

RECEIVED

8:52 am, Sep 10, 2012

Alameda County Environmental Health

September 06, 2012

Mr. Keith Nowles Alameda County Environmental Health Services Agency Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RE: 2011 Second Semi-Annual Groundwater Monitoring Report –June 2011 Pacific Supply Oakland

1735 24th Street Oakland, CA 94607

Dear Mr. Keith Nowles:

Attached is the Groundwater Monitoring Report –June 2011 dated October 14, 2010 describing the semi-annual groundwater monitoring at the above address performed by Brunsing Associates.

I declare under penalty of perjury that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions regarding this report, please contact William Coset of Brunsing Associates at (707) – 838 -3027, myself at (916) 645 -2568 (direct line) or (916)835 -6207 (cell number).

Sincerely,

Normita G. Callison

Normita G. Callison, REM Environmental Consultant For: PCCI and Subsidiaries

Enclosure
Groundwater Monitoring Report –June 2011

October 14, 2011 Project No. 029

Mr. Paresh C. Khatri
Alameda County Health Care Services Agency
Environmental Protection
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502-6577

Groundwater Monitoring Report-June 2011 Pacific Supply Company 1735 24th Street Oakland, California

Dear Mr. Khatri:

This report has been prepared by Brunsing Associates, Inc. (BAI) to provide a summary of the fieldwork completed at 1735 24th Street, Oakland, California (Plate 1) and the corresponding laboratory analytical results reported for groundwater samples collected during this semi-annual monitoring event. Fieldwork was conducted at the site on June 3 and 6, 2011. The fieldwork was completed in accordance with the Alameda County Health Care Services Agency (ACHCSA) correspondence dated November 6, 2003.

Site Background

In May 1987, efforts were initiated to abandon a 1,000-gallon underground gasoline storage tank at Pacific Supply Company's West Oakland site. Soil and associated vapor samples from exploratory boreholes at the site were analyzed by Anatec Laboratories. The results indicated that soil in the vicinity of the tank was contaminated with gasoline and raised the possibility that gasoline may have reached groundwater below the site. During subsequent removal of the tank by Erikson Industrial Services, substantial deterioration of the tank body was documented. Gasoline odors were also detected during tank removal operations.

In order to assess the extent of soil and groundwater quality beneath and immediately adjacent to the Pacific Supply Company site and the potential for migration of contaminants from off-site sources, BAI carried out a two-phase soil and groundwater investigation. Monitoring wells MW-1 through MW-5 (Plate 2) were constructed in September 1988 as the first phase of the soil and

groundwater investigation. Monitoring wells MW-6 and MW-7 were constructed on December 19, 1989 during Phase II of the same investigation. The construction and sampling of these wells are documented in BAI's "Report of Findings", dated March 23, 1990. The results of the Phase I and II investigations indicated that light petroleum hydrocarbons had migrated beyond the immediate vicinity of the former underground storage tank (UST); however, it was concluded that hydrocarbons in the soil and groundwater had not extended beyond the limits of the property.

The Pacific Supply Company initiated quarterly groundwater monitoring at the request of the ACHCSA in May 1992. Initially, only on-site wells were monitored for total petroleum hydrocarbons (TPH) as gasoline, benzene, toluene, ethylbenzene and xylenes (BTEX), and lead. Later, the five on-site and the two off-site wells were monitored quarterly.

A vapor extraction pilot study was performed in June 1992 to determine the feasibility of using vapor extraction technology as an in-situ corrective action to remove volatile petroleum hydrocarbons from the shallow subsurface soils. A two-inch diameter vapor extraction well (VEW-1) was installed at the location indicated on Plate 2 to an approximate depth of 8 feet below ground surface (bgs). The results of the 4-day pilot study indicated that the lithology at the site permitted the flow of air through the soils at a sufficient rate so as to volatilize hydrocarbon constituents in the soil. The radius of influence was determined in the field by measuring the relative pressure at several probe locations positioned at various radial distances away from the extraction well. The results indicated that the estimated radius of influence from the 2-inch diameter extraction well was approximately 30 feet at a relatively low pressure of less than 50 inches of water, as discussed in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

In response to an ACHCSA December 1992 request, BAI also performed an investigation to attempt to delineate the zero line of contamination. Ten soil borings (B-1 through B-10) were drilled as part of this investigation to depths of approximately 7 to 10 feet bgs (Plate 2). From each boring, one soil sample was retained from a depth of approximately 7 to 8 feet bgs for analytical testing of TPH as gasoline and BTEX. Further discussions of this investigation are provided in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

Vapor recovery wells VRW-1 through VRW-9 were constructed in August 1993 as part of a vapor recovery system. During installation of the extraction wells, soil samples were collected for chemical analysis in the borings at the depth where groundwater was first encountered, at approximately 7 feet bgs. Installations of these wells were documented in a February 7, 1994 report. A vapor extraction system was installed in the fall of 1993 as an interim remedial action. The system began operation on December 26, 1993. The system consisted of an internal combustion engine with a spray aeration tank for treatment of groundwater, and an activated carbon treatment polishing step prior to groundwater discharge. The internal combustion unit

and spray aeration unit was manufactured by Remediation Service International (RSI), under the trade name Spray Aeration Vapor Extraction (SAVE) system.

On June 28, 1996, the treatment system was shut down with the concurrence of Pacific Supply Company. Prior to shut down, the system had destroyed an estimated 6,550 pounds of petroleum hydrocarbons since start of operations on December 26, 1993. After shut down, the water in the water tank was treated and discharged to the sanitary sewer under the existing permit and the inside of the tank was cleaned on July 15, 1996.

The permit with the Bay Area Air Quality Management District (BAAQMD) expired on September 1, 1996, and was not renewed. The water discharge permit was discontinued on July 31, 1996. The total volume of water discharged to the sanitary sewer was 151,089 gallons. In December 1996, the shut down and decommissioning of the system was authorized by Jennifer Eberle of the Alameda County Department of Health Services.

Groundwater monitoring continued following the shut down of the vapor extraction system. In August 2000, BAI supervised the drilling of three soil borings in 24th Street, on the north side of the Pacific Supply Company building in a downgradient direction from the former UST location. Grab groundwater samples were collected to evaluate whether off-site migration of hydrocarbon contamination in groundwater was occurring. One of the three groundwater samples was reported to contain low levels of TPH as gasoline, BTEX, and petroleum oxygenates. The results of the field investigation are presented in BAI's "Groundwater Investigation and Monitoring Report," dated December 14, 2000.

The drilling activities were performed on July 21, 2004 to determine the effectiveness of the vapor extraction system and to collect soil samples for geotechnical properties to aid in the evaluation of risk based cleanup scenarios. Soil borings CB-1 through CB-14 were drilled to depths ranging from 7 to 8.5 feet bgs. The soil samples selected for laboratory analyses were collected based on the elevation of the historical contamination in the vicinity of the boring, or direction from the ACHCS. The results of this investigation are presented in BAI's report titled "Soil Parameters and Confirmation Soil Sampling Investigation Report", dated January 31, 2005.

Table 1 presents a summary of groundwater analytical data and groundwater elevations for the monitoring wells. Table 2 presents the groundwater concentrations and groundwater elevations for vapor recovery wells. Plate 2 presents a site map that shows the historical boring and sampling locations. Groundwater elevations calculated from this monitoring even are provided on Plate 3.

Scope of Work

The scope of work performed for this monitoring event included measuring depths to water in the groundwater and vapor recovery wells and collecting groundwater samples for laboratory analyses. The samples were submitted to a State-certified laboratory under chain of custody protocol.

On June 3, 2011 BAI measured depths to water in groundwater monitoring wells MW-1 through MW-3 and vapor recovery wells VRW-2 through VRW-8. The groundwater monitoring data and calculated elevations relative to mean sea level (MSL) for wells MW-1 through MW-3 (and historical data for wells MW-4 through MW-7) are presented in Table 1, and in Table 2 for vapor recovery wells VRW-1 through VRW-9.

On June 3 and 6, 2011 BAI collected groundwater samples from groundwater monitoring wells MW-2 and MW-3 and vapor recovery wells VRW-2, VRW-3, VRW-4, MW-5, VRM-6, VRW-7, VRM-8, and VRW-9.

The groundwater sampling protocol and field logs are included in Appendix A. BACE Analytical & Field Services (BAFS) analyzed the groundwater samples for TPH as gasoline and for volatile organic compounds (VOCs) including BTEX and MTBE by EPA Test Method 8260. The groundwater analytical report for the groundwater samples is presented in Appendix B.

Groundwater Flow Direction

Based on data from well VRW-3, MW-2, and MW-3, the groundwater gradient on June 3, 2011 was 0.006 feet per foot toward the north, with groundwater elevations ranging from 4.10 feet to 4.60 feet above MSL. The groundwater elevations are presented on Plate 3.

Groundwater Analytical Results

TPH as gasoline was reported in the sample collected from well MW-2 at a concentration of 1.3 milligrams per liter (mg/l), benzene was at 5.36 micrograms per liter (μ g/l), toluene at 3.66 μ g/l, and xylenes at 5.93 μ g/l. In well MW-3, TPH as gasoline was reported at a concentration of 0.14 mg/l, MTBE at 1.50 μ g/l, and tert-Butyl Alcohol (TBA) at 120 μ g/l.

TPH as gasoline was reported in the samples collected from the vapor extraction wells VRW-2 through VRW-9 at concentrations ranging from 0.22 mg/l in VRW-6 to 1.9 mg/l in VRW-8. Benzene was reported in vapor extraction wells VRW-2, VRW-4, VRW-5, VRW-6, VRW-7, and VRW-8, at concentrations ranging from 2.00 μ g/l in well VRW-6 to 251 μ g/l in well VRW-4. Toluene was reported in wells VRW-2, VRW-4, and VRW-8, at concentrations of 2.03 μ g/l, 11.9 μ g/l, and 6.24 μ g/l, respectively. Xylenes were reported in samples collected from wells VRW-2, VRW-4, VRW-5, VRW-6, VRW-8, and VRW-9 at concentrations ranging from 1.23 μ g/l

(VRW-6) to 28.5 μ g/l (VRW-4). TBA was reported in wells VRW-6, VRW-7, VRW-8, and VRW-9, at concentrations ranging from 56.4 μ g/l (VRW-8) to 82.1 μ g/l (VRW-7).

Monitoring Schedule

Groundwater sampling is tentatively scheduled for January 2012. A report summarizing the results of the January 2012 monitoring event will be provided after BAI receives and reviews the analytical results.

If you should have any questions regarding this report, please contact Bill Coset at (707) 838-3027.

DAVID E CONLEY

Sincerely,

David E. Conley, P.G.

Senior Geologist

William H. H. Coset

Project Geologist

cc: Ms. Normita Callison

LIST OF ATTACHMENTS

TABLES

Table 1. Summary of Groundwater Analytical Data for Monitoring Wells

Table 2. Summary of Groundwater Analytical Data for Vapor Extraction Wells

PLATES

Plate 1. Vicinity Map Plate 2. Site Map

Plate 3. Groundwater Elevations, June 3, 2011

APPENDICES

Appendix A. Monitoring Well Sampling Protocol and Field Reports

Appendix B. Analytical Laboratory Report

TABLES

1	Depth to	Depth to	Groundwater	TPH as						
Well	Groundwater	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(μg/L)
MW-1	10/14/1988	7.99	0.88	1.1	1.1	ND	_	ND	_	_
MW-1	12/29/1989	7.74	1.13	ND	ND	ND	ND	ND	ND (1)	_
MW-1	5/28/1992	7.81	1.06	ND	ND	ND	ND	ND	0.003(2)	_
MW-1	9/3/1992	7.90	0.97	ND	ND	ND	ND	ND	0.12 (2)	_
MW-1	11/24/1992	7.90	0.97	ND	ND	ND	ND	ND	0.017 (2)	~
MW-1	3/9/1993	7.38	1.49	ND	ND	ND	ND	ND	ND (1)	_
MW-1	7/21/1993	7.68	1.19	ND	ND	ND	ND	ND	ND (1)	
MW-1	11/3/1993	7.83	1.04	ND	ND	ND	ND	ND	ND (1)	
MW-1	2/1/1994	7.30	1.57	ND	ND	ND	ND	ND	ND (1)	_
MW-1	6/2/1994	7.43	1.44	ND	ND	ND	ND	ND	ND (1)	_
MW-1	9/1/1994	7.70	1.17	ND	ND	ND	ND	ND	ND (1)	_
MW-1	12/13/1994	6.90	1.97	ND	ND	ND	ND	ND	_	_
MW-1	3/7/1995	7.30	1.57	0.06	3.8	ND	ND	ND	-	-
MW-1	6/9/1995	7.87	1.00	0.09	12	0.8	0.5	1.3	_	_
MW-1	9/21/1995	7.67	1.20	ND	4.1	ND	ND	ND	_	_
MW-1	12/18/1995	7.15	1.72	ND	ND	ND	ND	ND	_	_
MW-1	2/29/1996	6.74	2.13	0.09	1.4	0.5	ND	0.8		_
MW-1	7/15/1996	7.76	1.11		_	_	_	_		_
MW-1	1/7/1997	6.80	2.07	0.06	0.6	<0.5	<0.5	<0.5	_	_
MW-1	7/12/1997	7.67	1.20	_	_	_	_	_	_	_
MW-1	1/26/1998	6.93	1.94	<0.05	<0.5	<0.5	<0.5	1.1	_	
MW-1	7/3/1998	7.51	1.36	-	_	_	_		-	- 1
MW-1	1/13/1999	7.63	1.24	<0.05	<0.5	<0.5	<0.5	<0.5		
MW-1	9/27/1999	7.77	1.10	_	_	_	~	_	_	_
MW-1	1/28/2000	6.85	2.02	<0.05	<0.5	<0.5	<0.5	<0.5	_	<5.0
MW-1	5/16/2002	7.45	1.42	0.35	<0.5	<0.5	<0.5	<0.5	_	<1.0
MW-1	6/10/2003	7.32	4.15	<0.05	<0.5	<0.5	<0.5	<0.5	_	_
MW-1	11/19/2003	7.30	4.17	<0.050	<0.30	<0.30	<0.50	<0.50	_	
<u>M</u> W-1	6/23/2004	7.49	3.98	0.37	<1.0	<1.0	<1.0	<1.0	-	_

	Depth to	Depth to	Groundwater	TPH as						
Well	Groundwater	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(µg/L)
MW-1	12/10/2004	6.27	5.20	<0.050	<0.5	<0.5	<0.5	<0.5	-	_
MW-1	7/21/2005	7.41	4.06	< 0.05	<0.50	<0.50	<0.50	<0.50	_	_
MW-1	1/18/2006	6.28	5.19	<0.05	<0.50	<0.50	<0.50	<0.50	-	_
MW-1	1/26/2007	7.47	4.00	<0.050	<0.50	<0.50	<0.50	<0.50		<1.0
MW-1	6/28/2007	7.53	3.94	<0.050	<0.50	<0.50	<0.50	<0.50		<1.0
MW-1	1/31/2008	6.54	4.93	0.1	<0.50	<0.50	<0.50	<0.50		<1.0
MW-1	7/1/2008	7.56	3.91	0.056	<0.50	<0.50	<0.50	<0.50	-	<1.0
MW-1	1/28/2009	7.12	4.35	0.10	<0.50	<0.50	<0.50	<0.50		<1.0
MW-1	7/22/2009	7.57	3.90	<0.05	<0.50	<0.50	<0.50	<0.50	-	<1.0
MW-1	2/2/2010	6.58	4.89	<0.05	<0.50	<0.50	<0.50	<0.50	_	<1.0
MW-1	8/3/2010	7.55	3.92	< 0.05	<0.50	<0.50	<0.50	<0.50	_	<1.0
MW-1	1/31/2011	7.05	4.42	<0.05	<0.50	<0.50	<0.50	<0.50		<1.0
MW-2	10/14/1988	7.29	0.85	11	23	20	<u>organista et espek ellerkelt eller kallanda i et e</u> erre	16	~ ~	
MW-2	12/29/1989	6.87	1.27	4	200	6.7	ND	ND	0.22 (1)	_
MW-2	5/28/1992	6.92	1.22	8.9	550	48	ND	13	ND (2)	
MW-2	9/3/1992	7.26	0.88	2.1	760	6.2	1.8	5.1	0.006 (2)	-
MW-2	11/24/1992	7.28	0.86	4.2	370	15	3.4	9.5	ND (2)	
MW-2	3/9/1993	6.73	1.41	4.3	280	14	3.7	7.1	ND (1)	
MW-2	7/21/1993	7.02	1.12	3.4	250	9.6	2.5	11	ND(1)	
MW-2	11/4/1993	7.22	0.92	2.5	230	7.8	2.1	9.9	ND(1)	
MW-2	2/1/1994	6.93	1.21	3.4	240	17	ND	15	ND(1)	-
MW-2	6/2/1994	6.86	1.28	3.0	150	9.8	3.0	10	ND(1)	
MW-2	9/1/1994	7.10	1.04	2.1	120	9.8	2.0	9.6	ND(1)	-
MW-2	12/13/1994	6.58	1.56	2.0	200	10	2.7	11		
MW-2	3/7/1995	6.69	1.45	3.0	500	15	5.8	16	-	
MW-2	6/9/1995	7.00	1.14	2.1	300	14	5.8	13		
MW-2	9/21/1995	6.91	1.23	1.6	120	9.6	ND ND	15		_~
MW-2	12/18/1995	6.73	1.41	2.8	120	16	5.2	19		
MW-2	2/29/1996	6.36	1.78	1.7	170	15	2.9	17		
MW-2	7/15/1996	7.11	1.03	2.8	160	22	3.5	17		

	Depth to	Depth to	Groundwater	TPH as						1
Well	Groundwater	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	МТВЕ
	1			"			1	1	1	1
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(mg/L)	(μg/L)
MW-2	1/7/1997	6.40	1.74	3.0	350	25	8.1	24	_	-
MW-2	7/12/1997	6.98	1.16	2.1	55	11	<2.5	18		-
MW-2	1/26/1998	6.45	1.69	1.8	310	29	5.0	15	-	-
MW-2	7/3/1998	6.91	1.23	1.9	85	9.3	1.8	17		_
MW-2	1/13/1999	7.07	1.07	2.1	48	33	2.0	16	 -	
MW-2	9/27/1999	7.22	0.92	1.5	20	6.8	2.6	11		-
MW-2	1/28/2000	6.61	1.53	1.3	22	6.4	1.5	11	_	<5.0
MW-2	5/17/2002	6.95	1.19	3.3	25.4	<5.0	<5.0	<5.0		<10
MW-2	6/10/2003	6.71	4.09	1.6	52	2.3	32	9.1	_	_
MW-2	11/19/2003	6.95	3.85	3.7	9.7	<1.1	<1.1	7.5		_
MW-2	6/23/2004	6.96	3.84	1.1	6.30	2.36	<1.0	7.41		
MW-2	12/9/2004	6.54	4.26	3.0	13.0	13.0	<0.5	24	_	-
MW-2	7/22/2005	6.89	3.91	2.7	5.84	<2.5	<2.5	5.81		_
MW-2	1/19/2006	6.33	4.47	3.6	15.0	<2.5	<2.5	11.2	-	_
MW-2	1/26/2007	6.99	3.81	0.29	2.65	<2.5	<2.5	3.00		<5.0
MW-2	6/29/2007	7.00	3.80	1.9	6.69	2.44	< 0.50	6.24	_	1.72
MW-2	1/31/2008	6.36	4.44	0.7	1.83	<1.0	<1.0	<1.0		<2.0
MW-2	7/1/2008	6.95	3.85	1.4	2.72	2.26	<1.0	4.66	-	2.14
MW-2	1/28/2009	6.76	4.04	0.70	5.31	2.78	<0.50	5.92	_	<1.0
MW-2	2/2/2010	6.42	4.38	2.2	8.64	<2.5	<2.5	4.53	_	<5.0
MW-2	8/2/2010	7.06	3.74	1.0	1.29	1.40	<1.0	1.71	_	<2.0
MW-2	1/31/2011	6.75	4.05	2.0	4.86	2.48	<0.50	4.63	_	1.47
MW-2	6/3/2011	6.70	4.10	1.3	5.36	3.66	<0.50	5.93	-	<1.0
MW-3	10/14/1988	8.25	0.88	3.4	ND	ND	- [2.8	-	_
MW-3	12/29/1989	7.79	1.34	ND	ND	ND	ND	ND	0.205 (1)	_
MW-3	5/28/1992	7.83	1.30	ND	0.8	0.5	ND	ND	0.016 (2)	_
MW-3	9/3/1992	8.22	0.91	ND	ND	ND	ND	ND	0.033 (2)	_
MW-3	11/24/1992	8.29	0.84	ND	ND	ND	ND	ND	0.011 (2)	_
MW-3	3/9/1993	7.30	1.83	0.1	1.8	ND	ND	ND	ND(1)	_
MW-3	7/21/1993	7.87	1.26	ND	ND	ND	ND	ND	ND(1)	
MW-3	11/4/1993	8.23	0.90	0.07	0.6	0.5	ND	ND	ND(1)	- 1
MW-3	2/1/1994	7.56	1.57	ND	ND	ND	ND	ND	ND(1)	
MW-3	6/2/1994	7.46	1.67	0.06	ND	ND	ND	ND	ND(1)	- 0

	Depth to	Depth to	Groundwater	TPH as						
Well	Groundwater	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(mg/L)	(μg/L)
MW-3	9/1/1994	7.83	1.30	0.07	1.7	0.9	ND	ND	ND(1)	_
MW-3	12/13/1994	7.07	2.06	0.06	1.4	ND	ND	ND	_	-
MW-3	3/8/1995	7.27	1.86	0.06	1.5	ND	ND	ND	_	_
MW-3	6/9/1995	7.79	1.34	0.10	5.7	ND	ND	ND	_	
MW-3	9/21/1995	7.87	1.26	ND	1.5	ND	ND	ND	_	_
MW-3	12/18/1995	7.30	1.83	ND	1.3	ND	ND	ND	_	_
MW-3	2/29/1996	6.84	2.29	ND	2.1	0.6	ND	0.7		_
MW-3	7/15/1996	7.79	1.34	-	_	_	_		_	_
MW-3	1/7/1997	6.62	2.51	0.05	1.0	<0.5	<0.5	<0.5	_	
MW-3	7/12/1997	7.83	1.30	_	_	-	_	_	_	_
MW-3	1/26/1998	6.60	2.53	<0.05	0.8	<0.5	<0.5	<0.5	_	
MW-3	7/3/1998	7.48	1.65	_	_	_	_	_		
MW-3	1/13/1999	7.63	1.50	<0.05	<0.5	<0.5	<0.5	<0.5	_	_
MW-3	9/27/1999	7.94	1.19	_	_	_	_	_	_	
MW-3	1/28/2000	7.12	2.01	< 0.05	<0.5	<0.5	<0.5	<0.5	_	<5.0
MW-3	6/5/2003	7.53	4.23	< 0.05	<0.5	<0.5	<0.5	<0.5		_
MW-3	11/19/2003	7.83	3.93	0.16	< 0.54	<0.54	<0.55	<1.6	_	_
MW-3	6/23/2004	7.65	4.11	<0.05	<1.0	<1.0	<1.0	<1.0	-	_
MW-3	12/8/2004	7.53	4.23	<0.050	<0.5	<0.5	<0.5	<0.5		
MW-3	7/20/2005	7.62	4.14	<0.10	<1.0	<1.0	<1.0	<1.0		
MW-3	1/19/2006	6.76	5.00	<0.05	< 0.50	<0.50	<0.50	0.71		_
MW-3	1/25/2007	7.54	4.22	0.15	<0.50	< 0.50	< 0.50	<0.50	-	<1.0
MW-3	6/29/2007	7.70	4.06	0.075	0	<0.50	<0.50	<0.50	_	(A)
MW-3	2/1/2008	6.87	4.89	0.72	<0.50	<0.50	<0.50	<0.50	_	(A)
MW-3	7/2/2008	7.79	3.97	0.081	<0.50	<0.50	<0.50	<0.50		(B)
MW-3	1/29/2009	7.53	4.23	0.15	<0.50	<0.50	<0.50	<0.50	_	<1.0
MW-3	7/23/2009	7.80	3.96	0.18	<0.50	<0.50	<0.50	<0.50		1.00 (C)
MW-3	2/1/2010	6.96	4.80	0.25	<0.50	<0.50	<0.50	<0.50		1.30 (D)
MW-3	8/2/2010	7.76	4.00	0.14	<0.50	<0.50	< 0.50	<0.50	_	1.37(E)
MW-3	2/1/2011	7.37	4.39	0.17	<0.50	<0.50	<0.50	<0.50		(F)
MW-3	6/3/2011	7.16	4.60	0.14	<0.50	<0.50	<0.50	<0.50	-	1.50 (G)

	Depth to	Depth to	Groundwater	TPH as	_					NOR
Well	Groundwater	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(mg/L)	(μg/L)
MW-4	10/14/1988	8.33	0.74	4.6	1.2	ND	_	2.2		_
MW-4	12/29/1989	8.08	0.99	0.5	0.7	ND _	ND	ND	ND (1)	_
MW-4	5/28/1992	8.19	0.88	0.27	8.8	1	ND	3.2	0.030 (2)	_
MW-4	9/3/1992	8.37	0.70	0.20	4.5	4.4	ND	1.9	0.022 (2)	_
MW-4	11/24/1992	8.28	0.79	0.14	3.2	3.2	ND	1.0	0.005 (2)	_
MW-4	3/9/1993	7.98	1.09	0.47	10	ND	ND	2.5	ND (1)	_
MW-4	7/21/1993	8.17	0.90	0.28	4.4	5.9	ND	ND	ND(1)	
MW-4	11/4/1993	8.14	0.93	0.08	1.3	1.6	ND	ND	ND(1)	-
MW-4	2/1/1994	7.79	1.28	0.08	ND	ND	ND	ND	ND(1)	
MW-4	6/2/1994	7.53	1.54	0.30	3.1	2.9	ND	0.8	ND(1)	
MW-4	9/1/1994	7.69	1.38	0.12	1.6	ND	ND	ND	ND(1)	<u> </u>
MW-4	12/13/1994	6.70	2.37	ND	ND	ND	ND	ND	_	
MW-4	3/8/1995	6.83	2.24	0.09	ND	ND	ND	ND	_	
MW-4	6/9/1995	7.66	1.41	0.19	ND	ND	ND	ND	_	~
MW-4	9/21/1995	7.93	1.14	0.09	ND	ND	ND	ND	_	_
MW-4	12/18/1995	6.98	2.09	_	_	_	_	_	-	
MW-4	2/29/1996	6.54	2.53	0.14	1.6	1.0	ND	0.6	_	
MW-4	7/15/1996	7.74	1.33	_	_	_	_		_	-
MW-4	1/7/1997	6.46	2.61	0.09	1.0	0.5	<0.5	<0.5		
MW-4	7/12/1997	7.82	1.25	_	-	_	_	_	_	
MW-4	1/26/1998	6.67	2.40	0.09	1.1	0.8	<0.5	<0.5	-	
MW-4	7/3/1998	7.45	1.62	_	_	_	_	- 1	- 1	- 1
MW-4	1/13/1999	7.51	1.56	0.12	1.1	0.62	<0.5	0.57	_	-
MW-4	9/27/1999	7.88	1.19	_	_	_	-	_	_	
MW-4*	1/28/2000	7.02	2.05	0.072	<0.5	<0.5	<0.5	<0.5	_	<5.0
MW-5	10/14/1988	8.04	0.89	3.2	ND	ND	-	ND		-
MW-5	12/29/1989	7.40	1.53	ND	ND	ND	ND	ND	ND (1)	
MW-5	5/28/1992	7.53	1.40	ND	ND	ND	ND	ND	0.008 (2)	-
MW-5	9/3/1992	8.02	0.91	ND	ND	ND	ND	ND	0.034 (2)	_

	Depth to	Depth to	Groundwater	TPH as						
Well	Groundwater	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(μg/L)
MW-5	11/24/1992	7.75	1.18	ND	ND	ND	ND	ND	0.011 (2)	_
MW-5	3/9/1993	6.91	2.02	ND	ND	ND	ND	ND	ND (1)	_
MW-5	7/21/1993	7.57	1.36	ND	ND	ND	ND	ND	ND(1)	
MW-5	11/4/1993	7.77	1.16	ND	ND	ND	ND	ND	ND(1)	-
MW-5	2/1/1994	7.05	1.88	ND	ND	ND	ND	ND	ND(1)	
MW-5	6/2/1994	7.18	1.75	ND	ND	ND	ND	ND _	ND(1)	
MW-5	9/1/1994	7.53	1.40	ND	ND	ND	ND	ND	_	_
MW-5	3/8/1995	6.67	2.26	ND	ND	ND	ND	ND	_	_
MW-5	6/9/1995	7.33	1.60	ND	ND	ND	ND	ND	_	_
MW-5	9/21/1995	7.67	1.26	ND	ND	ND	ND	ND		_
MW-5	12/18/1995	6.62	2.31	_	_					
MW-5	2/29/1996	6.16	2.77	ND	ND	ND	ND	ND		_
MW-5	7/15/1996	7.47	1.46	_	_	_				
MW-5	1/7/1997	6.11	2.82	<0.05	<0.5	<0.5	<0.5	<0.5		
MW-5	7/12/1997	7.61	1.32	- 1	_				_	
MW-5	1/26/1998	6.17	2.76	<0.05	<0.5	<0.5	<0.5	<0.5		
MW-5	7/3/1998	7.23	1.70		_	_				
MW-5	1/13/1999	7.27	1.66	<0.05	<0.5	<0.5	<0.5	<0.5		
MW-5	9/27/1999	7.76	1.17	_		_		_		
MW-5*	1/28/2000	7.17	1.76	<0.05	<0.5	<0.5	<0.5	<0.5		<5.0
MW-6	12/29/1989	5.02	1.11	1.1	5.4	4.5	ND	ND	ND (1)	_
MW-6	3/9/1993	5.10	1.03	2.3	2.3	2.8	ND	3.1	ND (1)	_
MW-6	7/21/1993	5.23	0.90	0.59	ND	7.6	ND	ND	ND(1)	
MW-6	11/4/1993	5.25	0.88	1.5	ND	1.2	ND	0.7	ND(1)	
MW-6	2/1/1994	5.05	1.08	1.9	2.5	3.9	1.6	1.1	ND(1)	_
MW-6	6/2/1994	4.49	1.64	1.3	ND	1	ND	ND	ND(1)	_
MW-6	9/1/1994	4.53	1.60	2.2	ND	1.7	ND	ND	ND(1)	-
MW-6	12/13/1994	4.27	1.86	0.66 (3)	ND	ND	ND	ND		
MW-6	3/8/1995	3.37	2.76	1.0 (3)	ND	ND	ND	ND		_
MW-6	6/9/1995	4.40	1.73	1.5	ND	3.3	ND	ND	-	
MW-6	9/21/1995	4.69	1.44	0.28	ND	ND	ND	ND	-	_
MW-6*	12/18/1995	4.42	1.71	-	-	_	-	-	-	_

TABLE 1. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR MONITORING WELLS

	Depth to	Depth to	Groundwater	TPH as						
Well	Groundwater	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(mg/L)	(μg/L)
MW-7	12/29/1989	8.35	-3.32	ND	ND	ND	ND	ND	0.235 (1)	_
MW-7	3/9/1993	13.60	-8.57	ND	ND	ND	ND	ND	ND (1)	_
MW-7	7/21/1993	12.59	-7.56	ND	ND	ND	ND	ND	ND(1)	_
MW-7	11/4/1993	9.84	-4.81	ND	ND	ND	ND	ND	ND(1)	_
MW-7	2/1/1994	10.38	-5.35	ND	ND	ND	ND	ND	ND(1)	_
MW-7	6/2/1994	10.10	-5.07	ND	ND	ND	ND	ND	ND(1)	
MW-7	9/1/1994	9.63	-4.60	ND	ND	ND	ND	ND_	ND(1)	
MW-7	12/13/1994	11.27	-6.24	ND	ND	ND	ND	ND	_	_
MW-7	3/7/1995	9.68	-4.65	ND	ND	ND	ND	ND		
MW-7	6/9/1995	9.37	4.34	ND	ND	ND	ND	ND	_	_
MW-7	9/21/1995	9.43	-4.40	ND	ND	ND	ND	ND	<u>-</u> -	_
MW-7	12/18/1995	13.28	-8.25			_		-	_	_
MW-7	2/29/1996	11.70	-6.67	ND	ND	ND	ND	ND	_	_
MW-7	7/15/1996	11.12	-6.09	_		~	-	-	_	-
MW-7		14.35	-9.32	<0.05	<0.5	<0.5	<0.5	<0.5	_	
MW-7	7/12/1997	15.12	-10.09	_	_	_	_	_		_
MW-7	1/26/1998	15.28	-10.25	<0.05	<0.5	<0.5	<0.5	<0.5	_	_
MW-7	7/3/1998	14.10	-9.07		_	_	_	_	_	_
MW-7	1/13/1999	14.55	-9.52	<0.05	<0.5	<0.5	<0.5	<0.5	_	
MW-7	9/27/1999	14.03	-9.00	-		-	_	_	_	,
MW-7*	1/28/2000	7.47	-2.44	<0.05	<0.5	<0.5	<0.5	<0.5		<5.0

Pacific Supply Company, 1735 24th Street, Oakland, California

Notes:

MTBE = methyl tertiary butyl ether. TPH = total petroleum hydrocarbons.

(1)=Organic Lead, (2)=Total Lead, and (3)=chromatographic peak array does not match gasoline standard.

ND = not detected at laboratory reporting limit. <= less than given laboratory reporting limit.

 $\mu g/L = \text{micrograms per liter.}$ mg/L = milligrams per liter. - = not requested.

MSL = mean seal level.

Groundwater elevations prior to 2003 based on the following well casing elevations in feet above MSL:

MW-1 (8.87'), MW-2 (8.14'), MW-3 (9.13'), MW-4 (9.07'), MW-5 (8.93'), MW-6 (6.13') and MW-7 (5.03').

New survey data was obtained on June 23, 2003 by Phelps and Associates Land Surveyors.

June 2003 water levels were measured on June 5, 2003.

June 2004 water levels were measured on June 22, 2004.

December 2004 water levels were measured on December 8, 2004.

= Removed from sampling program.

(A) = concentrations of tert-Butyl alcohol (TBA) reported at 120 μg/l.

(B) = concentrations of tert-Butyl alcohol (TBA) reported at 151 μ g/l.

(C) = concentrations of tert-Butyl alcohol (TBA) reported at 122 μg/l.

(D) = concentrations of tert-Butyl alcohol (TBA) reported at 135 μ g/l.

(E) = concentrations of tert-Butyl alcohol (TBA) reported at 127 μ g/l.

(F) = concentrations of tert-Butyl alcohol (TBA) reported at 91.8 μg/l.

(G) = concentrations of tert-Butyl alcohol (TBA) reported at 120 μ g/l.

Sample	Depth to Groundwater	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethyl- benzene	Xvlenes	МТВЕ	Other Oxygenates & Lead Scavengers
D D	Date	(feet)	(feet, MSL)	(feet, MSL)	(mg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	ω Lead Scavengers (μg/L)
VRW-1	11/3/1993	-	-	-	3	1600	19	1.1	16	-	- (-92)
VRW-1	6/10/2003	7.31	11.18	3.87	0.44	5.9	<0.5	<0.5	1.9	-	-
VRW-1	11/19/2003	7.33	11.18	3.85	1.2	19	<0.54	< 0.55	6.3	_	-
VRW-1	6/22/2004	7.32	11.18	3.86	0.32	3.23	<1.0	<1.0	3.36	-	-
VRW-1	12/9/2004	6.93	11.18	4.25	0.32	8.0	<3	<3	3.7	-	•
VRW-1	7/22/2005	7.25	11.18	3.93	0.69	5.35	1.27	< 0.50	3.66	_	-
VRW-1	1/19/2006	6.63	11.18	4.55	0.53	6.98	1.41	<0.50	3.18	-	-
VRW-1	1/25/2007	7.34	11.18	3.84	0.32	260	0.97	< 0.50	2.43	1.31	
VRW-1	6/28/2007	7.30	11.18	3.88	0.17	2.19	0.76	< 0.50	1.83	1.26	<u> </u>
VRW-1	1/31/2008	6.67	11.18	4.51	0.77	20.5	3.75	<0.50	6.82	2.45	<u> </u>
VRW-1	7/1/2008	7.35	11.18	3.83	0.75	11.8	3.73	<0.50	6.41	1.13	(B)
VRW-1	1/28/2009	7.14	11.18	4.04	<0.050	1.12	1.26	<0.50	1.56	<1.0	
VRW-1	7/22/2009	7.40	11.18	3.78	0.38	1.06_	0.69	<0.50	1.11	1.33	(E)
VRW-1	2/2/2010	6.70	11.18	4.48	0.90	8.95	2.42	<1.0	4.76	<2.0	
VRW-1	8/2/2010	7.41	11.18	3.77	0.37	1.34	0.77	<0.50	0.96	<1.0	(A)
VRW-1	1/31/2011	7.14	11.18	4.04	0.28	2.63	< 0.50	<0.50	<0.50	1.03	(U)
VRW-2	11/4/1993				7.2	3,300	600	2.4	870	-	
VRW-2	5/17/2002				2.8	471	<10	<10	<10	<20	<10 to <20
VRW-2	6/9/2003	6.87	11.08	4.21	0.47	38	2.8	<1.0	<1.0		
VRW-2	11/19/2003	7.00	11.08	4.08	1.3	51	< 0.54	<0.55	4.0		
VRW-2	6/25/2004	7.00	11.08	4.08	0.24	274	4.10	4.11	8.22		
VRW-2	12/9/2004	6,45	11.08	4.63	< 0.050	9.6	4.2	2.5	4.3		
VRW-2	7/21/2005	6.93	11.08	4.15	2.1	102	1.43	0.84	3.81		-
VRW-2	1/18/2006	5.83	11.08	5.25	3.8	280	<2.5	3.81	7.54		
VRW-2	1/25/2007	6.94	11.08	4.14	1.0	62.3	<2.5	<2.5	3,56	<5.0	<u> </u>
VRW-2	6/28/2007	7.02	11.08	4.06	0.45	41.0	<2.5	<2.5	3.83	<5.0	-
VRW-2	1/31/2008	6	11.08	5.08	1.4	80.1	2.31	1.25	3.57	1.87	_
VRW-2	7/1/2008	7.15	11.08	3.93	1.5	73.2	2.04	<1.0	4.52	2.15	_
VRW-2	1/28/2009	6.71	11.08	4.37	0.54	46.2	2.10	<0.50	3.76	<1.0	-
VRW-2	7/22/2009	7.10	11.08	3.98	1.1	12.7	1.06	<1.0	2.79	2.38	•
VRW-2	2/2/2010	6.06	11.08	5.02	1.9	62.8	<2.5	<2.5	<2.5	<5.0	•
VRW-2	8/3/2010	7.04	11.08	4.04	1.4	31.1	1.44	<1.0	2.42	<2.0	-
VRW-2	1/31/2011	6.70	11.08	4.38	1.6	21.1	1.78	<1.0	2.93	1.20	-
VRW-2	6/3/2011	6.54	11.08	4.54	0.98	15.5	2.03	<0.50	3.38	1.61	-

Sample	Depth to Groundwater	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	TPH as	Benzene	Toluene	Ethyl- benzene	Xylenes	мтве	Other Oxygenates & Lead Scavengers
ID	Date	(feet)	(feet, MSL)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)
VRW-3	11/4/1993		_	_	5.7	120	41	1.1	380	-	-
VRW-3	5/17/2002		_	_	0.42	10.9	<0.5	<0.5	1.07	<1.0	<0.50 to <1.0
VRW-3	6/9/2003	7.41	11.62	4.21	0.061	4.8	<0.5	< 0.5	<0.5	-	-
VRW-3	11/19/2003	7.48	11.62	4.14	0.16	1.7	<0.54	<0.55	2.7		- ~~
VRW-3	6/25/2004	7.58	11.62	4.04	0.12	2.00	<0.50	<0.50	1.00	-	-
VRW-3	12/10/2004	6.34	11.62	5.28	0.22	27	3.7	1.0	3.1	-	
VRW-3	7/22/2005	7.50	11.62	4.12	0.11	<1.0	<1.0	<1.0	2.02	-	-
VRW-3	1/18/2006	6.37	11.62	5.25	0.18	230	< 0.50	<0.50	1.46	-	
VRW-3	1/26/2007	7.50	11.62	4.12	0.071	1.68	<0.50	<0.50	<0.50	<1.0	
VRW-3	6/28/2007	7.60	11.62	4.02	< 0.050	<0.50	<0.50	< 0.50	<0.50	<1.0	-
VRW-3	1/31/2008	6.50	11.62	5.12	<0.050	1.01	< 0.50	<0.50	<0.50	<1.0	-
VRW-3	7/1/2008	7.66	11.62	3.96	0.10	<0.50	<0.50	< 0.50	<0.50	<1.0	<u> </u>
VRW-3	1/28/2009	7.19	11.62	4.43	< 0.050	<0.50	<0.50	<0.50	2.26	<1.0	<u>-</u>
VRW-3	7/22/2009	7.64	11.62	3.98	0.26	<0.50	<0.50	<0.50	1.16	<1.0	
VRW-3	2/2/2010	6.45	11.62	5.17	0.28	< 0.50	<0.50	<0.50	<0.50	<1.0	(L)
VRW-3	8/3/2010	7.63	11.62	3.99	0.29	<0.50	< 0.50	<0.50	0.87	<1.0	(P)
VRW-3	1/31/2011	7.16	11.62	4.46	0.22	1.19	<0.50	<0.50	1.41	<1.0	(V)
VRW-3	6/3/2011	7.05	11.62	4.57	< 0.050	<0.50	<0.50	<0.50	<0.50	<1.0	manager and the second
VRW-4	11/4/1993	-	<u> </u>	_	9.0	4,400	900	5.4	990	-	<u> </u>
VRW-4	5/15/2002	-		-	11	4,270	741	512	1,130	<50	<25 to <50
VRW-4	6/5/2003	7.01	11.33	4.32	2.2	1,200	100	12	89	·	<u> </u>
VRW-4	11/19/2003	7.44	11.33	3.89	1.7	210	2.4	<2.2	36	-	
VRW-4	6/22/2004	7.20	11.33	4.13	14	4,540	611	739	1,170		
VRW-4	12/8/2004	6.99	11.33	4.34	2.7	780	68	90	160	-	
VRW-4	7/20/2005	7.12	11.33	4.21	19	3,740	381	480	643	-	
VRW-4	1/19/2006	6.29	11.33	5.04	7.8	1,670	196	270	324	-	-
VRW-4	1/26/2007	7.06	11.33	4.27	1.4	163	<25	<25	25.2	<50	•
VRW-4	6/28/2007	6.99	11.33	4.34	0.62	60.8	3.81	3.72	18.7	<5.0	-
VRW-4	1/31/2008	6.20	11.33	5.13	0.75	26.0	3.21	<2.5	15.6	<5.0	<u>-</u>
VRW-4	7/1/2008	7.32	11.33	4.01	0.77	16.8	2.86	<0.50	13.3	<1.0	
VRW-4	1/29/2009	7.02	11.33	4.31	0.89	45.5	3.16	1.75	13.2	<1.0	•
VRW-4	7/22/2009	7.26	11.33	4.07	0.91	16.1	2.42	<1.0	12.4	<2.0	(F)
VRW-4	2/1/2010	6.40	11.33	4.93	2.5	481	26.2	45.2	61.1	<10	
VRW-4	8/3/2010	7.26	11.33	4.07	1.2	19.3	<5.0	<5.0	8.80	<10	<5.0 to <100
VRW-4	1/31/2011	6.96	11.33	4.37	1.0	125	8.25	9.51	19.3	<2.0	
VRW-4	6/3/2011	6.75	11.33	4.58	1.2	251	11.9	18.2	28.5	<2.0	

Sample	Depth to Groundwater	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	МТВЕ	Other Oxygenates & Lead Scavengers
ID	Date	(feet)	(feet, MSL)	(feet, MSL)	(mg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
VRW-5	11/4/1993	_	_	-	0.90	68	33	2.5	32	-	•
VRW-5	5/16/2002	_		_	0.87	44.3	<5.0	<5.0	<5.0	<10	<5.0 to <10
VRW-5	6/9/2003	7.33	11.56	4.23	0.93	90	<1.0	14	0.16	-	-
VRW-5	11/19/2003	7.53	11.56	4.03	2.9	250	<1.1	24	41	-	•
VRW-5	6/23/2004	7.47	11.56	4.09	0.72	40.5	<1.0	1.17	8.04	-	-
VRW-5	12/10/2004	7.11	11.56	4.45	0.72	60	10	<3	33	-	-
VRW-5	7/21/2005	7.38	11.56	4.18	1.6	102	3.83	4.62	12.4		-
VRW-5	1/19/2006	6.29	11.56	5.27	1.8	65.4	<2.5	31.4	33.4	-	
VRW-5	1/25/2007	7.40	11.56	4.16	NA	NA	NA	NA	NA	NA	NA
VRW-5	6/29/2007	7.50	11.56	4.06	0.69	35.4	2.55	<2.5	5.62	<5.0	NA
VRW-5	2/1/2008	6.49	11.56	5.07	0.87	33.7	<2.5	15.2	10.5	<5.0	NA
VRW-5	1/28/2009	7.17	11.56	4.39	0.72	110	3.53	5.00	9.00	<1.0	NA
VRW-5	7/23/2009	7.54	11.56	4.02	1.6	11.8	<1.0	<1.0	3.93	<2.0	(G)
VRW-5	8/3/2010	7.50	11.56	4.06	1.5	12.7	1.50	<1.0	3.28	<2.0	<1.0 to <20
VRW-5	2/1/2011	7.20	11.56	4.36	2.0	109	2.83	77.5	6.86	<2.0	
VRW-5	6/3/2011	6.95	11.56	4.61	0.45	5.67	<1.0	2.61	2.43	<2.0	
VRW-6	11/4/1993		_	-	0.41	6.6	1.0	ND	31	-	
VRW-6	5/15/2002	_		_	0.73	178	4.58	1.41	6.10	<1.0	<0.50 to <1.0
VRW-6	6/6/2003	7.21	11.43	4.22	<0.05	<0.5	<0.5	<0.5	<0.5	-	
VRW-6	11/19/2003	7.39	11.43	4.04	0.21	13	<0.54	1.0	2.5	-	
VRW-6	6/23/2004	7.36	11.43	4.07	0.42	43.4	3.60	1.69	13.0	-	<u> </u>
VRW-6	12/9/2004	6.71	11.43	4.72	0.14	8.0	21	<0.5	3.6	-	
VRW-6	7/21/2005	7.32	11.43	4.11		18.3	1.13	0.95	5.05	-	
VRW-6	1/19/2006	5.85	11.43	5.58	0.13	3.96	<0.50	<0.50	1.25	-	-
VRW-6	1/25/2007	7.28	11.43	4.15	0.20	13.5	0.72	0.56	2.67	<1.0	-
VRW-6	6/28/2007	7.41	11.43	4.02	0.081	7.37	<0.50	<0.50	1.32	<1.0	(A)
VRW-6	2/1/2008	NM	11.43	NM	1.8	212	10.2	8.05	17.7	<2.0	(A)
VRW-6	7/2/2008	7.51	11.43	3.92	0.18	4.80	<0.50	<0.50	1.72	<1.0	(C)
VRW-6	7/23/2009	NM	11.43	NM	0.21	<0.50	<0.50	<0.50	<0.50	<1.0	(H)
VRW-6	2/1/2010	6.65	11.43	4.78	0.32	7.97	<0.50	<0.50	1.26	<1.0	(M)
VRW-6	8/2/2010	7.45	11.43	3.98	0.28	1.15	<0.50	<0.50	1.03	<1.0	(Q)
VRW-6	2/1/2011	7.00	11.43	4.43	0.29	2.65	<0.50	<0.50	1.17	<1.0	(W)
VRW-6	6/3/2011	7.00	11.43	4.43	0.22	2.00	<0.50	<0.50	1.23	<1.0	(AA)

Sample	Depth to Groundwater	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	TPH as	Benzene	Toluene	Ethyl- benzene	Xylenes	МТВЕ	Other Oxygenates & Lead Scavengers
ID	Date	(feet)	(feet, MSL)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)
VRW-7	11/4/1993	_	_	~	0.10	ND	ND	ND	ND	-	-
VRW-7	5/16/2002	_	_	_	1.6	28.9	0.980	<0.50	<0.50	<1.0	<0.50 to <1.0
VRW-7	6/6/2003	7.47	11.70	4.23	0.36	19	1,3	<0.5	2.2	-	
VRW-7	11/19/2003	7.78	11.70	3.92	1.1	14	<0.54	1.7	5.6	-	-
VRW-7	6/22/2004	7.61	11.70	4.09	1.3	130	8.06	9.81	15.9	-	-
VRW-7	12/9/2004	7.54	11.70	4.16	0.34	28	<3	<3	5.0	-	•
VRW-7	7/21/2005	7.54	11.70	4.16	1.7	48.1	2.76	2.56	6.94	-	-
VRW-7	1/19/2006	6.70	11.70	5.00	1.6	86.8	3.63	6.89	9.04	-	-
VRW-7	1/25/2007	7.46	11.70	4.24	NA	NA	NA	NA	NA	NA	NA
VRW-7	6/28/2007	7.62	11.70	4.08	NA	NA	NA	NA	NA	NA	NA
VRW-7	2/1/2008	6.70	11,70	5.00	0.47	21.3	<5.0	<5.0	<5.0	<10	NA
VRW-7	7/2/2008	7.70	11.70	4.00	0.38	2.13	< 0.50	< 0.50	2.60	<1.0	(D)
VRW-7	1/29/2009	7.47	11.70	4.23	0.44	8.67	< 0.50	<0.50	2.30	<1.0	
VRW-7	7/23/2009	7.69	11.70	4.01	0.51	2.87	<0.50	< 0.50	<0.50	<1.0	(I)
VRW-7	2/1/2010	6.82	11.70	4.88	0.62	31.6	1.67	2.52	3.18	<2.0	(N)
VRW-7	8/2/2010	7.71	11.70	3.99	0.36	3.82	<1.0	<1.0	1.21	<2.0	(R)
VRW-7	2/1/2011	7.36	11.70	4.34	0.27	3.93	<0.50	<0.50	0.68	<1.0	(X)
VRW-7	6/3/2011	7.11	11.70	4.59	0.23	3.60	<0.50	<0.50	<0.50	<1.0	(BB)
VRW-8	11/4/1993	_	_	_	5.9	460	54	ND	53	-	
VRW-8	5/16/2002	_		_	3.3	248	16.0	<10	<10	<20	<10 to <20
VRW-8	6/6/2003	7.42	11.62	4.20	1.8	70	10	11	6.1	-	
VRW-8	11/19/2003	7.85	11.62	3.77	3.6	36	<2.7	<2.7	4.3	-	<u> </u>
VRW-8	6/23/2004	7.56	11.62	4.06	2.1	115	11.8	<5.0	18.2		
VRW-8	12/9/2004	7.41	11.62	4.21	1,3	30	9.0	<3	7.6	-	•
VRW-8	7/21/2005	7.49	11.62	4.13	4.1	24.8	3.44	<2.5	7.34	-	-
VRW-8	1/19/2006	6.73	11.62	4.89	4.8	18.1	4.26	<2.5	8.30	-	-
VRW-8	1/25/2007	7.41	11.62	4.21	1.3	10.7	<2.5	<2.5	6.70	<5.0	*
VRW-8	6/29/2007	7.60	11.62	4.02	0.64	4.76	<2.5	<2.5	3.85	<5.0	<u>-</u>
VRW-8	2/1/2008	6.85	11.62	4.77	3.1	15.1	2.9	<2.5	9.77	<5.0	•
VRW-8	7/2/2008	7.73	11.62	3.89	2.0	11.6	<2.5	<2.5	<2.5	<5.0	-
VRW-8	1/29/2009	7.43	11.62	4.19	0.84	7.73	2.04	<0.50	7.52	<1.0	•
VRW-8	7/23/2009	7.71	11.62	3.91	2.4	22.2	<1.0	<1.0	8.18	<2.0	(J)
VRW-8	2/1/2010	6.90	11.62	4.72	1.8	4.03	2.02	<1.0	5.08	<2.0	(O)
VRW-8	8/2/2010	7.65	11.62	3.97	0.95	3.04	1.14	<1.0	2.76	<2.0	(S)
VRW-8	2/1/2011	7.16	11.62	4.46	2.4	13.8	4.62	<1.0	8.63	<2.0	(Y)
VRW-8	6/3/2011	7.30	11.62	4.32	1.9	13.9	6.24	<1.0	9.95	<2.0	(CC)

	Depth to	Depth to	Top of	Groundwater	TPH as			Ethyl-	W. N.	B. COODING	Other Oxygenates
Sample	Groundwater	Groundwater	Casing Elevation	Elevation	gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	& Lead Scavengers
ID	Date	(feet)	(feet, MSL)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)
VRW-9	11/4/1993	_	-		0.47	36	18	ND	1.0	-	<u>-</u>
VRW-9	5/16/2002	-	_	-	0.080	0.990	2.00	< 0.50	5.93	<1.0	<0.50 to <1.0
VRW-9	6/6/2003	7.67	11.87	4.20	0.58	10	4.4	4.9	< 0.50	-	<u>-</u>
VRW-9	11/19/2003	8.01	11.87	3.86	0.86	<1.1	<1.1	<1.1	5.5		<u>-</u>
VRW-9	6/22/2004	7.76	11.87	4.11	0.61	<1.0	1.35	<1.0	5.55	-	
VRW-9	12/9/2004	7.51	11.87	4.36	0.57	8.8	10 ⁻	<0.5	5.5	-	-
VRW-9	7/21/2005	7.71	11.87	4.16	0.66	<1.0	<1.0	<1.0	2.83		
VRW-9	1/19/2006	6.94	11.87	4.93	1.0	2.04	<1.0	<1.0	4.91		-
VRW-9	1/26/2007	7.65	11.87	4.22	0.52	<1.0	1.01	<1.0	3.53	<2.0	
VRW-9	6/29/2007	7.81	11.87	4.06	0.38	<0.50	<0.50	<0.50	2.27	<1.0	
VRW-9	7/2/2008	7.93	11.87	3.94	0.53	< 0.50	<0.50	<0.50	1.85	<1.0	-
VRW-9	1/29/2009	7.60	11.87	4.27	0.24	1.53	1.03	<0.50	4.04	<1.0	
VRW-9	7/23/2009	7.91	11.87	3.96	0.80	<0.50	<0.50	<0.50	1.60	<1.0	(K)
VRW-9	2/1/2010	7.01	11.87	4.86	0.95	1.71	1.13	<1.0	4.00	<2.0	
VRW-9	8/3/2010	7.86	11.87	4.01	0.68	<1.0	<1.0	<1.0	1.57	<2.0	(T)
VRW-9	2/1/2011	nm	11.87		0.58	< 0.50	<0.50	<0.50	1.82	<1.0	(Z)
VRW-9	6/3/2011	mm	11.87		0.35	< 0.50	<0.50	<0.50	1.76	<1.0	(DD)

Pacific Supply Company, 1735 24th Street, Oakland, California

Notes:

 $mg/L = milligrams per liter; \mu g/L = micrograms per liter$ $na = not \ analyzed.$ $ND = not \ detected \ above \ laboratory \ reporting \ limits.$

MSL = Mean Sea Level

< = less than the specified laboratory reporting limit

(A) = concentrations of tert-Butyl alcohol reported at 51.2 μ g/l.

(B) = concentrations of tert-Butyl alcohol reported at 53.3 μ g/l.

(C) = concentrations of tert-Butyl alcohol reported at 54.3 μ g/l.

(D) = concentrations of tert-Butyl alcohol reported at 90.4 μ g/l.

(E) = concentrations of tert-Butyl alcohol reported at 42.5 μ g/l.

(F) = concentrations of tert-Butyl alcohol reported at 33.7 μ g/l.

(G) = concentrations of tert-Butyl alcohol reported at 35.2 μ g/l.

(H) = concentrations of tert-Butyl alcohol reported at 28.6 μ g/l.

(I) = concentrations of tert-Butyl alcohol reported at 89.5 μ g/l.

(J) = concentrations of tert-Butyl alcohol reported at 62.6 μ g/l.

(K) = concentrations of tert-Butyl alcohol reported at 62.1 μ g/l.

(L) = concentrations of tert-Butyl alcohol reported at 41.8 μ g/l.

(M) = concentrations of tert-Butyl alcohol reported at 48.8 μ g/l.

(N) = concentrations of tert-Butyl alcohol reported at 61.4 μ g/l.

(0) = concentrations of tert-Butyl alcohol reported at 57.5 μ g/l.

(P) = concentrations of tert-Butyl alcohol reported at 28.9 μ g/l.

(0) = concentrations of tert-Butyl alcohol reported at 57.4 μ g/l.

(R) = concentrations of tert-Butyl alcohol reported at 58.7 μ g/l.

(S) = concentrations of tert-Butyl alcohol reported at 52.5 μ g/l.

(T) = concentrations of tert-Butyl alcohol reported at 50.6 μ g/l.

(U) = concentrations of tert-Butyl alcohol reported at 40.4 μ g/l.

(V) = concentrations of tert-Butyl alcohol reported at 30.5 μ g/l.

(W) = concentrations of tert-Butyl alcohol reported at 62.7 μ g/l.

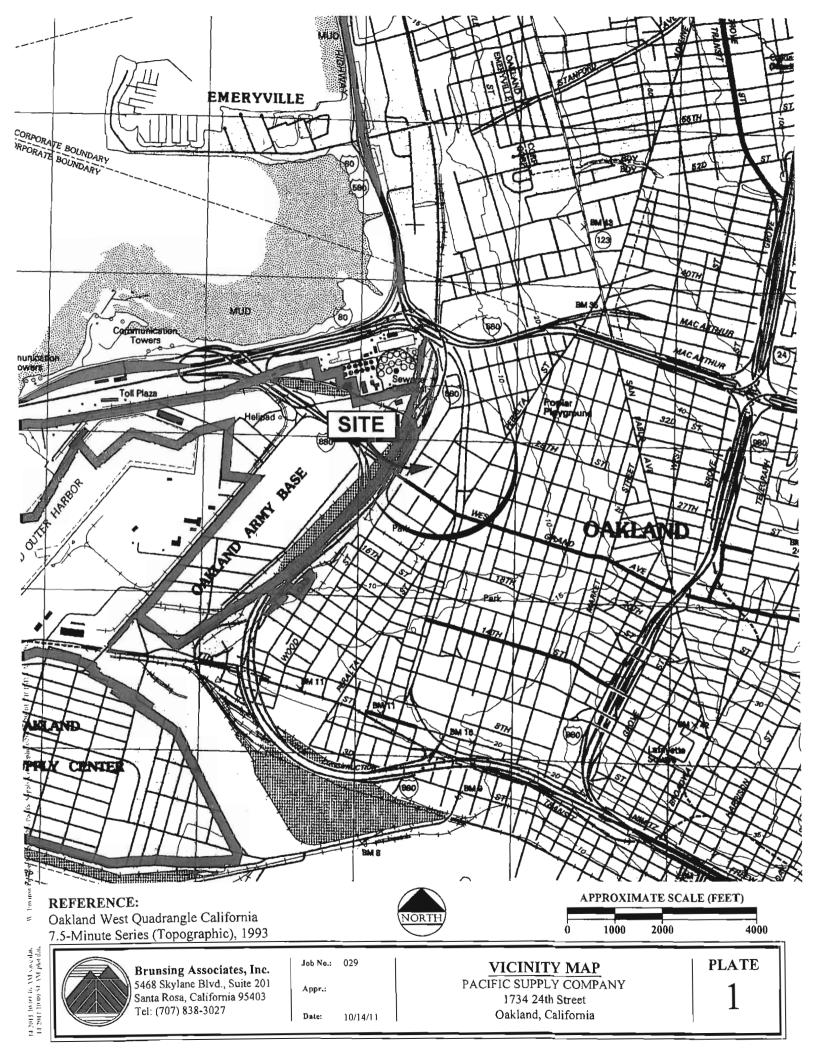
(X) = concentrations of tert-Butyl alcohol reported at 81.3 μ g/l.

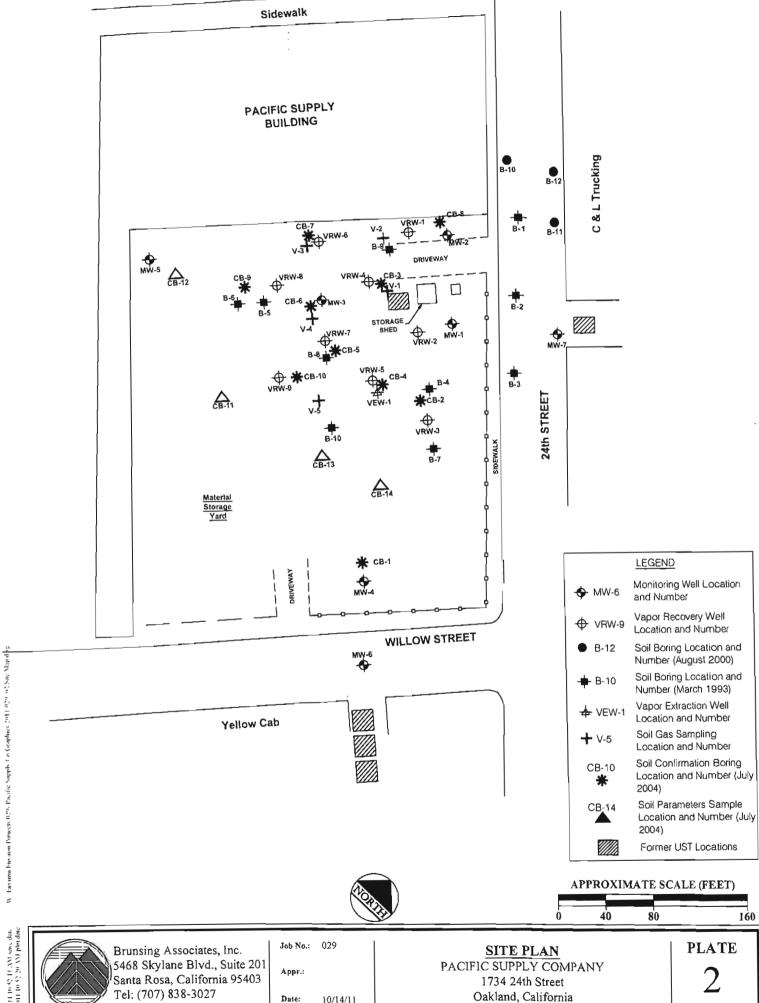
(Y) = concentrations of tert-Butyl alcohol reported at 49.7 μ g/l.

(Z) = concentrations of tert-Butyl alcohol reported at 54.9 μ g/l.

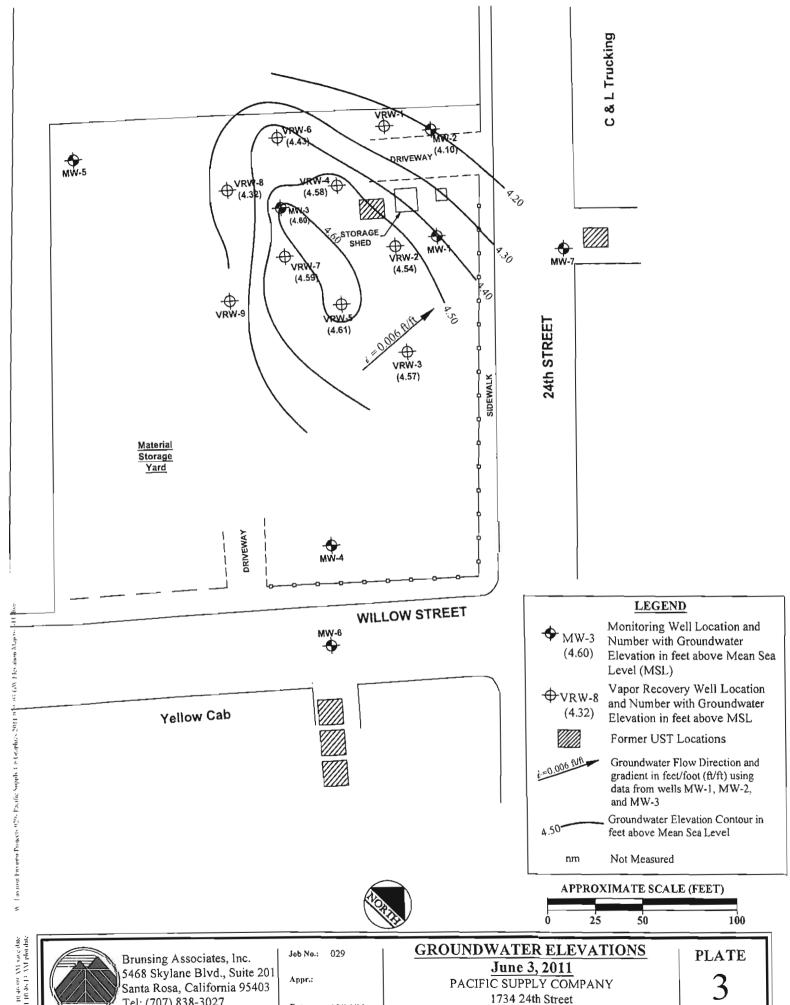
(AA) = concentrations of tert-Butyl alcohol reported at 69.2 μ g/l.

(BB) = concentrations of tert-Butyl alcohol reported at 82.1 μ g/l.


(CC) = concentrations of tert-Butyl alcohol reported at 56.4 μ g/l.


(DD) = concentrations of tert-Butyl alcohol reported at 67.7 μ g/l.

PLATES



Date:

10/14/11

(4.2011) to \$2.10,733 save date 14.2011 (0.52.20.33) precedent

Tel: (707) 838-3027

Date: 10/14/11

1734 24th Street Oakland, California

APPENDIX A Monitoring Well Sampling Protocol and Field Reports

Groundwater Sampling Protocol

Monitoring Wells

Prior to purging a monitoring well, groundwater levels are measured with a Solinst electric depth measurement device, or an interface probe, in all wells that are to be measured. At sites where petroleum hydrocarbons are possible contaminants, the well is checked for floating product using a clear bailer, a steel tape with water/oil paste, or an interface probe, during the initial sampling round. If floating product is measured during the initial sampling round or noted during subsequent sampling rounds, floating product measurements are continued.

After the water level and floating product measurements are complete, the monitoring well is purged until a minimum of three casing volumes of water are removed, water is relatively clear of sediment, and pH, conductivity, and temperature measurements of the water become relatively stabile. If the well is purged dry, groundwater samples are collected after the water level in the well recovers to at least 80 percent of the original water column measured in the well prior to sampling, or following a maximum recovery period of two hours. The well is purged using a factory-sealed, disposable, polyethylene bailer, a four-inch diameter submersible Grundfos pump, a two-inch diameter ES-40 purge pump, or a peristaltic pump. The purge water is stored on-site in clean, 55-gallon drums.

A groundwater sample is collected from each monitoring well following re-equilibration of the well after purging. The groundwater sample is collected using a factory-sealed disposable, polyethylene bailer with a sampling port, or a factory-sealed Teflon bailer. A factory provided attachment designed for use with volatile organic compounds (VOCs) is attached to the polyethylene bailer sampling port when collecting samples to be analyzed for VOCs. The groundwater sample is transferred from the bailer into sample container(s) that are obtained directly from the analytical laboratory.

The sample container(s) is labeled with a self-adhesive tag. The following information is included on the tag:

- Project number
- Sample number
- Date and time sample is collected
- Initials of sample collector(s).

Individual log sheets are maintained throughout the sampling operations. The following information is recorded:

- Sample number
- · Date and time well sampled and purged
- Sampling location
- Types of sampling equipment used
- Name of sampler(s)
- Volume of water purged.

Following collection of the groundwater sample, the sample is immediately stored on blue ice in an appropriate container. A chain-of-custody form is completed with the following information:

- Date the sample was collected
- Sample number and the number of containers
- Analyses required
- Remarks including preservatives added and any special conditions.

The original copy of the chain-of-custody form accompanies the sample containers to a California-certified laboratory. A copy is retained by BAI and placed in company files.

Sampling equipment including thermometers, pH electrodes, and conductivity probes are cleaned both before and after their use at the site. The following cleaning procedures are used:

- Scrub with a potable water and detergent solution or other solutions deemed appropriate using a hard bristle brush
- Rinse with potable water
- Double-rinse with organic-free or deionized water
- Package and seal equipment in plastic bags or other appropriate containers to prevent contact with solvents, dust, or other contaminants.

In addition, the pumps are cleaned by pumping a potable water and detergent solution and deionized water through the system. Cleaning solutions are contained on-site in clean 55-gallon drums.

Domestic and Irrigation Wells

Groundwater samples collected from domestic or irrigation wells are collected from the spigot that is the closest to the well. Prior to collecting the sample, the spigot is allowed to flow for at least 5 minutes to purge the well. The sample is then collected directly into laboratory-supplied containers, sealed, labeled, and stored on blue ice in an appropriate container, as described above. A chain-of-custody form is completed and submitted with the samples to the analytical laboratory.

UST	Yes
Fund Site:	No

FIELD REPORT

				PAGEOFOF
JOB NO:	29	PROJECT: Pacific Supply	,	77.02 01
INITIAL:		SUBJECT: GW Monitorin		Total Time: 8.0
	6-3 11	PROJECT PHASE NUMB	_	End. Mileage:
2	<i>G</i> -) 1(VEHICLE USED: 200		Beg. Mileage:
		Table Color Geo.	y to spec	
			a de de la companya d	TOTAL MILEAGE:
		ON OF WORK AND CONVE	A STATE OF THE STA	
TIME	DESCRIBIT	JN OF WORK AND CONVE	RSAHON RECORD:	
1001	(10)	we (o) That		
	lend	up equipment a	nd Aupylies	
1045	lea	re to sta	. 11	
1205	Олл	ue a site		
		Books illa 10		τ
	- 0	ocale, identify	and open m	mitoung wells
	, A.	erlam water	level measur	ements @ mw-1, mw-2,
	7.			VRW-5, YRW.6, VRW-7,
		und VRW. 8. (2 rounds).	
		izw-limal vzw-j	were inaccess	illo
	. /	et up and pe	extern ground	Lucter Associaca
	\overline{U}		J-4 VRU-6	
	·	·		
	- 6	tore purged g		in diums located
	N	a vicinity of	old remodiation	a system
		10/22 /24/105	Davi mun. +) Ar an Pina
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ecm gangam	<u>equipment</u>	+ 44441
	. (lose wells &	ecurely, la	and drums, complete
		Coc.	7	, ,
	<u> </u>	load up egunpo	und + Auppl	(8)
17/0		leave site		
1830		arrive @ Mon	7	
/		<i>'</i>		
		Muload A	polies, sul	nit samples to lab
		Complete Bi	eld notes	
1900	-	Done		
1700				DRUM COUNT:
				Water = 3 Devipmt Water =
				Soil = Decon Water =
1				

WATER LEVELS SHEET V OF_

PROJECT: Pacific Supply

PROJECT NUMBER:

29

INSTRUMENT TYPE: WLP

INITIALS: ED DATE: 6:3:11

WELL NUMBER	DEPTH TO PRODUCT	DISTANCE TO WATER	TIME (24 HOUR)	EQUILIBRATED (CHECK FOR YES)	NOTES
MW-1	-	7.01	1226		
MW-2	-	نه ۲۰ ی	1228		
MW-3	-	7.16	1235		
VRW-1		-	•		
VRW-2		6.53	1227		
VRW-3	•	7.05	1225		
VRW-4	•	6.75	1230		
VRW-5	-	4.95	1237		
VRW-6	-	7.00	1231		
VRW-7	-	7.11	1234		
VRW-8	-	7.30	1232		
VRW-9	-	_	-		
MW-1	-	7.01	1241	✓	
MW-2	-	6.70	1242	✓	
WM-3	~	7.16	1250	√	
VRW-1	-	-	-		
VRW-2	~	6.54	1240	J	
VRW-3	-	7.05	1239	<i>J</i>	
VRW-4	1	6.75	1244	J	
VRW-5	-	6.95	1251	<i>J</i>	
VRW-6	-	7.00	1245	~	
VRW-7	-	7.11	1248	~	
VRW-8	٠.	7.30	1247	/	
VRW-9	~		-	-	

WELL SAMPLING SHEET 3 OF

PROJECT:	Pacific Sup	ply				PROJECT	NUMBER:	29	
WELL#	MW-3	PRECIP. IN L	AST 5 DAYS:	١	WIND	DATE:	6 3.11		
STARTING	TIME:	620	FINISHING T	IME: 164	4	INITIALS:	ED		
CALCULAT	ION OF PUR	GE VOLUM	IE						G
2" WELL	DEPTH:	16.00	- D.T.W. [7.16	= H20 COLU	MN:	X 0.5 =	4.42	A L
4" WELL	DEPTH:		- D.T.W. [= H20 COLU	MN:	X 2.0 =	/	C
THEREFO	RE TOTAL	PURGE G	ALLONS EQUA	LS	4.				N S
			FIE	LD MEA	ASUREME	NTS			
TIME	GALLONS REMOVED	pН	CONDUCTIVITY	TEMP.		OBSERVATION	ONS		
1623	1.5	5.42	3.00 mS		Cloudy	, brown, silt			
					/	<u>. </u>			
1626	3.0	5.42	2.90	19.4	Cloudy	brown, sil	trodor		
1627	4.5	5.36	2.74	19.8	Cloudy	brown, sill	7,000		
SAMPLI	NG:	SAMPLE	E ANALYSIS:	TPH-Gas, 8	3260B (BTEX,	petro oxy & Pb s	cav)		
		SA	MPLE TIME:	1630	DID WE	LL GO DRY?	NO		
WATER	LEVELS:	NOTES							
TIME	D.T.W.								
1643	7.60								
					_				

WELL SAMPLING SHEET 4 OF

PROJECT	Pacific Sup	ply				PROJECT NUMBER: 2	9
WELL#	VRW-2	PRECIP. IN L	AST 5 DAYS:		WIND	DATE: 6311	
STARTING	TIME: /	/355	FINISHING T	IME: 44	· 5	INITIALS: ED	
CALCULAT	ION OF PUR	RGE VOLUM	<u>IE</u>				G
Ī						X 0.5 =	
4" WELL	DEPTH:	20.00] - D.T.W. [v.53	= H20 COLUMN	$\frac{13.47}{3.47}$ X 2.0 = $\frac{26}{26}$	
THEREFO	RE TOTAL	PURGE G	ALLONS EQUA	LS	17		N S
			<u>F E</u>	LD ME	ASUREMENT	<u>r s</u>	
TIME	GALLONS REMOVED	<u>р Н</u>	CONDUCTIVITY	IEMP.		OBSERVATIONS	
1409	9	4.43	426	12.9	Cloudy, b	rown, sitt odor	
	-						
1419	18	677	847	14.7	Cloudy ligh	ht brown, odor	
/429	27	6 83	1220	19.4	Cloudy 1	ight brown, odor	
SAMPLI	NG:	SAMPLE	E ANALYSIS:	TPH-Gas,	8260B (BTEX, petr	o oxy & Pb scav)	
		SA	MPLE TIME:	1430	DID WELL	GO DRY? NO	
WATER	LEVELS:	NOTES:	:				
TIME	D.T.W.						
1445	4.80						
-			_				
		_					

WELL SAMPLING SHEET & OF

PROJECT F	Pacific Sup	ply				PROJECT NUMBER:	29			
WELL#	VRW-3	PRECIP. IN L	AST 5 DAYS	,	MIND	DATE: 6-3-11				
STARTING	TIME: /	305	FINISHING T	IME: /350	D.	INITIALS: ED				
CALCULATION	ON OF PUR	GE VOLUM	IE				G			
2" WELL		/		-,-	= H20 COLUMN		Α Α			
							/ L			
4" WELL	4" WELL DEPTH: 20.00 - D.T.W. 7.05 = H20 COLUMN: /2.15 X 2.0 = 25.9 O									
THEREFOR	RE TOTAL	PURGE G	ALLONS EQUA	LS	26]	s			
			FIE	LD ME	SUREMENT	r <u>s</u>				
	GALLONS									
TIME	REMOVED	<u>pH</u>	CONDUCTIVITY	TEMP.	<u> </u>	OBSERVATIONS				
/316	k	6.97	39	17.7 "0	Cloudy, a	lark girey, silt, ado				
150	1,	6.87	359	(4)	Claud	lock oil l				
1321	16	ω. σ t	771	[8.]	Chory, a	lark grey, silt, odo	<u> </u>			
1329	20	667	487	19.0	Cloudy d	ark grey, silt, odor				
1.321					7.	100				
SAMPLIN	1G:	SAMPLE	ANALYSIS:	TPH-Gas, 8	3260B (BTEX, petr	o oxy & Pb scav)				
		SA	MPLE TIME:	1330	DID WELL	GO DRY? No				
WATER	LEVELS:	NOTES	:							
TIME	D.T.W.									
1349	8.90									
1		1								

WELL SAMPLING SHEET 6 OF

PROJECT:	Pacific Sup	pply				PROJECT NUMBER:	29	
WELL#	VRW-4	PRECIP. IN L	AST 5 DAYS:	,	WIND	DATE: 6 3-11		[
STARTING	TIME: /	455	FINISHING 1	ΓΙΜΕ: /5 ³	/	INITIALS: 乞D		
CALCULAT	ION OF PUR	RGE VOLUM	E					G
2" WELL	DEPTH:		- D.T.W. [= H20 COLUMN	X 0.5 =		A L
4" WELL	DEPTH:	20.00	- D.T.W. [675	= H20 COLUMN	: /3 2 5 X 2.0 =	265	0
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	.LS	265		_	N S
			FIE	LD ME	SUREMENT	<u>· s</u>		
71145	GALLONS	5 H	CONDUCTIVITY	TEMP		ODGEDIATIONS		
TIME 1501	REMOVED	<u>рн</u> 7.11	1666 ps	197°C	Cloudy, (m)	My bima, odor		
7301	U	1.11	1000 11	77.7		., 0001		
1508	ilo	5.91	2.9/ ms	19.6	Cloudy ligh	t brown, odor		
1514	20	5-36	2-42 m5	19.6	Cloudy, light	- brown, odor		
SAMPLI	NG:	SAMPLE	E ANALYSIS:	TPH-Gas, 8	3260B (BTEX, petr	o oxy & Pb scav)		
		SA	MPLE TIME:	1515	DID WELL (GO DRY? jes		
WATER	LEVELS:	NOTES						
TIME	D.T.W.							
1530	12.05		_					
			_					

WELL SAMPLING SHEET 7 OF

PROJECT	Pacific Sup	ply				PROJECT NUMBER:	29
WELL#	VRW-6	PRECIP. IN L	AST 5 DAYS: ✓		WIND	DATE: 6-3-11	
STARTING	TIME:	1540	FINISHING T	TIME: /6	15	INITIALS: ED	
CALCULAT	ION OF PUF	RGE VOLUM	E				G
2" WELL	DEPTH:		- D.T.W. [= H20 COLUMI	N: X 0.5 =	, A
4" WELL	DEPTH:	20.00	- D.T.W. [7.00	= H20 COLUMI	N: /3 X 2.0 =	
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	LS 	26		N S
			FIE	LD ME	ASUREMEN	<u>TS</u>	
TIME	GALLONS REMOVED	ρН	CONDUCTIVITY	<u>TEMP</u>		OBSERVATIONS	
1545	8	5.30	2.49 ,45	19.9	Cloudy	brown silt octor	
	1.6	C 11	2 2 1	101	,		
1552	16	5.36	3.34	19.6	Cloudy b	nown, silt, odor	
1559	20	5.36	3.27	19.7	Cloudy	dark, grey / brown	, silt, ador
					-		
SAMPLI	NG:	SAMPLE	E ANALYSIS:	TPH-Gas.	, 8260B (BTEX, pe	tro oxy & Pb scav)	
		SA	MPLE TIME:	1600	DID WELL	GO DRY? Yes	
WATER	LEVELS:	NOTES	:				
TIME	D.T.W.						
1614	16.3						
		ļ					

UST	Yes
Fund Site:	No

FIELD REPORT

		PAGE OF
JOB NO:	29 PROJECT: Pacific Supply	,
INITIAL:	SUBJECT: GW Monitoring	Total Time: 80
DATE:	PROJECT PHASE NUMBER:	End. Mileage:
	VEHICLE USED: 2006 Ranger	Beg. Mileage:
		TOTAL MILEAGE:
		16-4年11日 - 18-11-18-11-18-11-18-11-18-11-18-11-18-11-18-11-18-11-18-11-18-11-18-1
TIME	DESCRIPTION OF WORK AND CONVERSATION RECORD:	· 進進計劃結構 不透明 自用確定 中心
1015	wine @ 4kep	
	loss up equipment + supplies	
1055	leave to tite	
1215	arme (a site	
	Act up and dellane man.	vater bampling @
	Act up and perform vounde	and mw-2
	, , , , , , , , , , , , , , , , , , , ,	
	Alone puryed groundwater i	n drump
		// •
	Decen sampling equipment + se	ppleer
	Close rivell covers and capo	1001150 V.
	Cense Miseex 4000 time Egge	recurery
	load up Bupolies	
	l ''	<i>"- (1)</i>
	Complete COC, Complete	field form
		1. V
1700	leave site	
1845	arrive @ Ahoo	
701-2-		
	- Unload equipment + Auppli	25
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	- Automit Samples to lal	
1910	Done	
1910	IV U I WE	
		DRUM COUNT:
		Dittom GOOR!
		Water = 4 Devipmt Water =
		Soil = Decon Water ≍

WELL SAMPLING SHEET 9 OF

PROJECT	Pacific Sup	ply				PROJECT NUMBER:	29
WELL#	VRW-5	PRECIP. IN L	AST 5 DAYS: 🗸	١	WIND	DATE: 6-6-11	
STARTING	TIME:	1515	FINISHING T	IME: /55	51	INITIALS: ED	
CALCULAT	ION OF PUR	RGE VOLUM	E				G
2" WELL	DEPTH:		- D.T.W. [/	= H20 COLUMN	:	
4" WELL	DEPTH:	20.00	- D.T.W.	6 45	= H20 COLUMN	: 13.05 X 2.0 =	
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	LS	26		N S
			FIE	LD ME	ASUREMENT	r <u>s</u>	
TIME	GALLONS REMOVED	<u>р Н</u>	CONDUCTIVITY	<u>TEMP</u>		OBSERVATIONS	
1522	ধ	5.04	1100 05	1780	Cloudy, don	L brown, sitt, odor	
		_	,				
1531	16	5.01	ا ا ا ا ا	17.5	Cloudy da	rk brown, sill, a	dor
1539	26	5.07	2.5 m s	18.7	Cloudy do	urk brown, silt, c	dor
SAMPL	ING:	SAMPLE	E ANALYSIS:	TPH-Gas, 8	8260B (BTEX, petr	o oxy & Pb scav)	
		SA	MPLE TIME:	1540	DID WELL	GO DRY? Νο	
WATER	LEVELS:	NOTES:	:				
TIME	D.T.W.						
1550	4.95						
		ļ					
		1					
		1					

WELL SAMPLING SHEET 10 OF

PROJECT	Pacific Sup	pply				PROJECT	NUMBER:	29	
WELL#	VRW-7	PRECIP. IN L	AST 5 DAYS: 🗸		WIND	DATE:	6-6-11		
STARTING	TIME: /	1245	FINISHING 1	TIME: /32/	1	INITIALS:	ED		
CALCULAT	ION OF PUF	RGE VOLUM	<u>IE</u>						G
2" WELL	DEPTH:		- D.T.W. [= H20 COLU	MN:	X 0.5 =		A L
4" WELL	DEPTH:	20.00	- D.T.W. [711	= H20 COLUI	MN: /2.89	X 2.0 = [25.78	O
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	ALS	26				N S
			FIE	LD ME	ASUREME	NTS			
<u>TIME</u>	GALLONS REMOVED	ρН	CONDUCTIVITY	TEMP.		OBSERVATIO	ONS		_
1256	9	541	3.48 ms	2020	Cloudy	brown, od	or sheen	- Frothy	
/258	1 le	5.33	3.88	19.7	Cloudy	green/brow	in, odor	sheen,	silty
1304	20	5.35	4.07	19.9	Cloudy gra	ern/brown,	ndor sl	neen, silt	-frothy
SAMPLI	NG:	SAMPLE	E ANALYSIS:	TPH-Gas, 8	8260B (BTEX, r	etro oxy & Pb se	cav)		
		SA	MPLE TIME:	1305	DID WE	LL GO DRY?	yes		
WATER	LEVELS:	NOTES	:						
TIME	D.T.W.								
1320	13.8								
			-						
	1								
									_

WELL SAMPLING SHEET (OF

PROJECT:	Pacific Sup	ply				PROJECT NUMBER: 29	
WELL#	VRW-8	PRECIP. IN L	AST 5 DAYS: 🗸		WIND	DATE: 6-6-11	
				TIME: //	06	INITIALS: ED	
CALCULAT	ION OF PUF	RGE VOLUM	IE .				G
2" WELL	DEPTH:	_/_	- D.T.W. [= H20 COLUMN	X 0.5 =	A L
4" WELL	DEPTH:	20.00	- D.T.W. [7.30	= H20 COLUMN	: i2.7 X 2.0 = 25.4	0
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	LS	25.5		N S
			FIE	LD ME	ASUREMENT	<u>s</u>	
TIME	GALLONS REMOVED	<u>р Н</u>	CONDUCTIVITY	IEMP.		OBSERVATIONS	
/333	8	5.35	2.45 005	20.9 °C	Cloudy brev	un, odor, frothy	
12111	16	5.29	1841 ns	20.6	Cloudy light	t breizh, erler, frethy	
1341	10	7, 7, 1	1011 M 3		Crissian ingr	The state of the s	
1349	25.5	5.24	1641	20.2	Cloudy lig	ht brown, udar, frothy	
SAMPLI	NG:	SAMPLE	E ANALYSIS:	TPH-Gas, 8	8260B (BTEX, petr	o oxy & Pb scav)	
		SA	MPLE TIME:	/350	DID WELL (GO DRY? No	
WATER	LEVELS:	NOTES:					
TIME	D.T.W.						
1405	7.30		_				_
		 					
					<u> </u>		
						·	

WELL SAMPLING SHEET /2 OF

PROJECT	Pacific Sup	ply				PROJECT NUMBER:	29	
WELL#	VRW-9	PRECIP. IN L	AST 5 DAYS: J		WIND	DATE: 6-6-11		
STARTING	TIME:	1408	FINISHING T	TIME: 145	6	INITIALS: ED		
CALCULAT	ION OF PUR	GE VOLUM	1E					G
2" WELL	DEPTH:	/	- D.T.W. [7	= H20 COLUMN:	X 0.5 =	7	A L
4" WELL	DEPTH:[20.00] - D.T.W. [7.5	= H20 COLUMN:	12.5 X 2.0 =	25	0
THEREFO	RE TOTAL	PURGE G	ALLONS EQUA	LS	25			S S
			FIE	LD ME	ASUREMENT	S		
TIME	GALLONS REMOVED	рН	CONDUCTIVITY	TEMP.		OBSERVATIONS		
1421	૪	5.29	1827 45	20.7℃	Cloudy brown			
1430	16	5.26	2 21 mS	20 C	Cloudy, brow	n, odor, silt		
1439	25	5.24	1764	20.5	Cloudy, brow	un, odor, silt		
SAMPLI	NG:	SAMPLE	E ANALYSIS:	TPH-Gas, 8	3260B (BTEX, petro	o oxy & Pb scav)		
		SA	MPLE TIME:	1440	DID WELL G	GO DRY?		
WATER	LEVELS:	NOTES:	;					
TIME	D.T.W.							
1455	7.60	_						
		<u> </u>						
	-							

WELL SAMPLING SHEET 13 OF

PROJECT:	Pacific Su	pply				PROJECT NUMBER:	29	
WELL#	MW-2	PRECIP. IN L	AST 5 DAYS:	1	WIND	DATE: 4-6-11		
STARTING	TIME:	16/5	FINISHING	TIME: /4	41	INITIALS: ED		
CALCULAT	ION OF PU	RGE VOLUM	1 <u>E</u>					G
2" WELL	DEPTH:] - D.T.W.		= H20 COLUMN	X 0.5 =		A L
4" WELL	DEPTH:	20.00	- D.T.W.	654	= H20 COLUMN	: 13.46 X 2.0 =	26.92	0
THEREFO	RE TOTAL	PURGE G	ALLONS EQU	ALS	77			N S
			<u>F1</u>	ELD ME	ASUREMENT	S		
TIME	GALLONS REMOVED	рΗ	CONDUCTIVITY	TEMP.		OBSERVATIONS		
1622	9	5,04	1009 45	18.5°C	Cloudy Lie	int brown, silt, o.	dor	
1/ 27	18	4.97	906	18.7				
1627	10	1.11	170	18.7	Cloudy II	ght brown , silt, o	0.01	
1634	27	4.91	731	18.7	Cloudy 1	ight brown, silt	oder	
SAMPLI	NG:	SAMPLE	E ANALYSIS:	TPH-Gas,	8260B (BTEX, petro	o oxy & Pb scav)		
		SA	MPLE TIME:	1435	DID WELL (GO DRY?		
WATER	LEVELS:	NOTES:						
TIME	D.T.W.							
1640	is.6	_	_					
				_ _	- -			
	<u> </u>	-						

APPENDIX B Analytical Laboratory Report

Laboratory Report Project Overview

Laboratory:

Bace Analytical, Windsor, CA

Lab Report Number:

5675

Project Name:

1735 24TH ST.

Work Order Number:

029

Control Sheet Number:

NA

Report Summary

Labreport	Sampid	Labsampid	Mtrx	QC	Anmcode	Exmcode	Logdate	Extdate	Anadate	Lablotcti	Run Sub
5675	MW-2	5675-1	W	cs	8260FAB	SW5030B	06/06/201	06/13/201		20110613	13
FAZE	1.04/ O	5575.4	w	~~	CATOU	CIMEDOOD	1	1	1	00420044	40
5675	MW-2	5675-1	VV	CS	CATPH-G	SW5030B	06/06/201 1	06/13/201	1	06132011	10
5675	MW-3	5675-2	w	CS	8260FAB	SW5030B	06/03/201	06/13/201	•	20110613	14
							1	1	1		
5675	MW-3	5675-2	W	CS	CATPH-G	SW5030B	06/03/201	06/13/201		06132011	11
	VIDIA O	6076 3	14/	-00	COCOEAD	CIMEDOAD	1	1	1	20140642	46
5675	VRW-2	5675-3	W	cs	8260FAB	SW5030B	06/03/201	06/13/201	1	20110613	15
5675	VRW-2	5675-3	w	CS	CATPH-G	SW5030B	06/03/201	•		06132011	12
							1	1	1		
5675	VRW-3	5675-4	W	CS	8260FAB	SW5030B	06/03/201	06/13/201	06/13/201	20110613	16
					047011.0	SWEDSON	1	1	1	00430044	40
5675	VRW-3	5675-4	W	CS	CATPH-G	SW5030B	06/03/201	06/13/201	1	06132011	13
5675	VRW-4	5675-5	w	cs	8260FAB	SW5030B	06/03/201	06/13/201	,	20110613	17
	,						1	1	1		
5675	VRW-4	5675-5	W	CS	CATPH-G	SW5030B	06/03/201	06/13/201	06/13/201	06132011	20
							1	1	1	55445545	
5675	VRW-5	5675-6	W	CS	8260FAB	SW5030B	06/06/201 1	06/13/201 1	1	20110613	18
5675	VRW-5	5675-6	w	CS	CATPH-G	SW5030B	06/06/201	06/13/201		06132011	15
50.0	VIIIV 5	V					1	1	1		
5675	VRW-6	5675-7	w	CS	8260FAB	SW5030B	06/03/201	06/13/201	06/13/201	20110613	19
							1	1	1		
5675	VRW-6	5675-7	W	CS	CATPH-G	SW5030B	06/03/201	06/13/201		06132011	16
5675	VRW-7	5675-8	w	cs	8260FAB	SW5030B	1 06/06/201	1 06/13/201	1 06/13/201	20110613	20
J073	VICTO	3073-3	**	•	02001 AB	ONIGOOD	1	1	1	20170013	20
5675	VRW-7	5675-8	W	cs	CATPH-G	SW5030B	06/06/201	06/13/201	06/13/201	06132011	17
							1	1	1		
5675	VRW-8	5675-9	W	cs	8260FAB	SW5030B	06/06/201	06/13/201	06/13/201	20110613	21
5675	VRW-8	5675-9	w	CS.	CATPH-G	SW5030B	1 06/06/201	1 06/13/201	1 06/13/201	06132011	18
5675	ALIAA-O	Juiora	**	J.J	JAII IPG	31730300	1	1	1	OUTGEUIT	10
5675	VRW-9	5675-10	w	cs	8260FAB	SW5030B	06/06/201	06/13/201	06/13/201	20110613	22
							1	1	1		
5675	VRW-9	5675-10	W	CS	CATPH-G	SW5030B	06/06/201	06/13/201	06/13/201	06132011	19

Report Summary

Labreport	Sampid	Labsampid	Mtrx	QC	Anmcode	Exmcode	Logdate	Extdate	Anadale	Lablotcti	Run Sub
							1	1	1		
		5673-1	W	NC	8260FAB	SW5030B	11	06/13/201	06/13/201	20110613	6
								1	1		
		5673-5	W	NC	CATPH-G	SW5030B	11	06/13/201	06/13/201	06132011	3
								1	1		
		5675MB	W	LB1	8260FAB	SW5030B	11	06/13/201	06/13/201	20110613	3
								1	1		
		5675MB	W	LB1	CATPH-G	SW5030B	11	06/13/201	06/13/201	06132011	1
								1	1		_
		5675MS	W	MS1	8260FAB	SW5030B	1 1	06/13/201	06/13/201	20110613	7
						0.4/2000		1	1	00400044	
		5675MS	W	MS1	CATPH-G	SW5030B	11	06/13/201	06/13/201	06132011	4
					******	CIAICADOR	, ,	1	1	20440542	
		5675SD	W	SUI	8260FAB	SW5030B	11	06/13/201	06/13/201	20110613	8
		547500		224	0470110	CIMEDODD		7	1	00422044	•
		5675SD	W	501	CATPH-G	SW5030B	11	06/13/201	06/13/201	06132011	5
		30,330	**		<i>5</i> , (, , ,)	J.1.000B	• •	1	1		-

Page: 1

Project Name: Project No:	1735 24TH ST. 029		Analysis Method Prep Me	: 826	Cs by GC/MS F 50FAB /5030B	uel Additive	s Plus B	TEX	
Field ID: Descr/Location:	MW-2 MW-2		Lab Sar Rec'd D Prep Da	ate:	5675-1 06/07/2011 06/13/2011				
Sample Date: Sample Time: Matrix: Basis:	06/06/2011 1635 Water Not Filtered		•	s Date:	06/13/2011 20110613				
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1	
Ethyl tert-butyl e		0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl		0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ethe		0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcoho		2.4	10.	PQL		ND	UG/L	1	
1,2-Dichloroetha		0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoetha		0.30	0.50	PQL		ND	UG/L	1	
Benzene		0.27	0.50	PQL		5.36	UG/L	1	
Toluene		0.25	0.50	PQL		3.66	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		5.93	UG/L	1	
SURROGATE A	AND INTERNAL STAT	NDARD RECOV	/ERIES: 86-118	SLSA		104%	<u>-</u>		
Toluene-d8	E DECTE		88-110			101%			
Dibromofluorom	nethane		86-118	SLSA		94%			

Approved by: Walliam & Poty Date: 4/21/11

Dibromofluoromethane

Page: 2

90%

•							5		
Project Name: Project No:	1735 24TH ST. 029		Analysis Method	820	OCs by GC/MS F	uel Additive	s Plus B	TEX	
			Prep Me	eth: Sv	V5030B				
Field ID:	MW-3		Lab Sar	mp ID:	5675-2				
Descr/Location:	MW-3		Rec'd D	ate:	06/07/2011				
Sample Date:	06/03/2011		Prep Da	ate:	06/13/2011				
Sample Time:	1630		Analysi	s Date:	06/13/2011				
Matrix:	Water		QC Bat	ch:	20110613				
Basis:	Not Filtered		Notes:						
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	_
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		1.50	UG/L	1	
Ethyl tert-butyl et	her (ETBE)	0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ethe		0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcohol		2.4	10.	PQL		120.	UG/L	1	
1,2-Dichloroetha		0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoetha		0.30	0.50	PQL		ND	UG/L	1	
Benzene		0.27	0.50	PQL		ND	UG/L	1	
Toluene		0.25	0.50	PQL		ND	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		ND	UG/L	11	
SURROGATE A	ND INTERNAL STAN	NDARD RECOV	/ERIES:						
4-Bromofluorobe			86-118	SLSA		98%			
Toluene-d8			88-110	SLSA		94%			

86-118 SLSA

Approved by: Wallramy &

Page: 3

Project Name: Project No:	1735 24TH ST. 029		Analysis Method Prep Mo	: 826	Cs by GC/MS F 80FAB V5030B	uel Additive	s Plus B	ITEX	
Field ID: Descr/Location:	VRW-2 VRW-2		Lab Sar Rec'd D	mp ID:					
Sample Date: Sample Time: Matrix: Basis:	06/03/2011 1430 Water Not Filtered		•	s Date:	06/13/2011 20110613				
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		1.61	UG/L	1	_
Ethyl tert-butyl e		0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl	•	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ethe		0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcoho		2.4	10.	PQL		ND	UG/L	1	
1,2-Dichloroetha		0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoetha		0.30	0.50	PQL		ND	UG/L	1	
Benzene		0.27	0.50	PQL		15.5	UG/L	1	
Toluene		0.25	0.50	PQL		203	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		338	UG/L	1	
SURROGATE A	AND INTERNAL STAI	NDARD RECOV		CLCA		1020/			
4-Bromofluorob	enzene		86-118			103%			
Toluene-d8			88-110	SLSA		99%			
Dibromofluorom	ethane		86-118	SLSA	ı.	93%			

Approved by: William & Coty Date: 6/21/11

Page: 4

Project Name: 1735 24TH ST. Analysis: VOCs by GC/MS Fuel Additives Plus BTEX
Project No: 029 Method: 8260FAB

Prep Meth: SW5030B

Lab Samp ID: 5675-4 VRW-3 Field ID: Rec'd Date: 06/07/2011 VRW-3 Descr/Location: Prep Date: 06/13/2011 06/03/2011 Sample Date: Analysis Date: 06/13/2011 1330 Sample Time: QC Batch: 20110613

Matrix: Water QC Batch
Basis: Not Filtered Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Methyl-tert-butyl ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1
Ethyl tert-butyl ether (ETBE)	0.30	1.0	PQL		ND	UG/L	1
tert-Amyl methyl ether (TAME)	0.26	1.0	PQL		ND	UG/L	1
Di-isopropyl ether (DIPE)	0.37	1.0	PQL		ND	UG/L	1
tert-Butyl alcohol (TBA)	2.4	10.	PQL		ND	UG/L	1
1,2-Dichloroethane	0.30	0.50	PQL		ND	UG/L	1
1,2-Dibromoethane	0.30	0.50	PQL		ND	UG/L	1
Benzene	0.27	0.50	PQL		ND	UG/L	1
Toluene	0.25	0.50	PQL		ND	UG/L	1
Ethylbenzene	0.25	0.50	PQL		ND	UG/L	1
Xylenes	0.25	0.50	PQL		ND	UG/L	1
SURROGATE AND INTERNAL STAN	DARD RECOV	/ERIES:					
4-Bromofluorobenzene		86-118	SLSA		101%		
Toluene-d8		88-110	SLSA		102%		
Dibromofluoromethane		86-118	SLSA		92%		

Approved by: William & Caty Date: 4/21/11

at Daned No. ECTE Date: OGIAGIO044

Xylenes

Toluene-d8

4-Bromofluorobenzene

Dibromofluoromethane

285

101%

91%

89%

UG/L

Lab Report No.:	5675 Date: 06/16/20)11 —————					Pag	je: 5
Project Name: Project No:	1735 24TH ST. 029		Analys Methor Prep M		OCs by GC/MS I 60FAB V5030B	Fuel Additive	s Plus B	BTEX
Field ID:	VRW-4		Lab Sa	amp ID:	5675-5			-
Descr/Location:	VRW-4		Rec'd	Date:	06/07/2011			
Sample Date:	06/03/2011		Prep D		06/13/2011			
Sample Time:	1515		Analys	is Date:	06/13/2011			
Matrix:	Water		QC Ba	itch:	20110613			
Basis:	Not Filtered		Notes:					
Analyte		Det Limit	Rep Limi	t	Note	Result	Units	Pvc Dil
Methyl-tert-butyl	ether (MTBE)	0.76	2.0	PQL		ND	UG/L	2
Ethyl tert-butyl et	ther (ETBE)	0.60	2.0	PQL		ND	UG/L	2
tert-Amyl methyl	ether (TAME)	0.52	2.0	PQL		ND	UG/L	2
Di-isopropyl ethe		0.74	2.0	PQL		ND	UG/L	2
tert-Butyl alcohol		4.8	20.	PQL		ND	UG/L	2
1,2-Dichloroetha		0.60	1.0	PQL		ND	UG/L	2
1,2-Dibromoetha		0.60	1.0	PQL		ND	UG/L	2
Benzene		0.54	1.0	PQL		251.	UG/L	2
Toluene		0.50	1.0	PQL		11.9	UG/L	2
Ethylbenzene		0.50	1.0	PQL		182	UG/L	2

1.0

PQL

86-118 SLSA

88-110 SLSA

86-118 SLSA

0.50

SURROGATE AND INTERNAL STANDARD RECOVERIES:

Approved by: Wellvery &

Page: 6

Project Name: Project No:

1735 24TH ST.

Analysis: Method:

VOCs by GC/MS Fuel Additives Plus BTEX

029

8260FAB

Prep Meth: SW5030B

Field ID:

VRW-5

Lab Samp ID: 5675-6

Descr/Location:

VRW-5

Rec'd Date:

06/07/2011

Sample Date:

06/06/2011

Prep Date:

06/13/2011

Sample Time:

1540 Water Analysis Date: 06/13/2011 QC Batch:

20110613

Matrix: Dacie:

Not Filtered

Notes:

Basis: Not Filtered		Notes:					
Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Methyl-tert-butyl ether (MTBE)	0.76	2.0	PQL		ND	UG/L	2
Ethyl tert-butyl ether (ETBE)	0.60	2.0	PQL		ND	UG/L	2
tert-Amyl methyl ether (TAME)	0.52	2.0	PQL		ND	UG/L	2
Di-isopropyl ether (DIPE)	0.74	2.0	PQL		ND	UG/L	2
tert-Butyl alcohol (TBA)	4.8	20.	PQL		ND	UG/L	2
1,2-Dichloroethane	0.60	1.0	PQL		ND	UG/L	2
1,2-Dibromoethane	0.60	1.0	PQL		ND	UG/L	2
Benzene	0.54	1.0	PQL		5.67	UG/L	2
Toluene	0.50	1.0	PQL		ND	UG/L	2
Ethylbenzene	0.50	1.0	PQL		261	UG/L	2
Xylenes	0.50	1.0	PQL		243	UG/L	2
SURROGATE AND INTERNAL ST	ANDARD RECOV	ERIES:					
4-Bromofluorobenzene		86-118	SLSA		100%		
Toluene-d8		88-110	SLSA		101%		
Dibromofluoromethane		86-118	SLSA	i	91%		

William & Poty Date: __(_/2//// Approved by: _

Page: 7

Project Name: 1735 24TH ST. Analysis: VOCs by GC/MS Fuel Additives Plus BTEX Project No: 029 Method: 8260FAB

Prep Meth: SW5030B

Field ID: VRW-6 Lab Samp ID: 5675-7 Descr/Location: VRW-6 Rec'd Date: 06/07/2011 Sample Date: 06/03/2011 Prep Date: 06/13/2011 Sample Time: 1600 Analysis Date: 06/13/2011 Matrix: Water QC Batch: 20110613

Basis: Not Filtered Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Methyl-tert-butyl ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1
Ethyl tert-butyl ether (ETBE)	0.30	1.0	PQL		ND	UG/L	1
tert-Amyl methyl ether (TAME)	0.26	1.0	PQL		ND	UG/L	1
Di-isopropyl ether (DIPE)	0.37	1.0	PQL		ND	UG/L	1
tert-Butyl alcohol (TBA)	2.4	10.	PQL		69.2	UG/L	1
1,2-Dichloroethane	0.30	0.50	PQL		ND	UG/L	1
1,2-Dibromoethane	0.30	0.50	PQL		ND	UG/L	1
Benzene	0.27	0.50	PQL		200	UG/L	1
Toluene	0.25	0.50	PQL		ND	UG/L	1
Ethylbenzene	0.25	0.50	PQL		ND	UG/L	1
Xylenes	0.25	0.50	PQL		1,23	UG/L	1
SURROGATE AND INTERNAL STA	NDARD RECOV	ERIES:					<u> </u>
4-Bromofluorobenzene		86-118	SLSA		102%		
Toluene-d8		88-110	SLSA		99%		
Dibromofluoromethane		86-118	SLSA		91%		

Approved by: Al selven of Coty Date: 6/21/11

Page: 8

Project Name: Project No:	1735 24TH ST. 029		Analysis Method		OCs by GC/MS F	uel Additive	s Plus B	TEX
•			Prep M	eth: SV	V5030B		_	
Field ID:	VRW-7		Lab Sa	mp ID:	5675-8			
Descr/Location:	VRW-7		Rec'd D	Date:	06/07/2011			
Sample Date:	06/06/2011		Prep Da	ate:	06/13/2011			
Sample Time:	1305		Analysi	s Date:	06/13/2011			
Matrix:	Water		QC Bat	ch:	20110613			
Basis:	Not Filtered		Notes:					
Analyte	-	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1
Ethyl tert-butyl el		0.30	1.0	PQL		ND	UG/L	1
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1
Di-isopropyl ethe	er (DIPE)	0.37	1.0	PQL		ND	UG/L	1
tert-Butyl alcohol	(TBA)	2.4	10.	PQL		821	UG/L	1
1,2-Dichloroetha		0.30	0.50	PQL		ND	UG/L	1
1,2-Dibromoetha		0.30	0.50	PQL		ND	UG/L	1
Benzene		0.27	0.50	PQL		360	UG/L	1
Toluene		0.25	0.50	PQL		ND	UG/L	1
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1
Xylenes		0.25	0.50	PQL		ND	UG/L	1
	ND INTERNAL STA	NDARD RECOV	ERIES:					
4-Bromofluorobe	enzene		86-118	SLSA		104%		
Toluene-d8			88-110	SLSA		94%		
Dibromofluorom	ethane		86-118	SLSA		89%		

Approved by: William & Coty Dale: 4/21/11

4-Bromofluorobenzene

Dibromofluoromethane

Toluene-d8

Page: 9

101%

101%

90%

1735 24TH ST. Analysis: VOCs by GC/MS Fuel Additives Plus BTEX Project Name: Project No: 029 Method: 8260FAB Prep Meth: SW5030B Lab Samp ID: 5675-9 VRW-8 Field ID: VRW-8 Rec'd Date: 06/07/2011 Descr/Location: Sample Date: 06/06/2011 Prep Date: 06/13/2011 1350 Analysis Date: 06/13/2011 Sample Time: QC Batch: Matrix: Water 20110613 Not Filtered Notes: Basis: Det Limit Rep Limit Note Result Units Pvc Dil Analyte 0.76 2.0 POL Methyl-tert-butyl ether (MTBE) ND UG/L 2 PQL Ethyl tert-butyl ether (ETBE) 0.60 2.0 ND UG/L 2 0.52 2.0 PQL 2 ND UG/L tert-Amyl methyl ether (TAME) 0.74 2.0 PQL ND UG/L 2 Di-isopropyl ether (DiPE) 4.8 20. PQL 564 UG/L 2 tert-Butyl alcohol (TBA) PQL 0.60 ND 2 1,2-Dichloroethane 1.0 UG/L 0.60 1.0 PQL ND UG/L 2 1.2-Dibromoethane PQL UG/L 2 0.54 1.0 139 Benzene 0.50 1.0 PQL 624 UG/L 2 Toluene PQL 2 0.50 1.0 ND UG/L Ethylbenzene 0.50 1.0 **PQL** 9.95 UG/L 2 **Xylenes** SURROGATE AND INTERNAL STANDARD RECOVERIES:

86-118 SLSA

88-110 SLSA

86-118 SLSA

Approved by: 4 selvan 4 for Date: 6/21/11

Page: 10

Project Name:

1735 24TH ST.

Analysis: VOCs by GC/MS Fuel Additives Plus BTEX

Project No:

029

Method: 8260FAB

Prep Meth: SW5030B

Field ID:

VRW-9

Lab Samp ID: 5675-10

Descr/Location:

VRW-9

Rec'd Date:

06/07/2011

Sample Date:

06/06/2011

Prep Date:

06/13/2011

Sample Time:

1440

Analysis Date: 06/13/2011 20110613

Matrix: Racie:

Water Not Filtered QC Batch:

Notes:

Basis: Not rillered		Moles.						
Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Methyl-tert-butyl ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1	
Ethyl tert-butyl ether (ETBE)	0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl ether (TAME)	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ether (DIPE)	0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcohol (TBA)	2.4	10.	PQL		67.7	UG/L	1	
1,2-Dichloroethane	0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoethane	0.30	0.50	PQL		ND	UG/L	1	
Benzene	0.27	0.50	PQL		ND	UG/L	1	
Toluene	0.25	0.50	PQL		ND	UG/L	1	
Ethylbenzene	0.25	0.50	PQL		ND	UG/L	1	
Xylenes	0.25	0.50	PQL		1.76	UG/L	1	
SURROGATE AND INTERNAL STAN	DARD RECOV	/ERIES:						
4-Bromofluorobenzene		86-118	SLSA	١.	101%			1
Toluene-d8		88-110	SLSA	\	98%			•
Dibromofluoromethane		86-118	SLSA	1	90%			1

William H Date: 4/2//// Approved by: _

Lab Report No.: 5675 Date: 06/16/2011

Page: 11

Project Name: 1735 24TH ST. Analysis: CA LUFT Method for Gasoline Range Organics
Project No: 029 Method: CATPH-G

Prep Meth: SW5030B

Field ID: MW-2 Lab Samp ID: 5675-1

Descr/Location: MW-2 Rec'd Date: 06/07/2011

Sample Date: 06/06/2011 Prep Date: 06/13/2011

Sample Time: 1635

Applysis Date: 06/13/2011

Sample Time: 1635 Analysis Date: 06/13/2011
Matrix: Water QC Batch: 06132011
Basis: Not Filtered Notes:

Analyte Det Limit Rep Limit Note Result Units Pvc Dil
Gasoline Range Organics (C5-C12) 0.04 0.05 PQL 1.3 MG/L 1

SURROGATE AND INTERNAL STANDARD RECOVERIES:
4-Bromofluorobenzene 65-135 SLSA 120% 1

Approved by: William 18 Coty Date: 6/21/11

Lab Report No.: 5675 Date: 06/16/2011

Page: 12

Project Name: Project No:

1735 24TH ST.

Analysis: Method:

CA LUFT Method for Gasoline Range Organics

029

CATPH-G

Prep Meth: SW5030B

Field ID:

MW-3

MW-3

Rec'd Date:

Lab Samp ID: 5675-2

Descr/Location: Sample Date:

06/03/2011

06/07/2011 06/13/2011

Sample Time:

1630

Prep Date:

Analysis Date: 06/13/2011

Matrix:

Water

QC Batch:

06132011

Basis:

Not Filtered

Notes:

Note

Analyte Gasoline Range Organics (C5-C12) Det Limit 0.04

Rep Limit PQL 0.05

Result Units Pvc Dil 0.14 MG/L 1

SURROGATE AND INTERNAL STANDARD RECOVERIES:

4-Bromofluorobenzene

65-135 SLSA

96%

Approved by: William &

Lab Report No.: 5675 Date: 06/16/2011

4-Bromofluorobenzene

Page: 13

120%

Project Name: Project No:	1735 24TH ST. 029			CA LUFT Method	for Gasoline	Range	Organics
. , •, •, • • • • • • • • • • • • • • •			Prep Meth: \$	SW5030B			
Field ID:	VRW-2		Lab Samp IC): 5675-3	_		
Descr/Location:	VRW-2		Rec'd Date:	06/07/2011			
Sample Date:	06/03/2011		Prep Date:	06/13/2011			
Sample Time:	1430		Analysis Dat	e: 06/13/2011			
Matrix:	Water		QC Batch:	06132011			
Basis:	Not Filtered		Notes:				
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline Range	Organics (C5-C12)	0.04	0.05 PQL		0.98	MG/L	1

65-135 SLSA

Approved by: Wallowy of Coty Date: 4/2///

4-Bromofluorobenzene

Page: 14

73%

	Analysis: Method: Prep Met	CA	A LUFT Method f ATPH-G V5030B	or Gasonne	Kange	Organics
	Lab Sam	p ID:	5675-4			
	Rec'd Da	ite:	06/07/2011			
	Prep Dat	e:	06/13/2011			
	Analysis	Date:	06/13/2011			
	QC Batcl	h:	06132011			
	Notes:					
Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
C12) 0.04	0.05	PQL		ND	MG/L	1
	Det Limit 5-C12) 0.04	Prep Met Lab Sam Rec'd Da Prep Dat Analysis QC Batcl Notes: Det Limit Rep Limit	Prep Meth: SV Lab Samp ID: Rec'd Date: Prep Date: Analysis Date: QC Batch: Notes: Det Limit Rep Limit 5-C12) 0.04 0.05 PQL	Prep Meth: SW5030B Lab Samp ID: 5675-4 Rec'd Date: 06/07/2011 Prep Date: 06/13/2011 Analysis Date: 06/13/2011 QC Batch: 06132011 Notes: Det Limit Rep Limit Note 5-C12) 0.04 0.05 PQL	Prep Meth: SW5030B Lab Samp ID: 5675-4 Rec'd Date: 06/07/2011 Prep Date: 06/13/2011 Analysis Date: 06/13/2011 QC Batch: 06132011 Notes: Det Limit Rep Limit Note Result 5-C12) 0.04 0.05 PQL ND	Det Limit Rep Limit Note Result Units

65-135 SLSA

Approved by: William & Coly Date: 6/24/11

4-Bromofluorobenzene

Page: 15

115%

Project Name: Project No:	1735 24TH ST. 029		*	CA LUFT Method t CATPH-G SW5030B	for Gasoline	Range	Organics
Field ID:	VRW-4		Lab Samp ID): 5675-5			
Descr/Location:	VRW-4		Rec'd Date:	06/07/2011			
Sample Date:	06/03/2011		Prep Date:	06/13/2011			
Sample Time:	1515		Analysis Dat	e: 06/13/2011			
Matrix:	Water		QC Batch:	06132011			
Basis:	Not Filtered		Notes:				
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline Range	Organics (C5-C12)	0.040	0.100 PQL		1.2	MG/L	2

65-135 SLSA

Approved by: William H Poto Date: 6/2///

Lab Report No.: 5675 Date: 06/16/2011

4-Bromofluorobenzene

Page: 16

107%

•	Date: 06/07/2011 Pate: 06/13/2011 is Date: 06/13/2011
Prep Date: Analysis D	Pate: 06/13/2011 is Date: 06/13/2011
Analysis D	is Date: 06/13/2011
•	
OO Datak	10h: 06132011
QC Batch:	101. 00132011
Notes:	
mit Rep Limit	Note Result Units Pvc Di
0.100 PC	PQL 0.45 MG/L 2

65-135 SLSA

Approved by: William 4 Pots Date: 6/2/11

Lab Report No.: 5675 Date: 06/16/2011

Page: 17

Project Name:

1735 24TH ST.

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

029

CATPH-G

Method:

Prep Meth: SW5030B

Field ID:

VRW-6

Lab Samp ID: 5675-7

Descr/Location:

VRW-6

Rec'd Date:

06/07/2011

Sample Date:

06/03/2011

Prep Date:

06/13/2011

Sample Time:

1600 Water

Analysis Date: 06/13/2011 QC Batch:

06132011

Matrix: Basis:

Not Filtered

Notes:

Note

Analyte

Det Limit

Rep Limit

Result Units Pvc Dil

Gasoline Range Organics (C5-C12)

0.04

0.05 PQL 0.22 MG/L

1

SURROGATE AND INTERNAL STANDARD RECOVERIES:

4-Bromofluorobenzene

65-135 SLSA

94%

William & Goty Approved by: _

Date: 6/2////

4-Bromofluorobenzene

Page: 18

78%

CA LUFT Method for Gasoline Range Organics 1735 24TH ST. Analysis: Project Name: 029 Method: CATPH-G Project No: Prep Meth: SW5030B VRW-7 Lab Samp ID: 5675-8 Field ID: Descr/Location: VRW-7 Rec'd Date: 06/07/2011 06/06/2011 Prep Date: 06/13/2011 Sample Date: 1305 Analysis Date: 06/13/2011 Sample Time: Matrix: Water QC Batch: 06132011 Not Filtered Notes: Basis: **Det Limit** Note Rep Limit Units Result Pvc Dil Analyte 0.04 0.05 PQL 0.23 MG/L Gasoline Range Organics (C5-C12) 1 SURROGATE AND INTERNAL STANDARD RECOVERIES:

65-135 SLSA

Approved by: William If Vota Date: 4/24/4

Lab Report No.: 5675 Date: 06/16/2011

Page: 19

Project Name: Project No:	1735 24TH ST. 029		-	CA LUFT Method CATPH-G	for Gasoline	Range	Organics
•			Prep Meth: S	SW5030B			
Field ID:	VRW-8		Lab Samp ID	: 5675-9			
Descr/Location:	VRW-8		Rec'd Date:	06/07/2011			
Sample Date:	06/06/2011		Prep Date:	06/13/2011			
Sample Time:	1350		Analysis Date	e: 06/13/2011			
Matrix:	Water		QC Batch:	06132011			
Basis:	Not Filtered		Notes:				
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline Range	Organics (C5-C12)	0.040	0.100 PQL		1.9	MG/L	2
SURROGATE A	ND INTERNAL STAND	ARD RECOV	ERIES:				
4-Bromofluorobe			65-135 SLS	Α	122%		

Approved by: William of Poty

Lab Report No.: 5675 Date: 06/16/2011

Page: 20

1735 24TH ST. Analysis: CA LUFT Method for Gasoline Range Organics Project Name: Project No: 029 Method: CATPH-G Prep Meth: SW5030B Lab Samp ID: 5675-10 VRW-9 Field ID: Rec'd Date: 06/07/2011 VRW-9 Descr/Location: Prep Date: 06/13/2011 06/06/2011 Sample Date: Analysis Date: 06/13/2011 1440 Sample Time: QC Batch: 06132011 Matrix: Water Not Filtered Notes: Basis:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Gasoline Range Organics (C5-C12)	0.04	0.05	PQL		0.35	MG/L	1
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:					
4-Bromofluorobenzene		65-135	SLSA		76%		

William & Pots Date: 4/2/// Approved by:

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 5675 Date: 06/16/2011

Page: 21

QC Batch:

Analysis:

CA LUFT Method for Gasoline Range

06132011

Matrix:

Water

Method:

CATPH-G

Lab Samp ID: 5675MB

Analysis Date: 06/13/2011

Prep Meth: SW5030B Prep Date: 06/13/2011

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Gasoline Range Organics (C5-C12)	0.020	0.050 P	PQL		ND	MG/L	1	

SURROGATE AND INTERNAL STANDARD RECOVERIES:

65-135 SLSA 4-Bromofluorobenzene

80%

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Lab Report No.: 5675 Date: 06/16/2011

Page: 22

QC Batch:

06132011

Matrix: Water

Lab Samp ID: 5675MS

Basis:

Not Filtered

Project Name: Lab Generated or Non COE Sample

Project No.: Field ID:

Lab Generated or Non COE Sample Lab Generated or Non COE Sample

Lab Ref ID:

5673-5

	Analysis	Spike	Spike Level Sample		Spike	Result		% R	ecove	ries	Acceptance Criteria		
Analyte	Method	MS	DMS	Result	MS	DMS	Units	MS	DMS	RPD	% R	ec	RPD
Gasoline Range Organics (C5-C12)	CATPH-G	0.620	0.620	ND	0.706	0.686	MG/L	114	111	2.7	140-60	MSA	25MSP
4-Bromofluorobenzene	CATPH-G	100.	100.	77.	92.	96.	PERCENT	92.0	96.0	4.3	135-65	SLSA	25SLSP

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 5675 Date: 06/16/2011

Page: 23

QC Batch:

20110613

Analysis:

VOCs by GC/MS Fuel Additives Plus BTEX

Matrix:

Water

Method:

8260FAB

Lab Samp ID: 5675MB

Prep Meth: SW5030B

Basis:

Analysis Date: 06/13/2011 Not Filtered Prep Date: 06/13/2011

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Methyl-tert-butyl ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1
Ethyl tert-butyl ether (ETBE)	0.30	1.0	PQL		ND	UG/L	1
ert-Amyl methyl ether (TAME)	0.26	1.0	PQL		ND	UG/L	1
Di-isopropyl ether (DIPE)	0.37	1.0	PQL		ND	UG/L	1
ert-Butyl alcohol (TBA)	2.4	10.	PQL		ND	UG/L	1
1,2-Dichloroethane	0.30	0.50	PQL		ND	UG/L	1
1,2-Dibromoethane	0.30	0.50	PQL		ND	UG/L	1
Benzene	0.27	0.50	PQL		ND	UG/L	1
Toluene	0.25	0.50	PQL		ND	UG/L	1
Ethylbenzene	0.25	0.50	PQL		ND	UG/L	1
Xylenes	0.25	0.50	PQL		ND	UG/L	1
SURROGATE AND INTERNAL STAN	IDARD RECOV	ERIES:					
4-Bromofluorobenzene		86-118	SLSA		101%		
Toluene-d8		88-110	SLSA		99%		
Dibromofluoromethane		86-118	SLSA	·	101%		

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Lab Report No.: 5675 Date: 06/16/2011

Page: 24

QC Batch:

20110613

Matrix:

Water

Lab Samp ID: 5675MS

Basis:

Not Filtered

Project Name: Lab Generated or Non COE Sample

Project No.:

Lab Generated or Non COE Sample

Field ID:

Lab Generated or Non COE Sample

Lab Ref ID:

5673-1

	Analysis Spike Level		e Level	Sample	Spike	e Result		% R	ecove	eries		lance eria	
Analyte	Method	MS	DMS	Result	MS	DMS	Units	MS	DMS	RPD	% F	Rec	RPD
1,2-Dibromoethane	8260FAB	10.0	10.0	ND	11.7	12.0	UG/L	117	120	2.5	130-70	MSA	20MSP
1,2-Dichloroethane	8260FAB	10.0	10.0	ND	9.76	9.84	UG/L	97.6	98.4	0.82	130-70	MSA	20MSP
Benzene	8260FAB	10.0	10.0	ND	9.47	9.86	UG/L	94.7	98.6	4.0	127-76	MSA	20MSP
Di-isopropyl ether (DIPE)	8260FAB	10.0	10.0	ND	9.67	10.1	UG/L	96.7	101	4.4	140-60	MSA	20MSP
Ethyl tert-butyl ether (ETBE)	8260FAB	10.0	10.0	ND	9.75	9.95	UG/L	97.5	99.5	2.0	140-60	MSA	20MSP
Ethylbenzene	8260FAB	10.0	10.0	ND	9,28	9.87	UG/L	92.8	98.7	6.2	130-70	MSA	20MSP
Methyl-tart-butyl ether (MTBE)	8260FAB	10.0	10.0	6.26	15.70	15.56	UG/L	94.4	93.0	1.5	140-60	MSA	20MSP
Toluene	8260FAB	10.0	10.0	ND	10,6	10.9	UG/L	106	109	2.8	125-76	MSA	20MSP
Xylenes	8260FAB	30.0	30.0	ND	29.4	29.6	UG/L	98.0	98.7	0.71	130-70	MSA	20 MSP
tert-Amyl methyl ether (TAME)	8260FAB	10.0	10.0	ND	10.1	10.5	UG/L	101	105	3.9	140-60	MSA	20MSP
tert-Butyl alcohol (TBA)	8260FAB	50.0	50.0	ND	53.7	55.4	UG/L	107	111	3.7	140-60	MSA	25MSP
4-Bromofluorobenzene	8260FAB	100.	100.	102.	102.	102.	PERCENT	102	102	0.00	118-86	SLSA	20SLSP
Dibromofluoromethane	8260FAB	100.	100.	102	95.	98.	PERCENT	95.0	98.0	3.1	118-86	SLSA	20SLSP
Toluene-d8	8260FAB	100.	100.	99.	100.	103.	PERCENT	100	103	3.0	110-88	SLSA	20SLSP

Chain of Custody

Project #	Project Address Pacific Sup	N C Analysis												T				
29	1735 24th st, Oakl	and, CA		u °	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			\Box										C.O.C. No. 12839
BG No.	Sampler's Signature			b a	3.5													Remarks:
	Deschamps			e i	(Brex,	, <u>(</u> §												
Date Sampled	Sample I.D.	Time (24 Hour)	Sampte Type	o e f s	82608	TPH-Cas												
6-6-11	mw-2 V	1635	1/20	4	7~	*												5675-1
6-3-11	mw-3	0 قما		<u> </u>	7	4		\perp	\perp	_	$oxed{oxed}$	_						-2
6-3-11	VRW-2 /	1430		↓ /_	7	×		\perp		<u> </u>	_						_	-3
11-3-0	VRW-3	1330			7	メ	\perp	\perp		_		↓_	_			_		-4
6-3-11	VRW-4	1515		\Box	+	×	\perp		_ _	↓	_	<u> </u>						-5
6-6-11	VRW-5	1540			+	7	\perp	_	\bot	_	_	1						-6 -7 -8
6-3-11	VRW-is	1600		1	1	7	\perp	\perp	4	↓_				\Box				-7
6.6-11	VEW-7	1305		-/-	1	1	\perp	\bot	\perp	 	┡			\perp				-8
6-6-11	VKW-8	1350		!	+	x			\bot	╀-	<u> </u>					Щ		-7
6-6-11	VRW-9	1440	1	1	4	*			_	_	_	1		\perp		Ш		-10
								_	_	<u> </u>		\sqcup		\dashv				
							\perp	_		ــــ	L			\perp				
								\perp	_	_		\Box			-		_	
					Ш		\rightarrow	\perp		┞				\dashv	_		_	
					Ш	\square	+	\perp	- -	┞		\sqcup		_	_		_	
		<u> </u>		<u> </u>		1	\perp			<u> </u>		Ш		_	_		_	
					Щ			\perp		_	_	\sqcup		\rightarrow			_	
L								_		lacksquare		\square			_		_	
							\perp	_	\perp		_	\square			\dashv		_	
		<u> </u>					\perp	Ļ			Ļ							
Laboratory:	Bafs			Pre	eserva	ation:	A-HCI	<i>∴)</i> B ·	HNO3	c	∂ }⁄8	Specify	<i>(</i>)	TAT:	P(2-WK) Vr	gent; Immediate (Specify)
Relinquished	by: N	Date/	Time	Receives	[фу: [7			_			Resu	ts To	(Offic	e Us	e Onl	y)	Brunsing Associates, Inc.
(signed) Date/Time		(signific	Results To: (Office Use Only)									P.O. Box 588						
Relinquished by: Date/Time		Time	Received by:								1					5468 Skylane Blvd., Suite 201		
(signed)	(signed)		(signed)	(signed) / July (Office Use Only)									Santa Rosa, CA 95403					
Rollnquished	Relinquished by: Date/Time		Time	Received for Laboratory by:										(707) 838-3027 Phone				
(signed)				(signed)												(707) 838-4420 Fax		