

Environmental Services

RECEIVED

9:11 am, Sep 10, 2012

Alameda County Environmental Health

September 06, 2012

Mr. Keith Nowles Alameda County Environmental Health Services Agency Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RE: 2010 Second Semi-Annual Groundwater Monitoring Report – August 2010 Pacific Supply Oakland

1735 24th Street Oakland, CA 94607

Dear Mr. Keith Nowles:

Attached is the Groundwater Monitoring Report – August 2010 dated October 12, 2010 describing the semi-annual groundwater monitoring at the above address performed by Brunsing Associates.

I declare under penalty of perjury that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions regarding this report, please contact William Coset of Brunsing Associates at (707) – 838 -3027, myself at (916) 645 -2568 (direct line) or (916)835 -6207 (cell number).

Sincerely,

Normita G. Callison

Normita G. Callison, REM Environmental Consultant For: PCCI and Subsidiaries

Enclosure
Groundwater Monitoring Report – August 2010

October 12, 2011 Project No. 029

Mr. Paresh C. Khatri Alameda County Health Care Services Agency Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Groundwater Monitoring Report-August 2010 Pacific Supply Company 1735 24th Street Oakland, California

Dear Mr. Khatri:

This report has been prepared by Brunsing Associates, Inc. (BAI) to provide a summary of the fieldwork completed at 1735 24th Street, Oakland, California (Plate 1) and the corresponding laboratory analytical results reported for groundwater samples collected during this semi-annual monitoring event. Fieldwork was conducted at the site on August 2 and 3, 2010. The fieldwork was completed in accordance with the Alameda County Health Care Services Agency (ACHCSA) correspondence dated November 6, 2003.

The conclusions regarding this property are based on observations of existing conditions, and limited sampling and analytical work performed by BAI and its subcontractors during the time of the investigation, and may be subject to change. Tabulated analytical data and other data gathered during this and previous BAI investigations, and presented herein, are to the best of our knowledge complete and correct. This report has been presented in accordance with generally accepted environmental engineering principals and practices. No other warranty, either expressed or implied, is made.

Site Background

In May 1987, efforts were initiated to abandon a 1,000-gallon underground gasoline storage tank at Pacific Supply Company's West Oakland site. Soil and associated vapor samples from exploratory boreholes at the site were analyzed by Anatec Laboratories. The results indicated that soil in the vicinity of the tank was contaminated with gasoline and raised the possibility that

gasoline may have reached groundwater below the site. During subsequent removal of the tank by Erikson Industrial Services, substantial deterioration of the tank body was documented. Gasoline odors were also detected during tank removal operations.

In order to assess the extent of soil and groundwater quality beneath and immediately adjacent to the Pacific Supply Company site and the potential for migration of contaminants from off-site sources, BAI carried out a two-phase soil and groundwater investigation. Monitoring wells MW-1 through MW-5 (Plate 2) were constructed in September 1988 as the first phase of the soil and groundwater investigation. Monitoring wells MW-6 and MW-7 were constructed on December 19, 1989 during Phase II of the same investigation. The construction and sampling of these wells are documented in BAI's "Report of Findings", dated March 23, 1990. The results of the Phase I and II investigations indicated that light petroleum hydrocarbons had migrated beyond the immediate vicinity of the former underground storage tank (UST); however, it was concluded that hydrocarbons in the soil and groundwater had not extended beyond the limits of the property.

The Pacific Supply Company initiated quarterly groundwater monitoring at the request of the ACHCSA in May 1992. Initially, only on-site wells were monitored for total petroleum hydrocarbons (TPH) as gasoline, benzene, toluene, ethylbenzene and xylenes (BTEX), and lead. Later, the five on-site and the two off-site wells were monitored quarterly.

A vapor extraction pilot study was performed in June 1992 to determine the feasibility of using vapor extraction technology as an in-situ corrective action to remove volatile petroleum hydrocarbons from the shallow subsurface soils. A two-inch diameter vapor extraction well (VEW-1) was installed at the location indicated on Plate 2 to an approximate depth of 8 feet below ground surface (bgs). The results of the 4-day pilot study indicated that the lithology at the site permitted the flow of air through the soils at a sufficient rate so as to volatilize hydrocarbon constituents in the soil. The radius of influence was determined in the field by measuring the relative pressure at several probe locations positioned at various radial distances away from the extraction well. The results indicated that the estimated radius of influence from the 2-inch diameter extraction well was approximately 30 feet at a relatively low pressure of less than 50 inches of water, as discussed in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

In response to an ACHCSA December 1992 request, BAI also performed an investigation to attempt to delineate the zero line of contamination. Ten soil borings (B-1 through B-10) were drilled as part of this investigation to depths of approximately 7 to 10 feet bgs (Plate 2). From each boring, one soil sample was retained from a depth of approximately 7 to 8 feet bgs for analytical testing of TPH as gasoline and BTEX. Further discussions of this investigation are provided in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

Vapor recovery wells VRW-1 through VRW-9 were constructed in August 1993 as part of a vapor recovery system. During installation of the extraction wells, soil samples were collected for chemical analysis in the borings at the depth where groundwater was first encountered, at approximately 7 feet bgs. Installations of these wells were documented in a February 7, 1994 report. A vapor extraction system was installed in the fall of 1993 as an interim remedial action. The system began operation on December 26, 1993. The system consisted of an internal combustion engine with a spray aeration tank for treatment of groundwater, and an activated carbon treatment polishing step prior to groundwater discharge. The internal combustion unit and spray aeration unit was manufactured by Remediation Service International (RSI), under the trade name Spray Aeration Vapor Extraction (SAVE) system.

On June 28, 1996, the treatment system was shut down with the concurrence of Pacific Supply Company. Prior to shut down, the system had destroyed an estimated 6,550 pounds of petroleum hydrocarbons since start of operations on December 26, 1993. After shut down, the water in the water tank was treated and discharged to the sanitary sewer under the existing permit and the inside of the tank was cleaned on July 15, 1996.

The permit with the Bay Area Air Quality Management District (BAAQMD) expired on September 1, 1996, and was not renewed. The water discharge permit was discontinued on July 31, 1996. The total volume of water discharged to the sanitary sewer was 151,089 gallons. In December 1996, the shut down and decommissioning of the system was authorized by Jennifer Eberle of the Alameda County Department of Health Services.

Groundwater monitoring continued following the shut down of the vapor extraction system. In August 2000, BAI supervised the drilling of three soil borings in 24th Street, on the north side of the Pacific Supply Company building in a downgradient direction from the former UST location. Grab groundwater samples were collected to evaluate whether off-site migration of hydrocarbon contamination in groundwater was occurring. One of the three groundwater samples was reported to contain low levels of TPH as gasoline, BTEX, and petroleum oxygenates. The results of the field investigation are presented in BAI's "Groundwater Investigation and Monitoring Report," dated December 14, 2000.

The drilling activities were performed on July 21, 2004 to determine the effectiveness of the vapor extraction system and to collect soil samples for geotechnical properties to aid in the evaluation of risk based cleanup scenarios. Soil borings CB-1 through CB-14 were drilled to depths ranging from 7 to 8.5 feet bgs. The soil samples selected for laboratory analyses were collected based on the elevation of the historical contamination in the vicinity of the boring, or direction from the ACHCS. The results of this investigation are presented in BAI's report titled "Soil Parameters and Confirmation Soil Sampling Investigation Report", dated January 31, 2005.

Table 1 presents a summary of groundwater analytical data and groundwater elevations for the monitoring wells. Table 2 presents the groundwater concentrations and groundwater elevations

for vapor recovery wells. Plate 2 presents a site map that shows the historical boring and sampling locations. Groundwater elevations calculated from this monitoring even are provided on Plate 3.

Scope of Work

The scope of work performed for this monitoring event included measuring depths to water in the groundwater and vapor recovery wells and collecting groundwater samples for laboratory analyses. The samples were submitted to a State-certified laboratory under chain of custody protocol.

On August 2, 2010 BAI measured depths to water in groundwater monitoring wells MW-1 through MW-3 and vapor recovery wells VRW-1 through VRW-9. The groundwater monitoring data and calculated elevations relative to mean sea level (MSL) for wells MW-1 through MW-3 (and historical data for wells MW-4 through MW-7) are presented in Table 1, and in Table 2 for vapor recovery wells VRW-1 through VRW-9.

On August 2 and 3, 2010 BAI collected groundwater samples from groundwater monitoring wells MW-1 through MW-3 and vapor recovery wells VRW-1, VRW-2, VRW-3, VRW-4, MW-5, VRM-6, VRW-7, VRM-8, and VRW-9.

The groundwater sampling protocol and field logs are included in Appendix A. BACE Analytical & Field Services (BAFS) analyzed the groundwater samples for TPH as gasoline and for volatile organic compounds (VOCs) including BTEX and MTBE by EPA Test Method 8260. The groundwater analytical report for the groundwater samples is presented in Appendix B.

Groundwater Flow Direction

Based on data from well MW-1, MW-2, and MW-3, the groundwater gradient on August 2, 2010 was 0.004 feet per foot toward the north-northwest, with groundwater elevations ranging from 3.74 feet to 4.07 feet above MSL. The groundwater elevations are presented on Plate 3.

Groundwater Analytical Results

The analytical results of the sample from well MW-1 reported all analytes as below their respective reporting limits. TPH as gasoline was reported in the sample collected from well MW-2 at a concentration of 1.0 milligrams per liter (mg/l), benzene was at 1.29 micrograms per liter (μ g/l), toluene at 1.40 μ g/l, and xylenes at 1.71 μ g/l. In well MW-3, TPH as gasoline was reported at a concentration of 0.14 mg/l, MTBE at 1.37 μ g/l, and tert-Butyl Alcohol (TBA) at 127 μ g/l.

TPH as gasoline was reported in the samples collected from the vapor extraction wells VRW-1 through VRW-9 at concentrations ranging from 0.28 mg/l in VRW-6 to 1.5 mg/l in VRW-5.

Benzene was reported in vapor extraction wells VRW-1, VRW-2, VRW-4, VRW-5, VRW-6, VRW-7, and VRW-8, at concentrations ranging from 1.15 μ g/l in well VRW-6 to 31.1 μ g/l in well VRW-2. Toluene was reported in wells VRW-1, VRW-2, VRW-5, and VRW-8, at concentrations of 0.77 μ g/l, 1.44 μ g/l, 1.50 μ g/l, and 1.14 μ g/l, respectively. Xylenes were reported in samples collected from wells VRW-1 through VRW-9 at concentrations ranging from 0.87 μ g/l (VRW-3) to 8.80 μ g/l (VRW-4). TBA was reported in wells VRM-3, VRW-6, VRW-7, VRW-8, and VRW-9, at concentrations ranging from 28.9 μ g/l (VRW-3) to 58.7 μ g/l (VRW-7).

Monitoring Schedule

The next groundwater sampling was performed in January 2011. A report summarizing the results of the January 2011 monitoring event will be provided after BAI receives and reviews the analytical results.

If you should have any questions regarding this report, please contact Bill Coset at (707) 838-3027.

Sincerely,

David E. Conley, P.G.

Senior Geologist

William H. H. Coset

Project Geologist

cc: Ms. Normita Callison

LIST OF ATTACHMENTS

TABLES

Table 1. Summary of Groundwater Analytical Data for Monitoring Wells

Table 2. Summary of Groundwater Analytical Data for Vapor Extraction Wells

PLATES

Plate 1. Vicinity Map

Plate 2. Site Map

Plate 3. Groundwater Elevations, August 2, 2010

APPENDICES

Appendix A. Monitoring Well Sampling Protocol and Field Reports

Appendix B. Analytical Laboratory Report

TABLES

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	мтве
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(μg/L)
MW-1	10/14/1988	7.99	0.88	1.1	1.1	ND	-	ND	-	-
MW-1	12/29/1989	7.74	1.13	ND	ND	ND	ND	ND	ND (1)	_
MW-1	5/28/1992	7.81	1.06	ND	ND	ND	ND	ND	0.003(2)	_
MW-1	9/3/1992	7.90	0.97	ND	ND	ND	ND	ND	0.12 (2)	_
MW-1	11/24/1992	7.90	0.97	ND	ND	ND	ND	ND	0.017(2)	-
MW-1	3/9/1993	7.38	1.49	ND	ND	ND	ND	ND	ND (1)	_
MW-1	7/21/1993	7.68	1.19	ND	ND	ND	ND	ND	ND (1)	-
MW-1	11/3/1993	7.83	1.04	ND	ND	ND	ND	ND	ND (1)	_
MW-1	2/1/1994	7.30	1.57	ND	ND	ND	ND	ND	ND (1)	_
MW-1	6/2/1994	7.43	1.44	ND	ND	ND	ND	ND	ND (1)	_
MW-1	9/1/1994	7.70	1.17	ND	ND	ND	ND	ND	ND (1)	-
MW-1	12/13/1994	6.90	1.97	ND	ND	ND	ND	ND	_	-
MW-1	3/7/1995	7.30	1.57	0.06	3.8	ND	ND	ND	-	_
MW-1	6/9/1995	7.87	1.00	0.09	12	0.8	0.5	1.3	_	-
MW-1	9/21/1995	7.67	1.20	ND	4.1	ND	ND	ND	_	-
MW-1	12/18/1995	7.15	1.72	ND	ND	ND	ND	ND	-	-
MW-1	2/29/1996	6.74	2.13	0.09	1.4	0.5	ND	0.8	-	-
MW-1	7/15/1996	7.76	1.11		-	_	-	_	-	-
MW-1	1/7/1997	6.80	2.07	0.06	0.6	<0.5	< 0.5	<0.5	_	-
MW-1	7/12/1997	7.67	1.20	-	-	-	-	-	_	-
MW-1	1/26/1998	6.93	1.94	< 0.05	<0.5	<0.5	<0.5	1.1	-	-
MW-1	7/3/1998	7.51	1.36	_	-	_	1-1	-	-	
MW-1	1/13/1999	7.63	1.24	< 0.05	<0.5	<0.5	<0.5	<0.5	-	_
MW-1	9/27/1999	7.77	1.10	_	-	-	-	_	-	_
MW-1	1/28/2000	6.85	2.02	<0.05	<0.5	<0.5	<0.5	<0.5	-	< 5.0
MW-1	5/16/2002	7.45	1.42	0.35	<0.5	<0.5	<0.5	<0.5	-	<1.0
MW-1	6/10/2003	7.32	4.15	<0.05	<0.5	<0.5	<0.5	<0.5	-	-
MW-1	11/19/2003	7.30	4.17	< 0.050	< 0.30	< 0.30	<0.50	< 0.50	- 1	-
MW-1	6/23/2004	7.49	3.98	0.37	<1.0	<1.0	<1.0	<1.0	F_N	_

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	мтве
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(μg/L)
MW-1	12/10/2004	6.27	5.20	<0.050	<0.5	<0.5	<0.5	<0.5	- (g.z.)	(46/2)
MW-1	7/21/2005	7.41	4.06	<0.05	<0.50	<0.50	<0.50	<0.50	_	_
MW-1	1/18/2006	6.28	5.19	<0.05	<0.50	<0.50	<0.50	<0.50	_	_
MW-1	1/26/2007	7.47	4.00	< 0.050	<0.50	<0.50	<0.50	<0.50	_	<1.0
MW-1	6/28/2007	7.53	3.94	<0.050	<0.50	<0.50	<0.50	<0.50	_	<1.0
MW-1	1/31/2008	6.54	4.93	0.1	<0.50	<0.50	<0.50	<0.50	_	<1.0
MW-1	7/1/2008	7.56	3.91	0.056	<0.50	<0.50	<0.50	<0.50	_	<1.0
MW-1	1/28/2009	7.12	4.35	0.10	<0.50	<0.50	<0.50	<0.50	_	<1.0
MW-1	7/22/2009	7.12	3.90	<0.05	<0.50	<0.50	<0.50	<0.50		<1.0
MW-1	2/2/2010	6.58	4.89	<0.05	<0.50	<0.50	<0.50	<0.50		<1.0
			3.92	<0.05	<0.50	<0.50	<0.50		-	
MW-1	8/3/2010	7.55					<0.30	<0.50		<1.0
MW-2	10/14/1988	7.29	0.85	11	23	20	-	16	-	-
MW-2	12/29/1989	6.87	1.27	4	200	6.7	ND	ND	0.22 (1)	-
MW-2	5/28/1992	6.92	1.22	8.9	550	48	ND	13	ND (2)	-
MW-2	9/3/1992	7.26	0.88	2.1	760	6.2	1.8	5.1	0.006(2)	-
MW-2	11/24/1992	7.28	0.86	4.2	370	15	3.4	9.5	ND (2)	-
MW-2	3/9/1993	6.73	1.41	4.3	280	14	3.7	7.1	ND (1)	-
MW-2	7/21/1993	7.02	1.12	3.4	250	9.6	2.5	11	ND(1)	-
MW-2	11/4/1993	7.22	0.92	2.5	230	7.8	2.1	9.9	ND(1)	
MW-2	2/1/1994	6.93	1.21	3.4	240	17	ND	15	ND(1)	-
MW-2	6/2/1994	6.86	1.28	3.0	150	9.8	3.0	10	ND(1)	2 2
MW-2	9/1/1994	7.10	1.04	2.1	120	9.8	2.0	9.6	ND(1)	_
MW-2	12/13/1994	6.58	1.56	2.0	200	10	2.7	11	_	-
MW-2	3/7/1995	6.69	1.45	3.0	500	15	5.8	16	_	_
MW-2	6/9/1995	7.00	1.14	2.1	300	14	5.8	13	_	-
MW-2	9/21/1995	6.91	1.23	1.6	120	9.6	ND	15		_
MW-2	12/18/1995	6.73	1.41	2.8	120	16	5.2	19	_	-
MW-2	2/29/1996	6.36	1.78	1.7	170	15	2.9	17	-	_
MW-2	7/15/1996	7.11	1.03	2.8	160	22	3.5	17	_	_

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	МТВЕ
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(μg/L)
MW-2	1/7/1997	6.40	1.74	3.0	350	25	8.1	24	_	-
MW-2	7/12/1997	6.98	1.16	2.1	55	11	<2.5	18	_	_
MW-2	1/26/1998	6.45	1.69	1.8	310	29	5.0	15	_	-
MW-2	7/3/1998	6.91	1.23	1.9	85	9.3	1.8	17	_	_
MW-2	1/13/1999	7.07	1.07	2.1	48	33	2.0	16	-	-
MW-2	9/27/1999	7.22	0.92	1.5	20	6.8	2.6	11	_	_
MW-2	1/28/2000	6.61	1.53	1.3	22	6.4	1.5	11	_	<5.0
MW-2	5/17/2002	6.95	1.19	3.3	25.4	<5.0	<5.0	<5.0	_	<10
MW-2	6/10/2003	6.71	4.09	1.6	52	2.3	32	9.1	-	_
MW-2	11/19/2003	6.95	3.85	3.7	9.7	<1.1	<1.1	7.5	-	_
MW-2	6/23/2004	6.96	3.84	1.1	6.30	2.36	<1.0	7.41	_	<u></u>
MW-2	12/9/2004	6.54	4.26	3.0	13.0	13.0	<0.5	24	-	_
MW-2	7/22/2005	6.89	3.91	2.7	5.84	<2.5	<2.5	5.81	_	_
MW-2	1/19/2006	6.33	4.47	3.6	15.0	<2.5	<2.5	11.2	_	_
MW-2	1/26/2007	6.99	3.81	0.29	2.65	<2.5	<2.5	3.00	-	< 5.0
MW-2	6/29/2007	7.00	3.80	1.9	6.69	2.44	< 0.50	6.24	-	1.72
MW-2	1/31/2008	6.36	4.44	0.7	1.83	<1.0	<1.0	<1.0	-	<2.0
MW-2	7/1/2008	6.95	3.85	1.4	2.72	2.26	<1.0	4.66	_	2.14
MW-2	1/28/2009	6.76	4.04	0.70	5.31	2.78	< 0.50	5.92	-	<1.0
MW-2	2/2/2010	6.42	4.38	2.2	8.64	<2.5	<2.5	4.53	_	< 5.0
MW-2	8/2/2010	7.06	3.74	1.0	1.29	1.40	<1.0	1.71	_	<2.0
MW-3	10/14/1988	8.25	0.88	3.4	ND	ND	-	2.8	-	_
MW-3	12/29/1989	7.79	1.34	ND	ND	ND	ND	ND	0.205(1)	-
MW-3	5/28/1992	7.83	1.30	ND	0.8	0.5	ND	ND	0.016(2)	-
MW-3	9/3/1992	8.22	0.91	ND	ND	ND	ND	ND	0.033 (2)	_
MW-3	11/24/1992	8.29	0.84	ND	ND	ND	ND	ND	0.011(2)	-
MW-3	3/9/1993	7.30	1.83	0.1	1.8	ND	ND	ND	ND(1)	_
MW-3	7/21/1993	7.87	1.26	ND	ND	ND	ND	ND	ND(1)	_
MW-3	11/4/1993	8.23	0.90	0.07	0.6	0.5	ND	ND	ND(1)	_
MW-3	2/1/1994	7.56	1.57	ND	ND	ND	ND	ND	ND(1)	-
MW-3	6/2/1994	7.46	1.67	0.06	ND	ND	ND	ND	ND(1)	_

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	МТВЕ
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(μg/L)
MW-3	9/1/1994	7.83	1.30	0.07	1.7	0.9	ND	ND	ND(1)	_
MW-3	12/13/1994	7.07	2.06	0.06	1.4	ND	ND	ND	-	_
MW-3	3/8/1995	7.27	1.86	0.06	1.5	ND	ND	ND	-	-
MW-3	6/9/1995	7.79	1.34	0.10	5.7	ND	ND	ND	_	-
MW-3	9/21/1995	7.87	1.26	ND	1.5	ND	ND	ND	-	-
MW-3	12/18/1995	7.30	1.83	ND	1.3	ND	ND	ND	-	_
MW-3	2/29/1996	6.84	2.29	ND	2.1	0.6	ND	0.7	-	-
MW-3	7/15/1996	7.79	1.34	_	_	_	_	_	7-3	_
MW-3	1/7/1997	6.62	2.51	0.05	1.0	< 0.5	<0.5	<0.5		-
MW-3	7/12/1997	7.83	1.30	_	_	<u>-</u>	_	-	_	-
MW-3	1/26/1998	6.60	2.53	< 0.05	0.8	<0.5	<0.5	<0.5	-	-
MW-3	7/3/1998	7.48	1.65	-	-	-	-	-	-	-
MW-3	1/13/1999	7.63	1.50	< 0.05	< 0.5	< 0.5	< 0.5	<0.5	-	-
MW-3	9/27/1999	7.94	1.19	-	_	_	_	-	-	-
MW-3	1/28/2000	7.12	2.01	< 0.05	< 0.5	< 0.5	< 0.5	<0.5	-	< 5.0
MW-3	6/5/2003	7.53	4.23	< 0.05	< 0.5	< 0.5	< 0.5	<0.5	-	-
MW-3	11/19/2003	7.83	3.93	0.16	< 0.54	< 0.54	< 0.55	<1.6	-	-
MW-3	6/23/2004	7.65	4.11	< 0.05	<1.0	<1.0	<1.0	<1.0	-	-
MW-3	12/8/2004	7.53	4.23	< 0.050	< 0.5	<0.5	<0.5	<0.5	_	-
MW-3	7/20/2005	7.62	4.14	< 0.10	<1.0	<1.0	<1.0	<1.0	-	-
MW-3	1/19/2006	6.76	5.00	< 0.05	< 0.50	< 0.50	< 0.50	0.71	_	-
MW-3	1/25/2007	7.54	4.22	0.15	< 0.50	< 0.50	< 0.50	< 0.50	-	<1.0
MW-3	6/29/2007	7.70	4.06	0.075	0	< 0.50	< 0.50	<0.50	-	(A)
MW-3	2/1/2008	6.87	4.89	0.72	< 0.50	< 0.50	< 0.50	< 0.50	_	(A)
MW-3	7/2/2008	7.79	3.97	0.081	< 0.50	< 0.50	< 0.50	< 0.50	-	(B)
MW-3	1/29/2009	7.53	4.23	0.15	< 0.50	< 0.50	< 0.50	< 0.50	_	<1.0
MW-3	7/23/2009	7.80	3.96	0.18	< 0.50	< 0.50	<0.50	< 0.50	-	1.00 (C)
MW-3	2/1/2010	6.96	4.80	0.25	< 0.50	< 0.50	<0.50	< 0.50	_	1.30 (D)
MW-3	8/2/2010	7.76	4.00	0.14	< 0.50	< 0.50	< 0.50	< 0.50		1.37(E)

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	МТВЕ
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(μg/L)
MW-4	10/14/1988	8.33	0.74	4.6	1.2	ND	-	2.2	_	-
MW-4	12/29/1989	8.08	0.99	0.5	0.7	ND	ND	ND	ND (1)	-
MW-4	5/28/1992	8.19	0.88	0.27	8.8	1	ND	3.2	0.030(2)	_
MW-4	9/3/1992	8.37	0.70	0.20	4.5	4.4	ND	1.9	0.022 (2)	-
MW-4	11/24/1992	8.28	0.79	0.14	3.2	3.2	ND	1.0	0.005 (2)	-
MW-4	3/9/1993	7.98	1.09	0.47	10	ND	ND	2.5	ND (1)	-
MW-4	7/21/1993	8.17	0.90	0.28	4.4	5.9	ND	ND	ND(1)	_
MW-4	11/4/1993	8.14	0.93	0.08	1.3	1.6	ND	ND	ND(1)	-
MW-4	2/1/1994	7.79	1.28	0.08	ND	ND	ND	ND	ND(1)	-
MW-4	6/2/1994	7.53	1.54	0.30	3.1	2.9	ND	0.8	ND(1)	-
MW-4	9/1/1994	7.69	1.38	0.12	1.6	ND	ND	ND	ND(1)	-
MW-4	12/13/1994	6.70	2.37	ND	ND	ND	ND	ND	_	-
MW-4	3/8/1995	6.83	2.24	0.09	ND	ND	ND	ND	_	
MW-4	6/9/1995	7.66	1.41	0.19	ND	ND	ND	ND	-	19-2
MW-4	9/21/1995	7.93	1.14	0.09	ND	ND	ND	ND	-	-
MW-4	12/18/1995	6.98	2.09	-	_	-	-	-	_	10-10
MW-4	2/29/1996	6.54	2.53	0.14	1.6	1.0	ND	0.6	-	-
MW-4	7/15/1996	7.74	1.33	_	_	_	-	_	_	-
MW-4	1/7/1997	6.46	2.61	0.09	1.0	0.5	< 0.5	<0.5	-	-
MW-4	7/12/1997	7.82	1.25	_	-	_	-	_	_	-
MW-4	1/26/1998	6.67	2.40	0.09	1.1	0.8	< 0.5	<0.5	-	-
MW-4	7/3/1998	7.45	1.62	_	_	-	_	-	-	-
MW-4	1/13/1999	7.51	1.56	0.12	1.1	0.62	< 0.5	0.57		_
MW-4	9/27/1999	7.88	1.19	-	-	-	-	-	-	-
MW-4*	1/28/2000	7.02	2.05	0.072	<0.5	< 0.5	< 0.5	< 0.5	_	<5.0
MW-5	10/14/1988	8.04	0.89	3.2	ND	ND	_	ND	-	_
MW-5	12/29/1989	7.40	1.53	ND	ND	ND	ND	ND	ND (1)	-
MW-5	5/28/1992	7.53	1.40	ND	ND	ND	ND	ND	0.008 (2)	_
MW-5	9/3/1992	8.02	0.91	ND	ND	ND	ND	ND	0.034 (2)	_

	Depth to	Depth to	Groundwater	TPH as						
Well	Groundwater	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(mg/L)	(μg/L)
MW-5	11/24/1992	7.75	1.18	ND	ND	ND	ND	ND	0.011(2)	
MW-5	3/9/1993	6.91	2.02	ND	ND	ND	ND	ND	ND (1)	-
MW-5	7/21/1993	7.57	1.36	ND	ND	ND	ND	ND	ND(1)	-
MW-5	11/4/1993	7.77	1.16	ND	ND	ND	ND	ND	ND(1)	-
MW-5	2/1/1994	7.05	1.88	ND	ND	ND	ND	ND	ND(1)	-
MW-5	6/2/1994	7.18	1.75	ND	ND	ND	ND	ND	ND(1)	-
MW-5	9/1/1994	7.53	1.40	ND	ND	ND	ND	ND	_	_
MW-5	3/8/1995	6.67	2.26	ND	ND	ND	ND	ND	-	-
MW-5	6/9/1995	7.33	1.60	ND	ND	ND	ND	ND	-	_
MW-5	9/21/1995	7.67	1.26	ND	ND	ND	ND	ND	_	-
MW-5	12/18/1995	6.62	2.31	-	-	-	-	-	-	_
MW-5	2/29/1996	6.16	2.77	ND	ND	ND	ND	ND	-	-
MW-5	7/15/1996	7.47	1.46	-	-	-	-	_	_	-
MW-5	1/7/1997	6.11	2.82	< 0.05	< 0.5	< 0.5	< 0.5	<0.5	-	-
MW-5	7/12/1997	7.61	1.32	-	-	-	-	_	_	-
MW-5	1/26/1998	6.17	2.76	< 0.05	<0.5	< 0.5	< 0.5	< 0.5	_	-
MW-5	7/3/1998	7.23	1.70	-	-	9-0	-	-	_	-
MW-5	1/13/1999	7.27	1.66	< 0.05	<0.5	<0.5	< 0.5	< 0.5		_
MW-5	9/27/1999	7.76	1.17	-	-	_	_	_	_	_
MW-5*	1/28/2000	7.17	1.76	< 0.05	<0.5	<0.5	<0.5	<0.5	-	< 5.0
MW-6	12/29/1989	5.02	1.11	1.1	5.4	4.5	ND	ND	ND (1)	-
MW-6	3/9/1993	5.10	1.03	2.3	2.3	2.8	ND	3.1	ND (1)	_
MW-6	7/21/1993	5.23	0.90	0.59	ND	7.6	ND	ND	ND(1)	-
MW-6	11/4/1993	5.25	0.88	1.5	ND	1.2	ND	0.7	ND(1)	-
MW-6	2/1/1994	5.05	1.08	1.9	2.5	3.9	1.6	1.1	ND(1)	_
MW-6	6/2/1994	4.49	1.64	1.3	ND	1	ND	ND	ND(1)	_
MW-6	9/1/1994	4.53	1.60	2.2	ND	1.7	ND	ND	ND(1)	_
MW-6	12/13/1994	4.27	1.86	0.66 (3)	ND	ND	ND	ND	-	_
MW-6	3/8/1995	3.37	2.76	1.0 (3)	ND	ND	ND	ND	_	_
MW-6	6/9/1995	4.40	1.73	1.5	ND	3.3	ND	ND	_	_
MW-6	9/21/1995	4.69	1.44	0.28	ND	ND	ND	ND	_	_
MW-6*	12/18/1995	4.42	1.71	_	_	_	-	-	_	_

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	мтве
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(μg/L)
MW-7	12/29/1989	8.35	-3.32	ND	ND	ND	ND	ND	0.235 (1)	_
MW-7	3/9/1993	13.60	-8.57	ND	ND	ND	ND	ND	ND (1)	_
MW-7	7/21/1993	12.59	-7.56	ND	ND	ND	ND	ND	ND(1)	_
MW-7	11/4/1993	9.84	-4.81	ND	ND	ND	ND	ND	ND(1)	_
MW-7	2/1/1994	10.38	-5.35	ND	ND	ND	ND	ND	ND(1)	-
MW-7	6/2/1994	10.10	-5.07	ND	ND	ND	ND	ND	ND(1)	-
MW-7	9/1/1994	9.63	-4.60	ND	ND	ND	ND	ND	ND(1)	-
MW-7	12/13/1994	11.27	-6.24	ND	ND	ND	ND	ND	-	-
MW-7	3/7/1995	9.68	-4.65	ND	ND	ND	ND	ND	-	-
MW-7	6/9/1995	9.37	-4.34	ND	ND	ND	ND	ND	_	1000
MW-7	9/21/1995	9.43	-4.40	ND	ND	ND	ND	ND	_	_
MW-7	12/18/1995	13.28	-8.25	-	-		-	_	_	
MW-7	2/29/1996	11.70	-6.67	ND	ND	ND	ND	ND	_	-
MW-7	7/15/1996	11.12	-6.09	-		9-8	_	_	_	-
MW-7		14.35	-9.32	< 0.05	< 0.5	<0.5	< 0.5	<0.5	_	1-1
MW-7	7/12/1997	15.12	-10.09	-	_	2-2	_		_	_
MW-7	1/26/1998	15.28	-10.25	< 0.05	< 0.5	<0.5	< 0.5	<0.5	-	(-)
MW-7	7/3/1998	14.10	-9.07	_	_	_	-	_	-	-
MW-7	1/13/1999	14.55	-9.52	< 0.05	< 0.5	<0.5	< 0.5	< 0.5	-	-
MW-7	9/27/1999	14.03	-9.00	_	_	_	_	_	-	-
MW-7*	1/28/2000	7.47	-2.44	< 0.05	<0.5	<0.5	<0.5	<0.5	-	<5.0

Pacific Supply Company, 1735 24th Street, Oakland, California

Notes:

MTBE = methyl tertiary butyl ether. TPH = total petroleum hydrocarbons.

(1)=Organic Lead, (2)=Total Lead, and (3)=chromatographic peak array does not match gasoline standard.

ND = not detected at laboratory reporting limit. <= less than given laboratory reporting limit.

 $\mu g/L = micrograms per liter.$ mg/L = milligrams per liter. – = not requested.

MSL = mean seal level.

Groundwater elevations prior to 2003 based on the following well casing elevations in feet above MSL:

MW-1 (8.87'), MW-2 (8.14'), MW-3 (9.13'), MW-4 (9.07'), MW-5 (8.93'), MW-6 (6.13') and MW-7 (5.03').

New survey data was obtained on June 23, 2003 by Phelps and Associates Land Surveyors.

June 2003 water levels were measured on June 5, 2003.

June 2004 water levels were measured on June 22, 2004.

December 2004 water levels were measured on December 8, 2004.

- = Removed from sampling program.
- (A) = concentrations of tert-Butyl alcohol (TBA) reported at 120 μg/l.
- (B) = concentrations of tert-Butyl alcohol (TBA) reported at 151 μg/l.
- (C) = concentrations of tert-Butyl alcohol (TBA) reported at 122 μg/l.
- (D) = concentrations of tert-Butyl alcohol (TBA) reported at 135 μg/l.
- (E) = concentrations of tert-Butyl alcohol (TBA) reported at 127 μg/l.

Sample ID	Depth to Groundwater Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-1	11/3/1993		-	-	3	1600	19	1.1	16		-
VRW-1	6/10/2003	7.31	11.18	3.87	0.44	5.9	< 0.5	< 0.5	1.9	- 1	
VRW-1	11/19/2003	7.33	11.18	3.85	1.2	19	< 0.54	< 0.55	6.3	-	
VRW-I	6/22/2004	7.32	11.18	3.86	0.32	3.23	<1.0	<1.0	3.36	-	-
VRW-1	12/9/2004	6.93	11.18	4.25	0.32	8.0	<3	<3	3.7		
VRW-1	7/22/2005	7.25	11.18	3.93	0.69	5.35	1.27	< 0.50	3.66	-	
VRW-1	1/19/2006	6.63	11.18	4.55	0.53	6.98	1.41	< 0.50	3.18	-	
VRW-1	1/25/2007	7.34	11.18	3.84	0.32	260	0.97	< 0.50	2.43	1.31	
VRW-1	6/28/2007	7.30	11.18	3.88	0.17	2.19	0.76	< 0.50	1.83	1.26	
VRW-1	1/31/2008	6.67	11.18	4.51	0.77	20.5	3.75	< 0.50	6.82	2.45	
VRW-1	7/1/2008	7.35	11.18	3.83	0.75	11.8	3.73	< 0.50	6.41	1.13	(B)
VRW-1	1/28/2009	7.14	11.18	4.04	< 0.050	1.12	1.26	< 0.50	1.56	<1.0	
VRW-1	7/22/2009	7.40	11.18	3.78	0.38	1.06	0.69	< 0.50	1.11	1.33	(E)
VRW-1	2/2/2010	6.70	11.18	4.48	0.90	8.95	2.42	<1.0	4.76	<2.0	
VRW-1	8/2/2010	7.41	11.18	3.77	0.37	1.34	0.77	< 0.50	0.96	<1.0	
VRW-2	11/4/1993	_	-	-	7.2	3,300	600	2.4	870	-	-
VRW-2	5/17/2002	_	-	11-11	2.8	471	<10	<10	<10	<20	<10 to <20
VRW-2	6/9/2003	6.87	11.08	4.21	0.47	38	2.8	<1.0	<1.0	-	2
VRW-2	11/19/2003	7.00	11.08	4.08	1.3	51	< 0.54	< 0.55	4.0	-	-
VRW-2	6/25/2004	7.00	11.08	4.08	0.24	274	4.10	4.11	8.22		-
VRW-2	12/9/2004	6.45	11.08	4.63	< 0.050	9.6	4.2	2.5	4.3	-	
VRW-2	7/21/2005	6.93	11.08	4.15	2.1	102	1.43	0.84	3.81	-	25
VRW-2	1/18/2006	5.83	11.08	5.25	3.8	280	<2.5	3.81	7.54	-	
VRW-2	1/25/2007	6.94	11.08	4.14	1.0	62.3	<2.5	<2.5	3.56	<5.0	-
VRW-2	6/28/2007	7.02	11.08	4.06	0.45	41.0	<2.5	<2.5	3.83	<5.0	(a)
VRW-2	1/31/2008	6	11.08	5.08	1.4	80.1	2.31	1.25	3.57	1.87	
VRW-2	7/1/2008	7.15	11.08	3.93	1.5	73.2	2.04	<1.0	4.52	2.15	
VRW-2	1/28/2009	6.71	11.08	4.37	0.54	46.2	2.10	<0.50	3.76	<1.0	-
VRW-2	7/22/2009	7.10	11.08	3.98	1.1	12.7	1.06	<1.0	2.79	2.38	· · · · · · · · · · · · · · · · · · ·
VRW-2	2/2/2010	6.06	11.08	5.02	1.9	62.8	<2.5	<2.5	<2.79	<5.0	•
VRW-2	8/3/2010	7.04	11.08	4.04	1.4	31.1	1.44	<1.0	-		-
VICW-Z	8/3/2010	7.04	11.08	4.04	1.4	31.1	1.44	<1.0	2.42	<2.0	

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

Sample ID	Depth to Groundwater Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-3	11/4/1993	-	-	-	5.7	120	41	1.1	380	-	
VRW-3	5/17/2002	-	-	-	0.42	10.9	< 0.5	< 0.5	1.07	<1.0	<0.50 to <1.0
VRW-3	6/9/2003	7.41	11.62	4.21	0.061	4.8	< 0.5	< 0.5	< 0.5	-	
VRW-3	11/19/2003	7.48	11.62	4.14	0.16	1.7	< 0.54	< 0.55	2.7	-	
VRW-3	6/25/2004	7.58	11.62	4.04	0.12	2.00	< 0.50	< 0.50	1.00	-	
VRW-3	12/10/2004	6.34	11.62	5.28	0.22	27	3.7	1.0	3.1		
VRW-3	7/22/2005	7.50	11.62	4.12	0.11	<1.0	<1.0	<1.0	2.02		
VRW-3	1/18/2006	6.37	11.62	5.25	0.18	230	< 0.50	< 0.50	1.46		
VRW-3	1/26/2007	7.50	11.62	4.12	0.071	1.68	< 0.50	< 0.50	< 0.50	<1.0	
VRW-3	6/28/2007	7.60	11.62	4.02	< 0.050	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	
VRW-3	1/31/2008	6.50	11.62	5.12	< 0.050	1.01	< 0.50	< 0.50	< 0.50	<1.0	
VRW-3	7/1/2008	7.66	11.62	3.96	0.10	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	
VRW-3	1/28/2009	7.19	11.62	4.43	< 0.050	< 0.50	< 0.50	< 0.50	2.26	<1.0	
VRW-3	7/22/2009	7.64	11.62	3.98	0.26	< 0.50	< 0.50	< 0.50	1.16	<1.0	
VRW-3	2/2/2010	6.45	11.62	5.17	0.28	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	(L)
VRW-3	8/3/2010	7.63	11.62	3.99	0.29	< 0.50	< 0.50	< 0.50	0.87	<1.0	(P)
VRW-4	11/4/1993	-	_	-	9.0	4,400	900	5.4	990	-	-
VRW-4	5/15/2002	-	-	-	11	4,270	741	512	1,130	<50	<25 to <50
VRW-4	6/5/2003	7.01	11.33	4.32	2.2	1,200	100	12	89	-	-
VRW-4	11/19/2003	7.44	11.33	3.89	1.7	210	2.4	<2.2	36		
VRW-4	6/22/2004	7.20	11.33	4.13	14	4,540	611	739	1,170		-
VRW-4	12/8/2004	6.99	11.33	4.34	2.7	780	68	90	160	-	
VRW-4	7/20/2005	7.12	11.33	4.21	19	3,740	381	480	643	- 1	
VRW-4	1/19/2006	6.29	11.33	5.04	7.8	1,670	196	270	324		
VRW-4	1/26/2007	7.06	11.33	4.27	1.4	163	<25	<25	25.2	<50	
VRW-4	6/28/2007	6.99	11.33	4.34	0.62	60.8	3.81	3.72	18.7	<5.0	
VRW-4	1/31/2008	6.20	11.33	5.13	0.75	26.0	3.21	<2.5	15.6	<5.0	
VRW-4	7/1/2008	7.32	11.33	4.01	0.77	16.8	2.86	< 0.50	13.3	<1.0	
VRW-4	1/29/2009	7.02	11.33	4.31	0.89	45.5	3.16	1.75	13.2	<1.0	
VRW-4	7/22/2009	7.26	11.33	4.07	0.91	16.1	2.42	<1.0	12.4	<2.0	(F)
VRW-4	2/1/2010	6.40	11.33	4.93	2.5	481	26.2	45.2	61.1	<10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
VRW-4	8/3/2010	7.26	11.33	4.07	1.2	19.3	<5.0	<5.0	8.80	<10	<5.0 to <100

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS
Pacific Supply Company, 1735 24th Street, Oakland, California

Sample ID	Depth to Groundwater Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-5	11/4/1993	-	-	-	0.90	68	33	2.5	32	-	-
VRW-5	5/16/2002	-	-	_	0.87	44.3	<5.0	< 5.0	<5.0	<10	<5.0 to <10
VRW-5	6/9/2003	7.33	11.56	4.23	0.93	90	<1.0	14	0.16	-	-
VRW-5	11/19/2003	7.53	11.56	4.03	2.9	250	<1.1	24	41	- 1	
VRW-5	6/23/2004	7.47	11.56	4.09	0.72	40.5	<1.0	1.17	8.04	-	
VRW-5	12/10/2004	7.11	11.56	4.45	0.72	60	10	<3	33	-	
VRW-5	7/21/2005	7.38	11.56	4.18	1.6	102	3.83	4.62	12.4	-	
VRW-5	1/19/2006	6.29	11.56	5.27	1.8	65.4	<2.5	31.4	33.4		-
VRW-5	1/25/2007	7.40	11.56	4.16	NA	NA	NA	NA	NA	NA	NA
VRW-5	6/29/2007	7.50	11.56	4.06	0.69	35.4	2.55	<2.5	5.62	<5.0	NA
VRW-5	2/1/2008	6.49	11.56	5.07	0.87	33.7	<2.5	15.2	10.5	<5.0	NA
VRW-5	1/28/2009	7.17	11.56	4.39	0.72	110	3.53	5.00	9.00	<1.0	NA
VRW-5	7/23/2009	7.54	11.56	4.02	1.6	11.8	<1.0	<1.0	3.93	<2.0	(G)
VRW-5	8/3/2010	7.50	11.56	4.06	1.5	12.7	1.50	<1.0	3.28	<2.0	<1.0 to <20
VRW-6	11/4/1993	- 1	=	_	0.41	6.6	1.0	ND	31	-	-
VRW-6	5/15/2002	_	_	-	0.73	178	4.58	1.41	6.10	<1.0	<0.50 to <1.0
VRW-6	6/6/2003	7.21	11.43	4.22	< 0.05	<0.5	< 0.5	<0.5	< 0.5	- 1	-
VRW-6	11/19/2003	7.39	11.43	4.04	0.21	13	< 0.54	1.0	2.5	-	-
VRW-6	6/23/2004	7.36	11.43	4.07	0.42	43.4	3.60	1.69	13.0	- 1	-
VRW-6	12/9/2004	6.71	11.43	4.72	0.14	8.0	21	< 0.5	3.6	-	
VRW-6	7/21/2005	7.32	11.43	4.11		18.3	1.13	0.95	5.05	-	
VRW-6	1/19/2006	5.85	11.43	5.58	0.13	3.96	< 0.50	< 0.50	1.25		-
VRW-6	1/25/2007	7.28	11.43	4.15	0.20	13.5	0.72	0.56	2.67	<1.0	-
VRW-6	6/28/2007	7.41	11.43	4.02	0.081	7.37	< 0.50	< 0.50	1.32	<1.0	(A)
VRW-6	2/1/2008	NM	11.43	NM	1.8	212	10.2	8.05	17.7	<2.0	(A)
VRW-6	7/2/2008	7.51	11.43	3.92	0.18	4.80	< 0.50	<0.50	1.72	<1.0	(C)
VRW-6	7/23/2009	NM	11.43	NM	0.21	<0.50	< 0.50	<0.50	< 0.50	<1.0	(H)
VRW-6	2/1/2010	6.65	11.43	4.78	0.32	7.97	< 0.50	< 0.50	1.26	<1.0	(M)
VRW-6	8/2/2010	7.45	11.43	3.98	0.28	1.15	< 0.50	< 0.50	1.03	<1.0	(Q)

Sample ID	Depth to Groundwater Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-7	11/4/1993	-	-	-	0.10	ND	ND	ND	ND	-	
VRW-7	5/16/2002	-	-	-	1.6	28.9	0.980	< 0.50	< 0.50	<1.0	<0.50 to <1.0
VRW-7	6/6/2003	7.47	11.70	4.23	0.36	19	1.3	< 0.5	2.2	-	
VRW-7	11/19/2003	7.78	11.70	3.92	1.1	14	< 0.54	1.7	5.6	-	
VRW-7	6/22/2004	7.61	11.70	4.09	1.3	130	8.06	9.81	15.9	-	
VRW-7	12/9/2004	7.54	11.70	4.16	0.34	28	<3	<3	5.0		
VRW-7	7/21/2005	7.54	11.70	4.16	1.7	48.1	2.76	2.56	6.94		
VRW-7	1/19/2006	6.70	11.70	5.00	1.6	86.8	3.63	6.89	9.04		7.
VRW-7	1/25/2007	7.46	11.70	4.24	NA	NA	NA	NA	NA	NA	NA
VRW-7	6/28/2007	7.62	11.70	4.08	NA	NA	NA	NA	NA	NA	NA
VRW-7	2/1/2008	6.70	11.70	5.00	0.47	21.3	<5.0	<5.0	<5.0	<10	NA
VRW-7	7/2/2008	7.70	11.70	4.00	0.38	2.13	< 0.50	< 0.50	2.60	<1.0	(D)
VRW-7	1/29/2009	7.47	11.70	4.23	0.44	8.67	< 0.50	< 0.50	2.30	<1.0	_/
VRW-7	7/23/2009	7.69	11.70	4.01	0.51	2.87	< 0.50	< 0.50	< 0.50	<1.0	(I)
VRW-7	2/1/2010	6.82	11.70	4.88	0.62	31.6	1.67	2.52	3.18	<2.0	(N)
VRW-7	8/2/2010	7.71	11.70	3.99	0.36	3.82	<1.0	<1.0	1.21	<2.0	(R)
VRW-8	11/4/1993	_	_	_	5.9	460	54	ND	53	-	-
VRW-8	5/16/2002	-	_	-	3.3	248	16.0	<10	<10	<20	<10 to <20
VRW-8	6/6/2003	7.42	11.62	4.20	1.8	70	10	11	6.1	- 1	
VRW-8	11/19/2003	7.85	11.62	3.77	3.6	36	<2.7	<2.7	4.3		
VRW-8	6/23/2004	7.56	11.62	4.06	2.1	115	11.8	<5.0	18.2	-	
VRW-8	12/9/2004	7.41	11.62	4.21	1.3	30	9.0	<3	7.6		
VRW-8	7/21/2005	7.49	11.62	4.13	4.1	24.8	3.44	<2.5	7.34	-	
VRW-8	1/19/2006	6.73	11.62	4.89	4.8	18.1	4.26	<2.5	8.30		
VRW-8	1/25/2007	7.41	11.62	4.21	1.3	10.7	<2.5	<2.5	6.70	<5.0	
VRW-8	6/29/2007	7.60	11.62	4.02	0.64	4.76	<2.5	<2.5	3.85	<5.0	
VRW-8	2/1/2008	6.85	11.62	4.77	3.1	15.1	2.9	<2.5	9.77	<5.0	
VRW-8	7/2/2008	7.73	11.62	3.89	2.0	11.6	<2.5	<2.5	<2.5	<5.0	
VRW-8	1/29/2009	7.43	11.62	4.19	0.84	7.73	2.04	< 0.50	7.52	<1.0	
VRW-8	7/23/2009	7.71	11.62	3.91	2.4	22.2	<1.0	<1.0	8.18	<2.0	(J)
VRW-8	2/1/2010	6.90	11.62	4.72	1.8	4.03	2.02	<1.0	5.08	<2.0	(0)
VRW-8	8/2/2010	7.65	11.62	3.97	0.95	3.04	1.14	<1.0	2.76	<2.0	(S)

Sample ID	Depth to Groundwater Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-9	11/4/1993	_	-	-	0.47	36	18	ND	1.0	-	
VRW-9	5/16/2002	-	_	-	0.080	0.990	2.00	< 0.50	5.93	<1.0	<0.50 to <1.0
VRW-9	6/6/2003	7.67	11.87	4.20	0.58	10	4.4	4.9	< 0.50	-	
VRW-9	11/19/2003	8.01	11.87	3.86	0.86	<1.1	<1.1	<1.1	5.5	-	
VRW-9	6/22/2004	7.76	11.87	4.11	0.61	<1.0	1.35	<1.0	5.55	-	
VRW-9	12/9/2004	7.51	11.87	4.36	0.57	8.8	10	< 0.5	5.5	2	
VRW-9	7/21/2005	7.71	11.87	4.16	0.66	<1.0	<1.0	<1.0	2.83		
VRW-9	1/19/2006	6.94	11.87	4.93	1.0	2.04	<1.0	<1.0	4.91	-	
VRW-9	1/26/2007	7.65	11.87	4.22	0.52	<1.0	1.01	<1.0	3.53	<2.0	
VRW-9	6/29/2007	7.81	11.87	4.06	0.38	< 0.50	< 0.50	< 0.50	2.27	<1.0	•
VRW-9	7/2/2008	7.93	11.87	3.94	0.53	< 0.50	< 0.50	< 0.50	1.85	<1.0	
VRW-9	1/29/2009	7.60	11.87	4.27	0.24	1.53	1.03	< 0.50	4.04	<1.0	
VRW-9	7/23/2009	7.91	11.87	3.96	0.80	< 0.50	< 0.50	< 0.50	1.60	<1.0	(K)
VRW-9	2/1/2010	7.01	11.87	4.86	0.95	1.71	1.13	<1.0	4.00	<2.0	
VRW-9	8/3/2010	7.86	11.87	4.01	0.68	<1.0	<1.0	<1.0	1.57	<2.0	(T)

Pacific Supply Company, 1735 24th Street, Oakland, California

Notes:

mg/L = milligrams per liter

μg/L = micrograms per liter

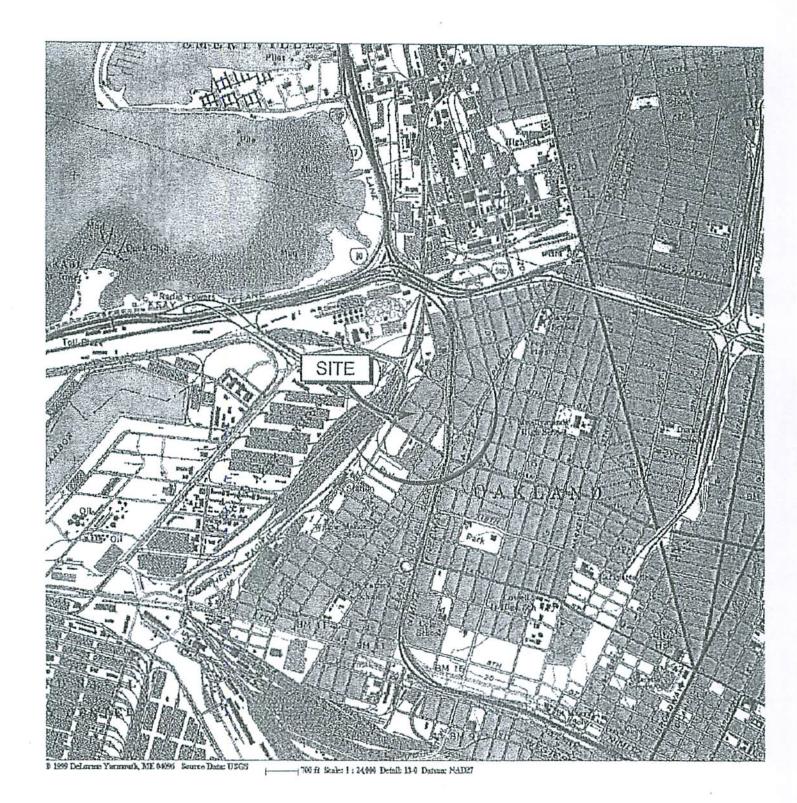
na = not analyzed.

ND = not detected above laboratory reporting limits.

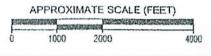
MSL = Mean Sea Level

< = less than the specified laboratory reporting limit

June 2004 groundwater elevations were collected on June 22, 2004.

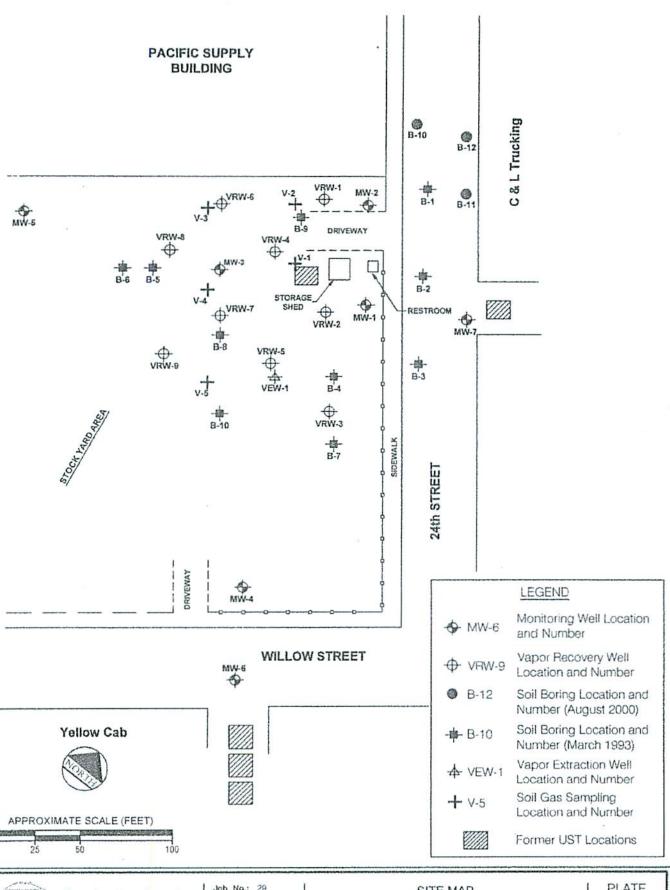

December 2004 groundwater elevations were collected on December 8, 2004.

- (A) = concentrations of tert-Butyl alcohol reported at 51.2 μ g/l.
- (B) = concentrations of tert-Butyl alcohol reported at 53.3 μ g/l.
- (C) = concentrations of tert-Butyl alcohol reported at 54.3 μ g/l.
- (D) = concentrations of tert-Butyl alcohol reported at 90.4 μ g/l.
- (E) = concentrations of tert-Butyl alcohol reported at 42.5 μ g/l.
- (F) = concentrations of tert-Butyl alcohol reported at 33.7 μ g/l.
- (G) = concentrations of tert-Butyl alcohol reported at 35.2 μ g/l.
- (H) = concentrations of tert-Butyl alcohol reported at 28.6 μ g/l.
- (I) = concentrations of tert-Butyl alcohol reported at 89.5 μ g/l.
- (J) = concentrations of tert-Butyl alcohol reported at 62.6 μg/l.
- (K) = concentrations of tert-Butyl alcohol reported at 62.1 μ g/l.
- (L) = concentrations of tert-Butyl alcohol reported at 41.8 μ g/l.
- (M) = concentrations of tert-Butyl alcohol reported at 48.8 μ g/l.
- (N) = concentrations of tert-Butyl alcohol reported at 61.4 μ g/l.
- (O) = concentrations of tert-Butyl alcohol reported at 57.5 μ g/l.
- (P) = concentrations of tert-Butyl alcohol reported at 28.9 μ g/l.
- (Q) = concentrations of tert-Butyl alcohol reported at 57.4 μ g/l.
- (R) = concentrations of tert-Butyl alcohol reported at 58.7 μ g/l.
- (S) = concentrations of tert-Butyl alcohol reported at 52.5 μ g/l.
- (T) = concentrations of tert-Butyl alcohol reported at 50.6 μ g/l.



PLATES

Brunsing Associates, Inc. 5803 Skylane Blvd., Suite A Windsor, California 95492 Tel: (707) 838-3027 Job No.: 029.2


1/8/04

Date:

VICINITY MAP
PACIFIC SUPPLY COMPANY
Oakland, California

PLATE

Swamp

Brunsing Associates, Inc. 5468 Skylane Blvd., Suite 201 Santa Rosa, California 95403 Tet. (707) 838-3027

Job No.: 29

Date:

从时 Appr.:

7/24/03

SITE MAP PACIFIC SUPPLY COMPANY 1734 24th Street Oakland, California

PLATE

3

PACIFIC SUPPLY COMPANY

1734 24th Street

Oakland, California

5468 Skylane Blvd., Suite 201

Santa Rosa, California 95403

Tel: (707) 838-3027

Appr.:

Date:

01/11/2011

APPENDIX A Monitoring Well Sampling Protocol and Field Reports

Groundwater Sampling Protocol

Monitoring Wells

Prior to purging a monitoring well, groundwater levels are measured with a Solinst electric depth measurement device, or an interface probe, in all wells that are to be measured. At sites where petroleum hydrocarbons are possible contaminants, the well is checked for floating product using a clear bailer, a steel tape with water/oil paste, or an interface probe, during the initial sampling round. If floating product is measured during the initial sampling round or noted during subsequent sampling rounds, floating product measurements are continued.

After the water level and floating product measurements are complete, the monitoring well is purged until a minimum of three casing volumes of water are removed, water is relatively clear of sediment, and pH, conductivity, and temperature measurements of the water become relatively stabile. If the well is purged dry, groundwater samples are collected after the water level in the well recovers to at least 80 percent of the original water column measured in the well prior to sampling, or following a maximum recovery period of two hours. The well is purged using a factory-sealed, disposable, polyethylene bailer, a four-inch diameter submersible Grundfos pump, a two-inch diameter ES-40 purge pump, or a peristaltic pump. The purge water is stored on-site in clean, 55-gallon drums.

A groundwater sample is collected from each monitoring well following re-equilibration of the well after purging. The groundwater sample is collected using a factory-sealed disposable, polyethylene bailer with a sampling port, or a factory-sealed Teflon bailer. A factory provided attachment designed for use with volatile organic compounds (VOCs) is attached to the polyethylene bailer sampling port when collecting samples to be analyzed for VOCs. The groundwater sample is transferred from the bailer into sample container(s) that are obtained directly from the analytical laboratory.

The sample container(s) is labeled with a self-adhesive tag. The following information is included on the tag:

- Project number
- Sample number
- Date and time sample is collected
- Initials of sample collector(s).

Individual log sheets are maintained throughout the sampling operations. The following information is recorded:

- Sample number
- Date and time well sampled and purged
- Sampling location
- Types of sampling equipment used
- Name of sampler(s)
- Volume of water purged.

Following collection of the groundwater sample, the sample is immediately stored on blue ice in an appropriate container. A chain-of-custody form is completed with the following information:

- Date the sample was collected
- Sample number and the number of containers
- Analyses required
- Remarks including preservatives added and any special conditions.

The original copy of the chain-of-custody form accompanies the sample containers to a California-certified laboratory. A copy is retained by BAI and placed in company files.

Sampling equipment including thermometers, pH electrodes, and conductivity probes are cleaned both before and after their use at the site. The following cleaning procedures are used:

- Scrub with a potable water and detergent solution or other solutions deemed appropriate using a hard bristle brush
- Rinse with potable water
- Double-rinse with organic-free or deionized water
- Package and seal equipment in plastic bags or other appropriate containers to prevent contact with solvents, dust, or other contaminants.

In addition, the pumps are cleaned by pumping a potable water and detergent solution and deionized water through the system. Cleaning solutions are contained on-site in clean 55-gallon drums.

Domestic and Irrigation Wells

Groundwater samples collected from domestic or irrigation wells are collected from the spigot that is the closest to the well. Prior to collecting the sample, the spigot is allowed to flow for at least 5 minutes to purge the well. The sample is then collected directly into laboratory-supplied containers, sealed, labeled, and stored on blue ice in an appropriate container, as described above. A chain-of-custody form is completed and submitted with the samples to the analytical laboratory.

SCANNED TO 8/4/10

UST ____Yes Fund Site: ____No

FIELD REPORT

		14 (14 (14 (14 (14 (14 (14 (14 (14 (14 (Particle Par
			PAGE _ I _ OF _ IS
JOB NO:	29	PROJECT: Pacific Supply	What shaped
INITIAL:	ED	SUBJECT: GW Monitoring	Total Time:9-0
DATE:	8-2-10	PROJECT PHASE NUMBER:	End. Mileage: 45731
	The second	VEHICLE USED: 2006 Ranger	Beg. Mileage: 4565L
		_	TOTAL MILEAGE: 75
ГІМЕ	DESCRIPTI	ON OF WORK AND CONVERSATION RECORD:	
0755		e @ shop	
	load	1	
0820			
1008	ani	re @ site	
	- `	Tinta ita tili and again and	· t - i 100
		Tocate identify, and open mor	moung weeks
		perform water level measurements	@ mw-1, mw-2, mw-3,
		VAW-1, VAW-2, VAW-3, -4, -5, -6, -7	2, -8, and vrw-9 (2 rounds).
		all wells specializated.	
		Ash in and only	*- A: Q
		Det up and perform grandwa mw-2, mw-3, VRW-6, VRW-7, VRW-8, V	DW-12 and would
		000.1	
	- 6	Store purged groundwater in de	ums + decon supplies
		· · · · · · · · · · · · · · · · · · ·	
	-	Close well covers and caps,	securely
	- 1	lood up equipment	V
		and the separational	
1726		leave site	
1755		arrive a hotel in berkley	
	-	Unload Supplies	
	-	But samples on ice	
		The graphed in the	
1805		Done	
			-
			DRUM COUNT:
			Water = Devlpmt Water =
			Seil = Beeen Water =

WATER LEVELS SHEET VOF_

PROJECT: Pacific Supply

PROJECT NUMBER:

29

INSTRUMENT TYPE: WLP

INITIALS: ED DATE: 8-2-10

WELL NUMBER	DEPTH TO PRODUCT	DISTANCE TO WATER	TIME (24 HOUR)	EQUILIBRATED (CHECK FOR YES)	NOTES
MW-1	-	7.55	1056		
MW-2	-	7.05	1054		
MW-3		7.76	1051		
VRW-1	i ann	7.40	1653		
VRW-2	1	7.04	1055		
VRW-3	-	7.63	1057		
VRW-4	-	7.25	1052		
VRW-5	-	7.50	1050		
VRW-6	1	7.45	1045		
VRW-7	-	7.70	1049		
VRW-8	_	7.64	1047		
VRW-9	-	7.85	1048		
MW-1	-	7.55	1111	V	
MW-2	1	7.06	1108	✓	
MW-3	-	7.76	1105	1	
VRW-1	-	7.41	1107	✓	
VRW-2	,	7.04	1109	J	
VRW-3	ν.	7.63	1113	<i>></i>	
VRW-4	-	7.26	1106	✓ ·	
VRW-5	-	7.50	1102	✓	
VRW-6	-	7.45	1059	J	
VRW-7	-	7.71	1102	✓	
VRW-8	_	7.65	1100	✓	
VRW-9	-	7.86	1101	✓	
				40.4	

WELL SAMPLING SHEET 3

OF

PROJECT: Pacific Supply PROJECT NUMBER: 29										
				31			29			
,			LAST 5 DAYS:		WIND	DATE: 8-2-10				
STARTING	G TIME: /	315	FINISHING	TIME: 1412	2	INITIALS: ED				
CALCULATION OF PURGE VOLUME										
2" WELL	DEPTH:] - D.T.W.		= H20 COLUMN:	X 0.5 =		A L L		
4" WELL	4" WELL DEPTH: 20.00 - D.T.W. 7.06 = H20 COLUMN: 12.94 X 2.0 = 25.88									
THEREFO	RE TOTAL	PURGE GA	ALL <mark>O</mark> NS EQUA	LS	26			N S		
			FIE	LD MEA	SUREMENTS	3				
<u>TIME</u>	GALLONS REMOVED	<u>p H</u>	CONDUCTIVITY	TEMP.		<u>OBSERVATIONS</u>				
/338	9	7.15	3.81 mS	21.5 0€	At. Light	green/brown, no sitt,	odor			
								-		
1349	18	7.24	3.06	21.4	Light green/	yellow, no silt, odo	3.5			
12/4	26	7.19	2.99	213	1. 4.4	/				
1359	26	11:11	L. 19	213	light green	yellow, no silt,	odor			
SAMPLII	NG:	SAMPLE	ANALYSIS: [TPH-Gas, 8	260B (BTEX, petro	oxy & Pb scav)				
		SAN	MPLE TIME: [1400	DID WELL GO	D DRY?				
WATER LEVELS: NOTES:					1					
TIME	D.T.W.									
1410	7.10									

WELL SAMPLING SHEET 4 OF

PROJECT: Pacific Supply PROJECT NUMBER: 29											
WELL#	MW-3	PRECIP. IN	LAST 5 DAYS:	3	WIND	DATE: 8-2-10					
STARTING	G TIME: /	1650	FINISHING	TIME: /7	16	INITIALS: ED					
CALCULAT	CALCULATION OF PURGE VOLUME										
2" WELL	DEPTH:	16.00] - D.T.W.	7.76	= H20 COLUMN:						
4" WELL	DEPTH:] - D.T.W.		= H20 COLUMN:	X 2.0 = / O					
THEREFO	RE TOTAL	PURGE G	ALL <mark>O</mark> NS EQUA	ALS	4.25	–					
			FII	ELD MEA	SUREMENTS	<u>s</u>					
<u>TIME</u>	GALLONS REMOVED	pН	CONDUCTIVITY	TEMP.		OBSERVATIONS					
1656	1.5	7.38	1.77 mS	, 22.2°C	Clear, ye	Unw / greenish tint, odor, no silt					
1700	3	7.28	7.91	22.3	Clear, yellor	w/greenish tint, odor, no silt					
1704	4.15	7.33	7.77	22.8	Clear, yellou	u/greenish fint, odor, no silt					
				-							
SAMPLII	NG:			TPH-Gas, 82	260B (BTEX, petro						
		3Ai	VIPLE TIIVIE.	/165	DID WELL O	O DRY? No					
WATER	LEVELS:	NOTES:	**								
TIME	D.T.W.										
1715	8.15										
			_								
a - 100				9.							

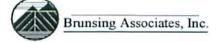
WELL SAMPLING SHEET 5 OF

PROJECT: Pacific Supply PROJECT NUMBER: 29										
WELL# VRW-1 PRECIP. IN LAST 5 DAYS: WIND DATE: 8-2-10										
STARTING	TIME: /	216	FINISHING 7	ΓΙΜΕ: /3/4	L	INITIALS: ED				
1311										
CALCULATION OF PURGE VOLUME G										
2" WELL DEPTH: D.T.W = H20 COLUMN: X 0.5 = I										
4" WELL DEPTH: 20.00 - D.T.W. 7.41 = H20 COLUMN: 12.59 X 2.0 = 25.18										
THEREFO	RE TOTAL	PURGE G	ALLONS EQUA	LS	25.2	5	N S			
			FIE	LD MEA	SUREMEN	<u>T S</u>				
	GALLONS						V.,			
TIME	REMOVED	<u>p H</u>	CONDUCTIVITY	TEMP.		OBSERVATIONS				
1226	8	7.04	10.39 005	20.4 ℃	Light gr	een/ brown, no sitt, odor				
					J /					
1235	16	7.85	16.47	20.3	Dark gre	enlbrown, silt, odor				
Mar. 3										
1244	25	7.16	14.20	20.4	Dark green/	brown, silt, odor				
SAMPLII	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, pet	ro oxy & Pb scav)				
		SAI	MPLE TIME:	1245	DID WELL	GO DRY? NO				
			VII CC TIME.	10013	DID TYLLE					
WATER	LEVELS:	NOTES:								
TIME	D.T.W.									
1310	10.20									
() , (

WELL SAMPLING SHEET 6 OF

PROJECT:	PROJECT: Pacific Supply PROJECT NUMBER: 29									
WELL#	VRW-7	PRECIP. IN	LAST 5 DAYS:		WIND	DATE: 8-2-10				
STARTING	3 TIME:	1555	FINISHING	TIME: 164	<u> </u>	INITIALS: ED				
CALCULAT	TION OF PUR	RGE VOLUI	ME				G			
					1		A			
2" WELL			-		= H20 COLUMN:		L			
4" WELL	DEPTH:	20.00] - D.T.W.	7.71	= H20 COLUMN:	: 12.29 X 2.0 = 24	0 N			
THEREFO	RE TOTAL	PURGE G	ALL <mark>ONS EQUA</mark>	LS	24.5]	S			
			FIE	ELD ME	ASUREMENTS	<u>s</u>				
<u>TIME</u>	GALLONS REMOVED	<u>p H</u>	CONDUCTIVITY	TEMP.		OBSERVATIONS				
1603	8	7.07	12.96 mS	21.0 %	Clear, yellow	of greenish tint, nos	it, odor			
					2 .					
1611	طا	7.14	14.48	20.4	Cloudy ye	ellow green, silt, od	or			
	- 111	-								
1619	24	7.08	14.50	20.6	Cloudy, ye	Mow/green, silt, odo	or			
					/ -					
	-			-						
SAMPLI	NG:	SAMPLE	E AN <mark>ALYSIS: </mark>	TPH-Gas, 8	3260B (BTEX, petro	oxy & Pb scav)				
		SAM	MPLE TIME:	1620	DID WELL GO	O DRY?				
WATER	LEVELS:	NOTES:								
TIME	D.T.W.									
1645	12.80									
										
		<u> </u>								
			_							
		1								

WELL SAMPLING SHEET


OF

	$\overline{}$						
PROJECT:	Pacific Sup	pply				PROJECT NUMBER: 29	
WELL#	VRW-8	PRECIP. IN	LAST 5 DAYS:		WIND	DATE: 8-2-16	
STARTING	3 TIME: /	500	FINISHING	TIME: 154	6	INITIALS: 2D	
CALCULAT	TION OF PUR	RGE VOLUM	ИE			30.	G
							A
2" WELL	DEPTH:		D.T.W.		= H20 COLUM	N: X 0.5 =	L
4" WELL	DEPTH:	20.00] - D.T.W.	7.64	= H20 COLUM	IN: 12.36 X 2.0 = 24.72	0
THEREFO	RE TOTAL	PURGE G	ALL <mark>ONS EQU</mark> A	LS	24.75		N S
			FIE	LD MEA	SUREMEN	<u>TS</u>	
TIME	GALLONS	- 11			_		
TIME	REMOVED	p H	CONDUCTIVITY	TEMP.	01.	<u>OBSERVATIONS</u>	
1508	8	7.00	4.22 mS	249 °C	Clear, y	rellow/green tint, no silt, odor	
1516	17	7	6.20	2112	01	= T + 2 A + 3	
1710	16	7.00	6.20	24.3	Clear, y	ellow greenish tint, no silt,	odor
1524	24.75	7.10	6.25	23.9	Clear, ye	Mow/greenish tint, no silt, ador	-
SAMPLI	NG:	SAMPLE	E ANALYSIS: [TPH-Gas, 8	260B (BTEX, pe	tro oxy & Pb scav)	
		142	MPLE TIME: [1/26	DID WELL	CO DDV2	
			ALCE TIME: [1525	DID WELL	GO DRY? No	
WATER	LEVELS:	NOTES:					
TIME	D.T.W.						
1545	7.65						
		(9					
							E 10
		1					

UST ____Yes Fund Site: ____No

FIELD REPORT

			PAGE	OF
JOB NO:	29	PROJECT: Pacific Supply		
INITIAL:	ED	SUBJECT: GW Monitoring	Total Time:	8.0
DATE:	8-3-10	PROJECT PHASE NUMBER:	End. Mileage:	45805
		VEHICLE USED: 2006	Beg. Mileage:	45731
			TOTAL MILEAGE:	74
TIME I	DESCRIPTIO	N OF WORK AND CONVERSATION RECORD:		
0820	load.	Jup 1		
0835	leav			
0850	anin	e @ site		
		up and perform groundwater sample	ing @, MW-1, VBW	1-2, VRW-3,
	VRW-	-5, VRW-7 and VRW-9.	V	
		re purged groundwater in drum		in area,
	-95	where prier remediation is locate	id.	
	Deci	n sampling supplies		
	Cl	ose well covers and lide secure	ly.	
	Con	nolete COC, label dryms	0	
	(P)	THE COUNTY AND WAR		
	la	ad up equipment and supplies		
1355	A	eaux sito.		
1500	a	nive @ shop		
	-1	Inload equipment + Auxplies		
	- 0	omplete lield looms		
		omplete field forms		
	- As	ubnut samples		
1625	2	ne		
			DRUM COUNT:	
			W 1/ B	
			Water = Devlpmt Water = Decon Water	
			Dog. True	

WELL SAMPLING SHEET q OF

PROJECT:	Pacific Sup	ply				PROJECT NUMBER: 29
WELL# ^	nw-1	PRECIP. IN L	AST 5 DAYS:		WIND	DATE: 8-3-10
STARTING	TIME:]	030	FINISHING	TIME: ////		INITIALS: ED
CALCULAT	ION OF PUR	RGE VOLUM	E			G
2" WELL	DEPTH:	19] - D.T.W.	7.55	= H20 COLUMN:	//, 45 X 0.5 = 5.72 L
4" WELL	DEPTH:	1	- D.T.W.		= H20 COLUMN:	
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	LS	5.75] N s
			FIE	LD MEA	SUREMENTS	<u>i</u>
TIME	GALLONS REMOVED	рΗ	CONDUCTIVITY	TEMP.		OBSERVATIONS
1043	2	7.35	1665 45		Cloudy, ligh	nt great brown, odor, sheen
	(17)	7 10			0) 1 1:1	Y 11
1048	4	7.19	1482	18.0	Cloudy, ligh	+ grey/brown, odor, sheen
1054	5.75	7.10	3.98 mS	18.1	Cloudy, ligh	it grey/brown, odor, sheen
						*
SAMPLII	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, petro	oxy & Pb scav)
		SAM	MPLE TIME:	1055	DID WELL GO	D DRY? No
WATER	LEVELS:	NOTES:		.0		
TIME	D.T.W.					100
1110	7.75					*

WELL SAMPLING SHEET 10 OF

PROJECT:	Pacific Sup	oply				PROJECT NUMBER:	29
WELL#	VRW-2	PRECIP. IN I	AST 5 DAYS:		WIND	DATE: 8-3-10	
は			FINISHING	TIME: //4	8	INITIALS: とり	
CALCULAT	TION OF PUR	RGE VOLUM	E				G
2" WELL	DEPTH:] - D.T.W.		= H20 COLUMN:	/ X 0.5 =	/ L
4" WELL	DEPTH:	20.00] - D.T.W.	7.04	= H20 COLUMN:	12.96 X 2.0 = 25	1577
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	ALS	26		N S
			FIE	LD MEA	SUREMENTS	<u> </u>	
TIME	GALLONS REMOVED	<u>р Н</u>	CONDUCTIVITY	TEMP.		OBSERVATIONS	
1118	9	7.20	5.19 mS	Z1.0 °C	Clear, gree	noh (yellowtist, no	silt, odor
1126	- 18	7.24	3.44	21.6	Clear, green	ish / yellow , tint , n	osilt, odor
1134	26	7.24	3.35	20.9	Clear, green	ish/yellow tint, no	silt, odor
		_			*	D.	
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, petro	oxy & Pb scav)	
		SAN	IPLE TIME:	1135	DID WELL GO	D DRY? No	
WATER	LEVELS:	NOTES:		4			
TIME	D.T.W.				w		
1147	7.27						
			1				
							3 / 73
							4 - 1 / 2

WELL SAMPLING SHEET , OF

PROJECT:	Pacific Sup	pply				PROJECT NUMBER:	29
WELL#	VRW-3	PRECIP. IN	LAST 5 DAYS:		WIND	DATE: 8-3-10	
STARTING	3 TIME:	1200	FINISHING	TIME: /23	/	INITIALS: 🗊	
CALCULA	TION OF PU	RGE VOLUM	1 <u>E</u>				G
2" WELL	DEPTH:] - D.T.W.] = H20 COLUM	MN: X 0.5 =	A L
4" WELL	DEPTH:	20.00] - D.T.W.	7.63] = H20 COLUM	MN: 12.37 X 2.0 =	L 24.75 0
THEREFO	RE TOTAL	PURGE G	ALLONS EQU	ALS	24.7	5	N S
	4		<u>F1</u> 1	ELD ME	ASUREMEN	ITS	
3.7	GALLONS						
TIME	REMOVED	<u>pH</u>	CONDUCTIVITY		21	OBSERVATIONS	18
1206	8	7.62	8.32 mS			dark grey / hrown, s	
1210	10	7.26	9.95	19.5		dark grey/ hrown,	
1214	16	7.32	9.87	19.4	Cloudy,	dock grey brown, s	silt, odor
	24.95					4	
				10			
ļ				gac.			
SAMPLII	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	3260B (BTEX, pe	etro oxy & Pb scav)	
,		SAM	MPLE TIME:	1215	DID WELL	GO DRY? yes	
WATER	LEVELS:	NOTES:					
TIME	D.T.W.						
1230	15.07	well	de a	ilo go	allens		
							O ^c
							1 1 1 1 1

WELL SAMPLING SHEET 12 OF

PROJECT:	Pacific Sup	oply				PROJECT NUMBER: 29
WELL#	VRW-4	PRECIP. IN I	AST 5 DAYS:		WIND .	DATE: 8-3-10
STARTING	G TIME: (0943	FINISHING	TIME: /02	-5	INITIALS: ED
CALCULAT	ION OF PUR	RGE VOLUM	E			G
2" WELL	DEPTH:		=] - D.T.W.	/	= H20 COLUMN	A
4" WELL	DEPTH:	20.00] - D.T.W.	7.25	= H20 COLUMN	
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	LS	25.5	N S
			FIE	LD MEA	SUREMENT	'S
	GALLONS					
TIME	REMOVED	<u>p H</u>	CONDUCTIVITY	TEMP.		OBSERVATIONS
0950	8	7.17	6.43 m5	20.4 °C	Clear yello	w/ greenish tint, no sitt, no odor
					/	
1000	17	7.16	9.67	20.0	Cloudy.	green/brown, silt, odor
1009	25	7.7	9.52	20.0		Transfer of the second
7001	2)	7.12	1.12	26.0	Cloudy	green brown, silt, odor
					· ·	· ·
SAMPLII	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, petro	o oxy & Pb scav)
	2					19
		SAN	IPLE TIME:	1016	DID WELL C	GO DRY? No
WATER	LEVELS:	NOTES:				
TIME	D.T.W.					
1020	13.20					
				(4)		
	0				1.	and the

WELL SAMPLING SHEET 13 OF

PROJECT:	Pacific Sup	pply				PROJECT NUMBER:	29
WELL#	1RW-5	PRECIP. IN I	LAST 5 DAYS:		WIND	DATE: 9-3-10	
STARTING	S TIME:	1245	FINISHING	TIME: 13	26	INITIALS: ED	
CALCULAT	ION OF PU	RGE VOLUM	IE .				G
2" WELL	DEPTH:] - D.T.W.	/	= H20 COLUN	MN: X 0.5 =	A L
4" WELL	DEPTH:	20.00] - D.T.W.	7.50	= H20 COLUN	MN: 12.50 X 2.0 =	
THEREFO	RE TOTAL	PURGE GA	ALLONS EQU	ALS	25		N S
			<u>F1</u>	ELD MEA	ASUREMEN	T S	
TIME	GALLONS REMOVED	рН	CONDUCTIVITY	TEMP.		<u>OBSERVATIONS</u>	
1252	8	7.12	4.63 m	19.7°C	Clear, g	reenish/yellow tint,	light silt, odor
1300	16	6.92	4.78	19-1	Clear, gre	enish/yellow tint, 1	ight silt, oder
1369	25	6.99	4.61	19.3	Clear, gree	nish/yellow, light sil	t, oder
SAMPLIN	NG:		ANALYSIS:	TPH-Gas, 8		etro oxy & Pb scav) GO DRY?	
WATER	LEVELS:	NOTES:					
TIME	D.T.W.						
1325	7.56						

WELL SAMPLING SHEET 14 OF

PROJECT:	Pacific Su	pply					PROJECT NUMBER: 29	9	
WELL# \	AW-6	PRECIP. IN I	LAST 5 DAYS:		WIND		DATE: 8-2-10		
STARTING	3 TIME:	1135	FINISHING	TIME: 121	8		INITIALS: ED		
CALCULAT	TION OF PU	RGE VOLUM	IE						G
2" WELL	DEPTH:	/] - D.T.W.	/	= H20	COLUMN:	/ X 0.5 = /		A L
4" WELL	DEPTH:	20] - D.T.W.	7.45	= H20	COLUMN:	12.55 X 2.0 = 25.		O
THEREFO	RE TOTAL	PURGE GA	ALL <mark>ONS EQUA</mark>	LS	[25			N S
			FIE	LD MEA	SURE	MENTS	1		
TIME	GALLONS REMOVED	рН	COMPLICTIVITY	TEMP			000000000000000000000000000000000000000		
and the same of th			CONDUCTIVITY	TEMP.	0.1	C 26	OBSERVATIONS		
1142	8	7.04	7.64 mS	20-6 °C	Clou	dy, dar	K brown, silty, organis	c odor	
11. 2				100	2006		2 102		
1150	حا	7.09	10.99	20.1	Cloud	dy, dark	< brown, silty, odor		
1159	25	7.06	10.79	20.1	Clou	dy, dar	K brown, silty, odor		
	E-					-			
SAMPLII	NG:	SAMPLE	: ANALYSIS:	TPH-Gas, 8	260B (BT	EX, petro	oxy & Pb scav)		
		SAN	MPLE TIME:	1700	DID	WELL GO	D DRY? N₀		
WATER	LEVELS:	NOTES:							
TIME	D.T.W.								
1215	16.82								
						-3			
					20,000	9			

WELL SAMPLING SHEET IS OF 15

PROJECT:	Pacific Sup	oply				PROJECT NUMBER: 29	
WELL#	VRW-9	PRECIP. IN L	AST 5 DAYS:		WIND	DATE: 8-3-10	
STARTING	TIME:	0900	FINISHING	TIME: 093	8	INITIALS: ED	
CALCULAT	ION OF PU	RGE VOLUM	<u>E</u>				G
2" WELL	DEPTH:	_/] - D.T.W.		= H20 COLUMN:	X 0.5 =	A L
4" WELL	DEPTH:	20.00] - D.T.W.	7.85	= H20 COLUMN:	12.15 X 2.0 = 24.3	0
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	LS	24.25]	N S
			<u>F18</u>	LD MEA	SUREMENTS	<u>3</u>	
<u>TIME</u>	GALLONS REMOVED	<u>p H</u>	CONDUCTIVITY	TEMP.		<u>OBSERVATIONS</u>	
0912	8	7.29	6.78 m5	219°C	Clear, yell	owlgreenish tint, no silt, odos	٢
0920	16	7.54	6.76	20.6	Clear, yellow	of greenish tint, no silt, odor	
0929	24.25	7.30	6.72	22.2	Clear. yellow	J greenish tint, no silt, odor	
						3	
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	260B (BTEX, petro	oxy & Pb scav)	
r ²		SAM	MPLE TIME:	0930	DID WELL GO	D DRY? No	
WATER	LEVELS:	NOTES:					
TIME	D.T.W.						
0937	7.96						
						*	
	<i>y</i> :						
			-				

APPENDIX B Analytical Laboratory Report

Laboratory Report Project Overview

A 12/A-6 2010

SCANNED

91US 13

Laboratory:

Bace Analytical, Windsor, CA

Lab Report Number:

5563

Project Name:

1735 24TH ST.

Work Order Number:

029

Control Sheet Number:

NA

Report Summary

Labreport	Sampid	Labsampid	Mtrx	QC	Anmcode	Exmcode	Logdate	Extdate	Anadate	Lablotctl	Run Sub
5563	MW-1	5563-1	W	CS	8260FAB	SW5030B	08/03/201	08/09/201	08/09/201	20100809	7
							0	0	0		
5563	MW-1	5563-1	W	CS	CATPH-G	SW5030B	08/03/201		08/09/201	08092010	6
			1972				0	0	0	90	
5563	MW-2	5563-2	W	CS	8260FAB	SW5030B	08/02/201	08/09/201	08/09/201	20100809	10
5563	MW-2	5563-2	W	CS	CATPH-G	CIMEDSOR	0	0	0	00000010	~
5565	10100-2	5505-2	VV	CS	CATPH-G	SW5030B	08/02/201	08/09/201	08/09/201	08092010	7
5563	MW-3	5563-3	W	cs	8260FAB	SW5030B	08/02/201	08/09/201		20100809	11
		0000	**		02001712	01100000	0	0	0	2010000	3.00
5563	MW-3	5563-3	W	CS	CATPH-G	SW5030B	08/02/201	08/09/201	08/09/201	08092010	3
							0	0	0		
5563	VRW-1	5563-4	W	CS	8260FAB	SW5030B	08/02/201	08/09/201	08/09/201	20100809	12
							0	0	0		
5563	VRW-1	5563-4	W	CS	CATPH-G	SW5030B	08/02/201	08/09/201	08/09/201	08092010	8
							0	0	0		
5563	VRW-2	5563-5	W	CS	8260FAB	SW5030B	08/03/201	08/09/201		20100809	13
EECO	V/D/M/ 2	EEC3 E	10/	00	CATRLO	CIMEDOOD	0	0	0	00000010	0
5563	VRW-2	5563-5	W	CS	CATPH-G	SW5030B	08/03/201	08/09/201	08/09/201	08092010	9
5563	VRW-3	5563-6	W	CS	8260FAB	SW5030B	08/03/201	08/09/201	08/09/201	20100809	14
0000	******	0000		00	02001715	CHICOGO	0	0	0	2010000	17
5563	VRW-3	5563-6	W	CS	CATPH-G	SW5030B	08/03/201	08/09/201		08092010	10
							0	0	0		
5563	VRW-4	5563-7	W	CS	8260FAB	SW5030B	08/03/201	08/09/201	08/09/201	20100809	15
							0	0	0		
5563	VRW-4	5563-7	W	CS	CATPH-G	SW5030B	08/03/201	08/09/201	08/09/201	08092010	11
							0	0	0		
5563	VRW-5	5563-8	W	CS	8260FAB	SW5030B	08/03/201	08/09/201	08/09/201	20100809	16
	VDIA/ 5	5500.0	144	00	0470110	CIMEDOND	0	0	0	22222212	
5563	VRW-5	5563-8	W	CS	CATPH-G	SW5030B	08/03/201	08/09/201	08/09/201	08092010	12
5563	VRW-6	5563-9	w	CS	8260FAB	SW5030B	08/02/201	0 08/09/201	0 08/09/201	20100809	17
5505	VIVV-0	3303-3	**	00	02001 AD	34430305	00/02/201	00/09/201	00/09/201	20100009	17
5563	VRW-6	5563-9	w	CS	CATPH-G	SW5030B	08/02/201	08/09/201		08092010	13
15555A(1,000 20 0 0 0 0 0	17.7.7.7	45,8		-1111/111		0	0	0		
5563	VRW-7	5563-10	W	CS	8260FAB	SW5030B	08/02/201	08/09/201	08/09/201	20100809	18
							0	0	0		
5563	VRW-7	5563-10	W	CS	CATPH-G	SW5030B	08/02/201	08/09/201	08/09/201	08092010	14

Report Summary

Labreport	Sampid	Labsampid	Mtrx	QC	Anmcode	Exmcode	Logdate	Extdate	Anadate	Lablotctl	Run Sub
							0	0	0		
5563	VRW-8	5563-11	W	CS	8260FAB	SW5030B	08/02/201	08/09/201	08/09/201	20100809	19
							0	0	0		
5563	VRW-8	5563-11	W	CS	CATPH-G	SW5030B	08/02/201	08/09/201	08/09/201	08092010	15
							0	0	0		
5563	VRW-9	5563-12	W	CS	8260FAB	SW5030B	08/03/201	08/09/201	08/09/201	20100809	20
							0	0	0		
5563	VRW-9	5563-12	W	CS	CATPH-G	SW5030B	08/03/201	08/09/201	08/09/201	08092010	16
							0	0	0		
		5563MB	W	LB1	8260FAB	SW5030B	11	08/09/201	08/09/201	20100809	3
								0	0		
		5563MB	W	LB1	CATPH-G	SW5030B	11	08/09/201	08/09/201	08092010	1
								0	0		
		5563MS	W	MS	8260FAB	SW5030B	11	08/09/201	08/09/201	20100809	8
								0	0		
		5563MS	W	MS	1 CATPH-G	SW5030B	11	08/09/201	08/09/201	08092010	4
								0	0		
		5563SD	W	SD1	8260FAB	SW5030B	11	08/09/201	08/09/201	20100809	9
								0	0		
		5563SD	W	SD1	CATPH-G	SW5030B	11	08/09/201	08/09/201	08092010	5
								0	0		

Project Name: Project No:	1735 24TH ST. 029		Analys Metho Prep N	d: 82	DCs by GC/MS F 60FAB V5030B	uel Additive	es Plus I	BTEX
Field ID:	MW-1		Lab Sa	amp ID:	5563-1			
Descr/Location:	MW-1		Rec'd	Date:	08/04/2010			
Sample Date:	08/03/2010		Prep D	ate:	08/09/2010			
Sample Time:	1055				08/09/2010			
Matrix:	Water		QC Ba		20100809			
Basis:	Not Filtered		Notes:					
Analyte		Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1
Ethyl tert-butyl e	ther (ETBE)	0.30	1.0	PQL		ND	UG/L	1
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1
Di-isopropyl ethe	er (DIPE)	0.37	1.0	PQL		ND	UG/L	1
tert-Butyl alcoho	I (TBA)	2.4	10.	PQL		ND	UG/L	1
1,2-Dichloroetha	ne	0.30	0.50	PQL		ND	UG/L	1
1,2-Dibromoetha	ane	0.30	0.50	PQL		ND	UG/L	1
Benzene		0.27	0.50	PQL		ND	UG/L	1
Toluene		0.25	0.50	PQL		ND	UG/L	1
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1
Xylenes		0.25	0.50	PQL		ND	UG/L	1
	ND INTERNAL STAN	DARD RECOV						
4-Bromofluorobe	enzene		86-118	SLSA		112%		
Toluene-d8			88-110	SLSA		106%		
Dibromofluorome	ethane		86-118	SLSA		103%		

Approved by: William 18 Goth

Lab Report No.: 5563 Date: 08/10/2010

Project Name: 1735 24TH ST. Analysis: VOCs by GC/MS Fuel Additives Plus BTEX

Project No: 029 Method: 8260FAB

Prep Meth: SW5030B

Field ID: MW-2 Descr/Location: MW-2

Sample Date: 08/02/2010 Sample Time: 1400 Matrix: Water

Dibromofluoromethane

Not Filtered

Basis:

Lab Samp ID: 5563-2
Rec'd Date: 08/04/2010
Prep Date: 08/09/2010
Analysis Date: 08/09/2010
QC Batch: 20100809

Page: 2

Notes:

Analyte	Det Limit	Rep Limit	i	Note	Result	Units	Pvc Dil	
Methyl-tert-butyl ether (MTBE)	0.76	2.0	PQL	DX	ND	UG/L	2	
Ethyl tert-butyl ether (ETBE)	0.60	2.0	PQL		ND	UG/L	2	
tert-Amyl methyl ether (TAME)	0.52	2.0	PQL		ND	UG/L	2	
Di-isopropyl ether (DIPE)	0.74	2.0	PQL		ND	UG/L	2	
tert-Butyl alcohol (TBA)	4.8	20.	PQL		ND	UG/L	2	
1,2-Dichloroethane	0.60	1.0	PQL		ND	UG/L	2	
1,2-Dibromoethane	0.60	1.0	PQL		ND	UG/L	2	
Benzene	0.54	1.0	PQL		1.29	UG/L	2	
Toluene	0.50	1.0	PQL		1.40	UG/L	2	
Ethylbenzene	0.50	1.0	PQL		ND	UG/L	2	
Xylenes	0.50	1.0	PQL		1.71	UG/L	2	
SURROGATE AND INTERNAL STA	NDARD RECOV	ERIES:						
4-Bromofluorobenzene		86-118	SLSA		107%			1
Toluene-d8		88-110	SLSA		108%			1

86-118 SLSA

DX: Value < lowest standard (MQL), but > than MDL

Approved by: William & Potty

Date: 8/10/10

101%

Page: 3

Lab Report No.: 5563 Date: 08/10/2010

Project Name: 1735 24TH ST. Analysis: VOCs by GC/MS Fuel Additives Plus BTEX Project No: 029 Method: 8260FAB Prep Meth: SW5030B Field ID: MW-3 Lab Samp ID: 5563-3 Descr/Location: MW-3 Rec'd Date: 08/04/2010 Sample Date: 08/02/2010 Prep Date: 08/09/2010 Sample Time: 1705 Analysis Date: 08/09/2010 Matrix: Water QC Batch: 20100809 Basis: Not Filtered Notes: Analyte Det Limit Rep Limit Note Result Units Pvc Dil Methyl-tert-butyl ether (MTBE) 0.38 1.0 PQL 1.37 UG/L 1 Ethyl tert-butyl ether (ETBE) 0.30 1.0 PQL ND UG/L 1 tert-Amyl methyl ether (TAME) 0.26 1.0 PQL ND UG/L 1 Di-isopropyl ether (DIPE) 0.37 PQL 1.0 ND UG/L 1 tert-Butyl alcohol (TBA) 2.4 10. PQL 127. UG/L 1 1,2-Dichloroethane 0.30 0.50 PQL ND UG/L 1 1,2-Dibromoethane 0.50 0.30 PQL ND UG/L 1 Benzene 0.27 0.50 PQL ND UG/L 1 Toluene 0.25 0.50 PQL ND UG/L 1 Ethylbenzene 0.25 0.50 PQL ND UG/L 1 **Xylenes** 0.25 0.50 PQL ND UG/L 1 SURROGATE AND INTERNAL STANDARD RECOVERIES: 4-Bromofluorobenzene 86-118 SLSA 112% 1 Toluene-d8 88-110 SLSA 106% 1 Dibromofluoromethane 86-118 SLSA 100%

Approved by: William & Poto

Date: \$ /10/10

Lab Report No.: 5563 Date: 08/10/2010

563 Date: 08/10/2010 Page: 4

Project Name: Project No:	1735 24TH ST. 029		Analys Metho Prep N	d: 82	OCs by GC/MS F 260FAB W5030B	uel Additive	es Plus I	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-1 VRW-1 08/02/2010 1245 Water Not Filtered		Rec'd Prep D	Date: Date: sis Date: stch:	5563-4 08/04/2010 08/09/2010 08/09/2010 20100809				
Analyte		Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1	
Ethyl tert-butyl et	her (ETBE)	0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ethe	r (DIPE)	0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcohol	(TBA)	2.4	10.	PQL		ND	UG/L	1	
1,2-Dichloroetha	ne	0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoetha	ne	0.30	0.50	PQL		ND	UG/L	1	
Benzene		0.27	0.50	PQL		1.34	UG/L	1	
Toluene		0.25	0.50	PQL		0.77	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		0.96	UG/L	1	
SURROGATE Al 4-Bromofluorobe	ND INTERNAL STAN nzene	DARD RECOV	ERIES: 86-118	SLSA		111%			
Toluene-d8			88-110	SLSA		108%			
Dibromofluorome	ethane		86-118	SLSA		102%			

Approved by: al relian & Got Date: 8/10/10

Project Name: Project No:	1735 24TH ST. 029		Analys Method Prep M	d: 82	OCs by GC/MS F 260FAB W5030B	uel Additive	es Plus I	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-2 VRW-2 08/03/2010 1135 Water Not Filtered		Rec'd I Prep D	Date: late: is Date:	5563-5 08/04/2010 08/09/2010 08/09/2010 20100809				
Analyte		Det Limit	Rep Limit	:	Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.76	2.0	PQL	DX	ND	UG/L	2	
Ethyl tert-butyl eth	her (ETBE)	0.60	2.0	PQL		ND	UG/L	2	
tert-Amyl methyl	ether (TAME)	0.52	2.0	PQL		ND	UG/L	2	
Di-isopropyl ethe	r (DIPE)	0.74	2.0	PQL		ND	UG/L	2	
tert-Butyl alcohol	(TBA)	4.8	20.	PQL		ND	UG/L	2	
1,2-Dichloroethar	ne	0.60	1.0	PQL		ND	UG/L	2	
1,2-Dibromoetha	ne	0.60	1.0	PQL		ND	UG/L	2	
Benzene		0.54	1.0	PQL		31.1	UG/L	2	
Toluene		0.50	1.0	PQL		1.44	UG/L	2	
Ethylbenzene		0.50	1.0	PQL		ND	UG/L	2	
Xylenes		0.50	1.0	PQL		242	UG/L	2	
SURROGATE AN 4-Bromofluorobe	ND INTERNAL STA	NDARD RECOV	ERIES: 86-118	SLSA		112%			
Toluene-d8			88-110	SLSA		106%			
Dibromofluorome	thane		86-118	SLSA		100%			
DX: Value < lowe	est standard (MQL),	but > than MDL							

Approved by: William & Poty

Project Name: Project No:	1735 24TH ST. 029		Analys Method Prep M	d: 82	DCs by GC/MS Fu 60FAB N5030B	uel Additive	es Plus I	ВТЕХ	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-3 VRW-3 08/03/2010 1215 Water Not Filtered		Rec'd Prep D	Date: late: is Date: tch:	5563-6 08/04/2010 08/09/2010 08/09/2010 20100809				
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1	
Ethyl tert-butyl et	ther (ETBE)	0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ethe	er (DIPE)	0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcoho	I (TBA)	2.4	10.	PQL		28.9	UG/L	1	
1,2-Dichloroetha	ne	0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoetha	nne	0.30	0.50	PQL		ND	UG/L	1	
Benzene		0.27	0.50	PQL		ND	UG/L	1	
Toluene		0.25	0.50	PQL		ND	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		0.87	UG/L	1	
SURROGATE A 4-Bromofluorobe	ND INTERNAL STAN enzene	DARD RECOV	ERIES: 86-118	SLSA		112%			-
Toluene-d8			88-110	SLSA		108%			1
Dibromofluorome	ethane		86-118	SLSA		102%			1

approved by: William of Poty

Project Name: Project No:	1735 24TH ST. 029		Analys Method Prep M	d: 82	OCs by GC/MS F 260FAB W5030B	uel Additive	es Plus I	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-4 VRW-4 08/03/2010 1010 Water Not Filtered		Rec'd I Prep D	Date: ate: is Date:	5563-7 08/04/2010 08/09/2010 08/09/2010 20100809				
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	3.8	10.	PQL		ND	UG/L	10	
Ethyl tert-butyl eti	her (ETBE)	3.0	10.	PQL		ND	UG/L	10	
tert-Amyl methyl	ether (TAME)	2.6	10.	PQL		ND	UG/L	10	
Di-isopropyl ethe	r (DIPE)	3.7	10.	PQL		ND	UG/L	10	
tert-Butyl alcohol	(TBA)	24.	100.	PQL		ND	UG/L	10	
1,2-Dichloroethar	ne	3.0	5.0	PQL		ND	UG/L	10	
1,2-Dibromoetha	ne	3.0	5.0	PQL		ND	UG/L	10	
Benzene		2.7	5.0	PQL		19.3	UG/L	10	
Toluene		2.5	5.0	PQL	DX	ND	UG/L	10	
Ethylbenzene		2.5	5.0	PQL		ND	UG/L	10	
Xylenes		2.5	5.0	PQL		8.80	UG/L	10	
SURROGATE AN 4-Bromofluorobe	ND INTERNAL STAN nzene	DARD RECOV	ERIES: 86-118	SLSA	ģ	112%			
Toluene-d8			88-110	SLSA		107%			
Dibromofluorome	thane		86-118	SLSA		99%			
DX: Value < lowe	est standard (MQL), b	ut > than MDL							

Approved by: William H Got Date: 8/10/10

Project Name: 1735 24TH ST. Project No: 029		Analysis: VOCs by GC/MS Fuel Additives Plus BTEX Method: 8260FAB Prep Meth: SW5030B						
Field ID: VRW-5 Descr/Location: VRW-5 Sample Date: 08/03/2010 Sample Time: 1310 Matrix: Water Basis: Not Filtered		Rec'd I Prep D	Date: ate: is Date:	5563-8 08/04/2010 08/09/2010 08/09/2010 20100809				
Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Methyl-tert-butyl ether (MTBE)	0.76	2.0	PQL	DX	ND	UG/L	2	
Ethyl tert-butyl ether (ETBE)	0.60	2.0	PQL		ND	UG/L	2	
tert-Amyl methyl ether (TAME)	0.52	2.0	PQL		ND	UG/L	2	
Di-isopropyl ether (DIPE)	0.74	2.0	PQL		ND	UG/L	2	
tert-Butyl alcohol (TBA)	4.8	20.	PQL		ND	UG/L	2	
1,2-Dichloroethane	0.60	1.0	PQL		ND	UG/L	2	
1,2-Dibromoethane	0.60	1.0	PQL		ND	UG/L	2	
Benzene	0.54	1.0	PQL		127	UG/L	2	
Toluene	0.50	1.0	PQL		1.50	UG/L	2	
Ethylbenzene	0.50	1.0	PQL		ND	UG/L	2	
Xylenes	0.50	1.0	PQL		3.28	UG/L	2	
SURROGATE AND INTERNAL STANI 4-Bromofluorobenzene	OARD RECOV	ERIES: 86-118	SLSA		112%			
Toluene-d8		88-110	SLSA		108%			
Dibromofluoromethane		86-118	SLSA		97%			

Approved by: William & Gato Dai

Project Name: Project No:	1735 24TH ST. 029		Analys Metho Prep M	d: 82	DCs by GC/MS Fo 60FAB W5030B	uel Additive	es Plus I	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-6 VRW-6 08/02/2010 1200 Water Not Filtered		Rec'd Prep D	Date: Date: sis Date: stch:	5563-9 08/04/2010 08/09/2010 08/09/2010 20100809				
Analyte		Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1	
Ethyl tert-butyl e		0.30	1.0	PQL		ND	UG/L	1	
tert-Amyl methyl	ether (TAME)	0.26	1.0	PQL		ND	UG/L	1	
Di-isopropyl ethe	er (DIPE)	0.37	1.0	PQL		ND	UG/L	1	
tert-Butyl alcoho	I (TBA)	2.4	10.	PQL		57.4	UG/L	1	
1,2-Dichloroetha	ne	0.30	0.50	PQL		ND	UG/L	1	
1,2-Dibromoetha	ane	0.30	0.50	PQL		ND	UG/L	1	
Benzene		0.27	0.50	PQL		1.15	UG/L	1	
Toluene		0.25	0.50	PQL		ND	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		1.03	UG/L	1	
SURROGATE A 4-Bromofluorobe	ND INTERNAL STAN enzene	IDARD RECOV	'ERIES: 86-118	SLSA		112%			
Toluene-d8			88-110	SLSA		108%			
Dibromofluorome	ethane		86-118	SLSA		102%			

Approved by: William & Pots

Lab Report No.: 5563 Date: 08/10/2010

Page: 10

Project Name: 1735 24TH ST.

029

Analysis:

Method:

VOCs by GC/MS Fuel Additives Plus BTEX 8260FAB

Prep Meth: SW5030B

Field ID:

Project No:

VRW-7

Descr/Location:

VRW-7

Sample Date: Sample Time: 08/02/2010 1620

Matrix:

Water

Lab Samp ID: 5563-10

Rec'd Date:

08/04/2010

Prep Date:

08/09/2010

Analysis Date: 08/09/2010 QC Batch:

20100809

Basis: Not Filtered		Notes:					
Analyte	Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil
Methyl-tert-butyl ether (MTBE)	0.76	2.0	PQL		ND	UG/L	2
Ethyl tert-butyl ether (ETBE)	0.60	2.0	PQL		ND	UG/L	2
tert-Amyl methyl ether (TAME)	0.52	2.0	PQL		ND	UG/L	2
Di-isopropyl ether (DIPE)	0.74	2.0	PQL		ND	UG/L	2
tert-Butyl alcohol (TBA)	4.8	20.	PQL		58.7	UG/L	2
1,2-Dichloroethane	0.60	1.0	PQL		ND	UG/L	2
1,2-Dibromoethane	0.60	1.0	PQL		ND	UG/L	2
Benzene	0.54	1.0	PQL		3.82	UG/L	2
Toluene	0.50	1.0	PQL		ND	UG/L	2
Ethylbenzene	0.50	1.0	PQL		ND	UG/L	2
Xylenes	0.50	1.0	PQL		1.21	UG/L	2
SURROGATE AND INTERNAL STA	NDARD RECOV	ERIES:	2000 4200		0500000000000		
4-Bromofluorobenzene		86-118	SLSA		113%		1
Toluene-d8		88-110	SLSA		108%		
Dibromofluoromethane		86-118	SLSA		100%		1

William & Gots

							2 00	3
Project Name: Project No:	1735 24TH ST. 029		Analys Method Prep M	d: 82	OCs by GC/MS Fuel A 60FAB W5030B	Additive	es Plus E	зтех
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-8 VRW-8 08/02/2010 1525 Water Not Filtered		Rec'd I Prep D	Date: ate: is Date:	5563-11 08/04/2010 08/09/2010 08/09/2010 20100809			
Analyte		Det Limit	Rep Limit		Note F	Result	Units	Pvc Dil
Methyl-tert-butyl	ether (MTBE)	0.76	2.0	PQL		ND	UG/L	2
Ethyl tert-butyl et	her (ETBE)	0.60	2.0	PQL		ND	UG/L	2
tert-Amyl methyl	ether (TAME)	0.52	2.0	PQL		ND	UG/L	2
Di-isopropyl ethe	r (DIPE)	0.74	2.0	PQL		ND	UG/L	2
tert-Butyl alcohol	(TBA)	4.8	20.	PQL		525	UG/L	2
1,2-Dichloroetha	ne	0.60	1.0	PQL		ND	UG/L	2
1,2-Dibromoetha	ne	0.60	1.0	PQL		ND	UG/L	2
Benzene		0.54	1.0	PQL		3.04	UG/L	2
Toluene		0.50	1.0	PQL		1.14	UG/L	2
Ethylbenzene		0.50	1.0	PQL		ND	UG/L	2
Xylenes		0.50	1.0	PQL		276	UG/L	2
SURROGATE A 4-Bromofluorobe	ND INTERNAL STAM	IDARD RECOV	ERIES: 86-118	SLSA	1	11%		
Toluene-d8			88-110	SLSA	1	08%		

86-118 SLSA

Approved by: William & Poty

Dibromofluoromethane

Date: 8/10/10

101%

Project Name: Project No:	1735 24TH ST. 029		Analys Method Prep M	d: 82	DCs by GC/MS Ft 60FAB N5030B	uel Additive	es Plus I	ЗТЕХ	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	VRW-9 VRW-9 08/03/2010 0930 Water Not Filtered		Rec'd Prep D	Date: Date: Date: is Date: tch:	5563-12 08/04/2010 08/09/2010 08/09/2010 20100809		2		
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Methyl-tert-butyl	ether (MTBE)	0.76	2.0	PQL		ND	UG/L	2	
Ethyl tert-butyl et	her (ETBE)	0.60	2.0	PQL		ND	UG/L	2	
tert-Amyl methyl	ether (TAME)	0.52	2.0	PQL		ND	UG/L	2	
Di-isopropyl ethe	r (DIPE)	0.74	2.0	PQL		ND	UG/L	2	
tert-Butyl alcohol	(TBA)	4.8	20.	PQL		50.6	UG/L	2	
1,2-Dichloroetha	ne	0.60	1.0	PQL		ND	UG/L	2	
1,2-Dibromoetha	ne	0.60	1.0	PQL		ND	UG/L	2	
Benzene		0.54	1.0	PQL		ND	UG/L	2	
Toluene		0.50	1.0	PQL		ND	UG/L	2	
Ethylbenzene		0.50	1.0	PQL		ND	UG/L	2	
Xylenes		0.50	1.0	PQL		1.57	UG/L	2	
SURROGATE Al 4-Bromofluorobe	ND INTERNAL STANI nzene	DARD RECOV	ERIES: 86-118	SLSA	,	112%			1
Toluene-d8			88-110	SLSA		103%			1
Dibromofluorome	ethane		86-118	SLSA	a .	99%			1

Approved by: Alselvang & Golff Date: 8/10/10

Project Name: 1735 24TH ST. Analysis: CA LUFT Method for Gasoline Range Organics Project No: 029 Method: CATPH-G Prep Meth: SW5030B MW-1 Field ID: Lab Samp ID: 5563-1 Descr/Location: MW-1 Rec'd Date: 08/04/2010 Sample Date: 08/03/2010 Prep Date: 08/09/2010 Sample Time: 1055 Analysis Date: 08/09/2010 Matrix: Water QC Batch: 08092010 Basis: Not Filtered Notes: **Det Limit** Rep Limit Note Units Pvc Dil Analyte Result 0.05 Gasoline Range Organics (C5-C12) 0.04 **PQL** ND MG/L 1 SURROGATE AND INTERNAL STANDARD RECOVERIES:

65-135 SLSA

Approved by: William & Poty

4-Bromofluorobenzene

81%

Project Name: 1735 24TH ST.

Project No:

029

Analysis:

CA LUFT Method for Gasoline Range Organics

Method: CATPH-G

Prep Meth: SW5030B

Field ID: Descr/Location:

MW-2 MW-2

Lab Samp ID: 5563-2 Rec'd Date:

08/04/2010

Sample Date:

08/02/2010

Prep Date:

08/09/2010

Sample Time: Matrix:

1400 Water

Analysis Date: 08/09/2010 QC Batch:

08092010

Basis:

Not Filtered

Notes:

Analyte Gasoline Range Organics (C5-C12) Det Limit 0.040

Rep Limit 0.100 PQL Note Units Pvc Dil Result 1.0 MG/L 2

SURROGATE AND INTERNAL STANDARD RECOVERIES:

4-Bromofluorobenzene

65-135 SLSA

90%

William & Pots Approved by:

Project Name: 1735 24TH ST. Analysis: CA LUFT Method for Gasoline Range Organics Project No: 029 Method: CATPH-G Prep Meth: SW5030B Field ID: MW-3 Lab Samp ID: 5563-3 Descr/Location: MW-3 Rec'd Date: 08/04/2010 Sample Date: 08/02/2010 Prep Date: 08/09/2010 Sample Time: 1705 Analysis Date: 08/09/2010 Matrix: Water QC Batch: 08092010 Basis: Not Filtered Notes: Det Limit Rep Limit Note Units Analyte Result Pvc Dil 0.04 0.05 PQL MG/L Gasoline Range Organics (C5-C12) 0.14 1

65-135 SLSA

83%

SURROGATE AND INTERNAL STANDARD RECOVERIES:

4-Bromofluorobenzene

Approved by: William & Got Date: 8/10/10

Lab Report No.: 5563 Date: 08/10/2010

Project Name: Project No:	1735 24TH ST. 029	5	Analys Method	d: C/	A LUFT Method f ATPH-G	for Gasoline	Range	Organics	à
			Prep M	leth: S\	N5030B				
Field ID:	VRW-1		Lab Sa	mp ID:	5563-4				
Descr/Location:	VRW-1		Rec'd I		08/04/2010				
Sample Date:	08/02/2010		Prep D	ate:	08/09/2010				
Sample Time:	1245		Analys	is Date:	08/09/2010				
Matrix:	Water		QC Ba	tch:	08092010				
Basis:	Not Filtered		Notes:						
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Gasoline Range	Organics (C5-C1)	2) 0.04	0.05	PQL		0.37	MG/L	1	
SURROGATE A	ND INTERNAL S	TANDARD RECOV	/ERIES:						
4-Bromofluorobe	nzene		65-135	SLSA		99%			

Page: 16

Project Name:

1735 24TH ST.

029

Analysis:

CA LUFT Method for Gasoline Range Organics

Method:

CATPH-G

Prep Meth: SW5030B

Field ID:

Matrix:

Basis:

Project No:

VRW-2

VRW-2

Sample Date: Sample Time:

Descr/Location:

08/03/2010 1135

Water

Not Filtered

Lab Samp ID: 5563-5

Rec'd Date: Prep Date:

08/04/2010 08/09/2010

Analysis Date: 08/09/2010 QC Batch: 08092010

Notes:

Note Units Pvc Dil Det Limit Rep Limit Result Analyte 0.040 0.100 PQL 1.4 MG/L 2 Gasoline Range Organics (C5-C12)

SURROGATE AND INTERNAL STANDARD RECOVERIES:

105% 65-135 SLSA 4-Bromofluorobenzene

William & Pots

Project Name: Project No:	1735 24TH ST. 029		•	A LUFT Method ATPH-G W5030B	for Gasoline	Range	Organics
Field ID:	VRW-3		Lab Samp ID:	5563-6			
Descr/Location:	VRW-3		Rec'd Date:	08/04/2010			
Sample Date:	08/03/2010		Prep Date:	08/09/2010			
Sample Time:	1215		Analysis Date	: 08/09/2010			
Matrix:	Water		QC Batch:	08092010			
Basis:	Not Filtered		Notes:				
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline Range	Organics (C5-C12)	0.04	0.05 PQL		0.29	MG/L	1

65-135 SLSA

Approved by: Al selvan of Gold

SURROGATE AND INTERNAL STANDARD RECOVERIES:

4-Bromofluorobenzene

Date: 8/10/10

82%

Project Name: 1735 24TH ST. Analysis: CA LUFT Method for Gasoline Range Organics Project No: 029 Method: CATPH-G Prep Meth: SW5030B Field ID: VRW-4 Lab Samp ID: 5563-7 Descr/Location: VRW-4 Rec'd Date: 08/04/2010 Sample Date: Prep Date: 08/03/2010 08/09/2010 Sample Time: 1010 Analysis Date: 08/09/2010 Matrix: QC Batch: Water 08092010 Basis: Not Filtered Notes: Analyte **Det Limit** Rep Limit Note Result Units Pvc Dil Gasoline Range Organics (C5-C12) 0.100 0.250 **PQL** 1.2 MG/L 5

65-135 SLSA

Approved by: William & Potty

SURROGATE AND INTERNAL STANDARD RECOVERIES:

4-Bromofluorobenzene

89%

4-Bromofluorobenzene

Lab Report No.: 5563 Date: 08/10/2010

SURROGATE AND INTERNAL STANDARD RECOVERIES:

Page: 20

120%

Project Name: 1735 24TH ST. Analysis: CA LUFT Method for Gasoline Range Organics Project No: 029 Method: CATPH-G Prep Meth: SW5030B Field ID: VRW-5 Lab Samp ID: 5563-8 Descr/Location: VRW-5 Rec'd Date: 08/04/2010 Sample Date: 08/03/2010 Prep Date: 08/09/2010 Sample Time: 1310 Analysis Date: 08/09/2010 Matrix: Water QC Batch: 08092010 Basis: Not Filtered Notes: Det Limit Rep Limit Note Pvc Dil Analyte Result Units 0.100 PQL Gasoline Range Organics (C5-C12) 0.040 1.5 MG/L 2

65-135 SLSA

William 18

Lab Report No.: 5563 Date: 08/10/2010

Page: 21

Project Name:

1735 24TH ST.

Project No:

029

Analysis:

CA LUFT Method for Gasoline Range Organics

Method:

CATPH-G

Prep Meth: SW5030B

Field ID:

VRW-6

Descr/Location: Sample Date:

VRW-6 08/02/2010

Sample Time:

1200

Matrix: Basis:

Water

Not Filtered

Lab Samp ID: 5563-9

Rec'd Date:

08/04/2010 08/09/2010

Prep Date: Analysis Date: 08/09/2010

QC Batch:

08092010

Notes:

Analyte Det Limit Rep Limit Note Units Pvc Dil Result Gasoline Range Organics (C5-C12) 0.04 0.05 PQL 0.28 MG/L 1

SURROGATE AND INTERNAL STANDARD RECOVERIES:

4-Bromofluorobenzene

65-135 SLSA

83%

Approved by: William & Pots

Lab Report No.: 5563 Date: 08/10/2010

Analysis: CA LUFT Method for Gasoline Range Organics

Project Name: Project No:

1735 24TH ST.

029

Method:

CATPH-G Prep Meth: SW5030B

Field ID:

VRW-7

Descr/Location: Sample Date:

VRW-7 08/02/2010

Sample Time:

1620

Matrix: Basis:

Water Not Filtered Lab Samp ID: 5563-10

Rec'd Date:

08/04/2010

Prep Date:

08/09/2010

Analysis Date: 08/09/2010 QC Batch:

08092010

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Gasoline Range Organics (C5-C12)	0.04	0.05	PQL		0.36	MG/L	1

4-Bromofluorobenzene

65-135 SLSA

77%

Page: 22

Project Name: 1735 24TH ST. Analysis: CA LUFT Method for Gasoline Range Organics Project No: 029 Method: CATPH-G Prep Meth: SW5030B Field ID: VRW-8 Lab Samp ID: 5563-11 Descr/Location: VRW-8 Rec'd Date: 08/04/2010 Sample Date: 08/02/2010 Prep Date: 08/09/2010 Sample Time: 1525 Analysis Date: 08/09/2010 Matrix: QC Batch: Water 08092010 Basis: Not Filtered Notes: Note Analyte Det Limit Rep Limit Pvc Dil Result Units Gasoline Range Organics (C5-C12) 0.040 0.100 PQL 0.95 MG/L 2 SURROGATE AND INTERNAL STANDARD RECOVERIES:

65-135 SLSA

Approved by: William & Patr

4-Bromofluorobenzene

Date: 8/10/10

88%

Page: 24

81%

Lab Report No.: 5563 Date: 08/10/2010

4-Bromofluorobenzene

Project Name: 1735 24TH ST. Analysis: CA LUFT Method for Gasoline Range Organics Project No: 029 Method: CATPH-G Prep Meth: SW5030B Field ID: VRW-9 Lab Samp ID: 5563-12 Descr/Location: VRW-9 Rec'd Date: 08/04/2010 Sample Date: 08/03/2010 Prep Date: 08/09/2010 Sample Time: 0930 Analysis Date: 08/09/2010 Matrix: QC Batch: Water 08092010 Basis: Not Filtered Notes: Det Limit Rep Limit Note Result Units Pvc Dil Analyte Gasoline Range Organics (C5-C12) 0.020 0.050 PQL 0.68 MG/L 1 SURROGATE AND INTERNAL STANDARD RECOVERIES:

65-135 SLSA

Approved by: Uselvan & Poto Date: 8/10/10

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 5563 Date: 08/10/2010

CA LUFT Method for Gasoline Range Analysis:

QC Batch:

08092010

Matrix:

Method:

Water

CATPH-G

Lab Samp ID: 5563MB

Analysis Date: 08/09/2010

Prep Meth: SW5030B

Prep Date: 08/09/2010

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit	Note	Result	Units	Pvc Dil						
Gasoline Range Organics (C5-C12)	0.020	0.050 PQL		ND	MG/L	1						
SUPPOCATE AND INTERNAL STANDARD RECOVERIES:												

4-Bromofluorobenzene

65-135 SLSA

87%

Page: 25

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Lab Report No.: 5563 Date: 08/10/2010

Page: 26

QC Batch: 08092010 Matrix:

Water

Lab Samp ID: 5563MS

Basis:

Not Filtered

Project Name: 1735 24TH ST.

Project No.: 029

Field ID:

MW-3 5563-3

Lab Ref ID:

Market - 12 (1945)	Analysis Spike Level		Sample		Result	more a discour	% Recoveries			Acceptance Criteria			
Analyte	Method	MS	DMS	Result	MS	DMS	Units	MS	DMS	RPD	% R	ec	RPD
Gasoline Range Organics (C5-C12)	CATPH-G	0.50	0.50	0.14	0.560	0.588	MG/L	84.0	89.6	6.5	140-60	MSA	25MSP
4-Bromofluorobenzene	CATPH-G	100.	100.	83.	84.	89.	PERCENT	84.0	89.0	5.8	135-65	SLSA	20SLSP

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 5563 Date: 08/10/2010

Analysis:

QC Batch:

20100809

VOCs by GC/MS Fuel Additives Plus BTEX

Page: 27

Matrix:

Method:

8260FAB

Lab Samp ID: 5563MB

Water

Analysis Date: 08/09/2010

Prep Meth: SW5030B

Prep Date: 08/09/2010

Basis:

Not Filtered

Notes:

Basis: Not Filtered		Notes:					
Analyte	Det Limit	Rep Limit	:	Note	Result	Units	Pvc Dil
Methyl-tert-butyl ether (MTBE)	0.38	1.0	PQL		ND	UG/L	1
Ethyl tert-butyl ether (ETBE)	0.30	1.0	PQL		ND	UG/L	1
tert-Amyl methyl ether (TAME)	0.26	1.0	PQL		ND	UG/L	1
Di-isopropyl ether (DIPE)	0.37	1.0	PQL		ND	UG/L	1
tert-Butyl alcohol (TBA)	2.4	10.	PQL		ND	UG/L	1
1,2-Dichloroethane	0.30	0.50	PQL		ND	UG/L	1
1,2-Dibromoethane	0.30	0.50	PQL		ND	UG/L	1
Benzene	0.27	0.50	PQL		ND	UG/L	1
Toluene	0.25	0.50	PQL		ND	UG/L	1
Ethylbenzene	0.25	0.50	PQL		ND	UG/L	1
Xylenes	0.25	0.50	PQL		ND	UG/L	1
SURROGATE AND INTERNAL STANI	OARD RECOV	ERIES:					
4-Bromofluorobenzene		86-118	SLSA		113%		
Toluene-d8		88-110	SLSA		108%		
Dibromofluoromethane		86-118	SLSA		101%		3

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Lab Report No.: 5563 Date: 08/10/2010

Page: 28

QC Batch:

20100809

Matrix:

Water

Lab Samp ID: 5563MS

Basis:

Not Filtered

Project Name: 1735 24TH ST.

Project No.:

029

Field ID:

MW-1

Lab Ref ID:

5563-1

	Analysis	Spik	e Level	Sample		Spike Result		% Recoveries				tance ria	
Analyte	Method	MS	DMS	Result	MS	DMS	Units	MS	DMS	RPD	% R	ec	RPD
1,2-Dibromoethane	8260FAB	10.0	10.0	ND	8.67	8.54	UG/L	86.7	85.4	1.5	130-70	MSA	20MSP
1,2-Dichloroethane	8260FAB	10.0	10.0	ND	9.69	9.45	UG/L	96.9	94.5	2.5	130-70	MSA	20MSP
Benzene	8260FAB	10.0	10.0	ND	8.91	8.83	UG/L	89.1	88.3	0.90	127-76	MSA	20MSP
Di-isopropyl ether (DIPE)	8260FAB	10.0	10.0	ND	10.4	9.93	UG/L	104	99.3	4.6	140-60	MSA	20MSP
Ethyl tert-butyl ether (ETBE)	8260FAB	10.0	10.0	ND	10.1	9.80	UG/L	101	98.0	3.0	140-60	MSA	20MSP
Ethylbenzene	8260FAB	10.0	10.0	ND	8.55	8.47	UG/L	85.5	84.7	0.94	130-70	MSA	20MSP
Methyl-tert-butyl ether (MTBE)	8260FAB	10.0	10.0	ND	10.3	10.1	UG/L	103	101	2.0	140-60	MSA	20MSP
Toluene	8260FAB	10.0	10.0	ND	8.95	8.84	UG/L	89.5	88.4	1.2	125-76	MSA	20MSP
Xylenes	8260FAB	30.0	30.0	ND	26.1	25.8	UG/L	87.0	86.0	1.2	130-70	MSA	25MSP
tert-Amyl methyl ether (TAME)	8260FAB	10.0	10.0	ND	9.05	8.84	UG/L	90.5	88.4	2.3	140-60	MSA	20MSP
tert-Butyl alcohol (TBA)	8260FAB	50.0	50.0	ND	53.7	53.7	UG/L	107	107	0.00	140-60	MSA	25MSP
4-Bromofluorobenzene	8260FAB	100.	100.	112.	110.	109.	PERCENT	110	109	0.91	118-86	SLSA	20SLSP
Dibromofluoromethane	8260FAB	100.	100.	103.	101.	100.	PERCENT	101	100	1.0	118-86	SLSA	20SLSP
Toluene-d8	8260FAB	100.	100.	106.	104.	103.	PERCENT	104	103	0.97	110-88	SLSA	20SLSP

Chain of Custody

Project #	Project Address 1735 24+	helm	. 1] ,, C	Т					Ana	lysis					_	
29		offee	211	N o	7	2		T	1	П	Ĺ		T	T	T		c.o.c. No. 12867
	Oakland, CA			m n		BTEX-0xys SCAVS											
BG No.	Sampler's Signature			b e a	5	医公											Remarks:
	E. Deschamps	,		r n	8	20											
Date	Sample I.D.	Time	Sample	ое	TPH-Gas	8260B											
Sampled		(24 Hour)	Туре	f s	F	89											
8-3-10	mw-I	1055	HZD	4	+	*		\top					+				5563-1
8-2-10	mw-2	1400	1	4	1	*											-2
8-2-10	mw-3	1705		4	+	+											-3
8-2-10	VRW-1	1245		4	X	+											-4
8-3-10	VRW-2	1135		4	+	*											-5
8-3-10	VRW-3	1215		4	4	X											-6
8-3-10	VRW-4	1010		4	+	7											-7
x 8-3-10	VRW-5	1310		4	+	4											-8
8-2-10	VRW-6	1200		4	1	4											-9
8-210	VRW7	1620		3	+	*											-10
8-210	VRW-8	1525		3	×	+											-11
8.3-10	VRW9	0930	1	4	1	1											-12
						_	+	_	_				_				
						\perp	_	+					_				
						_	_	+	-	\vdash			_	4_			
						_		-					_	_			
							_	-	-				_	+	\vdash	_	
				4-11-11-11		-	-	+	-				_	_	+		
						_	_	+	-				-	-	-	_	
Laboratory											4				$\overline{}$		
Laboratory:	BAFS			Pr	eserva	ation: /	A (HCL) B -	ниоз;	CCI	_	Specify)					rgent; Immediate (Specify)
Relinquishes	by: M NO A	Date/	Time	Received	by	11.	41	5				Results	To: (Office I	Jse On	ly)	Brunsing Associates, Inc.
(signed)	HUMDHUMM)	8/4/10	0900	(signed)	\$	4/10	4					Bill	C	set			P.O. Box 588
Relinquished	by:	Date/		Received	/ /			./	2				DP				5468 Skylane Blvd., Suite 201
(signed)	V			(signed)				4	7			Global I	ID: (O	ffice U	se Only)	Santa Rosa, CA 95403
Relinquished	by:	Date/		Received	for L	aborato	ory by:	1									(707) 838-3027 Phone
(signed)				(signed)				_									(707) 838-4420 Fax