

RECEIVED

9:13 am, Sep 10, 2012 Alameda County Environmental Health

September 06, 2012

Mr. Keith Nowles Alameda County Environmental Health Services Agency Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RE: 2011 First Semi-Annual Groundwater Monitoring Report –January 2011 Pacific Supply Oakland 1735 24th Street Oakland, CA 94607

Dear Mr. Keith Nowles:

Attached is the Groundwater Monitoring Report –June 2011 dated October 14, 2010 describing the semi-annual groundwater monitoring at the above address performed by Brunsing Associates.

I declare under penalty of perjury that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions regarding this report, please contact William Coset of Brunsing Associates at (707) – 838 -3027, myself at (916) 645 -2568 (direct line) or (916)835 -6207 (cell number).

Sincerely,

Normíta G. Callíson

Normita G. Callison, REM Environmental Consultant For: PCCI and Subsidiaries

Enclosure Groundwater Monitoring Report –January 2011

October 13, 2011

Project No. 029

Mr. Paresh C. Khatri Alameda County Health Care Services Agency Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Groundwater Monitoring Report-January 2011 Pacific Supply Company 1735 24th Street Oakland, California

Dear Mr. Khatri:

This report has been prepared by Brunsing Associates, Inc. (BAI) to provide a summary of the fieldwork completed at 1735 24th Street, Oakland, California (Plate 1) and the corresponding laboratory analytical results reported for groundwater samples collected during this semi-annual monitoring event. Fieldwork was conducted at the site on January 31 and February 1, 2011. The fieldwork was completed in accordance with the Alameda County Health Care Services Agency (ACHCSA) correspondence dated November 6, 2003.

The conclusions regarding this property are based on observations of existing conditions, and limited sampling and analytical work performed by BAI and its subcontractors during the time of the investigation, and may be subject to change. Tabulated analytical data and other data gathered during this and previous BAI investigations, and presented herein, are to the best of our knowledge complete and correct. This report has been presented in accordance with generally accepted environmental engineering principals and practices. No other warranty, either expressed or implied, is made.

Site Background

In May 1987, efforts were initiated to abandon a 1,000-gallon underground gasoline storage tank at Pacific Supply Company's West Oakland site. Soil and associated vapor samples from exploratory boreholes at the site were analyzed by Anatec Laboratories. The results indicated that soil in the vicinity of the tank was contaminated with gasoline and raised the possibility that

gasoline may have reached groundwater below the site. During subsequent removal of the tank by Erikson Industrial Services, substantial deterioration of the tank body was documented. Gasoline odors were also detected during tank removal operations.

In order to assess the extent of soil and groundwater quality beneath and immediately adjacent to the Pacific Supply Company site and the potential for migration of contaminants from off-site sources, BAI carried out a two-phase soil and groundwater investigation. Monitoring wells MW-1 through MW-5 (Plate 2) were constructed in September 1988 as the first phase of the soil and groundwater investigation. Monitoring wells MW-6 and MW-7 were constructed on December 19, 1989 during Phase II of the same investigation. The construction and sampling of these wells are documented in BAI's "Report of Findings", dated March 23, 1990. The results of the Phase I and II investigations indicated that light petroleum hydrocarbons had migrated beyond the immediate vicinity of the former underground storage tank (UST); however, it was concluded that hydrocarbons in the soil and groundwater had not extended beyond the limits of the property.

The Pacific Supply Company initiated quarterly groundwater monitoring at the request of the ACHCSA in May 1992. Initially, only on-site wells were monitored for total petroleum hydrocarbons (TPH) as gasoline, benzene, toluene, ethylbenzene and xylenes (BTEX), and lead. Later, the five on-site and the two off-site wells were monitored quarterly.

A vapor extraction pilot study was performed in June 1992 to determine the feasibility of using vapor extraction technology as an in-situ corrective action to remove volatile petroleum hydrocarbons from the shallow subsurface soils. A two-inch diameter vapor extraction well (VEW-1) was installed at the location indicated on Plate 2 to an approximate depth of 8 feet below ground surface (bgs). The results of the 4-day pilot study indicated that the lithology at the site permitted the flow of air through the soils at a sufficient rate so as to volatilize hydrocarbon constituents in the soil. The radius of influence was determined in the field by measuring the relative pressure at several probe locations positioned at various radial distances away from the extraction well. The results indicated that the estimated radius of influence from the 2-inch diameter extraction well was approximately 30 feet at a relatively low pressure of less than 50 inches of water, as discussed in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

In response to an ACHCSA December 1992 request, BAI also performed an investigation to attempt to delineate the zero line of contamination. Ten soil borings (B-1 through B-10) were drilled as part of this investigation to depths of approximately 7 to 10 feet bgs (Plate 2). From each boring, one soil sample was retained from a depth of approximately 7 to 8 feet bgs for analytical testing of TPH as gasoline and BTEX. Further discussions of this investigation are provided in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

Vapor recovery wells VRW-1 through VRW-9 were constructed in August 1993 as part of a vapor recovery system. During installation of the extraction wells, soil samples were collected for chemical analysis in the borings at the depth where groundwater was first encountered, at approximately 7 feet bgs. Installations of these wells were documented in a February 7, 1994 report. A vapor extraction system was installed in the fall of 1993 as an interim remedial action. The system began operation on December 26, 1993. The system consisted of an internal combustion engine with a spray aeration tank for treatment of groundwater, and an activated carbon treatment polishing step prior to groundwater discharge. The internal combustion unit and spray aeration unit was manufactured by Remediation Service International (RSI), under the trade name Spray Aeration Vapor Extraction (SAVE) system.

On June 28, 1996, the treatment system was shut down with the concurrence of Pacific Supply Company. Prior to shut down, the system had destroyed an estimated 6,550 pounds of petroleum hydrocarbons since start of operations on December 26, 1993. After shut down, the water in the water tank was treated and discharged to the sanitary sewer under the existing permit and the inside of the tank was cleaned on July 15, 1996.

The permit with the Bay Area Air Quality Management District (BAAQMD) expired on September 1, 1996, and was not renewed. The water discharge permit was discontinued on July 31, 1996. The total volume of water discharged to the sanitary sewer was 151,089 gallons. In December 1996, the shut down and decommissioning of the system was authorized by Jennifer Eberle of the Alameda County Department of Health Services.

Groundwater monitoring continued following the shut down of the vapor extraction system. In August 2000, BAI supervised the drilling of three soil borings in 24th Street, on the north side of the Pacific Supply Company building in a downgradient direction from the former UST location. Grab groundwater samples were collected to evaluate whether off-site migration of hydrocarbon contamination in groundwater was occurring. One of the three groundwater samples was reported to contain low levels of TPH as gasoline, BTEX, and petroleum oxygenates. The results of the field investigation are presented in BAI's "Groundwater Investigation and Monitoring Report," dated December 14, 2000.

The drilling activities were performed on July 21, 2004 to determine the effectiveness of the vapor extraction system and to collect soil samples for geotechnical properties to aid in the evaluation of risk based cleanup scenarios. Soil borings CB-1 through CB-14 were drilled to depths ranging from 7 to 8.5 feet bgs. The soil samples selected for laboratory analyses were collected based on the elevation of the historical contamination in the vicinity of the boring, or direction from the ACHCS. The results of this investigation are presented in BAI's report titled "Soil Parameters and Confirmation Soil Sampling Investigation Report", dated January 31, 2005.

Table 1 presents a summary of groundwater analytical data and groundwater elevations for the monitoring wells. Table 2 presents the groundwater concentrations and groundwater elevations

for vapor recovery wells. Plate 2 presents a site map that shows the historical boring and sampling locations. Groundwater elevations calculated from this monitoring even are provided on Plate 3.

Scope of Work

The scope of work performed for this monitoring event included measuring depths to water in the groundwater and vapor recovery wells and collecting groundwater samples for laboratory analyses. The samples were submitted to a State-certified laboratory under chain of custody protocol.

On January 31, 2011 BAI measured depths to water in groundwater monitoring wells MW-1 through MW-3 and vapor recovery wells VRW-1 through VRW-9. The groundwater monitoring data and calculated elevations relative to mean sea level (MSL) for wells MW-1 through MW-3 (and historical data for wells MW-4 through MW-7) are presented in Table 1, and in Table 2 for vapor recovery wells VRW-1 through VRW-9.

On January 31 and February 1, 2011 BAI collected groundwater samples from groundwater monitoring wells MW-1 through MW-3 and vapor recovery wells VRW-1, VRW-2, VRW-3, VRW-4, MW-5, VRM-6, VRW-7, VRM-8, and VRW-9.

The groundwater sampling protocol and field logs are included in Appendix A. BACE Analytical & Field Services (BAFS) analyzed the groundwater samples for TPH as gasoline and for volatile organic compounds (VOCs) including BTEX and MTBE by EPA Test Method 8260. The groundwater analytical report for the groundwater samples is presented in Appendix B.

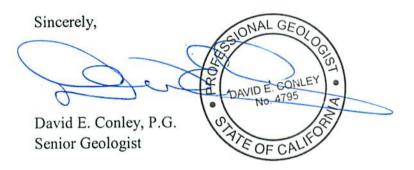
Groundwater Flow Direction

Based on data from well MW-1, MW-2, and MW-3, the groundwater gradient on January 31, 2011 was 0.007 feet per foot toward the northwest, with groundwater elevations ranging from 4.04 feet to 4.46 feet above MSL. The groundwater elevations are presented on Plate 3.

Groundwater Analytical Results

The analytical results of the sample from well MW-1 reported all analytes as below their respective reporting limits. TPH as gasoline was reported in the sample collected from well MW-2 at a concentration of 2.0 milligrams per liter (mg/l), benzene was at 4.86 micrograms per liter (μ g/l), toluene at 2.48 μ g/l, xylenes at 4.63 μ g/l, and MTBE at 1.47 μ g/l. In well MW-3, TPH as gasoline was reported at a concentration of 0.17 mg/l and tert-Butyl Alcohol (TBA) at 91.8 μ g/l.

TPH as gasoline was reported in the samples collected from the vapor extraction wells VRW-1 through VRW-9 at concentrations ranging from 0.22 mg/l in VRW-3 to 2.4 mg/l in VRW-8.



Benzene was reported in vapor extraction wells VRW-1, VRW-2, VRW-3, VRW-4, VRW-5, VRW-6, VRW-7, and VRW-8, at concentrations ranging from 1.19 μ g/l in well VRW-3 to 125 μ g/l in well VRW-4. Toluene was reported in wells VRW-2, VRW-4, VRW-5, and VRW-8, at concentrations of 1.78 μ g/l, 8.25 μ g/l, 2.83 μ g/l, and 4.62 μ g/l, respectively. Xylenes were reported in samples collected from wells VRW-2 through VRW-9 at concentrations ranging from 0.68 μ g/l (VRW-7) to 19.3 μ g/l (VRW-4). TBA was reported in wells VRW-1,VRM-3, VRW-6, VRW-7, VRW-8, and VRW-9, at concentrations ranging from 30.5 μ g/l (VRW-3) to 81.3 μ g/l (VRW-7).

Monitoring Schedule

The next groundwater sampling event was performed in June 2011. A report summarizing the results of the June 2011 monitoring event will be provided after BAI receives and reviews the analytical results.

If you should have any questions regarding this report, please contact Bill Coset at (707) 838-3027.

1. UNG

William H. H. Coset Project Geologist

cc: Ms. Normita Callison

LIST OF ATTACHMENTS

TABLES

Table 1.	Summary of Groundwater Analytical Data for Monitoring Wells
Table 2.	Summary of Groundwater Analytical Data for Vapor Extraction Wells

PLATES

Plate 1.	Vicinity Map
Plate 2.	Site Map
Plate 3.	Groundwater Elevations, January 31, 2011

APPENDICES

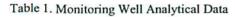
Appendix A.	Monitoring Well Sampling Protocol and Field Reports
Appendix B.	Analytical Laboratory Report

TABLES

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	мтве
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)
MW-1	10/14/1988	7.99	0.88	1.1	1.1	ND		ND	-	-
MW-1	12/29/1989	7.74	1.13	ND	ND	ND	ND	ND	ND (1)	-
MW-1	5/28/1992	7.81	1.06	ND	ND	ND	ND	ND	0.003(2)	-
MW-1	9/3/1992	7.90	0.97	ND	ND	ND	ND	ND	0.12 (2)	-
MW-1	11/24/1992	7.90	0.97	ND	ND	ND	ND	ND	0.017 (2)	_
MW-1	3/9/1993	7.38	1.49	ND	ND	ND	ND	ND	ND (1)	-
MW-1	7/21/1993	7.68	1.19	ND	ND	ND	ND	ND	ND (1)	_
MW-1	11/3/1993	7.83	1.04	ND	ND	ND	ND	ND	ND (1)	-
MW-1	2/1/1994	7.30	1.57	ND	ND	ND	ND	ND	ND (1)	
MW-1	6/2/1994	7.43	1.44	ND	ND	ND	ND	ND	ND (1)	-
MW-1	9/1/1994	7.70	1.17	ND	ND	ND	ND	ND	ND (1)	-
MW-1	12/13/1994	6.90	1.97	ND	ND	ND	ND	ND	_	-
MW-1	3/7/1995	7.30	1.57	0.06	3.8	ND	ND	ND	-	-
MW-1	6/9/1995	7.87	1.00	0.09	12	0.8	0.5	1.3	-	
MW-1	9/21/1995	7.67	1.20	ND	4.1	ND	ND	ND	-	-
MW-1	12/18/1995	7.15	1.72	ND	ND	ND	ND	ND	-	 :
MW-1	2/29/1996	6.74	2.13	0.09	1.4	0.5	ND	0.8	-	_
MW-1	7/15/1996	7.76	1.11		-	-	-	-	-	
MW-1	1/7/1997	6.80	2.07	0.06	0.6	<0.5	<0.5	<0.5	-	-
MW-1	7/12/1997	7.67	1.20	-	-		-	-	-	-
MW-1	1/26/1998	6.93	1.94	< 0.05	<0.5	<0.5	<0.5	1.1	-	-
MW-1	7/3/1998	7.51	1.36	-	-	-	-	-	_	-
MW-1	1/13/1999	7.63	1.24	< 0.05	<0.5	<0.5	< 0.5	<0.5	-	-
MW-1	9/27/1999	7.77	1.10	-	-	-	-	-	-	_
MW-1	1/28/2000	6.85	2.02	< 0.05	<0.5	<0.5	<0.5	<0.5	-	<5.0
MW-1	5/16/2002	7.45	1.42	0.35	<0.5	<0.5	<0.5	<0.5		<1.0
MW-1	6/10/2003	7.32	4.15	< 0.05	<0.5	<0.5	<0.5	<0.5	-	-
MW-1	11/19/2003	7.30	4.17	< 0.050	< 0.30	< 0.30	<0.50	< 0.50	-	_
MW-1	6/23/2004	7.49	3.98	0.37	<1.0	<1.0	<1.0	<1.0	_	_

TABLE 1. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR MONITORING WELLS Pacific Supply Company, 1735 24th Street, Oakland, California

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)
MW-1	12/10/2004	6.27	5.20	< 0.050	< 0.5	<0.5	<0.5	<0.5	-	
MW-1	7/21/2005	7.41	4.06	< 0.05	<0.50	< 0.50	< 0.50	< 0.50	-	-
MW-1	1/18/2006	6.28	5.19	< 0.05	< 0.50	<0.50	< 0.50	< 0.50	-	-
MW-1	1/26/2007	7.47	4.00	< 0.050	< 0.50	<0.50	< 0.50	< 0.50	_	<1.0
MW-1	6/28/2007	7.53	3.94	< 0.050	< 0.50	< 0.50	< 0.50	< 0.50	-	<1.0
MW-1	1/31/2008	6.54	4.93	0.1	< 0.50	< 0.50	< 0.50	< 0.50	-	<1.0
MW-1	7/1/2008	7.56	3.91	0.056	< 0.50	<0.50	< 0.50	< 0.50	-	<1.0
MW-1	1/28/2009	7.12	4.35	0.10	< 0.50	<0.50	< 0.50	< 0.50	-	<1.0
MW-1	7/22/2009	7.57	3.90	< 0.05	< 0.50	<0.50	< 0.50	< 0.50	-	<1.0
MW-1	2/2/2010	6.58	4.89	< 0.05	< 0.50	<0.50	<0.50	< 0.50	-	<1.0
MW-1	8/3/2010	7.55	3.92	< 0.05	< 0.50	<0.50	<0.50	< 0.50	-	<1.0
MW-1	1/31/2011	7.05	4.42	< 0.05	< 0.50	<0.50	<0.50	< 0.50	-	<1.0
MW-2	10/14/1988	7.29	0.85	11	23	20	-	16	_	
MW-2	12/29/1989	6.87	1.27	4	200	6.7	ND	ND	0.22 (1)	-
MW-2	5/28/1992	6.92	1.22	8.9	550	48	ND	13	ND (2)	-
MW-2	9/3/1992	7.26	0.88	2.1	760	6.2	1.8	5.1	0.006 (2)	-
MW-2	11/24/1992	7.28	0.86	4.2	370	15	3.4	9.5	ND (2)	-
MW-2	3/9/1993	6.73	1.41	4.3	280	14	3.7	7.1	ND (1)	-
MW-2	7/21/1993	7.02	1.12	3.4	250	9.6	2.5	11	ND(1)	
MW-2	11/4/1993	7.22	0.92	2.5	230	7.8	2.1	9.9	ND(1)	-
MW-2	2/1/1994	6.93	1.21	3.4	240	17	ND	15	ND(1)	-
MW-2	6/2/1994	6.86	1.28	3.0	150	9.8	3.0	10	ND(1)	-
MW-2	9/1/1994	7.10	1.04	2.1	120	9.8	2.0	9.6	ND(1)	-
MW-2	12/13/1994	6.58	1.56	2.0	200	10	2.7	11	-	-
MW-2	3/7/1995	6.69	1.45	3.0	500	15	5.8	16	-	-
MW-2	6/9/1995	7.00	1.14	2.1	300	14	5.8	13	-	-
MW-2	9/21/1995	6.91	1.23	1.6	120	9.6	ND	15	-	-
MW-2	12/18/1995	6.73	1.41	2.8	120	16	5.2	19	-	-
MW-2	2/29/1996	6.36	1.78	1.7	170	15	2.9	17	-	-
MW-2	7/15/1996	7.11	1.03	2.8	160	22	3.5	17	-	-


TABLE 1. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR MONITORING WELLS

Pacific Supply Company, 1735 24th Street, Oakland, California

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)
MW-2	1/7/1997	6.40	1.74	3.0	350	25	8.1	24	-	-
MW-2	7/12/1997	6.98	1.16	2.1	55	11	<2.5	18	-	-
MW-2	1/26/1998	6.45	1.69	1.8	310	29	5.0	15	2-0	-
MW-2	7/3/1998	6.91	1.23	1.9	85	9.3	1.8	17	-	-
MW-2	1/13/1999	7.07	1.07	2.1	48	33	2.0	16		
MW-2	9/27/1999	7.22	0.92	1.5	20	6.8	2.6	11	-	-
MW-2	1/28/2000	6.61	1.53	1.3	22	6.4	1.5	11	-	<5.0
MW-2	5/17/2002	6.95	1.19	3.3	25.4	<5.0	<5.0	<5.0	-	<10
MW-2	6/10/2003	6.71	4.09	1.6	52	2.3	32	9.1	-	-
MW-2	11/19/2003	6.95	3.85	3.7	9.7	<1.1	<1.1	7.5	-	-
MW-2	6/23/2004	6.96	3.84	1.1	6.30	2.36	<1.0	7.41	-	-
MW-2	12/9/2004	6.54	4.26	3.0	13.0	13.0	<0.5	24	-	-
MW-2	7/22/2005	6.89	3.91	2.7	5.84	<2.5	<2.5	5.81	-	-
MW-2	1/19/2006	6.33	4.47	3.6	15.0	<2.5	<2.5	11.2	-	-
MW-2	1/26/2007	6.99	3.81	0.29	2.65	<2.5	<2.5	3.00	-	<5.0
MW-2	6/29/2007	7.00	3.80	1.9	6.69	2.44	<0.50	6.24	-	1.72
MW-2	1/31/2008	6.36	4.44	0.7	1.83	<1.0	<1.0	<1.0	-	<2.0
MW-2	7/1/2008	6.95	3.85	1.4	2.72	2.26	<1.0	4.66	_	2.14
MW-2	1/28/2009	6.76	4.04	0.70	5.31	2.78	<0.50	5.92	-	<1.0
MW-2	2/2/2010	6.42	4.38	2.2	8.64	<2.5	<2.5	4.53	-	<5.0
MW-2	8/2/2010	7.06	3.74	1.0	1.29	1.40	<1.0	1.71	-	<2.0
MW-2	1/31/2011	6.75	4.05	2.0	4.86	2.48	<0.50	4.63	-	1.47
MW-3	10/14/1988	8.25	0.88	3.4	ND	ND	-	2.8	-	-
MW-3	12/29/1989	7.79	1.34	ND	ND	ND	ND	ND	0.205 (1)	_
MW-3	5/28/1992	7.83	1.30	ND	0.8	0.5	ND	ND	0.016 (2)	-
MW-3	9/3/1992	8.22	0.91	ND	ND	ND	ND	ND	0.033 (2)	-
MW-3	11/24/1992	8.29	0.84	ND	ND	ND	ND	ND	0.011 (2)	-
MW-3	3/9/1993	7.30	1.83	0.1	1.8	ND	ND	ND	ND(1)	-
MW-3	7/21/1993	7.87	1.26	ND	ND	ND	ND	ND	ND(1)	s _ (
MW-3	11/4/1993	8.23	0.90	0.07	0.6	0.5	ND	ND	ND(1)	-
MW-3	2/1/1994	7.56	1.57	ND	ND	ND	ND	ND	ND(1)	_
MW-3	6/2/1994	7.46	1.67	0.06	ND	ND	ND	ND	ND(1)	-

TABLE 1. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR MONITORING WELLS Pacific Supply Company, 1735 24th Street, Oakland, California

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)
MW-3	9/1/1994	7.83	1.30	0.07	1.7	0.9	ND	ND	ND(1)	-
MW-3	12/13/1994	7.07	2.06	0.06	1.4	ND	ND	ND	-	-
MW-3	3/8/1995	7.27	1.86	0.06	1.5	ND	ND	ND	_	-
MW-3	6/9/1995	7.79	1.34	0.10	5.7	ND	ND	ND	-	-
MW-3	9/21/1995	7.87	1.26	ND	1.5	ND	ND	ND	—	-
MW-3	12/18/1995	7.30	1.83	ND	1.3	ND	ND	ND	-	
MW-3	2/29/1996	6.84	2.29	ND	2.1	0.6	ND	0.7	-	-
MW-3	7/15/1996	7.79	1.34	-	-	-	-	-	-	-
MW-3	1/7/1997	6.62	2.51	0.05	1.0	<0.5	<0.5	<0.5	-	-
MW-3	7/12/1997	7.83	1.30		-		-		-	-
MW-3	1/26/1998	6.60	2.53	< 0.05	0.8	<0.5	< 0.5	<0.5	-	-
MW-3	7/3/1998	7.48	1.65		_	-		-		
MW-3	1/13/1999	7.63	1.50	< 0.05	< 0.5	<0.5	< 0.5	<0.5	-	-
MW-3	9/27/1999	7.94	1.19	_	_	-	-	-		-
MW-3	1/28/2000	7.12	2.01	< 0.05	<0.5	<0.5	<0.5	<0.5	-	<5.0
MW-3	6/5/2003	7.53	4.23	< 0.05	<0.5	<0.5	<0.5	<0.5		
MW-3	11/19/2003	7.83	3.93	0.16	< 0.54	< 0.54	< 0.55	<1.6	-	-
MW-3	6/23/2004	7.65	4.11	< 0.05	<1.0	<1.0	<1.0	<1.0		-
MW-3	12/8/2004	7.53	4.23	< 0.050	<0.5	<0.5	< 0.5	<0.5	-	-
MW-3	7/20/2005	7.62	4.14	< 0.10	<1.0	<1.0	<1.0	<1.0	-	-
MW-3	1/19/2006	6.76	5.00	< 0.05	< 0.50	< 0.50	< 0.50	0.71	-	-
MW-3	1/25/2007	7.54	4.22	0.15	< 0.50	< 0.50	< 0.50	< 0.50	c — c	<1.0
MW-3	6/29/2007	7.70	4.06	0.075	0	<0.50	< 0.50	< 0.50	-	(A)
MW-3	2/1/2008	6.87	4.89	0.72	<0.50	< 0.50	< 0.50	< 0.50		(A)
MW-3	7/2/2008	7.79	3.97	0.081	< 0.50	< 0.50	< 0.50	< 0.50	_	(B)
MW-3	1/29/2009	7.53	4.23	0.15	< 0.50	< 0.50	< 0.50	< 0.50	_	<1.0
MW-3	7/23/2009	7.80	3.96	0.18	<0.50	< 0.50	< 0.50	< 0.50	-	1.00 (C)
MW-3	2/1/2010	6.96	4.80	0.25	< 0.50	< 0.50	< 0.50	< 0.50	-	1.30 (D)
MW-3	8/2/2010	7.76	4.00	0.14	<0.50	< 0.50	< 0.50	<0.50	-	1.37(E)
MW-3	2/1/2011	7.37	4.39	0.17	< 0.50	< 0.50	< 0.50	< 0.50	_	(F)

TABLE 1. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR MONITORING WELLS Pacific Supply Company, 1735 24th Street, Oakland, California

Table 1. Monitoring Well Analytical Data

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)
MW-4	10/14/1988	8.33	0.74	4.6	1.2	ND	-	2.2	-	-
MW-4	12/29/1989	8.08	0.99	0.5	0.7	ND	ND	ND	ND (1)	-
MW-4	5/28/1992	8.19	0.88	0.27	8.8	1	ND	3.2	0.030 (2)	-
MW-4	9/3/1992	8.37	0.70	0.20	4.5	4.4	ND	1.9	0.022 (2)	-
MW-4	11/24/1992	8.28	0.79	0.14	3.2	3.2	ND	1.0	0.005 (2)	
MW-4	3/9/1993	7.98	1.09	0.47	10	ND	ND	2.5	ND (1)	-
MW-4	7/21/1993	8.17	0.90	0.28	4.4	5.9	ND	ND	ND(1)	_
MW-4	11/4/1993	8.14	0.93	0.08	1.3	1.6	ND	ND	ND(1)	
MW-4	2/1/1994	7.79	1.28	0.08	ND	ND	ND	ND	ND(1)	
MW-4	6/2/1994	7.53	1.54	0.30	3.1	2.9	ND	0.8	ND(1)	-
MW-4	9/1/1994	7.69	1.38	0.12	1.6	ND	ND	ND	ND(1)	_
MW-4	12/13/1994	6.70	2.37	ND	ND	ND	ND	ND	-	-
MW-4	3/8/1995	6.83	2.24	0.09	ND	ND	ND	ND	_	_
MW-4	6/9/1995	7.66	1.41	0.19	ND	ND	ND	ND	-	-
MW-4	9/21/1995	7.93	1.14	0.09	ND	ND	ND	ND	-	-
MW-4	12/18/1995	6.98	2.09	_	-	-	·	-	-	-
MW-4	2/29/1996	6.54	2.53	0.14	1.6	1.0	ND	0.6	-	-
MW-4	7/15/1996	7.74	1.33	-	-	-	-	-	-	-
MW-4	1/7/1997	6.46	2.61	0.09	1.0	0.5	<0.5	<0.5	-	-
MW-4	7/12/1997	7.82	1.25	-	-	-		-	-	-
MW-4	1/26/1998	6.67	2.40	0.09	1.1	0.8	<0.5	<0.5	-	-
MW-4	7/3/1998	7.45	1.62	-	-	-	15 <u>—</u> 18	-		_
MW-4	1/13/1999	7.51	1.56	0.12	1.1	0.62	<0.5	0.57		-
MW-4	9/27/1999	7.88	1.19	-	-	-	-	-	-	-
MW-4*	1/28/2000	7.02	2.05	0.072	<0.5	<0.5	<0.5	<0.5	-	<5.0
MW-5	10/14/1988	8.04	0.89	3.2	ND	ND	-	ND	-	-
MW-5	12/29/1989	7.40	1.53	ND	ND	ND	ND	ND	ND(1)	_
MW-5	5/28/1992	7.53	1.40	ND	ND	ND	ND	ND	0.008 (2)	-
MW-5	9/3/1992	8.02	0.91	ND	ND	ND	ND	ND	0.034 (2)	<u></u>

TABLE 1. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR MONITORING WELLS

Pacific Supply Company, 1735 24th Street, Oakland, California

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)
MW-5	11/24/1992	7.75	1.18	ND	ND	ND	ND	ND	0.011 (2)	-
MW-5	3/9/1993	6.91	2.02	ND	ND	ND	ND	ND	ND (1)	-
MW-5	7/21/1993	7.57	1.36	ND	ND	ND	ND	ND	ND(1)	
MW-5	11/4/1993	7.77	1.16	ND	ND	ND	ND	ND	ND(1)	-
MW-5	2/1/1994	7.05	1.88	ND	ND	ND	ND	ND	ND(1)	-
MW-5	6/2/1994	7.18	1.75	ND	ND	ND	ND	ND	ND(1)	-
MW-5	9/1/1994	7.53	1.40	ND	ND	ND	ND	ND	-	-
MW-5	3/8/1995	6.67	2.26	ND	ND	ND	ND	ND	-	-
MW-5	6/9/1995	7.33	1.60	ND	ND	ND	ND	ND	-	-
MW-5	9/21/1995	7.67	1.26	ND	ND	ND	ND	ND	-	
MW-5	12/18/1995	6.62	2.31	-	-	-	-	-	-	-
MW-5	2/29/1996	6.16	2.77	ND	ND	ND	ND	ND	e	_
MW-5	7/15/1996	7.47	1.46	-	-	-	-	_	-	-
MW-5	1/7/1997	6.11	2.82	< 0.05	<0.5	<0.5	<0.5	<0.5	-	-
MW-5	7/12/1997	7.61	1.32	—	-	-	-	-	-	-
MW-5	1/26/1998	6.17	2.76	< 0.05	<0.5	<0.5	<0.5	< 0.5	-	-
MW-5	7/3/1998	7.23	1.70		-	-	_	-	-	-
MW-5	1/13/1999	7.27	1.66	< 0.05	<0.5	<0.5	<0.5	<0.5	-	<u>11</u>
MW-5	9/27/1999	7.76	1.17	-	-	-	-	_	-	-
MW-5*	1/28/2000	7.17	1.76	< 0.05	<0.5	<0.5	<0.5	<0.5	_	<5.0
MW-6	12/29/1989	5.02	1.11	1.1	5.4	4.5	ND	ND	ND (1)	-
MW-6	3/9/1993	5.10	1.03	2.3	2.3	2.8	ND	3.1	ND (1)	-
MW-6	7/21/1993	5.23	0.90	0.59	ND	7.6	ND	ND	ND(1)	-
MW-6	11/4/1993	5.25	0.88	1.5	ND	1.2	ND	0.7	ND(1)	_
MW-6	2/1/1994	5.05	1.08	1.9	2.5	3.9	1.6	1.1	ND(1)	_
MW-6	6/2/1994	4.49	1.64	1.3	ND	1	ND	ND	ND(1)	_
MW-6	9/1/1994	4.53	1.60	2.2	ND	1.7	ND	ND	ND(1)	-
MW-6	12/13/1994	4.27	1.86	0.66 (3)	ND	ND	ND	ND	_	-
MW-6	3/8/1995	3.37	2.76	1.0 (3)	ND	ND	ND	ND	-	-
MW-6	6/9/1995	4.40	1.73	1.5	ND	3.3	ND	ND	_	-
MW-6	9/21/1995	4.69	1.44	0.28	ND	ND	ND	ND	-	-
MW-6*	12/18/1995	4.42	1.71	-	-	-	_	-	_	

TABLE 1. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR MONITORING WELLS

Pacific Supply Company, 1735 24th Street, Oakland, California

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBH
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)
MW-7	12/29/1989	8.35	-3.32	ND	ND	ND	ND	ND	0.235 (1)	-
MW-7	3/9/1993	13.60	-8.57	ND	ND	ND	ND	ND	ND (1)	-
MW-7	7/21/1993	12.59	-7.56	ND	ND	ND	ND	ND	ND(1)	-
MW-7	11/4/1993	9.84	-4.81	ND	ND	ND	ND	ND	ND(1)	-
MW-7	2/1/1994	10.38	-5.35	ND	ND	ND	ND	ND	ND(1)	-
MW-7	6/2/1994	10.10	-5.07	ND	ND	ND	ND	ND	ND(1)	
MW-7	9/1/1994	9.63	-4.60	ND	ND	ND	ND	ND	ND(1)	-
MW-7	12/13/1994	11.27	-6.24	ND	ND	ND	ND	ND		<u> </u>
MW-7	3/7/1995	9.68	-4.65	ND	ND	ND	ND	ND	-	-
MW-7	6/9/1995	9.37	-4.34	ND	ND	ND	ND	ND	7 <u>_</u> 1	
MW-7	9/21/1995	9.43	-4.40	ND	ND	ND	ND	ND	-	-
MW-7	12/18/1995	13.28	-8.25		-	-	-	-	-	-
MW-7	2/29/1996	11.70	-6.67	ND	ND	ND	ND	ND	-	-
MW-7	7/15/1996	11.12	-6.09	-	-	-	-	_	-	-
MW-7		14.35	-9.32	< 0.05	<0.5	<0.5	<0.5	<0.5	5 — 3	-
MW-7	7/12/1997	15.12	-10.09	-	-	-	-	-	-	-
MW-7	1/26/1998	15.28	-10.25	< 0.05	<0.5	< 0.5	<0.5	< 0.5	-	-
MW-7	7/3/1998	14.10	-9.07	-	-	-	-	-	-	-
MW-7	1/13/1999	14.55	-9.52	< 0.05	< 0.5	< 0.5	<0.5	<0.5	-	-
MW-7	9/27/1999	14.03	-9.00	-	-	-	-	-	-	-
MW-7*	1/28/2000	7.47	-2.44	< 0.05	< 0.5	< 0.5	< 0.5	<0.5	-	<5.0

TABLE 1. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR MONITORING WELLS Pacific Supply Company, 1735 24th Street, Oakland, California

TABLE 1. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR MONITORING WELLS

Pacific Supply Company, 1735 24th Street, Oakland, California

Notes:

MTBE = methyl tertiary butyl ether. TPH = total petroleum hydrocarbons.

(1)=Organic Lead, (2)=Total Lead, and (3)=chromatographic peak array does not match gasoline standard.

ND = not detected at laboratory reporting limit. <= less than given laboratory reporting limit.

 $\mu g/L = micrograms$ per liter. mg/L = milligrams per liter. - = not requested.

MSL = mean seal level.

Groundwater elevations prior to 2003 based on the following well casing elevations in feet above MSL:

MW-1 (8.87'), MW-2 (8.14'), MW-3 (9.13'), MW-4 (9.07'), MW-5 (8.93'), MW-6 (6.13') and MW-7 (5.03').

New survey data was obtained on June 23, 2003 by Phelps and Associates Land Surveyors.

June 2003 water levels were measured on June 5, 2003.

June 2004 water levels were measured on June 22, 2004.

December 2004 water levels were measured on December 8, 2004.

= Removed from sampling program.

(A) = concentrations of tert-Butyl alcohol (TBA) reported at 120 μ g/l.

(B) = concentrations of tert-Butyl alcohol (TBA) reported at 151 μ g/l.

- (C) = concentrations of tert-Butyl alcohol (TBA) reported at 122 μ g/l.
- (D) = concentrations of tert-Butyl alcohol (TBA) reported at 135 μ g/l.

(E) = concentrations of tert-Butyl alcohol (TBA) reported at 127 μ g/l.

(F) = concentrations of tert-Butyl alcohol (TBA) reported at 91.8 μ g/l.

Sample ID	Depth to Groundwater Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	MTBE (μg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-1	11/3/1993	-	-	-	3	1600	19	1.1	16	-	-
VRW-1	6/10/2003	7.31	11.18	3.87	0.44	5.9	<0.5	<0.5	1.9	-	
VRW-1	11/19/2003	7.33	11.18	3.85	1.2	19	< 0.54	< 0.55	6.3	· · · · · · · · · · · · · · · · · · ·	
VRW-1	6/22/2004	7.32	11.18	3.86	0.32	3.23	<1.0	<1.0	3.36		(m)
VRW-1	12/9/2004	6.93	11.18	4.25	0.32	8.0	<3	<3	3.7	-	
VRW-1	7/22/2005	7.25	11.18	3.93	0.69	5.35	1.27	< 0.50	3.66	-	-
VRW-1	1/19/2006	6.63	11.18	4.55	0.53	6.98	1.41	< 0.50	3.18	-	-
VRW-1	1/25/2007	7.34	11.18	3.84	0.32	260	0.97	< 0.50	2.43	1.31	-
VRW-1	6/28/2007	7.30	11.18	3.88	0.17	2.19	0.76	< 0.50	1.83	1.26	-
VRW-1	1/31/2008	6.67	11.18	4.51	0.77	20.5	3.75	< 0.50	6.82	2.45	
VRW-1	7/1/2008	7.35	11.18	3.83	0.75	11.8	3.73	< 0.50	6.41	1.13	(B)
VRW-1	1/28/2009	7.14	11.18	4.04	< 0.050	1.12	1.26	< 0.50	1.56	<1.0	
VRW-1	7/22/2009	7.40	11.18	3.78	0.38	1.06	0.69	< 0.50	1.11	1.33	(E)
VRW-1	2/2/2010	6.70	11.18	4.48	0.90	8.95	2.42	<1.0	4.76	<2.0	
VRW-1	8/2/2010	7.41	11.18	3.77	0.37	1.34	0.77	< 0.50	0.96	<1.0	
VRW-1	1/31/2011	7.14	11.18	4.04	0.28	2.63	< 0.50	< 0.50	< 0.50	1.03	(U)
VRW-2	11/4/1993	-	-	-	7.2	3,300	600	2.4	870	-	-
VRW-2	5/17/2002	-	-	-	2.8	471	<10	<10	<10	<20	<10 to <20
VRW-2	6/9/2003	6.87	11.08	4.21	0.47	38	2.8	<1.0	<1.0	-	
VRW-2	11/19/2003	7.00	11.08	4.08	1.3	51	< 0.54	< 0.55	4.0	-	-
VRW-2	6/25/2004	7.00	11.08	4.08	0.24	274	4.10	4.11	8.22	-	
VRW-2	12/9/2004	6.45	11.08	4.63	< 0.050	9.6	4.2	2.5	4.3		-
VRW-2	7/21/2005	6.93	11.08	4.15	2.1	102	1.43	0.84	3.81	-	-
VRW-2	1/18/2006	5.83	11.08	5.25	3.8	280	<2.5	3.81	7.54	-	
VRW-2	1/25/2007	6.94	11.08	4.14	1.0	62.3	<2.5	<2.5	3.56	<5.0	
VRW-2	6/28/2007	7.02	11.08	4.06	0.45	41.0	<2.5	<2.5	3.83	<5.0	-
VRW-2	1/31/2008	6	11.08	5.08	1.4	80.1	2.31	1.25	3.57	1.87	-
VRW-2	7/1/2008	7.15	11.08	3.93	1.5	73.2	2.04	<1.0	4.52	2.15	-
VRW-2	1/28/2009	6.71	11.08	4.37	0.54	46.2	2.10	< 0.50	3.76	<1.0	-
VRW-2	7/22/2009	7.10	11.08	3.98	1.1	12.7	1.06	<1.0	2.79	2.38	
VRW-2	2/2/2010	6.06	11.08	5.02	1.9	62.8	<2.5	<2.5	<2.5	<5.0	-
VRW-2	8/3/2010	7.04	11.08	4.04	1.4	31.1	1.44	<1.0	2.42	<2.0	
	1/31/2011	6.70	11.08	4.38	1.4	21.1	1.78	<0.50	2.93	1.20	

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS Pacific Supply Company, 1735 24th Street, Oakland, California

Sample ID	Depth to Groundwater Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (µg/L)	MTBE (µg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-3	11/4/1993	-	-	-	5.7	120	41	1.1	380	-	-
VRW-3	5/17/2002	-	-	-	0.42	10.9	<0.5	<0.5	1.07	<1.0	<0.50 to <1.0
VRW-3	6/9/2003	7.41	11.62	4.21	0.061	4.8	<0.5	<0.5	<0.5	-	
VRW-3	11/19/2003	7.48	11.62	4.14	0.16	1.7	< 0.54	< 0.55	2.7	•	
VRW-3	6/25/2004	7.58	11.62	4.04	0.12	2.00	< 0.50	< 0.50	1.00	-	-
VRW-3	12/10/2004	6.34	11.62	5.28	0.22	27	3.7	1.0	3.1	-	-
VRW-3	7/22/2005	7.50	11.62	4.12	0.11	<1.0	<1.0	<1.0	2.02	-	-
VRW-3	1/18/2006	6.37	11.62	5.25	0.18	230	< 0.50	< 0.50	1.46	-	-
VRW-3	1/26/2007	7.50	11.62	4.12	0.071	1.68	< 0.50	< 0.50	< 0.50	<1.0	-
VRW-3	6/28/2007	7.60	11.62	4.02	< 0.050	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	-
VRW-3	1/31/2008	6.50	11.62	5.12	< 0.050	1.01	< 0.50	< 0.50	< 0.50	<1.0	-
VRW-3	7/1/2008	7.66	11.62	3.96	0.10	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	-
VRW-3	1/28/2009	7.19	11.62	4.43	< 0.050	< 0.50	< 0.50	< 0.50	2.26	<1.0	
VRW-3	7/22/2009	7.64	11.62	3.98	0.26	< 0.50	< 0.50	< 0.50	1.16	<1.0	-
VRW-3	2/2/2010	6.45	11.62	5.17	0.28	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	(L)
VRW-3	8/3/2010	7.63	11.62	3.99	0.29	< 0.50	< 0.50	< 0.50	0.87	<1.0	(P)
VRW-3	1/31/2011	7.16	11.62	4.46	0.22	1.19	< 0.50	< 0.50	1.41	<1.0	(V)
VRW-4	11/4/1993	-	-	-	9.0	4,400	900	5.4	990	-	-
VRW-4	5/15/2002	-	-	-	11	4,270	741	512	1,130	<50	<25 to <50
VRW-4	6/5/2003	7.01	11.33	4.32	2.2	1,200	100	12	89	-	-
VRW-4	11/19/2003	7.44	11.33	3.89	1.7	210	2.4	<2.2	36	-	-
VRW-4	6/22/2004	7.20	11.33	4.13	14	4,540	611	739	1,170	-	-
VRW-4	12/8/2004	6.99	11.33	4.34	2.7	780	68	90	160		-
VRW-4	7/20/2005	7.12	11.33	4.21	19	3,740	381	480	643		-
VRW-4	1/19/2006	6.29	11.33	5.04	7.8	1,670	196	270	324	-	
VRW-4	1/26/2007	7.06	11.33	4.27	1.4	163	<25	<25	25.2	<50	
VRW-4	6/28/2007	6.99	11.33	4.34	0.62	60.8	3.81	3.72	18.7	<5.0	-
VRW-4	1/31/2008	6.20	11.33	5.13	0.75	26.0	3.21	<2.5	15.6	<5.0	_
VRW-4	7/1/2008	7.32	11.33	4.01	0.77	16.8	2.86	< 0.50	13.3	<1.0	-
VRW-4	1/29/2009	7.02	11.33	4.31	0.89	45.5	3.16	1.75	13.2	<1.0	-
VRW-4	7/22/2009	7.26	11.33	4.07	0.91	16.1	2.42	<1.0	12.4	<2.0	(F)
VRW-4	2/1/2010	6.40	11.33	4.93	2.5	481	26.2	45.2	61.1	<10	
VRW-4	8/3/2010	7.26	11.33	4.07	1.2	19.3	<5.0	<5.0	8.80	<10	<5.0 to <100
VRW-4	1/31/2011	6.96	11.33	4.37	1.0	125	8.25	9.51	19.3	<2.0	

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS Pacific Supply Company, 1735 24th Street, Oakland, California

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

Sample ID	Depth to Groundwater Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (µg/L)	MTBE (µg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-5	11/4/1993	-	-	-	0.90	68	33	2.5	32	-	-
VRW-5	5/16/2002	-	-	-	0.87	44.3	<5.0	<5.0	<5.0	<10	<5.0 to <10
VRW-5	6/9/2003	7.33	11.56	4.23	0.93	90	<1.0	14	0.16	-	-
VRW-5	11/19/2003	7.53	11.56	4.03	2.9	250	<1.1	24	41	-	-
VRW-5	6/23/2004	7.47	11.56	4.09	0.72	40.5	<1.0	1.17	8.04	-	
VRW-5	12/10/2004	7.11	11.56	4.45	0.72	60	10	<3	33	-	-
VRW-5	7/21/2005	7.38	11.56	4.18	1.6	102	3.83	4.62	12.4	-	-
VRW-5	1/19/2006	6.29	11.56	5.27	1.8	65.4	<2.5	31.4	33.4		-
VRW-5	1/25/2007	7.40	11.56	4.16	NA	NA	NA	NA	NA	NA	NA
VRW-5	6/29/2007	7.50	11.56	4.06	0.69	35.4	2.55	<2.5	5.62	<5.0	NA
VRW-5	2/1/2008	6.49	11.56	5.07	0.87	33.7	<2.5	15.2	10.5	<5.0	NA
VRW-5	1/28/2009	7.17	11.56	4.39	0.72	110	3.53	5.00	9.00	<1.0	NA
VRW-5	7/23/2009	7.54	11.56	4.02	1.6	11.8	<1.0	<1.0	3.93	<2.0	(G)
VRW-5	8/3/2010	7.50	11.56	4.06	1.5	12.7	1.50	<1.0	3.28	<2.0	<1.0 to <20
VRW-5	2/1/2011	7.20	11.56	4.36	2.0	109	2.83	77.5	6.86	<2.0	
VRW-6	11/4/1993	-	_	_	0.41	6.6	1.0	ND	31	-	-
VRW-6	5/15/2002	_	-	-	0.73	178	4.58	1.41	6.10	<1.0	<0.50 to <1.0
VRW-6	6/6/2003	7.21	11.43	4.22	< 0.05	<0.5	<0.5	<0.5	<0.5	-	
VRW-6	11/19/2003	7.39	11.43	4.04	0.21	13	< 0.54	1.0	2.5	-	-
VRW-6	6/23/2004	7.36	11.43	4.07	0.42	43.4	3.60	1.69	13.0	-	-
VRW-6	12/9/2004	6.71	11.43	4.72	0.14	8.0	21	<0.5	3.6	-	-
VRW-6	7/21/2005	7.32	11.43	4.11		18.3	1.13	0.95	5.05	-	-
VRW-6	1/19/2006	5.85	11.43	5.58	0.13	3.96	< 0.50	< 0.50	1.25	-	
VRW-6	1/25/2007	7.28	11.43	4.15	0.20	13.5	0.72	0.56	2.67	<1.0	
VRW-6	6/28/2007	7.41	11.43	4.02	0.081	7.37	< 0.50	< 0.50	1.32	<1.0	(A)
VRW-6	2/1/2008	NM	11.43	NM	1.8	212	10.2	8.05	17.7	<2.0	(A)
VRW-6	7/2/2008	7.51	11.43	3.92	0.18	4.80	< 0.50	< 0.50	1.72	<1.0	(C)
VRW-6	7/23/2009	NM	11.43	NM	0.21	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	(H)
VRW-6	2/1/2010	6.65	11.43	4.78	0.32	7.97	< 0.50	< 0.50	1.26	<1.0	(M)
VRW-6	8/2/2010	7.45	11.43	3.98	0.28	1.15	< 0.50	< 0.50	1.03	<1.0	(Q)
VRW-6	2/1/2011	7.00	11.43	4.43	0.29	2.65	< 0.50	< 0.50	1.17	<1.0	(W)

Pacific Supply Company, 1735 24th Street, Oakland, California

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS Pacific Supply Company, 1735 24th Street, Oakland, California

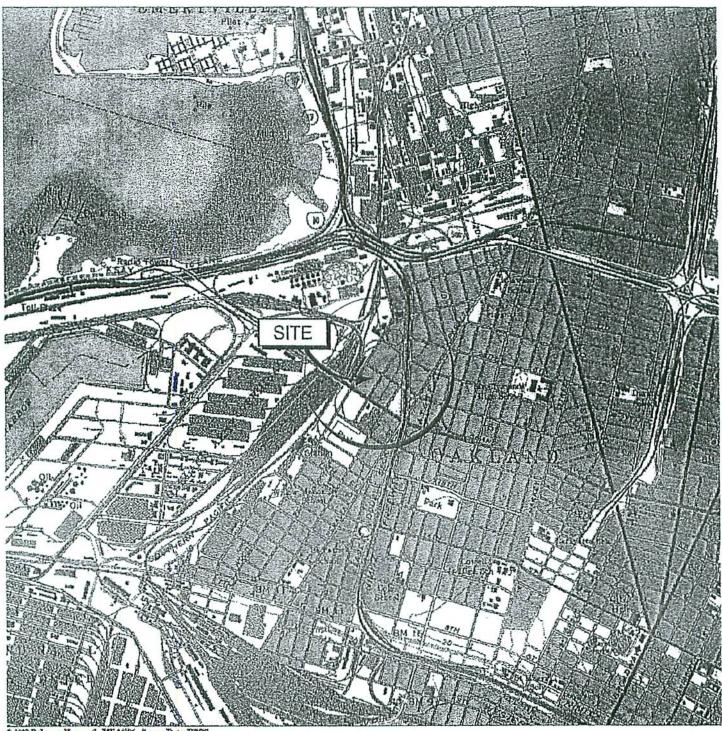
Sample ID	Depth to Groundwater Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	MTBE (µg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-7	11/4/1993	-	-	-	0.10	ND	ND	ND	ND	-	-
VRW-7	5/16/2002	-	_	-	1.6	28.9	0.980	< 0.50	< 0.50	<1.0	<0.50 to <1.0
VRW-7	6/6/2003	7.47	11.70	4.23	0.36	19	1.3	<0.5	2.2	-	-
VRW-7	11/19/2003	7.78	11.70	3.92	1.1	14	< 0.54	1.7	5.6	-	-
VRW-7	6/22/2004	7.61	11.70	4.09	1.3	130	8.06	9.81	15.9	-	
VRW-7	12/9/2004	7.54	11.70	4.16	0.34	28	<3	<3	5.0	-	-
VRW-7	7/21/2005	7.54	11.70	4.16	1.7	48.1	2.76	2.56	6.94	-	-
VRW-7	1/19/2006	6.70	11.70	5.00	1.6	86.8	3.63	6.89	9.04	-	
VRW-7	1/25/2007	7.46	11.70	4.24	NA	NA	NA	NA	NA	NA	NA
VRW-7	6/28/2007	7.62	11.70	4.08	NA	NA	NA	NA	NA	NA	NA
VRW-7	2/1/2008	6.70	11.70	5.00	0.47	21.3	<5.0	<5.0	<5.0	<10	NA
VRW-7	7/2/2008	7.70	11.70	4.00	0.38	2.13	< 0.50	< 0.50	2.60	<1.0	(D)
VRW-7	1/29/2009	7.47	11.70	4.23	0.44	8.67	< 0.50	< 0.50	2.30	<1.0	
VRW-7	7/23/2009	7.69	11.70	4.01	0.51	2.87	< 0.50	< 0.50	< 0.50	<1.0	(I)
VRW-7	2/1/2010	6.82	11.70	4.88	0.62	31.6	1.67	2.52	3.18	<2.0	(N)
VRW-7	8/2/2010	7.71	11.70	3.99	0.36	3.82	<1.0	<1.0	1.21	<2.0	(R)
VRW-7	1/31/2011	7.36	11.70	4.34	0.27	3.93	< 0.50	< 0.50	0.68	<1.0	(X)
VRW-8	11/4/1993	-	-	-	5.9	460	54	ND	53	-	-
VRW-8	5/16/2002	-	-	-	3.3	248	16.0	<10	<10	<20	<10 to <20
VRW-8	6/6/2003	7.42	11.62	4.20	1.8	70	10	11	6.1	-	
VRW-8	11/19/2003	7.85	11.62	3.77	3.6	36	<2.7	<2.7	4.3	-	-
VRW-8	6/23/2004	7.56	11.62	4.06	2.1	115	11.8	<5.0	18.2	-	-
VRW-8	12/9/2004	7.41	11.62	4.21	1.3	30	9.0	<3	7.6	-	-
VRW-8	7/21/2005	7.49	11.62	4.13	4.1	24.8	3.44	<2.5	7.34	-	-
VRW-8	1/19/2006	6.73	11.62	4.89	4.8	18.1	4.26	<2.5	8.30	-	-
VRW-8	1/25/2007	7.41	11.62	4.21	1.3	10.7	<2.5	<2.5	6.70	<5.0	
VRW-8	6/29/2007	7.60	11.62	4.02	0.64	4.76	<2.5	<2.5	3.85	<5.0	-
VRW-8	2/1/2008	6.85	11.62	4.77	3.1	15.1	2.9	<2.5	9.77	<5.0	-
VRW-8	7/2/2008	7.73	11.62	3.89	2.0	11.6	<2.5	<2.5	<2.5	<5.0	-
VRW-8	1/29/2009	7.43	11.62	4.19	0.84	7.73	2.04	< 0.50	7.52	<1.0	-
VRW-8	7/23/2009	7.71	11.62	3.91	2.4	22.2	<1.0	<1.0	8.18	<2.0	(J)
VRW-8	2/1/2010	6.90	11.62	4.72	1.8	4.03	2.02	<1.0	5.08	<2.0	(0)
VRW-8	8/2/2010	7.65	11.62	3.97	0.95	3.04	1.14	<1.0	2.76	<2.0	(S)
VRW-8	1/31/2011	7.16	11.62	4.46	2.4	13.8	4.62	<1.0	8.63	<2.0	(Y)

Sample ID	Depth to Groundwater Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethyl- benzene (μg/L)	Xylenes (µg/L)	MTBE (μg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-9	11/4/1993	-	-	-	0.47	36	18	ND	1.0	-	-
VRW-9	5/16/2002	-	-	-	0.080	0.990	2.00	< 0.50	5.93	<1.0	<0.50 to <1.0
VRW-9	6/6/2003	7.67	11.87	4.20	0.58	10	4.4	4.9	< 0.50	-	-
VRW-9	11/19/2003	8.01	11.87	3.86	0.86	<1.1	<1.1	<1.1	5.5	-	-
VRW-9	6/22/2004	7.76	11.87	4.11	0.61	<1.0	1.35	<1.0	5.55	-	-
VRW-9	12/9/2004	7.51	11.87	4.36	0.57	8.8	10	<0.5	5.5	-	-
VRW-9	7/21/2005	7.71	11.87	4.16	0.66	<1.0	<1.0	<1.0	2.83	12	-
VRW-9	1/19/2006	6.94	11.87	4.93	1.0	2.04	<1.0	<1.0	4.91	-	-
VRW-9	1/26/2007	7.65	11.87	4.22	0.52	<1.0	1.01	<1.0	3.53	<2.0	-
VRW-9	6/29/2007	7.81	11.87	4.06	0.38	< 0.50	< 0.50	< 0.50	2.27	<1.0	-
VRW-9	7/2/2008	7.93	11.87	3.94	0.53	< 0.50	< 0.50	< 0.50	1.85	<1.0	· ·
VRW-9	1/29/2009	7.60	11.87	4.27	0.24	1.53	1.03	< 0.50	4.04	<1.0	
VRW-9	7/23/2009	7.91	11.87	3.96	0.80	< 0.50	< 0.50	< 0.50	1.60	<1.0	(K)
VRW-9	2/1/2010	7.01	11.87	4.86	0.95	1.71	1.13	<1.0	4.00	<2.0	
VRW-9	8/3/2010	7.86	11.87	4.01	0.68	<1.0	<1.0	<1.0	1.57	<2.0	(T)
VRW-9	1/31/2011	nm	11.87		0.58	< 0.50	< 0.50	< 0.50	1.82	<1.0	(Z)

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS Pacific Supply Company, 1735 24th Street, Oakland, California

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

Pacific Supply Company, 1735 24th Street, Oakland, California

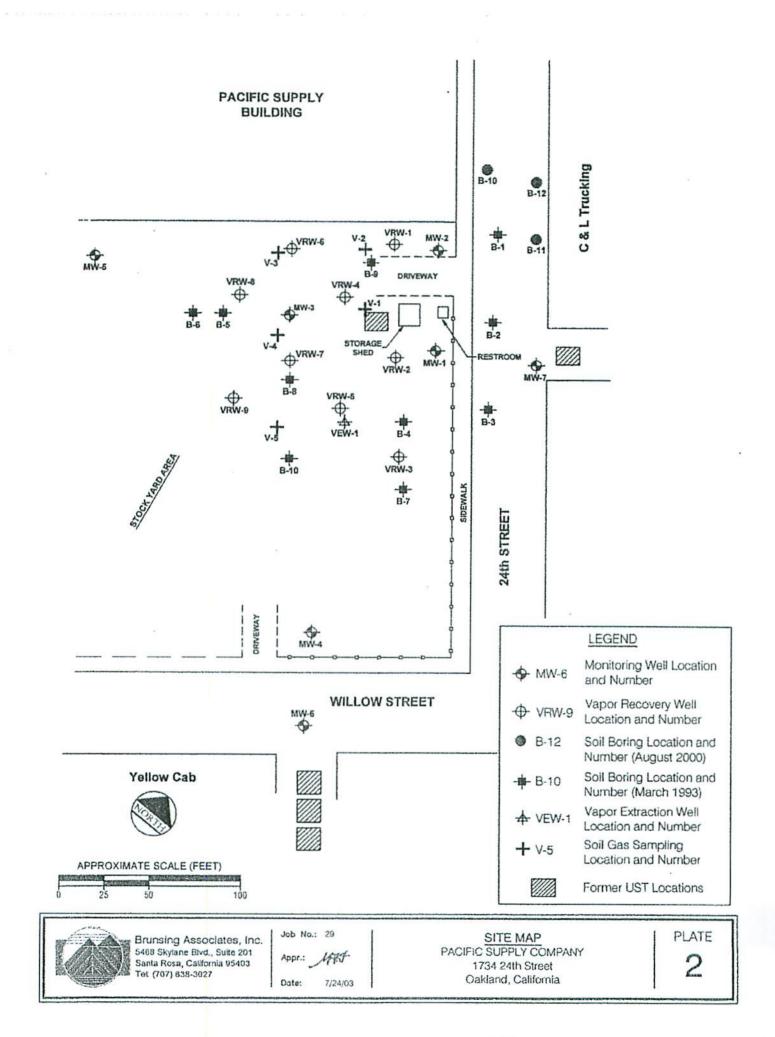

mg/L = milligrams per liter $\mu g/L = micrograms per liter$ na = not analyzed.ND = not detected above laboratory reporting limits. MSL = Mean Sea Level < = less than the specified laboratory reporting limit June 2004 groundwater elevations were collected on June 22, 2004. December 2004 groundwater elevations were collected on December 8, 2004. (A) = concentrations of tert-Butyl alcohol reported at 51.2 $\mu g/l$. (B) = concentrations of tert-Butyl alcohol reported at 53.3 $\mu g/l$. (C) = concentrations of tert-Butyl alcohol reported at 54.3 μ g/l. (D) = concentrations of tert-Butyl alcohol reported at 90.4 μ g/l. (E) = concentrations of tert-Butyl alcohol reported at 42.5 μ g/l. (F) = concentrations of tert-Butyl alcohol reported at 33.7 $\mu g/l$. (G) = concentrations of tert-Butyl alcohol reported at 35.2 $\mu g/l$. (H) = concentrations of tert-Butyl alcohol reported at 28.6 $\mu g/l$. (I) = concentrations of tert-Butyl alcohol reported at 89.5 $\mu g/l$. $(J) = concentrations of tert-Butyl alcohol reported at 62.6 <math>\mu g/l$. (K) = concentrations of tert-Butyl alcohol reported at 62.1 μ g/l. (L) = concentrations of tert-Butyl alcohol reported at 41.8 μ g/l. (M) = concentrations of tert-Butyl alcohol reported at 48.8 μ g/l. (N) = concentrations of tert-Butyl alcohol reported at 61.4 μ g/l. (O) = concentrations of tert-Butyl alcohol reported at 57.5 μ g/l. (P) = concentrations of tert-Butyl alcohol reported at 28.9 $\mu g/l$. (O) = concentrations of tert-Butyl alcohol reported at 57.4 $\mu g/l$. (R) = concentrations of tert-Butyl alcohol reported at 58.7 $\mu g/l$. (S) = concentrations of tert-Butyl alcohol reported at 52.5 μ g/l. $(T) = concentrations of tert-Butyl alcohol reported at 50.6 <math>\mu g/l$. (U) = concentrations of tert-Butyl alcohol reported at 40.4 μ g/l. $(V) = concentrations of tert-Butyl alcohol reported at 30.5 <math>\mu g/l$. (W) = concentrations of tert-Butyl alcohol reported at 62.7 $\mu g/l$. $(X) = concentrations of tert-Butyl alcohol reported at 81.3 <math>\mu g/l$. (Y) = concentrations of tert-Butyl alcohol reported at 49.7 $\mu g/l$. (Z) = concentrations of tert-Butyl alcohol reported at 54.9 $\mu g/l$.

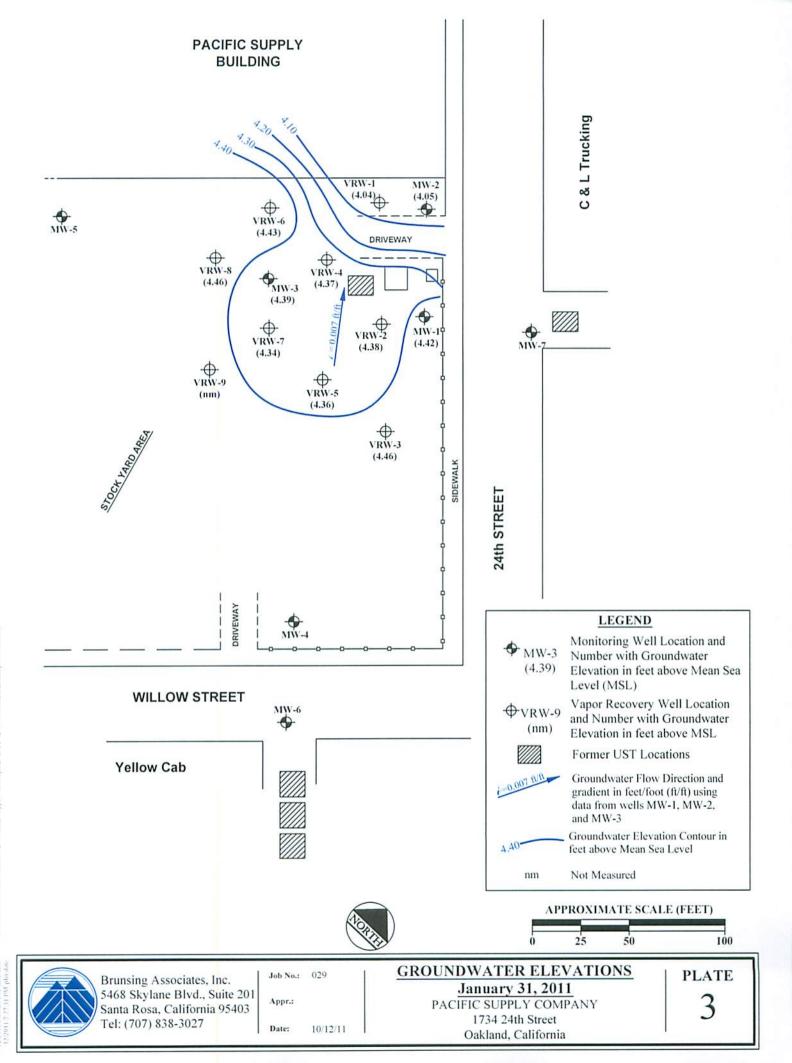
Notes:

PLATES

b 1999 DeLorme Yarmouth, ME 04096 Source Data: USGS

APPROXIMATE SCALE (FEET)




Brunsing Associates, Inc. 5803 Skylane Elvd., Sutta A Windsor, California 95492 Tel: (707) 838-3027

Job No.: 029.2 Appr Dote: 1/8/04

VICINITY MAP PACIFIC SUPPLY COMPANY Oakland, California

PLATE 1

APPENDIX A Monitoring Well Sampling Protocol and Field Reports

Groundwater Sampling Protocol

Monitoring Wells

Prior to purging a monitoring well, groundwater levels are measured with a Solinst electric depth measurement device, or an interface probe, in all wells that are to be measured. At sites where petroleum hydrocarbons are possible contaminants, the well is checked for floating product using a clear bailer, a steel tape with water/oil paste, or an interface probe, during the initial sampling round. If floating product is measured during the initial sampling round or noted during subsequent sampling rounds, floating product measurements are continued.

After the water level and floating product measurements are complete, the monitoring well is purged until a minimum of three casing volumes of water are removed, water is relatively clear of sediment, and pH, conductivity, and temperature measurements of the water become relatively stabile. If the well is purged dry, groundwater samples are collected after the water level in the well recovers to at least 80 percent of the original water column measured in the well prior to sampling, or following a maximum recovery period of two hours. The well is purged using a factory-sealed, disposable, polyethylene bailer, a four-inch diameter submersible Grundfos pump, a two-inch diameter ES-40 purge pump, or a peristaltic pump. The purge water is stored on-site in clean, 55-gallon drums.

A groundwater sample is collected from each monitoring well following re-equilibration of the well after purging. The groundwater sample is collected using a factory-sealed disposable, polyethylene bailer with a sampling port, or a factory-sealed Teflon bailer. A factory provided attachment designed for use with volatile organic compounds (VOCs) is attached to the polyethylene bailer sampling port when collecting samples to be analyzed for VOCs. The groundwater sample is transferred from the bailer into sample container(s) that are obtained directly from the analytical laboratory.

The sample container(s) is labeled with a self-adhesive tag. The following information is included on the tag:

- Project number
- Sample number
- Date and time sample is collected
- Initials of sample collector(s).

Individual log sheets are maintained throughout the sampling operations. The following information is recorded:

- Sample number
- Date and time well sampled and purged
- Sampling location
- Types of sampling equipment used
- Name of sampler(s)
- Volume of water purged.

Following collection of the groundwater sample, the sample is immediately stored on blue ice in an appropriate container. A chain-of-custody form is completed with the following information:

- Date the sample was collected
- Sample number and the number of containers
- Analyses required
- Remarks including preservatives added and any special conditions.

The original copy of the chain-of-custody form accompanies the sample containers to a California-certified laboratory. A copy is retained by BAI and placed in company files.

Sampling equipment including thermometers, pH electrodes, and conductivity probes are cleaned both before and after their use at the site. The following cleaning procedures are used:

- Scrub with a potable water and detergent solution or other solutions deemed appropriate using a hard bristle brush
- Rinse with potable water
- Double-rinse with organic-free or deionized water
- Package and seal equipment in plastic bags or other appropriate containers to prevent contact with solvents, dust, or other contaminants.

In addition, the pumps are cleaned by pumping a potable water and detergent solution and deionized water through the system. Cleaning solutions are contained on-site in clean 55-gallon drums.

Domestic and Irrigation Wells

Groundwater samples collected from domestic or irrigation wells are collected from the spigot that is the closest to the well. Prior to collecting the sample, the spigot is allowed to flow for at least 5 minutes to purge the well. The sample is then collected directly into laboratory-supplied containers, sealed, labeled, and stored on blue ice in an appropriate container, as described above. A chain-of-custody form is completed and submitted with the samples to the analytical laboratory.

		Brunsing Associates, Inc	SCANNED
UST	Yes	bittising Associates, inc	AD27/11
Fund Site:	No	FIELD REPORT	
			PAGE _1_ OF _/5_
JOB NO:	: 29 PRC	DJECT: Pacific Supply	
INITIAL:	ED SUE	BJECT: GW Monitoring	Total Time: <u><u> </u></u>
DATE:		JECT PHASE NUMBER:	End. Mileage: 49521
	VEH	IICLE USED: 2006 Ranger	Beg. Mileage: 49 453
		У т	OTAL MILEAGE: 68
TIME			
TIME 0 \$30	arrive C	WORK AND CONVERSATION RECORD:	
0 2 70	load -14	equipment + supplies	
0900	leave to	site	
1030	anne (3 site	
	· For	rte, identify, and open moni	tering wells
	- Dens	om waterlevel measurement	@ mw-1, mw-2
	mu	1-3, VAW-1, VAW-2, VAW-3, VAW	1-4, VBW-5,
	VB	W-6, VRW-7, VRW-8 and VR	2W-9. (2 rounds)
	° De	t up and perform grounder	ater sampling @
	mw	-1, thw-2, VAW. 1, VAW-2, VAW-3	3 and VRW-4
	· 1#	ne purged groundwater in d	nump brated
	in	vicinity of remediation ground	
	· .Deci		
	· Deci · Cle	n Aampling Aupplies se well covers securely	
	la	ad up equipment + supplies	
1715	lan	ul dite	
1735	av	une @ motel.	
	- 11	mload samples store in con	alon which
		uend georgenes and the	All of the
1745	Por	rl.	
			A COUNT:
		Water	r = 🖇 Devlpmt Water =
		Soil =	Decon Water =
			>

*

Brunsing Associates, Inc.

WATER LEVELS SHEET 2 OF

29

PROJECT: Pacific Supply

INSTRUMENT TYPE:

PROJECT NUMBER:

INITIALS: DATE: 1-31-11

WELL NUMBER	DEPTH TO PRODUCT	DISTANCE TO WATER	TIME (24 HOUR)	EQUILIBRATED (CHECK FOR YES)	NOTES
MW-1		7.05		(CHECK FOR YES)	NOTES
MW-2	~	6.74	(127		
MW-3	-	7.36	1125		
VRW-1	-	7.15	1129		
VRW-2	-	6.70	1124		
VRW-3	-	7.16			
VRW-4	-	6.97	1123		
VRW-5	-	7.20	//33		
VRW-6	-	-			temporarily inaccessible
VRW-7		7.35	1132		Temporarity matters
VRW-8	-	7.15	1131		
VRW-9	-	-	-		
					4
MW-1	-	7.05	1136	/	
MW-2	-	6.75	11.39	1	
MW-3	-	7,37	1147	~	
VRW-1	~	7.14	1138		
VRW-2	-	6.70	1137	/	
VRW-3	-	7.16	1135		
VRW-4	-	6.96	1141	~	
VRW-5	-	7.20	1146	~	
VRW-6	~	7.00	1143		
VRW-7	-	7.36	1145	~	
VRW-8	~	7.16	1144	~	
VRW-9	-		1-		1.5 J.S.
		14-			
VRW-6	~ 4	7.00	1149	\checkmark	
		-			
	X. 7				

WELL SAMPLING SHEET 3 OF

PROJECT:	Pacific Su	ipply				PROJECT NUMBER: 29
WELL #	MW-1	PRECIP. IN L	LAST 5 DAYS:		WIND	DATE: /-31-11
STARTING	G TIME:	1255	FINISHING	TIME: /3;	26	INITIALS: ED
CALCULAT	TION OF PU	RGE VOLUN	ME			G
2" WELL	DEPTH:	19.00] - D.T.W.	7.05	= H20 COL	-UMN: //.95 X 0.5 = 5.77 L
4" WELL	DEPTH:] - D.T.W.		= H20 COL	_UMN: X 2.0 = 0
THEREFO	RE TOTAL	PURGE G	ALLONS EQU	ALS		4 S
			<u>F1</u>	ELD ME.	ASUREM	ENTS
TIME	GALLONS REMOVED	<u>р Н</u>		TEMP.		OBSERVATIONS
1301	2	7.48	982 ,5	17.78	Clear,	Odor
1308	4	7.25	1658 uS	18.0	Clear	Odor
		1.25	1	1.0		(/481
1314	6	7.26	1569	18-0	Clear	, odor
SAMPLI	NG:	SAMPLE	E ANALYSIS:	TPH-Gas. 8	3260B (BTEX	petro oxy & Pb scav)
		SAI	MPLE TIME:	/3/5		ELL GO DRY?
WATER	LEVELS:	NOTES:				
TIME	D.T.W.					
1324	7:30					
			-			
			jah.			
			and and a second			

BACE ENVIRONMENTAL

WELL SAMPLING SHEET 4 OF

PROJECT:	Pacific Su	pply				PROJECT NUMBER: 29
WELL #	MW-2	PRECIP. IN L	AST 5 DAYS:		WIND	DATE: 1-31-11
STARTING	G TIME:	1530	FINISHING	TIME: /6/	14	INITIALS: \mathcal{EP}
CALCULAT	ION OF PU	RGE VOLUN	<u>1E</u>			G
2" WELL	DEPTH:] - D.T.W.		= H20 COLUMN	4: X 0.5 = L
4" WELL	DEPTH:	20.00] - D.T.W.	6.75	= H20 COLUMN	1: 13.25 X 2.0 = 26.5 0
THEREFO	RE TOTAL	. PURGE G	ALLONS EQU	ALS	26.5	s
			<u>F1</u>	ELD ME	ASUREMEN	<u>r s</u>
TIME	GALLONS <u>REMOVED</u>	<u>р Н</u>		TEMP.	1	OBSERVATIONS
1540	8	8.62	2.30 m 5	16.2 °C	Cloudy,	green/brown, silt, odor
1550	16	8.21	1412 15	15.6	Cloudy, g	reen/brown, silt, odor
1559	26.5	7.77	1266 us	15.4	Cloudy, g	reen/brown, silt, odor
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, petr	o oxy & Pb scav)
		SAI	MPLE TIME:	1600	DID WELL O	GO DRY? NO
WATER	LEVELS:	NOTES:				
TIME	D.T.W.					
1613	6.80					
			× *			
			1 -			

10

BACE ENVIRONMENTAL

V	V	E	L	L	S	Α	Μ	Ρ	L	I	Ν	G

SHEET 5 OF

PROJECT: Pacific Sup	oply				PROJECT NUMBER: 29
WELL # VRW-1	PRECIP. IN LA	ST 5 DAYS:		WIND	DATE: 1-31-11
STARTING TIME:	1435 F	INISHING	TIME: 150	23	INITIALS: ED
CALCULATION OF PUR	RGE VOLUME	I I			G
2" WELL DEPTH:		- D.T.W.	/	= H20 COLUMN:	X 0.5 = L
4" WELL DEPTH:	20.00	- D.T.W.	7.14	= H20 COLUMN:	12.86 X 2.0 = 25.72 0
THEREFORE TOTAL	PURGE GA	LLONS EQUA	ALS	25.75] N S
		FIE	ELD ME	ASUREMENT	S
GALLONS TIME REMOVED	pH g		TEMP.		OBSERVATIONS
1444 8	7.62	3.86 m 5	18.7 °C	Cloudy, gre	en/brown, odor, silt
1453 16	7.60	5.45	19.0	Cloudy, da	irk green / brown, silt, ador
1504 25	7.74	7.58	18.7	Cloudy, dar	K, green/brown, silt, odor
SAMPLING:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, petro	oxy & Pb scav)
	SAM	PLE TIME:	1505	DID WELL G	O DRY? שאט
WATER LEVELS:	NOTES:				
TIME D.T.W.					
1520 9.45					
					6-

WELL SAMPLING SHEET 6 OF

Pacific Su	pply				PROJECT NUMBER: 29	
VRW-2	PRECIP. IN I	LAST 5 DAYS:		WIND	DATE: 1-31-11	
TIME:	1327	FINISHING	тіме: /4	06	INITIALS: ED	
ON OF PU	RGE VOLUN	ME				G
DEPTH:	/] - D.T.W.	/	= H20 COLUMN	I: X 0.5 =/	A] L
DEPTH:	20.00] - D.T.W.	6.70	= H20 COLUMN	1: 13.3 X 2.0 = 26.6] 0
RE TOTAL	PURGE G	ALLONS EQU	ALS	26.5		N S
		<u>F1</u>	ELD ME	ASUREMEN	<u>r s</u>	
GALLONS REMOVED	<u>р Н</u>		TEMP.		OBSERVATIONS	
8	7.56	1417 m 5	/9.2 ℃	Cloudy, b.	roun/green, silt, odor	
ile	7.30	1256	18.7	Cloudy.	light green/brown, od	or
26	7.38	1362	18.7	Cloudy, 1	ight green/brown, odor	
IG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, petro	o oxy & Pb scav)]
	SA	MPLE TIME:	1355	DID WELL C	GO DRY? NO	
EVELS:	NOTES:					
D.T.W.						
6.95						
			æ			
			Y.			_
-						
	VRW-2 TIME: ON OF PUI DEPTH: DEPTH: RE TOTAL GALLONS <u>REMOVED</u> % IL 2 6 GE EVELS: D.T.W.	TIME: / 3 27 ON OF PURGE VOLUM DEPTH: 7 DEPTH: 20.00 RE TOTAL PURGE G GALLONS <u>REMOVED</u> <u>pH</u> 8 7.56 16 7.30 26 7.38 G: SAMPLE SAMPLE SAMPLE SAMPLE	VRW-2 PRECIP. IN LAST 5 DAYS: TIME: /3,27 FINISHING ON OF PURGE VOLUME DEPTH: D.T.W. DEPTH: D.T.W. RE TOTAL PURGE GALLONS EQU/ FII GALLONS <u>REMOVED</u> <u>p.H</u> <u>CONDUCTIVITY</u> 8 7.56 <u>1477 m S</u> 16 7.30 1256 26 7.38 1362 G: SAMPLE ANALYSIS: SAMPLE TIME: EVELS: NOTES: D.T.W.	VRW-2 PRECIP. IN LAST 5 DAYS: TIME: /3.27 FINISHING TIME: /4 ON OF PURGE VOLUME	VRW-2 PRECIP. IN LAST 5 DAYS: WIND TIME: 327 FINISHING TIME: 766 ON OF PURGE VOLUME DEPTH: 7 - D.T.W. 7 = H20 COLUMN DEPTH: 20.00 - D.T.W. 6.70 = H20 COLUMN RE TOTAL PURGE GALLONS EQUALS 26.5 FIELD MEASUREMENT GALLONS REMOVED p.H CONDUCTIVITY TEMP. 8 7.56 1477 Cloudy, b. 10 7.30 1256 18.7 Cloudy, b. 10 13.55 DID WELL C SAMPLE TIME: 1355 DID WELL C	VRW-2 PRECIP. IN LAST 5 DAYS: WIND DATE: 1-31-11 TIME: $\left[327\right]$ FINISHING TIME: $\left[466\right]$ INITIALS: ED ON OF PURGE VOLUME DEPTH: $\overline{7}$ · D.T.W. $\overline{7}$ = H20 COLUMN: $\overline{7}$ X 0.5 = $\overline{7}$ DEPTH: 20.00 · D.T.W. $\overline{6.70}$ = H20 COLUMN: $\overline{73.3}$ X 2.0 = 26.5 RE TOTAL PURGE GALLONS EQUALS 24.5 FIELD MEASUREMENTS GALLONS REMOVED <u>PH</u> CONDUCTIVITY . TEMP. <u>OBSERVATIONS</u> $\frac{8}{7.56}$ $\frac{7.16}{147.7}$ $\frac{7.26}{142.5}$ $\frac{7.26}{142.5}$ $\frac{7.36}{142.5}$ $\frac{7.36}{142.5$

BACE ENVIRONMENTAL

142

WELL SAMPLING SHEET 7

OF

			-				
PROJECT:	Pacific Su	pply				PROJECT NUMBER: 29	
WELL #	VRW-3	PRECIP. IN I	AST 5 DAYS:		WIND	DATE: /- 31-11	
STARTING	G TIME: /	210	FINISHING	TIME: /25	3	INITIALS: ED	
CALCULA	TION OF PUI	RGE VOLUN	<u>1E</u>				G
2" WELL	DEPTH:] - D.T.W.		= H20	COLUMN: X 0.5 =	A L
4" WELL	DEPTH:	20.00] - D.T.W.	7.16	= H20	COLUMN: 12.84 X 2.0 = 25.68	0
THEREFC	RE TOTAL	PURGE G	ALLONS EQU	ALS	[25.75	N S
			<u>F1</u>	ELD ME	ASURI	<u>EMENTS</u>	
	GALLONS						
TIME	REMOVED	<u>р Н</u>				OBSERVATIONS	
/221	8	7.3%	6.00m5	19.1 °C	Clou	dy, light brown, silt, odor	
1230	16	7.09	5.55	20.0	Clo	udy, light brown, silt, odor	
/239	20	2.50	3.34	19.7	Clou	dy, light brown, silt, odor	
						Tes.	
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (B1	EX, petro oxy & Pb scav)	
		SAI	MPLE TIME:	1240	DIC	WELL GO DRY?	
WATER	LEVELS:	NOTES:		10			
		-					
TIME	D.T.W.	The second				•	
1252	15.6						
				-			
		2					

BACE ENVIRONMENTAL

WELL SAMPLING SHEET & OF

PROJECT:	Pacific Su	pply				PROJECT NUMBER: 29	
WELL #	VRW-4	PRECIP. IN L	AST 5 DAYS:		WIND	DATE: /-31-11	
STARTING	G TIME:	1625	FINISHING	TIME: 75	100	INITIALS: \mathcal{ED}	
CALCULAT	ION OF PU	RGE VOLUN				G	_
2" WELL	DEPTH:	/] - D.T.W.	/	= H20 COI	_UMN: / X 0.5 = / L	
4" WELL	DEPTH:	20.00] - D.T.W.	6-96	= H20 COL	$-UMN: \frac{73.04}{X2.0} \times 2.0 = \frac{26.08}{N}$	
THEREFO	RE TOTAL	PURGE G	ALLONS EQU	ALS		24 S	
			<u>F1</u>	ELD ME	ASUREM	ENTS	
TIME	GALLONS <u>REMOVED</u>	<u>р Н</u>		TEMP.		OBSERVATIONS	
1632	8	7.30	3.26 mS	17.7°C	Cloudy	green/ brown, silt, odor	
1639	16	7.06	4.82	19,4	Same		_
1671		1.00	100		Same		
1644	20	7.23	4.17	19.6	Same		
							_
							_
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH-Gas. 8	260B (BTEX	petro oxy & Pb scav)	
-		SAI		1645		ELL GO DRY? yes	
WATER	LEVELS:	NOTES:					
TIME	D.T.W.						
1657	13.55		_				_
							_
							_

		Brunsing	g Associates, Inc	
UST Fund Site:	Yes No	FIELD	REPOR	Т
INITIAL:	ED SUB 2-1-11 PRC	DJECT: Pacific Supply DJECT: GW Monitoring DJECT PHASE NUMBER: NICLE USED: 2006 Ro	anger	PAGE <u>9</u> OF <u>15</u> Total Time: <u>8.0</u> End. Mileage: <u>49629</u> Beg. Mileage: <u>49549</u> TOTAL MILEAGE: <u>80</u>
TIME		WORK AND CONVERSAT		
0900 09/5 	· Atore Vicinit · Decon	purged ground y of old loo Sampling eq well covers a cup equipme lete COC ate C Ahop bad equipmen	water in dr ation of sem uipmont and nd caps sec ent + suppl	lies
/700	Done			DRUM COUNT: Water = S Devlpmt Water = Soil = Decon Water =

Brunsing Associates, Inc.

WELL SAMPLING SHEET 10 OF

PROJECT:	Pacific Su	pply				PROJECT NUMBER: 29	
WELL #	MW-3	PRECIP. IN L	AST 5 DAYS:		WIND	DATE: 2-1-11	
STARTING TIME: ७१५५ FINISHING				TIME: /02	2	INITIALS: ED	
CALCULAT	ION OF PUI	RGE VOLUN	<u>1E</u>			G	_
2" WELL	VELL# MW-3 PRECIP. IN LAST 5 DAYS: WIND DATE: 2-1-11 TARTING TIME: 0945 FINISHING TIME: /022 INITIALS: ED ALCULATION OF PURGE VOLUME 0 0 0 "WELL DEPTH: 16.00 D.T.W. 7.37 = H20 COLUMN: 3.493 X 0.5 = 4.31 L "WELL DEPTH: 16.00 D.T.W. 7.37 = H20 COLUMN: 3.493 X 0.5 = 4.31 L "WELL DEPTH: 16.00 D.T.W. 7.37 = H20 COLUMN: 3.493 X 0.5 = 4.31 L "WELL DEPTH: 16.00 D.T.W. 7.37 = H20 COLUMN: 3.493 X 0.5 = 4.31 L "WELL DEPTH: 16.00 D.T.W. 7.37 = H20 COLUMN: 3.493 X 0.5 = 4.31 L "WELL DEPTH: 2 D.T.W. 7.37 = H20 COLUMN: 3.493 X 0.5 = 4.31 L "WELL DEPTH: 2 N.T.W. 7.37 = H20 COLUMN: 3.493 X 0.5 = 4.31 L "WELL DEPTH: 2 N.T.W. 7.57 Cloudy, herwon, silt, odor N "954 7.0 7.43 16.7 Cloudy, herwon, silt, odor N						
4" WELL	DEPTH:	/] - D.T.W.		= H20 COLUMN		
THEREFO	RE TOTAL	PURGE G	ALLONS EQU	ALS	4.25		
			<u>F1</u>	ELD ME.	ASUREMENT	<u>r s</u>	
TIME		<u>р Н</u>		TEMP.		OBSERVATIONS	
0949	1.5	8.01	3.64 ms	16.7 °C	Cloudy, b	rown, silt, odor	
					,		_
0954	3.0	7.64	3.80	17.8	Cloudy 1	light brown, silt, odor	
0959	4.25	7.87	3.83	19.0	Cloudy, lie	ght brown, silt, odor	
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, petro	o oxy & Pb scav)	
		SAI	MPLE TIME:	1000	DID WELL G	GO DRY? Nd	
WATER	LEVELS:	NOTES:					
TIME	D.T.W.						
1021	7.54					19 (C)	_
							-
							_

WELL SAMPLING SHEET IL OF

PROJECT:	Pacific Su	pply				PROJECT NUMBER: 29
WELL #	WELL # VRW-5 PRECIP. IN LAST 5 DAYS: WIND DATE: 2-1-11 STARTING TIME: $/25^\circ$ FINISHING TIME: $/32/$ INITIALS: ED G A A WELL DEPTH:					
STARTING	G TIME: /	250	FINISHING	TIME: 13 2	21	INITIALS: ED
CALCULAT	ION OF PUI	RGE VOLUN	<u>1E</u>			
2" WELL	DEPTH:] - D.T.W.		= H20 COLU	
4" WELL	DEPTH:	20.00] - D.T.W.	7.20	= H20 COLU	
THEREFO	RE TOTAL	PURGE G	ALLONS EQU	ALS	25.	
			<u>F1</u>	ELD ME.	ASUREME	NTS
TIME	1000	<u>р Н</u>		TEMP.		OBSERVATIONS
12.58	8	7.82	1735 µ S	18.7 °C	Cloudy,	dark brown, silt, odor
/306	16	7.84	1685	18.8	Cloudy	dark green/brown, silt, odor
1314	25	7.44	1602	17.9	Cloudy	dark green/brown, silt, odor
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, p	petro oxy & Pb scav)
		SAN	MPLE TIME:	1315	DID WEL	L GO DRY? NO
WATER	LEVELS:	NOTES:				
TIME	D.T.W.					
1320	7.30			1 4		
						•
·						

1

WELL SAMPLING SHEET 12 OF

PROJECT:	Pacific Sup	oply				PROJECT NUMBER: 29	
WELL # 🗸	RW-6	PRECIP. IN	LAST 5 DAYS:		WIND	DATE: 2-1-11	
STARTING	G TIME:	1110	FINISHING	TIME: 115	3	INITIALS: ED	
CALCULAT	WELL # \sqrt{B} WIND DATE: 2-1-11 STARTING TIME: 110 FINISHING TIME: 1/53 INITIALS: E CALCULATION OF PURGE VOLUME 2" WELL DEPTH: D.T.W = H20 COLUMN: X 0.5 = L 4" WELL DEPTH: 20 - D.T.W. 7.00 = H20 COLUMN: X 2.0 = 26 0 N.						
2" WELL	DEPTH:	/] - D.T.W.	/	= H20 COLUMN:		
4" WELL	DEPTH:	20] - D.T.W.	7.00	= H20 COLUMN:		
THEREFO	RE TOTAL	PURGE G	ALLONS EQUA	ALS	26		
			<u>F11</u>	ELD MEA	SUREMENTS	3	
TIME		<u>р Н</u>		TEMP.		OBSERVATIONS	
1121	8	7.34	374m5	21.0 °C	Cloudy, d	lack brown, silt, odor	
1130	10	7.47	4.77	20.6	Cloudy .	tack area/ brown, silt adar	-
WELL # VRW-6 PRECIP. IN LAST 5 DAYS: WIND DATE: 2-1-11 STARTING TIME: 1110 FINISHING TIME: //53 INITIALS: ED CALCULATION OF PURGE VOLUME 2" WELL DEPTH: D.T.W = H20 COLUMN: X 0.5 = L 4" WELL DEPTH: D.T.W = H20 COLUMN: X 2.0 = Z.C. 0 THEREFORE TOTAL PURGE GALLONS EQUALS Z.C. S FIELD MEASUREMENTS TIME GALLONS PH CONDUCTIVITY TEMP OBSERVATIONS ///2/ 8 7.34 3.74 m.S. 21.0° C.							
//39	16	7.23	4.68	20.8	Cloudy,	dark grey / brown, silt, odor	r
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, petro	oxy & Pb scav)	
		SAN	IPLE TIME:	1140	DID WELL GO	DDRY? yes	
WATER	EVELS:	NOTES:					
TIME	D.T.W.				3		
1152	16.5						_
							_
			_				_
						5	

WELL SAMPLING

· · ·

SHEET 13 OF

PROJECT:	Pacific Su	pply				PROJECT NUMBER: 29	
WELL #	VRW-7	PRECIP. IN L	AST 5 DAYS:		WIND	DATE: 2-1-11	
			FINISHING	тіме: / 3	59	INITIALS: \mathcal{ED}	
CALCULA	ION OF PU	RGE VOLUN				G	
2" WELL	DEPTH:	/] - D.T.W.		= H20 COLUM	N: X 0.5 = L	
4" WELL	DEPTH:	20.00] - D.T.W.	7.36	= H20 COLUMN	N: 12.64 X 2.0 = 25.28 0	
THEREFO	RE TOTAL	PURGE G	ALLONS EQU	ALS	25.25	N S	
			<u>F11</u>	ELD ME.	ASUREMEN	<u>T S</u>	
TIME	GALLONS <u>REMOVED</u>	<u>р Н</u>		TEMP.		OBSERVATIONS	
1330	8	7.43	3.92 m S	20.0 °C	Cloudy, g.	reen/brown, silt, odor	
1337	/2	7.59	5.13	20.9	Clauder	een/brown, silt, odor	_
1.501	/ ~	(.) [3.17	0011	Crobby g		-
1344	16	7.41	5.22	21.0	Cloudy, 9	preen/ brown, silt, ador	_
					· ·		-
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, petr	o oxy & Pb scav)	
		SAN	MP <mark>LE TIME:</mark> [1345	DID WELL (GO DRY? yes	
WATER	LEVELS:	NOTES:					
TIME	D.T.W.						
1358	13.25						
			_				-
							-
	1						_
1							

WELL SAMPLING SHEET 14

OF

PROJECT:	Pacific Sup	oply				PROJECT NUMBER: 29	
WELL #	VRW-8	PRECIP. IN L	AST 5 DAYS:		WIND	DATE: 2-1-11	
STARTING	TIME:	1025	FINISHING	TIME: //o	8	INITIALS: ED	
CALCULAT	ION OF PUP	RGE VOLUN	1 <u>E</u>				G
2" WELL	DEPTH:		- D.T.W.	/	= H20 COLUMN	l: X 0.5 =	A L
4" WELL	DEPTH:	20.00	- D.T.W.	7.16	= H20 COLUMN	N: 12.84 X 2.0 = 25.68	0
THEREFO	RE TOTAL	PURGE G	ALLONS EQUA	LS	25.75		N S
			FIE	ELD ME	ASUREMENT	<u>T S</u>	
TIME	GALLONS REMOVED	<u>р Н</u>		TEMP.		OBSERVATIONS	
1032	8	7.71	3.12 mS	18.8 °C	Cloudy .	green/brown, silt, odor	
					01.1		
1038	16	7-11	2.90	19.1	Cloudy, gre	een/brown, silt, odor	
1044	25.75	7.00	2.83	19.0	Cloudy, a	green / brown, silt, odor	
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, petro	o oxy & Pb scav)	
		SAI	MPLE TIME:	1045		GO DRY? NO	
WATER	LEVELS:	NOTES:	×	s - 5			
TIME	D.T.W.						1
1107	7,12						
						1944 - 19	
				-		X	-

WELL SAMPLING SHEET 15 OF 15

PROJECT:	Pacific Sup	ply				PROJECT NUMBER:	29
WELL #	VRW-9	PRECIP. IN L	AST 5 DAYS:		WIND	DATE: 2-1-11	
STARTING	G TIME: /	200	FINISHING	TIME: /2	33	INITIALS: \mathcal{ED}	
CALCULAT	ION OF PUF	RGE VOLUN	<u>1E</u>				G
2" WELL	DEPTH: [] - D.T.W.		= H20 COLUMN	l: X 0.5 =	
4" WELL	DEPTH: [20.00] - D.T.W.	7.40	= H20 COLUMN	1: 17.6 X 2.0 = 2	
THEREFO	RE TOTAL	PURGE G	ALLONS EQUA	ALS	25.25		S
			<u>F11</u>	ELD ME	ASUREMENT	<u>r s</u>	
TIME	GALLONS REMOVED	<u>р Н</u>		TEMP.		OBSERVATIONS	
1208	4	8.15	3.41 5	19.9°C	Cloudy,	green/brown, silt, oc	lor
1216	16	7.86	3.28	19.6	Cloudy, gr	een/brown, silt, oo	lor
6		4		N			
1224	25.25	7.58	2.99	19.8	Cloudy, gr.	een/brown, silt, ado	-
		and and					
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, petro	o oxy & Pb scav)	
		SAI	MPLE TIME:	1225	DID WELL G	GO DRY?	
WATER	LEVELS:	NOTES:			5	The part of the pa	
TIME	D.T.W.				40.00		
/232	7.50						
						100	
						and the state of the	
						X	and the second
					1	and the second second	

APPENDIX B Analytical Laboratory Report

Laboratory:	Bace Analytical, Windsor, CA
Lab Report Number:	5640
Project Name:	1735 24TH ST.
Work Order Number:	029
Control Sheet Number:	NA

SCANNED 22/9/11

CULTURE S

Report Summary

Labreport	Sampid	Labsampid	Mtrx	QC	Anmcode	Exmcode	Logdate	Extdate	Anadate	Lablotctl	Run Sub
5640	MW-1	5640-1	W	CS	8260FAB	SW5030B	01/31/201	02/03/201	02/03/201	20110203	6
							1	1	1		
5640	MW-1	5640-1	w	CS	CATPH-G	SW5030B	01/31/201	02/08/201	02/08/201	02082011	3
							1	1	1		
5640	MW-2	5640-2	W	CS	8260FAB	SW5030B	01/31/201	02/03/201	02/03/201	20110203	9
							1	1	1		
5640	MW-2	5640-2	W	CS	CATPH-G	SW5030B	01/31/201	02/08/201		02082011	6
5040	101/2	5040.0		~~	0000510	011/50000	1	1	1		
5640	MW-3	5640-3	W	CS	8260FAB	SW5030B	02/01/201	02/03/201	02/03/201	20110203	10
5640	MW-3	5640.2	w	CS	CATOLIC	CIA/E020D	1	1	1	00000011	-
5640	14144-3	5640-3	vv	05	CATPH-G	SW5030B	02/01/201 1	02/08/201 1	1	02082011	7
5640	VRW-1	5640-4	w	CS	8260FAB	SW5030B	01/31/201	02/03/201		20110203	11
				00	02001710	CHOCOD	1	1	1	20110205	11
5640	VRW-1	5640-4	w	CS	CATPH-G	SW5030B	01/31/201	02/08/201	02/08/201	02082011	8
							1	1	1		
5640	VRW-2	5640-5	W	CS	8260FAB	SW5030B	01/31/201	02/03/201	02/03/201	20110203	12
							1	1	1		
5640	VRW-2	5640-5	W	CS	CATPH-G	SW5030B	01/31/201	02/08/201	02/08/201	02082011	9
							1	1	1		
5640	VRW-3	5640-6	W	CS	8260FAB	SW5030B	01/31/201	02/03/201		20110203	13
50.40		5040.0		00	OATDU O	014/50005	1	1	1		
5640	VRW-3	5640-6	w	CS	CATPH-G	SW5030B	01/31/201	02/08/201 1		02082011	10
5640	VRW-4	5540-7	w	CS	8260FAB	SW5030B	01/31/201	02/03/201	1	20110203	14
5040	VI(VV-4	5540-7	**	05	0200FAD	3443030B	1	1	1	20110203	14
5640	VRW-4	5540-7	w	CS	CATPH-G	SW5030B	01/31/201	02/08/201	350	02082011	11
							1	1	1	02002011	
5640	VRW-5	5640-8	w	CS	8260FAB	SW5030B	02/01/201	02/03/201	02/03/201	20110203	15
							1	1	1		
5640	VRW-5	5640-8	W	CS	CATPH-G	SW5030B	02/01/201	02/08/201	02/08/201	02082011	12
							1	1	1		
5640	VRW-6	5640-9	W	CS	8260FAB	SW5030B	02/01/201	02/03/201	02/03/201	20110203	16
					_		1	1	1		
5640	VRW-6	5640-9	W	CS	CATPH-G	SW5030B	02/01/201	02/08/201		02082011	13
FC40		FC40 10	14/	00	8260EAD	014/50200	1	1	1	00110000	47
5640	VRW-7	5640-10	w	CS	8260FAB	SW5030B	02/01/201 1	02/03/201 1	02/03/201	20110203	17
5640	VRW-7	5640-10	w	CS	CATPH-G	SW5030B	02/01/201	02/08/201		02082011	14
0010		00-10-10		00	0/11/1-0	01100000	521011201	521001201	02/00/201	02002011	14

02/09/201

Report Summary

Labreport	Sampid	Labsampid	Mtrx	QC	Anmcode	Exmcode	Logdate	Extdate	Anadate	Lablotctl	Run Sub
							1	1	1		
5640	VRW-8	5640-11	w	CS	8260FAB	SW5030B	02/01/201	02/03/201	02/03/201	20110203	18
							1	1	1		
5640	VRW-8	5640-11	W	CS	CATPH-G	SW5030B	02/01/201	02/08/201	02/08/201	02082011	15
							1	1	1		
5640	VRW-9	5640-12	w	CS	8260FAB	SW5030B	02/01/201	02/03/201	02/03/201	20110203	19
							1	1	1		22
5640	VRW-9	5640-12	W	CS	CATPH-G	SW5030B	02/01/201	02/08/201	02/08/201	02082011	16
						014/50000	1	1	1	00110000	2
		5640MB	w	LB1	8260FAB	SW5030B	11	02/03/201	02/03/201	20110203	3
		5640MB	w	1 - 1	CATPH-G	SW5030B	11	02/08/201	02/08/201	02082011	1
		504UMD	vv	LDI	CATEN-0	34430308	//	1	1	02002011	
		5640MS	w	MS1	8260FAB	SW5030B	11	02/03/201	02/03/201	20110203	7
		0010110						1	1		
		5640MS	W	MS1	CATPH-G	SW5030B	11	02/08/201	02/08/201	02082011	4
								1	1		
		5640SD	W	SD1	8260FAB	SW5030B	11	02/03/201	02/03/201	20110203	8
								1	1		
		5640SD	W	SD1	CATPH-G	SW5030B	11	02/08/201	02/08/201	02082011	5
								1	1		

Project Name: Project No:	1735 24TH ST. 029		Analys Metho Prep M	d: 82	DCs by GC/MS F 60FAB V5030B	Fuel Additive	es Plus I	BTEX		
Field ID:	MW-1		Lab Samp ID: 5640-1							
Descr/Location: Sample Date:	MW-1 01/31/2011		Rec'd		02/02/2011					
Sample Time:	1315		Prep D		02/03/2011 02/03/2011					
Matrix:	Water		QC Ba		20110203					
Basis:	Not Filtered		Notes:	ton.	20110203					
Analyte		Det Limit	Rep Limit	:	Note	Result	Units	Pvc Dil		
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1		
Ethyl tert-butyl et	her (ETBE)	0.30	1.0	PQL		ND	UG/L	1		
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1		
Di-isopropyl ethe	r (DIPE)	0.37	1.0	PQL		ND	UG/L	1		
tert-Butyl alcohol	(TBA)	2.4	10.	PQL		ND	UG/L	1		
1,2-Dichloroethan	ne	0.30	0.50	PQL		ND	UG/L	1		
1,2-Dibromoetha	ne	0.30	0.50	PQL		ND	UG/L	1		
Benzene		0.27	0.50	PQL		ND	UG/L	1		
Toluene		0.25	0.50	PQL		ND	UG/L	1		
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1		
Xylenes		0.25	0.50	PQL		ND	UG/L	1		
SURROGATE AN 4-Bromofluorobe	ND INTERNAL STAN nzene	DARD RECOV	ERIES: 86-118	SLSA		97%				
Toluene-d8			88-110	SLSA		100%				
Dibromofluorome	thane		86-118	SLSA		95%				

Approved by: William & Pots

Project Name: Project No:	1735 24TH ST. 029		Analys Metho Prep N	d: 82	DCs by GC/MS F 60FAB W5030B	uel Additive	es Plus	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	MW-2 MW-2 01/31/2011 1600 Water Not Filtered		Rec'd Prep D	Date: Date: is Date: tch:	5640-2 02/02/2011 02/03/2011 02/03/2011 20110203				
Analyte		Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		1.47	UG/L	1	
Ethyl tert-butyl et	her (ETBE)	0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ethe	r (DIPE)	0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcohol	(TBA)	2.4	10.	PQL		ND	UG/L	1	
1,2-Dichloroethar	ne	0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoetha	ne	0.30	0.50	PQL		ND	UG/L	1	
Benzene		0.27	0.50	PQL		4.86	UG/L	1	
Toluene		0.25	0.50	PQL		2.48	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		4.63	UG/L	1	
SURROGATE AN 4-Bromofluorobe	ND INTERNAL STAN nzene	DARD RECOV	ERIES: 86-118	SLSA		98%			
Toluene-d8			88-110	SLSA		98%			
Dibromofluorome	thane		86-118	SLSA		93%			

Approved by: Usermy & Pot

____ Date: ______7/11___

Project Name: Project No:	1735 24TH ST. 029		Analys Metho Prep M	d: 82	DCs by GC/MS F 60FAB V5030B	uel Additive	es Plus I	BTEX	
Field ID:	MW-3		Lab Sa	amp ID:	5640-3				
Descr/Location:	MW-3		Rec'd		02/02/2011				
Sample Date:	02/01/2011		Prep D	ate:	02/03/2011				
Sample Time:	1000		Analys	is Date:	02/03/2011				
Matrix:	Water		QC Ba		20110203				
Basis:	Not Filtered		Notes:						
Analyte		Det Limit	Rep Limit	:	Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1	
Ethyl tert-butyl et	her (ETBE)	0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ethe	r (DIPE)	0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcohol	(TBA)	2.4	10.	PQL		91.8	UG/L	1	
1,2-Dichloroetha	ne	0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoetha	ne	0.30	0.50	PQL		ND	UG/L	1	
Benzene		0.27	0.50	PQL		ND	UG/L	1	
Toluene		0.25	0.50	PQL		ND	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		ND	UG/L	1	
SURROGATE AI 4-Bromofluorobe	ND INTERNAL STAN	DARD RECOV	ERIES: 86-118	SLSA		98%			
Toluene-d8			88-110	SLSA		99%			
Dibromofluorome	ethane		86-118	SLSA		94%			

Walling & Pots

Date: <u>2/9/11</u>

Approved by: _

Project Name: Project No:	1735 24TH ST. 029		Analys Methoo Prep N	d: 82	DCs by GC/MS F 60FAB V5030B	Fuel Additive	es Plus I	BTEX	
Field ID:	VRW-1		Lab Sa	amp ID:	5640-4				
Descr/Location:	VRW-1		Rec'd I		02/02/2011				
Sample Date:	01/31/2011		Prep D	ate:	02/03/2011				
Sample Time:	1505		Analys	is Date:	02/03/2011				
Matrix:	Water		QC Ba	tch:	20110203				
Basis:	Not Filtered		Notes:						
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		1.03	UG/L	1	
Ethyl tert-butyl et	her (ETBE)	0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ethe	r (DIPE)	0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcohol	(TBA)	2.4	10.	PQL		40.4	UG/L	1	
1,2-Dichloroetha	ne	0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoetha	ne	0.30	0.50	PQL		ND	UG/L	1	
Benzene		0.27	0.50	PQL		263	UG/L	1	
Toluene		0.25	0.50	PQL		ND	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		ND	UG/L	1	
	ND INTERNAL STAN	DARD RECOV	ERIES: 86-118	SLSA		96%			
Toluene-d8			88-110	SLSA		97%			
Dibromofluorome	ethane		86-118	SLSA		93%			

Approved by: _ Useran & Go

Project Name: Project No:	1735 24TH ST. 029		Analys Methoo Prep M	d: 82	DCs by GC/MS Fu 60FAB V5030B	el Additive	es Plus I	ВТЕХ	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-2 VRW-2 01/31/2011 1355 Water Not Filtered		Rec'd I Prep D	Date: ate: is Date:	5640-5 02/02/2011 02/03/2011 02/03/2011 20110203				
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		1.20	UG/L	1	
Ethyl tert-butyl et	her (ETBE)	0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl		0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ethe	r (DIPE)	0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcohol	(TBA)	2.4	10.	PQL		ND	UG/L	1	
1,2-Dichloroethan	ne	0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoetha	ne	0.30	0.50	PQL		ND	UG/L	1	
Benzene		0.27	0.50	PQL		21.1	UG/L	1	
Toluene		0.25	0.50	PQL		1.78	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		293	UG/L	1	
SURROGATE Al 4-Bromofluorobe	ND INTERNAL STAN nzene	DARD RECOV	ERIES: 86-118	SLSA		97%			
Toluene-d8			88-110	SLSA		99%			
Dibromofluorome	ethane		86-118	SLSA		92%			

Walling 18 got

____ Date: _____/1/_/

Approved by:

Project Name: Project No:	1735 24TH ST. 029		Analys Method Prep M	d: 82	DCs by GC/MS F 60FAB V5030B	uel Additive	es Plus I	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-3 VRW-3 01/31/2011 1240 Water Not Filtered		Rec'd I Prep D	Date: Date: is Date: tch:	5640-6 02/02/2011 02/03/2011 02/03/2011 20110203				
Analyte		Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1	
Ethyl tert-butyl et	her (ETBE)	0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ethe	r (DIPE)	0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcohol	(TBA)	2.4	10.	PQL		30.5	UG/L	1	
1,2-Dichloroetha	ne	0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoetha	ne	0.30	0.50	PQL		ND	UG/L	1	
Benzene		0.27	0.50	PQL		1.19	UG/L	1	
Toluene		0.25	0.50	PQL		ND	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		1.41	UG/L	1	
SURROGATE AI 4-Bromofluorobe	ND INTERNAL STAN	DARD RECOV	ERIES: 86-118	SLSA		96%			
Toluene-d8			88-110	SLSA		97%			
Dibromofluorome	ethane		86-118	SLSA		90%			

Approved by: Uneling 18 Pat

_____ Date: ______7/11

Project Name: Project No:	1735 24TH ST. 029		Analys Metho Prep N	d: 82	DCs by GC/MS I 60FAB W5030B	Fuel Additive	es Plus	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-4 VRW-4 01/31/2011 1645 Water Not Filtered		Rec'd Prep D	Date: Date: is Date: itch:	5540-7 02/02/2011 02/03/2011 02/03/2011 20110203				
Analyte		Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil	
Methyl-tert-butyl e	ether (MTBE)	0.76	2.0	PQL		ND	UG/L	2	
Ethyl tert-butyl eth	ner (ETBE)	0.60	2.0	PQL		ND	UG/L	2	
tert-Amyl methyl e	ether (TAME)	0.52	2.0	PQL		ND	UG/L	2	
Di-isopropyl ether	(DIPE)	0.74	2.0	PQL		ND	UG/L	2	
tert-Butyl alcohol	(TBA)	4.8	20.	PQL		ND	UG/L	2	
1,2-Dichloroethan	e	0.60	1.0	PQL		ND	UG/L	2	
1,2-Dibromoethar	ne	0.60	1.0	PQL		ND	UG/L	2	
Benzene		0.54	1.0	PQL		125.	UG/L	2	
Toluene		0.50	1.0	PQL		8.25	UG/L	2	
Ethylbenzene		0.50	1.0	PQL		9.51	UG/L	2	
Xylenes		0.50	1.0	PQL		19.3	UG/L	2	
SURROGATE AN 4-Bromofluorober	ID INTERNAL STAN	DARD RECOV	ERIES: 86-118	SLSA		96%			
Toluene-d8			88-110	SLSA		97%			
Dibromofluorome	thane		86-118	SLSA		89%			

Walling 18 Pots

Approved by: _

Date: 2/9/11

Project Name: Project No:	1735 24TH ST. 029		Analys Metho Prep M	d: 82	DCs by GC/MS Fu 60FAB W5030B	uel Additive	es Plus I	втех	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-5 VRW-5 02/01/2011 1315 Water Not Filtered		Rec'd Prep D	Date: Date: is Date: tch:	5640-8 02/02/2011 02/03/2011 02/03/2011 20110203				
Analyte		Det Limit	Rep Limit	:	Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.76	2.0	PQL		ND	UG/L	2	
Ethyl tert-butyl et	her (ETBE)	0.60	2.0	PQL		ND	UG/L	2	
tert-Amyl methyl	ether (TAME)	0.52	2.0	PQL		ND	UG/L	2	
Di-isopropyl ethe	r (DIPE)	0.74	2.0	PQL		ND	UG/L	2	
tert-Butyl alcohol	(TBA)	4.8	20.	PQL		ND	UG/L	2	
1,2-Dichloroetha	ne	0.60	1.0	PQL		ND	UG/L	2	
1,2-Dibromoetha	ne	0.60	1.0	PQL		ND	UG/L	2	
Benzene		0.54	1.0	PQL		109.	UG/L	2	
Toluene		0.50	1.0	PQL		283	UG/L	2	
Ethylbenzene		0.50	1.0	PQL		77.5	UG/L	2	
Xylenes		0.50	1.0	PQL		6.86	UG/L	2	
SURROGATE Al 4-Bromofluorobe	ND INTERNAL STAN	DARD RECOV	ERIES: 86-118	SLSA		97%			1
Toluene-d8			88-110	SLSA		100%			1
Dibromofluorome	ethane		86-118	SLSA		90%			1

Approved by:

Wreever 18 Pots

____ Date: ____2/9/11

Project Name: Project No:	1735 24TH ST. 029		Analys Metho Prep M	d: 82	DCs by GC/MS Fu 60FAB W5030B	uel Additive	es Plus I	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-6 VRW-6 02/01/2011 1140 Water Not Filtered		Rec'd Prep D	Date: ate: is Date:	5640-9 02/02/2011 02/03/2011 02/03/2011 20110203				
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1	
Ethyl tert-butyl et	her (ETBE)	0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ethe	r (DIPE)	0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcohol	(TBA)	2.4	10.	PQL		627	UG/L	1	
1,2-Dichloroetha	ne	0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoetha	ne	0.30	0.50	PQL	*	ND	UG/L	1	
Benzene		0.27	0.50	PQL		265	UG/L	1	
Toluene		0.25	0.50	PQL		ND	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		1.17	UG/L	1	
SURROGATE AI 4-Bromofluorobe	ND INTERNAL STAN	DARD RECOV	ERIES: 86-118	SLSA		97%			
Toluene-d8			88-110	SLSA		97%			
Dibromofluorome	ethane		86-118	SLSA		90%			

Wreering 18 Pot

Approved by:

Project Name: Project No:	1735 24TH ST. 029		Analys Methoo Prep M	d: 82	DCs by GC/MS F 60FAB W5030B	uel Additive	es Plus I	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-7 VRW-7 02/01/2011 1345 Water Not Filtered		Rec'd Prep D	Date: ate: is Date:	5640-10 02/02/2011 02/03/2011 02/03/2011 20110203				
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1	
Ethyl tert-butyl et	her (ETBE)	0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ethe	r (DIPE)	0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcohol	(TBA)	2.4	10.	PQL		81.3	UG/L	1	
1,2-Dichloroetha	ne	0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoetha	ne	0.30	0.50	PQL		ND	UG/L	1	
Benzene		0.27	0.50	PQL		3.93	UG/L	1	
Toluene		0.25	0.50	PQL		ND	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		0.68	UG/L	1	
SURROGATE A 4-Bromofluorobe	ND INTERNAL STAN	DARD RECOV	ERIES: 86-118	SLSA		97%			
Toluene-d8			88-110	SLSA		94%			
Dibromofluorome	ethane		86-118	SLSA		90%			

Wreering 18 Pots

Date: 2/9/11

Approved by:

Project Name: Project No:	1735 24TH ST. 029		Analys Metho Prep N	d: 82	DCs by GC/MS F 60FAB V5030B	uel Additive	es Plus I	BTEX	
Field ID:	VRW-8		Lab Sa	amp ID:	5640-11				
Descr/Location:	VRW-8		Rec'd	Date:	02/02/2011				
Sample Date:	02/01/2011		Prep D		02/03/2011				
Sample Time:	1045				02/03/2011				
Matrix:	Water		QC Ba		20110203				
Basis:	Not Filtered		Notes:						
Analyte		Det Limit	Rep Limit	:	Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.76	2.0	PQL		ND	UG/L	2	_
Ethyl tert-butyl et	her (ETBE)	0.60	2.0	PQL		ND	UG/L	2	
tert-Amyl methyl	ether (TAME)	0.52	2.0	PQL		ND	UG/L	2	
Di-isopropyl ethe	r (DIPE)	0.74	2.0	PQL		ND	UG/L	2	
tert-Butyl alcohol	(TBA)	4.8	20.	PQL		49.7	UG/L	2	
1,2-Dichloroethar	ne	0.60	1.0	PQL		ND	UG/L	2	
1,2-Dibromoetha	ne	0.60	1.0	PQL		ND	UG/L	2	
Benzene		0.54	1.0	PQL		13.8	UG/L	2	
Toluene		0.50	1.0	PQL		4.62	UG/L	2	
Ethylbenzene		0.50	1.0	PQL		ND	UG/L	2	
Xylenes		0.50	1.0	PQL		8.63	UG/L	2	
SURROGATE Al 4-Bromofluorobe	ND INTERNAL STAN	DARD RECOV	ERIES: 86-118	SLSA		97%			
Toluene-d8			88-110	SLSA		94%			
Dibromofluorome	0		86-118	SLSA		89%			

Walling 18 Pots Approved by:

____ Date: ____2/_9/11___

Bace Analytical, Windsor, CA

Lab Report No.: 5640 Date: 02/09/2011

Page: 12

Project Name: Project No:	1735 24TH ST. 029		Analys Metho Prep N	d: 82	DCs by GC/MS Fu 260FAB W5030B	uel Additive	es Plus I	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-9 VRW-9 02/01/2011 1225 Water Not Filtered		Rec'd Prep D	Date: Date: is Date: tch:	5640-12 02/02/2011 02/03/2011 02/03/2011 20110203				
Analyte		Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1	
Ethyl tert-butyl eth	ner (ETBE)	0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ether	(DIPE)	0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcohol	(TBA)	2.4	10.	PQL		54.9	UG/L	1	
1,2-Dichloroethar	ne	0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoethar	ne	0.30	0.50	PQL		ND	UG/L	1	
Benzene		0.27	0.50	PQL		ND	UG/L	1	
Toluene		0.25	0.50	PQL		ND	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		1.82	UG/L	1	
SURROGATE AN 4-Bromofluorober	ID INTERNAL STAND	OARD RECOV	ERIES: 86-118	SLSA		98%			1
Toluene-d8			88-110	SLSA		98%			1
Dibromofluorome	thane		86-118	SLSA		91%			1

Approved by: ______ A leaven & Coty_____ Date: ______

Project Name: Project No:	1735 24TH ST. 029			CA LUFT Method CATPH-G SW5030B	for Gasoline	Range	Organics	
Field ID:	MW-1		Lab Samp I	D: 5640-1				
Descr/Location:	MW-1		Rec'd Date:	02/02/2011				
Sample Date:	01/31/2011		Prep Date:	02/08/2011				
Sample Time:	1315		Analysis Da	te: 02/08/2011				
Matrix:	Water		QC Batch:	02082011				
Basis:	Not Filtered		Notes:					
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil	_
Gasoline Range	Organics (C5-C12)	0.04	0.05 PQ		ND	MG/L	1	
SURROGATE A	ND INTERNAL STAN	DARD RECOV	ERIES:					
4-Bromofluorobe	nzene		65-135 SLS	SA	80%			

William 18 Pots

Date: 2/9/11

Approved by: ____

Project Name: Project No:	1735 24TH ST. 029		and a second states	CA LUFT Method CATPH-G SW5030B	for Gasoline	e Range	Organics	
Field ID:	MW-2		Lab Samp II	D: 5640-2				
Descr/Location:	MW-2		Rec'd Date:	02/02/2011				
Sample Date:	01/31/2011		Prep Date:	02/08/2011				
Sample Time:	1600		Analysis Da	te: 02/08/2011				
Matrix:	Water		QC Batch:	02082011				
Basis:	Not Filtered		Notes:					
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil	
Gasoline Range	Gasoline Range Organics (C5-C12) 0.04			-	20	MG/L	1	
SURROGATE AN 4-Bromofluorobe	ND INTERNAL STAND	DARD RECOV	ERIES: 65-135 SLS	A	118%			ų

Walling A got

Date: 2/9/11

Approved by: _

Project Name: Project No:	1735 24TH ST. 029		Analysis: Method: Prep Meth	CA LUFT Method CATPH-G SW5030B	d for Gasoline	e Range	Organics	
Field ID:	MW-3		Lab Samp	ID: 5640-3				
Descr/Location:	MW-3		Rec'd Date	: 02/02/2011				
Sample Date:	02/01/2011		Prep Date:	02/08/2011				
Sample Time:	1000		Analysis D	ate: 02/08/2011				
Matrix:	Water		QC Batch:	02082011				
Basis:	Not Filtered		Notes:					
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil	
Gasoline Range	Organics (C5-C12)	0.04	0.05 PC	2L	0.17	MG/L	1	
SURROGATE Al 4-Bromofluorobe	ND INTERNAL STAND	OARD RECOV		SA	77%			

William 18 Pat

Date: <u>2/9/11</u>

Approved by:

Project Name: Project No:	1735 24TH ST. 029		Sector and the sector of the s	CA LUFT Method CATPH-G SW5030B	for Gasoline	e Range	Organics	
Field ID:	VRW-1		Lab Samp ID): 5640-4				
Descr/Location:	VRW-1		Rec'd Date:	02/02/2011				
Sample Date:	01/31/2011		Prep Date:	02/08/2011				
Sample Time:	1505		Analysis Dat	e: 02/08/2011				
Matrix:	Water		QC Batch:	02082011				
Basis:	Not Filtered		Notes:					
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil	
Gasoline Range	Organics (C5-C12)	0.04	0.05 PQL		0.28	MG/L	1	
SURROGATE Al 4-Bromofluorobe	ND INTERNAL STAND	OARD RECOV	ERIES: 65-135 SLS	A	85%			

Approved by: Uneling 18 Pots ____

Date: _______

Project Name:	1735 24TH ST.		Analysis:		ethod for Gasoline	Range	Organics			
Project No:	029		Method:	CATPH-G	CATPH-G					
			Prep Meth	: SW5030B						
Field ID:	VRW-2		Lab Samp	ID: 5640-5						
Descr/Location:	VRW-2		Rec'd Date	e: 02/02/20	11					
Sample Date:	01/31/2011		Prep Date	02/08/20	11					
Sample Time:	1355		Analysis D	ate: 02/08/20	11					
Matrix:	Water		QC Batch:	0208201	1					
Basis:	Not Filtered		Notes:							
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil			
Gasoline Range	Range Organics (C5-C12) 0.04			QL	1.6	MG/L	1			
SURROGATE A	ND INTERNAL STAN	DARD RECOVE	ERIES:							
4-Bromofluorobe	nzene		65-135 SL	SA	99%					

Approved by: ____

William A Goto

____ Date: ____/9/11

Project Name: Project No:	1735 24TH ST. 029		Analysis: Method: Prep Me	CA	A LUFT Method f ATPH-G V5030B	for Gasoline	Range	Organics	
Field ID:	VRW-3		Lab Sam	p ID:	5640-6				
Descr/Location:	VRW-3		Rec'd Da	te:	02/02/2011				
Sample Date:	01/31/2011		Prep Dat	e:	02/08/2011				
Sample Time:	1240		Analysis	Date:	02/08/2011				
Matrix:	Water		QC Batch	า:	02082011				
Basis:	Not Filtered		Notes:						
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Gasoline Range	Organics (C5-C12)	0.04	0.05 F	PQL		0.22	MG/L	1	
SURROGATE AN	ND INTERNAL STAN	DARD RECOV	ERIES:						
4-Bromofluorobe	nzene		65-135 \$	SLSA		78%			8

William & Pots

_____ Date: ______2/_9/11__

Approved by: _

Project Name: Project No:	1735 24TH ST. 029		,	A LUFT Method ATPH-G W5030B	for Gasoline	Range	Organics	
Field ID:	VRW-4		Lab Samp ID:	5540-7				
Descr/Location:	VRW-4		Rec'd Date:	02/02/2011				
Sample Date:	01/31/2011		Prep Date:	02/08/2011				
Sample Time:	1645		Analysis Date	: 02/08/2011				
Matrix:	Water		QC Batch:	02082011				
Basis:	Not Filtered		Notes:					
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil	
Gasoline Range	Organics (C5-C12)	0.040	0.100 PQL		1.0	MG/L	2	
SURROGATE Al 4-Bromofluorobe	ND INTERNAL STAND	ARD RECOV	ERIES: 65-135 SLSA		92%			

William 18 Pots

Date: 2/9/11

Approved by:

Project Name: Project No:	1735 24TH ST. 029			CA LUFT Method CATPH-G SW5030B	for Gasoline	Range	Organics
Field ID:	VRW-5		Lab Samp ID	: 5640-8			
Descr/Location:	VRW-5		Rec'd Date:	02/02/2011			
Sample Date:	02/01/2011		Prep Date:	02/08/2011			
Sample Time:	1315		Analysis Date	e: 02/08/2011			
Matrix:	Water		QC Batch:	02082011			
Basis:	Not Filtered		Notes:				
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline Range	Organics (C5-C12)	0.040	0.100 PQL		20	MG/L	2
SURROGATE AN	ND INTERNAL STAN	DARD RECOV	ERIES:				
4-Bromofluorober	nzene		65-135 SLSA	4	118%		

Walling 18 Pot

- Date: <u>2/9/11</u>

Approved by: __

Project Name: Project No:	1735 24TH ST. 029			CA LUFT Method CATPH-G SW5030B	for Gasoline	Range	Organics	
Field ID:	VRW-6		Lab Samp II	D: 5640-9				
Descr/Location:	VRW-6		Rec'd Date:	02/02/2011				
Sample Date:	02/01/2011		Prep Date:	02/08/2011				
Sample Time:	1140		Analysis Da	te: 02/08/2011				
Matrix:	Water		QC Batch:	02082011				
Basis:	Not Filtered		Notes:					
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil	
Gasoline Range	Organics (C5-C12)	0.04	0.05 PQI		0.29	MG/L	1	
SURROGATE A	ND INTERNAL STAND	DARD RECOV	ERIES:					
4-Bromofluorobe	nzene		65-135 SLS	A	84%			

Walling & Pots

_____ Date: ___ 2/9/11

Approved by: ____

Project Name: Project No:	1735 24TH ST. 029			CA LUFT Method CATPH-G SW5030B	for Gasoline	e Range	Organics	
Field ID:	VRW-7		Lab Samp II	D: 5640-10				
Descr/Location:	VRW-7		Rec'd Date:					
Sample Date:	02/01/2011		Prep Date:	02/08/2011				
Sample Time:	1345		Analysis Da	te: 02/08/2011				
Matrix:	Water		QC Batch:	02082011				
Basis:	Not Filtered		Notes:					
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil	_
Gasoline Range	Organics (C5-C12)	0.04	0.05 PQI		0.27	MG/L	1	_
	ND INTERNAL STAN	DARD RECOV	ERIES:					_
4-Bromofluorobe	nzene		65-135 SLS	A	77%			

William A got

Approved by:

2/9/11 Date: _

Project Name: Project No:	1735 24TH ST. 029			A LUFT Method ATPH-G W5030B	for Gasoline	Range	Organics
Field ID:	VRW-8		Lab Samp ID:	5640-11			
Descr/Location:	VRW-8		Rec'd Date:	02/02/2011			
Sample Date:	02/01/2011		Prep Date:	02/08/2011			
Sample Time:	1045		Analysis Date	: 02/08/2011			
Matrix:	Water		QC Batch:	02082011			
Basis:	Not Filtered		Notes:				
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline Range	Organics (C5-C12)	0.040	0.100 PQL		24	MG/L	2
SURROGATE AN	ND INTERNAL STAN	DARD RECOVE	ERIES:				
4-Bromofluorobe	nzene		65-135 SLSA		122%		

Welling & Pots

Date: _______

Approved by: _

Project Name: Project No:	1735 24TH ST. 029		Analysis: Method: Prep Meth	CA	LUFT Method f TPH-G V5030B	or Gasoline	Range	Organics	
Field ID:	VRW-9		Lab Samp	ID:	5640-12				
Descr/Location:	VRW-9		Rec'd Date	e:	02/02/2011				
Sample Date:	02/01/2011		Prep Date	:	02/08/2011				
Sample Time:	1225		Analysis D	ate:	02/08/2011				
Matrix:	Water		QC Batch:		02082011				
Basis:	Not Filtered		Notes:						
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Gasoline Range	Organics (C5-C12)	0.04	0.05 PC	ΩL		0.58	MG/L	1	
SURROGATE Al 4-Bromofluorobe	ND INTERNAL STAND	OARD RECOV		_SA		79%			

Wreering A Pots

Approved by: _

Date: 2/9/11

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Page: 25

1

QC Batch: 02082011 Analysis: CA LUFT Method for Gasoline Range Method: Water CATPH-G Matrix: Lab Samp ID: 5640MB Prep Meth: SW5030B Analysis Date: 02/08/2011 Prep Date: 02/08/2011 Not Filtered Basis: Notes: Analyte Det Limit **Rep Limit** Note Result Units Pvc Dil Gasoline Range Organics (C5-C12) 0.020 0.050 PQL ND MG/L 1 SURROGATE AND INTERNAL STANDARD RECOVERIES: 90% 4-Bromofluorobenzene 65-135 SLSA

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

89.

92.

PERCENT

89.0 92.0

3.3 135-65

SLSA

25SLSP

Lab Report No.: 5640 Date:	02/09/2011										F	Page: 2	6
QC Batch: 02082011 Matrix: Water Lab Samp ID: 5640MS Basis: Not Filtered							Project Name Project No.: Field ID: Lab Ref ID:	e: 173 029 MW 564) /-1	H ST			
Analyte	Analysis Method	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	Units		ecover DMS		500 (10.10)	Accept Criter ec	
Gasoline Range Organics (C5-C12)	CATPH-G	0.620	0.620	ND	0.549	0.563	MG/L	88.5	90.8	2.6	140-60	MSA	25MSF

80.

CATPH-G

4-Bromofluorobenzene

100.

100.

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Page: 2	1	
---------	---	--

QC Batch:20110203Matrix:WaterLab Samp ID:5640MBAnalysis Date:02/03/2011Basis:Not Filtered			d: 82 Aeth: SN Date: 02	DCs by GC/MS F 260FAB W5030B 2/03/2011	⁻ uel Additive	es Plus I	BTEX	
Analyte	Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil	
Methyl-tert-butyl ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1	
Ethyl tert-butyl ether (ETBE)	0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl ether (TAME)	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ether (DIPE)	0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcohol (TBA)	2.4	10.	PQL		ND	UG/L	1	
1,2-Dichloroethane	0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoethane	0.30	0.50	PQL		ND	UG/L	1	
Benzene	0.27	0.50	PQL		ND	UG/L	1	
Toluene	0.25	0.50	PQL		ND	UG/L	1	
Ethylbenzene	0.25	0.50	PQL		ND	UG/L	1	
Xylenes	0.25	0.50	PQL		ND	UG/L	1	
SURROGATE AND INTERNAL STAN	DARD RECOV	ERIES:						
4-Bromofluorobenzene		86-118	SLSA		98%			1
Toluene-d8		88-110	SLSA		99%			1
Dibromofluoromethane		86-118	SLSA		95%			1

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Lab Report No.: 5640 Date: 02/09/2011

20110203

Not Filtered

Water

Lab Samp ID: 5640MS

QC Batch:

Matrix:

Basis:

Project Name: 1735 24TH ST. Project No.: 029 Field ID: MW-1 Lab Ref ID: 5640-1

	Analysis			Sample	Spike	Result		% Recoveries			Acceptance Criteria		
Analyte	Method	MS	DMS	Result	MS	DMS	Units	MS	DMS	RPD	% R	RPD	
1,2-Dibromoethane	8260FAB	10.0	10.0	ND	8.41	9.00	UG/L	84.1	90.0	6.8	130-70	MSA	20MSP
1,2-Dichloroethane	8260FAB	10.0	10.0	ND	8.98	9.43	UG/L	89.8	94.3	4.9	130-70	MSA	20MSP
Benzene	8260FAB	10.0	10.0	ND	9.04	9.39	UG/L	90.4	93.9	3.8	127-76	MSA	20MSP
Di-isopropyl ether (DIPE)	8260FAB	10.0	10.0	ND	7.83	8.08	UG/L	78.3	80.8	3.1	140-60	MSA	20MSP
Ethyl tert-butyl ether (ETBE)	8260FAB	10.0	10.0	ND	8.75	9.10	UG/L	87.5	91.0	3.9	140-60	MSA	20MSP
Ethylbenzene	8260FAB	10.0	10.0	ND	7.73	8.89	UG/L	77.3	88.9	14	130-70	MSA	20MSP
Methyl-tert-butyl ether (MTBE)	8260FAB	10.0	10.0	ND	10.2	10.4	UG/L	102	104	1.9	140-60	MSA	20MSP
Toluene	8260FAB	10.0	10.0	ND	9.73	10.3	UG/L	97.3	103	5.7	125-76	MSA	20MSP
Xylenes	8260FAB	30.0	30.0	ND	24.4	28.1	UG/L	81.3	93.7	14	130-70	MSA	20MSP
tert-Amyl methyl ether (TAME)	8260FAB	10.0	10.0	ND	9.25	9.72	UG/L	92.5	97.2	5.0	140-60	MSA	20MSP
tert-Butyl alcohol (TBA)	8260FAB	50.0	50.0	ND	50.9	52.2	UG/L	102	104	1.9	140-60	MSA	25MSP
4-Bromofluorobenzene	8260FAB	100.	100.	97.	94.	97.	PERCENT	94.0	97.0	3.1	118-86	SLSA	20 SLSP
Dibromofluoromethane	8260FAB	100.	100.	95.	92.	94.	PERCENT	92.0	94.0	2.2	118-86	SLSA	20 SLSP
Toluene-d8	8260FAB	100.	100.	100.	97.	100.	PERCENT	97.0	100	3.0	110-88	SLSA	20 SLSP

Page: 28

white

Chain of Custody

	~							uotou	-							
Project #	Project Address Pacific S	PPPy		NO					An	alysis					C.O.C. No. 12788	
29	Project Address Pacific 5 1738 24th st, Oak Sampler's Signature	land, Cf	7	u n m		(BTEX, 0KY									с.о.с. №. 12788	
BG No.	Sampler's Signature			ba	285	N.A									Remarks:	
	Desenou	uns		ei rn	9											
Date	Sample I.D.		Sample	o e	-H41	82409										
Sampled			Туре	f s	F	826										
1-31-11	mw-1 /7	1315 1	H20	4	×	×									5640-1	
1-31-11	mw-2 V	1600	1	/	×	×	_								-2	
2-1-11	mw-3 V	1000			\star	×	_		_						-3	
1-31-11	VRW.1	1505			\star	×				_					-4	
1-31-11	VRW-2	1355	-		*	×									-5	
1-31-11	VRW-3	1240		1		\times	_		_						-6 -7	
1-31-11	VRW-4	164.5	\setminus		+	×	_		_			_				
2-1-11	VRW-5	1315	\setminus			\times	_					_			-9	
2-1-11	VRW-6	1140	\rightarrow			×	_						_			
2-1-11	VRW-7	1345	_/		+	×	_		-						-10	
2-1-11	VRW-8	1045	1	/	7	×	_		_		$\left \right $				-11	
2-1-11	VRW-9	1225	-	4	×	×	-					_		+	-12	
							-		-		\vdash	_				
								-	+		$\left \right $			+		
					$\left \right $					+	$\left \right $			+		
			-			-			+-	-	$\left \right $			+		
						-			-	-			-	+		
				-					-	-	\vdash	_		+		
							-		-	-		_		+		
Laboratory:	RAFE			Pre	eserva	tion: A	- HCL;	B - HNO)3; C -	Ice (S	Specify	<u></u> г	AT: B	2-WK	Urgent; Immediate (Specify)	
Dolinguished	BAFS		1-												/	
(signed)	Relinquished by: Signed) Detending 2-2-11 / 000			Received by: (signed) 2/2/11 1010									oset		Brunsing Associates, Inc. P.O. Box 588	
Relinquished by: Date/Time			Received by:							-	DF	USE I		5468 Skylane Blvd., Suite 201		
(signed)		Dutor		signed		eli	inf	14	X	-			Office U	se Only)		
	Relinquished by: Date/Time			Received for Laboratory by:							1				(707) 838-3027 Phone	
(signed)		-144 C	(signed)								(707) 838-4420 Fax					