFM)	SVE System Vacuum (before knockout) (in. H ₂ O)	Before First Vessel (Influent)	Mid Point (V1 to V2)	Carbon Dioxide (%)	Oxygen (%)	Methane (%/%)	SVP-1-3.5	SVP-1-7.5	SVP-2-3.5	SVP-2-7.5	SVP-3-3.5	SVP-3-7.5	SVP-4-3.5	SVP-4-7.5	SVP-5-3.5	SVP-5-7.5	SVP-6-3.5	SVP-6-7.5
		11:03	72.5	21.4	10.5	9.7	21.4						-0.80	-0.20	-0.06	-1.28	0.00	-0.05	0.00	-0.13	-0.39	-0.37	-0.76	-0.78
		11:20					21.4						-1.39	-0.28	-0.08	-1.50	-0.02	0.00	0.00	-0.18	-0.55	-0.32	-0.93	-0.50
Step Test 1	7/13/2016	11:26					21.4			-	-		-1.35	-0.35	-0.09	-1.63	0.00	0.00	0.00	-0.18	-0.53	-0.32	-0.61	-0.49
		11:35					21.4	7.2	1.0		-		-0.23	-0.34	-0.11	-1.69	0.00	0.00	0.00	-0.23	-0.58	-0.34	-0.63	-0.51
		12:43	70.5	20.95	9.55	8.9	21.4	7.8		8.7	2.7	35.5												
		12:49	72.5	40.15	18.4	16.2	40.8						-0.91	-0.57	-0.20	-2.74	0.00	-0.03	0.00	-0.35	-1.13	-1.02	-1.81	-1.80
Step Test 2	7/13/2016	13:20		40.15			40.8						-1.13	-0.62	-0.20	-3.01	-0.20	-0.05	0.00	-0.36	-1.20	-1.04	-1.85	-1.86
		13:40		40.15			40.8						-0.57	-0.64	-0.21	-3.07	-0.64	-0.06	0.00	-0.40	-1.24	-1.21	-1.90	-1.91
		14:20	71.8	39.82	19.28	17.0	40.6	42.8	0.2															
		14:25	72.9	74.82	26.35	21.0	80.3						-0.87	-1.23	-0.38	-4.94	-0.38	-0.08	0.00	-0.74	-2.15	-2.10	-3.36	-3.41
		14:55		74.82			80.3						-1.41	-1.27	-0.38	-5.63	-0.37	-0.08	0.00	-0.79	-2.34	-2.34	-3.60	-3.82
Step Test 3	7/13/2016	15:10		74.82			80.3						-0.57	-1.29	-0.38	-6.29	-3.72	-0.11	0.00	-0.80	-2.37	-2.35	-3.59	-3.64
		15:20	72	73.76	26.73	21.4	80.3	8.5	0.5				-1.00	-1.30	-0.38	-6.44	-0.47	-0.12	0.00	-0.81	-2.35	-2.36	-3.58	-3.65
		15:45						9.2		10.4	1.8	32.9												
		15:50	75	119.8	35.6	24.4	120.1																	
		16:00	76.7		36.5		145																	
Step Test 4	7/13/2016	16:15	76	119.8	34.7	23.8	120.6						-1.20	-2.13	-0.65	-9.76	-0.49	-0.13	0.00	-1.22	-3.65	-3.59	-5.47	-5.55
		16:27		119.8			120.6						-0.79	-2.04	-0.60	-9.62	-0.52	-0.12	-0.02	-1.28	-3.61	-3.57	-5.40	-5.51
		16:40	72.8	116.4	35.5	24.7	120.6	10.4	0.7	1.5	16.9	4.3	-0.76	-2.03	-0.60	-9.64	-0.54	-0.14	0.00	-1.26	-3.61	-3.58	-5.39	-5.49

Notes: ACFM - Actual cubic feet per minute SCFM - Standard cubic feet per minute deg. F - degrees Fahrenheit

in. H2O - inches of water ppmv - parts per million by volume ** - Maximum Flow rate of pilot study SVE system

Table C-2 Summary of Field Measurements - Biogenic Gases Step Test Data - Soil Vapor Monitoring Probes on July 13, 2016 Results of SVE Pilot Study 6701-6707 Shellmound Street Emeryville, California

Probe	Step	Time	Vacuum (in WC)	Oxygen (%)	Carbon Dioxide (%)	Methane (%)	PID (ppmv)
	Baseline	10:00 - 10:30	0.00	1.0	0.3	20.5	0.0
	Step Test 1	11:00 - 12:30		19.1	0.2	1.2	0.0
SVP-1-7.5	Step Test 2	14:20 - 14:50		8.2	0.7	11.7	0.9
	Step Test 3	15:20 - 16:00		7.1	1.6	13.1	1.1
	Step Test 4	16:15 - 16:50		7.8	2.2	13.3	1.1
	Baseline	10:00 - 10:30	0.00	19.5	0.1	0.4	0.0
	Step Test 1	11:00 - 12:30		18.9	0.2	1.4	0.0
SVP-1-3.5	Step Test 2	14:20 - 14:50		NM	NM	NM	NM
	Step Test 3	15:20 - 16:00		NM	NM	NM	NM
	Step Test 4	16:15 - 16:50		NM	NM	NM	NM
	Baseline	10:00 - 10:30	-0.06	0.1	4.7	30.6	0.5
	Step Test 1	11:00 - 12:30		0.5	4.9	28.4	0.0
SVP-2-7.5	Step Test 2	14:20 - 14:50		3.9	2.9	21.3	3.1
	Step Test 3	15:20 - 16:00		8.2	2.2	18	2.9
	Step Test 4	16:15 - 16:50		4.5	2.5	19.3	3.0
	Baseline	10:00 - 10:30	0.00	18.2	0.1	0.9	0.0
	Step Test 1	11:00 - 12:30		17.6	0.0	1.3	0.0
SVP-2-3.5	Step Test 2	14:20 - 14:50		19.3	0.1	0.1	1.5
	Step Test 3	15:20 - 16:00		19.7	0.1	0	2.5
	Step Test 4	16:15 - 16:50		19.8	0.0	0.0	2.1
	Baseline	10:00 - 10:30	0.00	1.3	4.2	11.9	0.0
	Step Test 1	11:00 - 12:30		4.1	3.3	9.0	0.0
SVP-3-7.5	Step Test 2	14:20 - 14:50		11.3	2.5	4.5	1.7
	Step Test 3	15:20 - 16:00		8.3	3.2	11.4	0.3
	Step Test 4	16:15 - 16:50		18.6	0.1	0.6	3.9
	Baseline	10:00 - 10:30	0.00	16.3	0.0	1.4	0.0
	Step Test 1	11:00 - 12:30		7.9	0.0	6.0	1.7
SVP-3-3.5	Step Test 2	14:20 - 14:50		12.1	0.0	3.7	3.1
	Step Test 3	15:20 - 16:00		16.8	0	1.1	5.5
	Step Test 4	16:15 - 16:50		18.4	0.0	0.7	4.1
	Baseline	10:00 - 10:30	-0.06	0.8	6.8	36.9	0.0
	Step Test 1	11:00 - 12:30		1.4	8.3	27.6	0.1
SVP-4-7.5	Step Test 2	14:20 - 14:50		1.5	7.7	30.2	0.2
	Step Test 3	15:20 - 16:00		14.2	7.6	29.8	0.0
	Step Test 4	16:15 - 16:50		3.2	8.3	32.0	0.0
	Baseline	10:00 - 10:30	0.00	15.2	1.3	0.1	0.0
	Step Test 1	11:00 - 12:30		11.2	2.7	1.7	4.2
SVP-4-3.5	Step Test 2	14:20 - 14:50		15.1	0.9	0.2	6.2
	Step Test 3	15:20 - 16:00		16	0.8	0.1	6.0
	Step Test 4	16:15 - 16:50		15.1	1.8	0.1	5.6
	Baseline	10:00 - 10:30	-0.02	0.4	6.7	41.0	1.8
	Step Test 1	11:00 - 12:30		6.8	3.3	26.4	0.4
SVP-5-7.5	Step Test 2	14:20 - 14:50		7.8	2.9	21.7	0.4
	Step Test 3	15:20 - 16:00		6.1	3.3	27.8	0.0
	Step Test 4	16:15 - 16:50		5.0	3.8	30.6	0.0
	Baseline	10:00 - 10:30	-0.04	8.9	2.1	31.8	0.2
	Step Test 1	11:00 - 12:30		7.8	1.7	14.5	0.2
SVP-5-3.5	Step Test 2	14:20 - 14:50		11.0	2.2	18.6	0.1
	Step Test 3	15:20 - 16:00		5.5	4.8	31.8	0.0
	Step Test 4	16:15 - 16:50		4.5	6.2	35.2	0.0
	Baseline	10:00 - 10:30	-0.02	0.4	3.6	47.3	0.0
	Step Test 1	11:00 - 12:30		12.8	1.2	7.4	4.8
SVP-6-7.5	Step Test 2	14:20 - 14:50		9.6	1.9	14.2	3.6
	Step Test 3	15:20 - 16:00		7.6	4	23.4	2.2
	Step Test 4	16:15 - 16:50		9.0	3.3	18.5	2.8
	Baseline	10:00 - 10:30	0.00	6.0	2.1	34.2	0.2
	Step Test 1	11:00 - 12:30		10.0	2.2	16.2	2.8
SVP-6-3.5	Step Test 2	14:20 - 14:50		11.3	2.5	13.7	3.0
	Step Test 3	15:20 - 16:00		10.8	3.3	17.3	1.8

Notes: in WC = inches of water ppmv = parts per million by volume

Table C-2 Summary of Field Measurements - Biogenic Gases Step Test Data - Soil Vapor Monitoring Probes on July 13, 2016 Results of SVE Pilot Study 6701-6707 Shellmound Street Emeryville, California

Probe	Step	Time	Vacuum (in WC)	Oxygen (%)	Carbon Dioxide (%)	Methane (%)	PID (ppmv)
	Baseline	10:00 - 10:30	0.00	1.0	0.3	20.5	0.0
	Step Test 1	11:00 - 12:30		19.1	0.2	1.2	0.0
SVP-1-7.5	Step Test 2	14:20 - 14:50		8.2	0.7	11.7	0.9
	Step Test 3	15:20 - 16:00		7.1	1.6	13.1	1.1
	Step Test 4	16:15 - 16:50		7.8	2.2	13.3	1.1
	Baseline	10:00 - 10:30	0.00	19.5	0.1	0.4	0.0
	Step Test 1	11:00 - 12:30		18.9	0.2	1.4	0.0
SVP-1-3.5	Step Test 2	14:20 - 14:50		NM	NM	NM	NM
	Step Test 3	15:20 - 16:00		NM	NM	NM	NM
	Step Test 4	16:15 - 16:50		NM	NM	NM	NM
	Baseline	10:00 - 10:30	-0.06	0.1	4.7	30.6	0.5
	Step Test 1	11:00 - 12:30		0.5	4.9	28.4	0.0
SVP-2-7.5	Step Test 2	14:20 - 14:50		3.9	2.9	21.3	3.1
	Step Test 3	15:20 - 16:00		8.2	2.2	18	2.9
	Step Test 4	16:15 - 16:50		4.5	2.5	19.3	3.0
	Baseline	10:00 - 10:30	0.00	18.2	0.1	0.9	0.0
	Step Test 1	11:00 - 12:30		17.6	0.0	1.3	0.0
SVP-2-3.5	Step Test 2	14:20 - 14:50		19.3	0.1	0.1	1.5
	Step Test 3	15:20 - 16:00		19.7	0.1	0	2.5
	Step Test 4	16:15 - 16:50		19.8	0.0	0.0	2.1
	Baseline	10:00 - 10:30	0.00	1.3	4.2	11.9	0.0
	Step Test 1	11:00 - 12:30		4.1	3.3	9.0	0.0
SVP-3-7.5	Step Test 2	14:20 - 14:50		11.3	2.5	4.5	1.7
	Step Test 3	15:20 - 16:00		8.3	3.2	11.4	0.3
	Step Test 4	16:15 - 16:50		18.6	0.1	0.6	3.9
	Baseline	10:00 - 10:30	0.00	16.3	0.0	1.4	0.0
	Step Test 1	11:00 - 12:30		7.9	0.0	6.0	1.7
SVP-3-3.5	Step Test 2	14:20 - 14:50		12.1	0.0	3.7	3.1
	Step Test 3	15:20 - 16:00		16.8	0	1.1	5.5
	Step Test 4	16:15 - 16:50		18.4	0.0	0.7	4.1
	Baseline	10:00 - 10:30	-0.06	0.8	6.8	36.9	0.0
	Step Test 1	11:00 - 12:30		1.4	8.3	27.6	0.1
SVP-4-7.5	Step Test 2	14:20 - 14:50		1.5	7.7	30.2	0.2
	Step Test 3	15:20 - 16:00		14.2	7.6	29.8	0.0
	Step Test 4	16:15 - 16:50		3.2	8.3	32.0	0.0
	Baseline	10:00 - 10:30	0.00	15.2	1.3	0.1	0.0
	Step Test 1	11:00 - 12:30		11.2	2.7	1.7	4.2
SVP-4-3.5	Step Test 2	14:20 - 14:50		15.1	0.9	0.2	6.2
	Step Test 3	15:20 - 16:00		16	0.8	0.1	6.0
	Step Test 4	16:15 - 16:50		15.1	1.8	0.1	5.6
	Baseline	10:00 - 10:30	-0.02	0.4	6.7	41.0	1.8
	Step Test 1	11:00 - 12:30		6.8	3.3	26.4	0.4
SVP-5-7.5	Step Test 2	14:20 - 14:50		7.8	2.9	21.7	0.4
	Step Test 3	15:20 - 16:00		6.1	3.3	27.8	0.0
	Step Test 4	16:15 - 16:50		5.0	3.8	30.6	0.0
	Baseline	10:00 - 10:30	-0.04	8.9	2.1	31.8	0.2
	Step Test 1	11:00 - 12:30		7.8	1.7	14.5	0.2
SVP-5-3.5	Step Test 2	14:20 - 14:50		11.0	2.2	18.6	0.1
	Step Test 3	15:20 - 16:00		5.5	4.8	31.8	0.0
	Step Test 4	16:15 - 16:50		4.5	6.2	35.2	0.0
	Baseline	10:00 - 10:30	-0.02	0.4	3.6	47.3	0.0
	Step Test 1	11:00 - 12:30		12.8	1.2	7.4	4.8
SVP-6-7.5	Step Test 2	14:20 - 14:50		9.6	1.9	14.2	3.6
	Step Test 3	15:20 - 16:00		7.6	4	23.4	2.2
	Step Test 4	16:15 - 16:50		9.0	3.3	18.5	2.8
	Baseline	10:00 - 10:30	0.00	6.0	2.1	34.2	0.2
	Step Test 1	11:00 - 12:30		10.0	2.2	16.2	2.8
SVP-6-3.5	Step Test 2	14:20 - 14:50		11.3	2.5	13.7	3.0
	Step Test 3	15:20 - 16:00		10.8	3.3	17.3	1.8

Notes: in WC = inches of water ppmv = parts per million by volume

Table C-4 Barometric Pressure Data, July 13 and 14, 2016

Oakland, Metro Oakland International Airport, CA Station: KOAK Location: 37.7178N 122.23294W

Time (UTC)	Barometric Pressure (inH2O)	Pressure Change (inH2O)	Temperature (degrees F)
7/13/2016 7:53	407.309	0.000	57.2
7/13/2016 8:53	407.172	0.136	60.8
7/13/2016 9:53	407.309	-0.136	59
7/13/2016 10:53	407.309	0.000	60.8
7/13/2016 11:53	407.445	-0.136	60.8
7/13/2016 12:53	407.582	-0.136	59
7/13/2016 13:53	407.855	-0.273	60.8
7/13/2016 14:53	407.855	0.000	62.6
7/13/2016 15:53	407.991	-0.136	62.6
7/13/2016 16:53	407.991	0.000	64.4
7/13/2016 17:53	407.991	0.000	68
7/14/2016 7:53	407.309	0.000	60.8
7/14/2016 8:53	407.172	0.136	60.8
7/14/2016 9:53	407.172	0.000	60.8
7/14/2016 10:53	407.172	0.000	60.8
7/14/2016 11:53	407.172	0.000	59
7/14/2016 12:53	407.309	-0.136	57.2
7/14/2016 13:53	407.445	-0.136	59
7/14/2016 14:53	407.582	-0.136	60.8
7/14/2016 15:51	407.718	-0.136	64.4

PES Environmental, Inc.

APPENDIX D

SOIL VAPOR SAMPLE LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION (ON CD ROM)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-73399-1

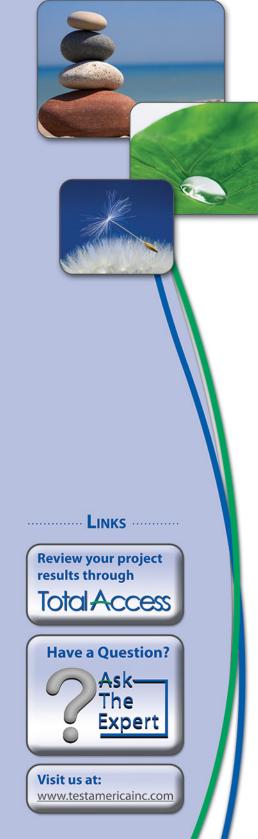
Client Project/Site: 6701 Shellmound St, Emeryville Air Revision: 1

For:

PES Environmental, Inc. 7665 Redwood Blvd Suite #200 Novato, California 94945

Attn: Mr. Kyle Flory

Authorized for release by: 8/10/2016 10:39:35 AM Linda C. Laver, Project Manager II (916)374-4362 linda.laver@testamericainc.com


Designee for Beth Riley, Project Manager II (714)258-8610

beth.riley@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
	10
	18
Lab Chronicle	19
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Field Data Sheets	26
Receipt Checklists	27
Clean Canister Certification	29
Pre-Ship Certification	29
Clean Canister Data	32

Definitions/Glossary

Client: PES Environmental, Inc. Project/Site: 6701 Shellmound St, Emeryville Air

17

Glossary

bbreviation	These commonly used abbreviations may or may not be present in this report.
I	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
FL	Contains Free Liquid
NF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
/IDA	Minimum detectable activity
DL	Estimated Detection Limit
/IDC	Minimum detectable concentration
/IDL	Method Detection Limit
/IL	Minimum Level (Dioxin)
IC	Not Calculated
1D	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
ΈF	Toxicity Equivalent Factor (Dioxin)
EQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 720-73399-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-73399-1 Rev(1)

Revision 1:

Client provided a revised Chain-of-Custody (COC) via email on August 8, 2016 with corrected collection date. This revised report includes the corrected date and both copies of the COC are included. No analytical data have changed as a result of this revision.

Receipt

The sample was received on 7/15/2016 4:50 PM; the sample arrived in good condition.

Air - GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: PES Environmental, Inc. Project/Site: 6701 Shellmound St, Emeryville Air

Client Sample ID: SVE-1

Lab Sample ID: 720-73399-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Meth	od Prep Type
cis-1,2-Dichloroethene	880		290		ppb v/v	728		5 Total/NA
trans-1,2-Dichloroethene	480		290		ppb v/v	728	TO-1	5 Total/NA
Vinyl chloride	16000		290		ppb v/v	728	TO-1	5 Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Meth	od Prep Type
cis-1,2-Dichloroethene	3500		1200		ug/m3	728		5 Total/NA
trans-1,2-Dichloroethene	1900		1200		ug/m3	728	TO-1	5 Total/NA
Vinyl chloride	40000		740		ug/m3	728	TO-1	5 Total/NA

This Detection Summary does not include radiochemical test results.

RL

3600

290

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Result Qualifier

ND

ND

Lab Sample ID: 720-73399-1

Analyzed

07/21/16 02:01

07/21/16 02:01

Prepared

D

Matrix: Air

Dil Fac

728

728

6

Denzene		250		0//2//10 02.01	120	
Benzyl chloride	ND	580	ppb v/v	07/21/16 02:01	728	7
Bromodichloromethane	ND	220	ppb v/v	07/21/16 02:01	728	
Bromoform	ND	290	ppb v/v	07/21/16 02:01	728	8
Bromomethane	ND	580	ppb v/v	07/21/16 02:01	728	
2-Butanone (MEK)	ND	580	ppb v/v	07/21/16 02:01	728	9
Carbon disulfide	ND	580	ppb v/v	07/21/16 02:01	728	
Carbon tetrachloride	ND	580	ppb v/v	07/21/16 02:01	728	10
Chlorobenzene	ND	220	ppb v/v	07/21/16 02:01	728	
Dibromochloromethane	ND	290	ppb v/v	07/21/16 02:01	728	44
Chloroethane	ND	580	ppb v/v	07/21/16 02:01	728	
Chloroform	ND	220	ppb v/v	07/21/16 02:01	728	10
Chloromethane	ND	580	ppb v/v	07/21/16 02:01	728	
1,2-Dibromoethane (EDB)	ND	580	ppb v/v	07/21/16 02:01	728	40
1,2-Dichlorobenzene	ND	290	ppb v/v	07/21/16 02:01	728	13
1,3-Dichlorobenzene	ND	290	ppb v/v	07/21/16 02:01	728	
1,4-Dichlorobenzene	ND	290	ppb v/v	07/21/16 02:01	728	14
Dichlorodifluoromethane	ND	290	ppb v/v	07/21/16 02:01	728	
1,1-Dichloroethane	ND	220	ppb v/v	07/21/16 02:01	728	15
1,2-Dichloroethane	ND	580	ppb v/v	07/21/16 02:01	728	_
1,1-Dichloroethene	ND	580	ppb v/v	07/21/16 02:01	728	16
cis-1,2-Dichloroethene	880	290	ppb v/v	07/21/16 02:01	728	_
trans-1,2-Dichloroethene	480	290	ppb v/v	07/21/16 02:01	728	17
1,2-Dichloropropane	ND	290	ppb v/v	07/21/16 02:01	728	
cis-1,3-Dichloropropene	ND	290	ppb v/v	07/21/16 02:01	728	
trans-1,3-Dichloropropene	ND	290	ppb v/v	07/21/16 02:01	728	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	290	ppb v/v	07/21/16 02:01	728	
Ethylbenzene	ND	290	ppb v/v	07/21/16 02:01	728	
4-Ethyltoluene	ND	290	ppb v/v	07/21/16 02:01	728	
Hexachlorobutadiene	ND	1500	ppb v/v	07/21/16 02:01	728	
2-Hexanone	ND	290	ppb v/v	07/21/16 02:01	728	
Methylene Chloride	ND	290	ppb v/v	07/21/16 02:01	728	
4-Methyl-2-pentanone (MIBK)	ND	290	ppb v/v	07/21/16 02:01	728	
Styrene	ND	290	ppb v/v	07/21/16 02:01	728	
1,1,2,2-Tetrachloroethane	ND	290	ppb v/v	07/21/16 02:01	728	
Tetrachloroethene	ND	290	ppb v/v	07/21/16 02:01	728	
Toluene	ND	290	ppb v/v	07/21/16 02:01	728	
1,2,4-Trichlorobenzene	ND	1500	ppb v/v	07/21/16 02:01	728	
1,1,1-Trichloroethane	ND	220	ppb v/v	07/21/16 02:01	728	
1,1,2-Trichloroethane	ND	290	ppb v/v	07/21/16 02:01	728	
Trichloroethene	ND	290	ppb v/v	07/21/16 02:01	728	
1,4-Dioxane	ND	580	ppb v/v	07/21/16 02:01	728	
Trichlorofluoromethane	ND	290	ppb v/v	07/21/16 02:01	728	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	290	ppb v/v	07/21/16 02:01	728	
1,2,4-Trimethylbenzene	ND	580	ppb v/v	07/21/16 02:01	728	
1,3,5-Trimethylbenzene	ND	290	ppb v/v	07/21/16 02:01	728	

MDL Unit

ppb v/v

ppb v/v

TestAmerica Pleasanton

07/21/16 02:01

Date Received: 07/15/16 16:50

Analyte

Acetone

Benzene

Vinyl acetate

Sample Container: Summa Canister 1L

ND

580

ppb v/v

728

Client Sample Results

Lab Sample ID: 720-73399-1

Matrix: Air

5

6

Client Sample ID: SVE-1 Date Collected: 07/14/16 15:05

Date Received: 07/15/16 16:50 Sample Container: Summa Canister 1L

						Prepared	Analyzed	Dil Fac
								728
								728
	Qualifier		MDL		D	Prepared		Dil Fac
				-				728
				•				728
								728
				•				728
				-				728
								728
				ug/m3			07/21/16 02:01	728
				-				728
ND				ug/m3			07/21/16 02:01	728
				-				728
				-				728
				ug/m3			07/21/16 02:01	728
				ug/m3			07/21/16 02:01	728
ND		1200		ug/m3			07/21/16 02:01	728
ND		4500		ug/m3			07/21/16 02:01	728
ND		1800		ug/m3			07/21/16 02:01	728
		1800		ug/m3			07/21/16 02:01	728
		1800		ug/m3			07/21/16 02:01	728
ND		1400		ug/m3			07/21/16 02:01	728
				ug/m3			07/21/16 02:01	728
				ug/m3			07/21/16 02:01	728
ND				ug/m3			07/21/16 02:01	728
3500		1200		ug/m3			07/21/16 02:01	728
1900		1200		ug/m3			07/21/16 02:01	728
ND		1300		ug/m3			07/21/16 02:01	728
ND		1300		ug/m3			07/21/16 02:01	728
ND		1300		ug/m3			07/21/16 02:01	728
ND		2000		ug/m3			07/21/16 02:01	728
ND		1300		ug/m3			07/21/16 02:01	728
ND		1400		ug/m3			07/21/16 02:01	728
ND		16000		ug/m3			07/21/16 02:01	728
ND		1200		ug/m3			07/21/16 02:01	728
ND		1000		ug/m3			07/21/16 02:01	728
ND		1200		ug/m3			07/21/16 02:01	728
ND		1200		ug/m3			07/21/16 02:01	728
ND		2000		ug/m3			07/21/16 02:01	728
ND		2000		ug/m3			07/21/16 02:01	728
ND		1100		ug/m3			07/21/16 02:01	728
ND		11000		ug/m3			07/21/16 02:01	728
ND		1200		ug/m3			07/21/16 02:01	728
ND		1600		ug/m3			07/21/16 02:01	728
ND		1600		ug/m3			07/21/16 02:01	728
	16000 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND Result Qualifier ND ND ND ND	16000 290 ND 580 ND 290 ND 580 Result Qualifier RL ND 8600 ND 930 ND 3000 ND 1500 ND 1700 ND 1800 ND 1200 ND 1200 ND 1800 ND 1300 ND 1300 ND 1300 ND 1300 ND 1300	16000 290 ND 580 ND 290 ND 580 Result Qualifier RL MDL ND 8600 ND 930 ND 3000 ND 1500 ND 3000 ND 2300 ND 3000 ND 2300 ND 1500 ND 1700 ND 1700 ND 1800 ND 1700 ND 1600 ND 1700 ND 1600 ND 1600 ND 1600 ND 1800 ND 1800 ND 1800 ND 1800 ND 1800 ND 1800 ND 1800 ND 2300 3500 1200 1200 ND 1300 ND 1300 ND 1300 ND ND 1300 ND 1400 <	16000 290 ppb v/v ND 580 ug/m3 ND 930 ug/m3 ND 3000 ug/m3 ND 1700 ug/m3 ND 1700 ug/m3 ND 1800 ug/m3 ND 1600 ug/m3 ND 1000 ug/m3 ND 1200 ug/m3 ND 1800 ug/m3 ND 2300 ug/m3 N	16000 290 ppb v/v ppb v/v ND 580 ppb v/v ND 290 ppb v/v ND 580 ppb v/v Result Qualifier RL MDL Unit D ND 930 ug/m3 N	16000 290 ppb v/v ppb v/v ND 580 ppb v/v ND 580 ppb v/v ND 580 ppb v/v Result Qualifier RL MDL Unit D Prepared ND 3000 ug/m3 ND 3000 ug/m3 ND 1700 ug/m3 ND 3000 ug/m3 ND 1700 ug/m3 ND 3000 ug/m3 ND 1600 ug/m3 ND 300 ug/m3 ND 1600 ug/m3 ND 300 ug/m3 ND 1800 ug/m3 ND 300 ug/m3 ND 1800 ug/m3 ND 3500 ug/m3	16000 290 ppb v/v pb v/v 07/21//6 02:01 ND 580 ppb v/v 07/21//6 02:01 ND 290 pb v/v 07/21//6 02:01 ND 580 ppb v/v 07/21//6 02:01 ND 8600 ug/m3 07/21//6 02:01 ND 8600 ug/m3 07/21//6 02:01 ND 3000 ug/m3 07/21//6 02:01 ND 1500 ug/m3 07/21//6 02:01 ND 1800 ug/m3 07/21//6 02:01 ND 1800 ug/m3 07/21//6 02:01 ND 1800 ug/m3 07/21//6 02:01 ND 1600 ug/m3 07/21//6 02:01 ND 1500 ug/m3 07/21//6 02:01 ND 1600 ug/m3 07/21//6 02:01 ND 1

Client Sample Results

Lab Sample ID: 720-73399-1

07/21/16 02:01

Matrix: Air

Client Sample ID: SVE-1 Date Collected: 07/14/16 15:05 Date Received: 07/15/16 16:50

Toluene-d8 (Surr)

Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Orga	anic Compo	unds in An	nbient Air (Co	ontinue	d)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1600		ug/m3			07/21/16 02:01	728
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2200		ug/m3			07/21/16 02:01	728
1,2,4-Trimethylbenzene	ND		2900		ug/m3			07/21/16 02:01	728
1,3,5-Trimethylbenzene	ND		1400		ug/m3			07/21/16 02:01	728
Vinyl acetate	ND		2100		ug/m3			07/21/16 02:01	728
Vinyl chloride	40000		740		ug/m3			07/21/16 02:01	728
m,p-Xylene	ND		2500		ug/m3			07/21/16 02:01	728
o-Xylene	ND		1300		ug/m3			07/21/16 02:01	728
Naphthalene	ND		3100		ug/m3			07/21/16 02:01	728
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130			-		07/21/16 02:01	728
1,2-Dichloroethane-d4 (Surr)	112		70 - 130					07/21/16 02:01	728

70 - 130

99

728

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Matrix: Air

Prep Type: Total/NA

			Pe	ercent Surrog	te Recovery (Acceptand
		BFB	12DCE	TOL	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	
720-73399-1	SVE-1	90	112	99	· · ·
LCS 320-118674/3	Lab Control Sample	103	112	104	
LCSD 320-118674/4	Lab Control Sample Dup	103	111	104	
MB 320-118674/6	Method Blank	93	109	97	

BFB = 4-Bromofluorobenzene (Surr) 12DCE = 1,2-Dichloroethane-d4 (Surr) TOL = Toluene-d8 (Surr)

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Client Sample ID: Method Blank Prep Type: Total/NA

8

17

Lab Sample ID: MB 320-118674/6

Analysis Batch: 118674	MB MB						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND	5.0	ppb v/v			07/20/16 16:04	
Benzene	ND	0.40	ppb v/v			07/20/16 16:04	
Benzyl chloride	ND	0.80	ppb v/v			07/20/16 16:04	
Bromodichloromethane	ND	0.30	ppb v/v			07/20/16 16:04	
Bromoform	ND	0.40	ppb v/v			07/20/16 16:04	
Bromomethane	ND	0.80	ppb v/v			07/20/16 16:04	
2-Butanone (MEK)	ND	0.80	ppb v/v			07/20/16 16:04	
Carbon disulfide	ND	0.80	ppb v/v			07/20/16 16:04	
Carbon tetrachloride	ND	0.80	ppb v/v			07/20/16 16:04	
Chlorobenzene	ND	0.30	ppb v/v			07/20/16 16:04	
Dibromochloromethane	ND	0.40	ppb v/v			07/20/16 16:04	
Chloroethane	ND	0.80	ppb v/v			07/20/16 16:04	
Chloroform	ND	0.30	ppb v/v			07/20/16 16:04	
Chloromethane	ND	0.80	ppb v/v ppb v/v			07/20/16 16:04	
1,2-Dibromoethane (EDB)	ND	0.80	ppb v/v			07/20/16 16:04	
1,2-Dichlorobenzene	ND	0.40	ppb v/v			07/20/16 16:04	
1,3-Dichlorobenzene	ND	0.40	ppb v/v ppb v/v			07/20/16 16:04	
1,4-Dichlorobenzene	ND	0.40	ppb v/v ppb v/v			07/20/16 16:04	
Dichlorodifluoromethane	ND	0.40	ppb v/v ppb v/v			07/20/16 16:04	
1.1-Dichloroethane	ND	0.40	ppb v/v ppb v/v			07/20/16 16:04	
1.2-Dichloroethane	ND	0.30				07/20/16 16:04	
*			ppb v/v				
1,1-Dichloroethene	ND	0.80	ppb v/v			07/20/16 16:04	
cis-1,2-Dichloroethene	ND	0.40	ppb v/v			07/20/16 16:04	
trans-1,2-Dichloroethene	ND	0.40	ppb v/v			07/20/16 16:04	
1,2-Dichloropropane	ND	0.40	ppb v/v			07/20/16 16:04	
cis-1,3-Dichloropropene	ND	0.40	ppb v/v			07/20/16 16:04	
rans-1,3-Dichloropropene	ND	0.40	ppb v/v			07/20/16 16:04	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.40	ppb v/v			07/20/16 16:04	
Ethylbenzene	ND	0.40	ppb v/v			07/20/16 16:04	
I-Ethyltoluene	ND	0.40	ppb v/v			07/20/16 16:04	
lexachlorobutadiene	ND	2.0	ppb v/v			07/20/16 16:04	
2-Hexanone	ND	0.40	ppb v/v			07/20/16 16:04	
Methylene Chloride	ND	0.40	ppb v/v			07/20/16 16:04	
4-Methyl-2-pentanone (MIBK)	ND	0.40	ppb v/v			07/20/16 16:04	
Styrene	ND	0.40	ppb v/v			07/20/16 16:04	
1,1,2,2-Tetrachloroethane	ND	0.40	ppb v/v			07/20/16 16:04	
Tetrachloroethene	ND	0.40	ppb v/v			07/20/16 16:04	
Toluene	ND	0.40	ppb v/v			07/20/16 16:04	
1,2,4-Trichlorobenzene	ND	2.0	ppb v/v			07/20/16 16:04	
1,1,1-Trichloroethane	ND	0.30	ppb v/v			07/20/16 16:04	
1,1,2-Trichloroethane	ND	0.40	ppb v/v			07/20/16 16:04	
Frichloroethene	ND	0.40	ppb v/v			07/20/16 16:04	
I,4-Dioxane	ND	0.80	ppb v/v			07/20/16 16:04	
Frichlorofluoromethane	ND	0.40	ppb v/v			07/20/16 16:04	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.40	ppb v/v			07/20/16 16:04	
1,2,4-Trimethylbenzene	ND	0.80	ppb v/v			07/20/16 16:04	
1,3,5-Trimethylbenzene	ND	0.40	ppb v/v			07/20/16 16:04	
Vinyl acetate	ND	0.80	ppb v/v			07/20/16 16:04	

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

/ Client Sample ID: Method Blank Prep Type: Total/NA

5

8

Lab Sample ID: MB 320-118674/6 Matrix: Air

Matrix: Air								Prep Type: To	otal/NA
Analysis Batch: 118674									
		MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		0.40		ppb v/v			07/20/16 16:04	1
m,p-Xylene	ND		0.80		ppb v/v			07/20/16 16:04	1
o-Xylene	ND		0.40		ppb v/v			07/20/16 16:04	1
Naphthalene	ND		0.80		ppb v/v			07/20/16 16:04	1
		MB							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	ND		12		ug/m3			07/20/16 16:04	1
Benzene	ND		1.3		ug/m3			07/20/16 16:04	1
Benzyl chloride	ND		4.1		ug/m3			07/20/16 16:04	1
Bromodichloromethane	ND		2.0		ug/m3			07/20/16 16:04	1
Bromoform	ND		4.1		ug/m3			07/20/16 16:04	1
Bromomethane	ND		3.1		ug/m3			07/20/16 16:04	1
2-Butanone (MEK)	ND		2.4		ug/m3			07/20/16 16:04	1
Carbon disulfide	ND		2.5		ug/m3			07/20/16 16:04	1
Carbon tetrachloride	ND		5.0		ug/m3			07/20/16 16:04	1
Chlorobenzene	ND		1.4		ug/m3			07/20/16 16:04	1
Dibromochloromethane	ND		3.4		ug/m3			07/20/16 16:04	1
Chloroethane	ND		2.1		ug/m3			07/20/16 16:04	1
Chloroform	ND		1.5		ug/m3			07/20/16 16:04	1
Chloromethane	ND		1.7		ug/m3			07/20/16 16:04	1
1,2-Dibromoethane (EDB)	ND		6.1		ug/m3			07/20/16 16:04	1
1,2-Dichlorobenzene	ND		2.4		ug/m3			07/20/16 16:04	1
1,3-Dichlorobenzene	ND		2.4		ug/m3			07/20/16 16:04	1
1,4-Dichlorobenzene	ND		2.4		ug/m3			07/20/16 16:04	1
Dichlorodifluoromethane	ND		2.0		ug/m3			07/20/16 16:04	1
1,1-Dichloroethane	ND		1.2		ug/m3			07/20/16 16:04	1
1,2-Dichloroethane	ND		3.2		ug/m3			07/20/16 16:04	1
1,1-Dichloroethene	ND		3.2		ug/m3			07/20/16 16:04	1
cis-1,2-Dichloroethene	ND		1.6		ug/m3			07/20/16 16:04	1
trans-1,2-Dichloroethene	ND		1.6		ug/m3			07/20/16 16:04	1
1,2-Dichloropropane	ND		1.8		ug/m3			07/20/16 16:04	1
cis-1,3-Dichloropropene	ND		1.8		ug/m3			07/20/16 16:04	1
trans-1,3-Dichloropropene	ND		1.8		ug/m3			07/20/16 16:04	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		2.8		ug/m3			07/20/16 16:04	1
Ethylbenzene	ND		1.7		ug/m3			07/20/16 16:04	1
4-Ethyltoluene	ND		2.0		ug/m3			07/20/16 16:04	1
Hexachlorobutadiene	ND		21		ug/m3			07/20/16 16:04	1
2-Hexanone	ND		1.6		ug/m3			07/20/16 16:04	1
Methylene Chloride	ND		1.4		ug/m3			07/20/16 16:04	1
4-Methyl-2-pentanone (MIBK)	ND		1.6		ug/m3			07/20/16 16:04	1
Styrene	ND		1.7		ug/m3			07/20/16 16:04	1
1,1,2,2-Tetrachloroethane	ND		2.7		ug/m3			07/20/16 16:04	1
Tetrachloroethene	ND		2.7		ug/m3			07/20/16 16:04	1
Toluene	ND		1.5		ug/m3			07/20/16 16:04	1
1,2,4-Trichlorobenzene	ND		15		ug/m3			07/20/16 16:04	1
1,1,1-Trichloroethane	ND		1.6		ug/m3			07/20/16 16:04	1
1,1,2-Trichloroethane	ND		2.2		ug/m3			07/20/16 16:04	1
Trichloroethene	ND		2.1		ug/m3			07/20/16 16:04	1
I. Construction of the second s									

RL

2.9

2.2

3.1

3.9

2.0

2.8

1.0

3.5

1.7

4.2

Limits

70 - 130

70 - 130

70 - 130

MDL Unit

ug/m3

D

Prepared

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

MB MB

ND

93

109

97

%Recovery

MB MB

Qualifier

Result Qualifier

Lab Sample ID: MB 320-118674/6

Analysis Batch: 118674

1,1,2-Trichloro-1,2,2-trifluoroethane

Matrix: Air

Analyte

1.4-Dioxane

Vinyl acetate

Vinyl chloride

m,p-Xylene

Naphthalene

Surrogate

Toluene-d8 (Surr)

o-Xylene

Trichlorofluoromethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

Analyzed

07/20/16 16:04

07/20/16 16:04

07/20/16 16:04

07/20/16 16:04

07/20/16 16:04

07/20/16 16:04

07/20/16 16:04

07/20/16 16:04

07/20/16 16:04

07/20/16 16:04

Client Sample ID: Method Blank Prep Type: Total/NA 5 Dil Fac

1

1

1

1

1

1

1

1

1

1

Dil Fac

Prepared Analyzed 07/20/16 16:04 1 07/20/16 16:04 1 07/20/16 16:04 1

Lab Sample ID: LCS 320-118674/3 Matrix: Air Analysis Batch: 118674

······,·······························	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone		20.4		ppb v/v		102	71 - 131	
Benzene	20.0	19.0		ppb v/v		95	68 - 128	
Benzyl chloride	20.0	19.1		ppb v/v		95	58 ₋ 120	
Bromodichloromethane	20.0	19.8		ppb v/v		99	65 - 130	
Bromoform	20.0	19.3		ppb v/v		97	64 - 144	
Bromomethane	20.0	20.9		ppb v/v		104	70 ₋ 131	
2-Butanone (MEK)	20.0	18.7		ppb v/v		93	71 - 131	
Carbon disulfide	20.0	18.8		ppb v/v		94	63 - 123	
Carbon tetrachloride	20.0	20.0		ppb v/v		100	67 - 127	
Chlorobenzene	20.0	19.7		ppb v/v		99	70 - 132	
Dibromochloromethane	20.0	18.6		ppb v/v		93	68 - 128	
Chloroethane	20.0	21.5		ppb v/v		108	70 - 131	
Chloroform	20.0	19.5		ppb v/v		97	69 - 129	
Chloromethane	20.0	21.2		ppb v/v		106	67 - 127	
1,2-Dibromoethane (EDB)	20.0	19.6		ppb v/v		98	68 - 131	
1,2-Dichlorobenzene	20.0	21.9		ppb v/v		109	73 - 143	
1,3-Dichlorobenzene	20.0	21.8		ppb v/v		109	77 - 136	
1,4-Dichlorobenzene	20.0	22.2		ppb v/v		111	73 - 143	
Dichlorodifluoromethane	20.0	20.1		ppb v/v		100	69 - 129	
1,1-Dichloroethane	20.0	19.6		ppb v/v		98	65 - 125	
1,2-Dichloroethane	20.0	20.6		ppb v/v		103	71 ₋ 131	
1,1-Dichloroethene	20.0	18.4		ppb v/v		92	53 - 128	
cis-1,2-Dichloroethene	20.0	18.7		ppb v/v		93	68 - 128	
rans-1,2-Dichloroethene	20.0	19.9		ppb v/v		100	70 - 130	
1,2-Dichloropropane	20.0	20.7		ppb v/v		103	74 - 128	
cis-1,3-Dichloropropene	20.0	21.6		ppb v/v		108	78 - 132	
trans-1,3-Dichloropropene	20.0	18.4		ppb v/v		92	56 - 136	

TestAmerica Pleasanton

Client Sample ID: Lab Control Sample Prep Type: Total/NA

5

8

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 320-118674/3 Matrix: Air	-		•	Clier	nt Sar	nple ID	: Lab Control Sampl Prep Type: Total/N
Analysis Batch: 118674							
-	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,2-Dichloro-1,1,2,2-tetrafluoroet	20.0	18.5		ppb v/v		92	64 - 124
hane Ethylhonzono	20.0	19.6		nnh y/y		98	76 - 136
Ethylbenzene	20.0	19.0		ppb v/v		96 96	62 - 136
4-Ethyltoluene Hexachlorobutadiene	20.0	19.3		ppb v/v		90 93	42 - 150
2-Hexanone	20.0	20.8		ppb v/v ppb v/v		93 104	42 - 150 70 - 128
Methylene Chloride	20.0	20.8 19.0		ppb v/v ppb v/v		95	65 - 125
	20.0	21.5		ppb v/v ppb v/v		108	73 - 133
4-Methyl-2-pentanone (MIBK) Styrene	20.0	21.5		ppb v/v ppb v/v		108	76 - 144
1,1,2,2-Tetrachloroethane	20.0	21.0		ppb v/v ppb v/v		106	75 - 135
Tetrachloroethene	20.0	21.1 17.6				88	56 - 138
Toluene	20.0	17.0		ppb v/v ppb v/v		00 91	50 - 138 71 - 132
1.2.4-Trichlorobenzene	20.0	23.2		ppb v/v ppb v/v		91 116	59 - 150
1,1,1-Trichloroethane	20.0	23.2 19.3		ppb v/v ppb v/v		96	65 - 124
1,1,2-Trichloroethane	20.0	19.3		ppb v/v ppb v/v		90 96	05 - 124 71 - 131
Trichloroethene	20.0	19.3		ppb v/v ppb v/v		90 92	64 - 127
1.4-Dioxane	20.0	19.3		ppb v/v ppb v/v		92 96	55 - 141
Trichlorofluoromethane	20.0	20.3		ppb v/v ppb v/v		102	68 - 128
	20.0	17.6		ppb v/v ppb v/v		88	50 - 132
1,1,2-Trichloro-1,2,2-trifluoroetha ne	20.0	17.0		PPP 4/4		00	55-10 <u>2</u>
1,2,4-Trimethylbenzene	20.0	21.1		ppb v/v		105	61 ₋ 145
1,3,5-Trimethylbenzene	20.0	20.1		ppb v/v		100	65 - 136
Vinyl acetate	20.0	23.0		ppb v/v		115	77 - 134
Vinyl chloride	20.0	20.5		ppb v/v		103	69 - 129
m,p-Xylene	40.0	41.4		ppb v/v		103	75 - 138
o-Xylene	20.0	20.8		ppb v/v		104	77 - 132
Naphthalene	20.0	21.3		ppb v/v		106	58 - 150
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetone	48	48.3		ug/m3		102	71 - 131
Benzene	64	60.8		ug/m3		95	68 - 128
Benzyl chloride	100	98.8		ug/m3		95	58 - 120
Bromodichloromethane	130	133		ug/m3		99	65 - 130
Bromoform	210	200		ug/m3		97	64 - 144
Bromomethane	78	81.0		ug/m3		104	70 - 131
2-Butanone (MEK)	59	55.1		ug/m3		93	71 - 131
Carbon disulfide	62	58.4		ug/m3		94	63 - 123
Carbon tetrachloride	130	126		ug/m3		100	67 - 127
Chlorobenzene	92	90.9		ug/m3		99	70 - 132
Dibromochloromethane	170	158		ug/m3		93	68 - 128
Chloroethane	53	56.8		ug/m3		108	70 - 131
Chloroform	98	95.0		ug/m3		97	69 - 129
Chloromethane	41	43.8		ug/m3		106	67 - 127
1,2-Dibromoethane (EDB)	150	150		ug/m3		98	68 - 131
1,2-Dichlorobenzene	120	131		ug/m3		109	73 - 143
1,3-Dichlorobenzene	120	131		ug/m3		109	77 - 136
1,4-Dichlorobenzene	120	134		ug/m3		111	73 - 143
Dichlorodifluoromethane	99	99.3		ug/m3		100	69 - 129
1,1-Dichloroethane	81	79.5		ug/m3		98	65 - 125

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Spike LCS LCS Unit D %Rec. Analyte Result Qualifier Unit D %Res Limits 1.4.Dichloroethene 8 32 ug/m3 103 71.131 1.4.Dichloroethene 79 74.1 ug/m3 100 70.130 1.2.Dichloroethene 79 78.9 ug/m3 100 70.130 1.2.Dichloroptopene 91 83.6 ug/m3 103 74.128 cis-1.3.Dichloroptopene 91 83.6 ug/m3 102 64.132 1.2.Dichloro.1,1,2,2.tetrafluoroet 101 129 ug/m3 90 62.136 1.2.Dichloro.1,1,2,2.tetrafluoroet 86 94.8 ug/m3 90 62.136 4.Ethytlouene 86 94.8 ug/m3 90 63.132 2.Hexanone 82 85.2 ug/m3 90 65.125 4.Methyl-2-pentanone (MIBK) 82 88.1 ug/m3 108 75.135 1.1,2.Z Tetracho	Lab Sample ID: LCS 320-118674/3 Matrix: Air Analysis Batch: 118674			nt Sample ID	: Lab Control Sample Prep Type: Total/NA	
1.2-Dichloroethane 81 83.2 ug/m3 103 71.131 1.1-Dichloroethene 79 73.0 ug/m3 92 53.128 cis1.2-Dichloroethene 79 74.1 ug/m3 93 68.128 trans-1.2-Dichloroethene 79 78.9 ug/m3 103 74.128 cis1.3-Dichloropropene 92 95.6 ug/m3 103 74.128 cis1.3-Dichloropropene 91 93.6 ug/m3 92 56.136 1.2-Dichloro-1,1,2.2-tetrafluoroet 140 129 ug/m3 92 64.124 hane 2 ug/m3 98 76.136 4124 ethylborzene 81 ug/m3 96 62.136 Hexachlorobutadiene 210 197 ug/m3 93 42.150 2-Hexanone 82 85.2 ug/m3 108 76.136 Methylene Chloride 69 65.9 ug/m3 108 76.144 1,1,2.2-tetrachoroethane 140 145 ug/m3 108 76.144 1,1,2.2-tetrachoroethane 16	····· / ·······························	Spike	LCS LCS			%Rec.
1.1-Dichloroethene 79 73.0 ug/m3 92 53.128 cis-1.2-Dichloroethene 79 74.1 ug/m3 93 68.128 trans-1.2-Dichloroethene 79 78.9 ug/m3 100 70-130 1.2-Dichloropropane 92 95.6 ug/m3 108 78.132 trans-1.3-Dichloropropene 91 98.2 ug/m3 92 66.136 1.2-Dichloro-1.1.2.2-tetrafluoroet 140 129 ug/m3 92 64.124 hane	Analyte	Added	Result Qualifier	Unit	D %Rec	Limits
cis-1,2-Dichloroethene 79 74.1 ug/m3 93 68.128 trans-1,2-Dichloroethene 79 78.9 ug/m3 100 70.130 1,2-Dichloropropane 92 96.6 ug/m3 108 78.132 trans-1,3-Dichloropropene 91 98.2 ug/m3 92 66.136 1,2-Dichloropropene 91 83.6 ug/m3 92 66.136 1,2-Dichlororopene 91 85.3 ug/m3 92 66.136 1,2-Dichlororopene 96 94.8 ug/m3 96 62.136 Hexachlorobutadiene 210 197 ug/m3 93 42.150 2-Hexanone 82 85.2 ug/m3 108 73.133 Styrene 85 91.8 ug/m3 108 73.133 Styrene 140 119 ug/m3 188 56.124 1,1.2-Zretachloroethane 140 119 ug/m3 18 56.138 Toluene 75 68.9 ug/m3 96 51.141 1,1.2-Trichloroethane 110	1,2-Dichloroethane	81	83.2	ug/m3	103	71 - 131
trans-1,2-Dichloropthone7978.9ug/m310070.1301,2-Dichloroptropene9295.6ug/m310874.128cis-1,3-Dichloroptropene9198.2ug/m310878.132trans-1,3-Dichloroptropene9185.6ug/m39256.1361,2-Dichloro-1,1,2,2-tetrafluoroet140129ug/m39876.136hane85.3ug/m39876.13676.136Ethylenzene8785.3ug/m39876.136Hexachlorobutaleine210197ug/m39342.1502-Hexanone8282.2ug/m310470.128Methylene Chloride6965.9ug/m310873.133Styrene8591.8ug/m310875.135Tetrachloroethane140145ug/m310675.135Tetrachloroethane150172ug/m39856.1361,1,2.7 Tichloroethane110105ug/m39665.1241,1,2.Tichloroethane110105ug/m39665.1411,1,2.Tichloroethane110105ug/m39655.1411,1,2.Tichloroethane110114ug/m310268.1281,1,2.Tichloroethane110114ug/m310665.1611,1,2.Tichloroethane110114ug/m310561.1451,1,2.Tichloroethane110114ug/m310665.1611,	1,1-Dichloroethene	79	73.0	ug/m3	92	53 - 128
1,2-Dichloropropane 92 95.6 ug/m3 103 74.128 cis-1,3-Dichloropropene 91 98.2 ug/m3 108 78.132 trans-1,3-Dichloropropene 91 83.6 ug/m3 92 56.136 1,2-Dichloro-1,1,2,2-tetrafiuoret 140 129 ug/m3 92 56.136 1,2-Dichloro-1,1,2,2-tetrafiuoret 87 85.3 ug/m3 98 76.136 4-Ethylburene 98 94.8 ug/m3 96 62.136 Hexachlorobutadiene 210 197 ug/m3 93 42.150 2-Hexanone 82 85.2 ug/m3 108 73.133 Methylene Chioride 69 65.9 ug/m3 108 76.144 1,1,2.2-tetrachoroethane 140 145 ug/m3 108 76.144 1,1,2.2-tetrachoroethane 140 145 ug/m3 108 76.138 Toluene 75 68.9 ug/m3 91 71.132 1,2.4-Trichloroethane 110 105 ug/m3 96 55.124 <t< td=""><td>cis-1,2-Dichloroethene</td><td>79</td><td>74.1</td><td>ug/m3</td><td>93</td><td>68 - 128</td></t<>	cis-1,2-Dichloroethene	79	74.1	ug/m3	93	68 - 128
cis.1,3-Dichloropropene 91 98.2 ug/m3 108 78.132 trans.1,3-Dichloropropene 91 83.6 ug/m3 92 56.136 1,2-Dichloro.1,1,2,2-tetrafluoroet 140 129 ug/m3 98 64.124 hane 2 10 197 ug/m3 98 76.136 4-Ethyltoluene 98 94.8 ug/m3 96 62.136 Hexachlorobutadiene 210 197 ug/m3 93 42.150 2-Hexanone 82 85.2 ug/m3 108 73.133 Styrene 85 91.8 ug/m3 108 75.135 Tetrachloroethane 140 145 ug/m3 108 76.144 1,1.2.2-Tetrachloroethane 140 145 ug/m3 108 76.144 1,1.2.2-Tetrachloroethane 140 145 ug/m3 108 76.144 1,1.2.2-Tetrachloroethane 140 119 ug/m3 188 56.138 Toluene	trans-1,2-Dichloroethene	79	78.9	ug/m3	100	70 - 130
trans-1,3-Dichloropropene9183.6ug/m39256.1361,2-Dichloro-1,1,2,2-tetrafluoroet140129ug/m39264.124hane121ug/m39876.136Ethylbenzene8785.3ug/m39662.136Hexachlorobutadiene210197ug/m39342.1502-Hexanone8285.2ug/m310470.128Methylene Chloride6965.9ug/m310873.133Styrene8591.8ug/m310875.135Tetrachloroethane140119ug/m38856.138Toluene7568.9ug/m39171.1321,1.2-Trichloroethane110105ug/m39665.1241,1.2-Trichloroethane110105ug/m39665.1241,1.2-Trichloroethane110105ug/m39665.1241,1.2-Trichloroethane110105ug/m39671.131Trichlorofthane110105ug/m39665.1411,1.2-Trichloroethane110105ug/m39665.1411,2.4-Tirichloroethane110104ug/m310665.1411,2.4-Tirichloroethane110104ug/m310561.1451,2.4-Tirichloroethane110135ug/m39661.1451,2.4-Tirichloroethane110104ug/m310561.1451,2.4-Tirichloroethane100<	1,2-Dichloropropane	92	95.6	ug/m3	103	74 - 128
1,2-Dichloro-1,1,2,2-tetrafluoroet140129ug/m39264 - 124haneEthylbenzene8785.3ug/m39876 - 136Ethylbenzene9894.8ug/m3986662 - 136Hexachlorobutadiene210197ug/m39342 - 1502-Hexanone8285.2ug/m310470 - 128Methylene Chloride6965.9ug/m310876 - 1344-Methyl-2-pentanone (MIBK)8288.1ug/m310876 - 1441,1,2,2-Tetrachloroethane140145ug/m310675 - 135Tetrachloroethane140145ug/m39856 - 1241,2,4-Trichlorobenzene150172ug/m39665 - 1241,1,2-Trichloroethane110105ug/m39665 - 1241,1,2-Trichloroethane110114ug/m310268 - 1281,1,2-Trichloroethane110114ug/m310268 - 1281,1,2-Trichloroetha	cis-1,3-Dichloropropene	91	98.2	ug/m3	108	78 - 132
Hanne 87 85.3 ug/m3 98 76.136 Ethylbenzene 98 94.8 ug/m3 96 62.136 4-Ethylboluene 98 94.8 ug/m3 93 42.150 2-Hexanone 82 85.2 ug/m3 95 65.125 4-Methyl-2-pentanone (MIBK) 82 88.1 ug/m3 108 73.133 Styrene 85 91.8 ug/m3 106 75.135 Tetrachloroethane 140 145 ug/m3 108 76.144 1,1,2.2-Tetrachloroethane 140 119 ug/m3 88 66.138 Toluene 75 68.9 ug/m3 116 59.150 1,1,1-Trichloroethane 110 105 ug/m3 96 65.124 1,1,2-Trichloroethane 110 105 ug/m3 96 65.141 1,12-Trichloroethane 110 105 ug/m3 96 65.141 1,12-Trichloroethane 110 135 u	trans-1,3-Dichloropropene	91	83.6	ug/m3	92	56 - 136
Ethylbenzene 87 85.3 ug/m3 98 76.136 4-Ethylboluene 98 94.8 ug/m3 96 62.136 Hexachlorobutadiene 210 197 ug/m3 93 42.150 2-Hexanone 82 85.2 ug/m3 104 70.128 Methylen Chloride 69 65.9 ug/m3 108 73.133 Styrene 85 91.8 ug/m3 108 76.144 1,1,2,2-Tetrachoroethane 140 119 ug/m3 88 56.138 Toluene 75 68.9 ug/m3 91 71.132 1,2,4-Trichloroethane 110 105 ug/m3 96 65.124 1,1,2-Trichloroethane 110 105 ug/m3 96 65.138 1,1,2-Trichloroethane 110 105 ug/m3 96 55.141 1,1,2-Trichloroethane 110 98.3 ug/m3 96 55.141 1,1,2-Trichloroethane 110 114	1,2-Dichloro-1,1,2,2-tetrafluoroet	140	129	ug/m3	92	64 ₋ 124
Hexachlorobutadiene210197ug/m39342.1502-Hexanone8285.2ug/m310470.128Methylene Chloride6965.9ug/m39565.1254-Methyl-2-pentanone (MIBK)8288.1ug/m310873.133Styrene8591.8ug/m310675.135Tetrachloroethane140145ug/m39171.1321.2,2-Tetrachloroethane150172ug/m39665.1241.1,2-Trichloroethane110105ug/m39665.1241.1,1-Trichloroethane110105ug/m39665.1241.1,2-Trichloroethane110105ug/m39665.1241,1,2-Trichloroethane110105ug/m39665.1241,1,2-Trichloroethane110114ug/m310268.1281,1,2-Trichloroethane110114ug/m310561.1251,2-Trichloroethane150135ug/m39655.141Trichlorofluoromethane110114ug/m310268.1281,2-Trichloroethane19898.7ug/m310561.1451,2,4-Trimethylbenzene9898.7ug/m310065.136Vinyl acetate7080.9ug/m310561.1451,3,5-Trimethylbenzene9898.7ug/m310065.136Vinyl acetate7080.9ug/m310369.129V		87	85.3	ug/m3	98	76 - 136
2-Hexanone8285.2ug/m310470.128Methylene Chloride6965.9ug/m39565.1254-Methyl-2-pentanone (MIBK)8288.1ug/m310873.133Styrene8591.8ug/m310876.1441,1,2.2-Tetrachloroethane140145ug/m310675.135Tetrachloroethane140149ug/m38856.138Toluene7568.9ug/m39171.1321,2.4-Trichlorobenzene150172ug/m39665.1241,1.2-Trichloroethane110105ug/m39665.1241,1.2-Trichloroethane110105ug/m39655.1411,1.2-Trichloroethane11098.3ug/m39264.1271,4-Dioxane7269.5ug/m39655.141Trichlorofluoromethane150135ug/m38850-132ne	4-Ethyltoluene	98	94.8	ug/m3	96	62 - 136
Methylene Chloride6965.9ug/m39565.1254-Methyl-2-pentanone (MIBK)8288.1ug/m310873.133Styrene8591.8ug/m310876.1441,1,2,2-Tetrachloroethane140145ug/m310675.135Tetrachloroethane140119ug/m38856.138Toluene7568.9ug/m39171.1321,2,4-Trichloroethane110105ug/m39665.1241,1,1-Trichloroethane110105ug/m39665.1241,1,2-Trichloroethane110105ug/m39671.131Trichloroethane11098.3ug/m39264.1271,4-Dioxane7269.5ug/m39655.141Trichloroethane110114ug/m310268.1281,1,2-Trichloroethane110114ug/m310261.1451,4-Dioxane7269.5ug/m39651.141Trichlorofuloronethane110114ug/m310268.1281,1,2-Trichloroethane9898.7ug/m310561.1451,3,5-Trimethylbenzene9898.7ug/m310561.1451,3,5-Trimethylbenzene9898.7ug/m310561.36Vinyl acetate7080.9ug/m310561.36Vinyl choride5152.4ug/m310375.138o-Xylene1701		210	197		93	42 - 150
4-Methyl-2-pentanone (MIBK)8288.1ug/m310873.133Styrene8591.8ug/m310876.1441,1,2,2-Tetrachloroethane140145ug/m310675.135Tetrachloroethane140119ug/m38856.138Toluene7568.9ug/m39171.1321,2,4-Trichlorobenzene150172ug/m311659.1501,1,1-Trichloroethane110105ug/m39665.1241,1,2-Trichloroethane110105ug/m39264.1271,4-Dioxane7269.5ug/m39655.141Trichloroethane110114ug/m310268.1281,1,2-Trichloroethane150135ug/m38650-1321,2,4-Trimethylbenzene98104ug/m310561.1451,3,5-Trimethylbenzene9888.7ug/m310065.136Vinyl acetate7080.9ug/m311577.134Vinyl chloride5152.4ug/m310369.129m,-Xylene170180ug/m310375.138o-Xylene8790.2ug/m310477.132	2-Hexanone	82	85.2	ug/m3	104	70 - 128
Styrene8591.8ug/m310876.1441,1,2,2-Tetrachloroethane140145ug/m310675.135Tetrachloroethane140119ug/m38856-138Toluene7568.9ug/m39171.1321,2,4-Trichlorobenzene150172ug/m311659.1501,1,1-Trichloroethane110105ug/m39665.1241,1,2-Trichloroethane110105ug/m39671.1311,2-Trichloroethane11098.3ug/m39264.1271,4-Dioxane7269.5ug/m39655.141Trichloroethane110114ug/m310268.1281,1,2-Trichloro-1,2,2-trifluoroetha150135ug/m38850-132ne110114ug/m310561.1451,3,5-Trimethylbenzene98104ug/m310561.1451,3,5-Trimethylbenzene9898.7ug/m310065.136Vinyl acetate7080.9ug/m310369.129m,p-Xylene170180ug/m310375.138o-Xylene8790.2ug/m310477.132	Methylene Chloride	69	65.9	ug/m3	95	65 - 125
1,1,2,2-Tetrachloroethane140145ug/m310675 - 135Tetrachloroethane140119ug/m38856 - 138Toluene7568.9ug/m39171 - 1321,2,4-Trichlorobenzene150172ug/m311659 - 1501,1,1-Trichloroethane110105ug/m39665 - 1241,1,2-Trichloroethane110105ug/m39671 - 131Trichloroethane11098.3ug/m39264 - 1271,4-Dioxane7269.5ug/m39655 - 141Trichloroethane110114ug/m310268 - 1281,1,2-Trichloroethane110135ug/m38850 - 1321,2,4-Trimethylbenzene98104ug/m310561 - 1451,3,5-Trimethylbenzene9898.7ug/m310065 - 136Vinyl acetate7080.9ug/m311577 - 134Vinyl chloride5152.4ug/m310369 - 129m,p-Xylene170180ug/m310375 - 138o-Xylene8790.2ug/m310477 - 132	4-Methyl-2-pentanone (MIBK)	82	88.1	ug/m3	108	73 - 133
Tetrachloroethene140119ug/m38856 - 138Toluene7568.9ug/m39171 - 1321,2,4-Trichlorobenzene150172ug/m311659 - 1501,1,1-Trichloroethane110105ug/m39665 - 1241,1,2-Trichloroethane110105ug/m39671 - 131Trichloroethane11098.3ug/m39264 - 1271,4-Dioxane7269.5ug/m39655 - 141Trichlorofluoromethane110114ug/m310268 - 1281,1,2-Trichloro-1,2,2-trifluoroetha150135ug/m38850 - 132ne110114ug/m310561 - 1451,3,5-Trimethylbenzene9898.7ug/m310065 - 136Vinyl acetate7080.9ug/m311577 - 134Vinyl chloride5152.4ug/m310369 - 129m,p-Xylene170180ug/m310375 - 138o-Xylene8790.2ug/m310477 - 132	Styrene	85	91.8	ug/m3	108	76 - 144
Toluene7568.9ug/m39171.1321,2,4-Trichlorobenzene150172ug/m311659.1501,1,1-Trichloroethane110105ug/m39665.1241,1,2-Trichloroethane110105ug/m39671.131Trichloroethane11098.3ug/m39264.1271,4-Dioxane7269.5ug/m39655.141Trichlorofluoromethane110114ug/m310268.1281,1,2-Trichloro-1,2,2-trifluoroetha150135ug/m38850-132ne110114ug/m310561.1451,3,5-Trimethylbenzene9898.7ug/m310065.136Vinyl acetate7080.9ug/m311577.134Vinyl chloride5152.4ug/m310369.129m,p-Xylene170180ug/m310375.138o-Xylene8790.2ug/m310477.132	1,1,2,2-Tetrachloroethane	140	145	ug/m3	106	75 - 135
1,2,4-Trichlorobenzene150172ug/m311659.1501,1,1-Trichloroethane110105ug/m39665.1241,1,2-Trichloroethane110105ug/m39671.131Trichloroethane11098.3ug/m39264.1271,4-Dioxane7269.5ug/m39655.141Trichlorofluoromethane110114ug/m310268.1281,1,2-Trichloro-1,2,2-trifluoroetha150135ug/m38850.132ne110114ug/m310561.1451,3,5-Trimethylbenzene9898.7ug/m310065.136Vinyl acetate7080.9ug/m311577.134Vinyl chloride5152.4ug/m310369.129m,p-Xylene170180ug/m310375.138o-Xylene8790.2ug/m310477.132	Tetrachloroethene	140	119	ug/m3	88	56 - 138
1,1,1-Trichloroethane110105ug/m39665 - 1241,1,2-Trichloroethane110105ug/m39671 - 131Trichloroethane11098.3ug/m39264 - 1271,4-Dioxane7269.5ug/m39655 - 141Trichlorofluoromethane110114ug/m310268 - 1281,1,2-Trichloro-1,2,2-trifluoroetha150135ug/m38850 - 132ne110114ug/m310561 - 1451,3,5-Trimethylbenzene9898.7ug/m310065 - 136Vinyl acetate7080.9ug/m311577 - 134Vinyl chloride5152.4ug/m310369 - 129m,p-Xylene170180ug/m310375 - 138o-Xylene8790.2ug/m310477 - 132	Toluene	75	68.9	ug/m3	91	71 - 132
1,1,2-Trichloroethane110105ug/m39671.131Trichloroethene11098.3ug/m39264.1271,4-Dioxane7269.5ug/m39655.141Trichlorofluoromethane110114ug/m310268.1281,1,2-Trichloro-1,2,2-trifluoroetha150135ug/m38850.132ne110114ug/m310561.1451,2,4-Trimethylbenzene98104ug/m310561.1451,3,5-Trimethylbenzene9898.7ug/m310065.136Vinyl acetate7080.9ug/m311577.134Vinyl chloride5152.4ug/m310369.129m,p-Xylene170180ug/m310375.138o-Xylene8790.2ug/m310477.132	1,2,4-Trichlorobenzene	150	172	ug/m3	116	59 - 150
Trichloroethene11098.3ug/m39264 - 1271,4-Dioxane7269.5ug/m39655 - 141Trichlorofluoromethane110114ug/m310268 - 1281,1,2-Trichloro-1,2,2-trifluoroetha150135ug/m38850 - 132ne110114ug/m310561 - 1451,2,4-Trimethylbenzene98104ug/m310561 - 1451,3,5-Trimethylbenzene9898.7ug/m310065 - 136Vinyl acetate7080.9ug/m311577 - 134Vinyl chloride5152.4ug/m310369 - 129m,p-Xylene170180ug/m310375 - 138o-Xylene8790.2ug/m310477 - 132	1,1,1-Trichloroethane	110	105	ug/m3	96	65 - 124
1,4-Dioxane7269.5ug/m39655 - 141Trichlorofluoromethane110114ug/m310268 - 1281,1,2-Trichloro-1,2,2-trifluoroetha150135ug/m38850 - 132ne1104ug/m310561 - 1451,2,4-Trimethylbenzene9898.7ug/m310065 - 136Vinyl acetate7080.9ug/m311577 - 134Vinyl chloride5152.4ug/m310369 - 129m,p-Xylene170180ug/m310375 - 138o-Xylene8790.2ug/m310477 - 132	1,1,2-Trichloroethane	110	105	ug/m3	96	71 - 131
Trichlorofluoromethane110114ug/m310268 - 1281,1,2-Trichloro-1,2,2-trifluoroetha150135ug/m38850 - 132ne1104ug/m310561 - 1451,2,4-Trimethylbenzene9898.7ug/m310065 - 136Vinyl acetate7080.9ug/m311577 - 134Vinyl chloride5152.4ug/m310369 - 129m,p-Xylene170180ug/m310375 - 138o-Xylene8790.2ug/m310477 - 132	Trichloroethene	110	98.3	ug/m3	92	64 - 127
1,1,2-Trichloro-1,2,2-trifluoroetha150135ug/m38850 - 132ne	1,4-Dioxane	72	69.5	ug/m3	96	55 - 141
ne1,2,4-Trimethylbenzene98104ug/m310561 - 1451,3,5-Trimethylbenzene9898.7ug/m310065 - 136Vinyl acetate7080.9ug/m311577 - 134Vinyl chloride5152.4ug/m310369 - 129m,p-Xylene170180ug/m310375 - 138o-Xylene8790.2ug/m310477 - 132	Trichlorofluoromethane	110	114	ug/m3	102	68 - 128
1,2,4-Trimethylbenzene98104ug/m310561 - 1451,3,5-Trimethylbenzene9898.7ug/m310065 - 136Vinyl acetate7080.9ug/m311577 - 134Vinyl chloride5152.4ug/m310369 - 129m,p-Xylene170180ug/m310375 - 138o-Xylene8790.2ug/m310477 - 132		150	135	ug/m3	88	50 - 132
1,3,5-Trimethylbenzene9898.7ug/m310065 - 136Vinyl acetate7080.9ug/m311577 - 134Vinyl chloride5152.4ug/m310369 - 129m,p-Xylene170180ug/m310375 - 138o-Xylene8790.2ug/m310477 - 132		۵۶	104	ua/m3	105	61 - 145
Vinyl acetate7080.9ug/m311577 - 134Vinyl chloride5152.4ug/m310369 - 129m,p-Xylene170180ug/m310375 - 138o-Xylene8790.2ug/m310477 - 132				-		
Vinyl chloride5152.4ug/m310369 - 129m,p-Xylene170180ug/m310375 - 138o-Xylene8790.2ug/m310477 - 132				-		
m,p-Xylene170180ug/m310375 - 138o-Xylene8790.2ug/m310477 - 132				-		
o-Xylene 87 90.2 ug/m3 104 77 - 132	-			-		
· · · · · · · · · · · · · · · · · · ·				-		
	Naphthalene	100	112	ug/m3	104	58 - 150

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1,2-Dichloroethane-d4 (Surr)	112		70 - 130
Toluene-d8 (Surr)	104		70 - 130

Lab Sample ID: LCSD 320-118674/4 Matrix: Air Analysis Batch: 118674

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Acetone 20.0 21.1 ppb v/v 105 71 - 131 3 25 20.0 Benzene 19.1 ppb v/v 95 68 - 128 25 0 Benzyl chloride 20.0 19.1 ppb v/v 95 58 - 120 0 25

TestAmerica Pleasanton

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

5

8

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCSD 320-118674/4 Matrix: Air			Client Sample ID: Lab Control Sample Du Prep Type: Total/N									
Analysis Batch: 118674	Spike		LCSD				%Rec.		RPD			
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit			
Bromodichloromethane		19.8	Quanner	ppb v/v		99	65 - 130		25			
Bromoform	20.0	19.7		ppb v/v		99	64 - 144	2	25			
Bromomethane	20.0	20.8		ppb v/v		104	70 - 131	0	25			
2-Butanone (MEK)	20.0	19.6		ppb v/v		98	71 - 131	5	25			
Carbon disulfide	20.0	18.8		ppb v/v		94	63 - 123	0	_s 25			
Carbon tetrachloride	20.0	20.1		ppb v/v		100	67 - 127	0	25			
Chlorobenzene	20.0	20.0		ppb v/v		100	70 - 132	1	25			
Dibromochloromethane	20.0	19.1		ppb v/v		95	68 - 128	3	25			
Chloroethane	20.0	21.5		ppb v/v		107	70 - 131	0	25			
Chloroform	20.0	19.5		ppb v/v		97	69 - 129	0	25			
Chloromethane	20.0	20.7		ppb v/v		103	67 - 127	3	25			
1,2-Dibromoethane (EDB)	20.0	19.9		ppb v/v		99	68 - 131	1	25			
1,2-Dichlorobenzene	20.0	21.9		ppb v/v		109	73 - 143	0	25			
1,3-Dichlorobenzene	20.0	22.0		ppb v/v		110	77 - 136	1	25			
1,4-Dichlorobenzene	20.0	22.5		ppb v/v		113	73 - 143	1	25			
Dichlorodifluoromethane	20.0	20.3		ppb v/v		101	69 - 129	1	25			
1,1-Dichloroethane	20.0	19.7		ppb v/v		98	65 ₋ 125	0	25			
1,2-Dichloroethane	20.0	20.5		ppb v/v		103	71 <u>-</u> 131	0	25			
1,1-Dichloroethene	20.0	18.4		ppb v/v		92	53 - 128	0	25			
cis-1,2-Dichloroethene	20.0	18.7		ppb v/v		93	68 - 128	0	25			
trans-1,2-Dichloroethene	20.0	19.8		ppb v/v		99	70 - 130	0	25			
1,2-Dichloropropane	20.0	20.9		ppb v/v		105	74 - 128	1	25			
cis-1,3-Dichloropropene	20.0	21.8		ppb v/v		109	78 - 132	1	25			
trans-1,3-Dichloropropene	20.0	18.7		ppb v/v		94	56 ₋ 136	2	25			
1,2-Dichloro-1,1,2,2-tetrafluoroet	20.0	19.0		ppb v/v		95	64 - 124	3	25			
hane												
Ethylbenzene	20.0	19.8		ppb v/v		99	76 - 136	1	25			
4-Ethyltoluene	20.0	19.4		ppb v/v		97	62 - 136	0	25			
Hexachlorobutadiene	20.0	19.2		ppb v/v		96	42 - 150	4	25			
2-Hexanone	20.0	21.1		ppb v/v		105	70 - 128	1	25			
Methylene Chloride	20.0	18.9		ppb v/v		94	65 - 125	1	25			
4-Methyl-2-pentanone (MIBK)	20.0	21.5		ppb v/v		108	73 - 133	0	25			
Styrene	20.0	21.8		ppb v/v		109	76 - 144	1	25			
1,1,2,2-Tetrachloroethane	20.0	21.3		ppb v/v		106	75 - 135	1	25			
Tetrachloroethene	20.0	18.1		ppb v/v		91	56 - 138	3	25			
Toluene	20.0	18.6		ppb v/v		93	71 - 132	2	25			
1,2,4-Trichlorobenzene	20.0	24.0		ppb v/v		120	59 - 150	3	25			
1,1,1-Trichloroethane	20.0	19.4		ppb v/v		97	65 - 124	1	25			
1,1,2-Trichloroethane	20.0	19.8		ppb v/v		99	71 - 131	3	25			
Trichloroethene	20.0	18.5		ppb v/v		92	64 - 127	1	25			
1,4-Dioxane	20.0	19.7		ppb v/v		99	55 - 141	2	25			
Trichlorofluoromethane	20.0	20.3		ppb v/v		102	68 - 128	0	25			
1,1,2-Trichloro-1,2,2-trifluoroetha ne	20.0	17.6		ppb v/v		88	50 - 132	0	25			
1,2,4-Trimethylbenzene	20.0	21.2		ppb v/v		106	61 - 145	1	25			
1,3,5-Trimethylbenzene	20.0	20.2		ppb v/v		101	65 - 136	1	25			
Vinyl acetate	20.0	23.3		ppb v/v		116	77 - 134	1	25			
Vinyl chloride	20.0	19.9		ppb v/v		100	69 - 129	3	25			
m,p-Xylene	40.0	41.4		ppb v/v		104	75 - 138	0	25			

QC Sample Results

5

8

17

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCSD 320-118674/4 Matrix: Air			C	Client Sai	mple	ID: Lat	Control Prep Ty		
Analysis Batch: 118674									
	Spike		LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
o-Xylene	20.0	20.9		ppb v/v		104	77 - 132	0	25
Naphthalene	20.0	21.7		ppb v/v		109	58 - 150	2	25
	Spike		LCSD		_		%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	48	50.1		ug/m3		105	71 - 131	3	25
Benzene	64	61.0		ug/m3		95	68 - 128	0	25
Benzyl chloride	100	98.8		ug/m3		95	58 - 120	0	25
Bromodichloromethane	130	133		ug/m3		99	65 - 130	0	25
Bromoform	210	204		ug/m3		99	64 - 144	2	25
Bromomethane	78	80.9		ug/m3		104	70 - 131	0	25 25
2-Butanone (MEK)	59	57.7		ug/m3		98	71 - 131	5	
Carbon disulfide	62	58.6		ug/m3		94	63 - 123	0	25
Carbon tetrachloride	130	126		ug/m3		100	67 - 127	0	25
Chlorobenzene	92	91.9		ug/m3		100	70 - 132	1	25
Dibromochloromethane	170	163		ug/m3		95	68 - 128	3	25
Chloroethane	53	56.7		ug/m3		107	70 - 131	0	25
Chloroform	98	95.2		ug/m3		97	69 - 129	0	25
Chloromethane	41	42.7		ug/m3		103	67 - 127	3	25
1,2-Dibromoethane (EDB)	150	153		ug/m3		99	68 - 131	1	25
1,2-Dichlorobenzene	120	132		ug/m3		109	73 - 143	0	25
1,3-Dichlorobenzene	120	133		ug/m3		110	77 - 136	1	25
1,4-Dichlorobenzene	120	136		ug/m3		113	73 - 143	1	25
Dichlorodifluoromethane	99	100		ug/m3		101	69 - 129	1	25
1,1-Dichloroethane	81	79.7		ug/m3		98	65 - 125	0	25
1,2-Dichloroethane	81	83.0		ug/m3		103	71 - 131	0	25
1,1-Dichloroethene	79	72.9		ug/m3		92	53 - 128	0	25
cis-1,2-Dichloroethene	79	74.1		ug/m3		93	68 - 128	0	25
trans-1,2-Dichloroethene	79	78.6		ug/m3		99	70 - 130	0	25
1,2-Dichloropropane	92	96.7		ug/m3		105	74 - 128	1	25
cis-1,3-Dichloropropene	91	99.1		ug/m3		109	78 - 132	1	25
trans-1,3-Dichloropropene	91	85.0		ug/m3		94	56 - 136	2	25
1,2-Dichloro-1,1,2,2-tetrafluoroet	140	133		ug/m3		95	64 - 124	3	25
hane Ethylbenzene	87	86.0		ug/m3		99	76 ₋ 136	1	25
4-Ethyltoluene	98	95.3		ug/m3		97	62 - 136	0	25
Hexachlorobutadiene	210	205		ug/m3		96	42 - 150	4	25
2-Hexanone	82	86.3		ug/m3		105	70 - 128	-	25
Methylene Chloride	69	65.6		ug/m3		94	65 - 125	1	25
4-Methyl-2-pentanone (MIBK)	82	88.2		ug/m3		108	73 - 133	0	25
Styrene	85	92.7		ug/m3		109	76 - 100 76 - 144	1	25
1,1,2,2-Tetrachloroethane	140	146		ug/m3		105	75 - 135	1	25
Tetrachloroethene	140	140		ug/m3		91	56 - 138	3	25
Toluene	75	70.2		ug/m3		93	71 - 132	2	25
1,2,4-Trichlorobenzene	150	178		ug/m3		120	59 - 152	2	25
1,1,1-Trichloroethane	130	176		ug/m3		97	65 - 124	1	25
1,1,2-Trichloroethane	110	100		ug/m3		99	71 - 131	3	25
Trichloroethene	110	99.3		ug/m3		99 92	64 ₋ 127	1	25
1,4-Dioxane	72	99.3 71.0		ug/m3		92 99	55 - 141	2	25

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

5

8 9

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

111

104

Lab Sample ID: LCSD 320 Matrix: Air	-118674/4				C	Client Sa	mple	ID: Lat	Control Prep Ty		
Analysis Batch: 118674			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Trichlorofluoromethane			110	114		ug/m3		102	68 - 128	0	25
1,1,2-Trichloro-1,2,2-trifluoroetha			150	135		ug/m3		88	50 - 132	0	25
ne											
1,2,4-Trimethylbenzene			98	104		ug/m3		106	61 - 145	1	25
1,3,5-Trimethylbenzene			98	99.3		ug/m3		101	65 - 136	1	25
Vinyl acetate			70	81.9		ug/m3		116	77 - 134	1	25
Vinyl chloride			51	50.9		ug/m3		100	69 - 129	3	25
m,p-Xylene			170	180		ug/m3		104	75 - 138	0	25
o-Xylene			87	90.6		ug/m3		104	77 - 132	0	25
Naphthalene			100	114		ug/m3		109	58 - 150	2	25
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	103		70 - 130								

70 - 130

70 - 130

QC Association Summary

Client: PES Environmental, Inc. Project/Site: 6701 Shellmound St, Emeryville Air TestAmerica Job ID: 720-73399-1

5 6

9

17

Air - GC/MS VOA

Analysis	Batch:	118674
----------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-73399-1	SVE-1	Total/NA	Air	TO-15	
MB 320-118674/6	Method Blank	Total/NA	Air	TO-15	
LCS 320-118674/3	Lab Control Sample	Total/NA	Air	TO-15	
LCSD 320-118674/4	Lab Control Sample Dup	Total/NA	Air	TO-15	

Lab Chronicle

Client: PES Environmental, Inc. Project/Site: 6701 Shellmound St, Emeryville Air

Client Sam	ple ID: SVE	E-1					Lab S	ample ID: 7	20-73399-1
Date Collecte	d: 07/14/16 1	5:05							Matrix: Air
Date Receive	d: 07/15/16 1	6:50							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	TO-15		728	118674	07/21/16 02:01	AP1	TAL SAC	

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Certification Summary

Client: PES Environmental, Inc. Project/Site: 6701 Shellmound St, Emeryville Air

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

ſ	Authority	Program	EPA Region	Certification ID	Expiration Date
	California	State Program	9	2496	01-31-18

Laboratory: TestAmerica Sacramento

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Oregon	NELAP	10	4040	01-29-17

17

Client: PES Environmental, Inc. Project/Site: 6701 Shellmound St, Emeryville Air

Method TO-15

ethod	Method Description	Protocol	Laboratory
O-15	Volatile Organic Compounds in Ambient Air	EPA	TAL SAC
Protocol R	eferences:		
EPA = L	JS Environmental Protection Agency		
Laboratory	/ References:		
TAL SA	C = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, T	EL (916)373-5600	

Sample Summary

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-73399-1	SVE-1	Air	07/14/16 15:05	07/15/16 16:50

PES Environmental, Inc. Engineering & Environmental Services	CHAIN OF CUSIOUY RECORD	10 NOVATO, CALIFORNIA 34347 (415) 899-1600 FAX (415) 899-1601	94947) 899-1601
incomment Test America	sampless. J. Phillips	11	
8,001.0	4	1	
NAME/LOCATION: Anton Emeryville PROJECT MANAGER: K. Flory/C. Baldassan	RECORDER: J. Phillips	015M	
	X # of Containers & Preservatives	5/8021 5/8260E 5035/80 8015M by 8015 0C rameter	
YR MO DY TIME DESIGNATION	Vapor Water Soll Sedim't Unpres. EnCore H2SO4 HNO3 HCI Summa	EPA 503 EPA 503 EPA 503 TPHg by TPHd by TPHmo I EPA 827 MNA Pai V 0 (5	
1 6 6 7 1 4 1 5 0 5 SVE 4 1			
- + +			
			-
	Tiglititutututututututututututututututututu		
NOTES		RECORD	-
Tum Around Time: Standerd TAT	RECEIP	ACCENTED BY: (Symmetry	/14 W3 5
	RECEN	RECEIVED BY, Asmandy 71/15/10	
	RELINCUISHER BY: Roy RAWI	RECEIVED BY: (Segmentary	
	RELINQUISHED 81: (Synam)	RECEIVED BY: (Styrature) OATE	E TIME
	DISPATCHED BY: (Square) DATE TIME	AE (RECEIVED FOR LAB BY: (September) DATE	ETIME
	METHOD OF SHIPMENT: Picked up from Site by	lab worner	

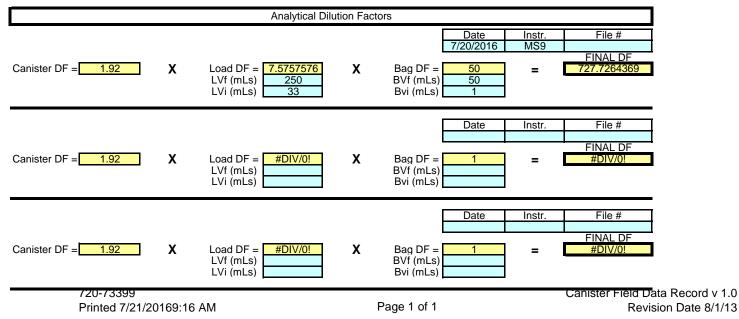
-

Page 1 of 1				Turn Around Time: Standard -	NOTES						 1 607121202 SV	YR MO DY TIME	DATE	R. K. Flory/C.	NAME/LOCATION: Anton Empryville	1448,001.02.	LABORATORY: Test America	PES Environmental, Inc Engineering & Environmental Services
				TAT								DESIGNATION Vapor Water		Baldassan RECORDER:	ville	100	SAMPLERS:	
METHOD OF SHIPMENT: アインとした いわ	DISPATCHED BY: (Signature)	RELINQUISHED BY: (Segmenne)	HE MOUISHED BY: (Segnature)	Construction Brit (Separature)			720-73399					Soil Sedim't Unpres. EnCore H ₂ SO ₄ HNO ₃ HC1 Somma	MATRIX # of Containers & Preservatives	J. Phillip	1-001	1 4-1	ERS: J. Phillips	CHAIN OF CUSTOD
for sit by 1.	DATE TIME REC	RECEIVED BY: (Signature)	RECEIVED BY:		CHAIN OF CUSTODY RECORD	· · · · · · · · · · · · · · · · · · ·	Chain of Custody				1210	EPA 503	- DEPTH		7517	jo D		Y RECORI
ab worner	RECEIVED FOR LAB BY: (Signature)	(Signature) (Signature)	Signature		ODY RECORD						×	EPA 503 EPA 503 TPHg by TPHd by TPHmo EPA 827 MNA Pa VOCS	5/8021 5/8260E 5035/8 6015M by 8015 0C rameter	015M M		s>	[1682 NOVATO B NOVATO, C NOVATO, C
			7/15/16 1650	JALE IME				e 24									QUESTED	1682 NOVATO BOULEVARD, SUITE 100 NOVATO, CALIFORNIA 94947 60 (415) 899-1600 FAX (415) 899-1601 0

	Internation State		TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Phone (925) 484-1919 Fax (925) 600-3002	U	hain o	of Cust	Chain of Custody Record	cord						
Construction Construction<	Constrained Constrained <thconstrained< th=""> <thconstrained< th=""></thconstrained<></thconstrained<>			Sampler:			Lab PM Ríley,	Beth		Carrier Tra	cking No(s):	00 72	DC No: 20-29641.1	
Constrained Constrained <thconstrained< th=""> <thconstrained< th=""></thconstrained<></thconstrained<>	Contraction Laboration Contraction		Client Contact: Shipping/Receiving	Phone:			E-Mail: beth.ri	ley@testameri	cainc.com			Pa Pa	ge: age 1 of 1	
Rote: Monthement Monthement Monthement Monthement Rote: Anticipitation Anticipitation Anticipitation Anticipitation Rote: Anticipitation Anticipitation Anticipitation Anticipitation Rote: Anticipitation Anticipitation Anticipitation Anticipitation Rote: Bandia Identification Enterprise Anticipitation Anticipitation Anticipitation Rote: Bandia Identification Enterprise Anticipitation Anticipitation Anticipitation Anticipitation Rote: Rote: Bandia Identification Enterprise Anticipitation Anticipitation Anticipitation Rote: Rote: Rote: Bandia Identification Anticipitation Antic	Monte Monte <th< td=""><td></td><td>company: TestAmerica Laboratories, Inc.</td><td></td><td></td><td></td><td></td><td></td><td>Analy</td><td>rsis Requested</td><td></td><td>or 22</td><td>b #: 20-73399-1</td><td></td></th<>		company: TestAmerica Laboratories, Inc.						Analy	rsis Requested		or 22	b #: 20-73399-1	
Office Office <thoffice< th=""> <thoffice< th=""> <thoffice< td="" th<=""><td>Occurrence Occurrence Occurre</td><td></td><td>Address: 880 Riverside Parkway,</td><td>Due Date Requested 7/20/2016</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td>Γ</td></thoffice<></thoffice<></thoffice<>	Occurrence Occurre		Address: 880 Riverside Parkway,	Due Date Requested 7/20/2016								<u> </u>		Γ
State State <th< td=""><td>Clinication Clinication <thclinication< th=""> <thclinication< th=""></thclinication<></thclinication<></td><td></td><td>Clty: West Sacramento</td><td>TAT Requested (day</td><td>s):</td><td></td><td></td><td>ənəlsrit</td><td></td><td></td><td></td><td>< m U</td><td></td><td></td></th<>	Clinication Clinication <thclinication< th=""> <thclinication< th=""></thclinication<></thclinication<>		Clty: West Sacramento	TAT Requested (day	s):			ənəlsrit				< m U		
Procession Ook	Procession One		state, Zip: CA, 95605					udeN +				сúı		
Title Title <th< td=""><td>Term Term <th< td=""><td></td><td>Phone: 916-373-5600(Tel) 916-372-1059(Fax)</td><td>PO #:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>μŰΙ</td><td></td><td>drate</td></th<></td></th<>	Term Term <th< td=""><td></td><td>Phone: 916-373-5600(Tel) 916-372-1059(Fax)</td><td>PO #:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>μŰΙ</td><td></td><td>drate</td></th<>		Phone: 916-373-5600(Tel) 916-372-1059(Fax)	PO #:								μŰΙ		drate
Production Description Strend Statement St. Energy die African Some Some Trisfie Some Trisfie Some Trisfie Some Trisfie Some Trisfie Some Trisfie Some Trisfie Some Trisfie Some Trisfie Some Trisfie Some Trisfie Some Trisfie Some Some Trisfie Some Trisfie Some Trisfie Some Trisfie Some Trisfie Some Some Some Trisfie	Official Constraint Total Manual St. Entropylie /r. Store for the formation of the fo		Email:	:# OM				(oN						
Dist. Solows Solow Solow Solow	State Sample termination Sample termination </td <td>-</td> <td>Project Name: 6701 Shellmound St, Emeryville Air</td> <td>Project #: 32007055</td> <td></td> <td></td> <td></td> <td>1 10 56</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-	Project Name: 6701 Shellmound St, Emeryville Air	Project #: 32007055				1 10 56						
Sample Identification - Client ID (Lab ID) Sample Data (T2C) Sample Matrix (T2C)	Sample (dentification - Client ID (Lab ID) Sample Data Sample (Criteria, Sample View, Sampl	1	Site:	SSOW#:				r) as					her:	
Complete contraction - Client (Lab U) Sample total True Carrier and the second of	Subject Supple Definition Sample Definition Air Cartered Information Code X X SVE-1 (720-73399-1) 71(51/6 15:06 Presendion Code X X SVE-1 (720-73399-1) 71(51/6 15:06 Presendion Code X X SVE-1 (720-73399-1) 71(51/6 15:06 Presendion Code X X SVE-1 (720-73399-1) 71(51/6 15:06 Air X X SVE-1 (720-73399-1) 70(51/6 70(51/6 70(51/6 10(51/6 SVE-1 (720-73399-1) 70(51/6 70(51/6 70(51/6 70(51/6 Pessible Hazard Identification 20(51/6 20(51/6 20(50/6 Air Uncorritered Montoriand Distribution 20(51/6 20(51/6 20(51/6 Uncorritered Montoriand Distribution 20(51/6 20(51/6 20(51/6 Uncorritered Montoriand Distribution 10(61/6 20(51/6 20(51/6 Uncorritered Montorine <td></td> <td></td> <td></td> <td>Sample</td> <td>Sample Type (C=comp,</td> <td>T</td> <td>M/SM miohe</td> <td></td> <td></td> <td></td> <td>19dmuN let</td> <td></td> <td></td>				Sample	Sample Type (C=comp,	T	M/SM miohe				19dmuN let		
SVE-1 (720-73399-1) 715/16 15/65 Arr X T X Pooline	SVE-1 (720-73396-1) 711516 1506 AI X I I I I I Final International State 1111 <t< td=""><td></td><td>oample identification - Cilent ID (Lab ID)</td><td>Sample Date</td><td></td><td>Preservati</td><td>1</td><td>d</td><td></td><td></td><td></td><td>21</td><td>Special Instructions/Note</td><td></td></t<>		oample identification - Cilent ID (Lab ID)	Sample Date		Preservati	1	d				21	Special Instructions/Note	
Pacific Image: Second Section Image: Second Section Production Production Production Productio	Pacific Image: Second		SVE-1 (720-73399-1)	7/15/16	15:05		Air	×				-	gh level samples may require reru	JS.
Image: Second	Pessible Hazard Identification Pessible Hazard Identification Pessible Hazard Identification Pessible Hazard Identification Pessible Hazard Identification Pessible Hazard Identification Proceeding Pessible Hazard Identification Pessible Hazard Identification Proceeding Pessible Hazard Identification Pessible Hazard Identification Proceeding Pessible Hazard Identification Pessible Hazard Identification Delorerable Requesteric 1, II, III, N, Ohter (specify) Pessible Hazard Identification Employ Kiteling Hazard Identification Pessible Hazard Identification Unconfirmed Pessible Hazard Identification Interview Destification Interview Pessible Hazard Ident				Lacillo								lent will review prelims tirst. See P	roject
Presible Hazard Identification Presible Hazard Identification Presible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identification Pressible Hazard Identinato Ix Pressible Hazard Identinato Ix	Possible Hazard Identification Sample Disposal IA and the may be assessed if samples are related tonger than 1 month Uncontrolled Possible Hazard Identification Sample Disposal IA and the may be assessed if samples are related tonger than 1 month Uncontrolled Prevention Sample Disposal IA and the may be assessed if samples are related tonger than 1 month Uncontrolled Prevention Sample Disposal IA tab Uncontrolled Disposal IA tab Uncontrolled Disposal IA tab Uncontrolled Disposal IA tab Emeration Unconsistent and the maximum structure in													
Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Proconfirmed Unconfirmed Possible Hazard Identification Unconfirmed Employ KIt Reinroutished by: Possible Hazard Identification Employ KIt Reinroutished by: Date Date Femoustiend by: Date Date Reinroutished by: Date Date	Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Unconfirmed Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identi													
Possible Hazard Identification Particular Client Part Processed If samples are retained longer than 1 month) Processible Hazard Identification Possible Hazard Identification Processed If samples are retained longer than 1 month) Possible Hazard Identification Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Possible Hazard Identification Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Unconfirmed Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Unconfirmed Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Empty Kit Relinquished by: Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Relinquished by: Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification Relinquished by: Processible Hazard Identification Processible Hazard Identification Processible Hazard Identification	Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Unconstrimed Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Unconstrimed Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Unconstrimed Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Unconstrimed Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Unconstrimed Special Instructions/OC Requirements: Emply Kit Reinquished by: Date: Archive For Company Reinquished by: Date: Custody Seals Intact: Custody Seals Intact: Archive Company Archive Company Archive For Company Archive For Company Archive For Company Retored by: Date: Archive For Company Retored by: Date: Archive For Contany													
Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Deliverable Requested: 1, II, III, N, Other (specify) Possible Hazard Identification Possible Hazard Identification Deliverable Requested: 1, II, III, N, Other (specify) Possible Hazard Identification Possible Hazard Identification Deliverable Requested: 1, II, III, N, Other (specify) Possible Hazard Identification Possible Hazard Identification Deliverable Requested: 1, II, III, N, Other (specify) Posterime To Client Possible Hazard Identification Feature To Company Sample Disposal Iy Lab Archive For Month Relinquished by: Posterime: Posterime: Posterime: Posterime: A Yes A No. Company Company Received by: Posterime: Company A Yes A No. Custody Seal No: Content reference(s) C and Other Remarks. Company Content reference(s) C and Other Remarks.	Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Deliverable Requested: 1, III, III, N, Other (specify) Sample Disposal (A fee may be assessed if samples are retained tonger than 1 month) Deliverable Requested: 1, III, III, N, Other (specify) Sample Disposal (A fee may be assessed if samples are retained tonger than 1 month) Empty Kit Relinquished by: Feetual Instructions(XC Requirements: Mention of Shipment. Relinquished by: Empty Kit Relinquished by: Mention of Shipment. Relinquished by: Date/Time: Company Relinquished by: Date/Time: Company Relinquished by: Date/Time: Company Relinquished by: Date/Time: Company Arrive Seals Infact: Outstordy Seals Infact: Date/Time: Arrive Seal of the relinder of the rel													
Possible Hazard Identification Possible Hazard Identification Discortirmed Bample Disposal (A fee may be assessed if samples are retained longer than 1 month) Uncorritmed Bample Disposal (A fee may be assessed if samples are retained longer than 1 month) Uncorritmed Bample Disposal (A fee may be assessed if samples are retained longer than 1 month) Uncorritmed Bample Disposal (A fee may be assessed if samples are retained longer than 1 month) Uncorritmed Bample Disposal (A fee may be assessed if samples are retained longer than 1 month) Deliverable Requested: I, II, II, IV, Other (specify) Date: Emply Kit Relinquished by: Date: Company Received by: Relinquished by: Date: Custody Seal Intact: Custody Seal No.: A Yes: A No Date: Time:	Possible Hazard Identification Possible Hazard Identification Proconfirmed Barnel Disposal (A fee may be assessed if samples are retained longer than 1 month) Unconfirmed Delorent Disposal by Lab Archive For Month Delorend Disposal by Lab Archive For Month Delorend Disposal by Lab Archive For Month Delorend Disposal by Lab Archive For Month Reinquished by: Emply Kit Relinquished by: Nethod of Shipment. Company Reinquished by: Economic Company Received by: Nethod of Shipment. Company Reinquished by: Date: Date: Company Received by: Date: Company Reinquished by: Date: Company Received by: Received by: Date: Company Reinquished by: Date: Company Received by: Received by: Date: Company Reinquished by: Date: Company Received by: Received by: Date: Company Reinquished by: Date: Company Received by: Received by: Date: Company A Yes A No A Yes A No Date: Company Company Company A Yes A No <td></td>													
Possible Hazard Identification Possible Hazard Identification Unconfirmed Image Disposal (A fee may be assessed if samples are retained longer than 1 month) Unconfirmed Image Disposal (A fee may be assessed if samples are retained longer than 1 month) Unconfirmed Image Disposal (A fee may be assessed if samples are retained longer than 1 month) Unconfirmed Image Disposal By Lab Im	Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Unconfirmed Unconfirmed Disposal By Lab Archive For Month Unconfirmed Disposal By Lab Archive For Month Empty Kit Relinquished by: Disposal By Lab Archive For Month Empty Kit Relinquished by: Date: Ime: Ime: Disposal By Lab Company Relinquished by: C.C.L.M. [Wull Date: Ime: Ime: Company Received by: Method of Shipment: Company Relinquished by: C.C.L.M. [Wull Date/Time: Company Received by: Received by: Date/Time: Company Relinquished by: Castody Seals Intact: Custody Seals Intact: Date/Time: Company Received by: Conformany Relinquished by: A Yes <a no<="" td=""> Date/Time: Company Received by: Date/Time: Company A Yes A No A Yes A No A Yes<a no<="" td=""> Date/Time: Company Cooler Temperature(s) 'C and Other Remarks: Company A Yes A No A Yes<a no<="" td=""> Date/Time: Company Conformany<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>													
Deliverable Requested: I, II, IV, Other (specify) Deliverable Requirements: Special Instructions/OC Requirements: Method of Shipment: Empty Kit Relinquished by: Empty Kit Relinquished by: Method of Shipment: Method of Shipment: Method of Shipment: Relinquished by: Empty Kit Relinquished by: Empty Kit Relinquished by: Method of Shipment: Method of Shipment: Relinquished by: Empty Kit Relinquished by: Empty Kit Relinquished by: Method of Shipment: Company Relinquished by: Empty Kit Relinquished by: Empty Kit Received by: Received by: Method of Shipment: Relinquished by: Empty Kit Relinquished by: Date/Time: Date/Time: Company Relinquished by: Custody Seals Intact: Custody Seal No:: Date/Time: Company A Yes< A No	Deliverable Requested: I, II, IV, Other (specify) Special Instructions/OC Requirements: Netwood of Shipment: Empty Kit Relinquished by: Empty Kit Relinquished by: Imme: Method of Shipment: Relinquished by: Entime: Company Received by: Method of Shipment: Relinquished by: Entime: Company Received by: Method of Shipment: Relinquished by: Entime: Company Received by: DateTime: Company Relinquished by: Entime: Company Received by: DateTime: Company Relinquished by: Entime: Company Received by: DateTime: Company Relinquished by: Castody Seals Intact: Custody Seals Intact: Custody Seals Intact: DateTime: Company A Yes< A No		Possible Hazard Identification Unconfirmed					Sample Dis	posal (A fee	may be assessed	if samples are	Tetained	longer than 1 month) For Months	
Empty Kit Relinquished by: Date: Time: Method of Shipment: Relinquished by: Exercised by: Method of Shipment: Method of Shipment: Relinquished by: Exercised by: Method of Shipment: Date/Time: Relinquished by: Exercised by: Method of Shipment: Company Relinquished by: Exercised by: Method of Shipment: Company Relinquished by: Date/Time: Company Received by: Relinquished by: Date/Time: Company Received by: Relinquished by: Custody Seal No:: Date/Time: Company A Yes: A No Costor Temperature(s)*C and Other Remarks: Company	Empty Kit Relinquished by: Date: Time: Method of Shipment: Relinquished by: Example of Shipment: Method of Shipment: Method of Shipment: Relinquished by: Example of Shipment: Date/Time: Date/Time: Company Relinquished by: Example of Shipment: Date/Time: Date/Time: Company Relinquished by: Example of Shipment: Date/Time: Company Received by: Date/Time: Company Relinquished by: Custody Seals Intact: Custody Seal No.: Custody Seal No: Cooler Temperature(s) °C and Other Remarks: Company A Yes: A No A U L L L L L L L L L L L L L L Company Relinquished by: Custody Seals Intact: Custody Seal No:: Company Cooler Temperature(s) °C and Other Remarks: Company A Yes: A No Y No No L L L L L L L L L L L L L L L L L L		Deliverable Requested: I, II, III, IV, Other (specify)					Special Instr	uctions/QC Re	squirements:				
Relinquished by: Low Date/Time: Date/Time: Date/Time: Date/Time: Company Relinquished by: Low Low Company Received by: Low Date/Time: Company Relinquished by: Date/Time: Date/Time: Company Received by: Received by: Date/Time: Company Relinquished by: Date/Time: Date/Time: Company Received by: Date/Time: Company Relinquished by: Custody Seals Intact: Custody Seal No:: Conternet Conternet (s) °C and Other Remarks: Date/Time: Company	Relinquished by: Line: Date/Time: Date/Time: Date/Time: Date/Time: Company Company Relinquished by: Line: Company Secoved by: Received by: Pate/Time: Company Relinquished by: Date/Time: Company Company Received by: Pate/Time: Company Relinquished by: Date/Time: Company Company Received by: Date/Time: Company Relinquished by: Date/Time: Company Company Received by: Date/Time: Company Relinquished by: Date/Time: Company Company Received by: Date/Time: Company Relinquished by: Date/Time: Company Company Received by: Date/Time: Company Relinquished by: Date/Time: Company Company Received by: Date/Time: Company A 'es A No Yes A No Yes A No Late/Time: Late/Time: Company		Empty Kit Relinquished by:		Date:		F	ime:	4	Meth	od of Shipment:			1
Relinquished by: Date/Time: Date/Time: Date/Time: Relinquished by: Date/Time: Date/Time: Date/Time: Relinquished by: Company Received by: Date/Time: Custody Seals Intact: Custody Seal No.: Cooler Temperature(s) °C and Other Remarks:	Relinquished by: Relinquished by: Relinquished by: Custody Seals Intact: Custody Seal No.: Custody		m2310	S	161	07	5	Received t	W Mal	- In	Date/Time:	5	gra company	
Relinquished by: Date/Time: Date/Time: Custody Seals Intact: Custody Seal No.: Cooler Temperature(s) °C and Other Remarks:	Relinquished by: Date/Time: Custody Seals Intact: Custody Seal No.: Δ Yes No			Date/Time:			P	Received t	MAN	1.1	Date/Time:	1		
Custody Seals Intact: Custody Seal No.:	Custody Seals Intact: Custody Seal No.: A Yes A No			Date/Time:		0	ompany	Received t	y:		Date/Time:		Company	Γ
			1000					Cooler Ten	nperature(s) °C ai	nd Other Remarks:				

Sacramento

JOB #	720-7	73399
Sample #	1	


THE LEADER IN ENVIRONMENTAL TESTING

Client/Project:		VFR ID:	
Canister Serial #:	34001218	Duration:	□ _{Hrs} □ _{Min}
Cleaning Job:		Flow:	mL/min
Client ID:		Initials:	
Site Location:			

	F	IELD		
READING	TIME	PRESS.	DATE	INITIALS
INITIAL FIELD VACUUM				
FINAL FIELD READING				

LABC	RATORY		
READING	PRESS.	DATE	INITIALS
INITIAL VACUUM CHECK (INCHES Hg)	29.8		JMT
Helium Pre-dilution - Final Pressure (INCHES Hg)			
INITIAL PRESSURE (PSIA)	12.69	07/18/16	SV
FINAL PRESSURE (PSIA)	24.38	07/18/16	SV
Pressurization Gas: N2 He		SCRN DIL. VS 250mLs:	
Initial Canister Dilution Factor = 1.92			

			CA	NISTER RE	PRESSURIZA
Date	Pi (PSIA)	Pf (PSIA)	Initial DF	Initials	NEW DF
			1.92		#DIV/0!
			#DIV/0! #DIV/0!		#DIV/0! #DIV/0!

Client: PES Environmental, Inc.

Login Number: 73399 List Number: 1 Creator: Mullen, Joan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-73399-1

List Source: TestAmerica Pleasanton

Client: PES Environmental, Inc.

Login Number: 73399 List Number: 2 Creator: Hytrek, Cheryl

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	N/A	
Cooler Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Sacramento

List Creation: 07/16/16 10:18 AM

CANISTE	ROC
CERTIFIC	ATION
	NUIN

Certification Type: ______Scal

Date Cleaned/Batch ID Date of QC

7/1/16 320-20001 7/5/16

Data File Number

l			
607	nco	· ·	
DUT	0 208	8. F)
	607	607050	6070508. F

3480000	CANISTER ID NUMBER	RS
34000325×	34301543	_
34801619	3460 1646	
3400 1800	34001967	
3400 8654	346006646	
34508237	3450/070	
3400 8314	3400 1218	
34601792		
3400 8812	34000000	
TL	-34006683	

CANIOTT

The above canisters were cleaned as a batch. This certifies this batch contains no target analyte concentration greater than or equal to the method criteria for the "Certification

"*" INDICATES THE CAN OR CANS WHICH WERE SCREENED. (st level Reviewed By: En 2nd level Reviewed By:

71 7

Date:

7(14)16 Date:

17

TestAmeric THE LEADER IN ENVIRONMENTAL TES		Sacramento Canister QC Certification Batch Certification
Certification Type	TO-15 SIM	
Date Cleaned/Batch ID	6/21/16 320-19732	114946
Date of QC	6 22 16	
Data File Number	1155062219	
	CANISTER ID NUMBERS	
34000001	4796	
7797	3400035/	
8132		
8115		
7791		
7907		
8118		
9151		

The above canisters were cleaned as a batch. This certifies this batch contains no target analyte concentration greater than or equal to the method criteria for the "<u>Certification Type</u>" indicated above.

INDICATES THE CAN OR CANS WHICH WERE SCREENED. "*"

1st level Reviewed By

2nd level Reviewed By:

6 16 23

7/14/46 Date:

Q:VFORMS\QA-814 BATCH CAN QC 20130729.DOC QA-814

ERS 7/29/2013

17

	TestAmeric THE LEADER IN ENVIRONMENTAL TES		Canis	Sacramento ter QC Certification Batch Certification
	Certification Type	TOIS SCAN		
	Date Cleaned/Batch ID	A071416	320-20253	
	Date of QC	7/15/11e		
	Data File Number	M39071412		
		CANISTER ID NUM	BERS	320-20253 Chain of Custody
A	34001322	34001957		
	34000749	34001888		
	34000804	34001072		
	છલ્પ ા	34001715		
	34000059	>511		
	34001224	34001206		
	34001859	34001083		
	34001758	34001729		

The above canisters were cleaned as a batch. This certifies this batch contains no target analyte concentration greater than or equal to the method criteria for the "Certification Type" indicated above.

"*" INDICATES THE CAN OR CANS WHICH WERE SCREENED.

545 for AS 1st level Reviewed By:

2nd level Reviewed By:

B/116 Date: Blille Date:

Q:\FORMS\QA-814 BATCH CAN QC 20130729.DOC QA-814

ERS 7/29/2013

Lab Name: TestAmerica Sacramento	Job No.: 320-20001-1				
SDG No.:					
Client Sample ID: <u>34000325</u>	Lab Sample ID: <u>320-20001-1</u>				
Matrix: Air	Lab File ID: <u>16070508.D</u>				
Analysis Method: TO-15	Date Collected: 07/01/2016 00:00				
Sample wt/vol: 250(mL)	Date Analyzed: 07/05/2016 18:20				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-Volatiles ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 116551	Units: ppb v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.29	J	5.0	0.18
107-02-8	Acrolein	ND		2.0	0.22
107-13-1	Acrylonitrile	ND		2.0	0.19
107-05-1	Allyl chloride	ND		0.80	0.11
71-43-2	Benzene	ND		0.40	0.079
100-44-7	Benzyl chloride	ND		0.80	0.16
75-27-4	Bromodichloromethane	ND		0.30	0.066
75-25-2	Bromoform	ND		0.40	0.070
74-83-9	Bromomethane	ND		0.80	0.34
106-99-0	1,3-Butadiene	ND		0.80	0.15
106-97-8	n-Butane	ND		0.40	0.15
78-93-3	2-Butanone (MEK)	ND		0.80	0.20
75-65-0	tert-Butyl alcohol (TBA)	ND		2.0	0.11
104-51-8	n-Butylbenzene	ND		0.40	0.18
135-98-8	sec-Butylbenzene	ND		0.40	0.070
98-06-6	tert-Butylbenzene	ND		0.80	0.068
75-15-0	Carbon disulfide	ND		0.80	0.078
56-23-5	Carbon tetrachloride	ND		0.80	0.064
108-90-7	Chlorobenzene	ND		0.30	0.064
75-45-6	Chlorodifluoromethane	ND		0.80	0.11
75-00-3	Chloroethane	ND		0.80	0.31
67-66-3	Chloroform	ND		0.30	0.095
74-87-3	Chloromethane	ND		0.80	0.20
95-49-8	2-Chlorotoluene	ND		0.40	0.080
110-82-7	Cyclohexane	ND		0.40	0.084
124-48-1	Dibromochloromethane	ND		0.40	0.079
106-93-4	1,2-Dibromoethane (EDB)	ND		0.80	0.075
74-95-3	Dibromomethane	ND		0.40	0.057
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroetha ne	ND		0.40	0.16
95-50-1	1,2-Dichlorobenzene	ND		0.40	0.13
541-73-1	1,3-Dichlorobenzene	ND		0.40	0.11
106-46-7	1,4-Dichlorobenzene	ND		0.40	0.15
75-71-8	Dichlorodifluoromethane	ND		0.40	0.15
75-34-3	1,1-Dichloroethane	ND		0.30	0.072
107-06-2	1,2-Dichloroethane	ND		0.80	0.088

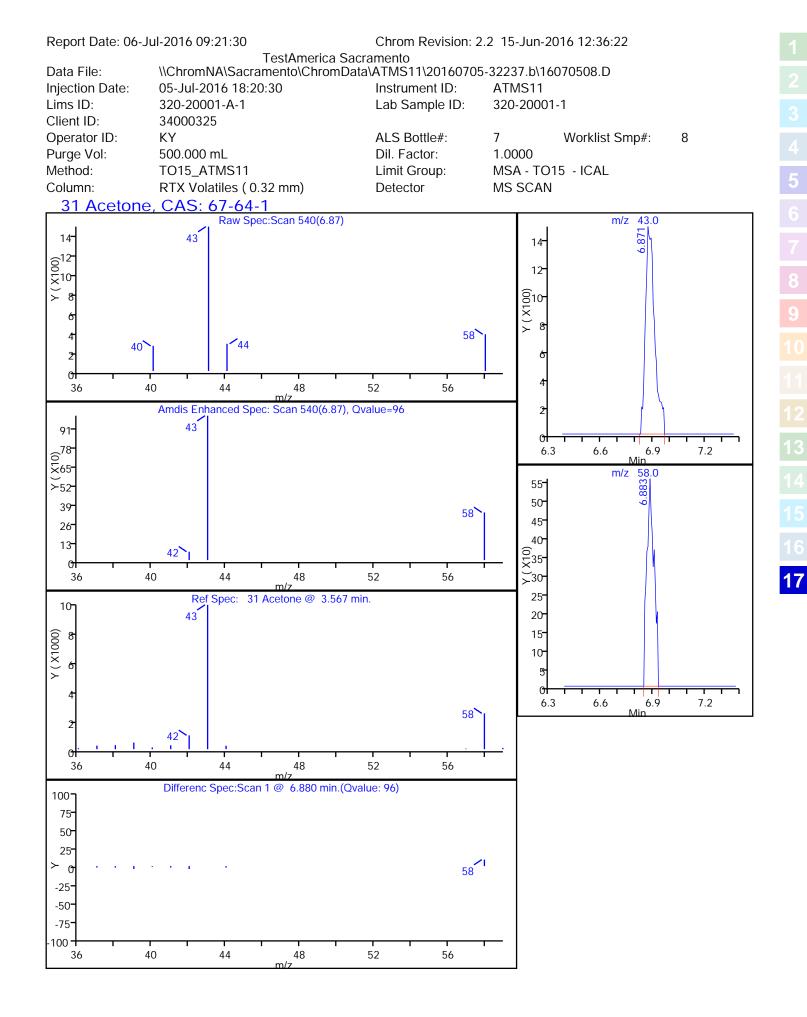
Lab Name: TestAmerica Sacramento	Job No.: <u>320-20001-1</u>
SDG No.:	
Client Sample ID: <u>34000325</u>	Lab Sample ID: <u>320-20001-1</u>
Matrix: Air	Lab File ID: <u>16070508.D</u>
Analysis Method: <u>TO-15</u>	Date Collected: 07/01/2016 00:00
Sample wt/vol: 250(mL)	Date Analyzed: 07/05/2016 18:20
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-Volatiles ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: <u>116551</u>	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-35-4	1,1-Dichloroethene	ND		0.80	0.13
156-59-2	cis-1,2-Dichloroethene	ND		0.40	0.089
156-60-5	trans-1,2-Dichloroethene	ND		0.40	0.10
78-87-5	1,2-Dichloropropane	ND		0.40	0.24
10061-01-5	cis-1,3-Dichloropropene	ND		0.40	0.10
10061-02-6	trans-1,3-Dichloropropene	ND		0.40	0.088
123-91-1	1,4-Dioxane	ND		0.80	0.10
141-78-6	Ethyl acetate	ND		0.30	0.18
100-41-4	Ethylbenzene	ND		0.40	0.063
622-96-8	4-Ethyltoluene	ND		0.40	0.19
142-82-5	n-Heptane	ND		0.80	0.063
87-68-3	Hexachlorobutadiene	ND		2.0	0.43
110-54-3	n-Hexane	ND		0.80	0.075
591-78-6	2-Hexanone	ND		0.40	0.087
98-82-8	Isopropylbenzene	ND		0.80	0.10
99-87-6	4-Isopropyltoluene	ND		0.80	0.12
1634-04-4	Methyl-t-Butyl Ether (MTBE)	ND		0.80	0.050
80-62-6	Methyl methacrylate	ND		0.80	0.16
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14
75-09-2	Methylene Chloride	ND		0.40	0.072
98-83-9	alpha-Methylstyrene	ND		0.40	0.065
91-20-3	Naphthalene	ND		0.80	0.56
111-65-9	n-Octane	ND		0.40	0.055
109-66-0	n-Pentane	ND		0.80	0.26
115-07-1	Propylene	ND		0.40	0.099
103-65-1	N-Propylbenzene	ND		0.40	0.059
100-42-5	Styrene	ND		0.40	0.059
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.40	0.069
127-18-4	Tetrachloroethene	ND		0.40	0.051
109-99-9	Tetrahydrofuran	ND		0.80	0.079
108-88-3	Toluene	ND		0.40	0.051
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		0.40	0.16
120-82-1	1,2,4-Trichlorobenzene	ND		2.0	0.43
71-55-6	1,1,1-Trichloroethane	ND		0.30	0.065
79-00-5	1,1,2-Trichloroethane	ND		0.40	0.067

FORM I TO-15

Lab Name: TestAmerica Sacramento	Job No.: <u>320-20001-1</u>				
SDG No.:					
Client Sample ID: <u>34000325</u>	Lab Sample ID: <u>320-20001-1</u>				
Matrix: Air	Lab File ID: <u>16070508.D</u>				
Analysis Method: TO-15	Date Collected: 07/01/2016 00:00				
Sample wt/vol: 250(mL)	Date Analyzed: 07/05/2016 18:20				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 116551	Units: ppb v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	ND		0.40	0.11
75-69-4	Trichlorofluoromethane	ND		0.40	0.20
96-18-4	1,2,3-Trichloropropane	ND		0.40	0.17
95-63-6	1,2,4-Trimethylbenzene	ND		0.80	0.16
108-67-8	1,3,5-Trimethylbenzene	ND		0.40	0.13
540-84-1	2,2,4-Trimethylpentane	ND		0.40	0.071
108-05-4	Vinyl acetate	ND		0.80	0.15
593-60-2	Vinyl bromide	ND		0.80	0.26
75-01-4	Vinyl chloride	ND		0.40	0.12
179601-23-1	m,p-Xylene	ND		0.80	0.10
95-47-6	o-Xylene	ND		0.40	0.054


CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		70-130
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		70-130
2037-26-5	Toluene-d8 (Surr)	99		70-130

TestAmerica Sacramento Target Compound Quantitation Report

Data File: Lims ID: Client ID: Sample Type:	\\ChromNA\Sacramento\ChromData\ATMS11\20160705-32237.b\16070508.D 320-20001-A-1 34000325 Client						
Inject. Date:	05-Jul-2016 18:20:30	ALS Bottle#:	7	Worklist Smp#:	8		
Purge Vol:	500.000 mL	Dil. Factor:	1.0000				
Sample Info:	320-20001-A-1						
Misc. Info.:	500mL						
Operator ID:	KY	Instrument ID:	ATMS11				
Method:	\\ChromNA\Sacramento\ChromData	a\ATMS11\20160705	5-32237.b\T(O15_ATMS11.m			
Limit Group:	MSA - TO15 - ICAL						
Last Update:	06-Jul-2016 09:21:28	Calib Date:	05-Jul-20	16 13:22:30			
Integrator:	RTE	ID Type:	Deconvolu	ution ID			
Quant Method:	Internal Standard	Quant By:	Initial Cali	bration			
Last ICal File:	\\ChromNA\Sacramento\ChromData	a\ATMS11\20160705	5-32237.b\16	6070503.D			
Column 1 : Process Host:	RTX Volatiles (0.32 mm) XAWRK032		Det: MS S	SCAN			

First Level Reviewer: phanthaser	Date:			06-Jul-2016 09:21:28				
		RT	Adj RT	DIt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ppb v/v	Flags
 * 1 Chlorobromomethane (IS) 	130	11.450	11.451	-0.001	91	37100	4.00	
* 21,4-Difluorobenzene	114	13.566	13.562	0.004	97	145445	4.00	
* 3 Chlorobenzene-d5 (IS)	117	19.678	19.679	-0.001	93	126107	4.00	
\$ 41,2-Dichloroethane-d4 (Sur	65	12.630	12.625	0.005	97	66209	4.27	
\$ 5 Toluene-d8 (Surr)	100	16.820	16.821	-0.001	97	90500	3.95	
\$ 6 4-Bromofluorobenzene (Surr	174	21.697	21.698	-0.001	87	65378	3.92	
31 Acetone	43	6.871	6.872	-0.001	96	5453	0.2881	
47 Methylene Chloride	49	8.044	8.046	-0.002	77	835	0.0414	
85 Toluene	91	16.978	16.979	-0.001	87	847	0.0364	
Reagents:								
VASUISIM_00307		Amount	Added: 5	0.00	U	Inits: mL	Run Reager	nt

Data File: Injection Date: Lims ID:	05-Jul-2016 18:2 320-20001-A-1	TestAmerica Sacramento\\ChromNA\Sacramento\ChromData\ATMS11\2005-Jul-2016 18:20:30Instrument320-20001-A-1Lab Sample		Chrom Revision: 2.2 15-Jun-2016 12:36:22 ramento a\ATMS11\20160705-32237.b\16070508.D Instrument ID: ATMS11 Lab Sample ID: 320-20001-1		22	Operator ID: Worklist Smp#:	KY 8		
Client ID: Purge Vol:	34000325 500.000 mL		C	il. Factor:	1.0000		ALS Bottle#:	7		
Method:	TO15_ATMS11 platiles (0.32 mm)		L	imit Group:	MSA - TO15 - ICAL					
				16070	0508[MS SCAN Chro]:Total					
					6	.678)	(201)+			
20-					16.82	s)(19	(21.0			
19-					urr)(<mark>q2</mark> (i2	(Surr)			
18-				566)+	d8 (S	zene-	zene			
17-				e(13.	Toluene-d8 (Surr)(16.820)	Chlorobenzene-d5 (IS)(19.678)	openi			
16-			6	0)+ 4-Difluorobenzene(13.566)+	\$ Tol	Chlor	4-Bromofluorobenzene (Surr)(21.697)+			
15-			11.45	orobe		*				
14-			.)(SI)	+ -Diflue			\$ 4-			
13- 2			Chlorobromomethane (IS)(11.450)	\$ 1,2-Dichloroethane-d4 (Surr)(12.630)+ * 1,4-E						
(000012- 11- × 11-			omet	rr)(1)						
C_11- ≻			brom	4 (Su						
10-			Chlore	ane-d						
9			*	roeth						
8				Dichlo						
7				1,2-D						
б	+			\$						
5	8.044)+									
4)+ (2000 (2000				+					
3	6.877 Chlor				5.984					
2	Acetone(6.877)+				ne(1,					
		د 1			Toluene				anderi Karlongen prosentationen ist	
0 3.0	и <u>и и и и и и и и и и и и и и и и и и </u>	9.0	11.0	12.0		19.0	21.0 23.0	25.0		
3.0	5.0 7.0	9.0	11.0	13.0	15.0 17.0 Min	17.0	21.0 23.0	20.0	27.0	29.0

Lab Name: TestAmerica Sacramento	Job No.: <u>320-20253-1</u>				
SDG No.:					
Client Sample ID: <u>34001822</u>	Lab Sample ID: <u>320-20253-1</u>				
Matrix: Air	Lab File ID: MS9071412.D				
Analysis Method: TO-15	Date Collected: 07/14/2016 00:00				
Sample wt/vol: 500(mL)	Date Analyzed: 07/15/2016 20:10				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 118039	Units: ppb v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	ND		5.0	0.18
107-02-8	Acrolein	ND		2.0	0.22
107-13-1	Acrylonitrile	ND		2.0	0.19
107-05-1	Allyl chloride	ND		0.80	0.11
71-43-2	Benzene	ND		0.40	0.079
100-44-7	Benzyl chloride	ND		0.80	0.16
75-27-4	Bromodichloromethane	ND		0.30	0.066
75-25-2	Bromoform	ND		0.40	0.070
74-83-9	Bromomethane	ND		0.80	0.34
106-99-0	1,3-Butadiene	ND		0.80	0.15
106-97-8	n-Butane	ND		0.40	0.15
78-93-3	2-Butanone (MEK)	ND		0.80	0.20
75-65-0	tert-Butyl alcohol (TBA)	ND		2.0	0.11
104-51-8	n-Butylbenzene	ND		0.40	0.18
135-98-8	sec-Butylbenzene	ND		0.40	0.070
98-06-6	tert-Butylbenzene	ND		0.80	0.068
75-15-0	Carbon disulfide	ND		0.80	0.078
56-23-5	Carbon tetrachloride	ND		0.80	0.064
108-90-7	Chlorobenzene	ND		0.30	0.064
75-45-6	Chlorodifluoromethane	ND		0.80	0.11
75-00-3	Chloroethane	ND		0.80	0.31
67-66-3	Chloroform	ND		0.30	0.095
74-87-3	Chloromethane	ND		0.80	0.20
95-49-8	2-Chlorotoluene	ND		0.40	0.080
110-82-7	Cyclohexane	ND		0.40	0.084
124-48-1	Dibromochloromethane	ND		0.40	0.079
106-93-4	1,2-Dibromoethane (EDB)	ND		0.80	0.075
74-95-3	Dibromomethane	ND		0.40	0.057
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroetha ne	ND		0.40	0.16
95-50-1	1,2-Dichlorobenzene	ND		0.40	0.13
541-73-1	1,3-Dichlorobenzene	ND		0.40	0.11
106-46-7	1,4-Dichlorobenzene	ND		0.40	0.15
75-71-8	Dichlorodifluoromethane	ND		0.40	0.15
75-34-3	1,1-Dichloroethane	ND		0.30	0.072
107-06-2	1,2-Dichloroethane	ND		0.80	0.088

FORM I TO-15

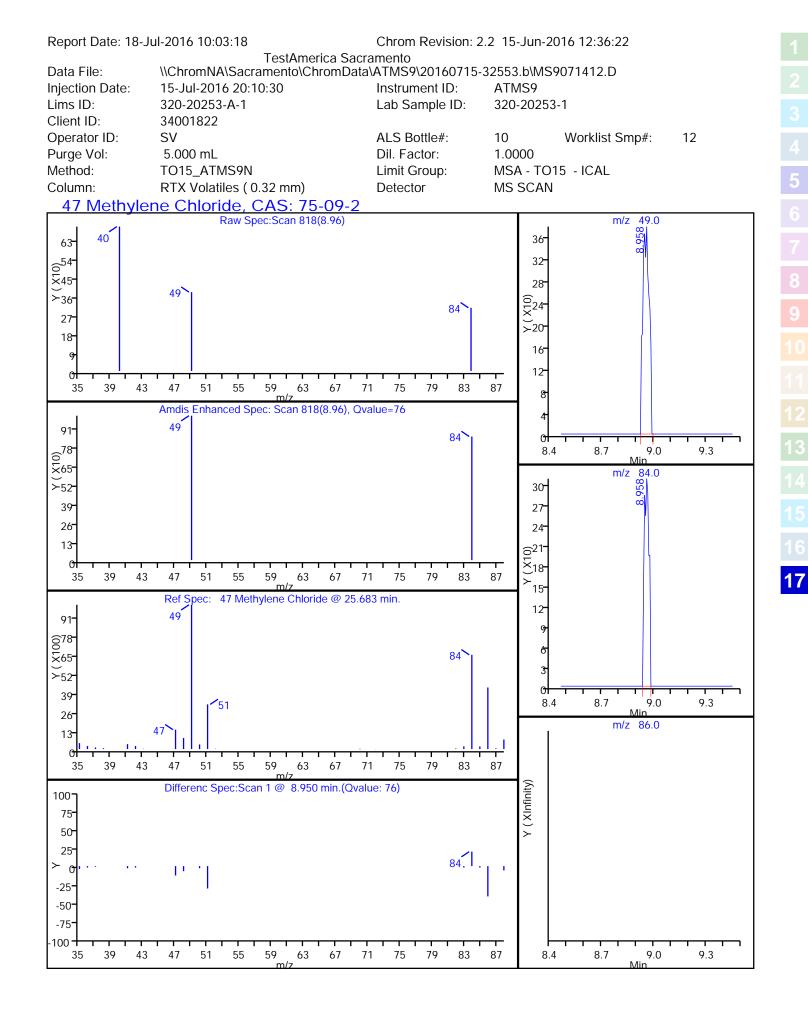
Lab Name: TestAmerica Sacramento	Job No.: <u>320-20253-1</u>			
SDG No.:				
Client Sample ID: <u>34001822</u>	Lab Sample ID: <u>320-20253-1</u>			
Matrix: Air	Lab File ID: MS9071412.D			
Analysis Method: <u>TO-15</u>	Date Collected: 07/14/2016 00:00			
Sample wt/vol: 500(mL)	Date Analyzed: 07/15/2016 20:10			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: 0.32(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 118039	Units: ppb v/v			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-35-4	1,1-Dichloroethene	ND		0.80	0.13
156-59-2	cis-1,2-Dichloroethene	ND		0.40	0.089
156-60-5	trans-1,2-Dichloroethene	ND		0.40	0.10
78-87-5	1,2-Dichloropropane	ND		0.40	0.24
10061-01-5	cis-1,3-Dichloropropene	ND		0.40	0.10
10061-02-6	trans-1,3-Dichloropropene	ND		0.40	0.088
123-91-1	1,4-Dioxane	ND		0.80	0.10
141-78-6	Ethyl acetate	ND		0.30	0.18
100-41-4	Ethylbenzene	ND		0.40	0.063
622-96-8	4-Ethyltoluene	ND		0.40	0.19
142-82-5	n-Heptane	ND		0.80	0.063
87-68-3	Hexachlorobutadiene	ND		2.0	0.43
110-54-3	n-Hexane	ND		0.80	0.075
591-78-6	2-Hexanone	ND		0.40	0.087
98-82-8	Isopropylbenzene	ND		0.80	0.10
99-87-6	4-Isopropyltoluene	ND		0.80	0.12
1634-04-4	Methyl-t-Butyl Ether (MTBE)	ND		0.80	0.050
80-62-6	Methyl methacrylate	ND		0.80	0.16
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14
75-09-2	Methylene Chloride	0.085	J	0.40	0.072
98-83-9	alpha-Methylstyrene	ND		0.40	0.065
91-20-3	Naphthalene	ND		0.80	0.56
111-65-9	n-Octane	ND		0.40	0.055
109-66-0	n-Pentane	ND		0.80	0.26
115-07-1	Propylene	ND		0.40	0.099
103-65-1	N-Propylbenzene	ND		0.40	0.059
100-42-5	Styrene	ND		0.40	0.059
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.40	0.069
127-18-4	Tetrachloroethene	ND		0.40	0.051
109-99-9	Tetrahydrofuran	ND		0.80	0.079
108-88-3	Toluene	ND		0.40	0.051
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		0.40	0.16
120-82-1	1,2,4-Trichlorobenzene	ND		2.0	0.43
71-55-6	1,1,1-Trichloroethane	ND		0.30	0.065
79-00-5	1,1,2-Trichloroethane	ND		0.40	0.067

Lab Name: TestAmerica Sacramento	Job No.: <u>320-20253-1</u>
SDG No.:	
Client Sample ID: <u>34001822</u>	Lab Sample ID: <u>320-20253-1</u>
Matrix: Air	Lab File ID: MS9071412.D
Analysis Method: TO-15	Date Collected: 07/14/2016 00:00
Sample wt/vol: 500(mL)	Date Analyzed: 07/15/2016 20:10
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: <u>0.32(mm)</u>
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 118039	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	ND		0.40	0.11
75-69-4	Trichlorofluoromethane	ND		0.40	0.20
96-18-4	1,2,3-Trichloropropane	ND		0.40	0.17
95-63-6	1,2,4-Trimethylbenzene	ND		0.80	0.16
108-67-8	1,3,5-Trimethylbenzene	ND		0.40	0.13
540-84-1	2,2,4-Trimethylpentane	ND		0.40	0.071
108-05-4	Vinyl acetate	ND		0.80	0.15
593-60-2	Vinyl bromide	ND		0.80	0.26
75-01-4	Vinyl chloride	ND		0.40	0.12
179601-23-1	m,p-Xylene	ND		0.80	0.10
95-47-6	o-Xylene	ND		0.40	0.054

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	95		70-130
17060-07-0	1,2-Dichloroethane-d4 (Surr)	109		70-130
2037-26-5	Toluene-d8 (Surr)	99		70-130

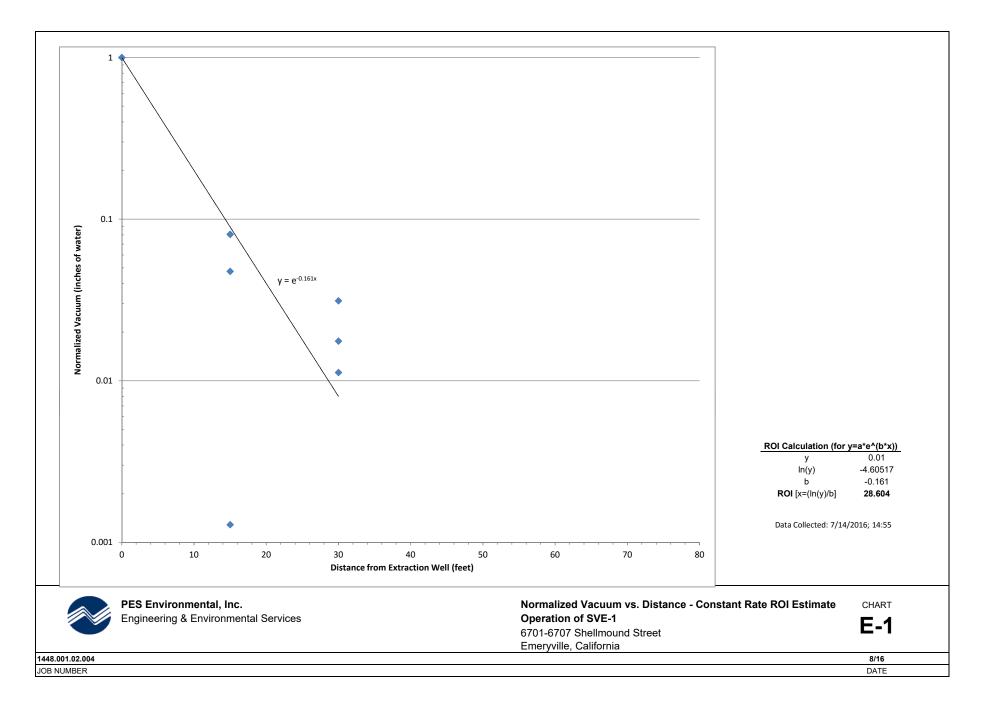

TestAmerica Sacramento Target Compound Quantitation Report

Data File: Lims ID: Client ID: Sample Type: Inject. Date: Purge Vol:	\\ChromNA\Sacramento\ChromDat 320-20253-A-1 34001822 Client 15-Jul-2016 20:10:30 5.000 mL	a\ATMS9\20160715- ALS Bottle#: Dil. Factor:	32553.b\MS 10 1.0000	9071412.D Worklist Smp#:	12
Sample Info: Misc. Info.: Operator ID:	320-20253-A-1 500 SV	Instrument ID:	ATMS9		
Method: Limit Group:	\\ChromNA\Sacramento\ChromDat MSA - TO15 - ICAL	a\ATMS9\20160715-	·32553.b\TO	015_ATMS9N.m	
Last Update:	18-Jul-2016 10:03:16	Calib Date:		016 01:59:30	
Integrator: Quant Method:	RTE Internal Standard	ID Type: Quant By:	Deconvol Initial Cali		
Last ICal File:	\\ChromNA\Sacramento\ChromDat	2			
Column 1 : Process Host:	RTX Volatiles (0.32 mm) XAWRK029		Det: MS S	SCAN	

First Level Reviewer: phanthaser	Date:			18-Jul-201	18-Jul-2016 09:57:46			
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ppb v/v	Flags
* 1 Chlorobromomethane (IS)	130	12.425	12.437	-0.012	97	39305	4.00	
* 2 1,4-Difluorobenzene	114	14.530	14.536	-0.006	96	177959	4.00	
* 3 Chlorobenzene-d5 (IS)	117	20.450	20.456	-0.006	91	150435	4.00	
\$ 41,2-Dichloroethane-d4 (Sur	65	13.599	13.612	-0.013	97	67488	4.38	
\$ 5 Toluene-d8 (Surr)	100	17.694	17.700	-0.006	97	114627	3.97	
\$ 6 4-Bromofluorobenzene (Surr	174	22.366	22.372	-0.006	83	86163	3.80	
31 Acetone	43	7.723	7.637	0.086	86	2256	0.1509	
47 Methylene Chloride	49	8.958	8.958	0.000	76	985	0.0845	
88 n-Octane	43	17.688	17.700	-0.012	42	1238	0.0428	
85 Toluene	91	17.858	17.852	0.006	68	1008	0.0205	
97 Ethylbenzene	91	20.632	20.644	-0.012	90	1232	0.0196	
98 m-Xylene & p-Xylene	91	20.784	20.784	0.000	3	1882	0.0381	
101 o-Xylene	91	21.472	21.478	-0.006	89	1086	0.0218	
103 1,1,2,2-Tetrachloroethane	83	22.202	22.202	0.000	87	868	0.0261	
107 N-Propylbenzene	91	22.646	22.646	0.000	94	1996	0.0239	
111 1,3,5-Trimethylbenzene	120	22.871	22.877	-0.006	82	606	0.0217	
114 tert-Butylbenzene	91	23.376	23.382	-0.006	80	1081	0.0239	
115 1,2,4-Trimethylbenzene	120	23.424	23.424	0.000	90	610	0.0205	
116 sec-Butylbenzene	105	23.680	23.680	0.000	95	2297	0.0273	
121 4-Isopropyltoluene	119	23.862	23.856	0.006	93	2227	0.0316	
117 1,3-Dichlorobenzene	146	23.966	23.960	0.006	91	928	0.0279	
120 1,4-Dichlorobenzene	146	24.088	24.094	-0.006	86	1021	0.0314	
123 n-Butylbenzene	92	24.398	24.398	0.000	95	1328	0.0366	
122 1,2-Dichlorobenzene	146	24.574	24.574	0.000	81	1093	0.0343	
126 1,2,4-Trichlorobenzene	180	26.831	26.819	0.012	91	2466	0.0969	
128 Hexachlorobutadiene	225	27.093	27.062	0.031	92	4121	0.1348	
127 Naphthalene	128	27.214	27.190	0.024	97	4960	0.0737	

Report Date: 18-Jul-2016 10:03:17	Chrom Revision: 2.2 15-Jun-2016 12:36:22			016 12:36:22
Reagents:				
VASUISIM_00310	Amount Added:	50.00	Units: mL	Run Reagent

TestAmerica Sacramento Data File: \\ChromNA\Sacramento\ChromData\ATMS9\20160715-3 Injection Date: 15-Jul-2016 20:10:30 Instrument ID: Lims ID: 320-20253-A-1 Lab Sample ID: Client ID: 34001822 Purge Vol: 5.000 mL Purge Vol: 5.000 mL Dil. Factor: Method: TO15_ATMS9N Limit Group: Column: RTX Volatiles (0.32 mm) MS9071412 121 00012 0.32 mm) 18 17- 16- 13 10012 101 101 9 9 8 7 10-	ATMS9 Operator ID: SV 320-20253-1 Worklist Smp#: 12 1.0000 ALS Bottle#: 10 MSA - TO15 - ICAL Y Scaling: Method Defined: Scale to the Nth Largest Peak: 2 MS SCAN Chro]:Total	
Lims ID: 320-20253-A-1 Lab Sample ID: Client ID: 34001822 Purge Vol: 5.000 mL Dil. Factor: Method: TO15_ATMS9N Limit Group: Column: RTX Volatiles (0.32 mm) MS9071412 21 20 19 18 17 16 15 14 12 14 12 14 12 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 15 15 14 15 15 15 15 14 15 15 15 15 15 15 15 14 15 15 15 14 15 15 15 14 15 15 15 14 15 15 15 15 15 15 15 15 15 15	Worklist Smp#: 12 1.0000 ALS Bottle#: 10 MSA - TO15 - ICAL Y Scaling: Method Defined: Scale to the Nth Largest Peak: 2 MS SCAN Chro]:Total	
Client ID: 34001822 Purge Vol: 5.000 mL Dil. Factor: Method: TO15_ATMS9N Limit Group: Column: RTX Volatiles (0.32 mm)	1.0000 ALS Bottle#: 10 VISA - TO15 - ICAL Y Scaling: Method Defined: Scale to the Nth Largest Peak: 2 MS SCAN Chro]:Total	
Purge Vol: 5.000 mL Dil. Factor: Method: TO15_ATMS9N Limit Group: Column: RTX Volatiles (0.32 mm) MS9071412 21 19 19 18 17 16 15 14 13 (6)	MSA - TO15 - ICAL Y Scaling: Method Defined: Scale to the Nth Largest Peak: 2 MS SCAN Chro]:Total	
Method: TO15_ATMS9N Limit Group: Column: RTX Volatiles (0.32 mm) MS9071412 21 0 12 19 18 17 16 15 14 12	MSA - TO15 - ICAL Y Scaling: Method Defined: Scale to the Nth Largest Peak: 2 MS SCAN Chro]:Total	
Column: RTX Volatiles (0.32 mm)	Y Scaling: Method Defined: Scale to the Nth Largest Peak: 2 MS SCAN Chro]:Total	
21 20 19 18 17- 16- 15- 14- 13-	MS SCAN Chro]:Total + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
20- 19- 18- 17- 16- 15- 14- 13-	Uene-d8 (Surr)(17.700)+ enzene-d5 (IS)(20.450)+ benzene (Surr)(22.366)+	
19- 18- 17- 16- 15- 14- 13-	uene-d8 (Surr)(17.70 enzene-d5 (IS)(20.4) benzene (Surr)(22.36	
18- 17- 16- 15- 14- 13-	luene-d8 (Surr)(1 enzene-d5 (IS)(2 benzene (Surr)(2	
18- 17- 16- 15- 14-	luene-d8 (Sur benzene-d5 (ISur	
	enzene -d8	
	그 이 희	
13-		
13-		
T (X10000) 5 	↔	
ane (IS) and		
S (Su heth		
10 ⁻ 5 ⁻		
pp. 9		
oeth		
ू भूम ह		±
7	+ + + +	093)
	(122.202 (122.202) (122.202) (122.877)- (122.877)- (122.877)- (122.877)- (122.877)- (122.202) (1	27.02
5 66 + +	20.784)+ 20.784)+ 20.784)+ 22.877 86(5)+ 22.877 86(5)+ 22.877 86(5)+ 22.877 86(5)+ 22.877 86(5)+ 22.28)+22.28)+22(-28)+22(-28)+22(-28)+22(-28)+22(-28)+22(-28)	ene(
5 8 8 8	238 454 (C) 20 238 454 (C) 20 238 454 (C) 20	
		9.94
2.711)+		
e Ct 7.7		
2)au ej		1,2,4- Incenciobenzene(20, 33,1)+ Naphthareftel(979)9,4)qilene(27,093)+
Acetone(7.711)+ Methylene Chloride(N 194
	oluene(1 	- Na
01 1 1 1 1 1 3.0 5.0 7.0 9.0 11.0 13.0	12:0 12:0 10:0 10:0 10:0 10:0 10:0 10:0	



APPENDIX E

SVE WELL RADIUS OF INFLUENCE GRAPH

Table E-1 SVE-1 Constant Rate Test Results Results of SVE Pilot Study 6701-6707 Shellmound Street Emeryville, California

Vapor Extraction Location	Date	Distance from Extraction Well (feet)	Measured Vacuum (inches water)	Vacuum Normalized to SVE-1 (inches water)
SVE-1	7/14/2016	0.0	116.4	1
SVP-1-7.5	7/14/2016	30	2.05	0.0176
SVP-2-7.5	7/14/2016	15	9.38	0.0806
SVP-3-7.5	7/14/2016	15	0.15	0.0013
SVP-4-7.5	7/14/2016	30	1.31	0.0113
SVP-5-7.5	7/14/2016	30	3.64	0.0313
SVP-6-7.5	7/14/2016	15	5.54	0.0476

DISTRIBUTION

RESULTS OF SVE PILOT STUDY 6701, 6705, and 6707 SHELLMOUND STREET EMERYVILLE, CALIFORNIA FUEL LEAK CASE NO. RO0000548 GEOTRACKER GLOBAL ID T0600100894

AUGUST 29, 2016

COPY NO. _____

Copy No.

2 Copies	Anton Emeryville, LLC 950 Tower Lane, Suite 1225 Foster City, California 94404	1 – 2
	Attention: Ms. Rachel Green	
3 Copies	PES Job Files	3 - 5
1 Copy	Unbound Original	6