

ENVIRONMENTAL & ENGINEERING SERVICES

www.aeiconsultants.com

January 30, 2008

RECEIVED

1:48 pm, Jan 31, 2008

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Alameda County Environmental Health

Subject: In Situ Ozone Oxidation System Installation & Startup Report Omega Termite 807 75th Avenue Oakland, California AEI Project No. 262157

Dear Mr. Wickham:

AEI Consultants (AEI) is pleased to provide you with the recently completed "In Situ Ozone Oxidation System Installation & Startup Report" prepared for the abovereferenced property. A single portable document format (PDF) of this report has been uploaded to the Alameda County Environmental Health file transfer program (ftp) site and the GeoTracker information system. A copy of this report has also been forwarded to Mr. Sunil Ramdass at the California Underground Storage Tank Cleanup Fund.

Should you have any questions or comments, or need any additional information, please feel free to contact me or Ricky Bradford at (925) 944-2899, ext. 148.

Sincerely, AEI Consultants

Richard J. Bradford Senior Staff Engineer rbradford@aeiconsultants.com

RB/

Enclosure

cc: Mr. Sunil Ramdass, UST Cleanup Fund, 1001 I Street, Sacramento, CA 94224

January 30, 2008

IN SITU OZONE OXIDATION SYSTEM INSTALLATION AND STARTUP REPORT

807 75th Avenue Oakland, California

AEI Project No. 262157 ACEH Case No. RO0000508

Prepared For

Mr. Allan Kanady Omega Termite 807 75th Avenue Oakland, CA 94621

Prepared By

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION & HISTORY	1
3.0	GEOLOGY AND HYDROGEOLOGY	3
4.0	SITE CONCEPTUAL MODEL	4
5.0	OZONE SPARGING SYSTEM & DESIGN	4
5.1 5.2	Ozone Sparging Technology System Design & Specifications	
6.0	OZONE SPARGE POINT INSTALLATION	6
6.1 6.2 6.3 6.4 6.5	Permits & Clearances Health & Safety Meeting Sparge Point Installation Soil Description, Sampling & Analyses Equipment Decontamination, Waste Storage & Disposal	
7.0	SYSTEM INSTALLATION & STARTUP	8
7.1 7.2 7.3	Electrical Subpanel Installation Trenching, Conduit & Tubing Installation System Installation and Startup	
8.0	OPERATIONS & MAINTENANCE	10
9.0	VAPOR MITIGATION MEASURES	10
9.2 9.3 9.4	Vapor Mitigation Technology	
10.	0RESULTS & OBSERVATIONS	14
10.1 10.2 10.3 10.4 10.5 10.6	1 System Dwell Time, Lag Time, and Cycle Time 2 System Runtimes 3 Ozone Delivery Rates & Backpressures 4 Mass of Ozone Injected	
11.	0CONCLUSIONS & RECOMMENDATIONS	17
11.1 11.2 11.3	1 Performance Monitoring 2 Modified Groundwater Monitoring and Sampling Procedures	
12.	OREFERENCES	

13.0CLOSING STATEMENT AND SIGNATURES20

FIGURES

- FIGURE 1 SITE LOCATION MAP
- FIGURE 2 SITE PLAN
- FIGURE 3 SYSTEM LAYOUT PLAN
- FIGURE 4 GROUNDWATER ANALYTICALS (W/DO & ORP DATA)
- FIGURE 5 ESTIMATED OZONE RADIUS OF INFLUENCE
- FIGURE 6 BUILDING DETAIL
- FIGURE 7 PID SCREENING DATA (MARCH 9, 2007)
- FIGURE 8 CRAWLSPACE & BUILDING AIR ANALYTICALS
- FIGURE 9 DISSOLVED OXYGEN CONCENTRATIONS OVER TIME (DEEP WELLS)
- FIGURE 10 DISSOLVED OXYGEN CONCENTRATIONS OVER TIME (SHALLOW WELLS)
- FIGURE 11 O3 DELIVERY PRESSURE VS. TIME (SHALLOW WELLS)
- FIGURE 12 O3 DELIVERY PRESSURE VS. TIME (DEEP WELLS)
- FIGURE 13 MASS OF OZONE INJECTED PER WELL (SHALLOW WELLS)
- FIGURE 14 MASS OF OZONE INJECTED PER WELL (DEEP WELLS)
- FIGURE 15 TOTAL MASS OF OZONE INJECTED TO DATE

TABLES

- TABLE 1
 GROUNDWATER ELEVATION DATA
- TABLE 2GROUNDWATER ELEVATION & FLOW SUMMARY
- TABLE 3
 GROUNDWATER SAMPLE ANALYTICAL DATA (W/DO & ORP)
- TABLE 4
 GROUNDWATER SAMPLE ANALYTICAL DATA (FUEL OXYGENATES)
- TABLE 5
 SOIL SAMPLE ANALYTICAL DATA
- TABLE 6
 MONITORING WELL CONSTRUCTION DETAILS
- TABLE 7
 OZONE SPARGE WELL CONSTRUCTION DETAILS
- TABLE 8OZONE SYSTEM O&M DATA SUMMARY
- TABLE 9OZONE MASS INJECTION ESTIMATES
- TABLE 10
 INDOOR AIR & CRAWL SPACE SAMPLE ANALYTICAL DATA
- TABLE 11
 SUBMEMBRANE DEPRESSURIZATION SYSTEM DATA

APPENDICES

- APPENDIX A OZONE SPARGE WELL INSTALLATION PERMITS
- APPENDIX B BORING LOGS
- APPENDIX C SITE CONCEPTUAL MODEL
- APPENDIX D LABORATORY ANALYTICAL REPORTS
- APPENDIX E REGULATORY CORRESPONDENCE
- APPENDIX F SOIL DISPOSAL MANIFEST
- APPENDIX G MSDS SHEETS FOR LIQUID NAILS & FLEXFIX DUCT TAPE
- APPENDIX H IN-SITU OXIDATION POINT CITRIC ACID CLEANING PROCEDURE

1.0 INTRODUCTION

AEI Consultants (AEI) has prepared this *In Situ* Ozone Oxidation System Installation and Startup Report for the Alameda County Environmental Health Department (ACEH) on behalf of Omega Termite Control, Inc. (Omega) located at 807 75th Avenue in the City of Oakland, Alameda County, California (Figure 1). AEI has been retained by Omega to provide environmental engineering and consulting services for the investigation and mitigation of the release of fuel hydrocarbons from the former underground storage tanks (USTs) that impacted the soil and groundwater at the subject property. The ongoing investigation and mitigation of the release is being performed under the direction of the AECH Local Oversight Program (LOP). ACEH previously requested and authorized a scope of work to install two additional deeper-zone monitoring wells and an ozone sparging system as an interim mitigation of the fuel release. This report has been prepared to document the deeper-zone monitoring well installation and the installation and startup of an ozone sparging system. This report also summarizes and discusses operation and maintenance (O&M) data for the first eight (8) months of steady state operations (approximately June 2007 thru January 2008).

2.0 SITE DESCRIPTION & HISTORY

The site is located in an industrial area of the City of Oakland on the northern corner of the intersection of 75th Avenue and Snell Street, which is just east of San Leandro Street. The property is approximately 10,000 square feet in size and is currently developed with two buildings occupied by Omega Termite Control, Inc. The near surface water body is Arroyo Creek, which is located at the northern property boundary, approximately 75 feet north of well MW-6.

- On September 15, 1996, AEI removed three gasoline underground storage tanks (USTs) from the subject property. The tanks consisted of one 8,000-gallon UST, one 1,000-gallon UST, and one 500-gallon UST. Soil and groundwater samples collected during the tank removal activities indicated that a fuel release had occurred from the UST system. The excavation was not immediately backfilled and soil removed from the excavation was stockpiled on the northern portion of the property.
- In October 1997, soil and groundwater samples were collected from six soil borings (BH-1 through BH-6). Low to moderate concentrations of total petroleum hydrocarbons as gasoline (TPH-g), benzene, toluene, ethyl benzene, and xylenes (BTEX), and methyl tertbutyl ether (MTBE) were detected in the soil and groundwater samples collected from theses temporary borings.
- In 1999 soil samples collected from the stockpiled soil contained non-detectable to low concentrations of TPH-g. Mr. Barney Chan of the ACEH approved the stockpiled soil for reuse in the excavation.
- In June 1999, four groundwater monitoring wells (MW-1 through MW-4), screened from approximately 5 to 20 feet bgs were installed by AEI. Low to elevated concentrations of

TPH-g and BTEX were detected in groundwater samples subsequently collected from these wells.

- In March 2000, under the direction of ACEH, the excavation was extended to 29 by 48 feet in size and to 8 feet deep at the east end and 11.5 at the west end. An additional 500-gallon UST was discovered at the eastern end of the excavation and was removed under the direction of Oakland Fire Services Agency (OFSA). This tank appeared to have been used for waste oil storage. Approximately 7,400 gallons of hydrocarbon-impacted groundwater was pumped from the excavation, treated on-site, and discharged to the sanitary sewer system under an EBMUD Groundwater Discharge Permit Soil was stockpiled on the northern portion of the property. Six additional soil samples were collected from the sidewalls and bottom of the excavation. The resulting excavation was backfilled with pea gravel to bridge the water table and the remainder of the excavation was filled with soil from the first excavation and imported fill. A 4-icnh PVC casing identified as TW-5 was installed in the backfill.
- On October 9 and 10, 2003, eight soil borings (SB-7 through SB-14) were advanced on and off-site along Snell Street and 75th Avenue. Borings SB-7 through SB-13 were advanced to depths ranging from 15 to 20 feet bgs to evaluate the lateral extent of soil and groundwater contamination in the first groundwater encountered (Shallow Zone) at the site. Boring SB-14 was advanced to a depth of 30 feet bgs to determine if the hydrocarbon release had impacted the second aquifer at the site. Borings SB-7, SB-9, SB-1, SB-11 SB-12, and SB-13 essentially defined the horizontal extent of the hydrocarbon plume in the groundwater to the west, south and east. A thin layer of clayey sand was in SB-14 at a depth of 20 feet bgs (Intermediate Zone) with hydrocarbon odor, but water samples could not be collected from the direct push boring. Permeable gravel (Deeper Zone) was encountered at a depth of approximately 29 feet bgs. Groundwater samples collected from this interval contained TPH-g and TPH-d at 2,300 μ g/L and 72,000 μ g/L, respectively, which indicated that the Deeper Zone had been significantly impacted by fuel hydrocarbons.
- A report summarizing the observations and results of the October 9 and 10, 2003 soil and groundwater investigation was submitted to Amir Gholami of ACEH on November 18, 2003 and re-submitted to Jerry Wickham, ACEH on September 23, 2005.
- On February 15 and February 16, 2006, AEI advanced five soil borings advanced to total depths ranging from 14 to 33 feet bgs and completed the borings as groundwater monitoring wells (MW-6 through MW-10). Well MW-6 was completed as a Shallow Zone well and wells MW-7 through MW-10 were completed as Deep Zone wells. Low to moderate concentrations TPH-g, TPH-d, TPH-mo were detected in the soil and groundwater samples collected from these borings. The observations and results are discussed further in AEI's "Deeper Aquifer Soil & Groundwater Investigation Report", dated April 28, 2006.
- On AEI submitted a work plan for the installation of two additional Deep Zone monitoring wells and ozone sparing system to provide *in situ* oxidation of fuel

hydrocarbons onsite and increase dissolved oxygen concentrations to enhance natural biodegradation.

• On December 18, 2006, AEI installed two Deep Zone monitoring wells (MW-11 and MW-12) each to a total depth of 35 feet bgs, screened from approximately 25 to 35 feet bgs. On January 2, 2007, low to moderate concentrations of TPH-g, TPH-d, and TPH-mo were detected in the first groundwater samples collected from wells.

3.0 GEOLOGY AND HYDROGEOLOGY

The site is located at an elevation approximately 11 feet above mean sea level (msl). The site is essentially flat; however, the general topography of the area slopes gently to the west. The surface sediments at the site are mapped as Holocene natural levee and basin deposits (Qhl and Qhb, OF 97-97, E.J. Helley and R.W. Graymer). The Natural Levee Deposits (Holocene) are described as "loose, moderately to well-sorted sandy or clayey silt grading to sandy or silty clay". The Basin Deposits (Holocene) are described as "very fine silty clay to clay deposits occupying flat-floored basins at the distal edge of alluvial fans adjacent to the bay mud (Qhbm)". The presence of gravels in several of the onsite soil borings indicates that stream channel deposits are also present.

Based on the soil borings advanced by AEI, the near surface sediments beneath the site can be divided into several water bearing zones which are separated by clay layers. Sediments immediately below the surface consist of black to gray brown to olive brown silty clay depths ranging from 7.5 to 10 feet bgs. No groundwater was encountered during drilling of this interval.

The surface clay is underlain by variable and somewhat discontinuous silty sand and clayey silt, which make up the Shallow Zone. The Shallow Zone extends from the base of the surface clay to depths ranging from 18 to 21 feet bgs. This zone has low to medium permeability. Groundwater is typically seen in the first permeable silt or sand encountered during drilling of this interval. Once encountered, groundwater level typically stabilizes at a depth of 5 feet bgs or less, indicating the zone is at least a semi-confined aquifer.

The Shallow Zone is underlain by several feet of moderately dry light olive brown to yellowish brown clay except in MW-7, which was drilled through the former tank hold. In MW-7, obviously contaminated and reduced dark greenish gray clay was encountered. At depths ranging from 18 ft (MW-9) to 21 feet (MW-8) bgs a second (intermediate) discontinuous water bearing zone (Intermediate Zone) is present. The Intermediate Zone consists of discontinuous gravel, clayey gravel, and silty sand, clayey sand, and clayey silt which are interbedded with clay layers. Permeability in the intermediate zone ranges from high (gravel) to poor (clayey silt). The intermediate zone is separated from the lower permeable zone by a layer of brown silty clay that ranges in thickness of 2 to 7 feet. A third water bearing zone (Deeper Zone) was encountered at a depth of approximately 27 to 28 feet bgs. The lower permeable zone is made up of clayey silt, clayey sand, clean sand and sandy gravel.

Historic water level measurements indicate a highly variable flow direction. Refer to Table 2 for more information on the historic groundwater flow direction and hydraulic gradient.

4.0 SITE CONCEPTUAL MODEL

Petroleum hydrocarbons were released into the soil and groundwater from USTs previously located on the site. Groundwater sample analytical data indicates that TPH-g, TPH-d, TPH-mo, and BTEX are present in both the Shallow Zone and Deep Zone groundwater beneath the site. The lateral impact to the shallow groundwater appears for the most part to be limited to the site. The predominant hydrocarbons present in the Shallow Zone are gasoline range hydrocarbons. High concentrations of hydrocarbons and light non-aqueous phase liquid (LNAPL) are also present in the Deep Zone in the areas of boring SB-14 and deeper well MW-9. The predominant hydrocarbons in the deeper zone are diesel range hydrocarbons. Adsorbed phase hydrocarbons subsist in the soil underlying the former tank hold and adjacent to the shallow and deeper zone aquifers.

Overall hydrocarbon concentrations have slowly declined in the Shallow Zone and Deep Zone wells with the exception of MW-2 where hydrocarbon concentrations were increasing prior to the installation and startup of the subject ozone sparging system. Refer to Appendix C for an illustration of the site conceptual model.

5.0 OZONE SPARGING SYSTEM & DESIGN

5.1 Ozone Sparging Technology

In situ ozone oxidation was selected to target dissolved and adsorbed phase petroleum hydrocarbon contaminants within the upper, intermediate, and lower aquifers, smear zone, and capillary fringe. Ozone (O₃) with an electrochemical potential of 2.07V is one of the most powerful oxidants available for in situ chemical oxidation. Petroleum hydrocarbons, including BTEX and MTBE, and numerous other organic compounds are amenable to treatment using ozone sparging technology. Ozone directly oxidizes gaseous, free, sorbed, and dissolved phase hydrocarbons converting them to harmless carbon dioxide and water. Ozone is very unstable and rapidly decomposes to diatomic oxygen (1.23V) following injection into groundwater. Powerful free radicals such as the hydroxyl (OH⁻) radical (2.86V) are also generated during ozone oxidation. Ozone also reacts with natural organic matter to form aldehydes, organic acids, such as formic and acetic acid, aldo- and ketoacids, and other byproducts such as hydrogen peroxide (1.78V). In situ ozone oxidation involves the introduction of ozone blended with air into the subsurface using vertical or horizontal injection wells. Ozone can be applied to the vadose or saturated zone, but is most often injected 10 to 15 feet below the water table using sparge points (micro-porous diffusers) or short 2 to 3-foot sections of stainless steel slotted well screen. Ozone sparging into the saturated zone shares many similarities with air sparging which increases volatilization, supplies oxygen for aerobic

biodegradation, and may promote some degree of groundwater mixing (Johnson et al, 1998).

5.2 System Design & Specifications

The mass transport and transfer mechanisms for ozone sparging are analogous to air sparging, which has been extensively investigated by Ahlfeld *et al.*, 1993 and 1994; Hein et al., 1997; Johnson, 1998; and Brooks et al., 1999. Therefore, standard air sparging design practices and guidelines apply to ozone sparging. The design or effective treatment radius of influence (ROI) is used to determine the sparge well spacing and increases as the depth of the sparge point below the water table increases. The standard design approach recommend by Leeson, et al., 2002 is to space wells 15feet apart and stems from the understanding of air distributions in nearly homogenous and highly-permeable soils. Other professionals recommend 10 feet of ROI for every 5 feet below the water table and some suggest a radius of influence of 12, 20, 30, and 65 feet for sparge points installed 5, 10, 20, and 50 feet below the water table, respectively (Kerfoot, 2006). AEI is currently operating a successful KVA C-spargeTM system in predominately low permeability clay and bay mud (Qhbm) soils at a site approximately 0.5 miles away. Based on AEI's experience at this site, a 30-foot well spacing was selected to be reasonable and not cost prohibitive. The sparge well locations and design ROI are shown on Figure 5.

Because ozone is unstable and highly reactive it cannot be stored or transported and is therefore produced onsite using a specially designed ozone sparging system. Ozone is generated by corona discharge at concentrations ranging from 4 to 10% by weight by passing a 90% pure oxygen source through two high voltage electrodes separated by a dielectric and discharge gap. This silent electrical discharge disassociates oxygen molecules to form ozone. Major system components include an ozone generator, oxygen concentrator, ozone compressor, air and boost compressors, ozone gas injection system, programmable logic controller (PLC), and various instrumentation and controls.

An H_2O Engineering, Inc. ozone sparge unit (Model No. OSU-20-52) was selected and installed as shown on the system layout plan (Figure 2). The ozone sparge is powered by a single phase 120V 30 Amp circuit from a small subpanel tied into the existing distribution panel.

Some of the OSU-20-52 specifications and features as stated by H_2O Engineering, Inc. are summarized below:

- 20 sparge point manifold with stainless steel solenoid valves and ¹/₂" Kynar[®] compression fittings
- PSA oxygen concentrator with 90% purity, pressure gage and flow meter
- Ozone generator output: 52 grams/hour (2.72 lbs/day) @ up to 6% by weight

- Individual sparge point and total system cycle time recorder
- Lag time between cycles adjustable from 0 -240 minutes
- Time control of individual sparge points from 0 99 minutes
- Adjustable flow rates from 0.6 to 3.8 cubic feet per minute (maximum)
- Maximum operating pressure of 50 psig and beak-through up to 100 psig
- Electrical requirements are 120VAC and 30FLA
- High pressure alarm shuts down individual sparge point
- Thermal protection and high temperature alarm (shutdown at 140°F)
- Internal ozone alarm adjustable from 0.1 to 1 ppm stops ozone generation while oxygen/air injection continues
- Built-in high flow cooling and exhaust fans w/ an additional 12-inch 2,000 cfm cooling fan installed inside the equipment shed

Additional information on the system components, process description, procedures, safety, troubleshooting, operations and maintenance (O&M), parts lists, and wiring diagrams, is provided in the H₂O Engineering, Inc. "Ozone Sparge Unit – OSU20-52 User Guide" and vendor product data sheets, which are not included in this report but are available upon request.

6.0 OZONE SPARGE POINT INSTALLATION

AEI installed eight (8) ozone sparge wells (OZ-1 through OZ-8) on December 18, 2007. Because the subject site is stratified with multiple zones of permeable sediments, seven (7) of the sparge wells (OZ-2 through OZ-8) were nested constructions of two sparge points completed at depths of approximately 15 and 35 feet below ground surface (bgs), respectively. OZ-1 was a single completion drilled to a depth of approximately 17 feet bgs. When drilling and installing the sandpack around OZ-6 the lead auger was lost and left in the borehole around the sparge point. On December 20, 2007, a second nested replacement sparge well (OZ-9) was installed adjacent to OZ-6 using a CME-75 running 8.25-inch hollow stem augers. Final sparge point placement depths were based on observations in the field by the supervising geologist Robert Flory, PG. Refer to the boring logs in Appendix B for the final well construction details and description of the soils encountered. The final ozone sparge well locations are shown on Figure 2. The ozone sparge wells were surveyed relative to each other and mean sea level by Morrow Surveying (LS No. 4650) on January 12, 2007 with accuracy appropriate for GeoTracker uploads. The survey included the property boundaries, existing monitoring wells, and locations of onsite structures.

6.1 Permits & Clearances

Well installation permits were obtained from the Alameda County Public Works Agency (ACPWA) prior to installing the nested ozone sparge wells. The borehole locations were identified with white marking paint and USA North was notified at least 3 days prior to drilling. In addition, each borehole was cleared with a hand auger to 5feet bgs to check for underground utilities or other structures.

6.2 Health & Safety Meeting

Prior to drilling, a site safety meeting was held at a designated command post near the working area to review the Health and Safety Plan (HASP). Working hazards and emergency procedures were discussed at this meeting, including an explanation of the hazards of the known or suspected chemicals of interest as well as the location and route to the nearest hospital. All site personnel were in modified Level D personal protection equipment. The work area or "exclusion zone" was established with orange cones and/or barricades and warning tape to delineate the zone where hard hats and steel-toed shoes must be worn and where unauthorized personnel will not be allowed. A site safety plan conforming to Part 1910.120 (i) (2) of 29 CFR was available on site at all times during the project.

6.3 Sparge Point Installation

The nested ozone sparge wells were constructed of 1-inch schedule 80 PVC flushthreaded riser with Viton[®] o-rings and a 1.5-inch diameter by 18-inch long sparge point (micro-porous diffuser). The boreholes for the nested sparge points were drilled with a CME-85 drilling rig running 10.5-inch hollow-stem augers. The borings were first drilled to the bottom of the deeper water-bearing zone at approximately 35 feet bgs. Then two 1-inch risers were assembled with sparge points, coupled together with prefabricated 2-inch spacers and lowered down the hollow stem augers as a single unit. A sand pack consisting of #2/12 Monterev sand was placed around and extended 1-foot above the deeper sparge point. A bentonite seal was then placed and hydrated above the sand interval to the bottom of the shallower water-bearing zone at approximately 17 feet bgs. A sand pack was placed around and extended 1-foot above the shallower sparge point. A 2-foot bentonite seal was placed above the sand interval and finished to 24-inches below the surface with cement grout to facilitate the conduit and ozone tubing installation. The surface completion consisted of a 18-inch inside diameter by 21-inch outside diameter traffic-rated well box set in a 24-inch square by 4-inch thick concrete pad. Well pads located in site thoroughfares (OZ-1 and OZ-8) were reinforced with 3/8-inch rebar.

6.4 Soil Description, Sampling & Analyses

Borehole logging and sample collection was performed by Robert Flory, an AEI California-licensed Professional Geologist. The physical characteristics of the soils encountered (i.e., moisture content, odor, consistency, texture, color, etc.) were described on boring logs according to the Unified Soil Classification System. Using a modified California split spoon sampler at least one soil sample was collected and retained for possible analysis from each 5-feet drilled and at breaks in lithology as determined by at the supervising geologist. Samples were collected into 6-inch brass liners, sealed with Teflon tape and plastic end caps, labeled with unique identifiers, entered onto the chain of custody record, and placed in a cooler with a mixture of water and ice pending transportation to the laboratory. A duplicate sample was placed in a 1quart zipper locking bag and the headspace was screened for the presence of organic vapors using a Mini-Rae Classic Plus photo-ionization detector. Samples were transported under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification No. 1644) and were analyzed for TPH-g, TPH-d, and TPH-mo by Method SW8015Cm and BTEX & MTBE by Method SW8021B.

6.5 Equipment Decontamination, Waste Storage & Disposal

Drilling and sampling equipment, including split spoon sampling barrels, drilling rods, hollow stem augers were decontaminated between samples using a steam cleaner and/or a triple rinse system containing Alconox TM or similar detergent. Soil cuttings were temporarily stored onsite in a 30 cubic yard soil bin outfitted with a 6-mil plastic liner. On March 1, 2007, approximately 12.3 tons of soil was transported and disposed under a non-hazardous waste manifest (Manifest No. 80784) at Keller Canyon Landfill located in Pittsburg, California. A copy of the non-hazardous waste manifest is included as Appendix F.

7.0 SYSTEM INSTALLATION & STARTUP

7.1 Electrical Subpanel Installation

Bay West Electric, Inc., a California C-10 licensed electrician, was contracted to permit and install a separate electrical circuit and sub-panel for the ozone sparge unit. A 120V 60Hz single-phase circuit was run from the main distribution panel to a predetermined location at the rear of the building. A weatherproof subpanel was installed on the outside of the building in a location shown on Figure 2. The ozone sparge unit was wired to a 30 amp circuit breaker installed inside the subpanel. A 2,000 cfm adjustable ventilation fan with high, medium, and low speeds was wired to a 15 amp circuit breaker installed inside the subpanel. This completed the electrical installation.

7.2 Trenching, Conduit & Tubing Installation

AEI trenched the site and installed the conveyance conduit and ozone tubing from January 29 through February 1, 2007. Since the ¹/₂-inch PerFluoroAlkoxy (PFA) ozone-resistant tubing costs anywhere from \$4 to \$8 per foot, the trench layout was designed to minimize the conduit runs and tubing costs. The extent of the trenching was marked with white paint and USA north was notified at least 72-hours prior to trenching. Trenching was conducted using a mini-excavator equipped with a 16 or 24inch toothed bucket. The majority of the excavated soil was placed next to the trench for reuse. Excess soil was loaded into a 30 cubic vard soil bin lined with 6-mil plastic using a skid-steer loader. The soil bin was covered with more 6 mil plastic and the lid was closed and secured at the end of each day. The trenches were excavated to approximately 24 to 30-inches below grade (depending upon utility conflicts) and leveled on the bottom with a 2-inch layer of fine-grained backfill sand of PGE engineering specification. 2-inch schedule 40 PVC electrical-grade conduit was installed from the ozone sparge unit to the sparge wells. The immediate areas around the conduits were backfilled with fine sand to about 4-inches above the conduits at which point native soils were placed into the trench and compacted in 8 to 12-inch lifts. AEI technicians pulled the PFA tubing through the conduit in continuous runs using an electrical fish tape or nylon pull rope and a high-suction vacuum cleaner. The PFA tubing was then leak tested with the system in oxygen only mode. The PFA tubing was connected to sparge wells using well head connections constructed of schedule 80 PVC, 316 stainless steel, and Kynar[®] fittings on February 13, 2007. Refer to Figure 6 for the location of the conduit and tubing runs.

7.3 System Installation and Startup

The ozone sparge unit was installed and connected to the sparge well on February 13, 2007. The above-ground portion of the ozone sparge united consists of the ozone sparge unit and internal components and locking storage shed anchored to a 3-foot by 7-foot by 4-inch thick re-enforced concrete foundation located at the north corner of the main onsite building. To protect the system from physical damage, 4-inch crash posts constructed with steel pipe, concrete, and rebar were installed in front of the system. An AEI engineer and senior field technician conducted the shakedown testing, including functional performance checks of all system mechanical and electrical components, ozone leak testing, and programming. The ozone sparge unit was started in oxygen mode and re-checked for leaks at the manifold and wellheads. Leaks at the manifold and wellhead connections were repaired, retested, and passed inspection on February 27, 2007 and the ozone sparge unit was started up on March 8, 2007.

8.0 OPERATIONS & MAINTENANCE

Routine operations and maintenance (O&M) activities are performed on a monthly and quarterly basis as recommended by H_2O Engineering, Inc. and manufactures of the various system components. The following system operational parameters are measured and recorded on field data sheets during each O&M visit. Please refer to Appendix D for a summary of this data.

- Internal ozone, high pressure, and high temperature alarms
- Sparge point backpressure (temporary reprogramming sometimes required)
- Individual sparge point dwell and system lag times
- Individual sparge point and total system runtime
- Sparge points operating status as enable or disabled and ozone or oxygen
- Ozone flow rate and delivery pressure
- Ozone reactor pressure and oxygen flow rate
- O₂ moisture indicator status (blue, white or pink)
- Cooling fan status
- Pressure buildup at monitoring wells

9.0 VAPOR MITIGATION MEASURES

Hydrocarbon odors were noticed by the office manager the morning of March 9, 2007 and the main power to the system was turned off. AEI immediately mobilized to the site with a Mini-RAE Plus Classic (Model No. PGM-76IS) photo-ionization gas detector to check for hydrocarbon vapors inside the building and crawlspace. The smell of fuel hydrocarbon was most notably present in an unoccupied office currently used as storage and smaller storage closet located at the north rear corner of the building, closest to ozone sparge wells OZ-6 and OZ-7. Organic vapor concentrations up to 6 parts per million (ppm) were detected in this unoccupied space and the windows and doors were opened for ventilation. The highest hydrocarbon concentrations (up to 75 ppm) were detected in the crawlspace, three old unused floor vents, approximately 12 by 24-inches is size and directly open to the crawlspace (up to 30 ppm), and a small storage closet containing the main HVAC distribution duct (30 ppm). No organic vapors were identified inside the distribution ductwork of HVAC system.

The main supply duct is approximately 24 inches in diameter and is supplied by the air handling unit located in the attic. The HVAC distribution ducts are located in the crawlspace and supply air to the building through new floor vents. Elevated levels of organic vapors in the storage closet can be attributed to a 1 to 2-inch circular gap between the subfloor and main HVAC distribution duct and because the door was closed. This gap and the old unused floor vents were both major vapor migration pathways from the crawlspace to inside the building and were immediately sealed with plywood and caulking.

The crawlspace air was also checked for the presence of organic vapors. Concentrations of organic vapors ranging from 5 to 100 ppm were identified in the crawlspace at the north, north-west, and north-east sides of the building. No organic vapors were detected in the crawlspace at the west, south-west, south, and south-east sides of the building. The two (2) access doors to the crawlspace, one at the south-east and one at the northwest sides of the building were opened and allowed to ventilate overnight with the system off. The March 9, 2007 PID screening data is shown on Figure 7.

On March 12, 2007 AEI remobilized to the site to test for the presence organic vapors inside the building and crawlspace. No organic vapors were detected inside the building or crawlspace with the PID. Based on this, the crawlspace was deemed safe for entry and further inspection. A section of the metal building skirt was removed to access the crawlspace, since no access doors were provided at the rear of the building. An AEI engineer entered the crawlspace equipped with a full face air purifying respirator with an organic vapor cartridge in the event that unsafe concentrations of hydrocarbons were detected while in the crawlspace. No organic vapors were detected in the crawlspace with a PID, but a faint hydrocarbon odor was noticed. Further inspection of the crawlspace revealed the presence of highly fractured soils throughout the crawlspace with the largest fractures identified at the north end closest to the ozone sparge unit. The extent and depth of the vertical fractures were probed and gauged with 12-inch long by 3/8inch diameter flat head screw driver. The entire length of the screwdriver was easily inserted into many of the larger fractures, which suggests that the fractures may extend into the capillary fringe and close to the shallow water table. Because the site is overlain by baserock and groundwater is very shallow (clays expand when saturated) these vertical fractures were not readily identified during routine site inspections or any pervious soil and groundwater investigations. However these ubiquitous vertical fractures are commonly observed in non plastic clays found in the Bay Area. The ozone sparge unit remained off while AEI contacted and discussed the circumstances with ACEH and developed mitigation plan.

9.2 Vapor Mitigation Technology

A mitigation approach using a combination of direct crawlspace ventilation (DCV) and sub-membrane depressurization (SMD) were tested and evaluated through a trial period of field testing between April and May 2007. DCV was not as effective at reducing concentrations of hydrocarbons in the crawlspace as SMD was. Since radon mitigation standards are currently being applied to vapor intrusion mitigation, the DCV and SMD were designed and installed according to EPA's recommended residential radon mitigation standards. This voluntary, consensus-based standard was developed and issued by the American Society for Testing and Materials (ASTM) International, and is identified as "*Standard Practice for Installing Radon Mitigation Systems in Existing Low-Rise Residential Building*" (ASTM E2121-03, 2003). A large study of active soil depressurization systems installed at 300 residential homes in Denver, Colorado to control indoor air concentrations of 1,1 DCE concluded that standard techniques used for radon mitigation are highly effective at remediating the indoor air pathway (Folkes

and Kurz, 2002).

9.2.1 Direct Crawl Space (DCS) Ventilation

Direct crawl space ventilation is generally a more cost-effective (less labor intensive) mitigation measure for crawlspaces than SMD, but has a much lower potential for success because of the effects of backdrafting, stagnation zones and incomplete vapor capture. DCV involves installing a network of slotted lateral pipes of 4-inch in diameter spaced from 5 to 15 feet apart and suspended from the floor joints about 1 foot above the crawlspace floor. The slotted laterals are connected to a common header which is connected to a centrifugal fan with an outlet pipe installed above the roof line of the building. Sample ports and differential pressure gages are installed on the common header to monitor vacuum and vapor concentrations. DCV was installed but not considered effective at reducing the concentration of hydrocarbons in the crawlspace to below the ppmv level and was modified for SMD.

9.2.2 Sub-Membrane Depressurization (SMD)

Sub-membrane depressurization (both active and passive) uses similar components but costs much more (more labor intensive) to install than DCV. However, SMD has a higher potential for success because a physical vapor barrier traps and prevents vapors from entering the crawlspace. Vapors are collected under the vapor barrier and driven to the surface by a 90 to 120 watt centrifugal fan in active SMD. Passive SMD relies on blocking vapors from entering the crawlspace, diffusion, and a pressure differential created by atmospheric conditions or a wind-driven turbine Currently, the Bay Area Air Quality Management District (BAAQMD) fan requires permits for mechanically-driven centrifugal fan systems but not for passive systems installed with or without wind turbines. SMD also involves installing a network of slotted lateral pipes network rested on the crawlspace floor and covered with 6-mil plastic sheeting which is secured to the building footings and any internal support pillars. The installation costs for SMD can be 3 to 4 times the cost of DCV which is mainly attributed to the labor involved with carefully placing a liner over the slotted pipe network and sealing it to the foundation footings. The life expectancy of a typical 6-mil poly vapor barrier is about 10 years with proper care and maintenance. This will provide adequate protection beyond the expected remediation project timeframe. The SMD system is inspected monthly along with system O&M. Since DCV failed to meet the performance criteria of reducing the concentrations of hydrocarbons to below the ppmv level, a non-mechanical (passive) SMD system was installed with the option of upgrading to an active system, which would require a BAAQMD permit.

9.3 Indoor Air and Crawlspace Air Sampling

On April 10, 2007, background indoor air and crawlspace air samples were collected using a 6-Liter laboratory-evacuated Summa canister equipped with an 8-hour time-integrated flow controller. The ozone sparing system was shutdown one week prior to sampling. An AEI engineer set up the Summas canisters at approximately 7:30 am and returned seven hours later to collect the canisters once the vacuum remaining in each canister was approximately 5 inches of mercury. The Summas were transported under proper chain protocol to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification No. 1644). The Summas were analyzed for TPH-g by modified EPA TO-3 and for BTEX & MTBE by modified EPA Method TO-15.

The system was restarted on May 7, 2007. The building air, crawl space air, and the SMD system piping were monitored daily with a PID and/or FID for the first week after restarting the ozone sparge unit. Organic vapors were not detected by the PID in the building air or crawlspace air. Organic vapors were however detected in the ventilation pipes of the passive SMD system stack piping at concentrations ranging from 21 to 76 ppmv in SMD-1 and from ND<1.0 to 4.3 in SMD-2. On May 14, 2007, indoor air and crawlspace air samples were collected and analyzed using the procedures and methods described above. To reduce the potential for picking up trace concentration of VOCs, the samples were collected approximately one (1) week after installing the SMD system. This allowed additional time for the Liquid Nails[®] adhesive to fully cure and the fumes to be transported out of the crawlspace.

The indoor air and crawlspace air sampling results were evaluated and compared against the baseline crawl space samples collected on April 10, 2007 and data from air monitoring stations published by the BAAQMD for two (2) locations near the site, monitoring stations #1018 – Davie Tennis Stadium located at 198 Oak Road and #1024 located at 2419 Filbert Street Piedmont and Oakland, respectively. The results of the samples analyses are presented below and compared to the BAAQMD monitoring station and RWQCB ESLs in Tables 10A (data in $\mu g/m^3$) and 10B (data in ppbv).

9.4 **Results and Discussion**

On March 9, 2007, elevated concentration of fuel hydrocarbon vapors were detected in the crawlspace and indoor air of the main building onsite. Upon inspecting the crawlspace, extensive vertical fractures and gaps in the building subfloor were readily identified as the most probable cause. DCV was installed but not as effective at reducing the concentration of hydrocarbons in the crawlspace to below the ppmv level and was modified for passive SMD.

The PID screening results for the first 5-days after restarting the ozone sparge unit indicate the SMD system was effectively reducing the concentrations of organic vapors in the building air and crawlspace after installation Significant concentrations of organic vapors greater than or equal to the concentrations initially detected inside the building on in crawlspace were detected by the PID in the stack piping of the SMD system indicated. No organic vapors or odors have been detected inside the building by AEI or onsite personnel since installing the SMD system and restarting the ozone sparge unit.

On May 14, 2007, benzene, toluene, ethylbenzene, and xylenes were detected in one indoor air sample (BA-1) at concentrations of 2.1, 3.0, 4.8, and 22 μ g/m³, respectively. MTBE was not detected at or above than the laboratory reporting limit of 0.036 μ g/m³. Benzene, toluene, ethylbenzene, and xylenes were detected in one crawlspace air sample (CS-1) at concentrations of 11, 7.7, 1.7, and 5.8 μ g/m³, respectively. MTBE was not detected at or above the laboratory reporting limit.

The concentrations of benzene increased slightly inside the building (from 1.2 to 2.2 μ g/m³) and crawlspace (from 0.80 to 11 μ g/m³). Benzene concentrations inside the building were still in the range of background concentration in Oakland and comparable to the concentration detected during the April 10, 2007 background sampling event. With the exception of Benzene at 2.1 μ g/m³, the background and May 14, 2007 concentrations of toluene, ethylbenzene, and xylenes were below the ESLs for commercial land use and consistent with background concentrations reported by the BAAQMD in the greater Oakland area.

Low VOC Liquid Nails[®] Builder's Choice (BC-490) subfloor and construction adhesive was used to seal the 6-mil plastic sheeting to the concrete footing and pillars. As indicated on the MSDS sheet, benzene, toluene, and other unnamed, lighter-range petroleum distillates are ingredients. The existence of these and other unknown volatile organic compounds (VOCs) in Liquid Nails[®] adhesive complicates the interpretation of the indoor and crawlspace air sample results.

The ozone sparge unit was restarted on May 7, 2007. The passive SMD system is currently meeting the design objectives and upgrading the system to active SMD, which will require a BAAQMD permit, is not recommended at this time. The ozone sparge system was restarted on

10.0RESULTS & OBSERVATIONS

10.1 System Dwell Time, Lag Time, and Cycle Time

The ozone sparge unit was restarted on May 9, 2007 following the installation of a passive SMD system. The first monthly O&M visit occurred on June 7, 2007. The dwell time is defined as the runtime per sparge point and the lag time is the system rest time between each sparge cycle. Once the dwell times are programmed, the ozone sparge unit operates the sparge points in sequence from 1 to 11 while the PLC continuously monitors various system parameters, such the ozone delivery pressure.

The system was initially programmed to run for 4 minutes per sparge point. This was increased to 8 minutes per sparge point in July 2007 and was reduced to 5 minutes per sparge point in August 2007. The dwell time was increased back to 8 minutes per sparge point in September 2007. The dwell time will was 8 minutes per sparge point from September 2007 through January 2008.

10.2 System Runtimes

The total runtimes as of January 17, 2008 for shallower ozone sparge wells OZ-1S, OZ-2S, OZ-7S, and OZ-8S were all approximately 152 hours. The total runtime for OZ-3S and OZ-6S were both approximately 181 hours. The total runtime for OZ-4S and OZ-5S were approximately 160 and 135 hours, respectively. The total runtime for OZ-9S, which was turned on in October 2007, was about 60 hours.

The total runtimes as of January 17, 2008 for deeper ozone sparge wells OZ-2D, OZ-7D, and OZ-8D were all approximately 180 hours. The total runtime for OZ-3D and OZ-4D were both approximately 150 hours. The total runtime for OZ-5D and OZ-D were approximately 91 and 173 hours, respectively. The total runtime for OZ-5D was much lower because the ozone delivery pressure has increased from about 25 psig to 55 psig. OZ-9 has been off since the system was restarted on May 9, 2007, because the lead auger was lost and left in the borehole around the sparge point.

10.3 Ozone Delivery Rates & Backpressures

The ozone injection rates have ranged from approximately 1.5 to 2 standard cubic feet per minute (scfm) per sparge point. The ozone delivery pressure is the shallower sparge points have ranged from approximately 10 to 30 psig. The ozone delivery pressure in the deeper sparge points have ranged from 20 to 30 psig. The backpressure at OZ-5D has steadily increased to over 55 psig and exceeded the capacity of the ozone sparge unit. Dissolved ions and metals such as iron, calcium, magnesium, and manganese are oxidized by ozone, causing them to precipitate out of solution and collect around the sparge point and sandpack. This well has been turned off pending further evaluation and treatment with approximately 1 gallon of 50% solution of food-grade citric acid according to procedures recommended by H₂O Engineering, Inc (H₂O Engineering, 2007). A copy of the cleaning procedure is included as Appendix H.

The ozone delivery flow rates and backpressures are summarized in Table 8 and shown on Figures 11 and 12.

10.4 Mass of Ozone Injected

The total mass of ozone injected in each sparge wells has been estimated based on the flow rate recorded during each monthly O&M visit and the actual concentration of ozone generated (in ppmv) at various pressures from testing and data provided by H_2O

Engineering, Inc. All measured flow rates in actual cubic feet per minute (acfm) were converted to standard cubic feet per minute (scfm) using the ozone delivery pressure and outlet temperature.

The total mass of ozone injected (per well) into shallower ozone sparge wells has ranged from approximately 4.2 pounds (OZ-9S) to 12.2 pounds (OZ-6S). The total mass of ozone injected (per well) into deeper ozone sparge wells has ranged from approximately 4.8 pounds (OZ-5D) to 12 pounds (OZ-8D). As of January 17, 2008, the total mass of ozone injected into the shallower and deeper ozone sparge wells has been estimated at 82 and 72 pounds, respectively. Therefore, approximately 154 pounds of ozone has been delivered to the subsurface through all of the ozone sparge wells. Refer to Table 9 for the ozone mass injection estimates and assumptions. Figures 13, 14, and 15 shows the total mass of ozone injected per sparge well and all wells combined.

10.5 Hydrocarbons, Dissolved Oxygen and ORP

Overall, the dissolved oxygen (DO) concentration have increased and the oxidationreduction potential (ORP) has become increasing positive most notably in the Deeper Zone wells MW-7, MW-9, MW-11, and MW-12. The DO concentrations have increased from less than 1 mg/L to almost 20 mg/L and 14 mg/L in wells MW-11 and MW-12, respectively. The DO concentrations have not increased significantly in any of the Shallow Zone monitoring wells.

10.6 Bubbling and Pressure Buildup

Qualitative indicators of air distribution, such as bubbling, gurgling noises, and artesian well conditions provide important information on the magnitude and lateral extent of the ozone/air channel distribution. The magnitude of the pressure response provides a measure of the subsurface permeability. In highly permeable soils the groundwater pressure may remain elevated from ten minutes to a few hours and from tens of hours to days at stratified sites with low permeability layers. Pressure buildup during the startup and shutdown of air sparging system provides information on whether or not air is being stratigraphically trapped below the water table.

Bubbling, gurgling noises, and water flowing out of the wells have been observed in deep water bearing zone wells MW-7 and MW-11 when sparging on OZ-7D and OZ-9D, respectively. This is not uncommon at sites with shallow water tables. It takes approximately 2.0 psig to raise the water level to the surface from 4 to 5 feet bgs. Some bubbling has also been identified in MW-8 and MW-10, but artesian conditions have not been observed.

Elevated pressure has been observed in MW-11 for up to one (1) week after shutting down the air sparging system, which indicates the site is stratified and low-permeability lenses are present between Deep Zone and Shallow Zone. The magnitude of the pressure buildup and lateral extent indicate that permeable to moderately permeable soils are present in the Deep Zone.

11.0CONCLUSIONS & RECOMMENDATIONS

An *in situ* ozone oxidation system was designed and installed to address absorbed and dissolved phase contamination in the shallow, intermediate, and deeper water bearing zones at the subject site. Concentrations of TPH-g, TPH-d, TPH-mo, and BTEX have overall decreased, particularly in the mostly more-permeable sediments in the Deeper Zone. Smaller decreases have occurred in the mostly less-permeable sediments in the Shallow Zone. The system operated sporadically to not at all during the first 2 to 3 months after installation because of hydrocarbons vapors migrating into the building and crawlspace. A passive SMD system was installed to prevent vapor from entering the crawlspace and building. The ozone sparging system has reached steady state operation and ran almost continuously from June 2007 through January 2008 (about 8 months). The system is estimated to operate for a minimum of 12 to 18 months before rebound testing should be performed. The next groundwater monitoring and sampling in event is scheduled to occur in January 2008.

11.1 Performance Monitoring

The January 19, 2007 (1st Quarter, 2007) monitoring episode and the historic record of groundwater monitoring and reporting represent baseline groundwater conditions. Groundwater at the site is currently monitored on a quarterly basis, which should provide adequate data on TPH-g, TPH-d, TPH-mo, and BTEX for performance monitoring. More frequent monitoring is not planned and is unlikely to provide enough useful information to justify the cost of the sampling and laboratory analyses. It is recommended that the system operation and performance be evaluated on a quarterly to semi-annual basis.

11.2 Modified Groundwater Monitoring and Sampling Procedures

AEI proposes to shutdown the system at least one day, but no more than one week, prior to conducting routine groundwater monitoring and sampling events to help relieve pressure buildup in the subsurface. For safety reasons and to prevent short circuiting of ozone and air to the surface, monitoring wells that have developed pressure were fitted with threaded caps and pressure relief valves. All other monitoring wells were fitted with lockable and water-tight expanding well caps.

Before the pressure is released from wells equipped with threaded caps and pressure relief valves (i.e., MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12), it will be measured in inches of water with a Dwyer Magnehelic[®] differential pressure gage (ranges of 0-10, 0-50, 0-100, and 0-200 in. H₂O). The monitoring well vapor will also be sampled and analyzed for total volatile hydrocarbons, methane, oxygen, and carbon dioxide using an RKI Instruments Eagle multi-gas detector and for ozone using

EcoSensors ozone detector. This data will be used to monitor worker health and safety, ozone degradation to oxygen, and *in situ* biodegradation. After the pressure is recorded and a sample is collected and analyzed by the gas detectors, the relief valve will then be closed and the gage removed. The valve will slowly be reopened and once the pressure has dissipated, the well cap will be unthreaded and removed for sampling. Once all of the well caps have been removed, the wells are allowed to equilibrate for a minimum of 30 minutes prior to measuring the static water levels. Groundwater samples will be collected and analyzed for TPH-g, TPH-d, and TPH-mo by Method SW8015Cm and MBTEX by Method SW8021B using procedures and methods described in quarterly monitoring reports.

Well sampling for natural attenuation parameters, such as total (Fe3+) and dissolved (Fe2+) iron, sulfates and sulfide, and nitrates has not been included in the previous scope of work and is not recommended at this time, but may be considered as *in situ* oxidation and biodegradation proceeds.

11.3 Annual O&M Report

After the first year of steady state operation (May 2008) and after the 2nd guarter, 2008 groundwater monitoring and reporting episode, AEI will prepare an annual System Operations and Maintenance and Performance Evaluation report for ACEH. The report will also include an operations and maintenance data summary including, cycle timing, runtimes, ozone delivery pressures and injection flow rates and groundwater sample analytical data. The total mass of ozone (in pounds) injected into each sparge point will be presented. The average daily mass injection rates (pounds per day) will also be included. The dissolved oxygen and ORP in the deep and shallow zone wells will be plotted over time. The ozone delivery pressure over time will also be plotted. The mass of ozone injected per well for the shallow ozone sparge points, deep ozone sparge points, and total system will be presented. An evaluation of contaminant reduction rates and estimate treatment times will be including along with recommendations, if necessary, for changes alteration or expansion of treatment program. Treatment progress will also be evaluated in the startup report and in subsequent regular quarterly groundwater monitoring reports. The system evaluation will be overseen and reported under the seal of an AEI California registered professional geologist or engineer.

12.0 REFERENCES

- 1. Ahlfeld, D., et al., 1993. "*Laboratory Study of Air Sparging Air Flow Visualization*" Ground Water Monitoring Review, Fall, pp. 115 126.
- Ahfeld, D., et al., 1994. "A Conceptual Model of Field Behavior of Air Sparging and Its Implications for Application" Ground Water Monitoring and Remediation, Volume 14, 4, pp. 132 – 139.
- 3. ASTM, 2003. "Standard Practice for Installing Radon Mitigation Systems in Existing Low-Rise Residential Buildings" Standard Designation E 2121-03.
- Brooks, M.C., et al., 1999. "Fundamental Changes in In Situ Air Sparging Flow Patterns" Ground Water Monitoring and Remediation, Volume 19, 2, pp. 105 – 113.
- Folkes, D.J., 2002. "Design, Effectiveness, and Reliability of Sub-slab Depressurization Systems for Mitigation of Chlorinated Solvent Vapor Intrusion" Presented at the USEPA Seminar on Indoor Air Vapor Intrusion, San Francisco, CA, December 4, 2002; Dallas, TX, January 15, 2003; and Atlanta, GA, February 26, 2003.
- 6. Folkes, D.J. and Kurz, D.W., 2002. "Efficacy of Sub-slab Depressurization for Mitigation of Vapor Intrusion of Chlorinated Organic Compounds" Proceedings of Indoor Air 2002.
- H₂O Engineering, Inc., 2005. "Ozone Sparge Unit OSU20-52 User Guide", Revision 5.3, Series A.3, November 1, 2005.
- 8. H₂O Engineering, Inc., 2007. "In-Situ Oxidation Point Citric Acid Cleaning Procedure".
- Hein, G.L., et al., 1997. "Three-Dimensional Experimental Testing of a Two-Phase Flow-Modeling Approach for Air Sparging" Ground Water Monitoring and Remediation, Volume 17, pp. 222 – 230.
- Johnson, P.C., 1998. "Assessment of the Contributions of Volatilization and Biodegradation to In Situ Air Sparging Performance" Environmental Science and Technology, Volume 32, 2, pp. 276 – 281.
- 11. Kerfoot Technologies, Inc., 2006. "What Is the Radius of Influence that can be Achieved with a SpargePoint®?" from the frequently asked questions section of website: <u>http://www.kva-equipment.com</u>, accessed on November 1, 2006.
- 12. Leeson, A., et al., 2002. "Air Sparging Design Paradigm", Battelle.
- 13. MADEP Northeast Regional Office, 1995. "Guideline for the Design, Installation, and Operation of Sub-slab Depressurization Systems".
- 14. USEPA, 1993. "Radon Mitigation Standards" EPA 402-R-93-078.

13.0CLOSING STATEMENT AND SIGNATURES

AEI has prepared this report for Alameda County Environmental Health on behalf of Omega Termite, Inc., located at 807 75th Avenue in the City of Oakland, Alameda County, California. This report documents the installation and startup of an In Situ Ozone Oxidation system for the mitigation of a fuel release from the former underground storage tanks (USTs) that impacted the soil and groundwater at the subject property. The recommendations rendered in this report were based on previous field investigations and laboratory testing of soil and groundwater samples. This report does not reflect subsurface variations that may exist between sampling points. These variations cannot be anticipated, nor could they be entirely accounted for, in spite of exhaustive additional testing. This plan should not be regarded as a guarantee that no further contamination, beyond that which could have been detected within the scope of this investigation is present beneath the said property or that all contamination present at the site will be treated or removed. Undocumented, unauthorized releases of hazardous material, the remains of which are not readily identifiable by visual inspection and are of different chemical constituents, are difficult and often impossible to detect within the scope of a chemical specific investigation that may or may not become apparent at a later time. All specified work was performed in accordance with generally accepted practices in environmental engineering, engineering geology, and hydrogeology fields under the direction of appropriate registered professional(s).

We look forward to hearing your comments regarding this report. Should you have any questions or need any additional information, please contact Mr. Bradford or Mr. McIntyre at (925) 944-2899.

Sincerely, AEI Consultants

Richard J. Bradford Senior Staff Engineer

Peter J. McIntvre, F

Senior Project Manager

Bob Flory, PG No. 5825 Senior Project Geologist

Distribution List:

Mr. Allan Kanady (2 bound copies) Omega Termite Control, Inc. 807 75th Avenue Oakland, California

Mr. Jerry Wickham (electronic copy) Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

GeoTracker (electronic copy)

In Situ Ozone Oxidation System Installation and Startup Report ACEH Case No. RO0000508 AEI Project No. 262157 January 30, 2008 Page 21 **FIGURES**

2500 CAMINO DIABLO, SUITE 200, WALNUT CREEK

SITE LOCATION MAP

807 75th AVENUE OAKLAND, CALIFORNIA FIGURE 1 PROJECT NO. 262157

FIGURE 9: DISSOLVED OXYGEN CONCENTRATIONS OVER TIME (SHALLOW WELLS)

Omega Termite, 1075 40th Street, Oakland, California

FIGURE 10: DISSOLVED OXYGEN CONCENTRATIONS OVER TIME (DEEP WELLS)

Omega Termite, 1075 40th Street, Oakland, California

FIGURE 11: O3 DELIVERY PRESSURE VS TIME (SHALLOW WELLS) Omega Termite, 807 75th Avenue, Oakland, California

FIGURE 12: O3 DELIVERY PRESSURE VS TIME (DEEP WELLS) Omega Termite, 807 75th Avenue, Oakland, California

FIGURE 13: MASS OF OZONE INJECTED PER WELL (SHALLOW WELLS)

Omega Termite, 1075 40th Street, Oakland, California

FIGURE 14: MASS OF OZONE INJECTED PER WELL (DEEP WELLS)

Omega Termite, 1075 40th Street, Oakland, California

FIGURE 15: TOTAL MASS OF OZONE INJECTED TO DATE

Omega Termite, 1075 40th Street, Oakland, California

TABLES

Well ID	Date	Well Elevation* (ft msl)	Depth to Water (ft toc)	Groundwater Elevation (ft msl)	Elevation Change (ft)
MW-1	07/30/99	10.68	5.82	4.86	
	11/09/99	10.68	5.70	4.98	0.12
	02/23/00	10.68	2.84	7.84	2.86
	05/26/00	10.68	5.50	5.18	-2.66
	10/10/00	10.68	5.70	4.98	-0.20
	02/07/01	10.68	5.25	5.43	0.45
	05/25/01	10.68	5.25	5.43	0.00
	09/19/01	10.68	5.51	5.17	-0.26
	02/06/02	10.68	NM	NM	NM
	05/17/02	10.68	5.30	5.38	
	08/20/02	10.68	5.39	5.29	-0.09
	01/10/03	10.68	4.11	6.57	1.28
	04/14/03	10.68	4.85	5.83	-0.74
	07/14/03	10.68	5.08	5.60	-0.23
	10/14/03	10.68	5.63	5.05	-0.55
	01/13/04	10.68	4.53	6.15	1.10
	04/15/04	10.68	5.14	5.54	-0.61
	07/15/04	10.68	5.42	5.26	-0.28
	10/18/04	10.68	5.24	5.44	0.18
	01/25/05	10.68	4.47	6.21	0.77
	04/19/05	10.68	4.66	6.02	-0.19
	07/18/05	10.68	4.91	5.77	-0.25
	10/18/05	10.68	5.24	5.44	-0.33
	11/03/05	10.68	5.31	5.37	-0.07
	01/11/06	10.68	4.08	6.60	1.23
	03/13/06	10.68	3.76	6.92	0.32
	06/15/06	10.68	4.79	5.89	-1.03
	08/02/06	10.68	5.14	5.54	-0.35
	09/20/06	10.68	5.38	5.30	-0.24
	01/02/07	10.68	4.64	6.04	0.74
	6/6/2007	10.68	5.14	5.54	-0.50
	10/04/07	10.68	5.32	5.30	-0.18
MW-2	07/30/99	12.15	6.64	5.51	
	11/09/99	12.15	6.42	5.73	0.22
	02/23/00	12.15	3.31	8.84	3.11
	05/26/00	12.15	6.34	5.81	-3.03
	10/10/00	12.15	6.52	5.63	-0.18
	02/07/01	12.15	5.90	6.25	0.62
	05/25/01 12.		6.08	6.07	-0.18
	09/19/01	12.15	6.53	5.62	-0.45
	02/06/02 12.15		5.72	6.43	0.81
	05/17/02	12.15	6.17	5.98	-0.45
	08/20/02	12.15	NM	NM	NM
	01/10/03	12.15	5.12	7.03	

Well ID	Date	Well Elevation* (ft msl)	Depth to Water (ft toc)	Groundwater Elevation (ft msl)	Elevation Change (ft)
MW-2	04/14/03	12.15	4.98	7.17	0.14
cont.	07/14/03	12.15	5.99	6.16	-1.01
	10/14/03	12.15	6.43	5.72	-0.44
	01/13/04	12.15	5.42	6.73	1.01
	04/15/04	12.15	6.02	6.13	-0.60
	07/15/04	12.15	5.27	6.88	0.75
	10/18/04	12.15	6.12	6.03	-0.85
	04/19/05	12.15	5.61	6.54	0.51
	07/18/05	12.15	5.84	6.31	-0.23
	10/19/05	12.15	6.17	5.98	-0.33
	11/03/05	12.15	6.21	5.94	-0.04
	01/11/06	12.15	5.11	7.04	1.10
	03/13/06	12.15	5.24	6.91	-0.13
	06/15/06	12.15	6.23	5.92	-0.99
	09/20/06	12.15	6.63	5.52	-0.40
	01/02/06	12.15	6.09	6.06	0.54
	6/6/2007	12.15	6.57	5.58	-0.48
	10/04/07	12.15	6.63	5.52	-0.06
MW-3	07/30/99	10.40	5.35	5.05	
	11/09/99	10.40	5.11	5.29	0.24
	02/23/00	10.40	2.37	8.03	2.74
	05/26/00	10.40	4.98	5.42	-2.61
	10/10/00	10.40	5.24	5.16	-0.26
	02/07/01	10.40	4.73	5.67	0.51
	05/25/01	10.40	4.73	5.67	0.00
	09/19/01	10.40	5.07	5.33	-0.34
	02/06/02	10.40	4.69	5.71	0.38
	05/17/02	10.40	4.80	5.60	-0.11
	08/20/02	10.40	4.97	5.43	-0.17
	01/10/03	10.40	3.59	6.81	1.38
	04/14/03	10.40	5.40	5.00	-1.81
	07/14/03	10.40	4.69	5.71	0.71
	10/14/03	10.40	5.16	5.24	-0.47
	01/13/04	10.40	4.15	6.25	1.01
	04/15/04	10.40	4.73	5.67	-0.58
	07/15/04	10.40	5.03	5.37	-0.30
	10/18/04	10.40	4.85	5.55	0.18
	01/25/05	10.40	4.13	6.27	0.72
	04/19/05	10.40	4.23	6.17	-0.10
	0//18/05	10.40	4.56	5.84	-0.33
	10/18/05	10.40	4.82	5.58 5.52	-0.26
	11/03/05	10.40	4.8/	5.55	-0.05
	01/11/06 02/12/06	10.40	3.0Z	0.78	1.25
	05/15/00	10.40	5.47 1 29	0.93	0.15
	00/15/00	10.40	4.38	0.02	-0.91
	00/02/00	10.40	4.09	J./1 5 56	-0.51
	07/20/20	10.40	4.04	5.50	-0.15
	6/6/2007	10.40	5.75 A 70	5 70	_0.07
	10/04/07	10.40	4.75	5.65	-0.05

Well ID	Date	Well Elevation* (ft msl)	Depth to Water (ft toc)	Groundwater Elevation (ft msl)	Elevation Change (ft)
MW-4	07/30/99	10.31	5.45	4.86	
	11/09/99	10.31	5.31	5.00	0.14
	02/23/00	10.31	2.72	7.59	2.59
	05/26/00	10.31	5.07	5.24	-2.35
	10/10/00	10.31	5.32	4.99	-0.25
	02/07/01	10.31	4.73	5.58	0.59
	05/25/01	10.31	4.90	5.41	-0.17
	09/19/01	10.31	5.16	5.15	-0.26
	02/06/02	10.31	4.65	5.66	0.51
	05/17/02	10.31	4.90	5.41	-0.25
	08/20/02	10.31	5.02	5.29	-0.12
	01/10/03	10.31	3.78	6.53	1.24
	04/14/03	10.31	4.11	6.20	-0.33
	07/14/03	10.31	4.75	5.56	-0.64
	10/14/03	10.31	5.28	5.03	-0.53
	01/13/04	10.31	4.07	6.24	1.21
	04/15/04	10.31	4.70	5.61	-0.63
	07/15/04	10.31	5.09	5.22	-0.39
	10/18/04	10.31	4.86	5.45	0.23
	01/25/05	10.31	4.02	6.29	0.84
	04/19/05	10.31	4.17	6.14 5.82	-0.15
	0//18/05	10.31	4.49	5.82	-0.32
	10/18/05	10.31	4.85	5.48	-0.34
	01/11/06	10.31	4.00	5.45	-0.03
	01/11/00	10.31	3.38	0.73	0.30
	06/15/06	10.31	3.28 4.37	7.03 5.94	-1.09
	09/20/06	10.31	4.86	5.45	-0.49
	01/02/07	10.31	4.00	6 14	0.49
	6/6/2007	10.31	4.68	5.63	-0.51
	10/04/07	10.31	4.78	5.53	-0.10
TW-5	09/19/01		6.59		
	05/17/02		6.56		0.03
	08/20/02		6.62		-0.06
	01/10/03		4.66		1.96
	04/14/03		5.30		-0.64
	07/14/03		5.84		-0.54
	07/14/03		5.84		0.00
	10/14/03		6.08		-0.24
	01/13/04		4.83		1.25
	04/15/04		5.04		-0.81
	10/18/04		5.05		-0.23
	10/16/04		5.93		-0.00
	01/23/03		5.15		0.82
	07/18/05		5.27		-0.14
	10/18/05		5.70 6.04		-0.28
	11/03/05		6.09		-0.05
	01/11/06		4.72		1.37
	03/13/06		4.51		0.21
	04/26/06		5.02		-0.51
	01/02/07		Well aband	oned 12/20/06	

Well ID	Date	Well Elevation* (ft msl)	Depth to Water (ft toc)	Groundwater Elevation (ft msl)	Elevation Change (ft)
MW-6	03/13/06	12.35	5.69	6.66	
	06/15/06	12.35	6.50	5.85	-0.81
	09/20/06	12.35	6.84	5.51	-0.34
	01/02/07	12.35	6.44	5.91	0.40
	6/6/2007	12.35	6.82	5.53	-0.38
	10/04/07	12.35	6.83	5.52	-0.01
MW-7	03/13/06	11.16	3.36	7.80	
	06/15/06	11.16	3.95	7.21	-0.59
	09/20/06	11.16	4.77	6.39	-0.82
	01/02/07	11.16	4.17	6.99	0.60
	6/6/2007	11.16	4.69	6.47	-0.52
	10/04/07	11.16	5.15	6.01	-0.46
MW-8	03/13/06	12.42	4.64	7.78	
	06/15/06	12.42	5.21	7.21	-0.57
	09/20/06	12.42	6.03	6.39	-0.82
	01/02/07	12.42	5.97	6.45	0.06
	6/6/2007	12.42	5.93	6.49	0.04
	10/04/07	12.42	6.64	5.78	-0.71
MW-9	03/13/06	11.22	4.32	6.90	
	06/15/06	11.22	5.35	5.87	-1.03
	08/02/06	11.22	5.70	5.52	-0.35
	09/20/06	11.22	5.81	5.41	-0.11
	01/02/07	11.22	5.19	6.03	0.62
	6/6/2007	11.22	5.67	5.55	-0.48
	10/04/07	11.22	5.89	5.33	-0.22
MW-10	03/13/06	10.31	3.28	7.03	
	06/15/06	10.31	4.34	5.97	-1.06
	08/02/06	10.31	4.66	5.65	-0.32
	09/20/06	10.31	4.79	5.52	-0.13
	01/02/07	10.31	4.26	6.05	0.53
	6/6/2007	10.31	4.66	5.65	-0.40
	10/04/07	10.31	4.74	5.57	-0.08
MW-11	01/02/07	10.96	3.94	7.02	
	6/6/2007	10.96	4.51	6.45	-0.57
	10/04/07	10.96	5.03	5.93	-0.52
MW-12	12 01/02/07 10.46		3.43	7.03	
	6/6/2007	10.46	3.81	6.65	-0.38
	10/04/07	10.46	4.38	6.08	-0.57

NOTES:

Wells surveyed 12/9/02 by Morrow Surveying, resurveyed on 3/02/06, 1/16/07 by Morrow Surveying ft toc = depth to water measured from the top of well casing

NM - not measured

ft msl = feet above mean sea level

Episode #	Date	Average Elevation (ft)	Elevation Change (ft)	Flow Direction / Gradient
1	07/30/99	5.07	-	
2	11/09/99	5.25	0.18	0.0056 / SW
3	02/23/00	8.08	2.83	0.008 / S
4	05/26/00	5.41	-2.66	0.003 / SW
5	10/10/00	5.19	-0.22	0.0036 / S
6	02/07/01	5.73	0.54	0.008 / S
7	05/25/01	5.65	-0.09	0.006 / S
8	09/19/01	5.32	-0.33	0.004 / S
9	02/06/02	5.93	0.62	0.005 / SE
10	05/17/02	5.59	-0.34	0.003 / SW
11	08/20/02	5.34	-0.26	0.002 / S
12	01/10/03	6.74	1.40	0.006 / E-NE
13	04/14/03	6.05	-0.69	0.016 / E-NE
14	07/14/03	5.76	-0.29	.0017 / S-SE
15	10/14/03	5.26	-0.50	0.003 / SE
16	01/13/04	6.34	1.08	0.001 / W
17	04/15/04	5.74	h	0.001 / W
18	07/15/04	5.68	-0.05	0.001 / W
19	10/18/04	5.62	-0.07	0.002 / N
20	01/25/05	6.33	0.71	0.002 / N
21	04/19/05	6.16	-0.17	0.001 / N
22	07/18/05	5.85	-0.31	0.0004 / S
23	10/18/05	5.61	-0.24	0.0017 / SW
24	01/11/06	6.79	1.18	0.0047 / N
25	3/13/06	6.57	-0.21	Shallow Zone .0004 / NW
	3/13/06	7.38		Deeper zone 0.036 / S
26	6/15/06	5.92	-0.65	Shallow Zone 0.0004 / NW
	6/15/06	6.40	-0.98	Deeper zone 0.06 / S
27	9/20/06	5.52	-0.41	Shallow Zone 0.005 / SW
	9/20/06	5.93	-0.47	Deeper zone 0.004/ S
28	1/2/07	6.02	0.50	Shallow Zone 0.0004 / NW
	1/2/07	6.38	0.45	Deeper Zone 0.06 / S
29	6/6/07	6.04	0.02	Shallow Zone 0.0004 / NW
	6/6/07	5.67	-0.71	Deeper Zone 0.06 / S
30	10/4/07	5.52	-0.50	Shallow Zone 0.005 / SW
	10/4/07	5.72	-0.66	Deeper Zone 0.012/ S

TABLE 2: GROUNDWATER ELEVATION & FLOW SUMMARY Omega Termite, 807 75th Ave., Oakland, California

NOTES:

Average water table elevation calculated using Microsoft Excel Shallow Zone Wells: MW-1, MW-2, MW-3, MW-4, MW-6 Deeper Zone Wells: MW-7. MW-8, MW-9, MW-10, MW-11, MW-12

TABLE 3: GROUNDWATER SAMPLE ANALYTICAL DATA (W/ DO & ORP)

Ethyl DTW TPH-g TPH-d MTBE MTBE ORP Sample TPH-mo Benzene Toluene **Xylenes** DO Well ID benzene (ug/L)(ug/L)(ug/L)Date (ft toc) (ug/L)(ug/L)(ug/L)(ug/L)(ug/L)(mg/L)(-eV) (ug/L)EPA Method 8015 8260B EPA Method 8021B Field Measurement **MW-1** 07/30/99 2.700 920 130 5.82 ND<10 5.5 18 ---------1,800 5.70 430 1.5 26 11/09/99 ---------ND<20 60 2.84 3,800 ND<10 1,500 78 35 02/23/00 ---------56 7,100 2,800 70 220 81 05/26/00 5.50 ND<10 ---------10/10/00 5.70 980 ND<5.0 260 2.9 10 11 ----------02/07/01 5.25 570 ND<5.0 150 1.8 4.9 9.3 ------05/25/01 5.25 18,000 ND<100 3,800 350 550 620 ---------09/19/01 5.51 840 ND<5.0 190 4.0 4.6 5.3 ------920 4,500 29 05/17/02 5.30 13,000 ND<5.0 50 58 ---08/20/02 5.39 2,100 740 ND<5,000 ND<15 820 4.5 6.4 9.6 ---01/10/03 4.11 95 ND<5,000 ND<5.0 3.9 6.5 26023 0.66 ---4.85 340 ND<5.0 4.3 04/14/03 310 87 1.3 5.6 ------5.08 420 07/14/03 750 700 ND<10 0.84 37 6.0 ---930 460 10/14/03 5.63 200ND<5.0 0.83 2.2 2.7 62 ---440 ND<250 190 18.0 01/13/04 4.53 510 ND<5.0 1.7 11 ---04/15/04 5.14 740 490 ND<250 ND<10 240 ND<0.5 5.0 9.6 ---07/15/04 5.42 250 420 260 ---ND<5.0 78 ND<0.5 5.0 4.4 5.42 170 510 290 ND<5.0 33 0.75 1.7 3.5 10/18/04 ---01/25/05 4.47 240 390 ND<250 ND<5.0 3.0 ---86 0.82 13 04/19/05 4.66 5,100 460 ND<250 ---ND<50 2,100 5.2 13 84 07/18/05 4.91 3.300 700 350 ---ND<45 1.500 2.813 24 8.6 10/18/05 5.24 560 550 330 ND<5.0 190 ND<0.5 3.0 ---ND<0.5 01/11/06 4.08 240 270 ND<250 ---ND<5.0 93 1.3 3.4 0.44 -52.2 3.76 840 260 ND<250 0.89 ND<5.0 330 1.3 5.1 17 2.7 -377.6 03/13/06 06/15/06 4.79 3,200 640 320 ---ND<25 1,400 3.1 10 71 2.18 -0.9 09/21/06 5.38 3,500 550 270 ---ND<25 1,700 ND<2.5 14 23 0.11 -82.5 7 01/02/07 4.64 410 240 ND<250 ___ ND<5.0 150 0.55 1.0 0.31 -68.4 06/06/07 5.54 2,500 540 300 ND<20 910 3.4 7.7 55 0.17 21.2 ---07/11/07 4.98 2.000450 ND<250 ND<10 620 1.5 5.9 31 9.28 -105.3---10/04/07 5.32 500 440 260 ND<5.0 140 ND<0.5 8 0.51 -39.9 ---1.8 MW-2 07/30/99 6.64 1,200 ND<10 29 2.5 51 100 ---------11/09/99 6.42 1,300 ND<30 26 1.1 55 32 ---------3.31 5,000 200 18 390 440 02/23/00 ND<10 ---------6.34 2,700 69 13 83 68 05/26/00 ---------ND<10 ND<10 4.7 6.52 810 17 42 46 10/10/00 ---------2,600 70 100 02/07/01 5.90 ND<10 15 80 ----------05/25/01 6.08 2,400 ND<5.0 75 16 85 100 ---------09/19/01 6.53 1,200 ND<5.0 10 8.5 46 55 ---------02/06/02 5.72 1,800 ND<50 14 11 58 59 ---------05/17/02 6.17 2,000 860 8.1 19 1.1 0.75 88 ---01/10/03 5.12 2,000 910 ND<5000 ---ND<50 11 11 96 100 04/14/03 4.98 2.400 800 ND<10 16 10 100 73 ---07/14/03 5.99 1,900 970 ND<15 18 4.8 79 78 ---1,300 5.9 87 78 10/14/03 6.43 1,600 ND<250 ND<10 14 ---2,900 960 ND<250 ND<50 190 150 01/13/04 5.72 26 13 ---2,700 ND<250 28 120 100 04/15/04 6.02 1,100 ----ND<15 11 07/15/04 5.27 2,300 1,000 ND<250 ND<10 8.8 3.8 96 84 ---10/18/04 5.27 2,400 910 ND<250 ND<10 8.6 8.9 68 72 ---01/25/05 5.41 3,500 1,200 ND<250 ---ND<50 21 11 170 120 04/19/05 5.61 3,400 1,700 ND<250 ---ND<15 15 7.4 150 94 1,400 9.7 89 07/18/05 5.84 3,400 ND<250 ---ND<5.0 11 100 10/18/05 6.17 3,000 2,000 270 ND<5.0 8.4 6.7 88 86

Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Sample Date	DTW (ft toc)	TPH-g (ug/L)	TPH-d (ug/L)	TPH-mo (ug/L)	MTBE (ug/L)	MTBE (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl benzene (ug/L)	Xylenes (ug/L)	DO (mg/L)	ORP (-eV)
MW-2	01/11/06	5.11	3,400	1,700	ND<250		ND<90	18	9.4	170	87	0.11	-77.9
continued	03/13/06	5.24	3,400	1,200	ND<250	0.76	ND<50	20	9.4	110	80	1.9	-458.3
	06/15/06	6.23	2,200	2,400	270		ND<10	8.4	ND<1.0	81	72	3.14	-81.7
	09/20/06	6.63	2,400	860	ND<250		ND<50	12	13	46	65	0.08	-63.9
	01/02/07	6.09	3,800	2,100	ND<250		ND<25	11	7.6	110	120	0.25	-221.4
	06/06/07	6.57	3,800	1,500	ND<250		ND<20	17	17	75	58	0.21	-118.8
	07/11/07	6.44	5,300	2,900	480		ND<17	10	8	47	72	0.27	-138.4
	10/04/07	6.63	660	1,300	ND<250		ND<5.0	1.8	0.83	40	45	0.41	-86.6
MW-3	07/30/99	5.35	2,700				ND<10	220	15	130	230		
	11/09/99	5.11	3,100				15	440	8.8	150	96		
	02/23/00	2.37	1,800				ND<15	180	11	82	79		
	05/26/00	4.98	1,600				6.4	140	10	69	63		
	10/10/00	5.24	1,100				ND<10	110	4.4	63	51		
	02/07/01	4.73	1,100				ND<10	130	5.1	68	65		
	05/25/01	4.73	1,200				ND<6.0	120	5.4	69	64		
	09/19/01	5.07	800				<5.0	78	3.5	52	37		
	02/06/02	4.69	1,100				ND<10	130	4.7	77	71		
	05/17/02	4.80	2,800	810		2.0	ND<50	410	23	160	210		
	08/20/02	4.97	780	270	ND<5000		ND<10	110	2.8	63	41		
	01/10/03	3.59	1,100	510	ND<5000		ND<20	160	3.4	98	84		
	04/14/03	5.40	690	230	-		ND<5.0	60 120	2.3	44	34		
	0//14/03	4.09	900 500	380	- ND-250		ND<5.0	130	2.0	70	43		
	10/14/05	5.10 4.15	300 1.500	200	ND<250		ND<10	200	2.3	3/ 120	18		
	01/15/04	4.15	1,300	280	ND<250		ND<30	200	0.2	120	00 53		
	07/15/04	5.03	610	230	ND<250		ND < 5.0	73	2.1	51	29		
	10/18/04	5.03	370	270	ND<250		ND<5.0	45	1.2	47	29		
	01/25/05	4 13	840	300	ND<250		ND<5.0	85	2.4	68	20 45		
	04/19/05	4 23	1 100	380	ND<250		ND<5.0	140	4.0	95	59		
	07/18/05	4.66	740	290	ND<250		ND<5.0	98	2.0	70	35		
	10/18/05	4.82	420	220	ND<250		ND<5.0	38	1.1	35	16		
	01/11/06	3.73	740	260	ND<250		ND<5.0	75	2.5	60	32	0.21	341.3
	03/13/06	3.76	1,300	380	ND<250	1.1	ND<17	90	2.5	87	72	3.51	-316.7
	06/15/06	4.38	670	300	ND<250		ND<5.0	76	1.3	60	40	3.91	298.3
	09/20/06	4.84	510	300	310		ND<17	49	ND<1.7	50	36	0.06	93.3
	01/02/07	4.73	380	180	ND<250		ND<5.0	33	1.3	32	17	0.68	153.9
	06/06/07	4.70	460	230	ND<250		ND<5.0	40	1.9	39	22	0.28	215.3
	10/04/07	4.75	320	230	ND<250		ND<5.0	28	ND<0.5	29	17	0.5	-11.4
MW-4	07/30/99	5.45	340				ND<10	57	2.2	8.5	6.8		
	11/09/99	5.31	1,000				ND<10	220	< 0.5	17	7.1		
	02/23/00	2.72	980				ND<5.0	260	7	33	27		
	05/26/00	5.07	760				5.7	170	4.8	22	13		
	10/10/00	5.32	520				ND<10	130	2.3	22	10		
	02/07/01	4.73	680				ND<8.0	180	3.7	29	21		
	05/25/01	4.90	1,700				ND<10	510	9.6	44	46		
	09/19/01	5.16	680				ND<10	200	2.6	33	12		
	02/06/02	4.65	710				ND<15	220	2.8	40	21		
	05/17/02	4.90	1,300	190		3.3	ND<10	330	5.6	61	51		
	08/20/02	5.02	580	120	ND<5,000		ND<5.0	160	1.7	34	13		
	01/10/03	3.78	800	85	ND<5,000		ND<20	240	2.5	46	28		
	04/14/03	4.11	850	120			ND<10	220	2.7	47	26		

TABLE 3: GROUNDWATER SAMPLE ANALYTICAL DATA (W/ DO & ORP)Omega Termite, 807 75th Ave., Oakland, CA

TABLE 3: GROUNDWATER SAMPLE ANALYTICAL DATA (W/ DO & ORP)Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Sample Date	DTW (ft toc)	TPH-g (ug/L)	TPH-d (ug/L)	TPH-mo (ug/L)	MTBE (ug/L)	MTBE (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl benzene (ug/L)	Xylenes (ug/L)	DO (mg/L)	ORP (-eV)
MW-4	07/14/03	4.75	780	170			ND<20	220	1.4	44	23		
continued	10/14/03	5.25	420	110	ND<250		ND<5.0	120	0.95	31	8.2		
	01/13/04	4.07	120	69	ND<250		ND<10	30	0.52	8.1	4.7		
	04/15/04	4.70	660	120	ND<250		ND<25	200	2.2	39	24		
	07/15/04	5.09	500	92	ND<250		ND<5.0	130	1.3	35	15		
	10/18/04	5.09	350	18	ND<250		ND<5.0	76	0.68	22	4.9		
	01/25/05	4.02	580	110	ND<250		ND<5.0	140	1.2	37	20		
	04/19/05	4.17	790	130	ND<250		ND<5.0	200	1.7	51	28		
	07/18/05	4.49	490	140	ND<250		ND<5.0	140	0.99	36	11		
	10/18/05	4.83	320	84	ND<250		ND<5.0	72	0.59	20	4.4		
	01/11/06	3.58	310	98	ND<250		ND<5.0	88	0.65	26	9.0	0.51	71.7
	03/13/06	3.58	490	77	ND<250	1.9	ND<5.0	92	0.88	31	15	4.11	118.3
	06/15/06	4.37	460	86	ND<250		ND<25	93	ND<0.5	29	9.2	3.42	274.9
	09/20/06	4.86	260	170	360		ND<10	63	ND<0.5	23	4.7	0.08	390.8
	01/02/07	4.17	160	78	ND<250		ND<5.0	27	ND<0.5	10	2.0	2.77	493.6
	06/06/07	4.68	190	59	ND<250		ND<5.0	40	ND<0.5	14	3.6	0.41	236
	10/04/07	4.78	180	ND<50	ND<250		ND<5.0	44	ND<0.5	12	2.2	0.84	411.4
TW-5	10/10/00		5,800	2,900	ND<250		ND<50	650	60	190	230		
	02/07/01		720	650	450		ND<5.0	6.0	4.5	3.2	4.5		
	05/25/01		370	420	ND<250		ND<5.0	13.0	4.1	1.6	1.3		
	09/19/01	6.59	15,000	2,700,000	1,100,000		530	29	2.7	14	240		
	02/06/02		280	55,000	18,000		ND<5.0	2.3	0.74	ND<0.5	0.70		
	05/17/02	6.56	480	41,000		ND<5.0	ND<5.0	1.6	1.1	0.8	ND<0.5		
	08/20/02	6.62	240	21,000	ND<5,000		ND<5.0	8.0	1.2	1.1	0.54		
	01/10/03	4.66	ND<50	1,300	ND<5,000		ND<5.0	5.4	0.58	ND<0.5	1.10		
	4/14/2003	5.30	160	2,300			ND<5.0	18	5.7	5.9	16		
	10/14/2003	5.84	100	16,000			ND<5.0	1.2	0.77	0.63	1.2		
	10/14/03	6.08	120	10,000	4,600		ND<5.0	1.6	1.6	ND<0.5	1.2		
	01/13/04	4.83	110	2,100	1,400		ND<5.0	8.4	1.2	ND<0.5	3.9		
	04/15/04	5.64	1/0	2,200	1,100		ND<5.0	2.5	1.2	ND<0.5	5.1		
	0//15/04	5.89	81	3,000	1,600		ND<5.0) 0.54	1.3	0.85 ND <0.5	4.1		
	10/18/04	5.89	230	3,700	1,600		ND<5.0	0.54	3.4 0.79	ND<0.5	0.93		
	01/25/05	5.15	03 ND <50	/50	640		ND<5.0	ND<0.5	0.78	ND<0.5	1.3 ND <0.5		
	04/19/05	5.21 5.76	ND<50	1,100	400		ND<5.0	ND<0.5	0.00	ND<0.5	ND<0.5		
	0//18/05	5./0 6.04	ND<30 70	//0	490		ND<5.0	ND<0.5	0.88	ND<0.5	ND<0.5		
	10/18/05	0.04	/ð ND<50	1,000	1,100	 ND<0.5	ND<5.0	ND<0.5	1.0 ND<0.5	ND<0.5	ND<0.5		
	01/11/00 02/12/06	4./2	ND<50	100	250 260	ND<0.5	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5		
	05/15/00	4.31	1ND<30	180 Not serve	200 plad baarii	11D50.3	U.S ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.6						
	01/02/07			noi sum	well	l abandone	ed on Dece	eaulea jor mber 20, 2	9006	STUCION			

Well ID	Sample Date	DTW (ft toc)	TPH-g (ug/L)	TPH-d (ug/L)	TPH-mo (ug/L)	MTBE (ug/L)	MTBE (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl benzene (ug/L)	Xylenes (ug/L)	DO (mg/L)	ORP (-eV)
MW-6	03/13/06	5 60	87	160	310	ND<0.5	ND<5.0	ND<0.5	0.83	13	0.80	5.02	-3/1 1
IVI VV -0	05/15/00	6.50	07 ND<50	110	ND-250	ND<0.5	ND<5.0	ND<0.5	0.05 ND<0.5	1.5	0.80	5.02	-341.1
	00/13/00	6.84	ND < 50	50	ND<250		ND<5.0	ND<0.5	ND<0.5	1.0 ND<0.5	0.56 ND<0.5	0.00	102.2
	01/02/07	6.44	ND < 50	120	ND<250		ND < 5.0	ND<0.5	ND<0.5	ND<0.5	ND < 0.5	0.09	53.4
	06/06/07	6.82	ND < 50	76	ND<250		ND < 5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.50	244 1
	10/04/07	6.83	ND<50	100	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.19	150 1
	10/04/07	0.05	110 \30	100	110 200				110 10.0		110 10.5	0.55	157.1
MW-7	03/13/06	3.36	460	3,500	360	ND<0.5	ND<5.0	2.5	1.0	ND<0.5	3.3	1.66	-354.8
	06/15/06	3.95	ND<50	520	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	2.49	36.9
	09/20/06	4.77	ND<50	150	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.08	
	01/02/07	4.17	ND<50	99	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.32	83.9
	06/06/07	4.69	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	9.25	282.4
	07/11/07		67	150	ND<250		ND<5.0	17	ND<0.5	ND<0.5	ND<0.5	20.89	-20.5
	10/04/07	5.15	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	9.67	186.1
MW-8	03/13/06	4.64	280	130	ND<250	ND<0.5	ND<5.0	ND<0.5	2.0	ND<0.5	1.3	1.55	-370.6
	06/15/06	5.21	ND<50	140	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.64	25.4
	09/20/06	6.03	ND<50	65	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.06	84.6
	01/02/07	5.97	ND<50	70	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.47	95.4
	06/06/07	5.93	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	2.78	269.4
	10/04/07	6.64	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	2.35	123.1
MW-9	03/13/06	4 32	1 100	14000^{1}	4 100	24	ND<5.0	85	18	0.64	100	1.26	-438 1
	06/15/06	5 35	460	2,100	710		ND<5.0	170	0.73	13	83	1.20	22.9
	09/21/06	5.81	130	1.400	460		ND<5.0	20	1.2	ND<0.5	2.6	0.1	91.8
	01/02/07	5.19	88	4.300	1.000		ND<5.0	5.1	0.67	ND<0.5	ND<0.5	0.99	-5.2
	06/06/07	5.67	64	320	250		ND<5.0	12	ND<0.5	ND<0.5	ND<0.5	0.83	138.7
	10/04/07	5.89	ND<50	140	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	3.43	110.6
	00/10/06			220									
MW-10	03/13/06	3.28	ND<50	220	ND<250	2.7	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	/.41	-344.1
	06/15/06	4.38	ND<50	300	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	2.72	20.3
	09/21/00	4.79	ND<50	280	400 ND <250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.08	13.9
	01/02/07	4.00	ND<50	230	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	3.10	102.7
	10/00/07	4.00	ND<50	230	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	4.33	103./
	10/04/07	4./4	ND<50	120	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.85	-/5.8
MW-11	01/02/07	3.94	160	2,700	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	1.7	0.22	45.9
	06/06/07	4.51	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	11.38	311.9
	07/11/07		ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	21.76	-17.4
	10/04/07	5.03	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	19.58	164.6
	01/05/05			100				ND 05	ND 0 -	ND 0.5	0.07	o :-	
MW-12	01/02/07	3.43	53	130	ND<250		1.4	ND<0.5	ND<0.5	ND<0.5	0.95	0.47	92.4
	06/06/07 10/04/07	3.81 4.38	ND<50 ND<50	ND<50 ND<50	ND<250 ND<250		ND<5.0 ND<5.0	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<5.0 ND<5.0	6.26 14.03	198.1 133.7

TABLE 3: GROUNDWATER SAMPLE ANALYTICAL DATA (W/ DO & ORP) Omega Termite, 807 75th Ave., Oakland, CA

--

NOTES:

TPH-g = total petroleum hydrocarbons as gasoline

TPH-d = total petroleum hydrocarbons as diesel

TPH-mo = total petroleum hydrocarbons as motor oil

MTBE = methyl tert-butyl ether

1 = light non-aqueous phase liquid

 μ g/L = micrograms per liter (parts per billion)

----- not sampled

ND = not detected

TABLE 4: GROUNDWATER SAMPLE ANALYTICAL DATA (FUEL OXYGENATES)Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	TAME (ug/L)	TBA (ug/L)	EDB (ug/L)	1,2-DCA (ug/L)	DIPE (ug/L)	ETBE (ug/L)	MTBE (ug/L)
MW-1	01/02/07	<0.5	9.7	<0.5	4.6	<0.5	<0.5	0.97
MW-2	01/02/07	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-3	01/02/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.55
MW-4	01/02/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.0
MW-9	01/02/07	<0.5	<0.5	<0.5	0.62	<0.5	<0.5	1.6
MW-10	01/02/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.1
MW-11	01/02/07	<0.5	<0.5	<0.5	2.9	<0.5	<0.5	<0.5
MW-12	01/02/07	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5

NOTES:

µg/L = micrograms per liter (parts per billion)DIPEDisopropyl etherTAMEtert-Amyl methyl etherDIPEDisopropyl etherTBAt-Butyl alcoholETBEEthyl ter-butyl etherEDB1,2-DibomoethaneMTBEMethyl-t-butyl ether1,2-DCA1,2-DichloroethaneMTBE

TABLE 5: SOIL SAMPLE ANALYTICAL DATAOmega Termite, 807 75th Street, Oakland, CA

	Sample ID	Date	TPH-g (mg/kg)	TPH-d (mg/kg)	TPH-mo (mg/kg)	MTBE (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl benzene (mg/kg)	Xylenes (mg/kg)
ĺ	MW-12-14	12/18/06	ND<1.0	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	MW-12-24	12/18/06	ND<1.0	ND<1.0		ND<0.05	0.094	ND<0.005	ND<0.005	ND<0.005
	MW-11-26	12/18/06	29	61		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	MW-11-31	12/18/06	ND<1.0	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	07 1 12	12/21/06	ND <1.0	ND <1.0		ND -0.05	ND <0.005	ND -0.005	ND <0.005	ND <0.005
	0Z-1-1Z	12/21/00	ND<1.0	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	0Z-2-17.5	12/19/00	0.3	1.9 ND (1.0		ND<0.05	0.19	ND<0.005	0.040	0.011 ND <0.005
	OZ-2-34	12/19/00	ND<1.0	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	0Z-3-21	12/19/00	ND < 1.0	3.4 ND <1.0		ND<0.05	ND<0.003	ND<0.005	ND<0.005	ND<0.005
	0Z-4-31	12/18/00	ND<1.0	ND<1.0		ND<0.05	0.015	ND<0.005	ND<0.005	ND<0.005
	0Z-3-10	12/21/00	54 1 2	22		ND<0.50	0.05	0.15	0.42	1.4
	0Z-3-31	12/21/00	1.5	4.0		ND<0.05	0.047	ND<0.003	0.011 ND <0.025	0.041
	0Z-0-11 07 6 21	12/21/00	51 17	22		ND<0.23	0.18	0.14	ND<0.023	0.004
	0Z-0-21	12/21/00	200	240		ND<0.03	0.10 ND <0.050	ND<0.003	ND<0.003	0.034
	0Z-0-20	12/21/00	12	240 5.0		ND<0.05	ND<0.050	ND<0.050	0.007 ND <0.005	0.17 ND <0.005
	0Z-7-29	12/20/06	12	5.9 2.0		ND<0.05	ND<0.003	ND<0.003	ND<0.003	ND<0.003
	OZ-8-11	12/20/06	9.4 20	2.0		ND<0.03	0.012	0.047	0.040	0.020
	02-8-31	12/20/00	28	19		ND<0.10	0.010	0.15	0.52	0.17
	MW6-10.5	02/15/06	ND<1.0	1.1	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	MW7-21.5	02/16/06	350	1,500	ND<50	ND<2.0	ND<0.2	ND<0.2	0.23	0.71
	MW7-31	02/16/06	4	6.4	ND<5.0	ND<0.05	ND<0.005	0.0091	0.0092	0.0083
	MW7-32	02/16/06	15	73	ND<5.0	ND<0.05	0.006	0.026	0.018	0.023
	MW8-27	02/15/06	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	MW9-29	02/16/06	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	MW10-25	02/15/06	69	290	ND<5.0	ND<0.05	ND<0.005	ND<0.005	0.046	0.12
	SB7-10	10/09/03	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	SB8-15	10/09/03	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	SB9-15	10/09/03	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	SB10-15	10/09/03	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	SB11-15	10/09/03	ND<1.0	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	SB12-15	10/10/03	ND<1.0	ND<1.0	ND <5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	SB13-14	10/10/03	ND<1.0			ND<0.05	0.049	ND<0.005	0.014	0.019
	SB14-4.5	10/10/03	360	130	ND <5.0	ND<2.5	1.4	1.5	8	37
	SB14-9.5	10/10/03	800	240	8.2	ND<2.0	2.9	3.5	16	71
	SB14-28.0	10/10/03	37	45	ND <5.0	ND<0.05	ND<0.005	ND<0.005	0.015	0.11

Ethyl TPH-g TPH-d **TPH-mo** MTBE Benzene Toluene **Xylenes** Sample ID Date benzene (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 2 SWS (8') 03/20/00 290 ND<0.5 0.84 1.3 6.3 ------SWN (8') 03/20/00 ND<0.05 ND<0.005 ND<0.005 0.007 0.008 1.8 ------SWE (8') 03/20/00 1800 ND<5.0 12 65 32 160 ------4.9 EB (7') 03/20/00 560 220 100 ND<1.0 0.59 7.3 40 EBW (11.5') 03/20/00 280 ND<0.21 2.7 5.2 23 6.6 -------MW-1 10' 06/25/99 ND<0.05 ND<0.005 ND<0.005 ND<0.005 ND<0.005 < 1.0-------MW-1 15' 06/25/99 ND<0.05 0.092 0.022 0.054 3.4 0.14 ------MW-2 10' 06/25/99 420 ND<0.1 2.7 <2 4.8 8.2 -------ND<0.05 ND<0.005 ND<0.005 ND<0.005 ND<0.005 MW-2 15' 06/25/99 < 1.0___ ---MW-3 10' 06/25/99 14 ND<0.05 0.3 0.091 0.29 0.28 -------MW-3 15' 06/25/99 ND<0.05 ND<0.005 ND<0.005 ND<0.005 ND<0.005 < 1.0------MW-4 10' 06/25/99 3.6 ND<0.05 0.71 ND<0.005 0.19 ND<0.005 ___ ---MW-4 15' 06/25/99 ND<0.05 ND<0.005 ND<0.005 ND<0.005 ND<0.005 < 1.0------BH-1 10' 01/31/97 4.1 ___ ---ND<5.0 0.078 0.009 0.11 0.17 BH-2 10' 01/31/97 0.13 0.46 0.05 0.089 0.061 23 ___ ---BH-3 10' 01/31/97 280 3.2 1.8 3 3.8 12 ------

0.025

23

0.25

1.2

15

0.83

0.99

83

0.36

15

0.95

1.4

37

8.5

0.86

71

0.46

65

0.53

2.9

120

2.4

4.7

310

0.03

4.3

3

1.8

2.8

2.5

0.077

13

NOTES:

TPH-g = Total Petroleum Hydrocarbons as gasoline

TPH-d = Total Petroleum Hydrocarbons as diesel

TPH-mo = Total Petroleum Hydrocarbons as motor oil

01/31/97

01/31/97

01/31/97

09/15/96

09/15/96

09/15/96

09/15/96

09/15/96

4.6

800

110

64

2600

360

41

4300

ND<5.0

5

0.53

0.16

25

2.5

ND<0.1

ND<10

MTBE = methyl tert-butyl ether

BH-4 10'

BH-5 10'

BH-6 10'

8KEW (10')

8KWW (10')

8KNWW (10')

1KE (9')

K (9')

--- sample not analyzed by this method

TABLE 5: SOIL SAMPLE ANALYTICAL DATAOmega Termite, 807 75th Street, Oakland, CA

Well ID	Date Installed	Well Box Elevation (ft msl)	Top of Casing (ft)	Depth to Water (1/2/07)	Casing Material	Total Depth (ft bgs)	Well Depth (ft bgs)	Borehole Diameter (inches)	Casing Diameter (inches)	Screened Interval (feet)	Slot Size (inches)	Filter Pack Interval (ft bgs)	Filter Pack Material	Bentonite Seal (ft bgs)	Grout Seal (feet)
MW-1	06/25/99	11.28	10.68	4.64	PVC	20	20	8 1/4	2	20.0-5.0	0.020	20.0-3.5	#3 sand	3.5-2.5	2.5-0.5
MW-2	06/25/99	12.55	12.15	6.09	PVC	20	20	8 1/4	2	20.0-5.0	0.020	20.0-3.5	#3 sand	3.5-2.5	2.5-0.5
MW-3	06/25/99	10.67	10.40	4.73	PVC	20	20	8 1/4	2	20.0-5.0	0.020	20.0-3.5	#3 sand	3.5-2.5	2.5-0.5
MW-4	06/25/99	10.56	10.31	4.17	PVC	20	20	8 1/4	2	20.0-5.0	0.020	20.0-3.5	#3 sand	3.5-2.5	2.5-0.5
TW-5	March 2000	11.69	11.58	Destroyed	1 12/20/06	10	10	NA	4	10.0-5.0	1/4" drilled	NA	NA	NA	2.0-0.5
MW-6	02/15/06	12.74	12.35	6.44	PVC	14	14	8 1/4	2	14.0-5.0	0.010	14.0-4.5	# 2/12	4.5-3.5	3.5-0.5
MW-7	02/16/06	11.64	11.16	4.17	PVC	33	33	8 1/4	2	33.0-26.0	0.010	33.0-25.0	# 2/12	25.0-23.0	23.0-0.5
MW-8	02/15/06	12.57	12.42	58.97	PVC	31	31	8 1/4	2	31.0-26.0	0.010	31.0-25.0	# 2/12	25.0-23.0	23.0-0.5
MW-9	02/16/06	11.41	11.22	5.19	PVC	30	30	8 1/4	2	30.0-25.0	0.010	30.0-24.0	# 2/12	24.0-22.0	22.0-0.5
MW-10	02/15/06	10.60	10.31	4.26	PVC	30	30	8 1/4	2	30.0-25.0	0.010	30.0-24.0	# 2/12	24.0-22.0	22.0-0.5
MW-11	12/18/06	11.14	10.96	3.94	PVC	35	35	8 1/4	2	35.0-25.0	0.010	35.0-23.0	# 2/12	23.0-21.0	21.0-0.5
MW-12	12/18/06	11.19	10.46	3.43	PVC	35	35	8 1/4	2	35.0-25.0	0.010	35.0-23.0	# 2/12	23.0-21.0	21.0-0.5

TABLE 6: MONITORING WELL CONSTRUCTION DETAILSOmega Termite, 807 75th Ave., Oakland, California

Well ID	Date Installed	Injection Point	Casing Material	Total Depth (ft bgs)	Well Depth (ft bgs)	Borehole Diameter (inches)	Casing Diameter (inches)	Screened Interval (feet)	Slot Size (inches)	Filter Pack Interval (ft bgs)	Filter Pack Material	Bentonite Seal (ft bgs)	Grout Seal (ft bgs)
OZ-1	12/21/06	Single Shallow Point	PVC	19.5	19.5	8 1/4	1	19.5-18.0	micropore	19.5-9.0	#2/16	16.0-2.0	2.0-1.0
OZ-2	12/19/06	Shallow Point Deep Point	PVC	35	19.5 34	10 1/2	1 1	19.5-18.0 34.0-32.5	micropore micropore	19.5-16.0 35.0-30.0	#2/16 #2/16	16.0-2.0 30.0-19.5	2.0-1.0
OZ-3	12/19/06	Shallow Point Deep Point	PVC	35	15 34	10 1/2	1 1	15.0-13.5 34.0-32.5	micropore micropore	16.0-12.0 35.0-30.0	#2/16 #2/16	12.0-2.0 30.0-16.0	3.0-1.0
OZ-4	12/19/06	Shallow Point Deep Point	PVC	35	15 34	10 1/2	1 1	15.0-13.5 34.0-32.5	micropore micropore	16.0-12.0 35.0-30.0	#2/16 #2/16	12.0-2.0 30.0-16.0	2.0-1.0
OZ-5	12/21/06	Shallow Point Deep Point	PVC	35	15 34	10 1/2	1 1	15.0-13.5 34.0-32.5	micropore micropore	16.0-12.0 35.0-30.0	#2/16 #2/16	12.0-2.0 30.0-16.0	2.0-1.0
OZ-6	12/21/06	Shallow Point Deep Point	PVC	35	15 34	10 1/2	1 1	15.0-13.5 34.0-32.5	micropore micropore	16.0-12.0 35.0-30.0	#2/16 #2/16	12.0-2.0 30.0-16.0	2.0-1.0
OZ-7	12/20/06	Shallow Point Deep Point	PVC	35	15 34	10 1/2	1 1	15.0-13.5 34.0-32.5	micropore micropore	16.0-12.0 35.0-30.0	#2/16 #2/16	12.0-2.0 30.0-16.0	2.0-1.0
OZ-8	12/20/06	Shallow Point Deep Point	PVC	35	15 34	10 1/2	1 1	15.0-13.5 34.0-32.5	micropore micropore	16.0-12.0 35.0-30.0	#2/16 #2/16	12.0-2.0 30.0-16.0	2.0-1.0
OZ-9	01/19/07	Shallow Point Deep Point	PVC	35	20 34	8 1/4	1 1	21.0-19.5 34.0-32.5	micropore micropore	22.0-18.0 35.0-30.0	#2/16 #2/16	18.0-2.0 30.0-22.0	2.0-1.0

TABLE 7: OZONE WELL CONSTRUCTION DETAILSOmega Termite, 807 75th Ave., Oakland, California

Well ID	Notes	Date	Dwell Time (min)	Total Runtime (hr:min)	Sparge Point Status	Ozone or Oxygen?	O3 Delivery Pressure (psig)	O3 Flow Rate (acfm)	O2 Flow Rate (acfh)	O3 Reactor Pressure (psig)
OZ-1S	1	05/09/07	4	11:00	ENABLED	OZONE	20.0	1.3	-	-
(Valve 1)	2	06/07/07	4	23:23	ENABLED	OZONE	19.5	1.3	12.5	11.5
		07/10/07	4	25:46	ENABLED	OZONE	20.0	1.3	12.0	11.0
		07/16/07	8	32:18	ENABLED	OZONE	20.0	1.5	13.0	10.0
		08/02/07	8	51:14	ENABLED	OZONE	19.5	1.3	12.5	11.5
		08/22/07	5	73:33	ENABLED	OZONE	18.0	1.3	12.5	11.0
		09/13/07	4	99:38	ENABLED	OZONE	19.5	1.3	11.5	12.0
		09/20/07	0	121.17		OZONE	19.5	1.2	11.5	11.0
		10/23/07	8	121.17	ENABLED	OZONE	21.0	1.2	13.0	10.5
	3	12/26/07	8	150.15		OZONE -	22.0	-	-	-
	5	01/17/08	8	151:44	ENABLED	OZONE	22.0	1.4	12.5	10.5
OZ-2S	1	05/09/07	4	11:00	ENABLED	OZONE	12.0	1.3	-	-
(Valve 2)	2	06/07/07	4	23:18	ENABLED	OZONE	12.0	1.5	13.0	9.5
		07/10/07	4	25:40	ENABLED	OZONE	10.5	1.8	12.5	10.0
		07/16/07	8	32:10	ENABLED	OZONE	11.0	1.8	14.0	9.0
		08/02/07	8	51:08	ENABLED	OZONE	11.0	1.6	12.5	10.0
		08/22/07	5	73:24	ENABLED	OZONE	10.5	1.5	12.5	10.5
		09/13/07	4	99:32	ENABLED	OZONE	11.0	1.5	12.0	11.0
		09/26/07	8	115:03	ENABLED	OZONE	11.5	1.5	11.5	10.5
		10/23/07	8	121:14	ENABLED	OZONE	12.0	1.6	13.0	10.0
	2	11/13/07	8	130:10	ENABLED	OZONE	12.0	1.5	13.0	9.0
	5	01/17/08	8	151:30	ENABLED	OZONE	12.0 12.0	1.8	12.5	9.5
OZ-3S	1	05/09/07	4	11:00	ENABLED	OZONE	23.0	1.0	-	-
(Valve 3)	2	06/07/07	4	23:18	ENABLED	OZONE	26.0	1.0	11.0	12.0
		07/10/07	4	25:40	ENABLED	OZONE	33.5	1.1	11.0	11.5
		07/16/07	4	32:04	ENABLED	OZONE	32.0	1.2	12.0	11.5
		08/02/07	8	51:08	ENABLED	OZONE	34.0	1.1	12.0	12.0
		08/22/07	5	73:24	ENABLED	OZONE	30.5	1.1	11.5	12.0
		09/13/07	4	99:32	ENABLED	OZONE	30.0	1.1	11.0	13.0
		09/26/07	8	115:03	ENABLED	OZONE	31.5	1.0	11.5	12.0
		10/23/07	8	121:14	ENABLED	OZONE	32.0	1.1	11.0	11.5
	2	11/13/07	8	136:10	ENABLED	OZONE	42.0	0.8	12.0	12.0
	3	01/17/08	8 8	- 181:08	ENABLED	OZONE	40.0 37.5	1.2	11.5	- 11.0
OZ-4S	1	05/09/07	4	11:00	ENABLED	OZONE	16.0	1.1	-	-
(Valve 4)	2	06/07/07	4	23:18	ENABLED	OZONE	18.0	1.5	12.0	10.5
(, , , ,		07/10/07	4	25:40	ENABLED	OZONE	18.0	1.5	12.0	10.5
		07/16/07	4	32:04	ENABLED	OZONE	20.0	1.4	12.0	10.5
		08/02/07	8	51:08	ENABLED	OZONE	19.0	1.4	11.5	10.5
		08/22/07	5	73:24	ENABLED	OZONE	18.5	1.4	11.5	11.0
		09/13/07	4	99:32	ENABLED	OZONE	30.0	1.1	11.5	12.5
		09/26/07	8	99:32	DISABLED	OZONE	30.0	1.1	11.5	12.5
		10/23/07	8	99:32	ENABLED	OZONE	26.0	1.3	12.0	11.5
	-	11/13/07	8	113:28	ENABLED	OZONE	25.0	1.1	12.5	10.5
	3	12/26/07 01/17/08	8 8	158:23	ENABLED	OZONE	26.0 27.0	- 1.4	12.0	- 11.0

Well ID	Notes	Date	Dwell Time (min)	Total Runtime (hr:min)	Sparge Point Status	Ozone or Oxygen?	O3 Delivery Pressure (psig)	O3 Flow Rate (acfm)	O2 Flow Rate (acfh)	O3 Reactor Pressure (psig)
OZ-5S	1	05/09/07	4	11:00	ENABLED	OZONE	21.0	1.0	-	-
(Valve 5)	2	06/07/07	4	23:14	ENABLED	OZONE	22.0	1.2	12.0	11.0
		07/10/07	4	25:39	ENABLED	OZONE	23.0	1.4	12.0	10.5
		07/16/07	4	32:04	ENABLED	OZONE	23.0	1.4	12.0	11.0
		08/02/07	8	51:08	ENABLED	OZONE	22.0	1.3	12.0	11.0
		08/22/07	5	73:24	ENABLED	OZONE	22.0	1.3	11.5	11.0
		09/13/07	4	83:11	ENABLED	OZONE	22.0	1.3	11.5	12.0
		09/26/07	8	98:42	ENABLED	OZONE	22.0	1.4	11.5	11.0
		10/23/07	8	104:53	DISABLED	OZONE	22.0	1.3	11.5	11.0
	2	11/13/07	8	119:19	ENABLED	OZONE	24.0	1.2	112.5	10.0
	3	01/17/08	8 8	135:05	ENABLED	OZONE	24.5 25.0	1.4	12.0	10.5
OZ-6S	1	05/09/07	4	11:00	ENABLED	OZONE	21.0	1.0	-	-
(Valve 6)	2	06/07/07	4	23:12	ENABLED	OZONE	22.0	1.3	12.0	11.0
		07/10/07	4	25:36	ENABLED	OZONE	24.0	1.4	12.0	11.0
		07/16/07	4	32:00	ENABLED	OZONE	24.0	1.4	12.0	11.0
		08/02/07	8	51:08	ENABLED	OZONE	22.5	1.3	12.0	11.0
		08/22/07	5	73:24	ENABLED	OZONE	22.0	1.3	11.5	11.0
		09/13/07	4	99:32	ENABLED	OZONE	21.0	1.3	11.5	12.0
		09/26/07	8	115:03	ENABLED	OZONE	22.0	1.3	11.5	11.5
		10/23/07	8	121:14	ENABLED	OZONE	28.5	1.2	11.0	12.0
	2	11/13/07	8	136:09	ENABLED	OZONE	24.5	1.1	13.0	10.5
	3	01/17/08	8 8	- 181:04	ENABLED	OZONE	25.0 26.0	1.4	12.0	11.0
OZ-7S	1	05/09/07	4	11:00	ENABLED	OZONE	16.0	1.2	-	-
(Valve 7)	2	06/07/07	4	23:06	ENABLED	OZONE	20.0	1.4	12.0	11.0
		07/10/07	4	25:36	ENABLED	OZONE	23.0	1.4	12.0	11.0
		07/16/07	4	32:04	ENABLED	OZONE	22.0	1.4	12.0	11.0
		08/02/07	8	51:08	ENABLED	OZONE	21.5	1.4	12.0	11.0
		08/22/07	5	73:24	ENABLED	OZONE	22.0	1.2	11.5	11.0
		09/13/07	4	99:32	ENABLED	OZONE	21.0	1.3	11.5	12.0
		09/26/07	8	115:03	ENABLED	OZONE	22.0	1.2	11.5	11.0
		10/23/07	8	121:14	ENABLED	OZONE	22.0	1.3	12.0	11.0
	2	11/13/07	8	136:10	ENABLED	OZONE	23.5	1.2	12.0	10.0
	3	12/26/07 01/17/08	8 8	151:32	- ENABLED	OZONE	24.0 24.0	- 1.4	12.0	10.5
07-85	1	05/09/07	4	11.00	ENABLED	OZONE	16.0	12	-	_
(Valve 8)	2	06/07/07	4	23.05	ENABLED	OZONE	18.0	1.2	12.0	11.0
(v ai ve 0)	-	07/10/07	4	25:36	ENABLED	OZONE	19.0	1.4	12.0	10.5
		07/16/07	4	32:04	ENABLED	OZONE	19.0	1.4	12.0	11.0
		08/02/07	8	51:08	ENABLED	OZONE	18.5	1.4	12.0	11.0
		08/22/07	5	73:24	ENABLED	OZONE	15.0	1.4	12.0	11.0
		09/13/07	4	99:32	ENABLED	OZONE	15.0	1.4	12.0	11.5
		09/26/07	8	115:03	ENABLED	OZONE	15.0	1.4	11.0	8.5
		10/23/07	8	121:14	ENABLED	OZONE	21.0	1.3	12.0	11.0
	ē	11/13/07	8	136:10	ENABLED	OZONE	19.0	1.3	12.5	10.0
	3	12/26/07 01/17/08	8 8	- 151:59	ENABLED	OZONE	20.0 21.0	1.2	12.0	11.3

Well ID	Notes	Date	Dwell Time (min)	Total Runtime (hr:min)	Sparge Point Status	Ozone or Oxygen?	O3 Delivery Pressure (psig)	O3 Flow Rate (acfm)	O2 Flow Rate (acfh)	O3 Reactor Pressure (psig)
OZ-2D	1	05/09/07	4	11:00	ENABLED	OZONE	28.0	0.8	-	-
(Valve 12)	2	06/07/07	4	23:05	ENABLED	OZONE	28.0	1.1	11.0	11.0
		07/10/07	4	25:36	ENABLED	OZONE	28.0	1.2	11.0	11.0
		07/16/07	4	32:04	ENABLED	OZONE	27.5	1.3	11.5	11.0
		08/02/07	8	51:08	ENABLED	OZONE	27.0	1.3	12.0	11.5
		08/22/07	5	73:24	ENABLED	OZONE	22.0	1.2	11.5	11.0
		09/13/07	4	99:32	ENABLED	OZONE	25.0	1.3	11.5	12.0
		09/26/07	8	115:03	ENABLED	OZONE	22.0	1.1	11.0	12.0
		10/23/07	8	121:14	ENABLED	OZONE	31.5	1.2	11.5	12.0
		11/13/07	8	136:10	ENABLED	OZONE	30.0	1.0	12.0	11.0
	3	12/26/07	8	-	-	-	32.0	-	-	-
		01/17/08	8	180:59	ENABLED	OZONE	33.0	1.2	12.0	11.0
OZ-3D	1	05/09/07	4	11:00	ENABLED	OZONE	26.0	0.9	-	-
(Valve 13)	2	06/07/07	4	23:04	ENABLED	OZONE	25.0	1.2	11.0	11.0
		07/10/07	4	25:36	ENABLED	OZONE	25.5	1.3	11.0	11.0
		07/16/07	4	32:04	ENABLED	OZONE	27.0	1.2	12.0	11.0
		08/02/07	8	51:08	ENABLED	OZONE	26.0	1.2	12.0	11.5
		08/22/07	5	73:24	ENABLED	OZONE	25.0	1.1	11.5	11.5
		09/13/07	4	99:26	ENABLED	OZONE	26.5	1.2	11.5	12.0
		09/26/07	8	115:01	ENABLED	OZONE	29.0	1.1	11.5	12.0
		10/23/07	8	121:12	ENABLED	OZONE	30.0	1.1	11.0	12.0
		11/13/07	8	136:07	ENABLED	OZONE	28.5	1.1	12.0	11.0
	3	12/26/07	8	-	-	-	28.0	-	-	-
		01/17/08	8	151:21	ENABLED	OZONE	28.0	1.4	12.0	11.0
OZ-4D	1	05/09/07	4	11:00	ENABLED	OZONE	19.0	1.0	-	-
(Valve 14)	2	06/07/07	4	22:59	ENABLED	OZONE	20.0	1.5	12.0	10.5
		07/10/07	4	25:36	ENABLED	OZONE	21.0	1.4	12.0	10.5
		07/16/07	4	32:04	ENABLED	OZONE	21.0	1.4	12.0	10.5
		08/02/07	8	51:08	ENABLED	OZONE	20.0	1.4	12.0	11.0
		08/22/07	5	73:24	ENABLED	OZONE	20.0	1.4	12.0	11.0
		09/13/07	4	99:22	ENABLED	OZONE	19.0	1.4	11.5	12.0
		09/26/07	8	115:01	ENABLED	OZONE	21.0	1.3	11.5	11.0
		10/23/07	8	121:12	ENABLED	OZONE	22.0	1.3	12.0	11.0
		11/13/07	8	136:08	ENABLED	OZONE	21.5	1.3	12.0	10.0
	3	12/26/07	8	-	-	-	22.0	-	-	-
		01/17/08	8	147:01	ENABLED	OZONE	22.0	1.5	12.0	10.0
OZ-5D	1	05/09/07	4	11:00	ENABLED	OZONE	25.0	0.9	-	-
(Valve 15)	2	06/07/07	4	22:59	ENABLED	OZONE	25.0	1.0	11.0	11.0
		07/10/07	4	25:36	ENABLED	OZONE	26.5	1.2	11.0	11.0
		07/16/07	4	32:04	ENABLED	OZONE	27.5	1.3	12.0	11.0
		08/02/07	8	51:08	ENABLED	OZONE	31.0	1.2	12.0	12.0
		08/22/07	5	73:24	ENABLED	OZONE	38.0	1.0	11.0	12.5
		09/13/07	4	91:20	ENABLED	OZONE	53.0	0.10	11.0	14.0
		09/26/07	8	91:25	DISABLED	OXYGEN	53.0	-	-	-
		10/23/07	8	91:25	DISABLED	OXYGEN	53.0	-	-	-
	-	11/13/07	8	91:29	ENABLED	OZONE	55.0	0.1	11.0	15.0
	3	12/26/07	8	-	-	-	55.0	-	-	-
		01/17/08	8	91:29	ENABLED	OZONE	55.0	0.1	11.0	15.0

Well ID	Notes	Date	Dwell Time (min)	Total Runtime (hr:min)	Sparge Point Status	Ozone or Oxygen?	O3 Delivery Pressure (psig)	O3 Flow Rate (acfm)	O2 Flow Rate (acfh)	O3 Reactor Pressure (psig)
OZ-6D	1	05/09/07	4	11:00	ENABLED	OZONE	31.0	0.8	-	-
(Valve 16)	2	06/07/07	4	23:00	ENABLED	OZONE	30.5	1.2	11.0	11.5
		07/10/07	4	17:47	ENABLED	OZONE	30.5	1.2	11.0	11.5
		07/16/07	4	24:15	ENABLED	OZONE	30.0	1.3	11.0	11.0
		08/02/07	8	43:15	ENABLED	OZONE	30.0	1.2	11.5	12.0
		08/22/07	5	65:35	ENABLED	OZONE	29.5	1.1 1.1	11.5	12.0
		09/13/07	4	91:33	ENABLED	OZONE	30.0	1.1	11.0	13.0
		09/26/07	8	107:14	ENABLED	OZONE	32.0 31.0	1.0	0.0	11.0
		11/13/07	8	128.20	ENABLED	OZONE	36.5	1.1	9.0	12.0
	3	12/26/07	8	120.20		-	38.0	-	-	-
	5	01/17/08	8	173:07	ENABLED	OZONE	40.0	1.1	12.0	12.0
OZ-7D	1	05/09/07	4	11:00	ENABLED	OZONE	22.0	0.9	-	-
(Valve 17)	2	06/07/07	4	23:00	ENABLED	OZONE	23.0	1.0	11.0	10.5
		07/10/07	4	25:36	ENABLED	OZONE	19.0	1.5	12.0	10.5
		07/16/07	4	32:04	ENABLED	OZONE	20.0	1.5	13.0	10.0
		08/02/07	8	51:00	ENABLED	OZONE	19.0	1.4	12.0	11.0
		08/22/07	5	73:24	ENABLED	OZONE	19.0	1.3	12.0	11.0
		09/13/07	4	99:22	ENABLED	OZONE	19.5	1.3	11.5	12.0
		09/26/07	8	115:02	ENABLED	OZONE	20.5	1.2	11.5	11.0
		10/23/07	8	121:13	ENABLED	OZONE	20.0	1.3	12.0	11.5
	2	11/13/07	8	136:09	ENABLED	OZONE	21.0	1.3	12.0	10.0
	3	01/17/08	8 8	- 180:56	- ENABLED	OZONE	22.5 24.0	- 1.4	12.0	- 11.0
0Z-8D	1	05/09/07	4	11.00	ENABLED	OZONE	23.0	0.9	_	_
(Valve 18)	2	06/07/07	4	23:00	ENABLED	OZONE	24.0	1.0	12.0	11.5
(() (1) () ())	-	07/10/07	4	25:36	ENABLED	OZONE	21.0	1.4	12.0	10.5
		07/16/07	4	32:04	ENABLED	OZONE	23.0	1.4	12.5	10.5
		08/02/07	8	51:00	ENABLED	OZONE	20.0	1.3	12.0	11.0
		08/22/07	5	73:22	ENABLED	OZONE	23.0	1.4	12.0	11.5
		09/13/07	4	99:24	ENABLED	OZONE	21.0	1.3	11.5	12.0
		09/26/07	8	115:08	ENABLED	OZONE	22.5	1.3	11.5	11.0
		10/23/07	8	121:14	ENABLED	OZONE	22.0	1.3	11.0	12.0
	-	11/13/07	8	136:10	ENABLED	OZONE	24.0	1.2	12.0	10.5
	3	12/26/07 01/17/08	8 8	- 180:57	- ENABLED	- OZONE	26.0 27.5	- 1.4	- 11.5	- 11.0
07.05	1	05/00/07	4			OZONE				
UZ-95 (Volvo 10)	1	05/09/07	4	-	DISABLED	OZONE	-	-	-	-
(valve 19)	2	07/10/07	4	-	DISABLED	OZONE	-	-	-	-
		07/16/07	4	_	DISABLED	OZONE	_	_	_	_
		08/02/07	4	-	DISABLED	OZONE	-	-	-	-
		08/22/07	4	-	DISABLED	OZONE	-	_	-	-
		09/13/07	4	-	DISABLED	OZONE	-	-	-	-
		09/26/07	8	-	DISABLED	OZONE	-	-	-	-
		10/23/07	8	0:57	DISABLED	OZONE	-	-	-	-
	2	11/13/07	8	14:53	ENABLED	OZONE	23.0	1.3	12.5	10.0
	3	01/17/08	8 8	- 59:40	ENABLED	OZONE	24.0 25.0	- 1.4	12.0	- 11.0

Well ID	Notes	Date	Dwell Time (min)	Total Runtime (hr:min)	Sparge Point Status	Ozone or Oxygen?	O3 Delivery Pressure (psig)	O3 Flow Rate (acfm)	O2 Flow Rate (acfh)	O3 Reactor Pressure (psig)
OZ-9D	1	05/09/07	4	-	DISABLED	OZONE	-	-	-	-
(Valve 20)	2	06/07/07	4	-	DISABLED	OZONE	-	-	-	-
		07/10/07	4	-	DISABLED	OZONE	-	-	-	-
		07/16/07	4	-	DISABLED	OZONE	-	-	-	-
		08/02/07	4	-	DISABLED	OZONE	-	-	-	-
		08/22/07	4	-	DISABLED	OXYGEN	-	-	-	-
		09/13/07	4	-	DISABLED	OXYGEN	-	-	-	-
		09/26/07	4	-	DISABLED	OXYGEN	-	-	-	-
		10/23/07	4	-	DISABLED	OXYGEN	-	-	-	-
		11/13/07	4	-	DISABLED	OXYGEN	-	-	-	-
	3	12/26/07	4	-	DISABLED	OXYGEN	-	-	-	-
		01/17/08	4	-	DISABLED	OXYGEN	-	-	-	-

Omega Termite, 807 75th Avenue, Oakland, California

NOTES:

 $psig = pounds \; per \; square \; inch \; - \; gauge \;$

 $acfm = actual \ cubic \ feet \ per \ minute$

acfh = actual cubic feet per hour

 $\min = \min ues$

hr:min = hours, minutes

1) System was restrated on May 7, 2007

2) First monthly O&M visit

3) System was shut down by an internal ozone alarm; no data was collected

4)

5)

Dwell time = sparge point runtime Ozone sparge unit valves 1 to 8 used for ozone sparge wells OZ-1S to OZ-8S Ozone sparge unit valves 9, 10, and 11 not used, but available for system expansion Ozone sparge unit valves 12 to 18 used for ozone sparge wells OZ-2D to OZ-8D Ozone sparge unit valves 19 and 20 used for OZ-9S and OZ-9D

TABLE 9: OZONE MASS INJECTIO)N ES	STIMA	TES
-------------------------------------	-------	--------------	-----

Well ID	Date	Dwell Time (min)	Total Runtime (hours)	Sparge Point Status	Ozone or Oxygen?	O3 Delivery Pressure (psig)	O3 Outlet Temp (°F)	O3 Flow Rate (acfm)	O3 Flow Rate (scfm)	*Ozone Conc (ppmv)	Ozone Injection Rate (lbs/day)	Total Ozone Injected (lbs)
OZ-1S	05/09/07	4	0	ENABLED	OZONE	20.0	85	1.3	2.0	4,260	1.5	0.0
(Valve 1)	06/07/07	4	24	ENABLED	OZONE	19.5	85	1.3	2.0	4,260	1.5	1.5
	07/10/07	4	26	ENABLED	OZONE	20.0	85	1.3	2.0	4,260	1.5	1.6
	07/16/07	8	32	ENABLED	OZONE	20.0	85	1.5	2.3	4,260	1.7	2.0
	08/02/07	8	51	ENABLED	OZONE	19.5	85	1.3	2.0	4,260	1.5	3.2
	08/22/07	5	74	ENABLED	OZONE	18.0	85	1.3	1.9	4,260	1.5	4.6
	09/13/07	4	100	ENABLED	OZONE	19.5	85	1.3	2.0	4,260	1.5	6.2
	09/26/07	8	115	ENABLED	OZONE	19.5	85	1.2	1.8	4,260	1.4	7.1
	10/23/07	8	121	ENABLED	OZONE	21.0	85	1.2	1.8	4,260	1.4	7.4
	11/13/07	8	136	ENABLED	OZONE	22.0	85	1.1	1.7	4,260	1.3	8.2
	12/26/07	8	0	ENABLED	OZONE	22.0	-	-	0.0	0	0.0	8.2
	01/17/08	8	152	ENABLED	OZONE	22.0	85	1.4	2.2	4,260	1.7	9.4
OZ-2S	05/09/07	4	0	ENABLED	OZONE	12.0	85	1.3	1.7	4,150	1.3	0.0
(Valve 2)	06/07/07	4	23	ENABLED	OZONE	12.0	85	1.5	2.0	4,150	1.5	1.0
	07/10/07	4	26	ENABLED	OZONE	10.5	85	1.8	2.3	4,150	1.7	1.1
	0//16/07	8	32	ENABLED	OZONE	11.0	85	1.8	2.3	4,150	1.7	1.3
	08/02/07	8	52	ENABLED	OZONE	11.0	85	1.6	2.1	4,150	1.5	2.2
	08/22/07	5	/3	ENABLED	OZONE	10.5	85 95	1.5	1.9	4,150	1.4	3.0
	09/13/07	4	100	ENABLED	OZONE	11.0	85 95	1.5	2.0	4,150	1.4	4.2
	09/26/07	8	115	ENABLED	OZONE	11.5	85 95	1.5	2.0	4,150	1.5	4.8
	10/23/07	0	121	ENABLED	OZONE	12.0	83 85	1.0	2.1	4,200	1.0	5.0 5.7
	11/13/07	0	150	ENADLED	OZONE	12.0	65	1.5	2.0	4,130	1.5	5.7
	01/17/08	8	152	ENABLED	OZONE	12.0 12.0	85	1.8	0.0 2.4	4,150	1.8	6.8
07-38	05/09/07	4	0	ENABLED	OZONE	23.0	85	1.0	16	4 260	12	0.0
(Valve 3)	06/07/07	4	23	ENABLED	OZONE	26.0	85	1.0	1.6	4 260	1.2	1.2
()	07/10/07	4	26	ENABLED	OZONE	33.5	85	1.1	2.0	4.540	1.6	1.4
	07/16/07	4	32	ENABLED	OZONE	32.0	85	1.2	2.1	4,540	1.7	1.8
	08/02/07	8	51	ENABLED	OZONE	34.0	85	1.1	2.0	4,540	1.6	3.1
	08/22/07	5	73	ENABLED	OZONE	30.5	85	1.1	1.9	4,540	1.5	4.5
	09/13/07	4	100	ENABLED	OZONE	30.0	85	1.1	1.9	4,540	1.5	6.2
	09/26/07	8	115	ENABLED	OZONE	31.5	85	1.0	1.7	4,540	1.4	7.1
	10/23/07	8	121	ENABLED	OZONE	32.0	85	1.1	1.9	4,540	1.6	7.5
	11/13/07	8	136	ENABLED	OZONE	42.0	85	0.8	1.5	4,540	1.3	8.3
	12/26/07	8	0	-	-	40.0	-	-	0.0	0	0.0	8.3
	01/17/08	8	181	ENABLED	OZONE	37.5	85	1.2	2.2	4,540	1.8	11.7
07-48	05/09/07	4	0	ENABLED	OZONE	16.0	85	11	16	4 260	12	0.0
(Valve 4)	06/07/07	4	23	ENABLED	OZONE	18.0	85	1.1	2.2	4 260	1.2	1.6
(varve i)	07/10/07	4	26	ENABLED	OZONE	18.0	85	1.5	2.2	4 260	1.7	1.8
	07/16/07	4	32	ENABLED	OZONE	20.0	85	1.4	2.1	4.260	1.6	2.2
	08/02/07	8	51	ENABLED	OZONE	19.0	85	1.4	2.1	4.260	1.6	3.5
	08/22/07	5	73	ENABLED	OZONE	18.5	85	1.4	2.1	4,260	1.6	4.9
	09/13/07	4	100	ENABLED	OZONE	30.0	85	1.1	1.9	4,540	1.5	6.7
	09/26/07	8	100	DISABLED	OZONE	30.0	85	1.1	1.9	4,540	1.5	6.7
	10/23/07	8	100	ENABLED	OZONE	26.0	85	1.3	2.1	4,540	1.7	6.7
	11/13/07	8	114	ENABLED	OZONE	25.0	85	1.1	1.8	4,540	1.4	7.5
	12/26/07	8	0	-	-	26.0	-	-	0.0	0	0.0	7.5
	01/17/08	8	158	ENABLED	OZONE	27.0	85	1.4	2.3	4,540	1.9	10.9

TABLE 9: OZONE MASS 1	INJECTION ESTIMATES
-----------------------	---------------------

Well ID	Date	Dwell Time (min)	Total Runtime (hours)	Sparge Point Status	Ozone or Oxygen?	O3 Delivery Pressure (psig)	O3 Outlet Temp (°F)	O3 Flow Rate (acfm)	O3 Flow Rate (scfm)	*Ozone Conc (ppmv)	Ozone Injection Rate (lbs/day)	Total Ozone Injected (lbs)
OZ-5S	05/09/07	4	0	ENABLED	OZONE	21.0	85	1.0	1.5	4,260	1.2	0.0
(Valve 5)	06/07/07	4	23	ENABLED	OZONE	22.0	85	1.2	1.9	4,260	1.4	1.4
	07/10/07	4	26	ENABLED	OZONE	23.0	85	1.4	2.2	4,260	1.7	1.6
	07/16/07	4	32	ENABLED	OZONE	23.0	85	1.4	2.2	4,260	1.7	2.0
	08/02/07	8	52	ENABLED	OZONE	22.0	85	1.3	2.0	4,260	1.5	3.3
	08/22/07	5	73	ENABLED	OZONE	22.0	85	1.3	2.0	4,260	1.5	4.6
	09/13/07	4	83	ENABLED	OZONE	22.0	85	1.3	2.0	4,260	1.5	5.3
	09/26/07	8	99	ENABLED	OZONE	22.0	85	1.4	2.2	4,150	1.6	6.3
	10/23/07	8	105	DISABLED	OZONE	22.0	85	1.3	2.0	4,260	1.5	6.7
	11/13/07	8	119	ENABLED	OZONE	24.0	85	1.2	1.9	4,260	1.5	7.6
	12/26/07	8	0	-	-	24.5	-	-	0.0	0	0.0	7.6
	01/17/08	8	135	ENABLED	OZONE	25.0	85	1.4	2.3	4,260	1.7	8.7
OZ-6S	05/09/07	4	0	ENABLED	OZONE	21.0	85	1.0	1.5	4,260	1.2	0.0
(Valve 6)	06/07/07	4	23	ENABLED	OZONE	22.0	85	1.3	2.0	4,260	1.5	1.5
	07/10/07	4	26	ENABLED	OZONE	24.0	85	1.4	2.2	4,260	1.7	1.7
	07/16/07	4	32	ENABLED	OZONE	24.0	85	1.4	2.2	4,260	1.7	2.1
	08/02/07	8	51	ENABLED	OZONE	22.5	85	1.3	2.0	4,260	1.6	3.3
	08/22/07	5	74	ENABLED	OZONE	22.0	85	1.3	2.0	4,260	1.5	4.8
	09/13/07	4	100	ENABLED	OZONE	21.0	85	1.3	2.0	4,260	1.5	6.5
	09/26/07	8	115	ENABLED	OZONE	22.0	85	1.3	2.0	4,150	1.5	7.4
	10/23/07	8	121	ENABLED	OZONE	28.5	85	1.2	2.0	4,540	1.6	7.8
	11/13/07	8	137	ENABLED	OZONE	24.5	85	1.1	1.8	4,540	1.4	8.8
	12/26/07	8	0	-	-	25.0	-	1.4	0.0	0	0.0	8.8
	01/1//08	0	191	ENABLED	OZONE	26.0	85	1.4	2.3	4,540	1.9	12.2
OZ-7S	05/09/07	4	0	ENABLED	OZONE	16.0	85	1.2	1.7	4,260	1.3	0.0
(Valve 7)	06/07/07	4	23	ENABLED	OZONE	20.0	85	1.4	2.1	4,260	1.6	1.5
	07/10/07	4	26	ENABLED	OZONE	23.0	85	1.4	2.2	4,260	1.7	1.8
	07/16/07	4	32	ENABLED	OZONE	22.0	85	1.4	2.2	4,260	1.7	2.2
	08/02/07	8	51	ENABLED	OZONE	21.5	85	1.4	2.2	4,260	1.6	3.5
	08/22/07	5	73	ENABLED	OZONE	22.0	85	1.2	1.9	4,260	1.4	4.8
	09/13/07	4	100	ENABLED	OZONE	21.0	85	1.3	2.0	4,260	1.5	6.5
	09/26/07	8	115	ENABLED	OZONE	22.0	85	1.2	1.9	4,150	1.4	7.4
	10/23/07	8	121	ENABLED	OZONE	22.0	85	1.3	2.0	4,260	1.5	7.7
	11/13/07	8	136	ENABLED	OZONE	23.5	85	1.2	1.9	4,260	1.5	8.6
	12/26/07	8	0	-	-	24.0	-	-	0.0	0	0.0	8.6
	01/17/08	8	152	ENABLED	OZONE	24.0	85	1.4	2.2	4,260	1.7	9.8
OZ-8S	05/09/07	4	23	ENABLED	OZONE	16.0	85	1.2	1.7	4,260	1.3	0.0
(Valve 8)	06/07/07	4	26	ENABLED	OZONE	18.0	85	1.3	1.9	4,260	1.5	0.2
	07/10/07	4	32	ENABLED	OZONE	19.0	85	1.4	2.1	4,260	1.6	0.6
	07/16/07	4	51	ENABLED	OZONE	19.0	85	1.4	2.1	4,260	1.6	1.8
	08/02/07	8	73	ENABLED	OZONE	18.5	85	1.4	2.1	4,260	1.6	3.3
	08/22/07	5	100	ENABLED	OZONE	15.0	85	1.4	2.0	4,260	1.5	5.0
	09/13/07	4	100	ENABLED	OZONE	15.0	85	1.4	2.0	4,260	1.5	5.0
	09/26/07	8	115	ENABLED	OZONE	15.0	85	1.4	2.0	4,150	1.5	5.9
	10/23/07	8	121	ENABLED	OZONE	21.0	85	1.3	2.0	4,260	1.5	6.3
	11/13/07	8	136	ENABLED	OZONE	19.0	85	1.3	1.9	4,260	1.5	7.2
	12/26/07	8	0	-	-	20.0	-	-	0.0	0	0.0	7.2
	01/17/08	8	152	ENABLED	OZONE	21.0	85	1.2	1.8	4,260	1.4	8.1

TABLE 9: OZONE MASS INJECTIO)N ES	STIMA	TES
-------------------------------------	-------	--------------	-----

Well ID	Date	Dwell Time (min)	Total Runtime (hours)	Sparge Point Status	Ozone or Oxygen?	O3 Delivery Pressure (psig)	O3 Outlet Temp (°F)	O3 Flow Rate (acfm)	O3 Flow Rate (scfm)	*Ozone Conc (ppmv)	Ozone Injection Rate (lbs/day)	Total Ozone Injected (lbs)
OZ-2D	05/09/07	4	0	ENABLED	OZONE	28.0	85	0.8	1.3	4,540	1.1	0.0
(Valve 12)	06/07/07	4	23	ENABLED	OZONE	28.0	85	1.1	1.8	4,540	1.5	1.4
	07/10/07	4	26	ENABLED	OZONE	28.0	85	1.2	2.0	4,540	1.6	1.6
	07/16/07	4	32	ENABLED	OZONE	27.5	85	1.3	2.2	4,540	1.8	2.1
	08/02/07	8	51	ENABLED	OZONE	27.0	85	1.3	2.2	4,540	1.7	3.5
	08/22/07	5	73	ENABLED	OZONE	22.0	85	1.2	1.9	4,260	1.4	4.8
	09/13/07	4	100	ENABLED	OZONE	25.0	85	1.3	2.1	4,260	1.6	6.6
	09/26/07	8	115	ENABLED	OZONE	22.0	85	1.1	1.7	4,260	1.3	7.4
	10/23/07	8	121	ENABLED	OZONE	31.5	85	1.2	2.1	4,540	1.7	7.8
	11/13/07	8	136	ENABLED	OZONE	30.0	85	1.0	1.7	4,540	1.4	8.7
	12/26/07	8	0	-	-	32.0	-	-	0.0	0	0.0	8.7
	01/17/08	8	181	ENABLED	OZONE	33.0	85	1.2	2.1	4,540	1.7	11.9
OZ-3D	05/09/07	4	0	ENABLED	OZONE	26.0	85	0.9	1.5	4,540	1.2	0.0
(Valve 13)	06/07/07	4	23	ENABLED	OZONE	25.0	85	1.2	1.9	4,540	1.6	1.5
	07/10/07	4	26	ENABLED	OZONE	25.5	85	1.3	2.1	4,540	1.7	1.7
	07/16/07	4	32	ENABLED	OZONE	27.0	85	1.2	2.0	4,540	1.6	2.1
	08/02/07	8	51	ENABLED	OZONE	26.0	85	1.2	2.0	4,540	1.6	3.4
	08/22/07	5	73	ENABLED	OZONE	25.0	85	1.1	1.8	4,540	1.4	4.7
	09/13/07	4	99	ENABLED	OZONE	26.5	85	1.2	2.0	4,540	1.6	6.5
	09/26/07	8	115	ENABLED	OZONE	29.0	85	1.1	1.9	4,540	1.5	7.5
	10/23/07	8	121	ENABLED	OZONE	30.0	85	1.1	1.9	4,540	1.5	7.8
	11/13/07	8	136	ENABLED	OZONE	28.5	85	1.1	1.9	4,540	1.5	8.8
	01/17/08	8 8	0 151	ENABLED	OZONE	28.0 28.0	85	- 1.4	0.0 2.4	4,540	0.0 1.9	8.8 10.0
OZ-4D	05/09/07	4	0	ENABLED	OZONE	19.0	85	1.0	15	4 260	1.1	0.0
(Valve 14)	06/07/07	4	23	ENABLED	OZONE	20.0	85	1.5	23	4 260	1.1	17
(• •	07/10/07	4	26	ENABLED	OZONE	21.0	85	1.5	2.2	4 260	1.7	1.9
	07/16/07	4	32	ENABLED	OZONE	21.0	85	14	2.2	4 260	1.6	2.3
	08/02/07	8	51	ENABLED	OZONE	20.0	85	1.4	2.1	4.260	1.6	3.5
	08/22/07	5	73	ENABLED	OZONE	20.0	85	1.4	2.1	4,260	1.6	5.0
	09/13/07	4	99	ENABLED	OZONE	19.0	85	1.4	2.1	4,260	1.6	6.7
	09/26/07	8	115	ENABLED	OZONE	21.0	85	1.3	2.0	4,260	1.5	7.8
	10/23/07	8	121	ENABLED	OZONE	22.0	85	1.3	2.0	4,260	1.5	8.1
	11/13/07	8	136	ENABLED	OZONE	21.5	85	1.3	2.0	4,260	1.5	9.1
	12/26/07	8	0	-	-	22.0	-	-	0.0	0	0.0	9.1
	01/17/08	8	147	ENABLED	OZONE	22.0	85	1.5	2.3	4,260	1.8	9.9
OZ-5D	05/09/07	4	0	ENABLED	OZONE	25.0	85	0.9	1.5	4,540	1.2	0.0
(Valve 15)	06/07/07	4	23	ENABLED	OZONE	25.0	85	1.0	1.6	4,540	1.3	1.3
	07/10/07	4	26	ENABLED	OZONE	26.5	85	1.2	2.0	4,540	1.6	1.5
	07/16/07	4	32	ENABLED	OZONE	27.5	85	1.3	2.2	4,540	1.8	1.9
	08/02/07	8	51	ENABLED	OZONE	31.0	85	1.2	2.1	4,540	1.7	3.2
	08/22/07	5	73	ENABLED	OZONE	38.0	85	1.0	1.9	4,540	1.5	4.6
	09/13/07	4	91	ENABLED	OZONE	53.0	85	0.1	0.2	4,540	0.2	4.8
	09/26/07	8	91	DISABLED	OXYGEN	-	-	-	0.0	0	0.0	4.8
	10/23/07	8	91	DISABLED	OXYGEN	53.0	-	-	0.0	0	0.0	4.8
	11/13/07	8	91	ENABLED	OZONE	50.0	85	0.1	0.2	4,540	0.2	4.8
	12/26/07	8	0	-	-	55.0	-	-	0.0	0	0.0	4.8
	01/17/08	8	91	ENABLED	OZONE	50.0	85	0.1	0.2	4,540	0.2	4.8

TABLE 9: OZONE MASS INJECTIO)N ES	STIMA	TES
-------------------------------------	-------	--------------	-----

Well ID	Date	Dwell Time (min)	Total Runtime (hours)	Sparge Point Status	Ozone or Oxygen?	O3 Delivery Pressure (psig)	O3 Outlet Temp (°F)	O3 Flow Rate (acfm)	O3 Flow Rate (scfm)	*Ozone Conc (ppmv)	Ozone Injection Rate (lbs/day)	Total Ozone Injected (lbs)
OZ-6D	05/09/07	4	0	ENABLED	OZONE	31.0	85	0.8	1.4	4,540	1.1	0.0
(Valve 16)	06/07/07	4	23	ENABLED	OZONE	30.5	85	1.2	2.1	4,540	1.7	1.6
	07/10/07	4	18	ENABLED	OZONE	30.5	85	1.2	2.1	4,540	1.7	1.3
	07/16/07	4	24	ENABLED	OZONE	30.0	85	1.3	2.2	4,540	1.8	1.7
	08/02/07	8	43	ENABLED	OZONE	30.0	85	1.2	2.1	4,540	1.7	3.0
	08/22/07	5	66	ENABLED	OZONE	29.5	85	1.1	1.9	4,540	1.5	4.5
	09/13/07	4	92	ENABLED	OZONE	30.0	85	1.1	1.9	4,540	1.5	6.2
	09/26/07	8	107	ENABLED	OZONE	32.0	85	1.0	1.8	4,540	1.4	7.1
	10/23/07	8	113	ENABLED	OZONE	31.0	85	1.1	1.9	4,540	1.6	7.4
	11/13/07	8	128	ENABLED	OZONE	36.5	85	1.0	1.8	4,540	1.5	8.4
	12/26/07	8	0	-	-	38.0	-	-	0.0	0	0.0	8.4
	01/17/08	8	173	ENABLED	OZONE	40.0	85	1.1	2.1	4,540	1.7	11.5
OZ-7D	05/09/07	4	0	ENABLED	OZONE	22.0	85	0.9	1.4	4,260	1.1	0.0
(Valve 17)	06/07/07	4	23	ENABLED	OZONE	23.0	85	1.0	1.6	4,260	1.2	1.2
	07/10/07	4	26	ENABLED	OZONE	19.0	85	1.5	2.2	4,260	1.7	1.4
	0//16/07	4	32	ENABLED	OZONE	20.0	85	1.5	2.3	4,260	1.7	1.8
	08/02/07	8	51 72	ENABLED	OZONE	19.0	85	1.4	2.1	4,260	1.0	3.1
	08/22/07	5	/3	ENABLED	OZONE	19.0	85	1.3	1.9	4,260	1.5	4.4
	09/13/07	4	99	ENABLED	OZONE	19.5	85	1.3	2.0	4,260	1.5	6.0
	10/22/07	8	115	ENABLED	OZONE	20.5	85	1.2	1.8	4,260	1.4	6.9 7.2
	10/23/07	8	121	ENABLED	OZONE	20.0	85	1.3	2.0	4,260	1.5	/.3
	11/13/07	8	136	ENABLED	OZONE	21.0	85	1.3	2.0	4,260	1.5	8.3
	01/17/08	8 8	181	ENABLED	OZONE	22.5 24.0	85	1.4	0.0 2.2	4,260	0.0 1.7	8.3 11.5
0Z-8D	05/09/07	4	0	ENABLED	OZONE	23.0	85	0.9	14	4 260	11	0.0
(Valve 18)	06/07/07	4	23	ENABLED	OZONE	24.0	85	1.0	1.6	4 260	1.1	1.2
(/ 11/0 10)	07/10/07	4	26	ENABLED	OZONE	21.0	85	1.0	2.2	4 260	1.2	1.2
	07/16/07	4	32	ENABLED	OZONE	23.0	85	1.1	2.2	4 260	1.0	1.1
	08/02/07	8	51	ENABLED	OZONE	20.0	85	1.3	2.0	4.260	1.5	3.0
	08/22/07	5	73	ENABLED	OZONE	23.0	85	1.4	2.2	4,260	1.7	4.5
	09/13/07	4	99	ENABLED	OZONE	21.0	85	1.3	2.0	4,260	1.5	6.2
	09/26/07	8	115	ENABLED	OZONE	22.5	85	1.3	2.0	4,260	1.6	7.2
	10/23/07	8	121	ENABLED	OZONE	22.0	85	1.3	2.0	4,260	1.5	7.6
	11/13/07	8	136	ENABLED	OZONE	24.0	85	1.2	1.9	4,260	1.5	8.5
	12/26/07	8	0	-	-	26.0	-	-	0.0	0	0.0	8.5
	01/17/08	8	181	ENABLED	OZONE	27.5	85	1.4	2.3	4,540	1.9	12.0
OZ-9S	05/09/07	4	0	DISABLED	OZONE	-	-	-	-	-	-	-
(Valve 19)	06/07/07	4	0	DISABLED	OZONE	-	-	-	-	-	-	-
	07/10/07	4	0	DISABLED	OZONE	-	-	-	-	-	-	-
	07/16/07	4	0	DISABLED	OZONE	-	-	-	-	-	-	-
	08/02/07	4	0	DISABLED	OZONE	-	-	-	-	-	-	-
	08/22/07	4	0	DISABLED	OZONE	-	-	-	-	-	-	-
	09/13/07	4	0	DISABLED	OZONE	-	-	-	-	-	-	-
	09/26/07	8	0	DISABLED	OZONE	-	-	-	-	-	-	-
	10/23/07	8	1	DISABLED	OZONE	-	-	-	-	-	-	-
	11/13/07	8	15	ENABLED	OZONE	23.0	85.0	1.3	2.1	4,260	1.6	1.0
	12/26/07	8	0	-	-	24.0	-	-	0.0	0.0	0.0	1.0
	01/17/08	8	60	ENABLED	OZONE	25.0	85.0	1.4	2.3	4,260	1.7	4.2

TABLE 9: OZONE MASS INJECTION ESTIMATES

Well ID	Date	Dwell Time (min)	Total Runtime (hours)	Sparge Point Status	Ozone or Oxygen?	O3 Delivery Pressure (psig)	O3 Outlet Temp (°F)	O3 Flow Rate (acfm)	O3 Flow Rate (scfm)	*Ozone Conc (ppmv)	Ozone Injection Rate (lbs/day)	Total Ozone Injected (lbs)
OZ-9D	05/09/07	4	-	DISABLED	OZONE	-	-	-	-	-	-	-
(Valve 20)	06/07/07	4	-	DISABLED	OZONE	-	-	-	-	-	-	-
	07/10/07	4	-	DISABLED	OZONE	-	-	-	-	-	-	-
	07/16/07	4	-	DISABLED	OZONE	-	-	-	-	-	-	-
	08/02/07	4	-	DISABLED	OZONE	-	-	-	-	-	-	-
	08/22/07	4	-	DISABLED	OXYGEN	-	-	-	-	-	-	-
	09/13/07	4	-	DISABLED	OXYGEN	-	-	-	-	-	-	-
	09/26/07	4	-	DISABLED	OXYGEN	-	-	-	-	-	-	-
	10/23/07	4	-	DISABLED	OXYGEN	-	-	-	-	-	-	-
	11/13/07	4	-	DISABLED	OXYGEN	-	-	-	-	-	-	-
	12/26/07	4	-	DISABLED	OXYGEN	-	-	-	-	-	-	-
	01/17/08	4	-	DISABLED	OXYGEN	-	-	-	-	-	-	-

Omega Termite, 807 75th Avenue, Oakland, California

NOTES:

min = minutes psig = pounds per square inch - gauge acfm = actual cubic feet per minute scfm = standard cubic feet per minute ppmv = parts per million by volume

lbs/day = pounds per day

ACFM TO SCFM CONVERSION

Qs=Qa*\(Pa*Ts)/(Ps*Ta) Qs = SCFMQa = ACFM SCFM = ACFM*\((14.7+O3 Delivery Press)*530)/(14.7*545)) Pa = 14.7+O3 Delivery Pressure Ps = 14.7Source: Dwyer Instruments, Inc. Bulletin F-43

Ts = 460+Standard Temp = 460+70 = 530 R

Ta = 460+O3 Outlet Temp = 460+85 = 545 R

OZONE INJECTION RATE ESTIMATE ASSUMPTIONS

 $Ozone \ Injection \ Rate \ Estimate = (60,000 pmv*10^{-}6)*(1scfm)*(1440 min/day)*(28.32L/ft^{-}3)*(1mol/22.4L)*(47.9982g/mol)*(1lb/454g)$ Negligible change in air density, constant concentration and average molecular weight 1 day = 1440 minutes1 mole occupies 22.4 Liters at STP STP is 21°C (70°F) and 1 atm 1 ft3 = 28.317 Liters MWozone = 47.9982 grams/mole 1 lb = 454 grams Mwoxygen = 31.9988 grams/mole

*Ozone concentration based on testing and data provided by H2O Engineering, Inc. for 20 psi = 4,260 ppmv for 10 psi = 4,150 ppmv

for 30 psi = 4,540 ppmv

TABLE 10A: INDOOR & CRAWL SPACE AIR SAMPLE ANALYTICAL DATA $(\mu g/m^{\,3})$ Omega Termite, 807 75th Avenue, Oakland, California

Sample ID	Date	TPH-g (μg/m³)	Benzene (μg/m ³)	Toluene (μg/m³)	Ethyl- benzene (μg/m ³)	Xylenes (µg/m³)	MTBE (µg/m³)
CS-1	04/10/07	-	0.80	2.7	0.66	3.1	ND<0.09
	05/14/07	-	11.0	7.7	1.7	5.8	ND<0.36
BA-1	04/10/07	-	1.2	5.4	3.0	14	ND<0.09
	05/14/07	-	2.1	3.0	4.8	22	ND<0.36
*AQMD #1018	11/09/01	_	4.5	_	_	_	_
-	10/04/01	-	0.96	-	-	-	-
	01/08/02	-	4.15	-	-	-	-
	06/13/02	-	0.3	-	-	-	-
	03/04/03	-	2.56	-	-	-	-
	03/28/03	-	0.6	-	-	-	-
*AQMD #1024	11/09/01	-	7.0	-	-	-	-
	10/04/01	-	0.96	-	-	-	-
	01/08/02	-	4.2	-	-	-	-
	06/13/02	-	0.3	-	-	-	-
	02/08/03	-	5.7	-	-	-	-
	06/08/03	-	0.6	-	-	-	-
Residential ESLs		26	0.085	63	420	150	9.4
Residential CHH	SLs	-	0.084	313	pp	730	9.35
Commercial ESL	.s	36	0.140	88	580	200	16
Commercial CHI	HSLs	-	0.141	438	pp	1020	15.7

TABLE 10B: INDOOR & CRAWL SPACE AIR SAMPLE ANALYTICAL DATA (ppbv) Omega Termite, 807 75th Avenue, Oakland, California

Sample ID	Date	TPH-g (ppbv)	Benzene (ppbv)	Toluene (ppbv)	Ethyl- benzene (ppbv)	Xylenes (ppbv)	MTBE (ppbv)
CS-1	04/10/07	-	0.25	0.72	0.16	0.72	ND<0.025
	05/14/07	-	3.6	2.0	0.40	1.4	ND<0.1
BA-1	04/10/07 05/14/07	-	0.37 0.65	1.4 0.8	0.69 1.1	3.3 4.9	ND<0.025 ND<0.1
*AOMD #1018	11/09/01	_	14	_	_	_	_
	10/04/01	_	0.3	_	_	_	_
	01/08/02	-	1.30	-	-	-	-
	06/13/02		0.10	-	-		-
	03/04/03	-	0.80	-	-	-	-
	03/28/03	-	0.20	-	-	-	-
*AQMD #1024	11/09/01	-	2.2	-	-	-	-
	10/04/01	-	0.3	-	-	-	-
	01/08/02	-	1.30	-	-	-	-
	06/13/02	-	0.10	-	-	-	-
	02/08/03	-	1.80	-	-	-	-
	06/08/03	-	0.20	-	-	-	-
Residential ESLs		7.4	0.027	17	96.7	34.5	2.6
Residential CHH	SLs	-	0.026	83	рр	168	2.6
Commercial ESL	.s	10	0.044	23	134	46.1	4.4
Commercial CHI	HSLs	-	0.044	116	pp	235	4.4

NOTES:

*2004, 2005, 2006 data not published (www.baaqmd.gov/pmt/air_toxics/annual_reports/index.htm) RED = max concentration detected that year

AQMD = Bay Area Air Quality Management District Monitoring Station

#1018 - Davie Tennis Stadium, 198 Oak Road, Piedmont, CA

#1024 - 2419 Filbert Street, Oakland, CA

ESL = Environmental Screening Level (February 2005) CHHSL = California Human Health Screening Level pp = CHHSL postponed

At standard temperature (25°C) and pressure (1 atm) $ppbv = \mu g/m^3 * (24.45/MW)$ $\mu g/m^3 = ppbv * (MW/24.45)$

Molecular Weights (MWs):

Benzene = 78.1 Ethlybenzene = 106.16

MTBE = 88.15 Toluene = 92.13 Xylene = 106.16

BLUE = low concentration detected that year

TABLE 11: PASSIVE SMD SYSTEM SCREENING DATA

Omega Termite, 807 75th Avenue, Oakland, California

Sample ID	Date	HC Reading (ppmv)
SMD-1	05/07/07	30
	05/08/07	21
	05/09/07	76
	05/10/07	64
	05/11/07	42
	05/14/07	26
	06/07/07	0
	07/10/07	0
	07/16/07	0
	08/02/07	0
	08/22/07	0
	09/13/07	0
	09/26/07	0
	10/25/07	0
	11/13/07	0
	12/26/07	0
SMD-2	05/07/07	0
	05/08/07	0
	05/09/07	2.5
	05/10/07	4.5
	05/11/07	1.0
	05/14/07	0
	06/07/07	0
	07/10/07	0
	07/16/07	0
	08/02/07	0
	08/22/07	0
	09/13/07	0
	09/26/07	0
	10/25/07	0
	11/13/07	0
	12/26/07	0

NOTES:

HC = total volatile hydrocarbons ppmv = parts per million by volume

SMD = submembrane depressurization

APPENDIX A

OZONE SPARGE WELL INSTALLATION PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

PUBLIC

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 12/05/2006 By jamesy Permit Numbers: W2006-1016 to W2006-1018 Permits Valid from 12/18/2006 to 12/21/2006 Application Id: 1165258224938 City of Project Site:Oakland Site Location: 807 75th Ave. Oakland, CA **Project Start Date:** 12/18/2006 Completion Date: 12/21/2006 **Applicant:** Phone: 925-944-2899 AEI Consultants - Robert Flory 2500 Camino Diablo, Walnut Creek, CA 94597 Allen Kanaday Phone: 510-562-1333 **Property Owner:** 807 75th Ave., Oakland, CA 95621 **Client:** ** same as Property Owner **

	Total Due:	\$800.00
Receipt Number: WR2006-0536	Total Amount Paid:	\$800.00
Payer Name : Robert F. Flory	Paid By: VISA	PAID IN FULL
	•	

Works Requesting Permits:

Remedian Well Construction-Injection - 9 Wells Driller: HEW Drilling - Lic #: 384167 - Method: hstem

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2006- 1016	12/05/2006	03/18/2007	OZ-1	10.50 in.	1.00 in.	10.00 ft	35.00 ft
W2006- 1016	12/05/2006	03/18/2007	OZ-2	10.50 in.	1.00 in.	10.00 ft	35.00 ft
W2006- 1016	12/05/2006	03/18/2007	OZ-3	10.50 in.	1.00 in.	10.00 ft	35.00 ft
W2006- 1016	12/05/2006	03/18/2007	OZ-4	10.50 in.	1.00 in.	10.00 ft	35.00 ft
W2006- 1016	12/05/2006	03/18/2007	OZ-5	10.50 in.	1.00 in.	10.00 ft	35.00 ft
W2006- 1016	12/05/2006	03/18/2007	OZ-6	10.50 in.	1.00 in.	10.00 ft	35.00 ft
W2006- 1016	12/05/2006	03/18/2007	OZ-7	10.50 in.	1.00 in.	10.00 ft	35.00 ft
W2006- 1016	12/05/2006	03/18/2007	OZ-8	10.50 in.	1.00 in.	10.00 ft	35.00 ft
W2006- 1016	12/05/2006	03/18/2007	OZ-9	8.25 in.	1.00 in.	10.00 ft	16.00 ft

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no

Work Total: \$200.00

Alameda County Public Works Agency - Water Resources Well Permit

case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

4. Applicant shall contact James Yoo for an inspection time at 510-670-6633 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).

6. Minimum surface seal thickness is two inches of cement grout placed by tremie

7. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Well Construction-Monitoring-Monitoring - 2 Wells	
Driller: HEW Drilling - Lic #: 384167 - Method: hstem	Work Total: \$600.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2006- 1017	12/05/2006	03/18/2007	MW-11	8.50 in.	2.00 in.	15.00 ft	35.00 ft
W2006- 1018	12/05/2006	03/18/2007	MW-12	8.50 in.	2.00 in.	15.00 ft	35.00 ft

Specific Work Permit Conditions

1. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

2. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

Alameda County Public Works Agency - Water Resources Well Permit

4. Applicant shall contact James Yoo for an inspection time at 510-670-6633 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

6. Minimum surface seal thickness is two inches of cement grout placed by tremie

7. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

8. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
PROGRAMS AND SERVICES

Well Standards Program

The Alameda County Public Works Agency, Water Resources is located at: 399 Elmhurst Street Hayward, CA 94544 For Driving Directions or General Info, Please Contact 510-670-5480 or wells@acpwa.org For Drilling Permit information and process contact James Yoo at Phone: 510-670-6633 FAX: 510-782-1939 Email: Jamesy@acpwa.org

Alameda County Public Works is the administering agency of General Ordinance Code, Chapter 6.88. The purpose of this chapter is to provide for the regulation of groundwater wells and exploratory holes as required by California Water Code. The provisions of these laws are administered and enforced by Alameda County Public Works Agency through its Well Standards Program.

Drilling Permit Jurisdictions in Alameda County: There are four jurisdictions in Alameda County.

Location: Agency with Jurisdiction Contact Number

Berkeley City of Berkeley Ph: 510-981-7460 Fax: 510-540-5672

Fremont, Newark, Union City Alameda County Water District Ph: 510-668-4460 Fax: 510-651-1760

Pleasanton, Dublin, Livermore, Sunol Zone 7 Water Agency Ph: 925-454-5000 Fax: 510-454-5728

The Alameda County Public Works Agency, Water Resources has the responsibility and authority to issue drilling permits and to enforce the County Water Well Ordinance 73-68. This jurisdiction covers the western Alameda County area of Oakland, Alameda, Piedmont, Emeryville, Albany, San Leandro, San Lorenzo, Castro Valley, and Hayward. The purpose of the drilling permits are to ensure that any new well or the destruction of wells, including geotechnical investigations and environmental sampling within the above jurisdiction and within Alameda County will not cause pollution or contamination of ground water or otherwise jeopardize the health, safety or welfare of the people of Alameda County.

Permits are required for all work pertaining to wells and exploratory holes at any depth within the jurisdiction of the Well Standards Program. A completed permit application (30 Kb)*, along with a site map, should be submitted at least **ten (10) working days prior to the planned start of work**. Submittals should be sent to the address or fax number provided on the application form. When submitting an application via fax, please use a high resolution scan to retain legibility.

Fees

Beginning April 11, 2005, the following fees shall apply:

A permit to construct, rehabilitate, or destroy wells, including cathodic protection wells, but excluding dewatering wells (*Horizontal hillside dewatering and dewatering for construction period only), shall cost \$300.00 per well.

A permit to bore exploratory holes, including temporary test wells, shall cost \$200 per site. A site includes the project parcel as well as any adjoining parcels.

Please make checks payable to: Treasurer, County of Alameda

Permit Fees are exempt to State & Federal Projects

Applicants shall submit a letter from the agency requesting the fee exemption.

Scheduling Work/Inspections:

Alameda County Public Works Agency (ACPWA), Water Resources Section requires scheduling and inspection of permitted work. All drilling activities must be scheduled in advance. Availability of inspections will vary from week to week and will come on a first come, first served bases. To ensure inspection availability on your desired or driller scheduled date, the following procedures are required:

Please contact **James Yoo at 510-670-6633** to schedule the inspection date and time (You must have drilling permit approved prior to scheduling).

Schedule the work as far in advance as possible (at least 5 days in advance); and confirm the scheduled drilling date(s) at least 24 hours prior to drilling.

Once the work has been scheduled, an ACPWA Inspector will coordinate the inspection requirements as well as how the Inspector can be reached if they are not at the site when Inspection is required. Expect for special circumstances given, all work will require the inspection to be conducted during the working hours of 8:30am to 2:30pm., Monday to Friday, excluding holidays.

Request for Permit Extension:

Permits are only valid from the start date to the completion date as stated on the drilling permit application and Conditions of Approval. To request an extension of a drilling permit application, applicants must request in writing prior to the completion date as set forth in the Conditions of Approval of the drilling permit application. Please send fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. There are no additional fees for permit extensions or for re-scheduling inspection dates. You may not extend your drilling permit dates beyond 90 days from the approval date of the permit application. **NO refunds** shall be given back after 90 days and the permit shall be deemed voided.

Cancel a Drilling Permit:

Applicants may cancel a drilling permit only in writing by mail, fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. If you do not cancel your drilling permit application before the drilling completion date or notify in writing within 90 days, Alameda County Public Works Agency, Water Resources Section may void the permit and No refunds may be given back.

Refunds/Service Charge:

A service charge of \$25.00 dollars for the first check returned and \$35.00 dollars for each subsequent check returned.

Applicants who cancel a drilling permit application **before** we issue the approved permit(s), will receive a **FULL** refund (at any amount) and will be mailed back within two weeks.

Applicants who cancel a drilling permit application **after** a permit has been issued will then be charged a service fee of \$50.00 (fifty Dollars).

To collect the remaining funds will be determined by the amount of the refund to be refunded (see process below).

Board of Supervisors Minute Order, File No. 9763, dated January 9, 1996, gives blanket authority to the Auditor-Controller to process claims, from all County departments for the refund of fees which do not exceed \$500 (Five Hundred Dollars)(with the exception of the County Clerk whose limit is \$1,500).

Refunds over the amounts must be authorized by the Board of Supervisors Minute Order, File No. 9763 require specific approval by the Board of Supervisors. The forms to request for refunds under \$500.00 (Five Hundred Dollars) are available at this office or any County Offices. If the amount is exceeded, a Board letter and Minute Order must accompany the claim. Applicant shall fill out the request form and the County Fiscal department will process the request.

Enforcement

Penalty. Any person who does any work for which a permit is required by this chapter and who fails to obtain a permit shall be guilty of a misdemeanor punishable by fine not exceeding Five Hundred Dollars (\$500.00) or by imprisonment not exceeding six months, or by both such fine and imprisonment, and such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any such

violation is committed, continued, or permitted, and shall be subject to the same punishment as for the original offense. (Prior gen. code §3-160.6)

Enforcement actions will be determined by this office on a case-by-case basis

Drilling without a permit shall be the cost of the permit(s) and a fine of \$500.00 (Five Hundred Dollars).

Well Completion Reports (State DWR-188 forms) must be filed with the Well Standards Program within 60 days of completing work. Staff will review the report, assign a state well number, and then forward it to the California Department of Water Resources (DWR). Drillers should not send completed reports to DWR directly. Failure to file a Well Completion Report or deliberate falsification of the information is a misdemeanor; it is also grounds for disciplinary action by the Contractors' State License Board. Also note that filed Well Completion Reports are considered private record protected by state law and can only be released to the well owner or those specifically authorized by government agencies.

See our website (<u>www.acgov.org/pwa/wells/index.shtml</u>) for links to additional forms.

APPENDIX B

BORING LOGS

Log of Boring OZ-1

Sheet 1 of 1

Date(s) Drilled February 15, 2006	Logged By Robert F. Flory	Checked By
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 8 1/4 inch	Total Depth of Borehole 20 feet bgs
Drill Rig Type CME 75	Drilling Contractor Gregg Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) ModCal	
Borehole Backfill Well Completion	Location	

CONSULTANTS ENVIRONMENTAL & CMIL ENGINEERING

Log of Boring OZ-2

Date(s) Drilled December 18, 2006	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 1/2 inch	Total Depth of Borehole 35 feet bgs
Drill Rig Type CME 75	Drilling Contractor HEW Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) ModCal, Grab	
Borehole Backfill Well Completion	Location	

Depth, feet	Sample Type	Sample Number	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
0				CL-ML		Silty sandy Clay, brown 10YR 4/4. locally gravelly, soft - moderately stiff, slightly moist.	_		
-	_			GC		Auger return sample Clayey Gravel, very dark brown - dark gray 10YR 3/2 - 4/1, (FILL)	01		
_					L'H	- Auger sample			1" riser
5					LIJ JIJ		0.2		l" blank riser
-					J F F J	-	-		1" riser
_					X A J B]		- 3/8" bentonite chip
-					I P P	-	-		
10				GP		Gravel, dark gray 10YR, pea gravel (FILL) – Auger sample	0.1		
_					0000		-		
-		— ? — ? 07-2-13	- ? - ? - ? 9/10/7	cỉ -		Silty Clay, olive brown 2.5Y 4/4, soft wet muck			
- 15		02210	0,10,1	CL		Sandy Silty Clay, olive brown 2.5Y 4/4, soft, moist			
_	- ?	— ? — ?	— ? — ? — ?	ML -		? ?	- ? -		
-		OZ-2-17.5	5/5/11	CL		 some dark green gray 5GY 4/1streaksmoderately stiff, moist. Silty Clay, 2.5Y 5/6 with spotty yellowish brown 10YR 6/4, firm, moist 	- 66		# 2/12 "Monterey Sand"
_						Silty Clay, olive 5Y 4/4 with 5GY 4/1 mottling, moderately stiff, moist.			1" microporous diffuser
20							-		
_				CL		Sandy Clay, brownish vollow 10VP 6/8 - olive 5V 4/4 with 5GV 4/1	-		- 3/8" bentonite chip
_						mottling, stiff, moist	<u>_</u>	0 []]	
_		<u>OZ-2-23</u>	6/9/4	CL-ML		Silty Clav - Claver, Silt brownish vellow 10YR 6/8 - light vellowish brown	0.7		
25— –						—2.5Y 6/4 with some greenish gray 10GY 6/1 mottling, moderately soft, - slightly plastic, moist -	_		
_		OZ-2-27	3/5/8			-	0.1		
-				SM		Silty Sand, 10YR 4/4, silty, moderately soft - soft, wet, no hydrocarbon – odor.	_		
30		OZ-2-30	5/7/11	ML		Gravelly Silt, yellowish brown 10YR 5/4, moderately firm, wet.	0.2		# 2/12 "Monterey Sand"
_				ML		Clayey Silt, brown - yellowish brown 10YR 5/3 - 5/4, moderately firm, wet	_		
-		07.2.24	9/10/00			Gravelly Silt, light olive brown 2.5Y 5/3, firm, wet, no hydrocarbon odor			1" microporous diffuser
- 25-		02-2-34	0/12/23	SM		Silty Sand, light olive brown 2.5Y 5/3 - 5/6 - olive brown 2.5Y 4/4, firm, wet			
30						Bottom of Boring at 35 feet bgs			

Log of Boring OZ-3

Date(s) Drilled December 18, 2006	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 1/2 inch	Total Depth of Borehole 35 feet bgs
Drill Rig Type CME 75	Drilling Contractor HEW Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) ModCal, Grab	
Borehole Backfill Well Completion	Location Twin to boring SB-13	

Depth, feet	Sample Type	Sample Number	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading,	Well Log	REMARKS AND OTHER TESTS
-				CL-ML		Silty sandy Clay, brown 10YR 4/4. locally gravelly, soft - moderately stiff, slightly moist. Auger return sample	_ _ _ 0		
_				CL		 Silty Clay, dark gray, hard, slightly moist. Auger return sample 	-		+ 1" riser
5				CL		Silty Clay, black N 2.5/, hard, slightly moist. – Auger return sample	- 0		- 1" riser - 1" riser
-	T			CL		Silty Clay, dark yellowish brown 10YR 4/4, stiff, moist – Auger return sample –	_ 0		- 3/8" bentonite chip
0		OZ-3-10	7/9/12	CL		Silty Clay, olive 5Y 4/4 - brown 2.5Y 5/2 - dark yellowish brown 10YR 4/4, - stiff, moist.	_ 3.4 _		
-	- ?	— ? — ? -	— ? — ? — ?	, - _{cl} -		– ? ? ? ? ? ? ? ? _ ?	_ 18.0 ? · 		# 2/12 "Monterey Sand 1" microporous diffuse
-		OZ-3-16	5/5/11			-	_ 3.5	1 11	
-		- ? - ?	_ ? _ ? _ ?	́мĹ	, <u>, , , ,</u>	Clayey Silt, yellowish brown 10YR 5/4-5/6, moderately stiff, moist.	17 ² .5		- 3/8" bentonite chip
-				ML SW-SC		Clayey Silt, yellowish brown 10YR 5/6, moderately stiff, moist. Sand - Clayey Sand brown - yellowish brown 10YR 5/3-5/6 firm wet	0.7		
20		OZ-3-21	4/6/13	CL		 Sandy Clay, yellowish brown 10YR 5/6, stiff, moist. 	70.2		
-	- 3	— ? — ?	— ? — ? — ?	' -c² -		— _ ? _ ? _ ? _ ? _ ? _ ? _ ? _ ? _ ? _	? · ? ·		
25		07.0.00		- cl-		Sandy Silty Clay, yellowish brown 10YR 5/6 - with 5Y 6/3pale olive vertical channels, moderately soft, slightly plastic, moist			
-	— ?	— ? — ?	- ? — ? — ?			– — ? ~ _ ? ? ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ? ~ _ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- ?		
_		<u>OZ-3-28</u>	3/4/11			- no hydrocarbon odor.	0.1		
30 - -		OZ-3-31	8/11/14		11) III)	Layey Sand, olive yellow 2.5Y 6/6 with some 5Y 6/3 - 6/2 mottling, 	5.0		# 2/12 "Monterey Sand
35		OZ-3-33	7/7/10	- sc-		Clayey Sand, light olive 2.5Y 5/4 - yellowish brown 10YR 5/6, moderately soft - soft, wet, no hydrocarbon odor	0.2		1" microporous diffuse
						Bottom of Boring at 35 feet bgs			

Log of Boring OZ-4

Date(s) Drilled December 18, 2006	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Hollow Stem Auger	Drill Bit Size/Type	Total Depth of Borehole 35 feet bgs
Drill Rig Type CME 75	Drilling Contractor HEW Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) ModCal, Grab	
Borehole Backfill Well Completion	Location Twin to boring SB-8	

Depth, feet	Sample Type	Sample Number	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
0 				CL-ML		Silty Clay - Clayey Silt, yellow brown 10YR 6/6 gravelly, stiff - firm, slightly – moist, Auger return sample –	- - - 0		
5				CL		 Silty Clay, light olive brown 2.5Y 5/4, stiff, moist Auger return sample 	0		– 1" riser I" blank riser 1" riser
-				CL		Silty Clay, light olive brown - olive brown, 2.5Y 5/4 -4/4 to yellowish brown 10YR 5/8 mottling, stiff, moist Auger return sample	- 0 -		3/8" bentonite chip
10 - -				CL-ML		Silty Clay - Clayey Silt, light yellowish brown 2.5Y 6/4 - 10YR 6/4 with some olive - pale olive 5Y 6/4-4/4 motting, stiff - firm, moist Auger return sample	0		# 2/12 "Monterey Sand"
- - 15		— ? — ?	— ? — ? — î	?		? ?	- 0 - ? ·		1" microporous diffuser
-	— 3	OZ-4-16	5/5/11	, SC-℃E			0.1 ? ·		- - 3/8" bentonite chip
- 20 - -		OZ-4-20	4/6/13			6/6 with some greenish gray 5GY 6/1 streaks and mottling, moderately firm, moist - wet	- - - -		
 25	- 3	— ? — ?	— ? — ? — ?	?		Silty Sand, dark yellow brown 10YR 3/4, very fine grained, with some clay, —moderately soft, wet	- ? ·		
-	— 9	- ? — ?	- ? - ? - ?	?		Sandy Clay, 10YR 5/6, stiff, moist Silty Sand, 10YR 4/4, very fine grained, clayey, moderately soft - soft, wet, – no hydrocarbon odor.	- ? -		
_ 30—		OZ-4-28 OZ-4-31	2/3/10 8/11/14	SM		Silty Sand, 10YR 4/4, very fine grained, clayey, moderately soft - soft, wet, no hydrocarbon odor with some streaks very Sandy Silty Clay, moderately firm	_ 0		# 2/12 "Monterey Sand"
-		OZ-4-33	10/28/33	GW		 Sand, light olive gray 5Y 6/2 with some yellowish red 5YR 4/6 mottling, moderately friable - friable, wet, no hydrocarbon odor Sandy Gravel, light brownish gray - grayish brown 10YR 5/2 - 6/2, firm, wet 	 0		1" microporous diffuser
35						Bottom of Boring at 35 feet bgs			

Log of Boring OZ-5

Date(s) Drilled December 20, 2006	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 1/2 inch	Total Depth of Borehole 35 feet bgs
Drill Rig Type CME 75	Drilling Contractor HEW Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) ModCal, Grab	
Borehole Backfill Well Completion	Location	

Depth, feet	Sample Type	Sample Number	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
-				CL		Silty Clay, very dark grayish brown 120YR 3/2, soft, wet becoming black downward	-		
_				CL		Silty Clay, black N 2.5/, very stiff, moist	-		1" block riser
5 -							9.0		- 1" blank riser
-				- sc-		Clayey Sand, yellowish brown 10YR 5/8, coarse grained, firm, wet			3/8" bentonite chips
10		OZ-5-11	5/8/11	SC	[]]]	Clavey Sand, light olive brown 2.5Y 5/4, firm, wet	67		
_				CL		Silty Clay, olive brown - olive yellow 5Y 5/4 - 6/8 olive 5Y 4/3, with some greenish gray 5GY 5/1 horiz. streaks and vert. channels, firm, wet	-		+ # 2/16 Monterey Sand
_ 15—				- cl-		Silty Clay, dark olive - olive 5Y 3/2 - 5/4 with some yellowish brown 10YR 5/8, firm, moist	-		1" x 18" microporous diffuser
-		OZ-5-16	5/8/11				_ 25 10 _		3/8" bentonite chips
- 20 -		OZ-5-21.0	5/12/12	SC_		Clayey Sand, olive brown 2.5Y 4/4, firm, wet	- - - - 4.4		
 25				- sw		Clayey Gravelly Sand, dark yellowish brown 10YR 4/4, hard, wet	- - - -		
-		OZ-5-26	6/7/12	ML		 Clayey Silt, yellowish brown 10YR 5/4 with some light olive brown 2.5Y 5/4-5/6 with greenish gray 10Y 6/1 mottling and streaks, moderately firm, moist 	_ 0.4 _		
_ 30—				SM_		 Silty Sand, light yellowish brown 10YR 6/4 - light olive brown 2.5Y 5/4, mottled, moderately firm, wet 	- - -		
-		OZ-5-31	7/11/15	SC		 Clayey Sand, yellowish brown - strong brown 10YR 5/8 - 7.5YR 5/8 with abundant greenish gray 5G 5/1 streaks & mottling, firm, wet 	_ 44.0 _		# 2/16 Monterey Sand
-		OZ-5-34	7/13/14	- cl-		Silty Clay, dark yellowish brown 10YR 4/6 - 3/6, stiff - slightly plastic, moist	0		1" x 18" microporous diffuser
35						Bottom of Boring at 35 feet bgs			

Log of Boring OZ-6

Sheet 1 of 1

Date(s) Drilled December 20, 2006	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 1/2 inch	Total Depth of Borehole 35 feet bgs
Drill Rig Type CME 75	Drilling Contractor HEW Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) ModCal, Grab	
Borehole Backfill Well Completion	Location	

Depth, feet	Sample Type	Sample Number	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading,		Well Log	REMARKS AND OTHER TESTS
U _				CL		Silty Clay, very dark grayish brown 120YR 3/2, stiff, slightly moist – becoming black downward	-		רת	
-				CL		Silty Clay, black N 2.5/, very stiff, moist	-	Ø		
-								8		- 1" blank riser
							0.0			- 1" blank riser
_						-	1			- 3/8" bentonite chips
10		07.0.44	0/0/17	GC	IJ Z	Clayey Sandy Gravel, greenish gray 5G 5/1, hard, wet, strong hydrocarbon odor	-			
-		OZ-6-11	6/9/17	ML	173 p		_ 276			
-							_			- # 2/16 Monterey Sand
-						Clayey Silt, greenish gray 5G 5/1 with yellowish brown 10YR 5/6 mottling,	<u></u>			- 1" x 18" microporous diffuser
15		OZ-6-16	5/9/12			 firm, moist, slight hydrocarbon odor Silty Clay, yellowish brown 10YR 5/6 with greenish gray 5G 5/1, stiff moist, slight hydrocarbon odor 	2 25.6	3		
-						 with streaks Silty Clay, with yellowish brown 10YR 5/8 mottling, stiff, moist 	_			- 3/8" bentonite chips
-				- sw		Silty Sand, dark bluish gray 10B 4/1 - dark greenish gray 5G 4/1, coarse, firm, wet, strong hydrocarbon odor				
20		OZ-6-21.0	5/13/11				310			
-								I		
25				SP		 Sand, dark bluish gray 10B 4/1 - dark greenish gray 5G 4/1, coarse, firm, wet, hydrocarbon odor with some interbedded Silty Clay, stiff, moist 				
-		OZ-6-26	6/8/10			_	_ 169			
-						-				
_						-	-			
30		OZ-6-31	6/10/14	SC	1711	Clause Sand vallewish brown, streng brown 40VD 5/0, 7 5/0 5/0 with	-	R		Lead auger and bit left
-						abundant greenish gray 5G 5/1 streaks & mottling, firm, wet	<u> </u>			bgs to 35 feet bgs.
-				GP	,000 ,000	Clayey Sand, dark yellowish brown 10YR 3/6 - 4/3, firm, wet	/			- # 2/16 Monterey Sand
-		OZ-6-34	7/11/12	CL		10YR 5/8 - 4/6 Sandy Gravel, yellowish brown - dark yellowish brown 10YR 5/8 - 4/4,	1.7	E		diffuser
35						Traro, wet		1.	· · · · · · · ·	

CONSULTANTS

Log of Boring OZ-7

Date(s) Drilled December 20, 2006	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 1/2 inch	Total Depth of Borehole 35 feet bgs
Drill Rig Type CME 75	Drilling Contractor HEW Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) ModCal, Grab	
Borehole Backfill Well Completion	Location Twin to wells MW-3 and MW-10	

Depth, feet	Sample Type	Sample Number	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
• _				GW CL	////	Concrete Crushed Gravel clav mix. grav - dark grav 2.5Y 5/1 - 4/1. firm dry. FILL	\models		
_				CL		Silty Clay, very dark grayish brown 120YR 3/2, stiff, slightly moist	<u> </u>		
-						Silty Clay, black N 2.4/, very stiff, slightly moist			
5									1" blank riser
J _						-	0.1		1" blank riser
-				CL	H H	Silty Clay, dark gray - dark give gray 5Y 3/1-5Y 3/2, stiff, moist	10.0	888	
-				CL-ML		Silty Clay - Clayov Silt, olivo brown - dark gravichbrown 2 5V 4/2 - 4/2	0.1		- 3/8" Bentonite chips
-						incleasing clay downward, foderately firm - stiff, moist, very slight			
10	T						6.9		
_				CL		 Silty Clay, olive brown 5Y 4/4, firm, moist - very moist, very slight 	_		
_						hydrocarbon odor	8.1		# 2/12 Monterey sand
-						-			1" X 18" microporous
15—				CL		Silty Clay, light olive brown 2.5Y 5/4, stiff, moist			
-									
									+ 3/8" Bentonite chips
_				SC-CL		Sandy Clay - Clayey Sand, dark greenish gray 10G 4/4, firm - moderately firm, moist - wet, very slight hydrocarbon odor			
20—							-		
-		OZ-7-20	5/6/9				5.0		
-									
25—				SP		Clayey Sand - Sandy Clay, dark greenish gray 10G 4/4 - dark olive gray 5Y	_	0 []	
-		OZ-7-25	5/8/8			3/2, fine grained, firm, poorly graded, wet, no odor	26.5		
-				CL	////	Silty Clay, dark olive gray 5Y 5/2, stiff with streaks Clayey Sand, coarse,		0 []	
-		07-7-29	6/9/13			 firm, slightly moist, slight hydrocarbon odor 	03	8	1" blank riser
20_		52.20	0,0,10	ML		Clayey Silt, light olive brown 2.5Y 5/6 with grayish brown 2,5Y 5/2		0 1/	
30-		OZ-7-30	10/13/20	SC	7.67.7	Clayey Sand, strong brown 10YR 5/8, gravelly, firm - hard, wet	0.1		# 2/12 Monterey Sand
_					ЦЦ	Clayey Silt, strong brown 5Y 5/8 -yellowish brown - dark yellowish brown 10YR 5/8 - 4/6, firm, wet	+-		
-					000	Sandy Gravel, yellowish brown - dark yellowish brown 10YR 5/8 - 4/4,	-		1" X 18" microporous
_	\vdash	OZ-7-34	9/10/132	CL	777	nard, wet Sandy Clay, vellowish brown, stiff, moist	0.1		ullusei
35	\vdash			+	////	Bottom of Boring at 35 feet bas	1	4.4 2725.1	~

Log of Boring OZ-8

Date(s) Drilled December 20, 2006	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 1/2 inch	Total Depth of Borehole 35 feet bgs
Drill Rig Type CME 75	Drilling Contractor HEW Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) ModCal, Grab	
Borehole Backfill Well Completion	Location Twin to wells MW-2 and MW-8	

Depth, feet	Sample Type	Sample Number	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
0				GW- GC		Sandy Clayey Gravel (crushed) gray N 5/ - brown 10YR 4/4, loose - hard, - dry	-		
				CL		Silty Clay, very dark grayish brown 10YR 3/2, stiff, slightly moist becoming black downward	1		
_						Silty Clay, black N 2.5/, very stiff, moist	-		- 'I blank riser
5	Т						0.2		
						-			- 'I blank riser
_	-+-					Sandy Clay, very dark gray - dark olive gray 5Y 3/1 - 3/2, firm, moist			- 3/8" bentonite chip
-						-	-		
10		Z-8-11		SC-CL			16.2		
_						firm - stiff, wet - moist, slight hydrocarbon odor -	-		# 2/12 Monterey San
-						-	-		
15				SC_		Clayey Sand, greenish gray - grayish green 5G 5/1 - 5/2, moderately firm, — moist - wet, hydrocarbon odor	_		diffuser
-	0.	Z-8-16	5/9/12	CL		Silty Clay, greenish gray, gravish green 5G $5/1 - 5/2$ with streaks and	172		
-						mottling yellowish brown 10YR 5/8, stiff, moist, hydrocarbon odor with streaks Silty Clay, with yellowish brown 10YR 5/8 mottling, stiff, moist	_		. 2/8" hontonito chin
_	- 02	Z-3_18		- sw		Sand, dark olive gray 5Y 3/2 - very dark greenish gray 5G 3/1, coarse,			-3/8 bentonite chip
20-						locally clayey, gravelly, firm - hard, wet	-		
-	02	-8-21.0	5/13/11			_	4.4		
						_			
_	-+-			F SP		Clayey Sand, brown 5YR 4/2 - 4/4 occasionally olive yellow 2.5Y 6/8			
25		7 0 00	0/0/4.0			motuling, inn, moist - wet	9.0		
-	0.	2-8-20	6/8/10	CL		- Silty Clay, brownish yellow - yellowish brown 10YR 6/8 - 5/8, stiff, moist	<u>- 0:1</u>	1 V/	
								0 1/	
_						Sandy Clay, brownish yellow - yellowish brown 10YR 6/8 - 5/8, stiff, moist -	-		
30	0.	Z-8-31	6/10/14	SC		 Clayey Sand, dark yellowish brown - brownish yellow 10YR 3/6 - 4/3, firm,	44.0		
_				<u></u>		Sand, dark olive brown 2.5Y 3/3, firm, wet	A		# # 2/12 Monterey Sand
-				30		Clayey Sand, dark yellowish brown 10YR 3/6 - 4/6, firm, wet	4		1" x 18" microporous
-	0	Z-8-34	7/13/142		11	 Silty Clay, brown - dark yellowish brown 10YR 4/3 - 3/6, stiff - slightly plastic, moist 	- 0.2		diffuser
35					イント・イー	Bottom of Boring at 35 feet bas	-	- 1 : 동산 영향	3

Log of Boring OZ-9

Date(s) Drilled December 20, 2006	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 8 1/4 inch Hollowstem	Total Depth of Borehole 35 feet bgs
Drill Rig Type CME 75	Drilling Contractor HEW Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) Grab	
Borehole Backfill Well Completion	Location 6 feet from OZ-6	

Depth, feet	Sample Type	Sample Number	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
U				CL		Silty Clay, very dark grayish brown 120YR 3/2, stiff, slightly moist – becoming black downward			
_				CL		 Silty Clay, black N 2.5/, very stiff, moist 	-		
5		OZ-9-5					0.0		4 1" blank riser
_							-		1" blank riser
- - 10	- ?	— ? — ?	— ? — ? — ?	Gç-		 Clayey Sandy Gravel, greenish gray 5G 5/1, hard, wet, strong hydrocarbon odor 	- - ? ·		3/8" bentonite chips
-		OZ [?] 9-11 [?]	— ? — ? — ?	− _M ² −	GIF	? ?	250		
- - 15	- ?	— ? — ? OZ-9-15	— ? — ? — ?	-cî -		Silty Clay, yellowish brown 10YR 5/6 with greenish gray 5G 5/1, stiff moist, slight hydrocarbon odor	30		
_		- ? - ?	— ? — ? — ?			with streaks Silty Clay, with yellowish brown 10YR 5/8 mottling, stiff, moist - $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	- 2.		
_				SW		 Silty Sand, dark bluish gray 10B 4/1 - dark greenish gray 5G 4/1, coarse, firm, wet, strong hydrocarbon odor 	-		# 2/16 Monterey Sand 1" x 18" microporous diffuser
20— –		OZ-9-20.0					290		
_	- ?	— ? — ?	— ? — ? — ?	_{SP}		??????? _	- - ? ·		3/8" bentonite chips
25— - -		OZ-9-25					150		
30		OZ-9-301 [?]	— ? — ? — ?			Clayey Sand, yellowish brown - greenish gray 5G 5/1 mottling, firm, wet	1.0		
-	- 1	— ? — ?	— ? — ? — ?	sć _ _{GP} _		Clayey Sand, yellowish brown - dark yellowish brown 10YR 3/6 - 4/3, gravelly in part, firm, wet Sandy Gravel, yellowish brown - dark yellowish brown 10YR 5/8 - 4/4	- ? -		# 2/16 Monterey Sand
_	- 1	— ? — ? OZ-9-34	— ? — ? — ?	- _{cl} -		hard, wet???????	2.0		1" x 18" microporous diffuser
35					<u> </u>	Bottom of Boring at 35 feet bgs	1		

APPENDIX D

LABORATORY ANALYTICAL REPORTS

APPENDIX C

SITE CONCEPTUAL MODEL

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #262157; Omega Termite	Date Sampled:	12/18/06
2500 Camino Diablo, Ste. #200		Date Received:	12/20/06
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported:	12/28/06
	Client P.O.:	Date Completed:	12/28/06

WorkOrder: 0612442

December 28, 2006

Dear Robert:

Enclosed are:

- 1). the results of **8** analyzed samples from your **#262157; Omega Termite project,**
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92	A 94565-1701 262					Work	order	: 06124	442	(ClientIE): AEL					
				EDF		□ F	ax		🗸 Email		٦H	lardCopy	[Third	Party		
Report to: Robert Flory AEI Consultants		Email: TEL:	rflory@aeicoi (925) 283-60	nsultants.com 0 FAX: (925)	283-6	12	Bill to De AE	enise Me El Consu	ockel ultants				Req	luested	d TAT:	5	days
2500 Camino Di Walnut Creek, C	ablo, Ste. #200 A 94597	ProjectNo: PO:	#262157; Om	nega Termite			25 Wa	00 Carr alnut Cr	nino Dia eek, CA	ablo, St A 94597	e. #200 7)	Dai Dai	te Rec te Prin	eived: nted:	12/20/ 12/20/	/2006 /2006
									Req	uested	Tests	(See lege	end be	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0612442-001	OZ-4-16		Soil	12/18/06 9:15:00	✓	Α		Α									
0612442-002	OZ-4-26		Soil	12/18/06 9:35:00	~	Α		А									
0612442-003	OZ-4-31		Soil	12/18/06 9:40:00		Α	Α	Α									
0612442-004	OZ-4-33		Soil	12/18/06 9:55:00	<	А		А									
0612442-005	MW-12-7.5		Soil	12/18/06 11:00:00	\checkmark	Α		А									
0612442-006	MW-12-14		Soil	12/18/06 11:10:00		Α		А									
0612442-007	MW-12-19		Soil	12/18/06 11:20:00	\checkmark	А		А									
0612442-008	MW-12-24		Soil	12/18/06 11:30:00		А		А									
0612442-009	MW-12-29		Soil	12/18/06 11:40:00	\checkmark	А		А									
0612442-010	MW-11-21		Soil	12/18/06 2:15:00	\checkmark	А		А									
0612442-011	MW-11-26		Soil	12/18/06 2:25:00		Α		А									
0612442-012	MW-11-29		Soil	12/18/06 2:35:00	<	Α		А									
0612442-013	MW-11-31		Soil	12/18/06 2:45:00		Α		А									
0612442-014	OZ-3-16		Soil	12/19/06 8:40:00	\checkmark	Α		А									
0612442-015	OZ-3-21		Soil	12/19/06 8:50:00		Α		А									

Test Legend:

1	G-MBTEX_S	2	
6		7	
11		12	

PREDF REPORT	

3 TPH(D)_S
8

4	
9	

5	
10	

Prepared by: Elisa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Rd

OZ-2-17.5

OZ-2-24.5

OZ-2-34

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92	A 94565-1701 262					Work	Order	: 06124	142	Cl	ientID:	AEL					
				EDF		🗌 Fa	ax	[🖌 Email		Harc	lCopy	[Third	Party		
Report to:Email:ffRobert FloryEmail:ffAEI ConsultantsTEL:(92500 Camino Diablo, Ste. #200ProjectNo:#Walnut Creek, CA 94597PO:			rflory@aeicor (925) 283-60 #262157; Om	nsultants.com 0 FAX: (925): nega Termite	283-6 ⁻	12	Bill to De AE 25 Wa	enise Mo I Consu 00 Cam alnut Cro	ockel ultants hino Dia eek, CA	ablo, Ste \ 94597	. #200		Req Dat Dat	uesteo e Rec e Prii	d TAT: eived: nted:	5 12/20 12/20	days /2006 /2006
					[Requ	uested T	ests (Se	e lege	end be	low)		1	
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0612442-016	OZ-3-26		Soil	12/19/06 9:05:00		А		А									
0612442-017	OZ-3-31		Soil	12/19/06 9:31:00		Α		А									

✓

А

А

А

А

А

А

12/19/06 3:45:00

12/19/06 4:00:00

12/19/06 4:40:00

Soil

Soil

Soil

Test Legend:

0612442-018

0612442-019

0612442-020

1 G-MBTEX_S	2 PREDF REPORT	3 TPH(D)_S	4	5
6	7	8	9	10
11	12			

Prepared by: Elisa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	McCampbell	Analy	tical, Inc.	:	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI C	Consultants		Client Proj	ect ID: #2	262157; Omega T	ermite	Date Sample	d: 12/18/06	06-12/19/06			
2500	Camino Diablo, Ste. #200						Date Receive	ed: 12/20/06	;			
Walni	It Creek CA 9/597		Client Con	Client Contact: Robert Flory Date Extracted: 12/20/06								
vv ann	11 CICCK, CA 74377		Client P.O.	•			Date Analyz	ed 12/22/06	;			
Extracti	Gasolir on method SW5030B	line with BT	EX and MTBE	* Work Orde	r: 061	2442						
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
003A	OZ-4-31	S	ND	ND	0.015	ND	ND	ND	1	94		
006A	MW-12-14	S	ND	ND	ND	ND	ND	ND	1	95		
008A	MW-12-24	S	ND	ND	0.094	ND	ND	ND	1	95		
011A	MW-11-26	S	29,g,m	ND	ND	ND	ND	ND	1	82		
013A	MW-11-31	S	ND	ND	ND	ND	ND	ND	1	83		
015A	OZ-3-21	S	ND	ND	ND	ND	ND	ND	1	82		
018A	OZ-2-17.5	S	6.3,a	ND	0.19	ND	0.046	0.011	1	85		
020A	OZ-2-34	S	ND	ND	ND	ND	ND	ND	1	87		
									_			
									<u> </u>			
									<u> </u>			
									_			
									 			
									<u> </u>			
Rep	porting Limit for DF =1;	W	NA	NA	NA	NA	NA	NA	1	ug/L		
ND at	bove the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

	Campbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
AEI Consulta	nts	Client Project II	D: #262157; Omega	Date Sampled: 12/18	/06-12/1	9/06			
2500 Camino	Diablo, Ste. #200	Termite		Date Received: 12/20/)/06				
Walnut Creek	СА 94597	Client Contact:	Robert Flory	obsert FloryDate Extracted: 12/20					
Wallat Creek,	011)+3)1	Client P.O.:		Date Analyzed 12/21	/06-12/2	3/06			
Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel*									
Extraction method	SW3550C	Analyti	cal methods SW8015C	Work Or	der: 06	12442			
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS			
0612442-003A	OZ-4-31	S	ND		1	101			
0612442-006A	MW-12-14	S	ND		1	103			
0612442-008A	MW-12-24	S	ND		1	102			
0612442-011A	MW-11-26	S	61,k	1	103				
0612442-013A	MW-11-31	S	ND	1	99				
0612442-015A	OZ-3-21	S	3.4,a		1	102			
0612442-018A	OZ-2-17.5	S	1.9,d		1	103			
0612442-020A	OZ-2-34	s	ND		1	100			

Reporting Limit for $DF = 1$;	W	NA	NA
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0612442

EPA Method SW8021B/8015	iCm I	Extraction	SW503	0B		Batchll	D: 25328	Ş	Spiked Sar	nple ID	: 0612438-0)33A
Analyte	Sample	Spiked	ked MS MSD MS-MSD LCS LCSD LCS-LCSD						A	Acceptance Criteria (%)		
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	0.60	104	111	6.51	109	108	1.21	70 - 130	30	70 - 130	30
MTBE	ND	0.10	82.1	89.6	8.70	86.6	85.1	1.65	70 - 130	30	70 - 130	30
Benzene	ND	0.10	99.2	98.4	0.785	97.8	92.3	5.80	70 - 130	30	70 - 130	30
Toluene	ND	0.10	83	82.5	0.681	83.2	78.5	5.81	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	102	101	0.829	102	96.5	5.43	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	94.7	94.7	0	95.7	90	6.10	70 - 130	30	70 - 130	30
%SS:	108	0.10	106	100	5.58	102	99.1	2.94	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

BATCH 25328 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612442-003	12/18/06 9:40 AM	12/20/06	12/22/06 2:42 AM	0612442-006	2/18/06 11:10 AM	12/20/06	2/22/06 3:12 AM
0612442-008	2/18/06 11:30 AM	12/20/06	12/22/06 3:41 AM	0612442-011	12/18/06 2:25 PM	12/20/06	2/22/06 6:21 AM
0612442-013	12/18/06 2:45 PM	12/20/06	12/22/06 5:49 AM	0612442-015	2/19/06 8:50 AM	12/20/06	2/22/06 4:43 AM
0612442-018	12/19/06 3:45 PM	12/20/06	12/22/06 5:16 AM	0612442-020	12/19/06 4:40 PM	12/20/06	2/22/06 6:54 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0612442

EPA Method SW8015C	Method SW8015C Extraction SW3550C						BatchID: 25327 Spiked Sample I)33A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%			%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	ND	20	94	94.4	0.406	99.8	99.8	0	70 - 130	30	70 - 130	30
%SS:	100	50	99	98	0.659	103	102	0.615	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25327 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612442-003	12/18/06 9:40 AM	12/20/06	12/22/06 8:56 AM	0612442-006	2/18/06 11:10 AM	12/20/06	12/21/06 5:21 PM
0612442-008	2/18/06 11:30 AM	12/20/06	12/22/06 7:59 PM	0612442-011	12/18/06 2:25 PM	12/20/06	2/23/06 12:33 AM
0612442-013	12/18/06 2:45 PM	12/20/06	2/23/06 12:33 AM	0612442-015	2/19/06 8:50 AM	12/20/06	12/22/06 9:08 PM
0612442-018	12/19/06 3:45 PM	12/20/06	2/22/06 10:17 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0612442

EPA Method SW8015C	Extraction SW3550C					Batchl	D: 25330	ŝ	Spiked Sample ID: 0612443-002a			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria ('	%)
, and just	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	3.5	20	86.7	87.5	0.741	99.4	104	4.70	70 - 130	30	70 - 130	30
%SS:	106	50	98	98	0	95	97	1.31	70 - 130	30	70 - 130	30
All target compounds in the Met NONE	hod Blank o	f this extra	ction bate	ch were N	ID less tha	n the met	hod RL w	ith the follo	wing except	tions:		

BATCH 25330 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612442-020	12/19/06 4:40 PM	12/20/06	2/22/06 10:59 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #262157; Omega Termite	Date Sampled:	12/20/06
2500 Camino Diablo, Ste. #200		Date Received:	12/22/06
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported: (01/02/07
	Client P.O.:	Date Completed: (01/02/07

WorkOrder: 0612543

January 02, 2007

Dear Robert:

Enclosed are:

- 1). the results of **9** analyzed samples from your **#262157; Omega Termite project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

				Ŧ	191		C	96,	6	254	Ð	3																			1/_	7	
	McCAM	IPBELI 1538 W	ANAI	YT s Ro	ICA ad	L, IN	IC.							PTH		AE		CF		IN	0	F (CU	ST	0	DY	/ F	RE	CQ	Ŕſ	5		
		Bay Po	oint., CA	9456	5											Ar							RI	SH		24 H	IR	4	48 HI	R	72	HR	5 DAY
Telephone: (92	25) 252-9262						Fax	:: (92	5)	252-9	269		(Geo	rac	ker	ED	F	\boxtimes		PDI		\times]	Exc	el]	Wr	ite (On	(DW)	
Report To: Robe	ert Flory		E	Bill To: Same						Analysis				is R	equ	est							Oth	er		Comr	nents						
Company: AEI	Consultants														(F)													ť					
2500	Camino Dia	blo, Suite	200										SC m)		/B&													t Lis					
Walı	ut Creek, C.	A 94597	F	-Mai	il: rflo	ry@a	eico	onsult	ant	ts.com			/801		E&F	<u> </u>							8310					arge					
Tel: (925) 944-28	99 Ext 122	$-\Lambda$		ax: (925)	944-2	895	To		ito			s (SV		520	418.							/ 0/:					10 T					
Project Location	· 807 75 th Av	enne Oa	kland C	A	Ival	lie o	meg	za re	1 11	ute	/	_	IS Ga	(ii	se (5) suc	st)	020)					5 / 82			()		- 80					
Sampler Signatu	re:	m		6	h		-	2	~				PH 8	15Cr	Grea	carbo	10 lis	2/8	080				A 625			/601		60B					
		SAMP	LING	1	s	M	AT	RIX		MET	CHO	D	L % (W80	il &	lydro) (80	A 60	8 / 8	080	3260		EP/			239.2		s (82					
				LS	ine					PRES	ERV	/ED	021B	el (S	III O	un H	826((EP	A 60	8 / 8	24/8	20	's by	als	ls	421/2		VOC					
SAMPLE ID	(Field Point			aine	onta								SW8	Dies	rolet	roleı	EPA	NLY	s EP	A 60	9 Y 6	/ 82	PNA	Met	Meta	40/7		ited					
	Name)	Date	Time	ont	e C	ter		dge	ler	_	ő	ler	EX (as	l Pet	l Pet)Cs]	0 X	icide	s EP	CS EI	625	['s/]	A-17	T 5]	1 (72		gena					
		с.		#	Typ	Wa	Air	Slu	đ	Ice	HN	Oth	MB1	TPF	Tota	Tota	HVC	BTE	Pest	PCB	N0	EPA	PAH	CAN	LUF	Lead	RCI	Halc					
07-7-79	07-7	12/20/0	IDEL	1	5.	-	2						×	1													_			+	+		
07-7-71	02-7	10yoya	1120		24		\rightarrow						6	1	6																		
02-1-51	UEI		1120	-+-									H.		V							-		-			_				+		
02-0-11	02-8	Y	1405	4												/	17	_														cohol	ad Sta
040-20			1423	-1-	/				-				×		A	1	0		17												-	urei	001 (970
02-0-06	1		1445	t.					_				9 10	40	1	~																	
02-0 31	V (Yall	1500	4					-		-		ŀ,	K																	+		
02-0-11	07-6	12/2/0	0635										λ_{i}																		-		
02-6-16		· / ·	0750	1									A	1ª	FC	/																	
02-6-21			090					-	_		-	-	Č																	+			laine an
02-6-26	V		0920	\square	 		-		_				X										_										and the second second second
02-5-16	02-5		1300						_				Ă	X																		(pil.	. Et al
02-5-2/		1	1325		<u> </u>								4	a,	ld															\square	10	belle	13120
02-5-31	i	V	1330	ì	\bigvee								X	X																			
· ·	11]																			
Relinquished By:	MA.	Date:	Time:	Rece	eived B	"/ (2 (A	()	\mathbb{O}						e,	Q			-							**	0.45				Tural	OTHER
Polishuushaal	TVM-	12070	Times	Der	//	1 ×	-	yw		X				ICE	t°	1.6)			1		P	RE	SER	VA	TIO	N_	UAS	0&	G	ME	IALS	OTHER
Kennquisnea By:	ILV	Date:	1 ime:	Kece	ivea B	y:								GOO	DD (CON	DIT		V .	¥		A	PPI	ROP	RL	ATE	7						
Relinquished By:	v /	Date:	Time:	Rece	ived B	v:								HEA DEC	E S CHL	PA ORI	JE A NA1	LED	EN I IN	LA	B	C	ON PE	TAI RSF	INE CRV	KS_ /ED	IN	LAF	3				
		2												-																	-		

																											Z	1	2		_
McCAMPBEL	L ANAI	LYTI	[CA]	L, I	NC.											(CH	A	N	OI	r C	US	T	OD	Y	RF	e	DR	D		
1538	Villow Pa	ss Roa	ıd									Т	UR	N.	AR	01	JNI	D T	'IM	E		Ę]	[/	Ĺ]			
Bay	Point., CA	9456	5																			RUS	H	24	HR		<u>48 F</u>	IR	7	2 HR	5 DAY
Telephone: (925) 252-9262					Fa	x: (9	925)	252	2-92	69		G	eoT	rac	ker	ED	F [\times	I	PDF	\triangleright	3	E	xcel			W	rite	On	(DW)	
Report To: Robert Flory	I	Bill To	: Sa	me													Ana	lysi	s Re	eque	st						Ot	her		Comr	nents
Company: AEI Consultants														(F)												Ŧ					
2500 Camino Diablo, Sui	te 200										_	SCm		/B&												t Lis					
Walnut Creek, CA 94597	1	E-Mai	l: rflo	ory@	aeic	onsi	ıltan	ts.c	om			/801		E&F	\square						01100	1100				arge					
Tel: (925) 944-2899 Ext 122		<u>ax: (9</u>	()25)	944-	2895	5		• .			_	(SW		520	118 .							2				10 T					
Project #: 262157	l la	rojec	t Nar	ne: (Jme	ga	lern	nite	-			6 Gas		se (5	p) su		(00)				0	70				- 80					
Somplor Signature:	akiana, C	A		\leftarrow	E		_				_	PH as	SCII	ireas	arbo	0 lis	/ 80	80			202	C70		6010		0B					
Sampier Signature:								N	лет	ног	5	& TI	801	80	droc	801	602	/ 80	80	99	V QC			9.2/		(826					
SAM	PLING		ners	1	MA'I	RL	x	PR	ESE	RVE	ED	(1B)	(SW	li Oil	h Hy	260	EPA	608	/ 80	1 / 82		ĥ,	0	1/23		oCs					
SAMPLE ID LOCATION		ners	ıtaiı									W802	esel	leun	leun	A 8	LY (EPA	608	624	V 78		etale	/742		A p					
(Field Point Name) Date	Time	ntai	Cor	-		d d	r v			3		X (S)	s Di	etro	etro	S EF	NO	des l	EPA	EPA	07	I J M	W S	7240		enate					
Trainey Date	Time	Co	ype	ate	: F		the	e	อ	2	the	BTE	PH a	tal F	tal F	Š	LEX	stici	Bs	SC	A O		IFT I	ad (loge					
		#	É	1	š <			Ic	H	Η	0	Μ	Ŧ	To	To	H	BJ	Pe	PC	ž			5 1	Ľ L	R R	Ha					
02-1-12 0Z-1 12/21	1105	-1	2/1		\checkmark			1				X	X																		
07-1-17 1 1/	1115	1	10		$\mathbf{\lambda}$			X																							
07-1-7 1	1551				v .	-		$\mathbf{\lambda}$																	-	1					
	1000				\sim				-														_			+					
							-				+															+					Re-
											\dashv											_				+					
											_																				
											_																		_		
																					+	_									
											-															-					
Polindwished Pro	Time	Dear			2					<u> </u>	+																				
Date:	1 me:	Kece	ivea B				a																		,	VOAS		&G	М	ETALS	OTHER
Relinquished By	Time	Reco	and the					ICE/t ^o PRESERVATION PROVINCE PROVIN																							
Date:	T mie;	Rece	area D	J.							GOOD CONDITION APPROPRIATE																				
Relinquished By: Date:	Time:	Recei	reived By					DECHLORINATED IN LAB PERSERVED IN LAB																							
Date.				ved By:																											

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-92	62				Work	Order:	0612	543	C	lientI	D: AEL					
			EDF		F	ax		Emai	I	٦H	HardCopy			arty		
Report to:						Bill to:						Req	uested T	AT:	5	i days
Robert Flory		Email: rflory@aeico	nsultants.com			De	nise M	ockel								-
AEI Consultants	;	TEL: (925) 283-60	00 FAX: (925)	283-61	21	AE	I Cons	ultants								
2500 Camino Di	ablo, Ste. #200	ProjectNo: #262157; On	nega Termite			250	00 Can	nino Dia	blo, Ste	e. #200		Dat	e Receiv	ed:	12/22	/2006
Walnut Creek, C	CA 94597	PO:	Ū			Wa	Inut C	reek, CA	A 94597	,		Dat	e Printe	d:	12/27	/2006
								Re	quested	l Tests	(See lege	nd bel	iow)			
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
				_		1										
0612543-001	OZ-7-29	Soil	12/20/06 10:55:00		A	A										
0612543-003	OZ-8-11	Soil	12/20/06 2:05:00		А	Α										
0612543-006	OZ-8-31	Soil	12/20/06 3:00:00		А	Α										
0612543-007	OZ-6-11	Soil	12/21/06 8:35:00		А	Α										
0612543-009	OZ-6-21	Soil	12/21/06 9:05:00		Α	Α										
0612543-010	OZ-6-26	Soil	12/21/06 9:20:00		Α	Α										
0612543-011	OZ-5-16	Soil	12/21/06 1:00:00		А	Α								-		-
0612543-013	OZ-5-31	Soil	12/21/06 1:30:00		А	Α									1	
0612543-014	OZ-1-12	Soil	12/21/06 4:05:00		А	Α	1								-	-

Test Legend:

1	G-MBTEX_S
6	
11	

2	TPH(D)_S
7	
12	

ε	
8	

4	
9	

5	
10	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	McCampbell	Analy	tical, Inc	<u>-</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269										
AEI C	onsultants		Client Proj	ect ID: #20	52157; Omega T	ermite	Date Sample	ed: 12/20/06	-12/21	1/06					
2500 0	Camino Diablo, Ste. #200						Date Receiv	ed: 12/22/06	i						
Wolny	t Croals CA 04507		Client Cor	ntact: Robe	rt Flory		Date Extract	ed: 12/22/06	;						
vv annu	II CIEEK, CA 94397		Client P.O.	.:			Date Analyz	ed 12/23/06	-12/28	8/06					
Extracti	Gasolin on method SW5030B	ne Range (C6-C12) Vola Analy	tile Hydroo ytical methods	carbons as Gaso SW8021B/8015Cm	line with BTI	EX and MTBE	* Work Order	r: 061	2543					
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS					
001A	OZ-7-29	S	12,g,m	ND	ND	ND	ND	ND	1	71					
003A	OZ-8-11	S	9.4,a,m	ND	0.012	0.047	0.040	0.026	1	117					
006A	OZ-8-31	S	28,a,m	ND<0.10	0.061	0.15	0.32	0.17	2	70					
007A	OZ-6-11	S	31,a	ND<0.25	0.18	0.14	ND<0.025	0.064	5	107					
009A	OZ-6-21	S	17,g,m	ND	0.10	ND	ND	0.034	1	73					
010A	OZ-6-26	S	200,g,m	ND<0.50	ND<0.050	ND<0.050	0.067	0.17	10	113					
011A	OZ-5-16	S	34,a	ND<0.50	0.63	0.13	0.42	1.4	10	97					
013A	OZ-5-31	S	1.3,a	ND	0.047	ND	0.011	0.041	1	90					
014A	OZ-1-12	S	ND	ND	ND	ND	ND	ND	1	89					
									<u> </u>						
									<u> </u>						
Rep	porting Limit for DF =1;	W	NA	NA	NA	NA	NA	NA	1	ug/L					
ND	means not detected at or	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg					

* water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

above the reporting limit

	cCampbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	1534 Willow Web: www.mccam Telephone:	Pass Road, Pittsburg, CA 94565- pbell.com E-mail: main@mccam 877-252-9262 Fax: 925-252-92	1701 pbell.com 59			
AEI Consulta	nts	Client Project II	D: #262157; Omega	Date Sampled: 12/20/	/06-12/2	1/06		
2500 Camino	Diablo, Ste. #200	Termite		Date Received: 12/22/	06			
Walnut Creek	CA 94597	Client Contact:	Robert Flory	Date Extracted: 12/22/	06			
wantat creek,	, 011 7 10 7 1	Client P.O.:		Date Analyzed 12/24/	/06-12/2	9/06		
	Diesel Rang	ge (C10-C23) Ex	tractable Hydrocarbons a	s Diesel*				
Extraction method	SW3550C Client ID	Analytic	cal methods SW8015C) Work Or	der: 06	12543 % SS		
0612542.0014	07.7.20	C C	5.0 k	,	1	100		
0612543-003A	OZ-8-11	S	2.0 k		1	100		
0612543-006A	OZ-8-31	S	19,g,d,	b	1	108		
0612543-007A	OZ-6-11	S	22,k		1	113		
0612543-009A	OZ-6-21	S	22,k	1	110			
0612543-010A	OZ-6-26	S	S 240,k					
0612543-011A	OZ-5-16	S	22,a,c	1	1	110		
0612543-013A	OZ-5-31	S	4.0,a		1	110		
0612543-014A	OZ-1-12	S	ND		1	111		
-								
					1	1		

Reporting Limit for $DF = 1$;	W	NA	NA
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0612543

EPA Method SW8021B/8015	Cm	Extraction	0B		Batchll	D: 25394	ę	Spiked Sample ID: 0612537-003A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ice Criteria (%)		
, and you	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex)	ND	0.60	114	113	1.20	112	110	1.60	70 - 130	30	70 - 130	30		
MTBE	ND	0.10	96.9	93.8	3.18	87.3	98.7	12.2	70 - 130	30	70 - 130	30		
Benzene	ND	0.10	91.7	96.4	4.98	97.7	103	4.84	70 - 130	30	70 - 130	30		
Toluene	ND	0.10	82.8	87.2	5.20	87	92.9	6.53	70 - 130	30	70 - 130	30		
Ethylbenzene	ND	0.10	91.3	95.9	4.91	96.3	99.3	3.06	70 - 130	30	70 - 130	30		
Xylenes	ND	0.30	91	95	4.30	95	95.7	0.699	70 - 130	30	70 - 130	30		
%SS:	86	0.10	76	81	6.37	89	85	4.60	70 - 130	30	70 - 130	30		
All target compounds in the Met NONE	hod Blank o	of this extra	action bat	ch were N	ID less tha	n the met	hod RL w	vith the follo	wing except	ions:				

BATCH 25394 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612543-001	2/20/06 10:55 AM	12/22/06	12/27/06 4:24 PM	0612543-003	12/20/06 2:05 PM	12/22/06	12/27/06 5:30 PM
0612543-006	12/20/06 3:00 PM	12/22/06	12/27/06 8:15 PM	0612543-007	2/21/06 8:35 AM	12/22/06	2/28/06 10:08 PM
0612543-009	12/21/06 9:05 AM	12/22/06	12/27/06 6:03 PM	0612543-010	2/21/06 9:20 AM	12/22/06	2/23/06 11:46 AM
0612543-011	12/21/06 1:00 PM	12/22/06	2/23/06 12:18 PM	0612543-013	12/21/06 1:30 PM	12/22/06	2/28/06 12:34 AM
0612543-014	12/21/06 4:05 PM	12/22/06	2/27/06 10:25 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

"When Quality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0612543

EPA Method: SW8015C Extraction: SW3550C							D: 25395	S	Spiked Sample ID: 0612537-003A						
Analyte	Sample	Spiked	Spiked MS MSD MS-MSD LCS					LCS-LCSD	Acceptance Criteria (%)						
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
TPH(d)	ND	20	96.7	97.5	0.818	109	111	2.51	70 - 130	30	70 - 130	30			
%SS:	101	50	100	101	1.40	112	110	1.45	70 - 130	30	70 - 130	30			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25395 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612543-001A	12/20/06 10:55 AM	12/22/06	12/24/06 10:19 AM	0612543-003A	12/20/06 2:05 PM	12/22/06	12/24/06 11:27 AM
0612543-006A	12/20/06 3:00 PM	12/22/06	12/29/06 4:34 AM	0612543-007A	12/21/06 8:35 AM	12/22/06	12/24/06 4:37 AM
0612543-009A	12/21/06 9:05 AM	12/22/06	12/24/06 5:46 AM	0612543-010A	12/21/06 9:20 AM	12/22/06	12/24/06 6:54 AM
0612543-011A	12/21/06 1:00 PM	12/22/06	12/24/06 8:02 AM	0612543-013A	12/21/06 1:30 PM	12/22/06	12/24/06 9:11 AM
0612543-014A	12/21/06 4:05 PM	12/22/06	12/24/06 10:19 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

					AK	V			0	10	14	25	7	3																					
	ebsite: <u>www.m</u> elephone: (87	BELL 1534 W1 PITTSBU ccampbe 7) 252-92	LLOW PA JRG, CA 9 ILcom E1 262	LY SS RC 4565-1 nail: r	FIC 701 main@ Fax	AL mcc : (92	ampl 25) 2:	NC. bell.0 52-9						T G	TUF Geo'	RN Tra	AF	(ROI	CH UN EL	IA D T		O AE P	F			ST H E:	O] 24 xce		R	48 Wint a	CO J HR rite	On		₹ 5 W) ⊑	DAY
Report To: R.	In Brade	ind	1	Bill T	0:	c an	~0						-							An	alvs	is R	eau	est	54	mp	IC I.	5 CII	iuci	11 41	T	Oth	er	Cor	nme
Company: AE	1 Conci	Itente	5			2-11									T		1	Τ	Τ	T							1	1	1	T	tv		Ť		
2500 Coming Diebles #200										BE		3&F															17	-1		Filt	er				
Welnet Creek, CA 94 697 E-Mail: cbra) for Deceiconcultant										n	W,	cor	E												6			E	2		Sau	ple			
Tele: (925) 2	283-6000	3	1	ax:	(925) 9	44	1-2	28	95	•			015)		552	0	(s	1		1							602(6020		1			lor	Xeta
Project #: 262	157		I	roje	ct Nai	ne:	Or	re	eren					80 +		664	418.	/00	/ 802				:	cide			NAs)	010 /	10/		1	1 4	7	Ves	/ No
Project Location	: 807 :	15+4	Arcor	Q					5					8021		se (1) suo	(H)	603	icide			(6)	lerbi	(S)	Cs)	s/P	8/6	8 / 60	020)	Z		1	15	
Sampler Signatu	re:	Carl	Ro											02 /		Grea	arb	8021	K.P.A	Peet				5	No N	SVO	PAH	200.	200.	0/6	L	IF	4	3	
		SAM	PLING	irs	iners		MAT	RD	x	N PR	1ET ESE	HOI	D ED	as Gas (6	8015)	n Oil & (n Hydroe	1 / 8010 /	ONLY C	8081 (CI	D. ala			(Acidic	1/8260 (5 / 8270 (/ 8310 ()	\$ (200.7 /	(200.7/	0.8 / 601	MTR	2.7	× a	Vac	0
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containe	Type Conta	Water	Soil	Sludge	Other	CE	ICL	1NO3	Other	TEX & TPH	PH as Diesel (otal Petroleun	otal Petroleur	PA 502.2 / 601	ATRE / RTEX	PA 505/ 608 /	LOUG / BUY VO.	THE LEVE AG		CIQ / CIC WA	PA 524.2 / 62	PA 525.2 / 62	PA 8270 SIM	AM 17 Metal	UFT 5 Metals	ead (200.7/2(TEX+	Pitta		Ending	in Ha
CS-1	11	4/10/0	7:50	+=	SUM	her					H	-	-	-	E Ce	F N'S	te	H	#	2 3	13	3	+	-	-	H	M		-	+	X	T		4	.0
BA-1	31	ulala	8:07	L.I	11		5	X	1					-				1.	4	5-	12	4	+-							1	X	X		2	0
011		11/10/0	0.010	1	-		-	1	+				-		2LA	15	FC	-	T		1	1	+	+	1			-		1	F	1			~
					-			+-	+				-	-			-	-	+		+	+	+	+	+					+	-	-			
				-	· ·			+-	-		-		-				1	-	+	+-	+	+	+	+	+					-	-	+	-		
									-				+					-	-		+	-	+	+	-			-		-		-			
								-					-	-					-		+	-	+	+	-			-		-		-			
				L	L				-										-		1_	-	_	_	_							1			
											•																								
							-	+	-		-	-	-		-			-	1	+	+	+	+	+	+	-						1			
								+-	-				-						-	-	+	+	+	+	+	-					-	+			
								+-	-				-						-	+	+	-	+-	+	-										
>	1							+	-		_		_						-		-		-	-	_							-			
1	2/1							4		hđ										1															
Relinquished By	14	Date:	Time:	Rece	M	y: C) `	Va	l	J				ICE GO HF	E/t°_	CON	DIT	ION											CON	AME	INTS	i:			
Relinquished By:	//	Date:	Time:	Rece	ived B	ý:								DE	CHL	ORI	NATE	CO	IN NT	LAB	RS	\checkmark													
Relinguished By:		Date:	Time:	Rece	ived B	v:							-	PRI	ESEI	RVE	D IN	LA	B																
																		VO	DAS	0	&G	Μ	ETA	LS	0	TH	ER								
														PRI	ESEI	RVA	TIO	N				pł	[<2												

-111202 1011

McCAMPBELL ANALYTICAL INC.

	Client Project ID:	#262 157. Omaga	Date Sampled: 04/10/2007								
AEI Consultants	Chent Project ID:	#202.137; Offiega	Date Received: 04/13/2007								
2500 Camino Diablo, Ste. #200	Client Contact: R	icky Bradford	Date Extracted: 05/01/2007								
Walnut Creek, CA. 94597	Client P.O:		Date Analyzed: 05/01/2007								
MBTEX By GC/MS* EPA method TO15											
Lab ID	0704293-001A	0704293-002A									
Client ID	CS-1	BA-1				RL					
Matrix	Air	Air									
Initial Pressure (psia)	12.24	12.82									
Final Pressure (psia)	12.24	12.82				Air					
Compound	Concentration*										
Benzene	0.25	0.37				0.025					
Ethylbenzene	0.16	0.69				0.025					
Methyl-tert Butyl Ether (MTBE)	ND<0.025	ND<0.025				0.025					
Toluene	0.72	1.4				0.025					
Xylenes, total	0.72	3.3				0.075					
Surrogate Recoveries (%)											
Bromofluorobenzene	N/A	N/A									
Comments:											
* air samples are reported in nl/L = pp ND means not detected above the repo	bv. brting limit; N/A mea	ins surrogate not appli	icable to	this analysi	s	<u> </u>					

(j) estimated value due to low QC recovery

DHS Certification No. 1644

EH

Edward Hamilton, Lab Director

McCampbell An "When Ouality	alytical, In Counts"	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269										
AEI Consultants	Client Pr	oject ID: #	262.15	Date Sampled:	04/10/07							
2500 Camino Diablo, Ste. #200			Date Received:	: 04/13/07								
Walnut Creek, CA 94597	Client Co	ontact: Ric	ky Bra	dford	Date Extracted:	05/01/07						
Wande Creek, Cri y 1597	Client P.0	O.:			Date Analyzed:	05/01/07						
Extraction Method: TO-15	Anal	ytical Method:	TO-15		1	Work Order:	0704293					
Lab ID	0704293-001A	0704293-	002A									
Client ID	CS-1	BA-1	l			Reporting DI	; Limit for F =1					
Matrix	А	А										
DF	1	1				S	А					
Compound			Conce	ntration		ug/kg	µg/m³					
Benzene	0.80	1.2				NA	0.08					
Ethylbenzene	0.66	3.0				NA	0.11					
Methyl-t-butyl ether (MTBE)	ND	ND				NA	0.09					
Toluene	2.7	5.4				NA	0.094					
Xylenes	3.1	14				NA	0.32					
	Surr	ogate Reco	overies	s (%)								
%SS2:	N/A	N/A										
Comments												
*vapor samples are reported in μg/m ³ . ND means not detected above the reporti	ng limit; N/A mean	s analyte not	applica	able to this analysi	s.							

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

QC SUMMARY REPORT FOR TO-15

W.O. Sample Matrix: Air

QC Matrix: Air

WorkOrder: 0704293

EPA Method: TO-15 Extraction: SW5030B BatchID: 27976							Sp	oiked Samp	le ID:	N/A			
Analyte	Sample Spiked MS MS			MSD	MS-MSD	LCS	LCSD	LCS-LCSD	D Acceptance Criteria (%)				
, anayto	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Benzene	N/A	2.5	N/A	N/A	N/A	96.8	99.6	2.85	N/A	N/A	70 - 130	20	
Ethylbenzene	N/A	2.5	N/A	N/A	N/A	89.2	92.4	3.52	N/A	N/A	70 - 130	20	
Methyl-t-butyl ether (MTBE)	N/A	2.5	N/A	N/A	N/A	88	91.2	3.57	N/A	N/A	70 - 130	20	
Toluene	N/A	2.5	N/A	N/A	N/A	95.6	99.2	3.70	N/A	N/A	70 - 130	20	
Xylenes	N/A	7.5	N/A	N/A	N/A	91.2	92.5	1.45	N/A	N/A	70 - 130	20	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 27976 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704293-001A	04/10/07 7:50 AM	05/01/07	05/01/07	0704293-002A	04/10/07 8:07 AM	05/01/07	05/01/07

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #262157; Omega	Date Sampled: 05/14/07
2500 Camino Diablo, Ste. #200		Date Received: 05/15/07
Walnut Creek CA 94597	Client Contact: Ricky Bradford	Date Reported: 05/22/07
franta crock, cri 94597	Client P.O.:	Date Completed: 05/22/07

WorkOrder: 0705398

May 22, 2007

Dear Ricky:

Enclosed are:

- 1). the results of 2 analyzed samples from your #262157; Omega project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

0705398 ARV

McCAI	MPBEI 1534 Pittsb www.m	LL AN Willow urg, CA nain@mcc	ALYTICAL INC. Pass Road 94565-1701 ampbell.com Fax: (925	5) 252-0260	CHAIN OF CUSTODY RECORD TURN AROUND TIME IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII							
Report To: Ricky Boy	Fred	,	Bill To: AEL	Canceltants	Lab Use Only							
Company: AEI Cons	1 Hen	t.s		Conson Mis				Pı	ressurizati	on Gas		
2500 comino Dia	blo,	#200	3		Pressurized By		Date					
Walnut Creek, CA	1 94	597	E-Mail: - brede	Fordeacicon	sultents, com				N2	He		
Tele: (925) 283-600	io ex	4.142	Fax: (925)9	44-2895								
Project #: 262157			Project Name: 📀	maga								
Project Location: 807	75	th A.	renne, Oaki	and, CA								
Sampler Signature:	L	A			Notes:							
Field Sample ID	Colle	ection										
(Location)			Canister SN#	Sampler Kit SN#			Ca	nister Pre	ssure/Vacu	um		
	Date	Time			Analysis Requeste	d	Initial	Final	Receipt	Final (psi)		
BA-1	5/14/0	77:25	n 3652	3620	BTEX+MTBE ONLY	TO-15	29.0	4.5				
CS-1	5/14/07	7:400	3650	4736	BTEX + MTRE ONLY	70-15	29.0	6.5				
									52			
Relinquished By:	Date: 5/15/0	Time:	Received By:	oman	Temp (°C) : N/G Work C	Order #:	17053	98				
Relinquished By:	Date:	Time:	Received By:		Custody Seals Intact?: Yes	No No	None					
Relinquished By:	Date:	Time:	Received By:		Simpled Via: 01.011 0	wp-up+	Read and a second state of the second s					

	ALL.
6	J.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94 (925) 252-9262	4565-1701					WorkO	rder:	0705	398	C	lientID): AEL					
				EDF		Excel	[Fax	[🖌 Email		Hard	Сору	🗌 Thii	rdParty		
Report to: Ricky Bradford		Email:	rbradford@ae	eiconsultants.com		В	ill t De	nise M	ockel				Red	queste	d TAT:	5 c	lays
AEI Consultants 2500 Camino Diab Walnut Creek, CA	lo, Ste. #200 94597	TEL: ProjectNo: PO:	(925) 283-600 #262157; Om	0 FAX: (925) 9 nega	944-28	39	AE 250 Wa dm	I Consi 00 Cam alnut Cr iockel@	ultants nino Dia reek, Ca Daeicor	ablo, St A 94597 nsultant	e. #200 7 ts.com)	Da Da	te Rec te Prin	eived nted:	05/15/: 05/15/:	2007 2007
					[Req	uested	Tests (See leg	gend b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
				1													1

0705398-001	BA-1	Air	5/14/07 7:25:00	А	А					
0705398-002	CS-1	Air	5/14/07 7:40:00		А					

Test Legend:

1	PREDF REPORT	
6		
11		

2	TO15(MBTEX+NAPH)_AIR	
7		
12		

4	
9	

5				
10				

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date and	d Time Received:	5/15/07 8:	04:25 PM
Project Name:	#262157; Omega				Checklis	st completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	0705398	Matrix <u>Air</u>			Carrier:	Client Drop-In		
		Chain	of Cu	stody (COC	C) Informati	<u>on</u>		
Chain of custod	y present?		Yes	\checkmark	No 🗆			
Chain of custody	y signed when relinqu	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	y agrees with sample	labels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time o	f collection noted by C	ient on COC?	Yes	\checkmark	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		Si	ample	Receipt In	formation			
Custody seals in	tact on shippping con	tainer/cooler?	Yes		No 🗆		NA 🗹	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Prese	rvatio	n and Hold	<u>Time (HT) I</u>	nformation		
All samples rece	ived within holding tim	e?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	lls have zero headspa	ce / no bubbles?	Yes		No 🗆 N	No VOA vials subm	itted 🗹	
Sample labels c	hecked for correct pre	servation?	Yes	\checkmark	No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell Ana "When Ouality C	alytical, Ind	<u>c.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: main 377-252-9262 Fax: 92:	94565-1701 @mccampbell.o 5-252-9269	com
AEI Consultants	Client Pro	oject ID: 🗄	#26215	7; Omega	Date Sampled:	05/14/07	
2500 Camino Diablo, Ste. #200					Date Received:	05/15/07	
Walnut Creek, CA 94597	Client Co	ontact: Ri	cky Bra	dford	Date Extracted:	05/15/07	
·····	Client P.C	D.:			Date Analyzed:	05/22/07	
Extension Methods TO 15	Volatile On	rganics by	P&T :	and GC/MS*		Work Ordon	0705208
Lab ID	0705398-001A	0705398-	-002A			work Order.	0703398
Client ID	BA-1	CS-2	1			Reporting	Limit for
						DF	7 =1
Matrix	А	Α	A				
DF	1	1			S	А	
Compound			Conce	entration		ug/kg	nL/L
Benzene	0.65	3.6				NA	0.1
Ethylbenzene	1.1	0.40)			NA	0.1
Methyl-t-butyl ether (MTBE)	ND	ND				NA	0.1
Toluene	0.80	2.0				NA	0.1
Xylenes	4.9	1.4				NA	0.1
	Surro	ogate Rec	overies	s (%)			
%SS1:	N/A	N/A	A Contraction of the second se				
Comments							
*vapor samples are reported in nL/L.					•		
ND means not detected above the reporting	g limit; N/A means	s analyte no	t applic	able to this analysi	s.		

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

McCampbell An "When Ouality	alyti	cal, In	<u>c.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: main 377-252-9262 Fax: 92	94565-1701 @mccampbell.o 5-252-9269	com
AEI Consultants		Client Pr	oject ID: 🗄	#26215	7; Omega	Date Sampled:	05/14/07	
2500 Camino Diablo, Ste. #200						Date Received:	05/15/07	
Walnut Creek CA 94597		Client Co	ontact: Ri	cky Bra	adford	Date Extracted:	05/15/07	
Wallact Creek, Cry 1597		Client P.0	D.:			Date Analyzed:	05/22/07	
			MBTEX b	oy TO-1	15*			
Extraction Method: TO-15		Anal	ytical Method	: TO-15	1	1	Work Order:	0705398
Lab ID	07053	98-001A	0705398-	-002A				
Client ID	В	A-1	CS-	1			Reporting DF	g Limit for 7=1
Matrix		А	Α					
DF		1	1				S	А
Compound				Conce	entration	-	ug/kg	μg/m³
Benzene		2.1	11				NA	0.32
Ethylbenzene		4.8	1.7				NA	0.43
Methyl-t-butyl ether (MTBE)	I	ND	ND				NA	0.36
Toluene		3.0	7.7				NA	0.38
Xylenes		22	5.8				NA	1.3
		Surr	ogate Rec	overie	s (%)			
%SS1:	I	N/A	N/A	Υ.				
Comments								
*vapor samples are reported in µg/m ³ .								
ND means not detected above the reporti	ng limit;	N/A mean	s analyte no	t applic	able to this analysi	s.		

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

NONE

"When Ouality Counts"

QC SUMMARY REPORT FOR TO-15

W.O. Sample Matrix: Air

QC Matrix: Air

WorkOrder: 0705398

EPA Method TO-15	Extra	ction TO	-15		Ba	tchID: 28	110	Sp	iked Sam	ble ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%))
, maly to	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Benzene	N/A	2.5	N/A	N/A	N/A	87.6	87.7	0.132	N/A	N/A	70 - 130	20
Ethylbenzene	N/A	2.5	N/A	N/A	N/A	91.2	91.8	0.634	N/A	N/A	70 - 130	20
Methyl-t-butyl ether (MTBE)	N/A	2.5	N/A	N/A	N/A	92.5	92.2	0.355	N/A	N/A	70 - 130	20
Toluene	N/A	2.5	N/A	N/A	N/A	89.9	89.5	0.433	N/A	N/A	70 - 130	20
Xylenes	N/A	7.5	N/A	N/A	N/A	90.7	92	1.46	N/A	N/A	70 - 130	20
All target compounds in the Method	Blank of this	extraction	batch we	re ND les	s than the	method F	RL with th	e following	exceptions:			

BATCH 28110 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0705398-001A	05/14/07 7:25 AM	05/15/07	05/22/07 2:27 AM	0705398-002A	05/14/07 7:40 AM	05/15/07	05/22/07 3:23 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #115483; Omega termite	Date Sampled:	10/04/07
2500 Camino Diablo, Ste. #200		Date Received:	10/04/07
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported:	10/12/07
	Client P.O.:	Date Completed:	10/12/07

WorkOrder: 0710203

October 12, 2007

Dear Robert:

Enclosed are:

- 1). the results of 11 analyzed samples from your #115483; Omega termite project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

0710203

	McCAM	IPBELI	ANAI	LYT DUTH,	ICA #D7	LI	NC.						Τ	т		N	A D		CH	IA	IN	0	F (CU	IST	r0	D	YI	RE	CC	R	D	•	
Telephor		PACHEO 9 1620	CO, CA 94	553-55	60 E		(0.25)	704	0 1 4	22				1	UR	11	AK	U		U		1E		R	USH		24 1	-IR		48 H	R	72		5 DAY
relephor	ne: (925) 790	0-1020			r	ax:	(945)	190	5-10	22				Ge	eoTi	rac	ker	ED	F			PDI	F [X	001	Exe	cel	Γ	1	W	rite	On	(DW)	
Report To: Rober	t Flory		В	ill To	: Sa	me					_		+						Ana	alys	is R	lequ	iest	_				-	Ī	Oth	ner	Т	Com	ments
Company: AEI C	Consultants															1						-											Filter	
2500 0	Camino Dia	blo, Suite	200			-					-			2		B&I													List				Samp	les for
Walnu	ut Creek, C.	A 94597	E	-Mai	l: rflo	ory@	aeico	nsult	tants	.com	1			MIL		&F/						DB		310					rget				Metal	s
Tel: (925) 944-28	899, extensio	on 122	F	ax: (925)	944	-289	5					_	015)/		20 E	18.1					& E		0/8					0 Ta				Analy	/\$15:
Project #: 115483	}		P	rojec	t Nai	ne: (Omeş	ga te	erm	ite				*	-	e (55	1S (4	_	50)			CA		827					801				Yes	/ No
Project Location:	807 75 , C	Dakland,	CA											8020	0L 0	reas	Irbor) list	/ 80	8		ncl I		625 /			010		0B -					
Sampler Signatur	e: the	n	m		<u> </u>					м	FT	HOD		(602)	mot	803	Inoci	8010	602	808	08	60 i		PA			9.2/6		826					
		SAMP	LING	- 90	ners		MAT	RD	<	PRE	SE	RVE	D	Gas	lesel	lio	Hy	260 (EPA	608	/ 806	y 82		by E			1/23		0Cs			- 1		
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Container	Type Contair	Water	Soil	Sludge	Other	Ice	HCI	HNO ₃	Other	BTEX & TPH as	TPH (8015) die	Total Petroleum	Total Petroleum	HVOCs EPA 82	BTEX ONLY (Pesticides EPA	PCBs EPA 608	Fuel Aditives by	EPA 625 / 8270	PAH's / PNA's	CAM-17 Metals	LUFT 5 Metals	Lead (7240/742	RCI	Halogenated VC					
MW-1		10/4/07	124	4	VIL	X				X	V			X	X									X							\neg			
MW-2		1	1:30	4	1	X				2	X			x	X									X										
MW-3			19:49.	4		X			1	x	1			x	X									X										
MW-4			12:39	4		X				x	2			x	X									X										
MW-6			9:59	4	1	X				2	2			x	X									X										
MW-7			à:40	4	1	x			1	×	X		1	x	x									X						/	-			
MW-8			9:55	4		x	-	-		7	X	+		x	x	-	-							X							1	+	101	-
MW-9			1.40	4		x	+	+		X	x	+		x	x	1	-		-	-				X				_			+	+		-
MW-10			120	4		x		+		X	x	-		x	x	-	-	-						x				-			+	+		
MW-11			10:12	4	-	x		+		×	x			x	x	+	+	+		-				x							+	+		
MW_12			17:21	4		v	-	+	-	1	K	-	1	v	v	+	+	+			-			v		-					-+	+	÷	-
11111-12		-	10.0	-	-	A	-	+		~	1	+	+'	-	•	+	+	-	-	-	-	-		A				_			-	+		
				-	-		-	-			-	-	+	-	-	-	-	-	-	-	_	_	_	-							-	+		
				-	-		_	-	-		+	+	+	-	-	-	+	-	_	-	_	_	-			_					-+	-	1	
Pakhaniahad Par		Data	Times	Der	ined P								+											_										
Kennquisned By:		Date:	(5'30)	Sece	avea B	y:	A	op	1	-	17	1					,	1	2									v	OAS	0	&G	M	TALS	OTHE
Relinquished By:	SI	Date:	Time:	Rece	ived B	v:	1 1	1	PL.	/	-		-	10	CE/t	•	D.	1	/				P	RE	SER	V A	TIC	DN_	5.13					011111
Ewino-Tec	ch ^{ok} .	10/4/07	18 20 Time:	P	ived B	1	H	_		_	6	5		G H D	EAI ECI	D C D SI HLC	PAC	E A	TON ABS	ENT		B	A	ON	ROI	PRI	ATE	IN	LAI	3				
maff	- OT	10/4/07	1936	0		e	V-	8																								-	-	

Γ		1	JI.	Ī).
1		3	<u>.</u>	y
A	-	ų		
		-02	-	-

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, 0 (925) 252-	CA 94565-1701 9262					Work	Order	: 0710	203	(ClientII): AEL	4				
				EDF	Ľ	Excel		Fax		🖌 Email		Hard	Copy	🗌 Thi	rdParty		
Report to: Robert Flory AEI Consultant 2500 Camino I Walnut Creek,	ts Diablo, Ste. #200 CA 94597	Email: TEL: ProjectNo: ; PO:	rflory@aeicor (925) 944-28 #115483; Orr	nsultants.com 9 FAX: (925)2 nega termite	283-6	12	Bill t De AE 25 Wa dn	enise Me El Consu 00 Carr alnut Cr nockel @	ockel ultants nino Dia eek, C 2aeico	ablo, St A 94593 nsultan	e. #20 7 ts.com	0	Ree Da Da	queste te Rec te Prin	d TAT: eived nted:	5 (10/04/ 10/04/	days /2007 /2007
Sample ID	ClientSompID		Motrix	Collection Data	Hold	1	2	2	Req	uested	Tests	(See le	gend b	elow)			10
Sample ID	ClientSampiD		Watrix	Collection Date	Ποία		2	3	4	Э	0	1	o	9	10		12
0710203-001	MW-1		Water	10/4/2007 1:24:00		С	А	Α	В								
0710203-002	MW-2		Water	10/4/2007 1:30:00		С	Α		В								
0710203-003	MW-3		Water	10/4/2007		С	А		В								
0710203-004	MW-4		Water	10/4/2007		С	А		В								
0710203-005	MW-6		Water	10/4/2007 9:48:00		С	А		В								
0710203-006	MW-7		Water	10/4/2007 9:40:00		С	А		В								
0710203-007	MW-8		Water	10/4/2007 9:55:00		С	А		В								
0710203-008	MW-9		Water	10/4/2007 1:40:00		С	А		В								
0710203-009	MW-10		Water	10/4/2007		С	А		В								
0710203-010	MW-11		Water	10/4/2007		С	Α		В								
0710203-011	MW-12		Water	10/4/2007		С	A		В								

Test Legend:

1	8270D-PNA_W	2 G-MBTEX_W	3 PREDF REPORT	4 TPH(DMO)_W	5
6		7	8	9	10
11		12			

Prepared by: Ana Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	10/4/2007	8:33:28 PM
Project Name:	#115483; Omega	termite			Check	klist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0710203	Matrix <u>Water</u>			Carrie	r: <u>Michael Herna</u>	ndez (MAI Co	urier)
		<u>Chain</u>	of Cu	stody (C	OC) Informa	ation		
Chain of custody	y present?		Yes	\checkmark	No 🗆			
Chain of custody	y signed when relinqu	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	y agrees with sample	labels?	Yes	<	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆			
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		S	ample	Receipt	Information	1		
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good con	dition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?	,	Yes	~	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	I test?	Yes	V	No 🗌			
		Sampla Braca	watio	n and Ua	ld Time (UT) Information		
		Sample Prese	valio			<u>) mormation</u>		
All samples rece	ived within holding tim	ne?	Yes	\checkmark	No			
Container/Temp	Blank temperature		Coole	er Temp:	10.2°C		NA 🗆	
Water - VOA via	lls have zero headspa	ace / no bubbles?	Yes	\checkmark	No 🗆	No VOA vials subm	nitted 🗆	
Sample labels cl	hecked for correct pre	eservation?	Yes	\checkmark	No 🗌			
TTLC Metal - pH	acceptable upon rece	eipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell Ar	nalyti _{Counts"}	cal, In	<u>c.</u>		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA pell.com E-mail: main 77-252-9262 Fax: 92:	94565-1701 @mccampbell.c 5-252-9269	om				
AEI Consultants		Client Pr	oject ID:	#11548	3; Omega	Date Sampled:	10/04/07					
2500 Camino Diablo, Ste. #200		termite				Date Received:	10/04/07					
Walnut Creek, CA 94597		Client Co	ontact: Ro	obert Fl	ory	Date Extracted:	10/04/07					
		Client P.0	D.:			Date Analyzed:	10/11/07					
Polynuclear A	romati	c Hydroca	rbons (PA	Hs/P	NAs) using SIM [Mode by GC/MS						
Extraction Method: SW3510C	-	Anal	ytical Method	l: SW827	0C	1	Work Order:	0710203				
Lab ID	07102	03-001C	0710203-	-002C	0710203-003C	0710203-004C						
Client ID	М	W-1	MW-	-2	MW-3	MW-4	Reporting DF	Limit for =1				
Matrix		W	W		W	W						
DF		1	1		1	1	S	W				
Compound				Conce	entration		ug/kg	μg/L				
Acenaphthene		ND	ND		ND	ND	NA	0.5				
Acenaphthylene		ND	ND		ND	ND	NA	0.5				
Anthracene		ND	ND		ND	ND	NA	0.5				
Benzo(a)anthracene		ND	ND		ND	ND	NA	0.5				
Benzo(a)pyrene		ND	ND		ND	ND	NA	0.5				
Benzo(b)fluoranthene		ND	ND		ND	ND	NA	0.5				
Benzo(k)fluoranthene		ND	ND		ND	ND	NA	0.5				
Benzo(g,h,i)perylene		ND	ND		ND	ND	NA	0.5				
Chrysene		ND	ND		ND	ND	NA	0.5				
Dibenzo(a,h)anthracene		ND	ND		ND	ND	NA	0.5				
Fluoranthene		ND	ND		ND	ND	NA	0.5				
Fluorene		0.72	ND		ND	ND	NA	0.5				
Indeno (1,2,3-cd) pyrene		ND	ND		ND	ND	NA	0.5				
1-Methylnaphthalene		ND		17	3.2	ND	NA	0.5				
2-Methylnaphthalene		ND		17	1.5	ND	NA	0.5				
Naphthalene		ND	2	26	8.9	ND	NA	0.5				
Phenanthrene		ND	ND		ND	ND	NA	0.5				
Pyrene		ND	ND		ND	ND	NA	0.5				
		Surre	ogate Rec	overies	s (%)							
%SS1	%SS1 80 82 81 79											
%SS2		82	83		83	81						
Comments												

* water samples in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits.

McCampbell Ar "When Ouality	nalyti _{Counts"}	cal, In	<u>c.</u>		1534 Willow P Web: www.mccampl Telephone: 8	ass Road, Pittsburg, CA pell.com E-mail: main 77-252-9262 Fax: 92:	94565-1701 @mccampbell.c 5-252-9269	om
AEI Consultants		Client Pr	oject ID:	#11548	3; Omega	Date Sampled:	10/04/07	
2500 Camino Diablo, Ste. #200		termite				Date Received:	10/04/07	
Walnut Creek, CA 94597		Client Co	ontact: Ro	obert Fl	ory	Date Extracted:	10/04/07	
		Client P.0	D.:			Date Analyzed:	10/11/07	
Polynuclear A	romati	c Hydroca	rbons (PA	Hs/P	NAs) using SIM I	Mode by GC/MS		
Extraction Method: SW3510C		Anal	ytical Method	l: SW827	0C	1	Work Order:	0710203
Lab ID	07102	03-005C	0710203-	-006C	0710203-007C	0710203-008C		
Client ID	М	W-6	MW-	-7	MW-8	MW-9	Reporting DF	Limit for =1
Matrix		W	W		W	W		
DF		1	1		1	1	S	W
Compound				Conce	entration		ug/kg	μg/L
Acenaphthene		ND	ND		ND	ND	NA	0.5
Acenaphthylene		ND	ND		ND	ND	NA	0.5
Anthracene		ND	ND		ND	ND	NA	0.5
Benzo(a)anthracene		ND	ND		ND	ND	NA	0.5
Benzo(a)pyrene		ND	ND		ND	ND	NA	0.5
Benzo(b)fluoranthene		ND	ND		ND	ND	NA	0.5
Benzo(k)fluoranthene		ND	ND		ND	ND	NA	0.5
Benzo(g,h,i)perylene		ND	ND		ND	ND	NA	0.5
Chrysene		ND	ND		ND	ND	NA	0.5
Dibenzo(a,h)anthracene		ND	ND		ND	ND	NA	0.5
Fluoranthene		ND	ND		ND	ND	NA	0.5
Fluorene		ND	ND		ND	ND	NA	0.5
Indeno (1,2,3-cd) pyrene		ND	ND		ND	ND	NA	0.5
1-Methylnaphthalene		ND	ND		ND	ND	NA	0.5
2-Methylnaphthalene		ND	ND		ND	ND	NA	0.5
Naphthalene		ND	ND		ND	ND	NA	0.5
Phenanthrene		ND	ND		ND	ND	NA	0.5
Pyrene		ND	ND		ND	ND	NA	0.5
		Surr	ogate Rec	overies	s (%)			
%SS1		79	80		79	78		
%SS2		81	82		82	79		
Comments								

* water samples in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits.

AEI Consultants 2500 Camino Diablo, Ste. #200Client Project ID: #11548; Omega termiteDate Sampled: 1004/07Date Sampled: 1004/07Client Contact: Robert FloryDate Extracted: 1004/07Client Contact: Robert FloryDate Analyzed: 10/11/07Client Project ID: #115483; Omega termiteDate Sampled: 10/04/07Client Project Robert FloryDate Analyzed: 10/11/07Client ID 0710203-009C0710203-010COff colspan="4">Off colspan="4">Off colspan="4">Off colspan="4">Off colspan="4">Date Sampled: 10/04/07Client ID 0710203-009COf10203-010COff colspan="4">Off colspan="4">Off colspan="4">Off colspan="4">Off colspan="4">Off colspan="4">Off colspan="4">Client IDMW-10MW-11MW-12Meporting inf for DF =1ControlMW WWWControlNDNDNA0.5MatrixWWWWControlMW-10MW-10NANAcenaphthonNDNDNA0.5ControlNDNDNDNA0.5Contro	McCampbell Au "When Ouality"	nalyti Counts"	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
TermineDate Received: $1004/07$ Date Received: $1004/07$ Client Contact: Robert FloryDate Analyzed: $10'11/07$ Client P.O.:Date Analyzed: $10'11/07$ Contact: Robert FloryDate Analyzed: $10'11/07$ Deter Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MSExtracted: $10'11/07$ Date Analyzed: $10'11/07$ Werk of Contact: Robert SW3510COrticode of Colspan="4">Orticode of Cols	AEI Consultants		Client Pr	oject ID:	#11548	3; Omega	10/04/07				
Date Extracted: 10/04/07Date Extracted: 10/04/07Client Contact: Robert FloryDate Extracted: 10/11/07Date Analyzed: 10/11/07Date Analyzed: 10/11/07Date Analyzed: 10/11/07Motion FloreNot Analyzed: 10/12/03-009COf10203-010COf10203-009COf10203-010CWork Order: 0/10203Client IDMW-10MW-11MW-12Metod: SW3510CWork Order: 0/10203Client IDOf10203-009COf10203-011CMetod: SW3510CWork Order: 0/10203MatrixWWWWMatrixWWWWAcenaphtheneNDNDNDNDAcenaphtheneNDNDNA0.5AcenaphtheneNDNDNA0.5AcenaphtheneNDNDNDNA0.5AcenaphtheneNDNDNDNA0.5AcenaphthyleneNDND	2500 Camino Diablo, Ste. #200		termite				Date Received:	10/04/07			
Client P.O.: Date Analyzed: $10/11/07$ Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS Extraction Method: SW510C Analytical Method: SW8270C Work Order: 0710203 Lab ID 0710203-000C 0710203-011C Client ID MW-10 MW-11 MW-12 Reporting Limit for DF =1 DE 1 1 1 S W Compound Concentration ug/kg µg/L Acenaphthene ND ND ND ND ND NA 0.5 Benzo(a)anthracene ND ND ND NA 0.0 Benzo(a)prene ND ND ND ND ND NA 0.5 Benzo(a)prene ND ND ND ND <th colspan="2" nd<="" t<="" td=""><td>Walnut Creek CA 94597</td><td></td><td>Client Co</td><td>ontact: Ro</td><td>obert Fl</td><td>ory</td><td>Date Extracted:</td><td>10/04/07</td><td></td></th>	<td>Walnut Creek CA 94597</td> <td></td> <td>Client Co</td> <td>ontact: Ro</td> <td>obert Fl</td> <td>ory</td> <td>Date Extracted:</td> <td>10/04/07</td> <td></td>		Walnut Creek CA 94597		Client Co	ontact: Ro	obert Fl	ory	Date Extracted:	10/04/07	
Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS Extraction Method: SW3510C Analytical Method: SW8270C Work Order: 0710203 Lab ID 0710203-009C 0710203-010C 0710203-011C Reporting Limit for DF = 1 Client ID MW-10 MW-11 MW-12 Reporting Limit for DF = 1 Matrix W W W W DF = 1 Compound Concentration ug/kg µg/L Acenaphthene ND ND NA 0.5 Acenaphthylene ND ND NA 0.5 Anthracene ND ND NA 0.5 Benzo(a)anthracene ND ND NA 0.5 Benzo(a)anthracene ND ND NA 0.5 Benzo(a)pyrene ND ND NA	Wallat Creek, CA 74377	Client P.O.: Date Analyzed:							10/11/07		
Extraction Method: SW3210C Manalytical Method: SW3270C Work Order: 0710203 Lab ID 0710203-009C 0710203-010C 0710203-011C Method: Reporting Limit for DF = 1 Matrix W W W W DF = 1 Matrix W W W W DF = 1 Acenaphthene ND ND ND NA 0.5 Acenaphthene ND ND ND NA 0.5 Acenaphthene ND ND ND NA 0.5 Acenaphthylene ND ND ND NA 0.5 Benzo(a)anthracene ND ND NA 0.5 Benzo(b)fluoranthene ND ND NA 0.5 Chrysene ND ND<	Polynuclear A	romati	c Hydroca	arbons (PA	Hs / P	NAs) using SIM	Mode by GC/MS				
Lab ID 0710203-009C 0710203-010C 0710203-011C M Client ID MW-10 MW-11 MW-12 Merring Limit for DF = 1 Matrix W W W W Merring Limit for DF = 1 Compound 1 1 1 S W Acenaphthene ND ND ND NA 0.5 Acenaphthylene ND ND ND NA 0.5 Acenaphthylene ND ND ND NA 0.5 Anthracene ND ND ND NA 0.5 Benzo(a)anthracene ND ND ND NA 0.5 Benzo(a)apyrene ND ND ND NA 0.5 Benzo(b)fluoranthene ND ND ND NA 0.5 Benzo(b)fluoranthene ND ND ND NA 0.5 Benzo(b)fluoranthene ND ND ND NA 0.5 Dibenzo(a,b)anthracene	Extraction Method: SW3510C		Anal	ytical Method	l: SW827	0C		Work Order:	0710203		
Client ID MatrixMW-10 MWMW-11 MW-12Reporting Limit for DF =1MatrixWWWWI11SWCompoundI11SWAcenaphtheneNDNDNDNA0.5AcenaphthyleneNDNDNDNA0.5AnthraceneNDNDNDNA0.5Benzo(a)anthraceneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(a)hintraceneNDNDNDNA0.5Benzo(a)hintraceneNDNDNDNA0.5Benzo(a)hintraceneNDNDNDNA0.5Benzo(a)hintraceneNDNDNDNA0.5FluorantheneNDNDNDNA0.5FluorantheneNDNDNDNA0.5FluorantheneNDNDNDNA0.5Indeno (1,2,3-cd) pyreneNDNDNDNA0.5NDNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDND <td< td=""><td>Lab ID</td><td>07102</td><td>203-009C</td><td>0710203</td><td>-010C</td><td>0710203-011C</td><td></td><td></td><td></td></td<>	Lab ID	07102	203-009C	0710203	-010C	0710203-011C					
MatrixWWWDF111SWCompoundConcentrationug/kg $\mu g/L$ AcenaphtheneNDNDNDNA0.5AcenaphthyleneNDNDNDNA0.5AnthraceneNDNDNDNA0.5Benzo(a)anthraceneNDNDNDNA0.5Benzo(a)apyreneNDNDNDNA0.5Benzo(a)apyreneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(a)hintraceneNDNDNDNA0.5Benzo(a)hinthraceneNDNDNDNA0.5Benzo(a)hinthraceneNDNDNDNA0.5FloorantheneNDNDNDNA0.5FloorantheneNDNDNDNA0.5FloorantheneNDNDNDNA0.5I-dethylnaphthaleneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5SSSI7878787810	Client ID	M	W-10	MW-	11	MW-12		Reporting DF	Limit for =1		
DF111SWCompoundConcentrationug/kgµg/LAcenaphtheneNDNDNDNA0.5AcenaphthyleneNDNDNDNA0.5AntraceneNDNDNDNA0.5Benzo(a)anthraceneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(a)hlorantheneNDNDNDNA0.5Benzo(a,h)anthraceneNDNDNDNA0.5Benzo(a,h)anthraceneNDNDNDNA0.5FluorantheneNDNDNDNA0.5FluorantheneNDNDNDNA0.5Indeno (1,2,3-cd) pyreneNDNDNDNA0.5I-MethylnaphthaleneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA </td <td>Matrix</td> <td></td> <td>W</td> <td>W</td> <td></td> <td>W</td> <td></td> <td></td> <td></td>	Matrix		W	W		W					
CompoundConcentrationug/kgµg/LAcenaphtheneNDNDNDNA0.5AcenaphthyleneNDNDNDNA0.5AnthraceneNDNDNDNA0.5Benzo(a)anthraceneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(b)fluorantheneNDNDNDNA0.5Benzo(k)fluorantheneNDNDNDNA0.5Benzo(g,h.)peryleneNDNDNDNA0.5Benzo(g,h.)peryleneNDNDNDNA0.5Benzo(g,h.)anthraceneNDNDNDNA0.5FluorantheneNDNDNDNA0.5FluorantheneNDNDNDNA0.5Indeno (1,2,3-cd) pyreneNDNDNDNA0.51-MethylnaphthaleneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5StarterStarterNDNDNA0.5StarterNDNDNDNA0.5StarterNDNDNDNA0.5StarterNDNDNDNA0.5StarterNDNDNDNA0.5StarterND <td>DF</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td></td> <td>S</td> <td>W</td>	DF		1	1		1		S	W		
AcenaphtheneNDNDNDNA0.5AcenaphthyleneNDNDNDNA0.5AnthraceneNDNDNDNA0.5Benzo(a)anthraceneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(b)fluorantheneNDNDNDNA0.5Benzo(k)fluorantheneNDNDNDNA0.5Benzo(g,h.i)peryleneNDNDNDNA0.5ChryseneNDNDNDNA0.5Dibenzo(a,h)anthraceneNDNDNDNA0.5FluorantheneNDNDNDNA0.5FluoreneNDNDNDNA0.5Indeno (1,2,3-cd) pyreneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5PhenanthreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDND <td< td=""><td>Compound</td><td></td><td colspan="2"></td><td>Conce</td><td>entration</td><td></td><td>ug/kg</td><td>μg/L</td></td<>	Compound				Conce	entration		ug/kg	μg/L		
AcenaphthyleneNDNDNDNA0.5AnthraceneNDNDNDNA0.5Benzo(a)anthraceneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(b)fluorantheneNDNDNDNA0.5Benzo(k)fluorantheneNDNDNDNA0.5Benzo(k)fluorantheneNDNDNDNA0.5Benzo(k)fluorantheneNDNDNDNA0.5Benzo(k,i)peryleneNDNDNDNA0.5ChryseneNDNDNDNA0.5Dibenzo(a,h)anthraceneNDNDNDNA0.5FluorantheneNDNDNDNA0.5Indeno (1,2,3-cd) pyreneNDNDNDNA0.51-MethylnaphthaleneNDNDNDNA0.5PhenanthreneNDNDNDNA0.5PhenanthreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneND<	Acenaphthene		ND	ND		ND		NA	0.5		
AnthraceneNDNDNDNA0.5Benzo(a)anthraceneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(b)fluorantheneNDNDNDNA0.5Benzo(k)fluorantheneNDNDNDNA0.5Benzo(g,h.i)peryleneNDNDNDNA0.5ChryseneNDNDNDNA0.5Dibenzo(a,h)anthraceneNDNDNDNA0.5FluorantheneNDNDNDNA0.5FluorantheneNDNDNDNA0.5Ideno (1,2,3-cd) pyreneNDNDNDNA0.51-MethylnaphthaleneNDNDNDNA0.5NaphthaleneNDNDNDNA0.5PyreneNDNDNDNA0.5Surrogate Recoveries (%)NA0.51.5%SS178787878	Acenaphthylene		ND	ND		ND		NA	0.5		
Benzo(a)anthraceneNDNDNDNA0.5Benzo(a)pyreneNDNDNDNA0.5Benzo(b)fluorantheneNDNDNDNA0.5Benzo(k)fluorantheneNDNDNDNA0.5Benzo(g,h,i)peryleneNDNDNDNA0.5ChryseneNDNDNDNA0.5Dibenzo(a,h)anthraceneNDNDNDNA0.5FluorantheneNDNDNDNA0.5FluorantheneNDNDNDNA0.5Ideno (1,2,3-cd) pyreneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5NaphthaleneNDNDNDNA0.5PieneNDNDNDNA0.5Surrogate Recoveries (%)NA0.51.5%SS17878781.5	Anthracene		ND	ND		ND		NA	0.5		
Benzo(a)pyreneNDNDNDNA0.5Benzo(b)fluorantheneNDNDNDNA0.5Benzo(k)fluorantheneNDNDNDNA0.5Benzo(g,h,i)peryleneNDNDNDNA0.5ChryseneNDNDNDNA0.5Dibenzo(a,h)anthraceneNDNDNDNA0.5FluorantheneNDNDNDNA0.5FluoreneNDNDNDNA0.5Indeno (1,2,3-cd) pyreneNDNDNDNA0.51-MethylnaphthaleneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5PyreneNDNDNDNA0.5PyreneNDNDNDNA0.5Surrogate Recoveries (%)NA0.51.5%SS178787816	Benzo(a)anthracene		ND	ND		ND		NA	0.5		
Benzo(b)fluorantheneNDNDNDNA0.5Benzo(k)fluorantheneNDNDNDNA0.5Benzo(g,h,i)peryleneNDNDNDNA0.5ChryseneNDNDNDNA0.5Dibenzo(a,h)anthraceneNDNDNDNA0.5FluorantheneNDNDNDNA0.5FluorantheneNDNDNDNA0.5Indeno (1,2,3-cd) pyreneNDNDNDNA0.51-MethylnaphthaleneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5PhenanthreneNDNDNDNA0.5PyreneNDNDNDNA0.5Surrogate Recoveries (%)NA0.51.4000000000000000000000000000000000000	Benzo(a)pyrene		ND	ND		ND		NA	0.5		
Benzo(k)fluorantheneNDNDNDNA0.5Benzo(g,h,i)peryleneNDNDNDNA0.5ChryseneNDNDNDNA0.5Dibenzo(a,h)anthraceneNDNDNDNA0.5FluorantheneNDNDNDNA0.5FluoreneNDNDNDNA0.5Indeno (1,2,3-cd) pyreneNDNDNDNA0.51-MethylnaphthaleneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5PhenanthreneNDNDNDNA0.5PyreneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.59ksS17878787810	Benzo(b)fluoranthene		ND	ND		ND		NA	0.5		
Benzo(g,h,i)peryleneNDNDNDNA0.5ChryseneNDNDNDNA0.5Dibenzo(a,h)anthraceneNDNDNDNA0.5FluorantheneNDNDNDNA0.5FluoreneNDNDNDNA0.5Indeno (1,2,3-cd) pyreneNDNDNDNA0.51-MethylnaphthaleneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5PhenanthreneNDNDNDNA0.5PyreneNDNDNDNA0.5Surrogate Recoveries (%)5555%SS17878785	Benzo(k)fluoranthene		ND	ND		ND		NA	0.5		
ChryseneNDNDNDNA0.5Dibenzo(a,h)anthraceneNDNDNDNA0.5FluorantheneNDNDNDNA0.5FluoreneNDNDNDNA0.5Indeno (1,2,3-cd) pyreneNDNDNDNA0.51-MethylnaphthaleneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5NaphthaleneNDNDNDNA0.5PhenanthreneNDNDNDNA0.5Surrogate Recoveries (%)51000000000000000000000000000000000000	Benzo(g,h,i)perylene		ND	ND		ND		NA	0.5		
Dibenzo(a,h)anthraceneNDNDNDNA0.5FluorantheneNDNDNDNA0.5FluoreneNDNDNDNA0.5Indeno (1,2,3-cd) pyreneNDNDNDNA0.51-MethylnaphthaleneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5PhenanthreneNDNDNDNA0.5PyreneNDNDNDNA0.5Surrogate Recoveries (%)%SS178787878	Chrysene		ND	ND		ND		NA	0.5		
FluorantheneNDNDNDNA0.5FluoreneNDNDNDNDNA0.5Indeno (1,2,3-cd) pyreneNDNDNDNA0.51-MethylnaphthaleneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5NaphthaleneNDNDNDNA0.5PhenanthreneNDNDNDNA0.5PyreneNDNDNDNA0.5Surrogate Recoveries (%)%SS1787878***********************************	Dibenzo(a,h)anthracene		ND	ND		ND		NA	0.5		
FluoreneNDNDNDNA0.5Indeno (1,2,3-cd) pyreneNDNDNDNA0.51-MethylnaphthaleneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5NaphthaleneNDNDNDNA0.5PhenanthreneNDNDNDNA0.5PyreneNDNDNDNA0.5Surrogate Recoveries (%)%SS178787878	Fluoranthene		ND	ND		ND		NA	0.5		
Indeno (1,2,3-cd) pyreneNDNDNDNA0.51-MethylnaphthaleneNDNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5NaphthaleneNDNDNDNA0.5NaphthaleneNDNDNDNA0.5PhenanthreneNDNDNDNA0.5PyreneNDNDNDNA0.5Surrogate Recoveries (%)%SS178787878	Fluorene		ND	ND		ND		NA	0.5		
1-MethylnaphthaleneNDNDNA0.52-MethylnaphthaleneNDNDNDNA0.5NaphthaleneNDNDNDNA0.5PhenanthreneNDNDNDNA0.5PyreneNDNDNDNA0.5Surrogate Recoveries (%)%SS1787878100100100100100	Indeno (1,2,3-cd) pyrene		ND	ND		ND		NA	0.5		
2-MethylnaphthaleneNDNDNDNA0.5NaphthaleneNDNDNDNA0.5PhenanthreneNDNDNDNA0.5PyreneNDNDNDNA0.5Surrogate Recoveries (%)%SS1787878%SS10.0550.0	1-Methylnaphthalene		ND	ND		ND		NA	0.5		
NaphthaleneNDNDNA0.5PhenanthreneNDNDNDNA0.5PyreneNDNDNDNA0.5Surrogate Recoveries (%)%SS1787878ucroaction202526	2-Methylnaphthalene		ND	ND		ND		NA	0.5		
PhenanthreneNDNDNA0.5PyreneNDNDNDNA0.5Surrogate Recoveries (%)%SS1787878%SS10.0500.00.0	Naphthalene		ND	ND		ND		NA	0.5		
Pyrene ND ND ND NA 0.5 Surrogate Recoveries (%) %SS1 78 78 78	Phenanthrene		ND	ND		ND		NA	0.5		
Surrogate Recoveries (%) %SS1 78 78 78 vigat 20 75 78 78	Pyrene		ND	ND		ND		NA	0.5		
%SS1 78 78 78			Surr	ogate Rec	overies	s (%)					
	%SS1		78	78		78					
<u>%SS2</u> 80 79 81	%SS2		80	79		81					
Comments	Comments										

* water samples in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits.

	McCampbell	Analy Duality Counts	tical, Inc	<u>.</u>	1534 W Web: www.n Telepl	illow Pass Road, F nccampbell.com hone: 877-252-926	Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	5-1701 mpbell.com 1269		
AEI C	Consultants		Client Proj	ect ID: #1	15483; Omega te	ermite	Date Sample	d: 10/04/07		
2500 0	Camino Diablo, Ste. #200						Date Receive	ed: 10/04/07		
Waln	t Crock CA 04507		Client Cor	ntact: Rob	ert Flory		Date Extract	ed: 10/07/07	-10/12	/07
vv ann	II CIEEK, CA 94397		Client P.O	.:			Date Analyz	ed 10/07/07-	-10/12	/07
Extracti	Gasolir on method SW5030B	ne Range (C 6-C12) Vola Anal	tile Hydro ytical methods	carbons as Gaso SW8021B/8015Cm	line with BTI	EX and MTBE	* Work Order	: 0710)203
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1	W	500,a	ND	140	ND	1.8	8.2	1	97
002A	MW-2	w	660,b,m	ND	1.8	0.83	40	45	1	98
003A	MW-3	w	320,a	ND	28	ND	29	17	1	91
004A	MW-4	w	180,a	ND<10	44	ND	12	2.2	1	100
005A	MW-6	W	ND	ND	ND	ND	ND	ND	1	97
006A	MW-7	w	ND	ND	ND	ND	ND	ND	1	95
007A	MW-8	W	ND	ND	ND	ND	ND	ND	1	94
008A	MW-9	W	ND	ND	4.2	ND	ND	ND	1	102
009A	MW-10	W	ND	ND	ND	ND	ND	ND	1	92
010A	MW-11	W	ND	ND	ND	ND	ND	ND	1	120
011A	MW-12	W	ND	ND	ND	ND	ND	ND	1	128
Rej	porting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	µg/L
ND	means not detected at or	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

	Campbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI Consultants	S	Client Project ID:	#115483; Omega	Date Sampled: 10/	04/07			
2500 Camino Di	ablo, Ste. #200	termite		Date Received: 10/	Date Received: 10/04/07			
Wolnut Croals C	NA 04507	Client Contact: R	Robert Flory	Date Extracted: 10/	04/07			
wannut Cleek, C	A 94397	Client P.O.:		Date Analyzed: 10/	08/07-10/	10/07		
	Diesel (C10-23) and Oil (C18+) Range Extra	ctable Hydrocarbons :	as Diesel and Motor Oil*				
Extraction method: SV	W3510C	Analytical meth	ods: SW8015C	Wor	k Order: 07	710203		
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS		
0710203-001B	MW-1	W	440,a	260	1	95		
0710203-002B	MW-2	W	1300,d,b	ND	1	97		
0710203-003B	MW-3	W	230,d	ND	1	99		
0710203-004B	MW-4	W	ND	ND	1	87		
0710203-005B	MW-6	W	100,b	ND	1	88		
0710203-006B	MW-7	W	ND	ND	1	102		
0710203-007B	MW-8	W	ND	ND	1	103		
0710203-008B	MW-9	W	140,a	ND	1	106		
0710203-009B	MW-10	W	120,b	ND	1	105		
0710203-010B	MW-11	W	ND	ND	1	95		
0710203-011B	MW-12	W	ND	ND	1	100		
Repo	rting Limit for DF =1;	W	50	250	μϼ	g/L		
ND m aboy	eans not detected at or ve the reporting limit	S	NA	NA	mg	/Kg		

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant (cooking oil?); h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0710203

EPA Method SW8270C	EPA Method SW8270C Extraction SW3510C BatchID: 31136 Spiked Sample ID: N/A											
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
/ mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Benzo(a)pyrene	N/A	10	N/A	N/A	N/A	81.4	81.3	0.187	N/A	N/A	30 - 130	30
Chrysene	N/A	10	N/A	N/A	N/A	84.4	82	2.90	N/A	N/A	30 - 130	30
1-Methylnaphthalene	N/A	10	N/A	N/A	N/A	88.9	89	0.125	N/A	N/A	30 - 130	30
2-Methylnaphthalene	N/A	10	N/A	N/A	N/A	86.4	85.2	1.46	N/A	N/A	30 - 130	30
Phenanthrene	N/A	10	N/A	N/A	N/A	79.6	79.1	0.561	N/A	N/A	30 - 130	30
Pyrene	N/A	10	N/A	N/A	N/A	80.6	80	0.728	N/A	N/A	30 - 130	30
%SS1:	N/A	5	N/A	N/A	N/A	85	85	0	N/A	N/A	30 - 130	30
%SS2:	N/A	5	N/A	N/A	N/A	91	92	0.281	N/A	N/A	30 - 130	30
All target compounds in the Method NONE	l Blank of this	extraction	batch we	ere ND le:	ss than the	method F	RL with th	ne following	exceptions:			

|--|

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0710203-001C	10/04/07 1:24 PM	10/04/07	10/11/07 1:59 AM	0710203-002C	10/04/07 1:30 PM	10/04/07	10/11/07 3:17 AM
0710203-003C	10/04/07 12:48 PM	10/04/07	10/11/07 4:35 AM	0710203-004C	10/04/07 12:39 PM	10/04/07	10/11/07 5:53 AM
0710203-005C	10/04/07 9:48 AM	10/04/07	10/11/07 7:11 AM	0710203-006C	10/04/07 9:40 AM	10/04/07	10/11/07 8:29 AM
0710203-007C	10/04/07 9:55 AM	10/04/07	10/11/07 9:47 AM	0710203-008C	10/04/07 1:40 PM	10/04/07	10/11/07 11:06 AM
0710203-009C	10/04/07 12:30 PM	10/04/07	10/11/07 12:25 PM	0710203-010C	10/04/07 11:12 AM	10/04/07	10/11/07 1:45 PM
0710203-011C	10/04/07 12:21 PM	10/04/07	10/11/07 3:05 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0710203

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ва	tchID: 31	088	Sp	iked Sam	ole ID:	0710163-00	5A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	74.9	76.6	2.23	82.1	88.9	7.91	70 - 130	30	70 - 130	30
MTBE	ND	10	113	107	5.51	112	115	2.50	70 - 130	30	70 - 130	30
Benzene	ND	10	107	103	3.62	98	104	5.73	70 - 130	30	70 - 130	30
Toluene	ND	10	119	114	4.27	108	117	8.17	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	114	112	2.39	105	107	2.35	70 - 130	30	70 - 130	30
Xylenes	ND	30	120	120	0	110	113	2.99	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	L with th	ne following	exceptions:			

BATCH 31088 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0710203-001A	10/04/07 1:24 PM	10/11/07	10/11/07 9:47 AM	0710203-002A	10/04/07 1:30 PM	10/12/07	10/12/07 12:22 AM
0710203-003A	10/04/07 12:48 PM	10/11/07	10/11/07 11:49 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0710203

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ва	tchID: 31	107	Sp	iked Sam	ole ID:	0710173-00	1A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	1
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	71.8	76.6	6.51	77.3	75.8	1.99	70 - 130	30	70 - 130	30
MTBE	ND	10	109	105	4.34	108	112	3.59	70 - 130	30	70 - 130	30
Benzene	ND	10	103	97.8	5.57	97.8	97.9	0.148	70 - 130	30	70 - 130	30
Toluene	ND	10	114	108	5.22	109	108	0.984	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	111	105	5.09	106	105	1.77	70 - 130	30	70 - 130	30
Xylenes	ND	30	113	110	2.99	113	110	2.99	70 - 130	30	70 - 130	30
All target compounds in the Method I NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:			

BATCH 31107 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0710203-004A	10/04/07 12:39 PM	10/07/07	10/07/07 5:03 AM	0710203-005A	10/04/07 9:48 AM	10/07/07	10/07/07 5:36 AM
0710203-006A	10/04/07 9:40 AM	10/07/07	10/07/07 6:08 AM	0710203-007A	10/04/07 9:55 AM	10/07/07	10/07/07 6:41 AM
0710203-008A	10/04/07 1:40 PM	10/07/07	10/07/07 7:14 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0710203

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ва	tchID: 31	135	Sp	iked Sam	ole ID:	0710203-01	1A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
7 tildiyto	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	81.4	90.5	10.6	106	102	4.21	70 - 130	30	70 - 130	30
MTBE	ND	10	96.3	104	7.90	111	117	4.52	70 - 130	30	70 - 130	30
Benzene	ND	10	85.6	98.2	13.7	105	105	0	70 - 130	30	70 - 130	30
Toluene	ND	10	78.5	88.7	12.1	103	98	4.90	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	86.5	95.3	9.76	103	103	0	70 - 130	30	70 - 130	30
Xylenes	ND	30	81.7	92.3	12.3	96.7	96.7	0	70 - 130	30	70 - 130	30
All target compounds in the Method I NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	e following	exceptions:			

BATCH 31135 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0710203-009A	10/04/07 12:30 PM	10/07/07	10/07/07 2:19 PM	0710203-010A	10/04/07 11:12 AM	10/07/07	10/07/07 6:45 PM
0710203-011A	10/04/07 12:21 PM	10/07/07	10/07/07 7:15 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0710203

EPA Method SW8015C		Ba	tchID: 31	123	Sp	iked Sam	ole ID:	N/A				
Analyte	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)				
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	104	105	1.50	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	90	89	0.519	N/A	N/A	70 - 130	30
All target compounds in the Method E NONE	lank of this	extraction	batch we	ere ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 31123 SUMMARY													
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed						
0710203-001B	10/04/07 1:24 PM	10/04/07	10/08/07 1:42 PM	0710203-002B	10/04/07 1:30 PM	10/04/07	10/08/07 2:51 PM						
0710203-003B	10/04/07 12:48 PM	10/04/07	10/08/07 3:59 PM	0710203-004B	10/04/07 12:39 PM	10/04/07	10/10/07 7:26 PM						
0710203-005B	10/04/07 9:48 AM	10/04/07	10/10/07 8:36 PM	0710203-006B	10/04/07 9:40 AM	10/04/07	10/08/07 1:42 PM						
0710203-007B	10/04/07 9:55 AM	10/04/07	10/08/07 2:51 PM	0710203-008B	10/04/07 1:40 PM	10/04/07	10/08/07 3:59 PM						
0710203-009B	10/04/07 12:30 PM	10/04/07	10/08/07 5:08 PM	0710203-010B	10/04/07 11:12 AM	10/04/07	10/09/07 5:40 AM						
0710203-011B	10/04/07 12:21 PM	10/04/07	10/09/07 6:48 AM										

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #115483; Omega termite	Date Sampled:	07/11/07
2500 Camino Diablo, Ste. #200		Date Received:	07/11/07
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported:	07/18/07
	Client P.O.:	Date Completed:	07/18/07

WorkOrder: 0707210

July 18, 2007

Dear Robert:

Enclosed are:

- 1). the results of **4** analyzed samples from your **#115483; Omega termite project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

AEL 0707210

Telephor	McCAN	1PBELI 110 2 nd AV PACHEC 8-1620	ANAI VENUE SC CO, CA 94	LYT DUTH, 553-55	ICA #D7 60	LI	NC		08-14					Т	UR	N	AR	01	CH	IA) D T	IN	OF	C		TC] H	DD 24	Y D HI	R	EC 48		۶D	0 72 HR	S DAY
relephor	ie: (925) 79	0-1020				ax.	(925	5) 15	0-10	122				G	eoT	rac	ker	ED	F	X	ł	DF	X	1	E	xce	1			Writ	te Or	n (DW	
Report To: Rober	t Flory		B	Bill To	o: Sa	me													Ana	lys	s Re	eque	st						(Other	r	Com	ments
Company: AEI C	Consultants															(F)													Ð			Filter	t
2500 0	Camino Dia	blo, Suite	200										_	BE		7/B&						_							t Lis			Sam	oles for
Walnu	ut Creek, C.	A 94597	E	-Mai	I: rflo	ory@	Daeic	onsu	Itants	s.cot	n		_	TWA		E&F	0					EDB	012.0						arge			Anal	IS Veis:
Tel: (925) 944-28	199, extensio	on 122	F	ax: (925)	94	4-28	95		14.			-	8015		520	418.					18	1 OL	2					101			Van	/ No
Project #: 115483	907 75th (Jakland (r CA	rojec	et Ival	ne:	Ome	ega	term	ite			-	+ 0	oil	se (5	r) su	-	(0)			2	1.87	0		1	-		- 80			Tes	/ 190
Sampler Signatur	a.)//	Jakianu, v	CA										-	2/802	tor	Great	arbo	0 lis	2/8(80		incl	203	3		109		4	SOB				
Sampler Signatur	e. flohne	Gunn	- DIG	<u> </u>		T		TDI	v	N	1ET	ног	5	(602	/ III0	80	droc	(801	602 V	/ 80	80	560	V d d			10.02	1		(87				
		SAMP	LING	2	ners		MA	IRI	X	PR	ESE	RVI	ED	s Gas	esel	n Oil	n Hy	260	(EPA	608	/ 80	× 8	he he	5 .	2 .	1010	1	1	ocs				
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Container	Type Contai	Water	Soil	Air	Other	Ice	HCI	HNO ₃	Other	BTEX & TPH as	TPH (8015) di	Total Petroleun	Total Petroleun	HVOCs EPA 8	BTEX ONLY (Pesticides EPA	PCBs EPA 608	Fuel Aditives b	DAU's / DNA's	TAM 17 Mail	T I IFT 5 Motale	T and (TOANTOAN)	DCT (1270/172	RCI	Halogenated VI				
MW-1		7/1/07	1:400	4	VIL	X			X	Y				Х	Х									1				$^{+}$					
MW-2		1	1.36	1	1	8			x	X				Х	Х																		
MW-7			1.440			x			X	1				Χ	Х									1							1		
MW-11			1620	4		L			X	X			1	Х	X												1				1		
			1.24	-	er.	r			-	ľ.																							
																							_										
				-	-	\vdash		+	-	\vdash		_	-	_		-	-	_	-	-	-	-	-	-			+	+	-	-	+		
					-			-	+	-	_	_	+	-	_	-	-	_		-	+	-	+	-	-	-	+	+	-	-	+		
								-	-				-			-		_		_	_	_	-		_	_	+	+	_	_	+		
Relinquished By:		Date: 7/(107	Time:	Rece	ived F	11	a		2		7	_	8	10	CE/t	r° f	9.	2					PR	ESI	ERV	AT	ION	vo,	AS	0&G		METALS	OTHE
Relinquished By:		Date:	Time:	Rece	eived E	iy: iy:							_	G H D	ECI	D C D S HL	CON PAC	DIT E A	TON ABSI FED	ENT IN	LAE	\leq	AP CO	PRONT	OPF AIN SEF	RIA' ER RVE	FE S D I		AB				

1.5

MW-7

MW-11

1	AWA

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, C (925) 252-9	A 94565-1701 9262					WorkO	Order:	07072	210	Clie	entID:	AEL					
				EDF		Excel	[Fax	\checkmark	Email	Ľ	HardCo	ру	Thir	dParty		
Report to:						B	Bill t						Req	uested	TAT:	5 (days
Robert Flory AEI Consultants 2500 Camino D Walnut Creek, C	s Diablo, Ste. #200 CA 94597	Email: TEL: ProjectNo: PO:	rflory@aeicor (925) 283-600 #115483;Om	nsultants.com 0 FAX: (925) § ega termite	944-2	89	De AE 250 Wa dm	nise Mo I Consu 00 Cam Inut Cru ockel@	ockel ultants nino Diat reek, CA @aeicons	olo, Ste. 94597 sultants.o	#200 com		Dai Dai	te Reco te Prin	eived nted:	07/11/ 07/11/	2007 2007
									Requ	ested Te	ests (S	ee lege	nd be	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0707210-001	MW-1		Water	7/11/07 1:40:00		А	А	В									
0707210-002	MW-2		Water	7/11/07 1:36:00		А		В									

А

А

В

В

7/11/07 1:44:00

7/11/07 1:53:00

Water

Water

Test Legend:

0707210-003

0707210-004

1 G-MBTEX_W	2 PREDF REPORT	3 TPH(DMO)_W	4	5
6	7	8	9	10
11	12			

Prepared by: Kimberly Burks

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	7/11/2007	4:29:22 PM
Project Name:	#115483;Omega 1	ermite			Check	dist completed and r	eviewed by:	Kimberly Burks
WorkOrder N°:	0707210	Matrix <u>Water</u>			Carrie	r: <u>Client Drop-In</u>		
		Chain	of Cu	stody (C	OC) Informa	ation		
Chain of custody	/ present?		Vas		No 🗌			
			103					
Chain of custody	/ signed when relinqui	shed and received?	Yes	⊻	No 🗀			
Chain of custody	agrees with sample	abels?	Yes	\checkmark	No			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by Cl	ient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		S	ample	Receint	Information			
		· / / 0			<u></u>			
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗀		NA 💌	
Shipping contain	er/cooler in good conc	lition?	Yes	\checkmark	No			
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Preser	vatior	n and Ho	old Time (HT) Information		
All samples rece	ived within holding tim	e?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	r Temp:	19.2°C			
Container/Temp			V		N:		····	
Water - VOA via	Is have zero headspa	ce / no bubbles?	res	• _		INO VOA VIAIS SUBM		
Sample labels cl	hecked for correct pre	servation?	Yes	\checkmark	No			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

Ĵ	McCampbell	Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	5-1701 mpbell.com 1269								
AEI C	Consultants		Client Proj	ject ID: #	#115483	3; Omega te	rmite	Date Sample	d: 07/11/07		
2500 0	Camino Diablo, Ste. #200	1						Date Receive	ed: 07/11/07		
Walni	ıt Creek, CA 94597		Client Cor	ntact: Ro	bert Flo	ory		Date Extract	ed: 07/12/07		
,, unit			Client P.O.	.:				Date Analyz	ed: 07/12/07		
Extracti	Gasolin	ne Range ((C 6-C12) Vola Analy	atile Hydi	rocarbo ds: SW80	o ns as Gaso 21B/8015Cm	line with BTH	EX and MTBE	* Work Order	r: 070	7210
Lab ID	Client ID	Matrix	TPH(g)	MTBI	E	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1	w	2000,a	ND<1	.0	620	1.5	5.9	31	1	115
002A	MW-2	W	5300,a,h	ND<1	.7	10	7.5	47	72	3.3	118
003A	MW-7	W	67,a	ND		17	ND	ND	ND	1	104
004A	MW-11	W	ND	ND		ND	ND	ND	1	107	
		_									
		_									
				<u> </u>							
		_									
				 						<u> </u>	<u> </u>
Rep	porting Limit for DF =1;	W	50	5.0		0.5	0.5	0.5	0.5	1	µg/L
ND	means not detected at or	S	NA	NA		NA	NA	NA	NA	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

	Campbell Analyti "When Ouality Counts"	ical, Inc.	1534 Willo Web: www.mcca Telephon	w Pass Road, Pittsburg, CA 945 mpbell.com E-mail: main@mc e: 877-252-9262 Fax: 925-252	65-1701 campbell.con 2-9269	n
AEI Consultan	ts	Client Project ID:	#115483; Omega	Date Sampled: 07/	11/07	
2500 Camino D	Diablo, Ste. #200	termite		Date Received: 07/	11/07	
Walnut Creek	CA 94597	Client Contact: R	obert Flory	Date Extracted: 07/	11/07	
Wallat Creek,		Client P.O.:		Date Analyzed: 07/	/13/07-07/	18/07
	Diesel (C10-23) and Oil (C18+) Range Extra	ctable Hydrocarbons a	s Diesel and Motor Oil*		
Extraction method: S	W3510C	Analytical meth	nods: SW8015C	Wor	rk Order: 0'	707210
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0707210-001B	MW-1	W	450,a,d	ND	1	97
0707210-002B	MW-2	W	2900,d,b,h	480	1	91
0707210-003B	MW-7	W	150,a,f	ND	1	102
0707210-004B	MW-11	W	460,g,b	980	1	88
Repo	orting Limit for DF =1;	W	50	250	μ	g/L
ND n abo	neans not detected at or ove the reporting limit	S	NA	NA	mg	/Kg

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0707210

EPA Method SW8021B/8015Cm	15Cm Extraction SW5030B BatchID: 29222 Spiked Sample ID: 07									0707210-00	4A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	102	105	2.24	103	96.8	6.62	70 - 130	30	70 - 130	30
MTBE	ND	10	88.4	76.3	14.6	108	99.1	8.96	70 - 130	30	70 - 130	30
Benzene	ND	10	96.8	92.2	4.83	102	96.4	6.09	70 - 130	30	70 - 130	30
Toluene	ND	10	97.7	92.9	5.02	93.6	88.1	6.08	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	104	96.4	7.27	105	96.9	7.81	70 - 130	30	70 - 130	30
Xylenes	ND	30	113	110	2.99	100	93	7.25	70 - 130	30	70 - 130	30
%SS:	107	10	93	92	1.18	107	101	6.29	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method R	L with th	e following	exceptions:			

BATCH 29222 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0707210-001A	07/11/07 1:40 AM	07/12/07	07/12/07 12:40 AM	0707210-001A	07/11/07 1:40 AM	07/12/07	07/12/07 8:32 PM
0707210-002A	07/11/07 1:36 AM	07/12/07	07/12/07 8:01 PM	0707210-003A	07/11/07 1:44 AM	07/12/07	07/12/07 1:45 AM
0707210-004A	07/11/07 1:53 AM	07/12/07	07/12/07 2:18 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0707210

K QA/QC Officer

EPA Method SW8015C	Ba	tchID: 29	220	Spiked Sample ID: N/A								
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)	1
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	109	110	0.980	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	87	89	2.03	N/A	N/A	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

	BATCH 29220 SUMMARY												
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed						
0707210-001B	07/11/07 1:40 AM	07/11/07	07/18/07 11:56 AM	0707210-002B	07/11/07 1:36 AM	07/11/07	07/13/07 6:18 PM						
0707210-003B	07/11/07 1:44 AM	07/11/07	07/18/07 5:22 PM	0707210-004B	07/11/07 1:53 AM	07/11/07	07/13/07 5:09 PM						

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #262157; Omega Termite	Date Sampled: 06/06/07
2500 Camino Diablo, Ste. #200		Date Received: 06/06/07
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported: 06/13/07
	Client P.O.:	Date Completed: 06/13/07

WorkOrder: 0706168

June 13, 2007

Dear Robert:

Enclosed are:

- 1). the results of 11 analyzed samples from your #262157; Omega Termite project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

	McCAN	IPBELI	L ANAI	LYT	ICA	L	IN	c.							Γ					CI	IA	IN	0	F (CU	ST	0	D	ΥI	RE	CO	RI)		
		PACHE	CO, CA 94	553-55	,#D7 560]]	U	RN	AI	10	UN	D	ΓIN	IE]				[
Telepho	ne: (925) 79	8-1620			I	ax	: (9	25)	798	8-16	22				H		-					-			RI	USH		24 1	IR		48 HI	R	72	HR 5	DAY
D (T D I	(FI				6					_			17.2		- 0	eo	rac	eker	· EL)F	<u>A</u>	· ·	PDI	ť)	Å		Exe	cel		1	Wi	rite (On (DW)	1
Company: AFL	T Flory		B		o: 5a	me	2								┝				1	An	alys	IS F	equ	lest	_					⊢	Oth	er	+	Commer	its
2500 (Camino Dia	blo, Suite	200											-			&F)													ist)				Samples	for
Waln	ut Creek, C.	A 94597	E	-Ma	il: rflo	ory	@ae	icon	sult	ants	.cor	n		_	TBF		&F/B						BB		10					get L				Metals	101
Tel: (925) 944-28	399, extensio	on 122	F	ax:	(925)	9.	44-2	2895	5						15)/N		0 E	8.1)					& EL		/ 83					Targ				Analysis	:
Project #: 262157	7		Р	roje	et Na	me	: Or	neg	a T	[er	nite	e			+ 80	_	(552	s (41		(0			CA 6		8270					8010				Yes / 1	No
Project Location:	807 75 th , C	Dakland,	CA			_									\$020	or oi	ease	rbon	list)	802			Icl D		25 /			010)		B					
Sampler Signatur	e: Han	1				-						100			602/8	mote	& Gr	rocai	3010	602 /	808	0	00 in		PA 6			.2/6		8260					
	"	SAMP	LING	10	ers		M	ATI	RIX	K .	PR	ESI	ERV	ED	Gas (sel /	Oil ,	Hyd	8) 09	Ade	508 /	808	82(by E.			1/239		Cs (
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Contain	Water	Soil	Air	Sludge	Other	Ice	HCI	HNO ₃	Other	BTEX & TPH as	TPH (8015) die:	Total Petroleum	Total Petroleum	HVOCs EPA 82	BTEX ONLY (F	Pesticides EPA (PCBs EPA 608/	Fuel Aditives by	EPA 625 / 8270	PAH's / PNA's l	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421	RCI	Halogenated VO					
MW-1		6/6/07	4.17	4	ØL	k	•				Ý	K	<u> </u>		X	X															\square	+	+		
MW-2		1	4:22	I		X	(X	V	-		X	X																			
MW-3			4:05			1					X	$\hat{\boldsymbol{\lambda}}$			X	X																			
MW-4			3:54		11	X					X	X	1		X	X																-			
MW-6			3:38			F	-			<u> </u>	x	$\langle \rangle$	+		X	X																			_
MW-7			3118			X	2					X			X	X											_								
MW-8			2.72			K	-				V				X	X																			_
MW-9	1.		4:0			K	-				X	1x	1	1	X	X																			
MW-10			4:00			R	-				X	X			X	X												2				-			
MW-11			3:30			K	-				X	X			X	X																	┢		
MW-12		1	3:44	1		X					V	X			X	X																+	+		
			v (Q			7																		-								+	+		
P		Dete				L																													
A Change in the second		5/6/07	Gilsen	Reco	S	el	li	C	n	10	lo	V	m	n	\sim 1	CE/	t° /	9.2	20			/	1	P	PRE	SER	VA	TIC	v DN	OAS	08	G	ME	TALS OT	THE
kennquished By:		Date:	Time:	Reco	erved B	y:				V						GOO	DDC	CON		ABS	N_ ENT	V [A	ON	ROP	PRL								
cennquished By:	2	Date:	Time:	Reco	eived B	y:										JEC	HL	UR	INA	IEL) IN	LA	В		PE	RSF	LK V	ED	IN	LAB	£				

aer 0706168

	SW.
6	J.C.
6	

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262						Work	Order	: 0706	168	ClientID: AEL								
				EDF		Excel		Fax		🖌 Email		Hard	Copy	🗌 Thi	rdParty			
Report to:Email:rflory@aeicoRobert FloryEmail:rflory@aeicoAEI ConsultantsTEL:(925) 283-602500 Camino Diablo, Ste. #200ProjectNo:#262157; OrWalnut Creek, CA 94597PO:				Bill t sultants.com Denise Mockel FAX: (925) 944-289 AEI Consultants ega Termite 2500 Camino Diablo, Ste. #								Requested TAT:5 days200Date Received 06/06/2007						
Walnut Creek, CA	A 94597	PO:					dn	alnut Ci nockel@	eek, C ⊉aeico	A 94597 nsultan	7 ts.com		Da	te Pri	nted:	06/06/	2007	
									Rec	uested	Tests	(See le	gend b	elow)				
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12	
0706168-001	MW-1		Water	6/6/07 4:17:00 PM		А	Α	В										
0706168-002	MW-2		Water	6/6/07 4:22:00 PM		Α		В										
0706168-003	MW-3		Water	6/6/07 4:05:00 PM		А		В										
0706168-004	MW-4		Water	6/6/07 3:54:00 PM		А		В										
0706168-005	MW-6		Water	6/6/07 3:38:00 PM		Α		В										
0706168-006	MW-7		Water	6/6/07 3:28:00 PM		Α		В										
0706168-007	MW-8		Water	6/6/07 3:23:00 PM		Α		В									1	
0706168-008	MW-9		Water	6/6/07 4:10:00 PM		Α		В									1	
0706168-009	MW-10		Water	6/6/07 4:00:00 PM		Α		В										
0706168-010	MW-11		Water	6/6/07 3:30:00 PM		Α		В							1	1		
0706168-011	MW-12		Water	6/6/07 3:44:00 PM		Α		В							1	1	1	

Test Legend:

1	G-MBTEX_W	2 PREDF REPORT	3 TPH(DMO)_W	4	5
6		7	8	9	10
11		12			

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	nd Time Received:	6/6/07 7:4	4:27 PM
Project Name:	#262157; Omega	Termite			Check	list completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	0706168	Matrix <u>Water</u>			Carrier	r: <u>Client Drop-In</u>		
		Chain	of Cu	stody (C	OC) Informa	tion		
Chain of custody	/ present?		Yes		No 🗆			
Chain of custody	/ signed when relinqu	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample	labels?	Yes	<	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time o	f collection noted by Cl	ient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		e	amplo	Pacaint	Information			
		<u></u>	ampie	<u>Neceipi</u>			_	
Custody seals in	tact on shippping con	tainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	dition?	Yes	✓	No 🗆			
Samples in prop	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Prese	rvatio	n and Ho	old Time (HT)	Information		
	ived within helding tim		Vaa					
All samples lece	ived within holding tin		res	U.			_	
Container/Temp	Blank temperature		Coole	er Temp:	19.2°C		NA	
Water - VOA via	ls have zero headspa	ice / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted 🗌	
Sample labels cl	hecked for correct pre	servation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell	Analy	tical, Inc	al, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269									
AEI C	Consultants		Client Proj	ect ID: #	262157; 0	Omega T	ermite	Date Sample	ed: 06/06/07				
2500	Camino Diablo, Ste. #200							Date Receive	ed: 06/06/07				
Walnı	nt Creek CA 9/1597		Client Cor	ntact: Ro	bert Flory	7		Date Extracted: 06/09/07					
vv ann	a Cleak, CA 94397		Client P.O.	.:				Date Analyz	ed: 06/09/07				
Extracti	Gasolir on method: SW5030B	ne Range (C6-C12) Vola Anal	atile Hydr	ocarbons	as Gaso ^{B/8015Cm}	line with BTE	X and MTBE	* Work Order	r: 070	6168		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	E B	Ethylbenzene	Xylenes	DF	% SS				
001A	MW-1	W	2500,a	ND<2	D	910	3.4	7.7	55	1	98		
002A	MW-2	w	3800,a	ND<2	0	17	17	75	58	1	109		
003A	MW-3	w	460,a	ND		40	1.9	39	22	1	102		
004A	MW-4	w	190,a	ND		40	ND	14	3.6	1	98		
005A	MW-6	W	ND	ND		ND	ND	ND	ND	1	94		
006A	MW-7	w	ND	ND		ND	ND	ND	ND	1	97		
007A	MW-8	W	ND	ND		ND	ND	ND	ND	1	92		
008A	MW-9	W	64,a	ND		12	ND	ND	ND	1	98		
009A	MW-10	W	ND	ND		ND	ND	ND	ND	1	90		
010A	MW-11	w	ND	ND		ND	ND	ND	ND	1	113		
011A	MW-12	W	ND	ND		ND	ND	ND	ND	1	118		
Rep	porting Limit for DF =1;	w	50	5.0		0.5	0.5	0.5	0.5	1	µg/L		
ND	ND means not detected at or S			NA		NA	NA	NA	NA	1	mg/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

	Campbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269									
AEI Consultan	ts	Client Project ID:	#262157; Omega	Date Sampled: 06/	06/07							
2500 Camino D	Diablo, Ste. #200	Termite		Date Received: 06/	Date Received: 06/06/07							
Walnut Craak	CA 04507	Client Contact: R	Robert Flory	Date Extracted: 06/	Date Extracted: 06/06/07							
wannut Creek, v	CA 94397	Client P.O.:		Date Analyzed 06/	08/07-06/	12/07						
	Diesel (C10-23) and Oil (C18+) Range Extra	ctable Hydrocarbons a	s Diesel and Motor Oil*								
Extraction method: S	SW3510C	Analytical meth	nods: SW8015C	Wor	k Order: 0'	706168						
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS						
0706168-001B	MW-1	W	540,b,d	300	1	87						
0706168-002B	MW-2	W	1500,d	ND	1	86						
0706168-003B	MW-3	W	230,d	ND	1	86						
0706168-004B	MW-4	W	59,d,b	ND	1	80						
0706168-005B	MW-6	W	76,b	ND	1	88						
0706168-006B	MW-7	W	ND	ND	1	112						
0706168-007B	MW-8	W	ND	ND	1	89						
0706168-008B	MW-9	W	320,a	250	1	93						
0706168-009B	MW-10	W	230,k	ND	1	81						
0706168-010B	MW-11	W	ND	ND	1	114						
0706168-011B	MW-12	W	ND	ND	1	108						
Repo	orting Limit for DF =1;	W	50	250	με							
ND n	neans not detected at or	S	NA	NA	mg/Kg							

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

NONE

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0706168

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ba	tchID: 28	576	Sp	iked Sam	ple ID:	0706172-00	3A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	102	82.1	22.1	98.1	79.2	21.3	70 - 130	30	70 - 130	30
MTBE	ND	10	110	95.1	14.5	103	102	1.03	70 - 130	30	70 - 130	30
Benzene	ND	10	101	91.1	9.83	99	94.9	4.21	70 - 130	30	70 - 130	30
Toluene	ND	10	97.9	90.9	7.37	99.4	95.3	4.21	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	98.7	92	7.01	103	94.8	8.26	70 - 130	30	70 - 130	30
Xylenes	ND	30	91.3	85.3	6.79	117	100	15.4	70 - 130	30	70 - 130	30
%SS:	95	10	104	104	0	94	92	2.42	70 - 130	30	70 - 130	30
All target compounds in the Method E	Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:			

BATCH 28576 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0706168-001A	06/06/07 4:17 PM	06/09/07	06/09/07 12:56 AM	0706168-001A	06/06/07 4:17 PM	06/09/07	06/09/07 5:18 PM
0706168-002A	06/06/07 4:22 PM	06/09/07	06/09/07 1:29 AM	0706168-003A	06/06/07 4:05 PM	06/09/07	06/09/07 2:02 AM
0706168-004A	06/06/07 3:54 PM	06/09/07	06/09/07 2:35 AM	0706168-005A	06/06/07 3:38 PM	06/09/07	06/09/07 4:47 AM
0706168-006A	06/06/07 3:28 PM	06/09/07	06/09/07 5:54 PM	0706168-007A	06/06/07 3:23 PM	06/09/07	06/09/07 6:29 PM
0706168-008A	06/06/07 4:10 PM	06/09/07	06/09/07 9:08 AM	0706168-009A	06/06/07 4:00 PM	06/09/07	06/09/07 9:21 PM
0706168-010A	06/06/07 3:30 PM	06/09/07	06/09/07 10:15 AM	0706168-011A	06/06/07 3:44 PM	06/09/07	06/09/07 11:23 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0706168

EPA Method SW8015C	Extra	ction SW	3510C		Bat	tchID: 28	526	Sp	iked Sam	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	119	129	0.0157	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	116	119	0.198	N/A	N/A	70 - 130	30
	011£41-:		1 - 4 - 1	ND 1)T					

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 28526 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0706168-001B	06/06/07 4:17 PM	1 06/06/07	06/08/07 5:50 PM	0706168-002B	06/06/07 4:22 PM	06/06/07	06/08/07 6:58 PM
0706168-003B	06/06/07 4:05 PM	06/06/07	06/08/07 8:06 PM	0706168-004B	06/06/07 3:54 PM	06/06/07	06/08/07 9:14 PM
0706168-004B	06/06/07 3:54 PM	06/06/07	06/12/07 3:08 AM	0706168-005B	06/06/07 3:38 PM	06/06/07	06/09/07 12:35 AM
0706168-006B	06/06/07 3:28 PM	1 06/06/07	06/12/07 7:08 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0706168

EPA Method SW8015C	Extra	ction SW	3510C		Bat	tchID: 28	579	Sp	iked Sam	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	109	107	2.29	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	119	116	2.26	N/A	N/A	70 - 130	30
All target compounds in the Method E	Rlank of this	extraction	batch we	are ND les	s than the	method F	I with the	e following	excentions			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 28579 SUMMARY

S	Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
(0706168-007B	06/06/07 3:23 PM	06/06/07	06/09/07 2:49 AM	0706168-008B	06/06/07 4:10 PM	06/06/07	06/09/07 10:10 AM
(0706168-009B	06/06/07 4:00 PM	06/06/07	06/09/07 11:18 AM	0706168-010B	06/06/07 3:30 PM	06/06/07	06/12/07 8:17 PM
(0706168-011B	06/06/07 3:44 PM	06/06/07	06/12/07 9:25 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #262484; Omega Termite	Date Sampled:	01/19/07
2500 Camino Diablo, Ste. #200		Date Received:	01/24/07
Walnut Creek, CA 94597	Client Contact: Ricky Bradford	Date Reported:	01/29/07
	Client P.O.:	Date Completed:	01/30/07

WorkOrder: 0701499

January 30, 2007

Dear Ricky:

Enclosed are:

- 1). the results of 1 analyzed sample from your #262484; Omega Termite project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

Telephone: (92	and and	LANAL	YT	ICA	LI	NC	•											CH	IA	IN	0	F (CU	S1	TO	DY	YI	RE(CC	R	D		
Telephone: (9	DACHE	VENUE SO	UTH,	#D7									Т	UR	N	AR	01	UN	DI	TIN	1E					C.]						Ø
	5) 798-1620	CO, CA 945	55-55	F	ax:	(925	5) 79	8-10	522														RU	USH	l	24 I	IR	4	48 H	R	7	2 HR	5 DAY
Denset Ter Dista Dens		D	111 T									+	ED	OF R	lequ	uire	ed?	Coe	elt ((Noi	rma	1)	No	0	W	rite	On	(D)	<u>N)</u>	N	0	C	
Composite A FL Consul	ord	B	111 1 0):								+	_			_	_	Ana	ilys	IS R	equ	est	_				-		Oth	ler	-	Com	nents
2500 Comin	Diablo Suite	200										-			&F)																		
Walnut Cro	ok CA 94597	E_1	Mail	rhra	dfor	rd@	anio	one	ulto	inte	com		BE		F/B								2										
Tele: (925) 283-6000 ex	148	F	av. (025)	044-	.280	5	0115	uita	unts.	com	-	TM/		E&	.1)							83										
Project # 2/2 7	III I	<u>г</u> р	roiec	t Nan	ne	Ime		Fern	nite			-	3015)	04	5520	418							270										
Project Location:	mona		10100		ne.c	Juic	ga	1 CI II	inte				+	2º	se (;	ons (020		Z			5/8			(0							
Sampler Signature:	griego	4	1										802(K	Grea	carbo		2/8		NO			62			/601							
	SAM	PLING		Ls	I	MA	TRI	x		MET	HOD		IS (602	115)	Dil & (Iydroo		PA 60		CB's	8260		y EPA			239.2							
4		1	ers	aine				1	+	LSE	RVE	-	as Ga	3 (8(m	um F	10	E	80	80 F	40/	20	's b	tals	als	421/							
SAMPLE ID LOC	TION		ain	onta									HdJ	Diese	role	role	/ 80	NLS	/ 80	/ 80	/ 82	/ 82	PNA	Me	Meti	40/7							
Field Point Name)	Date	Time	ont	e C	ter			er			03	er	(% J	as I	l Pet	l Pet	601	XO	608	608	624	625	,s/	1-17	T 5]	(72							
			tt C	Lyp	Wa	Soil	Air	Oth	e	HC	Ž i	뒹	BTE	LPH	Lota	Fota	EPA	BTE	EPA	EPA	EPA	EPA	PAH	CAN	LUF	Lead	RCI						
2410 1.1				-	-	1		-	1-	-	_	-	-		-		_	_	-	-	_	-	_	_	_	~	_		7	-	-	- /	
TRP-IW	1/19/0	1220	\vdash	216	1	X.	_	_	-		_	-	7	T	-	_			_	-	_	_	_			1		5		ZA	01	17	,
77KP-2M		1230	21			X	_	_			_											_						1	0	0	m	105:	-6
STKP-3E	1	1243	1	1		X																						C	-		1		
								1	1																								
						-	-		+		-	+		-																			
				-			+		\vdash		-	+	-	-	-	-				-										-			
				-					⊢			+	_							-		_								-			
				<u> </u>				_	-		_	_	_	_	_	_						_								_			
															_					_										_			
																												*					
							-	-	\square	-																							
						-	-		+-			+	-	-	-+			-												-			
									\vdash			+			-				_											-			
AAAA	D	There	D									+																					
centralished by	Date:	i inte:	Kece	wed B	y:	1	2/	1.	d						10												V	OAS	0	¢C.	M	ETALS	OTHE
11	1/24/6	11/02	H	di	nu	1	+	1	4	Ũ		_	10	CE/ť	19	.2	2					P	RE	SEF	RVA	TIC)N_	5/45				a and a second	orner
eninquisnea By:	1-7.16	-7 677	Prece	aved B	y:	-			_				G	00	ĎС	ON	DIT	ION	N		-	A	PP	RO	PRI	ATE	E						
John Mito	1. 0.12	7.6	D	Carrier and Carrier			100 and 100 and 100	and the second s		h		_	H	ECI	DSI	PAC	E A	ABS	ENT	LAI	R	C	ON	TA	INE	RS_	IN	LAT	2				

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92	94565-1701 62					Work()rder:	0701	499	C	lientID	: AEL					
				EDF		Fa	х		🗸 Email		Пн	lardCop	1	Third	lPart		
Report to:						E	Bill t						Rec	Jueste	d TAT:	5 (days
AEI Consultants 2500 Camino Dia Walnut Creek, Ca	ablo, Ste. #200 A 94597	Email: TEL: ProjectNo: PO:	rbradford@a (925) 283-60 #262484; On	eiconsultants.com 0 FAX: (925) 9 nega Termite	44-28	9	De AE 25 Wa dm	nise Mo I Consi 00 Carr alnut Cr iockel@	ockel ultants nino Dia eek, C/ @aeicor	ablo, St A 94597 nsultant	e. #200 , s.com)	Dai Dai	te Rec te Prii	eived nted:	01/24/ 01/26/	2007 2007
									Req	uested	Tests (See leg	gend be	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12

Sample ID	ChentSampiD	Watrix	Conection Date	HOIU		2	3	4	5	0	1	0	5	10	11	12
0701499-001	STKP 1W,2M,3E	Soil	01/19/07		А	Α	Α									

Test Legend:

1 G-MBTEX_S	2 PB_S	3 TPH(DMO)_S	4	5	
6	7	8	9	10	
11	12]			

Prepared by: Nickole White

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	McCampbell	Analyt	ical, Inc	<u>-</u>		1534 Wi Web: www.m Teleph	llow Pass Road, F ccampbell.com tone: 877-252-926	Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	-1701 mpbell.com 9269		
AEIC	Consultants		Client Proj	ect ID: #	ŧ2624	184; Omega Te	ermite	Date Sample	d: 01/19/07		
2500 0	Camino Diablo, Ste. #200	I						Date Receive	ed: 01/24/07		
Walni	it Creek CA 94597		Client Cor	ntact: Ric	cky B	Bradford		Date Extracte	ed: 01/24/07		
vv ann	n Cleek, CA 7 4 377		Client P.O	.:				Date Analyz	ed 01/25/07		
Extracti	Gasolir on method SW5030B	EX and MTBE	* Work Order	: 070	1499						
Lab ID	Client ID	Ethylbenzene	Xylenes	DF	% SS						
001A	STKP 1W,2M,3E	S	11,m	ND		ND	0.071	ND	0.049	1	104
				<u> </u>						<u> </u>	
				<u> </u>						<u> </u>	
				<u> </u>						<u> </u>	
		+		<u> </u>						_	<u> </u>
Rep	porting Limit for DF =1;	W	NA	NA		NA	NA	NA	NA	1	ug/L
		S	1.0	0.05		0.005	0.005	0.005	0.005	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

above the reporting limit

AEI ConsultantsClient Project ID: #262484; Omega TermiteDate Sampled:2500 Camino Diablo, Ste. #200Date Received:	01/19/07 : 01/24/07 : 01/24/07	
2500 Camino Diablo, Ste. #200 Date Received.	: 01/24/07 : 01/24/07	
	: 01/24/07	
Walnut Creek, CA 94597 Client Contact: Ricky Bradford Date Extracted		
Client P.O.: Date Analyzed	01/26/07	
Lead by ICP*		
Extraction method SW3050B Analytical methods 6010C	Work Order: 07	01499
Lab ID Client ID Matrix Extraction Lead	DF	% SS
0701499-001A STKP 1W,2M,3E S TTLC 7.7	1	100

Reporting Limit for DF =1;	W	TTLC	NA	μg/L
above the reporting limit	S	TTLC	5.0	mg/Kg

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

<u> </u>	Campbell Analyti	cal, Inc.	1534 Willow Web: www.mccar Telephone	v Pass Road, Pittsburg, CA 9450 npbell.com E-mail: main@mca :: 877-252-9262 Fax: 925-252	65-1701 campbell.con -9269	1						
AEI Consultan	ts	Client Project ID:	#262484; Omega	Date Sampled: 01/	19/07							
2500 Camino E	Diablo, Ste. #200	Termite		Date Received: 01/	Date Received: 01/24/07							
Walnut Creek	C & 9/597	Client Contact: R	icky Bradford	Date Extracted: 01/	24/07							
Walnut Creek,		Client P.O.:		Date Analyzed 01/	26/07							
	Diesel (C10-23) and Oil (C18+) Range Extra	8+) Range Extractable Hydrocarbons as Diesel and Motor Oil*									
Lab ID	Client ID	Analytical meth Matrix	TPH(d)	TPH(mo)	k Order: 0'	% SS						
0701499-001A	STKP 1W.2M.3E	S	140.a	41	1	105						
Rep	orting Limit for DF =1;	W	NA	NΔ	110	/[
ND means not detected at or above the reporting limit		S	1.0	5.0	mg.	/Kg						

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) mineral oil; p) see attached narrative.

NONE

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0701499

EPA Method SW8021B/8015Cm	Extraction SW5030B BatchID: 25922 Spiked Sample I							ple ID:	ID: 0701514-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%))
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	0.60	95.6	104	8.62	104	98.4	5.82	70 - 130	30	70 - 130	30
MTBE	ND	0.10	104	92.7	11.6	97.5	90.4	7.56	70 - 130	30	70 - 130	30
Benzene	ND	0.10	114	98.1	14.7	107	106	1.45	70 - 130	30	70 - 130	30
Toluene	ND	0.10	120	107	11.5	117	113	2.83	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	82.3	104	22.9	97.9	79.1	21.3	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	110	113	2.99	123	120	2.74	70 - 130	30	70 - 130	30
%SS:	89	0.10	104	98	5.94	100	102	1.98	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

BATCH 25922 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed	
0701499-001	1/19/07	1/24/07	1/25/07 8:46 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

QC SUMMARY REPORT FOR 6010C

W.O. Sample Ma	trix: Soil		QC Matrix: Soil WorkOrder 0701499							.99			
EPA Method 60	EPA Method 6010C			Extraction SW3050B BatchID: 25921 Spiked Sample ID 07					ID 0701494	-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%))
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Lead	6.3	50	96.9	91.9	4.72	10	104	100	4.02	75 - 125	20	80 - 120	20
%SS:	102	250	112	111	0.805	250	101	101	0	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 25921 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701499-001A	1/19/0	07 1/24/07 1	/26/07 11:56 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0701499

EPA Method SW8015C	E	Extraction SW3550C					BatchID: 25898				Spiked Sample ID: 0701470-002A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria			%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(d)	ND	20	99.7	97.3	2.44	91	98	7.35	70 - 130	30	70 - 130	30		
%SS:	115	50	94	101	7.11	104	98	6.23	70 - 130	30	70 - 130	30		
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE														

BATCH 25898 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701499-001	1/19/07	1/24/07	1/26/07 9:37 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

APPENDIX E

REGULATORY CORRESPONDANCE

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

AGENCY

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

August 11, 2006

Mr. Allen Kanady Omega Termite 807 75th Avenue Oakland, CA 94621

Subject: Fuel Leak Case No. RO0000508, Omega Termite, 807 75th Avenue, Oakland, CA - Work Plan Approval

Dear Mr. Kanady:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site and the document entitled, "Well and Ozone Micro-Sparge System Installation Work Plan," dated July 31, 2006 and prepared on your behalf by AEI Consultants. The Work Plan proposes the installation of two additional deeper zone monitoring wells and an ozone sparging system. Two separate zones of soil and groundwater contamination have been identified at the site. Low flow ozone sparging is proposed at depths of approximately 17 feet bgs (shallow zone) and 35 feet bgs (deeper zone). We concur with the proposed scope of work.

We request that you address the following technical comments, perform the proposed work, and send us the reports described below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

- November 15, 2006 Quarterly Monitoring Report for the Third Quarter 2006
- December 15, 2006 Start-Up Report
- February 15, 2007 Quarterly Monitoring Report for the Fourth Quarter 2006

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement

Allen Kanady August 11, 2006 Page 2

activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program ftp site are provided on the attached "Electronic Report Upload (ftp) Instructions." Please do not submit reports as attachments to electronic mail.

Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Allen Kanady August 11, 2006 Page 3

If you have any questions, please call me at (510) 567-6791.

Sincerely,

N

Jerry Wickham Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Robert Flory AEI Consultants 2500 Camino Diablo Blvd., Suite 200 Walnut Creek, CA 94597

> Donna Drogos, ACEH Jerry Wickham, ACEH File

APPENDIX F

SOIL DISPOSAL MANIFEST

Keller Canyon Sanitary Landfill 901 Bailey Road Pittsburg, CA 94565 Phone (925) 458-9800 Fax (925) 458-9891Ox Mountain Sanitary Landfill 12310 San Mateo Road Half Moon Bay, CA 94019 Phone (650) 726-1819 Fax (650) 726-9183	Newby Isla Sanitary La 1601 Dixon Lar Milpitas, CA 95 Phone (408) 94 Fax (408) 262-3	and andfill nding Road 035 15-2800 2871	Forward Landfill 9999 S. Austin Road Manteca, CA 95336 Phone (209) 982-4298 Fax (209) 982-1009					
NON-HAZARDOUS	WASTE MANIFEST							
GENERATOR Allen G. Kenedy Maulio Appress		WASTE ACCEPTANCE NO.						
GON 15H. Ave	- Swic	- 212	172510					
CITY, STATE, ZIP	REQUIRED PER	SONAL PROTEC	TIVE EQUIPMENT					
PHONE		GGLES Q RESPI	RATOR CHARD HAT					
CONTACT PERSON		HER						
Allen G. Kenedy 1	SPECIAL HANDLI	NG PROCEDURES	: And the second se					
SIGNATURE OF AUTHORIZED AGENT / TITLE DATE								
*612 3/10								
GENERATOR'S CERTIFICATION: Libereby certify that the above named material is not a hazardous			a fair a sure of					
described, classified and packaged, and is in proper condition for transportation a-cording to applicab regulations; AND, if the waste is a treatment residue of a previously restricted hazardous waste	e e		n The					
subject to the Land Disposal Restrictions, I certify and warrant that the waste has been treated in accordance with the requirements of 40 CFR Part 268 and is no longer a hazardous waste as defined 40 CFR Part 261	by RECEIVING FACIL	.ITY	The State of the S					
WASTE TYPE:		na ant i na dùthai						
DEBRIS DOTHER								
GENERATING FACILITY								
GOT JSH Are Dath &			alen Tente					
TRANSPORTER	NOTES INCLUSIO	- Harristin and the	Analysis and a straight of the second se					
I) ENDRESTE URANSP	NOTES: VEHICLE							
ADDRESS SLO ACCIDENCE		50//	13					
CITY, STATE, ZIP	-							
PHONE WINASOR; CA 95497-			- Calenaria					
107 338-1407			P TRANSFER					
SIGNATURE OF AUTHORIZED AGENT OR DRIVER DATE	ROLL-OFF(S)	FLAT-BED	VAN DRUMS					
* Jor millan 31/07	للطر							
			and the state of the state of the					
I berefy cortify that the above named material to	COBIC TARDS	ATP's Course Marca (Marca						
accepted and to the best of my knowledge the foregoing		20	1911 - Al-Ballan					
is true and accurate.	DISPOSAL METHOD:	(TO BE COMPLETE	ED BY LANDFILL)					
		DISPOSE	OTHER					
TEMARKS	à SOIL		1-6-864					
ACILITY TICKET NUMBER	DEBRIS		1.22					
	ASBESTOS	Technic Constraints						
1	D ASH	and a start of the little	1.1111日には1.1月間にした。					
*	Domenu anum		100 TE 100 TE 100 TE					
	- USPECIAL OTHER I							

.

S TO REFUSAL UPON ARRIVAL. ONGOING DAILY DELIVERIES MUST BE SCHEDULED WITH THE LANDFILL THE DAY BEFORE. 100 MANIFEST # 80784 1

CALCO CODY

133604 SITE TICKET KELLER CANYON LANDFILL GRID 01 375258 901 BAILEY ROAD -FITTSBURG, CA WEIGHMASTER FELIPE C DATE IN TIME IN 1 March 2007 000901 1:42 pm DATE OUT AEI CONSULTANTS TIME OUT 1 March 2007 2500 CAMINO DIABLO 1:42 pm VEHICLE SUITE 200 ROLL OFF DBT13 WALNUT CREEK, CA 94597 REFERENCE ORIGIN Contract: #212Y72510 80784 OAKLAND Gross Weight 63,720.00 lb Inbound - SCALE TICKET Stored Tare Weight 39,160.00 lb Net Weight 24,560.00 1b 12.28 TN QTY. UNIT DESCRIPTION RATE EXTENSION TAX TOTAL 12.28 TN SW-CONT SOIL W/FUEL į 1.00 LD ENVIRONMENTAL FEE 1.00 LD FUEL RECOVERY FEE 1 NET AMOUNT TENDERED CHANGE CHECK NO. SIGNATURE.

d

. *. 1*

APPENDIX G

MSDS SHEETS FOR LIQUID NAILS & FLEXFIX DUCT TAPE

MSDS for: LN-903

Revised: 24-May-2005

SECTION 1:

PRODUCT IDENTIFIER: DATE OF PREPARATION:	LN-903 HEAVY DUTY CONSTRUCTION ADH JUNE 3, 2004	ESIVE
PRODUCT USE:	ADHESIVE	
MANUFACTURED BY:	MACCO ADHESIVES	
	15885 SPRAGUE RD.	
	STRONGSVILLE, OHIO 44136, U.S.A.	
	ICI PAINTS (CANADA)	
	8200 KEELE STREET	
	CONCORD, ONTARIO L4K 2A5, CANADA	
EMERGENCY AND MSDS TE	ELEPHONE NUMBER:	1-800-545-2643
MSDS PREPARED BY:	PRODUCT SAFETY AND TOXICOLOGY DEPAINTS NORTH AMERICA	ARTMENT

SECTION 2: COMPOSITION/INFORMATION ON INGREDIENTS

INGREDIENT		WT.%
CHEMICAL NAME: COMMON NAME: CAS NUMBER:	STYRENE BUTADIENE COPOLYMER STYRENE BUTADIENE COPOLYMER CONFIDENTIAL	10-20
CHEMICAL NAME: COMMON NAME: CAS NUMBER:	LIMESTONE LIMESTONE 1317-65-3	10-20
CHEMICAL NAME: COMMON NAME: CAS NUMBER:	KAOLIN CLAY 1332-58-7	20-30
CHEMICAL NAME: COMMON NAME: CAS NUMBER:	QUARTZ QUARTZ 14808-60-7	0.1-1.0
CHEMICAL NAME: COMMON NAME: CAS NUMBER:	DISTILLATES, PETROLEUM, HYDROTREATED HEAVY NAPHTHENIC PETROLEUM HYDROCARBON 64742-52-5	1-5
CHEMICAL NAME: COMMON NAME: CAS NUMBER:	DISTILLATES (PETROLEUM), STEAM-CRACKED, POLYMERS WITH LIGHT STEAM-CRACKED PETROLEUM NAPHTHA AROMATIC HYDROCARBON RESIN 68410-16-2	5-10
CHEMICAL NAME: COMMON NAME: CAS NUMBER:	WATER WATER 7732-18-5	20-30

CHEMICAL NAME.	STODDARD SOLVENT	1-5
COMMON NAME:	MINERAL SPIRITS	
CAS NUMBER:	8052-41-3	
CHEMICAL NAME:	BENZENE,1,2,4-TRIMETHYL-	0.1-1.0
COMMON NAME:	PSEUDOCUMENE	
CAS NUMBER:	95-63-6	

15

SECTION 3: HAZARDS IDENTIFICATION

PRIMARY ROUTE(S) OF EXPOSURE:	INHALATION, SKIN CONTACT,
	EYE CONTACT, INGESTION

STODDADD SOLVENT

EFFECTS OF OVEREXPOSURE

CHEMICAL NAME.

MAY LEAD TO DIZZINESS AND/OR LIGHTHEADEDNESS, HEA UNCOORDINATION, NAUSEA, VOMITING, SORE THROAT, CE NERVOUS SYSTEM DEPRESSION, DIFFICULTY OF BREATHING LIVER DAMAGE, KIDNEY DAMAGE, PNEUMOCONIOSIS, LOSS CONSCIOUSNESS.	ΓION
UNCOORDINATION, NAUSEA, VOMITING, SORE THROAT, CE NERVOUS SYSTEM DEPRESSION, DIFFICULTY OF BREATHING LIVER DAMAGE, KIDNEY DAMAGE, PNEUMOCONIOSIS, LOSS CONSCIOUSNESS.	DACHE,
NERVOUS SYSTEM DEPRESSION, DIFFICULTY OF BREATHING LIVER DAMAGE, KIDNEY DAMAGE, PNEUMOCONIOSIS, LOSS CONSCIOUSNESS.	NTRAL
LIVER DAMAGE, KIDNEY DAMAGE, PNEUMOCONIOSIS, LOSS CONSCIOUSNESS.	З,
CONSCIOUSNESS.	OF

- SKIN CONTACT: IRRITATION OF SKIN. PROLONGED OR REPEATED CONTACT CAN CAUSE DERMATITIS, DEFATTING.
- EYE CONTACT: IRRITATION OF EYES. PROLONGED OR REPEATED CONTACT CAN CAUSE CONJUNCTIVITIS, TEARING OF EYES, REDNESS OF EYES.
- INGESTION:INGESTION MAY CAUSE LUNG INFLAMMATION AND DAMAGE DUE
TO ASPIRATION OF MATERIAL INTO LUNGS, MOUTH AND THROAT
IRRITATION, HEADACHE, UNCOORDINATION, NAUSEA, VOMITING,
DIARRHEA, GASTRO-INTESTINAL DISTURBANCES, ABDOMINAL
PAIN, COUGHING, CENTRAL NERVOUS SYSTEM DEPRESSION,
DIFFICULTY OF BREATHING, PULMONARY EDEMA, CONVULSIONS,
LOSS OF CONSCIOUSNESS, CYANOSIS.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

EYE, SKIN, RESPIRATORY DISORDERS, LUNG DISORDERS, RESPIRATORY DISORDERS

SECTION 4: FIRST-AID MEASURES

- INHALATION: REMOVE TO FRESH AIR. RESTORE AND SUPPORT CONTINUED BREATHING. GET EMERGENCY MEDICAL ATTENTION. HAVE TRAINED PERSON GIVE OXYGEN IF NECESSARY. GET MEDICAL HELP FOR ANY BREATHING DIFFICULTY.
- SKIN CONTACT: WASH THOROUGHLY WITH SOAP AND WATER. IF ANY PRODUCT REMAINS, GENTLY RUB PETROLEUM JELLY, VEGETABLE OR MINERAL/BABY OIL ONTO SKIN. REPEATED APPLICATIONS MAY BE NEEDED. REMOVE CONTAMINATED CLOTHING. WASH CONTAMINATED CLOTHING BEFORE RE-USE.

EYE CONTACT: FLUSH IMMEDIATELY WITH LARGE AMOUNTS OF WATER, ESPECIALLY UNDER LIDS FOR AT LEAST 15 MINUTES. IF IRRITATION OR OTHER EFFECTS PERSIST, OBTAIN MEDICAL TREATMENT.

INGESTION: IF SWALLOWED, OBTAIN MEDICAL TREATMENT IMMEDIATELY.

SECTION 5: FIRE-FIGHTING MEASURES

FLASH POINT (SETA):	ABOVE 200F/93C	LOWER EXPLOSIVE LIMIT: N	OT AVAILABLE
		UPPER EXPLOSIVE LIMIT:	7.0 %

FIRE EXTINGUISHING MEDIA: DRY CHEMICAL OR FOAM. WATER FOG, CARBON DIOXIDE

UNUSUAL FIRE AND EXPLOSION HAZARDS

VAPORS ARE HEAVIER THAN AIR AND MAY TRAVEL LONG DISTANCES TO A SOURCE OF IGNITION AND FLASH BACK. VAPORS CAN FORM EXPLOSIVE MIXTURES IN AIR AT ELEVATED TEMPERATURES. CLOSED CONTAINERS MAY BURST IF EXPOSED TO EXTREME HEAT OR FIRE. MAY DECOMPOSE UNDER FIRE CONDITIONS EMITTING IRRITANT AND/OR TOXIC GASES.

FIRE FIGHTING PROCEDURES

WATER MAY BE USED TO COOL AND PROTECT EXPOSED CONTAINERS. FIREFIGHTERS SHOULD USE FULL PROTECTIVE CLOTHING, EYE PROTECTION, AND SELF-CONTAINED BREATHING APPARATUS.

HAZARDOUS DECOMPOSITION OR COMBUSTION PRODUCTS

CARBON MONOXIDE, CARBON DIOXIDE, OXIDES OF SULFUR, ALDEHYDES, STYRENE, OXIDES OF CALCIUM, SMOKE

SECTION 6: ACCIDENTAL RELEASE MEASURES

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED

COMPLY WITH ALL APPLICABLE HEALTH AND ENVIRONMENTAL REGULATIONS. ELIMINATE ALL SOURCES OF IGNITION. VENTILATE AREA. EVACUATE ALL UNNECESSARY PERSONNEL. PLACE COLLECTED MATERIAL IN PROPER CONTAINER. COMPLETE PERSONAL PROTECTIVE EQUIPMENT MUST BE USED DURING CLEANUP.

LARGE SPILLS: SHUT OFF LEAK IF SAFE TO DO SO. DIKE AND CONTAIN SPILL. PUMP TO STORAGE OR SALVAGE VESSELS. USE ABSORBENT TO PICK UP EXCESS RESIDUE. KEEP SALVAGEABLE MATERIAL AND RINSE WATER OUT OF SEWERS AND WATER COURSES.

SMALL SPILLS: USE ABSORBENT TO PICK UP RESIDUE AND DISPOSE OF PROPERLY.

SECTION 7: HANDLING AND STORAGE

HANDLING AND STORAGE

STORE BELOW 80F. STORE BELOW 100F (38C). KEEP AWAY FROM HEAT, SPARKS AND OPEN FLAME. KEEP FROM FREEZING. STORE ABOVE 20F (-7C).

OTHER PRECAUTIONS

USE ONLY WITH ADEQUATE VENTILATION. DO NOT TAKE INTERNALLY. KEEP OUT OF REACH OF CHILDREN. AVOID CONTACT WITH SKIN AND EYES, AND BREATHING OF VAPORS. WASH HANDS THOROUGHLY AFTER HANDLING, ESPECIALLY BEFORE EATING OR SMOKING. KEEP CONTAINERS TIGHTLY CLOSED AND UPRIGHT WHEN NOT IN USE. GROUND EQUIPMENT WHEN TRANSFERRING TO PREVENT ACCUMULATION OF STATIC CHARGE.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

LIMESTONE 1317-65-3		
10 MG/M3	OSHA(TWA):	5 MG/M3
CLAY		
1332-58-7		
2 MG/M3	OSHA(TWA):	5 MG/M3
QUARTZ		
14808-60-7		
0.05MG/M3	OSHA(TWA):	0.1 MG/M3
PETROLEUM HYDROC	ARBON	
64742-52-5		
5 MG/M3	OSHA(TWA):	5 MG/M3
10 MG/M3		
MINERAL SPIRITS		
8052-41-3		
100 PPM	OSHA(TWA):	500 PPM
	LIMESTONE 1317-65-3 10 MG/M3 CLAY 1332-58-7 2 MG/M3 QUARTZ 14808-60-7 0.05MG/M3 PETROLEUM HYDROC 64742-52-5 5 MG/M3 10 MG/M3 MINERAL SPIRITS 8052-41-3 100 PPM	LIMESTONE 1317-65-3 10 MG/M3 OSHA(TWA): CLAY 1332-58-7 2 MG/M3 OSHA(TWA): QUARTZ 14808-60-7 0.05MG/M3 OSHA(TWA): PETROLEUM HYDROCARBON 64742-52-5 5 MG/M3 OSHA(TWA): 10 MG/M3 MINERAL SPIRITS 8052-41-3 100 PPM OSHA(TWA):

RESPIRATORY PROTECTION

CONTROL ENVIRONMENTAL CONCENTRATIONS BELOW APPLICABLE EXPOSURE STANDARDS WHEN USING THIS MATERIAL. WHEN RESPIRATORY PROTECTION IS DETERMINED TO BE NECESSARY, USE A NIOSH/MSHA (CANADIAN Z94.4) APPROVED ELASTOMERIC SEALING-SURFACE FACEPIECE RESPIRATOR OUTFITTED WITH ORGANIC VAPOR CARTRIDGES AND PAINT SPRAY (DUST/MIST) PREFILTERS. DETERMINE THE PROPER LEVEL OF PROTECTION BY CONDUCTING APPROPRIATE AIR MONITORING. CONSULT 29CFR1910.134 FOR SELECTION OF RESPIRATORS (CANADIAN Z94.4).

VENTILATION

PROVIDE DILUTION VENTILATION OR LOCAL EXHAUST TO PREVENT BUILD-UP OF VAPORS. USE EXPLOSION-PROOF EQUIPMENT.

PERSONAL PROTECTIVE EQUIPMENT

EYE WASH, SAFETY SHOWER, SAFETY GLASSES OR GOGGLES, IMPERVIOUS GLOVES, IMPERVIOUS CLOTHING, APRON, BOOTS

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

VAPOR PRESSURE:	NOT AVAILABLE	SPECIFIC GRAVITY:	1.382
BOILING RANGE (F/C):	212-396/100-202	WEIGHT PER GALLON:	11.51/ 13.82 IMP
APPEARANCE:	TAN	% VOLATILE BY VOLUME:	39.21
PHYSICAL STATE:	PASTE	SOLUBLE IN WATER:	Y
PH:	8.00		

SECTION 10: STABILITY AND REACTIVITY

UNDER NORMAL CONDITIONS:	STABLE (SEE SECTION 5 FIRE FIGHTING MEASURES)
MATERIALS TO AVOID:	OXIDIZERS, ACIDS, BASES, PEROXIDES, METAL SALTS, METAL COMPOUNDS, STYRENE MONOMER
CONDITIONS TO AVOID:	ELEVATED TEMPERATURES, CONTACT WITH OXIDIZING AGENTS, FREEZING, SPARKS, OPEN FLAMES, IGNITION SOURCES

HAZARDOUS POLYMERIZATION: WILL NOT OCCUR

SECTION 11: TOXICOLOGICAL INFORMATION

COMMON NAME: S	FYRENE BUTADIENE	COPOLYMER		
CAS NUMBER: C	ONFIDENTIAL			
CARCINOGENICITY LIST	ED BY: NTP NO	IARC NO	OSHA NO	ACGIH NO
COMMON NAME: L	IMESTONE			
CAS NUMBER: 13	317-65-3			
CARCINOGENICITY LIST	ED BY: NTP NO	IARC NO	OSHA NO	ACGIH NO
LD50: 6450.00 MG/KG O	RL RAT			
COMMON NAME: C	LAY			
CAS NUMBER: 13	332-58-7			
CARCINOGENICITY LIST	ED BY: NTP NO	IARC NO	OSHA NO	ACGIH NO
COMMON NAME: Q	UARTZ			
CAS NUMBER: 14	1808-60-7			
CARCINOGENICITY LIST	ED BY: NTP YES	IARC YES 1	OSHA NO	ACGIH NO
COMMON NAME: PI	ETROLEUM HYDROCA	ARBON		
CAS NUMBER: 64	4742-52-5			
CARCINOGENICITY LIST	ED BY: NTP NO	IARC YES 1	OSHA NO	ACGIH NO
LD50: > 2000.00 MG/KG	SKN RBT			
COMMON NAME: A	ROMATIC HYDROCAI	RBON RESIN		
CAS NUMBER: 68	3410-16-2			
CARCINOGENICITY LIST	ED BY: NTP NO	IARC NO	OSHA NO	ACGIH NO

COMMON NAME: MINERAL SPIRITS CAS NUMBER: 8052-41-3 CARCINOGENICITY LISTED BY: NTP NO IARC NO LD50: > 3.00 GM/KG SKN RBTLD50: > 5.00 GM/KG ORL RAT

OSHA NO ACGIH NO

SUPPLEMENTAL HEALTH INFORMATION

NOTICE - REPORTS HAVE ASSOCIATED REPEATED AND PROLONGED OCCUPATIONAL OVEREXPOSURE TO SOLVENTS WITH PERMANENT BRAIN AND NERVOUS SYSTEM DAMAGE. INTENTIONAL MISUSE BY DELIBERATELY CONCENTRATING AND INHALING THE CONTENTS MAY BE HARMFUL OR FATAL.

CARCINOGENICITY:	CONTAINS CRYSTALLINE SILICA WHICH IS CONSIDERED A HAZARD BY INHALATION. IARC HAS CLASSIFIED CRYSTALLINE SILICA AS CARCINOGENIC TO HUMANS (GROUP 1). CRYSTALLINE SILICA IS ALSO A KNOWN CAUSE OF SILICOSIS, A NONCANCEROUS LUNG DISEASE. THE NATIONAL TOXICOLOGY PROGRAM (NTP) HAS CLASSIFIED CRYSTALLINE SILICA AS A KNOWN HUMAN CARCINOGEN.
REPRODUCTIVE EFFECTS:	NO REPRODUCTIVE EFFECTS ARE ANTICIPATED
MUTAGENICITY:	NO MUTAGENIC EFFECTS ARE ANTICIPATED

TERATOGENICITY: NO TERATOGENIC EFFECTS ARE ANTICIPATED

SECTION 12: ECOLOGICAL INFORMATION

NO ECOLOGICAL TESTING HAS BEEN DONE BY ICI PAINTS ON THIS PRODUCT AS A WHOLE.

SECTION 13: DISPOSAL CONSIDERATIONS

DISPOSE IN ACCORDANCE WITH ALL APPLICABLE REGULATIONS. WASTE DISPOSAL: AVOID DISCHARGE TO NATURAL WATERS.

SECTION 14: TRANSPORT INFORMATION

DOT:	ADHESIVE
IMDG:	NOT AVAILABLE
IATA:	NOT AVAILABLE
TDG:	NOT AVAILABLE

SECTION 15: REGULATORY INFORMATION

SARA	SARA	CERCLA	HAZ AIR	MARINE
302	313	302.4	POLLUTANT	POLTNT

THIS PRODUCT CONTAINS NO SARA 302, CERCLA 302.4 OR HAZARDOUS AIR POLLUTANT CHEMICALS. IT ALSO CONTAINS NO CHEMICALS WHICH ARE SUBJECT TO THE REPORTING REQUIREMENTS UNDER SARA 313. AS OF THE DATE OF THIS MSDS, ALL OF THE COMPONENTS IN THIS PRODUCT ARE LISTED (OR ARE OTHERWISE EXEMPT FROM LISTING) ON THE TSCA INVENTORY. THIS PRODUCT HAS BEEN CLASSIFIED IN ACCORDANCE WITH THE HAZARD CRITERIA OF THE CPR (CONTROLLED PRODUCTS REGULATIONS) AND THE MSDS CONTAINS ALL THE INFORMATION REQUIRED BY THE CPR.

SECTION 16: OTHER INFORMATION

THE INFORMATION CONTAINED HEREIN IS BASED ON DATA AVAILABLE AT THE TIME OF PREPARATION OF THIS DATA SHEET AND WHICH ICI PAINTS BELIEVES TO BE RELIABLE. HOWEVER, NO WARRANTY IS EXPRESSED OR IMPLIED REGARDING THE ACCURACY OF THIS DATA. ICI PAINTS SHALL NOT BE RESPONSIBLE FOR THE USE OF THIS INFORMATION, OR OF ANY PRODUCT, METHOD OR APPARATUS MENTIONED AND YOU MUST MAKE YOUR OWN DETERMINATION OF ITS SUITABILITY AND COMPLETENESS FOR YOUR OWN USE, FOR THE PROTECTION OF THE ENVIRONMENT, AND THE HEALTH AND SAFETY OF YOUR EMPLOYEES AND USERS OF THIS MATERIAL. COMPLIES WITH OSHA HAZARD COMMUNICATION STANDARD 29CFR1910.1200.

1. PRODUCT AND COMPANY IDENTIFICATION

Product Name	FlexFix	
Use/Size	Pressure Sensitive Adhesive	
Product Numbers		
Manufacturer/Supplier	Covalence Adhesives	
Address	25 Forge Parkway	
	Franklin, MA 02038	
Phone Number	(800) 248-7659 (Monday – Friday 8:00 am to 5:00 pm)	
Chemtrec Number	(800) 424-9300	
Revision Date:		
MSDS Date:	July 11, 2007	

This MSDS has been compiled in accordance with - EC Directive 91/155/EC - OSHA's Hazcom Standard (29 CFR 1910.1200)

2. COMPOSITION/INFORMATION ON THE COMPONENTS

Component Name	CAS#/Codes	Concentration <55%	R Phrases	Classification
Polymers	N.A.		None	None
Hydrocarbon resin	N.A.	<5%	None	None

3. HAZARD IDENTIFICATION

EU Main Hazards Not classified as hazardous.

Routes of Entry

Skin contact

Carcinogenic Status

Not considered carcinogenic by NTP, IARC, and OSHA.

Target Organs

- Skin

Health Effects - Eyes

Contact may cause irritation due to mechanical abrasion.

Health Effects - Skin

Prolonged, repeated contact with adhesive may cause skin irritation.

Health Effects - Ingestion

Not an expected route of entry during normal handling and use.

Health Effects - Inhalation

Prolonged, repeated inhalation of adhesive may irritation of the nose, throat and lungs.

4. FIRST AID MEASURES

Eyes

Immediately flood the eye with plenty of water for at least 15 minutes, holding the eye open. Obtain medical attention if soreness or redness persists.

Skin

Wash skin thoroughly with soap and water. Obtain medical attention if blistering occurs or redness persists.

Ingestion

Obtain medical attention immediately.

Inhalation

Remove person to fresh air. Seek medical attention if symptoms persist.

Advice to Physicians

Treat symptomatically.

5. FIRE FIGHTING MEASURES

Extinguishing Media

Water spray, carbon dioxide and dry chemical.

Unusual Fire and Explosion Hazards

Can release hazardous vapors during a fire.

Protective Equipment for Fire-Fighting

Wear full protective clothing and self-contained breathing apparatus.

6. ACCIDENTAL RELEASE MEASURES

No specific measures necessary. Prevent the material from entering drains or watercourses.

7. HANDLING AND STORAGE

Keep away from heat and sources of ignition. Exposure to high heat or flame can release irritating and toxic fumes. Storage area should be: - cool - dry - well ventilated - away from incompatible materials

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Occupational Exposure Standards

Exposure limits are listed below, if they exist. **Polymers** None established **Hydrocarbon Resin** None established **Engineering Control Measures** No specific measures necessary. Good general room ventilation is expected to be adequate to control airborne levels.

Respiratory Protection

Respiratory protection not normally required.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Hand Protection

Not required under normal conditions of use. However, care should be taken to avoid contact with the adhesive.

Eye Protection

Safety glasses

Body Protection Normal work wear.

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical State
Color
Odor
рН
Specific Gravity
Boiling Range/Point (°C/F)
Melting Point (°C/F)
Flash Point (PMCC) (°C/F)
Explosion Limits (%)
Vapor Pressure
Density
Solubility in Water
Vapor Density (Air = 1)

Polymer backing with an acrylic based pressure sensitive adhesive Clear adhesive with black or aluminum color backing Slight Not applicable Not applicable Not applicable Not applicable Not known No data available Not applicable No data. Not known Not applicable

10. STABILITY AND REACTIVITY

Stability

Stable under normal conditions.

Conditions to Avoid

- Heat - High temperatures Materials to Avoid

None known

Hazardous Polymerization Will not occur.

Hazardous Decomposition Products

- acrylic monomers

11. TOXICOLOGICAL INFORMATION

Acute Toxicity

Low order of acute toxicity.

Chronic Toxicity/Carcinogenicity

This product is not expected to cause long term adverse health effects.

11. TOXICOLOGICAL INFORMATION

Genotoxicity

This product is not expected to cause any mutagenic effects. **Reproductive/Developmental Toxicity** This product is not expected to cause adverse reproductive effects.

12. ECOLOGICAL INFORMATION

Mobility

No relevant studies identified.

Persistence/Degradability

No relevant studies identified.

Bio-accumulation

No relevant studies identified.

Ecotoxicity

The product may be harmful to aquatic organisms.

13. DISPOSAL

Dispose of in accordance with all applicable local and national regulations.

14. TRANSPORT INFORMATION

DOT CFR 172.101 Data	Not Regulated
UN Proper Shipping Name	Not Regulated
UN Class	None.
UN Number	None.
UN Packaging Group	None.
Classification for AIR Transportation (IATA)	Consult current IATA Regulations prior to shipping by air

15. REGULATORY INFORMATION

EU Label Information

Classification and labelling have been performed according to EU directives 67/548/EEC and 99/45/EC including amendments.

EC Annex I Classification

According to EC Commission Directive 67/548/EEC this product is not classified.

R phrases

None.

S phrases

None.

US REGULATIONS (Federal, State) and INTERNATIONAL CHEMICAL REGISTRATION LAWS TSCA Listing

This product contains ingredients that are listed on or exempt from listing on the EPA Toxic Substance Control Act Chemical Inventory.

15. REGULATORY INFORMATION

EINECS Listing

All ingredients in this product have been verified for inclusion on the European Inventory of Existing Commercial Chemical Substances (EINECS) or specifically exempted.

DSL (Canadian) Listing

All ingredients in this product have been verified for inclusion on the Domestic Substance List (DSL).

MA Right To Know Law

This product contains the following chemicals on the Massachusetts Right to Know Law: Aqua Ammonia (1336-21-6) <0.2%

PA Right To Know Law

This product contains the following chemicals on the Pennsylvania Hazardous Substance List: Aqua Ammonia (1336-21-6) <0.2%

NJ Right To Know Law

This product contains the following chemicals on the New Jersey Workplace Hazardous Substance List: Aqua Ammonia (1336-21-6) <0.2%

California Proposition 65

This product contains trace amounts of the following materials which the State of California has found to cause cancer, birth defects or other reproductive harm: Formaldehyde (50-00-0) – Dioxane(123-91-1) – Ethylene oxide (75-21-8) – Ethyl acrylate (140-88-5) – Acetaldehyde (75-07-0)

SARA Title III Sect. 302 (EHS)

This product does not contain any chemicals subject to SARA Title III Section 302.

SARA Title III Sect. 304

This product does not contain any chemicals subject to SARA Title III Section 304.

SARA Title III Sect. 311/312 Categorization

Immediate (acute)

SARA Title III Sect. 313

This product contains the following chemicals that are listed in Section 313 at or above de minimis concentrations. None

16. OTHER INFORMATION

NFPA Ratings

NFPA Code for Flammability - 0 NFPA Code for Health - 1 NFPA Code for Reactivity - 0 NFPA Code for Special Hazards – 0

HMIS Ratings

HMIS Code for Flammability - 0 HMIS Code for Health - 1 HMIS Code for Reactivity - 0 HMIS Code for Personal Protection - See Section 8

Abbreviations

N/A: Denotes no applicable information found or available CAS#: Chemical Abstracts Service Number ACGIH: American Conference of Governmental Industrial Hygienists OSHA: Occupational Safety and Health Administration

16. OTHER INFORMATION

Abbreviations

TLV: Threshold Limit Value PEL: Permissible Exposure Limit STEL: Short Term Exposure Limit NTP: National Toxicology Program IARC: International Agency for Research on Cancer R: Risk S: Safety LC50: Lethal Concentration 50% LD50: Lethal Dose 50% BOD: Biological Oxygen Demand KoC: Soil Organic Carbon Partition Coefficient R50/53: Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. N: Dangerous for the environment.

For further Information email: <u>Technical.Adhesives@covcorp.com</u>

Prepared By:

EnviroNet LLC.

The information and recommendations presented in this MSDS are based on sources believed to be accurate. Covalence Adhesives assumes no liability for the accuracy or completeness of this information. It is the user's responsibility to determine the suitability of the **material** for their particular purposes. In particular, we make NO WARRANTY OF MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED, with respect to such information, and we assume no liability resulting from its use. Users should ensure that any use **or disposal** of the material is in accordance with applicable Federal, State, and local laws and regulations.

APPENDIX H

IN-SITU OXIDATION POINT –CITRIC ACID CLEANING PROCEDURE

H2O Engineering, Inc. 265 Prado Road, Suite#1 San Luis Obispo, CA 93401 805-547-0303 Phone 805-547-0113 Fax www.h2oengineering.com

In-Situ Oxidation Point – Citric Acid Cleaning Procedure

- 1. Refer to citric acid MSDS for all relevant safety concerns. Please read all directions below before proceeding.
- 2. H2O Engineering recommends the following PPE as a minimum for this procedure:
 - a. Chemical resistant gloves
 - b. Goggles
 - c. Face Shield
 - d. Long sleeve shirt and long pants
- 3. While the Ozone Sparge Unit is running, record all flow and pressure values before treating fouled insitu oxidation points.
- Stop the Ozone Sparge Unit. From the Main Menu Screen or from the Auto Mode Menu Screen press F2 (Stop) to stop the system (Refer to the Ozone Sparge Unit User Guide to Stop the Ozone Sparge Unit from the correct Panel View Screen).
- 5. Disable the valves associated with the in-situ oxidation points to be treated. In the Valve Configuration Menu, choose the appropriate subgroup of valves, either 1-10, 11-20, etc. From there, disable the valves associated with the in-situ oxidation points to be treated. NOTE: For nested well configurations, make sure to disable all valves associated with each nested in-situ oxidation point.
- 6. Turn off the Ozone Sparge Unit. Turn the main power switch on the door to the OFF position. **NOTE:** Always follow job site lock-out tag-out safety procedures.
- 7. At the well box, remove the upper portion of the wellhead connection fitting, set aside.
- 8. Using a funnel, pour approximately 1 gallon of liquid citric acid (50% minimum strength) into the well riser pipe.
- 9. Reconnect wellhead connection fitting.
- 10. Turn on the Ozone Sparge Unit. Power up Ozone Sparge Unit by turning the main power switch on the door to the ON position. **NOTE:** Always follow job site lock-out tag-out safety procedures.
- 11. Start the Ozone Sparge Unit. From the Main Menu Screen or from the Auto Mode Menu Screen press F1 (Start) to resume the sparge sequence (Refer to the Ozone Sparge Unit User Guide to Start the Ozone Sparge Unit from the correct Panel View Screen). Note: Do not re-enable valves associated with the treated in-situ oxidation points until the solution has had a minimum of 24 hours to soak.
- 12. After the 24 hour soak period, re-enable valves associated with the treated in-situ oxidation points.
- 13. Record all flow and pressure values to evaluate the effectiveness of the acid treatment. If desired results are not achieved, a second treatment may be necessary.

If you have any questions or concerns, please do not hesitate to call H2O Engineering, Inc.