RECEIVED

3:14 pm, Jul 06, 2010

Alameda County Environmental Health

June 29, 2010

Second Quarter 2010 Groundwater Monitoring and Closure Summary

807 75th Avenue Oakland, California

AEI Project No. 262157 ACHCS # RO 0508

Prepared For

Allen Kanady Omega Termite 807 75th Avenue Oakland, CA 95621

Prepared By

AEI Consultants 2500 Camino Diablo Blvd. Walnut Creek, CA 94597 (925) 746-6000

TABLE OF CONTENTS

2.0 SITE DESCRIPTION AND HISTORY 1 3.0 SITE CONCEPTUAL MODEL 3 3.1 Release Occurrence 3 3.2 Geology and Hydrogeology 3 3.3 Preferential Pathway and Well Survey 4 4.0 FINAL GROUNDWATER MONITORING EVENT 5 4.1 Groundwater Sampling 5 5.0 FINDINGS 6 5.1 Field Results 6 5.2 Summary 7 6.0 LOW RISK CASE CLOSURE 7 6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12 10.0 SIGNATURES 12	1.0 In	NTRODUCTION	1
3.1 Release Occurrence 3 3.2 Geology and Hydrogeology 3 3.3 Preferential Pathway and Well Survey 4 4.0 FINAL GROUNDWATER MONITORING EVENT 5 4.1 Groundwater Sampling 5 5.0 FINDINGS 6 5.1 Field Results 6 5.2 Summary 6 6.0 LOW RISK CASE CLOSURE 7 6.1 Leak Status 7 6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	2.0 Si	ITE DESCRIPTION AND HISTORY	1
3.1 Release Occurrence 3 3.2 Geology and Hydrogeology 3 3.3 Preferential Pathway and Well Survey 4 4.0 FINAL GROUNDWATER MONITORING EVENT 5 4.1 Groundwater Sampling 5 5.0 FINDINGS 6 5.1 Field Results 6 5.2 Summary 6 6.0 LOW RISK CASE CLOSURE 7 6.1 Leak Status 7 6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	3.0 Si	ITE CONCEPTUAL MODEL	3
3.2 Geology and Hydrogeology 3.3 Preferential Pathway and Well Survey 4 4.0 FINAL GROUNDWATER MONITORING EVENT 5 4.1 Groundwater Sampling 5 5.0 FINDINGS 6 5.1 Field Results 6 5.1 Groundwater Analyses 6 5.2 Summary 7 6.0 LOW RISK CASE CLOSURE 7 6.1 Leak Status 7 6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12			
3.3 Preferential Pathway and Well Survey 4 4.0 FINAL GROUNDWATER MONITORING EVENT 5 4.1 Groundwater Sampling 5 5.0 FINDINGS 6 5.1 Field Results 6 5.1 Groundwater Analyses 6 5.2 Summary 7 6.0 LOW RISK CASE CLOSURE 7 6.1 Leak Status 7 6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	0.1		
4.1 Groundwater Sampling 5 5.0 FINDINGS 6 5.1 Field Results 6 5.1 Groundwater Analyses 6 5.2 Summary 7 6.0 LOW RISK CASE CLOSURE 7 6.1 Leak Status 7 6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	· · -		
5.0 FINDINGS 6 5.1 Field Results 6 5.1 Groundwater Analyses 6 5.2 Summary 7 6.0 LOW RISK CASE CLOSURE 7 6.1 Leak Status 7 6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	4.0 F	INAL GROUNDWATER MONITORING EVENT	5
5.1 Field Results 6 5.1 Groundwater Analyses 6 5.2 Summary 7 6.0 LOW RISK CASE CLOSURE 7 6.1 Leak Status 7 6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	4.1	Groundwater Sampling	5
5.1 Groundwater Analyses 6 5.2 Summary 7 6.0 LOW RISK CASE CLOSURE 7 6.1 Leak Status 7 6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	5.0 F	INDINGS	6
5.2 Summary 7 6.0 LOW RISK CASE CLOSURE 7 6.1 Leak Status 7 6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	5.1	Field Results	6
5.2 Summary 7 6.0 LOW RISK CASE CLOSURE 7 6.1 Leak Status 7 6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	5.1	Groundwater Analyses	6
6.1 Leak Status 7 6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	5.2		
6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	6.0 L	OW RISK CASE CLOSURE	7
6.2 Site Characterization 8 6.3 Dissolved Plume Migration 8 6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	6.1	Leak Status	
6.4 Sensitive Receptors 8 6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	6.2	Site Characterization	8
6.5 Risk to Human Health and the Environmental 8 7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	6.3	Dissolved Plume Migration	8
7.0 COMPARATIVE RISK EVALUATION 8 5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	6.4		
5.1 Contaminants of Concern 9 5.2 ESL Comparison 9 8.0 SUMMARY AND CONCLUSIONS 11 9.0 REFERENCES 12	6.5	Risk to Human Health and the Environmental	8
5.2 ESL Comparison	7.0 C	COMPARATIVE RISK EVALUATION	8
8.0 SUMMARY AND CONCLUSIONS	5.1	Contaminants of Concern.	9
9.0 References	5.2		
	8.0 S	UMMARY AND CONCLUSIONS	11
10.0 Signatures	9.0 R	References	12
	10.0S	IGNATURES	12

FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	SITE PLAN
FIGURE 3	WELL LOCATION MAP
FIGURE 4	SHALLOW ZONE GROUNDWATER GRADIENT
FIGURE 5	Deeper Zone Groundwater Gradient
FIGURE 6	GROUNDWATER SAMPLE DATA (6/08/2010)
FIGURE 7	TPH-G ISOPLETHS – SHALLOW ZONE (6/08/2010)
FIGURE 8	SITE CONCEPTUAL MODEL
	TABLES
TABLE 1	MONITORING WELL CONSTRUCTION DETAILS
TABLE 2	SOIL ANALYTICAL DATA
TABLE 3	GROUNDWATER ANALYTICAL DATA
TABLE 4	GROUNDWATER ELEVATION DATA
TABLE 5	FUEL OXYGENATE ANALYTICAL DATA
	APPENDICES
APPENDIX A	Preferential Pathway and Well Survey
APPENDIX B	FIELD DATA SHEETS
APPENDIX C	LABORATORY ANALYTICAL REPORT AND CHAIN OF CUSTODY DOCUMENTATION

1.0 Introduction

AEI Consultants (AEI) has prepared this report to present the findings of the 2nd Quarter 2010 groundwater monitoring event, performed on March 2, 2010, as well as a request for closure and a closure summary for the above referenced site (Figure 1: Site Location Map). This groundwater investigation has been performed in accordance with the requirements of the Alameda County Environmental Health (ACEH). The purpose of this activity is to monitor groundwater quality near the location of previously removed underground storage tanks (USTs) at the site.

2.0 SITE DESCRIPTION AND HISTORY

The site is located in an industrial area of the City of Oakland, on the northern corner of the intersection of 75th Avenue and Snell Street, just east of San Leandro Street and Bay Area Rapid Transit (BART) tracks.. The property is approximately 10,000 square feet in size and currently developed with two buildings, and is occupied by Omega Termite.

On August 15, 1996, AEI removed three (3) gasoline USTs from the subject property. The tanks consisted of one 8,000-gallon UST, one 1,000-gallon UST, and one 500-gallon UST. The former locations of the tanks are shown on Figure 2. Analysis of soil and groundwater samples collected during the tank removal activities revealed that a release had occurred from the tank system. Total petroleum hydrocarbons as gasoline (TPH-g), benzene, toluene, ethylbenzene, total xylenes (BTEX), and methyl tertiary butyl ether (MTBE) were reported in the soil samples at concentrations up to 4,300 mg/kg, 13 mg/kg, 83 mg/kg, 71 mg/kg, 310 mg/kg, and 25 mg/kg, respectively. TPH-g, BTEX, and MTBE were reported in the pit water sample at concentrations up to 48,000 μ g/L, 4,100 μ g/L 3,500 μ g/L, 21,800 μ g/L, 6,400 μ g/L, and ND<130 μ g/L, respectively. The tank removal are summarized in the report, "*Underground Storage Tank Removal Report*", dated October 10, 1996

In January 1997, soil samples were collected from six (6) soil borings (BH-1 through BH-6). Analysis of soil samples reported TPH-g, BTEX, and MTBE were reported in the soil samples at concentrations up to 800 mg/kg, 4.3 mg/kg, 23 mg/kg, 15 mg/kg, 65 mg/kg, and 5 mg/kg, respectively, beyond the limits of the original UST removal excavation. Water samples were collected from borings B-1, B-4 and B-6. TPH-g, BTEX, and MTBE were reported at concentrations up to 27,000 μ g/L, 5,000 μ g/L, 410 μ g/L, 1,200 μ g/L, 2,400 μ g/L, and 230 μ g/L, respectively. The results of the investigation are summarized in the report, "*Phase II Soil and Groundwater Investigation*", dated March 17, 1997.

In June 1999, four (4) groundwater monitoring wells (MW-1 through MW-4) were also installed by AEI. The construction details for the groundwater monitoring wells on site are summarized in Table 1. Monitoring well locations are shown on Figure 3. TPH-g, BTEX, and MTBE were reported at concentrations up to 2,700 μ g/L, 920 μ g/L, 5.5 μ g/L, 51 μ g/L, 130 μ g/L, and ND<10 μ g/L, respectively in the initial groundwater monitoring event on July 30, 1999. Historical

groundwater analytical data concentrations are presented in Table 2. Historical groundwater elevation data are presented in Tables 3 and 3a. The results of the well installation investigation are summarized in the report, "Soil Boring and Groundwater Monitoring Well Installation Report", dated September 16, 1999

March 2000 AEI extended the excavation was extended to 29 by 48 feet in size by 8 feet deep at the east end of the excavation and 16 feet deep at the west end. During the excavation activities, a 500-gallon waste oil UST was discovered at the eastern end of the excavation. This tank was removed under the direction of Oakland Fire Services Agency (OFSA). Six additional soil samples were collected from the sidewalls and bottom of the excavation.

The excavation was backfilled with pea gravel to a depth of 9 feet bgs to bridge the water table, with the remainder of the excavation being filled with the previously aerated soil and later with imported fill. The newly excavated soil was stockpiled on the northern portion of the property. A total of 7,400 gallons of hydrocarbon-impacted groundwater were pumped from the excavation, treated on-site, and discharged to the sanitary sewer system under an East Bay Municipal Utility District permit. Excavation activities are summarized in the report, "Over-Excavation and Tank Removal", dated August 16, 2000.

On October 9 and 10, 2003, AEI drilled seven (7) temporary Geoprobe® boreholes (SB-7 through SB-13) to depths ranging from 15 to 20 feet bgs to further delineate the lateral extent of contamination in the Shallow aquifer. One borehole, SB-14 was advanced to a depth of 30 feet bgs to determine if the second aquifer at the site had been impacted. Soil samples were collected in the vadose zone above the first aquifer and from the aquitard between the first and second aquifers. The results of chemical analyses of soil samples collected and analyzed during this investigation and earlier investigations appear to have effectively defined the limits of impacted soil in the vadose zone.

The analysis of the water sample from the second aquifer (Soil Boring SB-14, 28 feet bgs) reported TPH-g, TPH-d, MTBE and benzene at concentrations of 2,300 μ g/L, 72,000 μ g/L, 45 μ g/L and 120 μ g/L, respectively. Light non-aqueous phase liquid was observed on the sampler and in the water sample. The results of the soil and groundwater investigation are summarized in the "Soil & Groundwater Investigation Report", dated November 13, 2003

On February 15 and February 16, 2006, AEI installed five groundwater monitoring wells (MW-6 through MW-10) on the site. Shallow Zone well MW-6 and Deeper Zone wells MW-7 through MW-10, were drilled with nominal 8-inch diameter hollow stem augers and completed as 2-inch diameter groundwater monitoring wells. The details of the well completions are summarized in Table 1.

These and previously existing wells were sampled on March 13, 2006. Maximum concentrations of TPH-g, TPH-d, and TPH-mo reported from the Shallow Zone were 3,200 μ g/L (MW-1), 2,400 μ g/L (MW-2), and 320 μ g/L (MW-1), respectively. The maximum concentration of benzene reported was 1,400 μ g/L in MW-1.

Maximum concentrations of TPH-g, TPH-d, and TPH-mo reported from the Deeper Zone were 1,100 μ g/L, 14,000 μ g/L, and 4,100 μ g/L, respectively in MW-9 with the notation of light immiscible hydrocarbons present in the sample. The maximum concentration of benzene reported was 85 μ g/L in MW-9. The results of this investigation are summarized in "Deeper Aquifer Soil and Groundwater Investigation Report", dated April 28, 2006.

In a letter dated May 25, 2006, the ACEH requested a work plan for installation and pilot testing of the ozone sparging system recommended by AEI. The "Well and Ozone Micro-Sparge System Installation Work Plan" was approved by the ACEH in a letter dated August 11, 2006. In December 2006, two (2) additional deeper zone groundwater monitoring wells and one (1) shallow zone (OZ-1) and seven (9) dual zone (OZ-2 thru OZ-7) ozone sparge wells were installed. On January 19, 2007, ozone sparge well OZ-9 was installed as a twin to OZ-6, which had been damaged during installation. The ozone micro-sparge system was installed during February and March of 2007 with initial start up on March 8, 2007. The details of the ozone system installation, start up and monitoring activities are summarized in "In Situ Ozone Oxidation Install and Startup Report", date January 30, 2008

The system operated until August 28, 2009, when the ozone injection system was shut down and rebound monitoring begun. Three groundwater monitoring events have been performed since system shut down.

3.0 SITE CONCEPTUAL MODEL

3.1 Release Occurrence

The release of gasoline apparently occurred from the former 8,000-gallon 1,000-gallon UST, and 500-gallon USTs that were removed in August 1996. Based on the visual inspection at the time of the removal, the 500 gallon UST was in good condition, with no obvious holes. The 1000 gallon UST was reported to have a hole in the top of the tank and the 8000 UST was reported to have severe damage to underside of the tank on the northeast end.

3.2 Geology and Hydrogeology

The site is located at an elevation approximately 11 feet above mean sea level (msl). The site is essentially flat; however, the general topography of the area slopes gently to the west. The surface sediments at the site are mapped as Holocene natural levee and basin deposits (Qhl and Qhb, OF 97-97, E.J. Helley and R.W. Graymer). The Natural Levee Deposits (Holocene) are described as "loose, moderately to well-sorted sandy or clayey silt grading to sandy or silty clay". The Basin Deposits (Holocene) are described as "very fine silty clay to clay deposits occupying flat-floored basins at the distal edge of alluvial fans adjacent to the bay mud (Qhbm)". The presence of gravels in several of the onsite soil borings indicates that stream channel deposits are also present.

Based on the soil borings advanced by AEI, the near surface sediments beneath the site can be divided into several water bearing zones which are separated by clay layers. Sediments immediately below the surface consist of black to gray brown to olive brown silty clay depths ranging from 7.5 to 10 feet bgs. No groundwater was encountered during drilling of this interval.

The surface clay is underlain by variable and somewhat discontinuous silty sand and clayey silt, which make up the Shallow Zone. The Shallow Zone extends from the base of the surface clay to depths ranging from 18 to 21 feet bgs. This zone has low to medium permeability. Groundwater is typically seen in the first permeable silt or sand encountered during drilling of this interval. Once encountered, groundwater level typically stabilizes at a depth of 5 feet bgs or less, indicating the zone is at least a semi-confined aquifer.

The Shallow Zone is underlain by several feet of moderately dry light olive brown to yellowish brown clay, except in MW-7, drilled through the former tank hold, below which the clays have significant discoloration (dark greenish gray clay).

At depths ranging from 18 ft (MW-9) to 21 feet (MW-8) bgs, a second discontinuous water bearing zone (Intermediate Zone) is present. The Intermediate Zone consists of discontinuous gravel, clayey gravel, and silty sand, clayey sand, and clayey silt which are interbedded with clay layers. Permeability in the Intermediate Zone ranges from high (gravel) to poor (clayey silt). The Intermediate Zone is separated from the Deeper Zone by a layer of brown silty clay that ranges in thickness of 2 to 7 feet.

A third water bearing zone (Deeper Zone) was encountered at a depth of approximately 27 to 28 feet bgs. The lower permeable zone is made up of clayey silt, clayey sand, clean sand and sandy gravel.

The geology, migration pathways and distribution of hydrocarbons are shown on cross section B-B' attached as Figure 8, Site Conceptual Model.

3.3 Preferential Pathway and Well Survey

As part of current and past drilling operations AEI located sanitary sewer, storm drains, gas and water lines in the adjacent streets. A map showing the approximate locations of these lines is included in Appendix A, Preferential Pathway and Well Survey. The trenches for sanitary sewer, storm drains and water mains, which may have trenches as deep as 10 feet bgs, do not appear to intersect the shallowest parts of the shallow zone. The area where the top of the shallow zone is above ten feet bgs is in the central portion of the site away from utility trenches. No deep utility trenched are located in this area

AEI made copies of the State of California Department of Water Resources (DWR) well files at the DWR offices to locate potential vertical conduits in the area surrounding the subject site. Department of Water resources files contained records for 106 wells at 20 sites within a ½ mile radius of the subject site. The wells within ½ mile of the subject site are listed on the Well Survey Table and on Well survey plot located in Appendix A. The majority of these wells are

shallow wells (less than 40 feet bgs), however deeper wells are located at Site # 1 – General Electric (71 feet bgs) located just under ½ to the northwest, site # 7 – the Oakland Coliseum (74 to 107 feet bgs) located approximately 1/3 mile to the west southwest, site # 8 – AeroQuality Plating/DHS (66.5 to 69.9 feet bgs) located approximately 800 feet to west southwest, and Site # 9 - American Brass & Foundry (510 feet bgs) located approximately ½ mile to the south.

Arroyo Creek, which appears to intersect the upper portion of the shallow zone could be considered a potential sensitive receptor, however the lack of detectable hydrocarbons in well MW-6 indicates that this potential pathway is incomplete. The residential areas to the north of the site can be considered sensitive receptors, however their location cross gradient and up gradient location indicate that this potential pathway is incomplete.

4.0 Final Groundwater Monitoring Event

AEI conducted monitoring, and quarterly groundwater sampling of five (5) Shallow Zone monitoring wells (MW-1 through MW-4 and MW-6) and six (6) Deeper Zone wells (MW-7 through MW-12) on March 2, 2009.

4.1 Groundwater Sampling

Prior to measuring the depth to water, the well caps were removed and the water levels in each well were allowed to equilibrate with atmospheric pressure for at least 15 minutes. The depth to groundwater (from the top of the well casings) for each well was then measured with an electric water level indicator. A peristaltic pump was used to purge all wells on site under a low flow protocol. Wells MW-1 through MW-6 were purged with the sampling tubing at a depths of approximately 10 - 12 feet below ground surface (bgs) and wells MW-7 through MW-12 were purged with the sampling tubing at a depth of approximately 29 feet bgs. During purging activities, the groundwater parameters of temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were measured and a visual evaluation of turbidity was made. Groundwater parameters measured in the field are reported on the field sampling forms included in Appendix B.

Following stabilization of groundwater parameters, groundwater samples were collected using the peristaltic pump and placed into 40-milliliter (ml) Volatile Organic Analysis (VOA) vials and 1-liter amber bottles. The VOAs were filled so that no headspace or air bubbles were visible within the sample containers. Samples were labeled with at minimum project number, unique identification number, sampler identification, date, and time. Samples were entered on a chain-of-custody then placed in a cooler on water ice pending transportation under appropriate chain-of-custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification #1644).

5.0 FINDINGS

5.1 Field Results

Groundwater elevations in the Shallow Zone monitoring wells ranged from 5.88 (MW-6) to 6.11 (MW-3) feet above mean sea level (amsl). These elevations in the Shallow Zone are an average of 0.95 feet lower than at the time of the previous quarterly monitoring event (3/2/2010). The groundwater hydraulic gradient in the Shallow Zone is 0.004 ft/ft to the northwest.

DO readings in the Shallow Zone wells ranged from 0.36 mg/L (MW-2) to 1.84 mg/L (MW-4). ORP measurements ranged from 74 meV (MW-1) to 291.8 meV (MW-6).

Groundwater elevations in the Deep Zone monitoring wells ranged from 7.33 (MW-8, MW-11) to 5.97 (MW-9) feet amsl. These elevations are an average of 0.69 feet higher than at the time of the previous quarterly monitoring event. The groundwater hydraulic gradient in the Deep Zone is 0.026 ft/ft to the south.

DO concentrations in four (4) of the six Deeper Zone wells (MW-7, MW-9, MW-11, and MW-12) continue to be reported above the saturation point of oxygen in water at concentrations of 6.23 mg/L, 5.59 mg/L, 7.83 mg/L, and 14.88 mg/L. DO concentrations in MW-8 and MW-10 were reported at concentrations of 0.69 mg/L and 0.66 mg/L, respectively. These elevated oxygen levels over 300 days after system shut down suggest that the Deeper Zone is not laterally continuous and has minimal lateral movement of groundwater and that minimal diffusion of dissolved gases is occurring. ORP measurements ranged from 123.7 meV (MW-9) to 270.8 meV (MW-8).

Current and historical groundwater elevation data are summarized in Tables 3 and 3a. The groundwater elevation contours and the groundwater flow directions are presented in Figure 4 and Figure 5. Groundwater Monitoring Well Field Sampling Forms are presented Appendix A.

5.1 Groundwater Analyses

TPH-g concentration in Shallow Zone monitoring well MW-1 decreased to 72 μ g/L. TPH-d and TPH-mo were reported at concentrations of 180 μ g/L and ND<250 μ g/L. BTEX was reported at concentrations of 1.4 μ g/L, 0.95 μ g/L, ND<0.5 μ g/L, and ND<0.5 μ g/L, respectively. MTBE, TBA and 1,2-DCA were reported at concentrations of 0.54 μ g/L, 6.0 μ g/L and 1.5 μ g/L, respectively.

The TPH-g concentration in Shallow Zone monitoring well MW-2 decreased slightly from 460 μ g/L last quarter to 330 μ g/L, while TPH-d increased from ND<50 μ g/L last quarter to 110 μ g/L. TPH-mo was reported as ND<250 μ g/L. BTEX was reported at ND<0.5 μ g/L, 9.7 μ g/L, ND<0.5 μ g/L, and 0.67 μ g/L, respectively. All fuel oxygenates were reported as non detectable at standard laboratory reporting limits.

The TPH-g, TPH-d, TPH-mo, BTEX, and Fuel oxygenates concentrations in Shallow Zone monitoring wells MW-3, MW-4, and MW-6 were all reported below standard reporting limits.

TPH-g, TPH-d, and TPH-mo, and MTBE, concentrations in Deeper Zone monitoring wells MW-7 through MW-12 were reported below standard laboratory detection limits.

Benzene was reported in well MW-9 at a concentration of 10 μ g/L. Toluene, ethylbenzene and xylenes concentrations in well MW-9 were reported as non detectable at a reporting limit of 0.5 μ g/L. 1,2-DCA was reported at a concentration of 0.72 μ g/L in MW-9. BTEX and fuel oxygenates was reported as non detectable in wells MW-7, MW-8, MW-10, MW-11, and MW-12.

A summary of groundwater analytical data is presented in Table 2 and Figure 6. TPH-g contaminant isopleths of the Shallow Zone wells are presented in Figure 7. Laboratory results and chain of custody documents are included in Appendix C.

5.2 Summary

The First Quarter 2010 monitoring event follows a period of over 305 days since the ozone injection system was shut down. Overall hydrocarbon concentrations in both the shallow and deep Zones have decreased significantly.

In the Shallow Zone, TPH-g was reported in wells MW-1 and MW-2 at concentrations of 72 μ g/L and 330 μ g/L, respectively. TPH-d was reported in wells MW-1 and MW-2 at concentrations of 180 μ g/L and 110 μ g/L, respectively. No TPH-mo has been reported in the shallow zone since March 2008. No hydrocarbons are currently present in wells MW-3, MW-4, and MW-6. In the Shallow Zone, benzene is present only in well MW-2. Toluene is present only in wells MW-1 and MW-2. Xylenes are present only in well MW-2

No TPH-g, TPH-d, or TPH-mo has been reported in the Deeper Done since December 2009. Benzene is currently reported in the Deeper Zone only in well MW-9. No toluene, ethylbenzene, or xylenes is currently present in any deeper Zone well.

6.0 LOW RISK CASE CLOSURE

AEI believes the site is eligible for closure as a low risk case. This eligibility is discussed below.

6.1 Leak Status

The gasoline release was stopped in 1996 with the removal of the three gasoline USTs. The waste oil tank was removed in 2000. The diesel and motor oil range free product was observed in backfill well TW-5 in September 2001, 17 months after the over excavation to remove impacted soil. No free product has been observed in the shallow Zone since February 2001.

Free product was observed in Deeper Zone in soil boring SB-14 in October 2003 and in monitoring well MW-9 following its installation in October 2003. No free product has been observed in the Deeper Zone since October 2003.

6.2 Site Characterization

Site characterization was completed with the installation of monitoring wells MW-11 and MW-12 which completed vertical and lateral delineation of the hydrocarbon impact in the soil and groundwater.

6.3 Dissolved Plume Migration

Dissolved hydrocarbon concentrations in the Shallow and Deeper Aquifers suggest that the plume stabilized shortly after the UST removal and has been collapsing since the start up of the ozone system. Hydrocarbon concentrations have been essentially stable since the system shut down in August 2009.

6.4 Sensitive Receptors

As discussed in section 3.3 above, no water wells, drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted.

6.5 Risk to Human Health and the Environmental

Groundwater at the site is not currently used as drinking water and is unlikely to be used within the life of the plume. Neither the Shallow or Deeper aquifers appear to be sufficiently continuous be prospective drinking water sources. The vapor intrusion pathway is not complete due to the installation of a vapor barrier beneath the office couple with a passive venting system. No pathways surface water, estuaries, or other sensitive receptors are complete.

7.0 COMPARATIVE RISK EVALUATION

The following comparative risk evaluation has been made in an effort to help determine the potential risk posed by remaining contaminants in the groundwater. The most recent site specific analytical data is compared with environmental screening level (ESL) values presented in the RWQCB document *Screening for Environmental Concerns at Site with Contaminated Soil and Groundwater*, May 2008. The ESLs are risk-based values that have been prepared to evaluate whether a particular contaminant presents possible threat to human health or the environment.

The highest detected concentrations of contaminants of concern (COCs) in groundwater are compared against the screening levels for the following exposure routes: gross contamination ceiling values where groundwater is a current source of drinking water and not a drinking water source, aquatic toxicity, drinking water toxicity, and vapor intrusion from groundwater. A summary of the screening levels and site concentrations for both the Shallow and Deeper Zones are presented below.

5.1 Contaminants of Concern

The primary remaining contaminants of concern detected in groundwater are MTBE and TBA. Maximum concentrations of MTBE and TBA, as well as TPH-g and BTEX (benzene, toluene/, ethylbenzene, and total xylenes), detected during the most recent monitoring event (06/08/2010) are summarized in the following table.

Shallow Zone (MW-1 thru MW-4, and MW-6)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Zone (1111) I thru 1111	ij unu 1/1 // O)
Contaminant	Well	Maximum Detected (6/08/10) (µg/L)
TPH-g	MW-2	330
TPH-d	MW-1	180
TPH-mo	All	<250
Benzene	All	1.4
Toluene	MW-1	9.7
Ethylbenzene	All	<0.5
Xylenes (Total)	MW-2	0.67
MTBE (by 8260B)	MW-6	4.0
TBA	MW-5	6.0
1,2-DCA	MW-5	1.5

Deeper Zone (MW-7 thru MW-12)

Contaminant	Well	Maximum Detected (6/08/10) (μg/L)
TPH-g	All	<50
TPH-d	All	<50
TPH-mo	All	<250
Benzene	MW-9	10
Toluene	All	<0.5
Ethylbenzene	All	<0.5
Xylenes (Total)	All	<0.5
MTBE (by 8260B)	All	<0.5
TBA	All	<0.5
1,2-DCE	MW-9	0.72

5.2 ESL Comparison

The recent maximum concentrations of the contaminants detected in the groundwater are presented in the following table along with the five ESL values for the exposure pathways outlined above.

Shallow Zone (MW-1 thru MW-4, and MW-6)

Contaminant	Maximum Detected	Vapor Intrusion ESL (C/I)*	Ceiling Value (NDW) ***	Aquatic Toxicity **	Ceiling Value (DW) **	Drinking Water Toxicity **
TPH-g	330	Use Soil Gas	5,000	210	100	210
TPH-d	180	Use Soil Gas	2,500	210	100	210
TPH-mo	<250		2,500	210	100	210
Benzene	1.4	18,000	2,000	46	170	1.0
Toluene	2.8	530,000	400	130	40	150
Xylenes	1.1	160,000	5,300	100	20	1,800
MTBE	66	8,000	1,800	8,000	5.0	13
TBA	6.0	Use Soil Gas	50,000	18,000	50,000	12
1,2-DCA	1.5	690	7,000	2,000	700	0.5

All values in micrograms per liter (µg/l)

NDW = non-drinking water, DW = drinking water

ESL values shown in strikethrough (strikethrough) are from incomplete pathways.

Deeper Zone (MW-7 thru MW-12)

Contaminant	Maximum Detected	Volatilization ESL *	Ceiling Value (NDW) ***	Aquatic Toxicity **	Ceiling Value (DW) **	Drinking Water Toxicity **
TPH-g	<50	Use Soil Gas	5,000	210	100	210
TPH-d	<50	Use Soil Gas	2,500	210	100	210
TPH-mo	<250		2,500	210	100	210
Benzene	10	18,000	2,000	4 6	170	1.0
Toluene	< 0.5	530,000	400	130	40	150
Xylenes	<0.5	160,000	5,300	100	20	1,800
MTBE	< 0.5	8,000	1,800	8,000	5.0	13
TBA	< 0.5	Use Soil Gas	50,000	18,000	50,000	18,000
1,2-DCA	0.72	690	7,000	2,000	700	0.5

All values in micrograms per liter (µg/l)

All ESL from RWQCB (May 2008)

ESL values shown in strikethrough (strikethrough) are from incomplete pathways.

All ESL from RWQCB (May 2008)

NDW = non-drinking water, DW = drinking water

The groundwater in the area of the site is considered of beneficial use in accordance with the RWQCB Basin Plan and the Shallow and Deeper Zones are not high yielding formation. Based on this, the Drinking Water Toxicity and Drinking Water Ceiling Value ESLs are considered overly conservative for this site. Due to the proximity of the release to the Arroyo Creek, the aquatic toxicity ESL value would be protective of aquatic receptors. In addition, as is currently required, the volatilization ESL is considered potentially complete. The non-drinking water ceiling value will also be considered relevant as representative of nuisance conditions. The lowest ESL for each contaminant is shown in bold in the table above.

The residual contaminant concentrations do not exceed the commercial Industrial ESL values of the potentially complete exposure pathways. All site concentrations are over one to several orders of magnitude lower that these ESL values. Based on this, no indication of a potential for vapor intrusion from groundwater, of groundwater discharge to nearby aquatic habitat, or of exceeding gross contaminant levels for groundwater are present around the former release area.

8.0 SUMMARY AND CONCLUSIONS

This report has been prepared to summarize the environmental conditions relating to the release from the former gasoline UST system, including the following:

- o A discussion of previous environmental investigations and remediation activities
- o Complete set of data collected, including sampling locations, monitoring, and analytical data
- o Site geology and environmental setting
- o A discussion of the release occurrence
- o Comparison of current groundwater conditions to relevant screening levels (ESLs)

Groundwater treatment activities consisting of approximately 2 years of ozone sparging have significantly reduced dissolved phase contaminants. Recent groundwater monitoring results revealed concentrations of contaminants below relevant ESLs for vapor intrusion, aquatic toxicity, and gross contaminant levels. No nearby wells were identified that are considered at risk for either being impacted by the release or that could act as vertical conduits for contaminant migration.

Review of this case by the ACEH is requested so that the formal case closure process for this site can begin.

9.0 REFERENCES

AEI Underground Storage Tank Removal Report, dated October 10, 1996

AEI Phase II Soil and Groundwater Investigation, dated March 17, 1997

AEI Soil Boring and Groundwater Monitoring Well Installation Report, dated September 16, 1999

AEI Over-Excavation and Tank Removal Report, dated August 16, 2000

AEI, Soil & Groundwater Investigation Report, dated November 13, 2003

AEI Deeper Aquifer Soil and Groundwater Investigation Report", dated April 28, 2006.

SF Bay California Regional Water Quality Control Board, Screening For Environmental Concerns At Sites With Contaminated Soil And Groundwater, May 2008

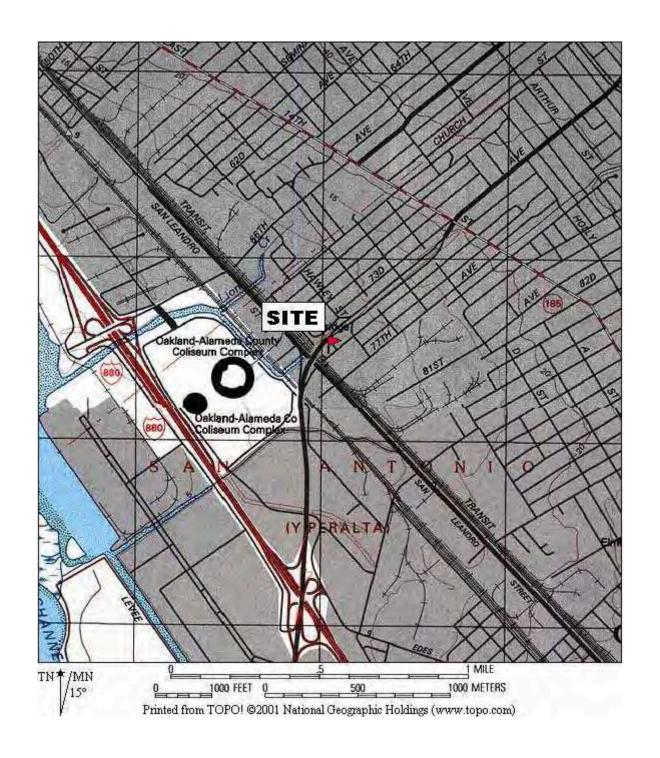
10.0 SIGNATURES

This report has been prepared by AEI on behalf of Cruise America relating to the release of petroleum hydrocarbons on the property located at 807 75th Street in the City of Oakland, Alameda County, California. The discussion rendered in this report was based on field investigations and laboratory testing of material samples. This report does not reflect subsurface variations that may exist between sampling points. These variations cannot be anticipated, nor could they be entirely accounted for, in spite of exhaustive additional testing. This report should not be regarded as a guarantee that no further contamination, beyond that which could have been detected within the scope of past investigations is present beneath the property or that all contamination present at the site will be identified, treated, or removed. Undocumented, unauthorized releases of hazardous material(s), the remains of which are not readily identifiable by visual inspection and/or are of different chemical constituents, are difficult and often impossible to detect within the scope of a chemical specific investigation and may or may not become apparent at a later time. All specified work was performed in accordance with generally accepted practices in environmental engineering, geology, and hydrogeology and were performed under the direction of appropriate registered professional(s).

Please contact either of the undersigned with any questions or comments at (925) 746-6000.

Sincerely,

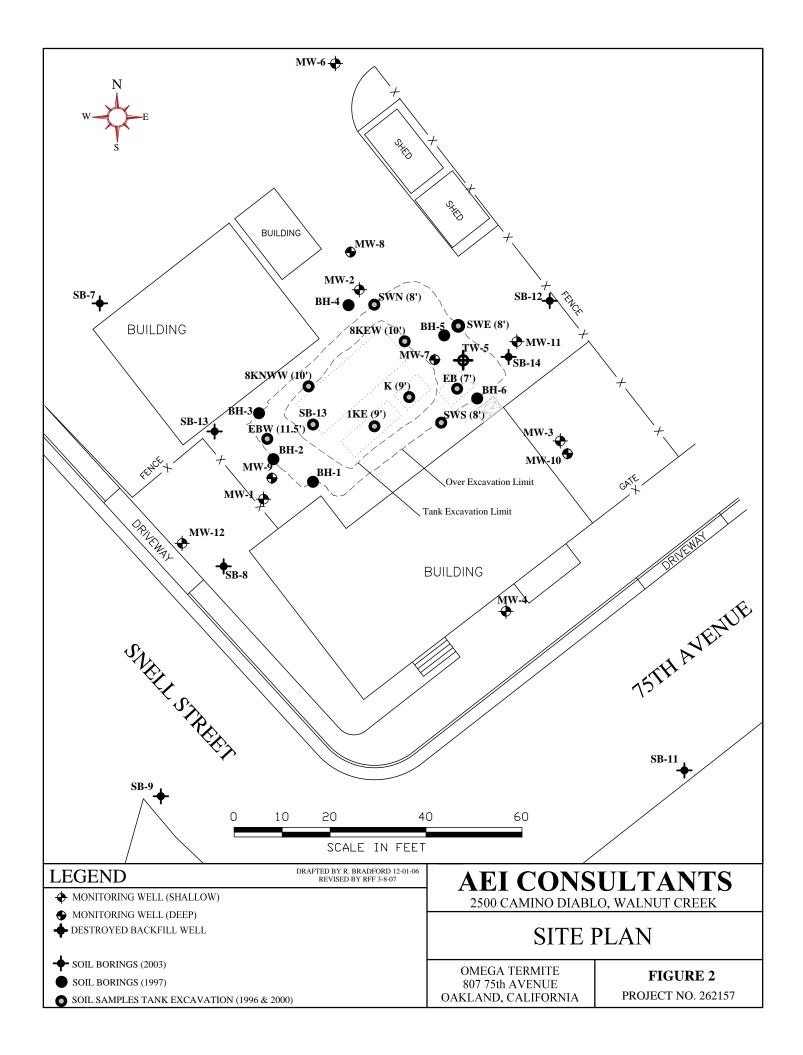
AEI Consultants

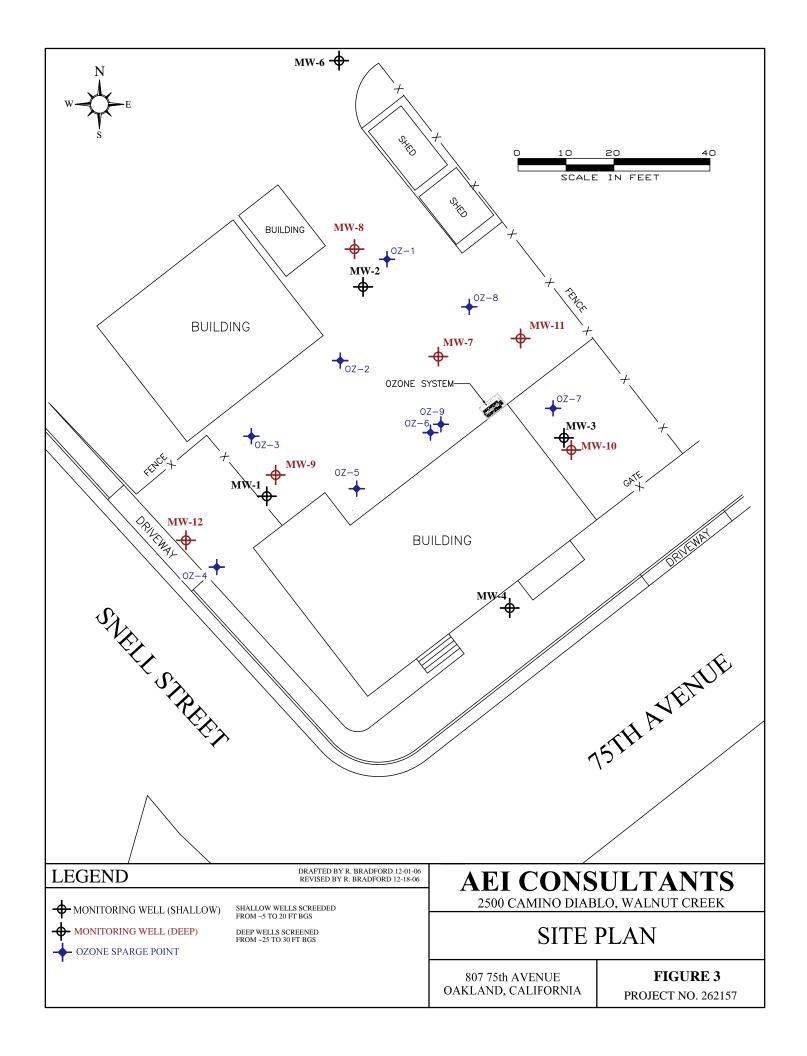

Adrian M. Angel Project Geologist Robert F. Flory, PG

Senior Geologist

No. 5825

FIGURES





AEI CONSULTANTS 2500 CAMINO DIABLO, SUITE 200, WALNUT CREEK, CA

SITE LOCATION MAP

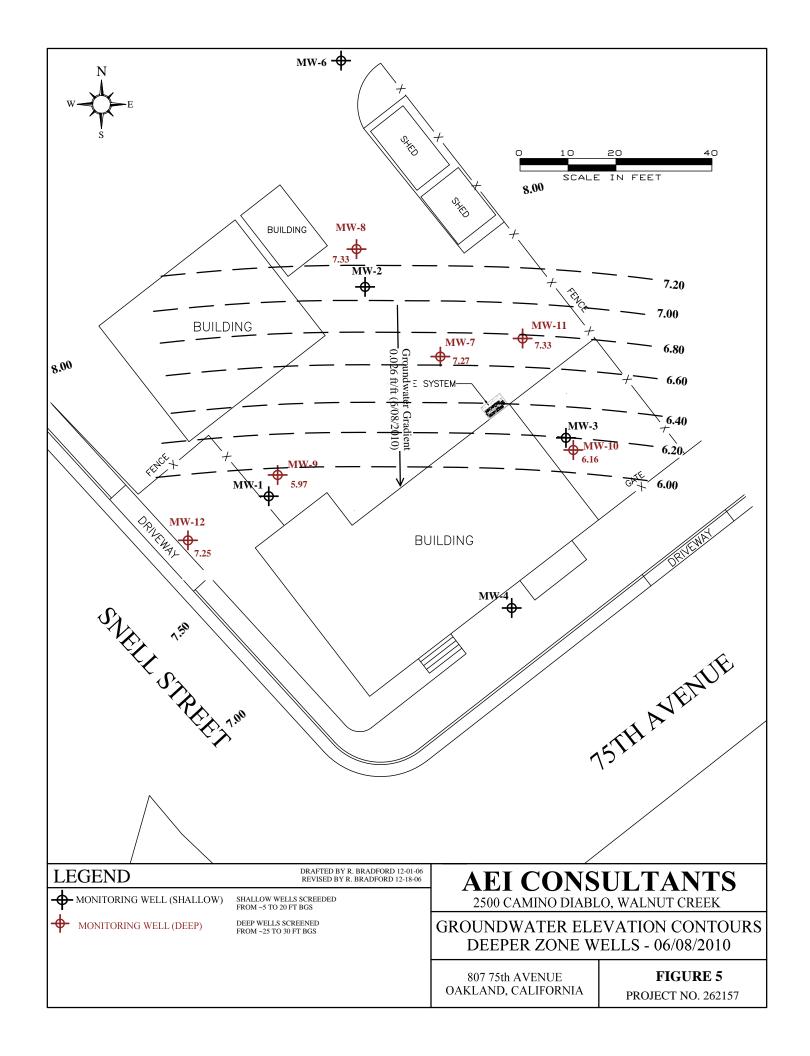
807 75th AVENUE OAKLAND, CALIFORNIA FIGURE 1 AEI PROJECT NO. 262157

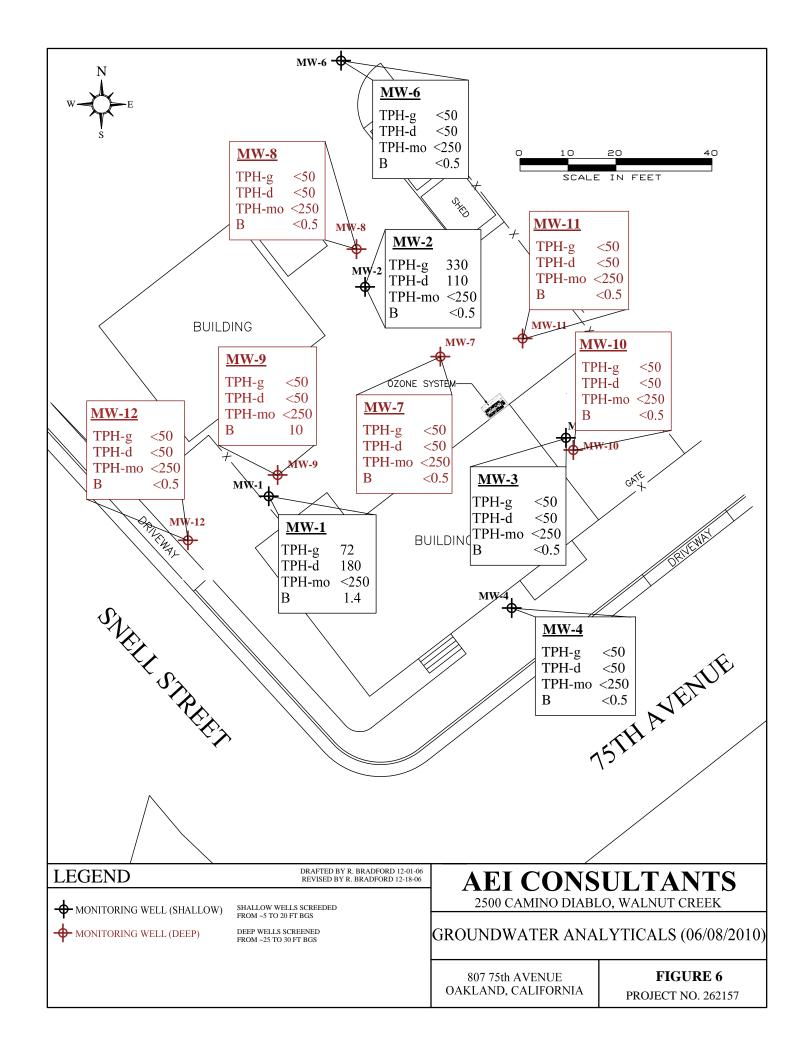
→ MONITORING WELL (SHALLOW)

SHALLOW WELLS SCREEDED FROM ~5 TO 20 FT BGS

- MONITORING WELL (DEEP)

DEEP WELLS SCREENED FROM ~25 TO 30 FT BGS


6.95* DATA POINT NOT USED


807 75th AVENUE OAKLAND, CALIFORNIA


GROUNDWATER ELEVATION CONTOURS

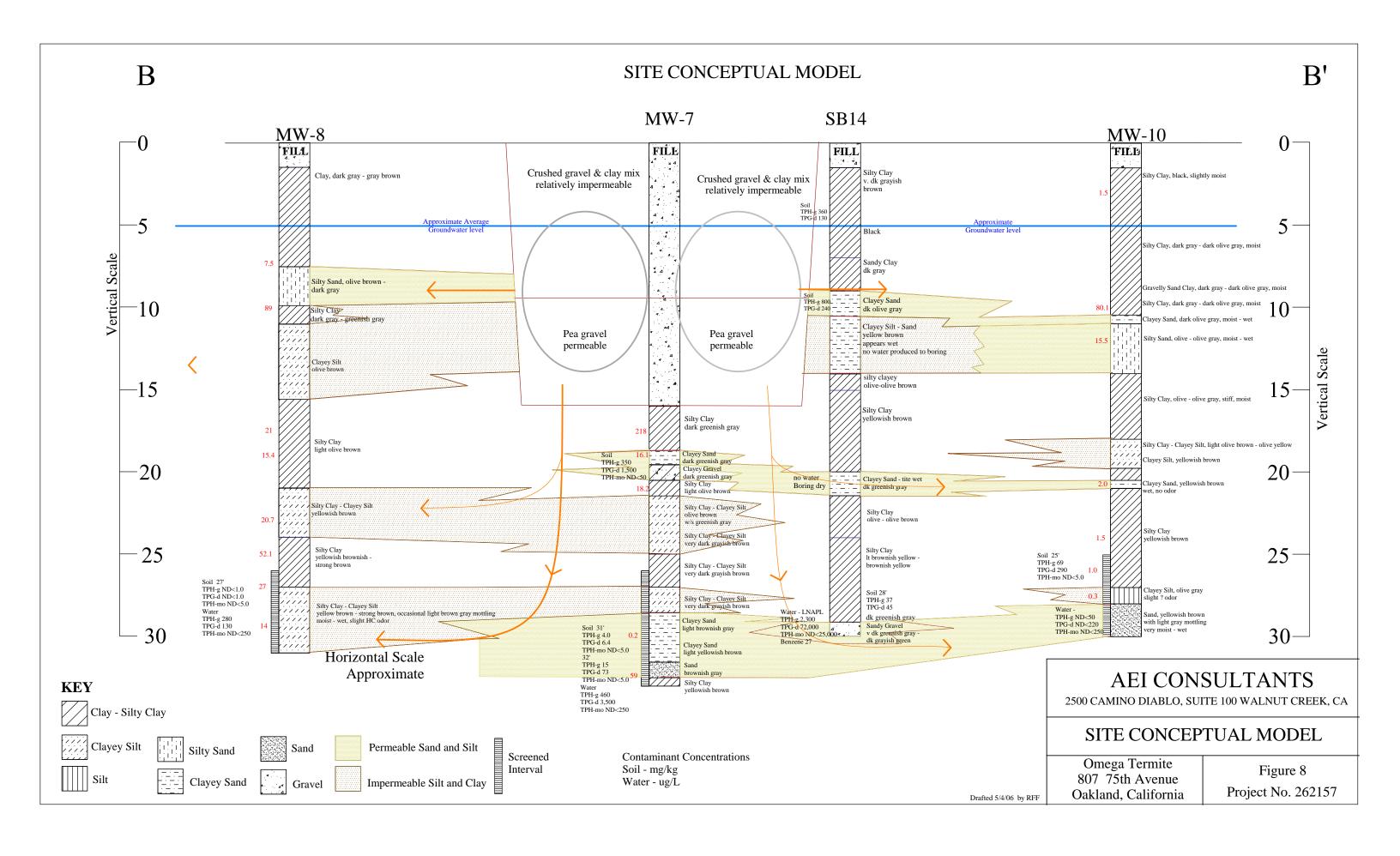

SHALLOW ZONE WELLS - 06/08/2010

FIGURE 4
PROJECT NO. 262157

TABLES

Table1: Monitoring Well Construction Details Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date Installed	Box Elevation (feet)	Top of Casing (feet)	Water Depth 12/11/09	Casing Material	Total Depth (feet)	Well Depth (feet)	Borehole Diameter (inches)	Casing Diameter (inches)	Screened Interval (feet)	Slot Size (inches)	Filter Pack Interval (feet)	Filter Pack Material (feet)	Bentonite Seal (feet)	Grout Seal (feet)
MW-1	06/25/99	11.28	10.68	4.46	PVC	20	20	8 1/4	2	20.0-5.0	0.020	20.0-3.5	#3 sand	3.5-2.5	2.5-0.5
MW-2	06/25/99	12.55	12.15	5.87	PVC	20	20	8 1/4	2	20.0-5.0	0.020	20.0-3.5	#3 sand	3.5-2.5	2.5-0.5
MW-3	06/25/99	10.67	10.40	4.03	PVC	20	20	8 1/4	2	20.0-5.0	0.020	20.0-3.5	#3 sand	3.5-2.5	2.5-0.5
MW-4	06/25/99	10.56	10.31	6.07	PVC	20	20	8 1/4	2	20.0-5.0	0.020	20.0-3.5	#3 sand	3.5-2.5	2.5-0.5
TW-5	March 2000	Abandoned	12/20/06			10	10	NA	4	10.0-5.0	1/4" drilled	NA	NA	NA	2.0-0.5
MW-6	02/15/06	12.74	12.35	10.31	PVC	14	14	8 1/4	2	14.0-5.0	0.010	14.0-4.5	# 2/12	4.5-3.5	3.5-0.5
MW-7	02/16/06	11.64	11.16	4.34	PVC	33	33	8 1/4	2	33.0-26.0	0.010	33.0-25.0	# 2/12	25.0-23.0	23.0-0.5
MW-8	02/15/06	12.57	12.42	5.52	PVC	31	31	8 1/4	2	31.0-26.0	0.010	31.0-25.0	# 2/12	25.0-23.0	23.0-0.5
MW-9	02/16/06	11.41	11.22	5.10	PVC	30	30	8 1/4	2	30.0-25.0	0.010	30.0-24.0	# 2/12	24.0-22.0	22.0-0.5
MW-10	02/15/06	10.60	10.31	3.88	PVC	30	30	8 1/4	2	30.0-25.0	0.010	30.0-24.0	# 2/12	24.0-22.0	22.0-0.5
MW-11	12/18/06	11.14	10.96	4.12	PVC	35	35	8 1/4	2	35.0-25.0	0.010	35.0-23.0	# 2/12	23.0-21.0	21.0-0.5
MW-12	12/18/06	11.19	10.46	3.70	PVC	35	35	8 1/4	2	35.0-25.0	0.010	35.0-23.0	# 2/12	23.0-21.0	21.0-0.5

Table:1a Ozone Injection Well Construction Details Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date Installed	Injection Point	Casing Material	Total Depth (feet)	Well Depth (feet)	Borehole Diameter (inches)	Casing Diameter (inches)	Screened Interval (feet)	Slot Size (inches)	Filter Pack Interval (feet)	Filter Pack Material (feet)	Bentonite Seal (feet)	Grout Seal (feet)
OZ-1	12/21/06	Single point Shallow	PVC	19.5	19.5	8 1/4	1	19.5-18.0	micropore	19.5-9.0	#2/16	16.0-2.0	2.0-1.0
OZ-2	12/19/06	Shallow Point Deep Point	PVC	35	19.5 34	10 1/2	1 1	19.5-18.0 34.0-32.5	micropore micropore	19.5-16.0 35.0-30.0	#2/16 #2/16	16.0-2.0 30.0-19.5	2.0-1.0
OZ-3	12/19/06	Shallow Point Deep Point	PVC	35	15 34	10 1/2	1 1	15.0-13.5 34.0-32.5	micropore micropore	16.0-12.0 35.0-30.0	#2/16 #2/16	12.0-2.0 30.0-16.0	3.0-1.0
OZ-4	12/19/06	Shallow Point Deep Point	PVC	35	15 34	10 1/2	1 1	15.0-13.5 34.0-32.5	micropore micropore	16.0-12.0 35.0-30.0	#2/16 #2/16	12.0-2.0 30.0-16.0	2.0-1.0
OZ-5	12/21/06	Shallow Point Deep Point	PVC	35	15 34	10 1/2	1 1	15.0-13.5 34.0-32.5	micropore micropore	16.0-12.0 35.0-30.0	#2/16 #2/16	12.0-2.0 30.0-16.0	2.0-1.0
OZ-6	12/21/06	Shallow Point Deep Point	PVC	35	15 34	10 1/2	1 1	15.0-13.5 34.0-32.5	micropore micropore	16.0-12.0 35.0-30.0	#2/16 #2/16	12.0-2.0 30.0-16.0	2.0-1.0
OZ-7	12/20/06	Shallow Point Deep Point	PVC	35	15 34	10 1/2	1 1	15.0-13.5 34.0-32.5	micropore micropore	16.0-12.0 35.0-30.0	#2/16 #2/16	12.0-2.0 30.0-16.0	2.0-1.0
OZ-8	12/20/06	Shallow Point Deep Point	PVC	35	15 34	10 1/2	1 1	15.0-13.5 34.0-32.5	micropore micropore	16.0-12.0 35.0-30.0	#2/16 #2/16	12.0-2.0 30.0-16.0	2.0-1.0
OZ-9	01/19/07	Shallow Point Deep Point	PVC	35	20 34	8 1/4	1 1	21.0-19.5 34.0-32.5	micropore micropore	22.0-18.0 35.0-30.0	#2/16 #2/16	18.0-2.0 30.0-22.0	2.0-1.0

Table 2 Soil Analytical Data Omega Termite, 807 - 75th Street, Oakland, CA

Sample	Date	TPHg	TPHd	TPHmo	MTBE	Benzene	Toluene	Ethyl-	Xylenes
ID		_						benzene	•
		N	Method 801.	5		M	lethod 8021	В	
		mg/kg	mg/kg	mg/kg mg/kg		mg/kg	mg/kg	mg/kg	mg/kg
MW-12-14	12/18/06	ND<1.0	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-12-24	12/18/06	ND<1.0	ND<1.0		ND<0.05	0.094	ND<0.005	ND<0.005	ND<0.005
MW-11-26	12/18/06	29	61		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-11-31	12/18/06	ND<1.0	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
OZ-1-12	12/21/06	ND<1.0	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
OZ-2-17.5	12/19/06	6.3	1.9		ND<0.05	0.19	ND<0.005	0.046	0.011
OZ-2-34	12/19/06	ND<1.0	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
OZ-3-21	12/19/06	ND<1.0	3.4		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
OZ-4-31	12/18/06	ND<1.0	ND<1.0		ND<0.05	0.015	ND<0.005	ND<0.005	ND<0.005
OZ-5-16	12/21/06	34	22		ND<0.50	0.63	0.13	0.42	1.4
OZ-5-31	12/21/06	1.3	4.0		ND<0.05	0.047	ND<0.005	0.011	0.041
OZ-6-11	12/21/06	31	22		ND<0.25	0.18	0.14	ND<0.025	0.064
OZ-6-21	12/21/06	17	22		ND<0.05	0.10	ND<0.005	ND<0.005	0.034
OZ-6-26	12/21/06	200	240		ND<0.50	ND<0.050	ND<0.050	0.067	0.17
OZ-7-29	12/20/06	12	5.9		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
OZ-8-11	12/20/06	9.4	2.0		ND<0.05	0.012	0.047	0.040	0.026
OZ-8-31	12/20/06	28	19		ND<0.10	0.016	0.15	0.32	0.17
MW6-10.5	02/15/06	ND<1.0	1.1	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW7-21.5	02/16/06	350	1,500	ND<50	ND<2.0	ND<0.2	ND<0.2	0.23	0.71
MW7-31	02/16/06	4	6.4	ND<5.0	ND<0.05	ND<0.005	0.0091	0.0092	0.0083
MW7-32	02/16/06	15	73	ND<5.0	ND<0.05	0.006	0.026	0.018	0.023
MW8-27	02/15/06	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW9-29	02/16/06	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW10-25	02/15/06	69	290	ND<5.0	ND<0.05	ND<0.005	ND<0.005	0.046	0.12
SB7-10	10/09/03	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB8-15	10/09/03	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB9-15	10/09/03	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB10-15	10/09/03	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB11-15	10/09/03	ND<1.0	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB12-15	10/10/03	ND<1.0	ND<1.0	ND < 5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB13-14	10/10/03	ND<1.0			ND<0.05	0.049	ND<0.005	0.014	0.019
SB14-4.5	10/10/03	360	130	ND < 5.0	ND<2.5	1.4	1.5	8	37
SB14-9.5	10/10/03	800	240	8.2	ND<2.0	2.9	3.5	16	71
SB14-28.0	10/10/03	37	45	ND < 5.0	ND<0.05	ND<0.005	ND<0.005	0.015	0.11

Table 2 Soil Analytical Data Omega Termite, 807 - 75th Street, Oakland, CA

Sample	Date	TPHg	TPHd	TPHmo	MTBE	Benzene	Toluene	Ethyl-	Xylenes	
ID			<i>I</i> .1 1.001	thod 8015			T (1 10001	benzene		
					/1		Iethod 8021		/1	
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
SWS (8')	03/20/00	290			ND<0.5	0.84	2	6.3	1.3	
SWN (8')	03/20/00	1.8			ND<0.05	ND<0.005	ND<0.005	0.007	0.008	
SWE (8')	03/20/00	1800			ND<5.0	12	65	32	160	
EB (7')	03/20/00	560	220	100	ND<1.0	0.59	4.9	7.3	40	
EBW (11.5')	03/20/00	280			ND<0.21	2.7	6.6	5.2	23	
LD W (11.5)	03/20/00	200			ND<0.21	2.1	0.0	3.2	23	
MW-1 10'	06/25/99	<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	
MW-1 15'	06/25/99	3.4			ND<0.05	0.092	0.022	0.054	0.14	
MW-2 10'	06/25/99	420			<2	ND<0.1	2.7	4.8	8.2	
MW-2 15'	06/25/99	<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	
MW-3 10'	06/25/99	14			ND<0.05	0.3	0.091	0.29	0.28	
MW-3 15'	06/25/99	<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	
MW-4 10'	06/25/99	3.6			ND<0.05	0.71	ND<0.005	0.19	ND<0.005	
MW-4 15'	06/25/99	<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	
BH-1 10'	01/31/97	4.1			ND<5.0	0.078	0.009	0.11	0.17	
BH-2 10'	01/31/97	23			0.13	0.46	0.05	0.089	0.061	
BH-3 10'	01/31/97	280			1.8	3.2	3	3.8	12	
BH-4 10'	01/31/97	4.6			ND<5.0	0.03	0.025	0.36	0.46	
BH-5 10'	01/31/97	800			5	4.3	23	15	65	
BH-6 10'	01/31/97	110			0.53	3	0.25	0.95	0.53	
8KEW (10')	09/15/96	64			0.16	1.8	1.2	1.4	2.9	
8KWW (10')	09/15/96	2600			25	2.8	1.2	37	120	
8KNWW (10')	09/15/96	360			2.5	2.5	0.83	8.5	2.4	
1KE (9')	09/15/96	41			ND<0.1	0.077	0.99	0.86	4.7	
K (9')	09/15/96	4300			ND<10	13	83	71	310	
K (3)	07/13/30	1 500	- 		110/10	1.5	U.S	/ 1	510	

TPHg Soil Analyses

TPHd Total petroleum hydrocarbons as diesel
TPHmo Total petroleum hydrocarbons as motor oil

MTBE methyl tert-butyl ether

--- Sample not analyzed by this method

Table 3: Groundwater Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE	MTBE	Benzene	Toluene	Ethyl	Xylenes
	Date	Water								benzene	
		-		Method &		8260B			Method 80		
			(μg/L)	(μg/L)	(μg/L)		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
ESL - NDW -			2,500	2,500	2,500	1,800	1,800	2,000	400	300	5,300
ESL - NDW -	Aquatic Ha	bitat Goal	210	210	210	8,000	8,000	46	130	300	100
MW-1	07/30/99	5.82	2,700				ND<10	920	5.5	18	130
	11/09/99	5.70	1,800				ND<20	430	1.5	26	60
	02/23/00	2.84	3,800				ND<10	1,500	56	78	35
	05/26/00	5.50	7,100				ND<10	2,800	70	220	81
	10/10/00	5.70	980				ND<5.0	260	2.9	10	11
	02/07/01	5.25	570				ND<5.0	150	1.8	4.9	9.3
	05/25/01	5.25	18,000				ND<100	3,800	350	550	620
	09/19/01	5.51	840				ND<5.0	190	4.0	4.6	5.3
	05/17/02	5.30	13,000	920			ND<5.0	4,500	29	50	58
	08/20/02	5.39	2,100	740	ND<5,000		ND<15	820	4.5	6.4	9.6
	01/10/03	4.11	95	260	ND<5,000		ND<5.0	23	0.66	3.9	6.5
	04/14/03	4.85	340	310			ND<5.0	87	1.3	4.3	5.6
	07/14/03	5.08	750	700			ND<10	420	0.84	3.7	6.0
	10/14/03	5.63	200	930	460.0		ND<5.0	62	0.83	2.2	2.7
	01/13/04	4.53	510	440	ND<250		ND<5.0	190	1.7	11	18.0
	04/15/04	5.14	740	490	ND<250		ND<10	240	ND<0.5	5.0	9.6
	07/15/04	5.42	250	420	260		ND<5.0	78	ND<0.5	5.0	4.4
	10/18/04	5.42	170	510	290		ND<5.0	33	0.75	1.7	3.5
	01/25/05	4.47	240	390	ND<250		ND<5.0	86	0.82	1.3	3.0
	04/19/05	4.66	5,100	460	ND<250		ND<50	2,100	5.2	13	84
	07/18/05	4.91	3,300	700	350		ND<45	1,500	2.8	13	24
	10/18/05	5.24	560	550	330		ND<5.0	190	ND<0.5	3.0	8.6
	01/11/06	4.08	240	270	ND<250		ND<5.0	93	ND<0.5	1.3	3.4
	03/13/06	3.76	840	260	ND<250	0.89	ND<5.0	330	1.3	5.1	17
	06/15/06	4.79	3,200	640	320		ND<25	1,400	3.1	10	71
	09/21/06	5.38	3,500	550	270		ND<25	1,700	ND<2.5	14	23
	01/02/07	4.64	410	240	ND<250		ND<5.0	150	0.55	1.0	7
	06/06/07	5.54	2,500	540	300		ND<20	910	3.4	7.7	55
	07/11/07	5.43	2,000	450	ND<250		ND<10	620	1.5	5.9	31
	10/04/07	5.32	500	440	260		ND<5.0	140	ND<0.5	1.8	8
	01/18/08	4.58	4,400	560	260		ND<25	1,300	2.5	11.0	84
	03/25/08	5.00	980	450	ND<250		ND<10	270	1.4	6.6	13
	07/24/08	5.23	300	440	ND<250		ND<10	40	2.4	6.0	2.7
	10/31/08	5.35	1,600	490	ND<250		ND<17	530	5.5	4.1	22
	01/27/08	4.91	74	220	ND<250		ND<5.0	11	1.1	ND<0.5	ND<0.5
	05/04/09	4.70	100	240	ND<250		ND<5.0	6.9	1.4	ND<0.5	0.90
	12/11/09	4.46	91	170	ND<250		ND<5.0	ND<0.5	1.3	ND<0.5	ND<0.5
	03/02/10	3.76	89	< 50	ND<250		ND<5.0	7.8	0.84	ND<0.5	0.89
	06/08/10	4.73	72	180	ND<250		ND<5.0	1.4	0.95	ND<0.5	ND<0.5

Table 3: Groundwater Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE	MTBE	Benzene	Toluene	Ethyl	Xylenes
	Date	Water								benzene	
		-		Method 8		8260B	I		Method 80		
			(µg/L)	(µg/L)	(µg/L)		(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)
ESL - NDW -			2,500	2,500	2,500	1,800	1,800	2,000	400	300	5,300
ESL - NDW -	Aquatic Ha	bitat Goal	210	210	210	8,000	8,000	46	130	300	100
MW-2	07/30/99	6.64	1,200				ND<10	29	2.5	51	100
	11/09/99	6.42	1,300				ND<30	26	1.1	55	32
	02/23/00	3.31	5,000				ND<10	200	18	390	440
	05/26/00	6.34	2,700				ND<10	69	13	83	68
	10/10/00	6.52	810				ND<10	17	4.7	42	46
	02/07/01	5.90	2,600				ND<10	70	15	80	100
	05/25/01	6.08	2,400				ND<5.0	75	16	85	100
	09/19/01	6.53	1,200				ND<5.0	10	8.5	46	55
	02/06/02	5.72	1,800				ND<50	14	11	58	59
	05/17/02	6.17	2,000	860			8.1	19	1.1	0.75	88
	01/10/03	5.12	2,000	910	ND<5000		ND<50	11	11	96	100
	04/14/03	4.98	2,400	800	-		ND<10	16	10	100	73
	07/14/03	5.99	1,900	970	-		ND<15	18	4.8	79	78
	10/14/03	6.43	1,600	1,300	ND<250		ND<10	14	5.9	87	78
	01/13/04	5.72	2,900	960	ND<250		ND<50	26	13	190	150
	04/15/04	6.02	2,700	1,100	ND<250		ND<15	28	11	120	100
	07/15/04	5.27	2,300	1,000	ND<250		ND<10	8.8	3.8	96	84
	10/18/04	5.27	2,400	910	ND<250		ND<10	8.6	8.9	68	72
	01/25/05	5.41	3,500	1,200	ND<250		ND<50	21	11	170	120
	04/19/05	5.61	3,400	1,700	ND<250		ND<15	15	7.4	150	94
	07/18/05	5.84	3,400	1,400	ND<250		ND<5.0	11	9.7	100	89
	10/18/05	6.17	3,000	2,000	270		ND<5.0	8.4	6.7	88	86
	01/11/06	5.11	3,400	1,700	ND<250		ND<90	18	9.4	170	87
	03/13/06	5.24	3,400	1,200	ND<250	0.76	ND<50	20	9.4	110	80
	06/15/06	6.23	2,200	2,400	270		ND<10	8.4	ND<1.0	81	72
	09/20/06	6.63	2,400	860	ND<250		ND<50	12	13	46	65
	01/02/07	6.09	3,800	2,100	ND<250		ND<25	11	7.6	110	120
	06/06/07	6.57	3,800	1,500	ND<250		ND<20	17	17	75	58
	07/11/07	6.59	5,300	2,900	480		ND<17	10	8	47	72
	10/04/07	6.63	660		ND<250		ND<5.0	1.8	0.83	40	45
	01/18/08	6.06	2,200	3,200	350		ND<5.0	1.1	3.40	26	40
	03/25/08	6.45	420	300	ND<250		ND<5.0	1.1	5.1	0.80	3.6
	07/24/08	6.58	570	190	ND<250		ND<5.0	2.5	6.9	1.6	2.1
	10/31/08	6.81	82	180	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/27/08	6.30	380	140	ND<250		ND<5.0	ND<0.5	7.1	0.50	ND<0.5
	05/04/09	6.05	450	120	ND<250		ND<5.0	0.97	3.9	7.1	4.6
	12/11/09	5.87	330	120	ND<250		ND<5.0	ND<0.5	5.9	1.0	0.72
	03/02/10	5.15	460	<50	ND<250		ND<10	0.59	9.1	0.98	0.84
	06/08/10	6.18	330	110	ND<250		ND<15	ND<0.5	9.7	ND<0.5	0.67

Table 3: Groundwater Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE	MTBE	Benzene	Toluene	Ethyl	Xylenes	
	Date	Water								benzene		
				Method 8		8260B	I	EPA Method 8021B				
			(µg/L)	(µg/L)	(µg/L)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
ESL - NDW -			2,500	2,500	2,500	1,800	1,800	2,000	400	300	5,300	
ESL - NDW - Aquatic Habitat Goal		210	210	210	8,000	8,000	46	130	300	100		
MW-3	07/30/99	5.35	2,700				ND<10	220	15	130	230	
	11/09/99	5.11	3,100				15	440	8.8	150	96	
	02/23/00	2.37	1,800				ND<15	180	11	82	79	
	05/26/00	4.98	1,600				6.4	140	10	69	63	
	10/10/00	5.24	1,100				ND<10	110	4.4	63	51	
	02/07/01	4.73	1,100				ND<10	130	5.1	68	65	
	05/25/01	4.73	1,200				ND<6.0	120	5.4	69	64	
	09/19/01	5.07	800				< 5.0	78	3.5	52	37	
	02/06/02	4.69	1,100				ND<10	130	4.7	77	71	
	05/17/02	4.80	2,800	810		2.0	ND<50	410	23	160	210	
	08/20/02	4.97	780	270	ND<5000		ND<10	110	2.8	63	41	
	01/10/03	3.59	1,100	510	ND<5000		ND<20	160	3.4	98	84	
	04/14/03	5.40	690	230	-		ND<5.0	60	2.3	44	34	
	07/14/03	4.69	900	380	-		ND<5.0	130	2.0	70	43	
	10/14/03	5.16	500	200	ND<250		ND<10	50	2.3	37	18	
	01/13/04	4.15	1,500	400	ND<250		ND<30	200	6.2	120	88	
	04/15/04	4.73	1,100	280	ND<250		ND<15	130	3.7	75	53	
	07/15/04	5.03	610	240	ND<250		ND<5.0	73	2.1	51	29	
	10/18/04	5.03	370	270	ND<250		ND<5.0	45	1.2	47	28	
	01/25/05	4.13	840	300	ND<250		ND<5.0	85	2.4	68	45	
	04/19/05	4.23	1,100	380	ND<250		ND<5.0	140	4.0	95	59	
	07/18/05	4.66	740	290	ND<250		ND<5.0	98	2.0	70	35	
	10/18/05	4.82	420	220	ND<250		ND<5.0	38	1.1	35	16	
	01/11/06	3.73	740	260	ND<250		ND<5.0	75	2.5	60	32	
	03/13/06	3.76	1,300	380	ND<250	1.1	ND<17	90	2.5	87	72	
	06/15/06	4.38	670	300	ND<250		ND<5.0	76	1.3	60	40	
	09/20/09	4.84	510	300	310		ND<17	49	ND<1.7	50	36	
	01/02/07	4.73	380	180	ND<250		ND<5.0	33	1.3	32	17	
	06/06/07	4.70	460	230	ND<250		ND<5.0	40	1.9	39	22	
	10/04/07	4.75	320	230	ND<250		ND<5.0	28	ND<0.5	29	17	
	01/18/08	4.16	470	200	ND<250		ND<5.0	29	1.5	34	20	
	03/25/08	4.59	ND<50	63	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
	07/24/08	4.77	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
	10/31/08	4.94	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
	01/27/08	4.52	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
	05/04/09	4.46	ND<50	ND<50	ND<250		ND<5.0	0.53	ND<0.5	ND<0.5	ND<0.5	
	12/11/09	4.03	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
	03/02/10	3.45	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
	06/08/10	4.29	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	

Table 3: Groundwater Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE	MTBE	Benzene	Toluene	Ethyl	Xylenes
	Date	Water								benzene	
		-		Method 8	1	8260B			Method 80		
	~		(μg/L)	(μg/L)	(μg/L)	1.000	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
ESL - NDW -			2,500	2,500	2,500	1,800	1,800	2,000	400	300	5,300
ESL - NDW -	ESL - NDW - Aquatic Habitat Goal		210	210	210	8,000	8,000	46	130	300	100
MW-4	07/30/99	5.45	340				ND<10	57	2.2	8.5	6.8
	11/09/99	5.31	1,000				ND<10	220	< 0.5	17	7.1
	02/23/00	2.72	980				ND<5.0	260	7	33	27
	05/26/00	5.07	760				5.7	170	4.8	22	13
	10/10/00	5.32	520				ND<10	130	2.3	22	10
	02/07/01	4.73	680				ND<8.0	180	3.7	29	21
	05/25/01	4.90	1,700				ND<10	510	9.6	44	46
	09/19/01	5.16	680				ND<10	200	2.6	33	12
	02/06/02	4.65	710				ND<15	220	2.8	40	21
	05/17/02	4.90	1,300	190		3.3	ND<10	330	5.6	61	51
	08/20/02	5.02	580	120	ND<5,000		ND<5.0	160	1.7	34	13
	01/10/03	3.78	800	85	ND<5,000		ND<20	240	2.5	46	28
	04/14/03	4.11	850	120			ND<10	220	2.7	47	26
	07/14/03	4.75	780	170			ND<20	220	1.4	44	23
	10/14/03	5.25	420	110	ND<250		ND<5.0	120	0.95	31	8.2
	01/13/04	4.07	120	69	ND<250		ND<10	30	0.52	8.1	4.7
	04/15/04	4.70	660	120	ND<250		ND<25	200	2.2	39	24
	07/15/04	5.09	500	92	ND<250		ND<5.0	130	1.3	35	15
	10/18/04	5.09	350	18	ND<250		ND<5.0	76	0.68	22	4.9
	01/25/05	4.02	580	110	ND<250		ND<5.0	140	1.2	37	20
	04/19/05	4.17	790	130	ND<250		ND<5.0	200	1.7	51	28
	07/18/05	4.49	490	140	ND<250		ND<5.0	140	0.99	36	11
	10/18/05	4.83	320	84	ND<250		ND<5.0	72	0.59	20	4.4
	01/11/06	3.58	310	98	ND<250		ND<5.0	88	0.65	26	9.0
	03/13/06	3.58	490	77	ND<250	1.9	ND<5.0	92	0.88	31	15
	06/15/06	4.37	460	86	ND<250		ND<25	93	ND<0.5	29	9.2
	09/20/06	4.86	260	170	360		ND<10	63	ND<0.5	23	4.7
	01/02/07	4.17	160	78	ND<250		ND<5.0	27	ND<0.5	10	2.0
	06/06/07	4.68	190	59	ND<250		ND<5.0	40	ND<0.5	14	3.6
	10/04/07	4.78	180		ND<250		ND<5.0	44	ND<0.5	12	2.2
	01/18/08	4.07	100	ND<50	ND<250		ND<5.0	18	ND<0.5	6	1.4
	03/25/08	4.61	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	07/24/08	4.78	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/31/08	4.90	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/27/08	4.47	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	05/04/09	4.19	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/11/09	4.08	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/02/10	3.29	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/08/10	4.25	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5

Table 3: Groundwater Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE	MTBE	Benzene	Toluene	Ethyl	Xylenes
	Date	Water								benzene	
			EPA Method 8015		8260B		EPA Method 8021B				
			$(\mu g/L)$	(µg/L)	(µg/L)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ESL - NDW - Ceiling Value			2,500	2,500	2,500	1,800	1,800	2,000	400	300	5,300
ESL - NDW -	Aquatic Hal	bitat Goal	210	210	210	8,000	8,000	46	130	300	100
TW-5	10/10/00		5,800	2,900	ND<250		ND<50	650	60	190	230
	02/07/01		720	650	450		ND<5.0	6.0	4.5	3.2	4.5
	05/25/01		370	420	ND<250		ND<5.0	13.0	4.1	1.6	1.3
	09/19/01	6.59	15,000	2,700,000	¹ 1,100,000 ¹		530	29	2.7	14	240
	02/06/02		280	55,000	$18,000^{1}$		ND<5.0	2.3	0.74	ND<0.5	0.70
	05/17/02	6.56	480	41,000		ND<5.0	ND<5.0	1.6	1.1	0.8	ND<0.5
	08/20/02	6.62	240	21,000	ND<5,000		ND<5.0	8.0	1.2	1.1	0.54
	01/10/03	4.66	ND<50	1,300	ND<5,000		ND<5.0	5.4	0.58	ND<0.5	1.10
	4/14/2003	5.30	160	2,300			ND<5.0	18	5.7	5.9	16
	7/14/2003	5.84	100	16,000			ND<5.0	1.2	0.77	0.63	1.2
	10/14/03	6.08	120	10,000	4,600		ND<5.0	1.6	1.6	ND<0.5	1.2
	01/13/04	4.83	110	2,100	1,400		ND<5.0	8.4	1.2	ND<0.5	3.9
	04/15/04	5.64	170	2,200	1,100		ND<5.0	2.5	1.2	ND<0.5	5.1
	07/15/04	5.89	81	3,000	1,600		ND<5.0	5	1.3	0.85	4.1
	10/18/04	5.89	230	3,700	1,600		ND<5.0	0.54	3.4	ND<0.5	0.93
	01/25/05	5.13	63	750	640		ND<5.0	ND<0.5	0.78	ND<0.5	1.3
	04/19/05	5.27	ND<50	1,100	660		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	07/18/05	5.76	ND<50	770	490		ND<5.0	ND<0.5	0.88	ND<0.5	ND<0.5
	10/18/05	6.04	78	1,600	1,100		ND<5.0	ND<0.5	1.6	ND<0.5	ND<0.5
	01/11/06	4.72	ND<50	680	550	ND<0.5	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/13/06	4.51	ND<50	180	260	ND<0.5	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/02/07	Well Desti	royed 12/2	0/06							
MW-6	03/13/06	5.69	87	160	310	ND<0.5	ND<5.0	ND<0.5	0.83	1.3	0.80
	06/15/09	6.50	ND<50	110	ND<250		ND<5.0	ND<0.5	ND<0.5	1.0	0.58
	09/20/06	6.84	ND<50	59	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/02/07	6.44	ND<50	120	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/06/07	6.82	ND<50	76	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/04/07	6.83	ND<50	100	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/18/08	6.39	ND<50	130	ND<250		ND<5.0	ND<0.5	ND<0.5	1.3	ND<0.5
	03/25/08	6.61	ND<50		ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	07/24/08	6.79	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/31/08	6.92	ND<50	ND<50	ND<250		5.2	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/27/08	6.32	ND<50	ND<50	ND<250		5.2	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	05/04/09	6.40	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/11/09	6.07	ND<50	ND<50	ND<250		5.3	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/02/10	5.46	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/08/10	6.47	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5

Table 3: Groundwater Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE	MTBE	Benzene	Toluene	Ethyl	Vylonos
Sample 1D	Date	Water	11 11-g	11 11-u	11 11-1110	MIIDE	MIIDE	Denzene	Toluelle	benzene	Xylenes
	Date	water	EPA Method 8015			8260B		FPΔ			
			$(\mu g/L)$	(μg/L)	(μg/L)	0200D	(µg/L)	(μg/L)	Method 80 (μg/L)	$\frac{21D}{(\mu g/L)}$	(µg/L)
ESL - NDW -	Ceiling Val	ue	2,500	2,500	2,500	1,800	1,800	2,000	400	300	5,300
ESL - NDW -			210	210	210	8,000	8,000	46	130	300	100
	-					ŕ					
MW-7	03/13/06	3.36	460	3,500	360	ND<0.5	ND<5.0	2.5	1.0	ND<0.5	3.3
	06/15/09	3.95	ND<50	520	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	09/20/06	4.77	ND<50	150	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/02/07	4.17	ND<50	99	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/06/07	4.69	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	07/11/07		67	150	ND<250		ND<5.0	17	ND<0.5	ND<0.5	ND<0.5
	10/04/07	5.15	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/18/08	4.15	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/25/08	4.33	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	07/24/08	4.98	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/31/08	5.29	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/27/08	4.69	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	05/04/09	4.07	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/11/09	4.34	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/02/10	3.26	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/08/10	3.89	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-8	03/13/06	4.64	280	130	ND<250	ND<0.5	ND<5.0	ND<0.5	2.0	ND<0.5	1.3
	06/15/09	5.21	ND<50	140	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	09/20/06	6.03	ND<50	65	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/02/07	5.97	ND<50	70	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/06/07	5.93	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/04/07	6.64	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/18/08	5.35	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/25/08	5.67	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	07/24/08	6.28	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/31/09	6.42	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/27/08	6.16	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	05/04/09	5.29	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/11/09	5.52	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/02/10	4.43	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/08/10	5.09	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MAN	02/12/06	4.22	1 100	14.0001	4.100	2.4	NID .5.0	0.5	1.0	0.64	100
MW-9	03/13/06	4.32	1,100	14,000 ¹	4,100	2.4	ND<5.0	85	1.8	0.64	100
	06/15/09	5.35	460	2,100	710		ND<5.0	170	0.73	1.3	8.3
	09/21/06	5.81	130	1,400	460		ND<5.0	20	1.2	ND<0.5	2.6
	01/02/06	5.19	88	4,300	1,000		ND<5.0	5.1	0.67	ND<0.5	ND<0.5
	06/06/07	5.67	64	320	250		ND<5.0	12	ND<0.5	ND<0.5	ND<0.5
	10/04/07	5.89	ND<50	140	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5

Table 3: Groundwater Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE	MTBE	Benzene	Toluene	Ethyl	Xylenes
	Date	Water								benzene	
			EPA Method 8015		8260B	ı	EPA Method 8021B				
			(µg/L)	(µg/L)	$(\mu g/L)$		(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$
ESL - NDW - Ceiling Value			2,500	2,500	2,500	1,800	1,800	2,000	400	300	5,300
ESL - NDW - Aquatic Habitat Goal		bitat Goal	210	210	210	8,000	8,000	46	130	300	100
MW-9	01/18/08	5.13	250	160	ND<250		ND<5.0	100	ND<0.5	1.3	7.6
continued	03/25/08	5.56	740	210	ND<250		10.0	290	1.5	2.6	16
	07/24/08	5.75	680	230	ND<250		ND<10	330	0.69	2.4	7.0
	10/31/08	6.88	62	130	ND<250		ND<5.0	20	ND<0.5	ND<0.5	ND<0.5
	01/27/08	5.42	ND<50	100	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	05/04/09	5.17	190	ND<50	ND<250		ND<5.0	85	ND<0.5	0.66	1.8
	12/11/09	5.10	< 50	52	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/02/10	4.29	ND<50	ND<50	ND<250		ND<5.0	7.1	ND<0.5	ND<0.5	ND<0.5
	06/08/10	5.25	ND<50	ND<50	ND<250		ND<5.0	10	ND<0.5	ND<0.5	ND<0.5
MW-10	03/13/06	3.28	ND<50	220	ND<250	2.7	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/15/09	4.38	ND<50	300	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	09/21/06	4.79	ND<50	280	460		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/02/07	4.66	ND<50	230	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/06/07		ND<50	230	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/04/07	4.74	ND<50	120	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/18/08	3.92	79	220	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/25/08	4.06	340	82	ND<250		ND<5.0	0.95	ND<0.5	ND<0.5	1.1
	07/24/08	4.78	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/31/08	4.78	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/27/08	4.32	130	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	05/04/09	4.06	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/11/09	3.88	55	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/02/10	3.14	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/08/10	4.15	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-11	01/02/07	3.94	160	2,700	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	1.7
	6//06/07	4.51	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	07/11/07	4.95	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/04/07	5.03	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/18/08	3.92	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/25/08	4.06	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	07/24/08	4.06	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/31/08	5.05	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/27/08	4.45	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	05/04/09	3.85	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/11/09	4.12	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/02/10	3.03	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/08/10	3.63	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5

Table 3: Groundwater Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE	MTBE	Benzene	Toluene	Ethyl	Xylenes
	Date	Water								benzene	
				Method 8		8260B			Method 80		
			(µg/L)	(µg/L)	$(\mu g/L)$		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
ESL - NDW -	Ceiling Val	ue	2,500	2,500	2,500	1,800	1,800	2,000	400	300	5,300
ESL - NDW -	Aquatic Hal	bitat Goal	210	210	210	8,000	8,000	46	130	300	100
MW-12	01/02/07	3.43	53	130	ND<250		1.4	ND<0.5	ND<0.5	ND<0.5	0.95
	06/06/07	3.81	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<5.0
	10/04/07	4.38	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<5.0
	01/18/08	3.32	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<5.0
	03/25/08	3.62	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<5.0
	07/24/08	4.28	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<5.0
	10/31/08	4.60	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<5.0
	01/27/08	3.89	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	05/04/09	3.12	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/11/09	3.70	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/02/10	2.62	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/08/10	3.21	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
Soil Boring	Water San	nples									
SB7-W-15	10/09/03		ND < 50				ND < 5.0	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
SB8-W-20	10/09/03		1,700.0				8.3	940	2.7	0.58	2.2
SB9-W-20	10/09/03		ND < 50				ND < 5.0	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
SB10-W-15	10/09/03		ND < 50				ND < 5.0	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
SB11-W-15	10/09/03		ND < 50			n plume ha	ND < 5.0	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
SB12-W-15	10/09/03		ND < 50	150	320	320	ND < 5.0	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
SB13-W-20	10/10/03		891				ND < 5.0	27	0.53	2.4	6.2
SB14-W-30	10/10/03		$2,300^{1}$	$72,000^{1}$	ND<5,000)	45	120	7.8	35	100
BH-1	01/31/97		13,000				<60	770	67	530	1,800
BH-4	01/31/97		25,000				< 50	1,300	110	1,200	2,400
BH-6	01/31/97		27,000				230	5,000	410	1,100	2,400
Pit GW	09/15/96		48,000				<130	4,100	3,500	21,000	6,400

TPH-g = total petroleum hydrocarbons as gasoline

TPH-d = total petroleum hydrocarbons as diesel

TPH-mo = total petroleum hydrocarbons as motor oil

MTBE = methyl tert-butyl ether

1 = light non-aqueous phase liquid

 μ g/L = micrograms per liter (parts per billion)

---- not sampled

ND = not detected

Table 4: Groundwater Elevation Data
Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevation Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
MW-1	07/30/99	10.68	5.82	4.86	
1,1,1,	11/09/99	10.68	5.70	4.98	0.12
	02/23/00	10.68	2.84	7.84	2.86
	05/26/00	10.68	5.50	5.18	-2.66
	10/10/00	10.68	5.70	4.98	-0.20
	02/07/01	10.68	5.25	5.43	0.45
	05/25/01	10.68	5.25	5.43	0.00
	09/19/01	10.68	5.51	5.17	-0.26
	02/06/02	10.68	NM	NM	NM
	05/17/02	10.68	5.30	5.38	
	08/20/02	10.68	5.39	5.29	-0.09
	01/10/03	10.68	4.11	6.57	1.28
	04/14/03	10.68	4.85	5.83	-0.74
	07/14/03	10.68	5.08	5.60	-0.23
	10/14/03	10.68	5.63	5.05	-0.55
	01/13/04	10.68	4.53	6.15	1.10
	04/15/04	10.68	5.14	5.54	-0.61
	07/15/04	10.68	5.42	5.26	-0.28
	10/18/04	10.68	5.24	5.44	0.18
	01/25/05	10.68	4.47	6.21	0.77
	04/19/05	10.68	4.66	6.02	-0.19
	07/18/05	10.68	4.91	5.77	-0.25
	10/18/05	10.68	5.24	5.44	-0.33
	11/03/05	10.68	5.31	5.37	-0.07
	01/11/06	10.68	4.08	6.60	1.23
	03/13/06	10.68	3.76	6.92	0.32
	06/15/06	10.68	4.79	5.89	-1.03
	09/20/06	10.68	5.38	5.30	-0.59
	01/02/07	10.68	4.64	6.04	0.74
	6/6/2007	10.68	5.14	5.54	-0.50
	10/04/07	10.68	5.32	5.36	-0.18
	01/18/08	10.68	4.58	6.10	0.74
	03/25/08	10.68	5.00	5.68	-0.42
	07/24/08	10.68	5.23	5.45	-0.23
	10/31/08	10.68	5.35	5.33	-0.12
	01/27/09	10.68	4.91	5.77	0.44
	05/04/09	10.68	4.70	5.98	0.21
	12/11/09	10.68	4.46	6.22	0.24
	03/02/10	10.68	3.76	6.92	0.70
	06/08/10	10.68	4.73	5.95	-0.97
MW-2	07/30/99	12.15	6.64	5.51	
	11/09/99	12.15	6.42	5.73	0.22
	02/23/00	12.15	3.31	8.84	3.11
	05/26/00	12.15	6.34	5.81	-3.03
	10/10/00	12.15	6.52	5.63	-0.18
	02/07/01	12.15	5.90	6.25	0.62

Table 4: Groundwater Elevation Data
Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevation Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
MW-2	05/25/01	12.15	6.08	6.07	-0.18
continued	09/19/01	12.15	6.53	5.62	-0.45
	02/06/02	12.15	5.72	6.43	0.81
	05/17/02	12.15	6.17	5.98	-0.45
	08/20/02	12.15	NM	NM	NM
	01/10/03	12.15	5.12	7.03	
	04/14/03	12.15	4.98	7.17	0.14
	07/14/03	12.15	5.99	6.16	-1.01
	10/14/03	12.15	6.43	5.72	-0.44
	01/13/04	12.15	5.42	6.73	1.01
	04/15/04	12.15	6.02	6.13	-0.60
	07/15/04	12.15	5.27	6.88	0.75
	10/18/04	12.15	6.12	6.03	-0.85
	04/19/05	12.15	5.61	6.54	0.51
	07/18/05	12.15	5.84	6.31	-0.23
	10/19/05	12.15	6.17	5.98	-0.33
	11/03/05	12.15	6.21	5.94	-0.04
	01/11/06	12.15	5.11	7.04	1.10
	03/13/06	12.15	5.24	6.91	-0.13
	06/15/06	12.15	6.23	5.92	-0.99
	09/20/06	12.15	6.63	5.52	-0.40
	01/02/06	12.15	6.09	6.06	0.54
	6/6/2007	12.15	6.57	5.58	-0.48
	10/04/07	12.15	6.63	5.52	-0.06
	01/18/08	12.15	6.06	6.09	0.57
	03/25/08	12.15	6.45	5.70	-0.39
	07/24/08	12.15	6.58	5.57	-0.13
	10/31/08	12.15	6.81	5.34	-0.23
	01/27/09	12.15	6.30	5.85	0.51
	05/04/09	12.15	6.05	6.10	0.25
	12/11/09	12.15	5.87	6.28	0.18
	03/02/10	12.15	5.15	7.00	0.72
	06/08/10	12.15	6.18	5.97	-1.03
MW-3	07/30/99	10.40	5.35	5.05	
	11/09/99	10.40	5.11	5.29	0.24
	02/23/00	10.40	2.37	8.03	2.74
	05/26/00	10.40	4.98	5.42	-2.61
	10/10/00	10.40	5.24	5.16	-0.26
	02/07/01	10.40	4.73	5.67	0.51
	05/25/01	10.40	4.73	5.67	0.00
	09/19/01	10.40	5.07	5.33	-0.34
	02/06/02	10.40	4.69	5.71	0.38
	05/17/02	10.40	4.80	5.60	-0.11
	08/20/02	10.40	4.97	5.43	-0.17
	01/10/03	10.40	3.59	6.81	1.38
	0 1, 10, 00	20.10	0.07	U.U.	1.50

Table 4: Groundwater Elevation Data
Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevation Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
MW-3	07/14/03	10.40	4.69	5.71	0.71
continued	10/14/03	10.40	5.16	5.24	-0.47
	01/13/04	10.40	4.15	6.25	1.01
	04/15/04	10.40	4.73	5.67	-0.58
	07/15/04	10.40	5.03	5.37	-0.30
	10/18/04	10.40	4.85	5.55	0.18
	01/25/05	10.40	4.13	6.27	0.72
	04/19/05	10.40	4.23	6.17	-0.10
	07/18/05	10.40	4.56	5.84	-0.33
	10/18/05	10.40	4.82	5.58	-0.26
	11/03/05	10.40	4.87	5.53	-0.05
	01/11/06	10.40	3.62	6.78	1.25
	03/13/06	10.40	3.47	6.93	0.15
	06/15/06	10.40	4.38	6.02	-0.91
	08/02/06	10.40	4.69	5.71	-0.31
	09/20/06	10.40	4.84	5.56	-0.15
	01/02/07	10.40	3.73	6.67	1.11
	6/6/2007	10.40	4.7	5.7	-0.97
	10/04/07	10.40	4.75	5.65	-0.05
	01/18/08	10.40	4.16	6.24	0.59
	03/25/08	10.40	4.59	5.81	-0.43
	07/24/08	10.40	4.77	5.63	-0.18
	10/31/08	10.40	4.94	5.46	-0.17
	01/27/09	10.40	4.52	5.88	0.42
	05/04/09	10.40	4.46	5.94	0.06
	12/11/09	10.40	4.03	6.37	0.43
	03/02/10	10.40	3.45	6.95	0.58
	06/08/10	10.40	4.29	6.11	-0.84
MW-4	07/30/99	10.31	5.45	4.86	
	11/09/99	10.31	5.31	5.00	0.14
	02/23/00	10.31	2.72	7.59	2.59
	05/26/00	10.31	5.07	5.24	-2.35
	10/10/00	10.31	5.32	4.99	-0.25
	02/07/01	10.31	4.73	5.58	0.59
	05/25/01	10.31	4.90	5.41	-0.17
	09/19/01	10.31	5.16	5.15	-0.26
	02/06/02	10.31	4.65	5.66	0.51
	05/17/02	10.31	4.90	5.41	-0.25
	08/20/02	10.31	5.02	5.29	-0.12
	01/10/03	10.31	3.78	6.53	1.24
	04/14/03	10.31	4.11	6.20	-0.33
	07/14/03	10.31	4.75	5.56	-0.64
	10/14/03	10.31	5.28	5.03	-0.53
	01/13/04	10.31	4.07	6.24	1.21
	04/15/04	10.31	4.70	5.61	-0.63
	07/15/04	10.31	5.09	5.22	-0.39

Table 4: Groundwater Elevation Data
Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevatior Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
MW-4	10/18/04	10.31	4.86	5.45	0.23
continued	01/25/05	10.31	4.02	6.29	0.84
	04/19/05	10.31	4.17	6.14	-0.15
	07/18/05	10.31	4.49	5.82	-0.32
	10/18/05	10.31	4.83	5.48	-0.34
	11/03/05	10.31	4.88	5.43	-0.05
	01/11/06	10.31	3.58	6.73	1.30
	03/13/06	10.31	3.28	7.03	0.30
	06/15/06	10.31	4.37	5.94	-1.09
	09/20/06	10.31	4.86	5.45	-0.49
	01/02/07	10.31	4.17	6.14	0.69
	6/6/2007	10.31	4.68	5.63	-0.51
	10/04/07	10.31	4.78	5.53	-0.31
	01/18/08	10.31	4.07	6.24	0.71
	03/25/08	10.31	4.61	5.70	-0.54
	07/24/08	10.31	4.78	5.53	-0.34
		10.31	4.78 4.79	5.52	-0.17 -0.01
	10/31/08 01/27/09	10.31		5.84	0.32
			4.47		
	05/04/09	10.31	4.19	6.12	0.28
	12/11/09	10.31	4.08	6.23	0.11
	03/02/10	10.31	3.29	7.02	0.79
	06/08/10	10.31	4.25	6.06	-0.96
TW-5	09/19/01		6.59		
	05/17/02		6.56		0.03
	08/20/02		6.62		-0.06
	01/10/03		4.66		1.96
	04/14/03		5.30		-0.64
	07/14/03		5.84		-0.54
	07/14/03		5.84		0.00
	10/14/03		6.08		-0.24
	01/13/04		4.83		1.25
	04/15/04		5.64		-0.81
	07/15/04		5.89		-0.25
	10/18/04		5.95		-0.06
	01/25/05		5.13		0.82
	04/19/05		5.27		-0.14
	07/18/05		5.76		-0.49
	10/18/05		6.04		-0.28
	11/03/05		6.09		-0.05
	01/11/06		4.72		1.37
	04/26/06	 -	5.02		#REF!
	01/02/07	Well Destroyed 12/2			πIXL21*!

Table 4: Groundwater Elevation Data
Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevation Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
MW-6	03/13/06	12.35	5.69	6.66	
	06/15/06	12.35	6.50	5.85	-0.81
	09/20/06	12.35	6.84	5.51	-0.34
	01/02/07	12.35	6.44	5.91	0.40
	6/6/2007	12.35	6.82	5.53	-0.38
	10/04/07	12.35	6.83	5.52	-0.01
	01/18/08	12.35	6.39	5.96	0.44
	03/25/08	12.35	6.61	5.74	-0.22
	07/24/08	12.35	6.79	5.56	-0.18
	10/31/08	12.35	6.92	5.43	-0.13
	01/27/09	12.35	6.32	6.03	0.60
	05/04/09	12.35	6.40	5.95	-0.08
	12/11/09	12.35	6.07	6.28	0.33
	03/02/10	12.35	5.46	6.89	0.61
	06/08/10	12.35	6.47	5.88	-1.01
MW-7	03/13/06	11.16	3.36	7.80	
	06/15/06	11.16	3.95	7.21	-0.59
	09/20/06	11.16	4.77	6.39	-0.82
	01/02/07	11.16	4.17	6.99	0.60
	6/6/2007	11.16	4.69	6.47	-0.52
	10/04/07	11.16	5.15	6.01	-0.46
	01/18/08	11.16	4.15	7.01	1.00
	03/25/08	11.16	4.33	6.83	-0.18
	07/24/08	11.16	4.98	6.18	-0.65
	10/31/08	11.16	5.29	5.87	-0.31
	01/27/09	11.16	4.69	6.47	0.60
	05/04/09	11.16	4.07	7.09	0.62
	12/11/09	11.16	4.34	6.82	-0.27
	03/02/10	11.16	3.26	7.90	1.08
	06/08/10	11.16	3.89	7.27	-0.63
MW-8	03/13/06	12.42	4.64	7.78	
	06/15/06	12.42	5.21	7.21	-0.57
	09/20/06	12.42	6.03	6.39	-0.82
	01/02/07	12.42	5.97	6.45	0.06
	6/6/2007	12.42	5.93	6.49	0.04
	10/04/07	12.42	6.64	5.78	-0.71
	01/18/08	12.42	5.35	7.07	1.29
	03/25/08	12.42	5.67	6.75	-0.32
	07/24/08	12.42	6.28	6.14	-0.61
	10/31/08	12.42	6.42	6.00	-0.14
	01/27/09	12.42	6.16	6.26	0.26
	05/04/09	12.42	5.29	7.13	0.87
	12/11/09	12.42	5.52	6.90	-0.23
	03/02/10	12.42	4.43	7.99	1.09
	06/08/10	12.42	5.09	7.33	-0.66

Table 4: Groundwater Elevation Data
Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevation Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
MW-9	03/13/06	11.22	4.32	6.90	
	06/15/06	11.22	5.35	5.87	-1.03
	08/02/06	11.22	5.70	5.52	-0.35
	09/20/06	11.22	5.81	5.41	-0.11
	01/02/07	11.22	5.19	6.03	0.62
	6/6/2007	11.22	5.67	5.55	-0.48
	10/04/07	11.22	5.89	5.33	-0.22
	01/18/08	11.22	5.13	6.09	0.76
	03/25/08	11.22	5.56	5.66	-0.43
	07/24/08	11.22	5.75	5.47	-0.19
	10/31/08	11.22	6.88	4.34	-1.13
	01/27/09	11.22	5.42	5.80	1.46
	05/04/09	11.22	5.17	6.05	0.25
	12/11/09	11.22	5.10	6.12	0.07
	05/04/09	11.22	4.27	6.95	0.83
	06/08/10	11.22	5.25	5.97	-0.98
MW-10	03/13/06	10.31	3.28	7.03	
	06/15/06	10.31	4.34	5.97	-1.06
	08/02/06	10.31	4.66	5.65	-0.32
	09/20/06	10.31	4.79	5.52	-0.13
	01/02/07	10.31	4.26	6.05	0.53
	6/6/2007	10.31	4.66	5.65	-0.40
	10/04/07	10.31	4.74	5.57	-0.08
	01/18/08	10.31	4.12	6.19	0.62
	03/25/08	10.31	4.42	5.89	-0.30
	07/24/08	10.31	4.78	5.53	-0.36
	01/27/09	10.31	4.32	5.99	0.46
	05/04/09	10.31	4.06	6.25	0.26
	12/11/09	10.31	3.88	6.43	0.18
	03/02/10	10.31	3.14	7.17	0.74
	06/08/10	10.31	4.15	6.16	-1.01
MW-11	01/02/07	10.96	3.94	7.02	
	6/6/2007	10.96	4.51	6.45	-0.57
	10/04/07	10.96	5.03	5.93	-0.52
	01/18/08	10.96	3.92	7.04	1.11
	03/25/08	10.96	4.06	6.90	-0.14
	07/24/08	10.96	4.78	6.18	-0.72
	10/31/08	10.96	5.05	5.91	-0.27
	01/27/09	10.96	4.45	6.51	0.60
	05/04/09	10.96	3.85	7.11	0.60
	12/11/09	10.96	4.12	6.84	-0.27
	03/02/10	10.96	3.03	7.93	1.09
	06/08/10	10.96	3.63	7.33	-0.60

Table 4: Groundwater Elevation Data
Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation * (ft amsl)	Depth to Water (ft)	Groundwater Elevation (ft amsl)	Elevation Change (ft)
MW-12	01/02/07	10.46	3.43	7.03	
141 44 - 12	6/6/2007	10.46	3.43	6.65	-0.38
	10/04/07	10.46	4.38	6.08	-0.57
	01/18/08	10.46	3.32	7.14	1.06
	03/25/08	10.46	3.62	6.84	-0.30
	07/24/08	10.46	4.28	6.18	-0.66
	10/31/08	10.46	4.60	5.86	-0.32
	01/27/09	10.46	3.89	6.57	0.71
	05/04/09	10.46	3.12	7.34	0.77
	12/11/09	10.46	3.70	6.76	-0.58
	03/02/10	10.46	2.62	7.84	1.08
	06/08/10	10.46	3.21	7.25	-0.59

 $[\]ast$ Original wells surveyed 12/9/02 by Morrow Surveying, resurveyed on 3/02/06, 1/16/07 by Morrow Surveying Depth to water measured from the top of well casing

NM - not monitored

ft amsl = feet above mean sea level

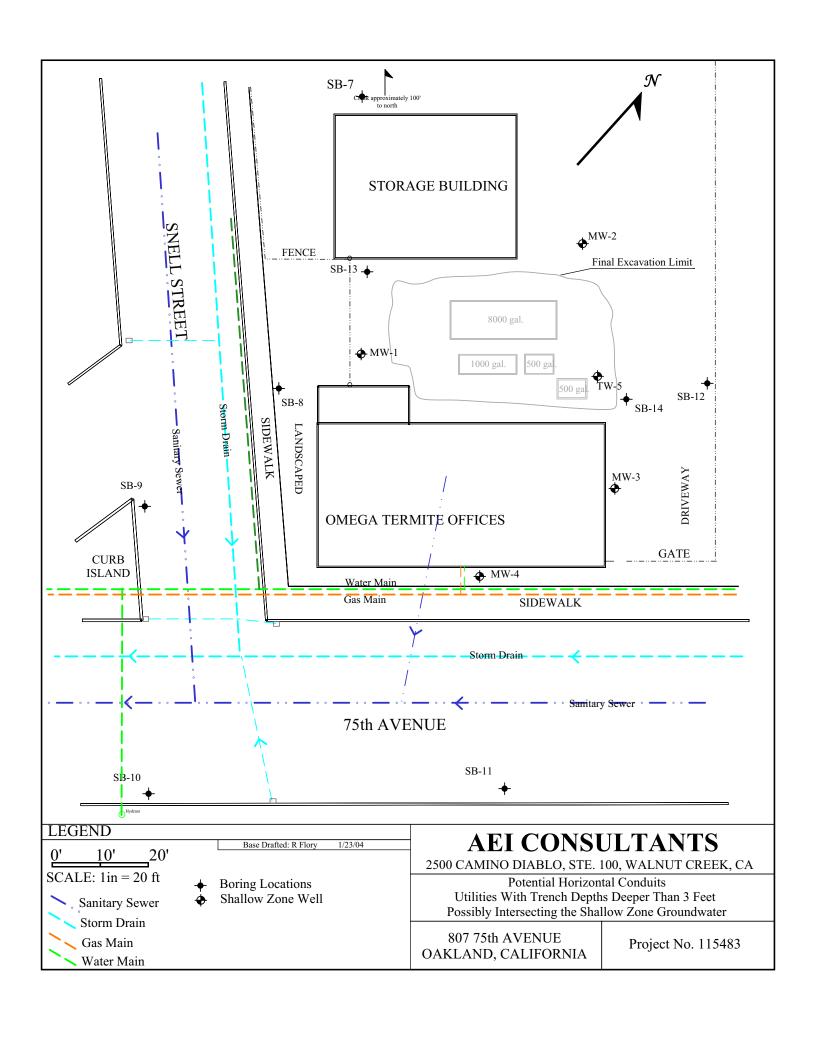
Table 4a: Groundwater Elevation and Flow Direction Summary Omega Termite, 807 75th Ave., Oakland, CA

Episode #	Date	Average Elevation (ft)	Elevation Change (ft)	Flow Direction / Gradient
1	07/30/99	5.07	_	
2	11/09/99	5.25	0.18	0.0056 / SW
3	02/23/00	8.08	2.83	0.008 / S
4	05/26/00	5.41	-2.66	0.003 / SW
5	10/10/00	5.19	-0.22	0.0036 / S
6	02/07/01	5.73	0.54	0.008 / S
7	05/25/01	5.65	-0.09	0.006 / S
8	09/19/01	5.32	-0.33	0.004 / S
9	02/06/02	5.93	0.62	0.004 / S 0.005 / SE
10	05/17/02	5.59	-0.34	0.003 / SE 0.003 / SW
11	08/20/02	5.34	-0.26	0.003 / SW
12	01/10/03	6.74	1.40	0.002 / S 0.006 / E-NE
13				
	04/14/03	6.05	-0.69	0.016 / E-NE
14	07/14/03	5.76	-0.29	.0017 / S-SE
15	10/14/03	5.26	-0.50	0.003 / SE
16	01/13/04	6.34	1.08	0.001 / W
17	04/15/04	5.74	-0.60	0.001 / W
18	07/15/04	5.68	-0.05	0.001 / W
19	10/18/04	5.62	-0.07	0.002 / N
20	01/25/05	6.33	0.71	0.002 / N
21	04/19/05	6.16	-0.17	0.001 / N
22	07/18/05	5.85	-0.31	0.0004 / S
23	10/18/05	5.61	-0.24	0.0017 / SW
24	01/11/06	6.79	1.18	0.0047 / N
25	3/13/06	6.57	-0.21	Shallow Zone .0004 / NW
	3/13/06	7.38		Deeper Zone 0.036 / S
26	6/15/06	5.92	-0.65	Shallow Zone 0.0004 / NW
	6/15/06	6.40	-0.98	Deeper Zone 0.06 / S
27	9/20/06	5.47	-0.46	Shallow Zone 0.005 / SW
	9/20/06	5.93	-0.47	Deeper zone 0.004/ S
28	1/2/07	6.16	0.70	Shallow Zone 0.0004 / NW
	1/2/07	6.52	0.59	Deeper Zone 0.06 / S
29	6/6/07	5.60	-0.57	Shallow Zone 0.0004 / NW
	6/6/07	6.21	-0.31	Deeper Zone 0.06 / S
30	10/4/07	5.52	-0.08	Shallow Zone 0.005 / SW
	10/4/07	5.72	-0.49	Deeper Zone 0.012/ S
31	1/18/08	6.17	0.65	Shallow Zone 0.003/ NW
	1/18/08	6.68	0.96	Deeper Zone .015/ SE
32	3/25/08	5.72	-0.45	Shallow Zone 0.003/ NW
32	3/25/08	6.41	-0.27	Deeper Zone .015/ SE
32	7/24/08	5.55	-0.18	Shallow Zone 0.003/ NW
32	7/24/08	5.85	-0.56	Deeper Zone 0.016/ S
33	10/31/08	5.41	-0.13	Shallow Zone 0.003/ NW
33				
24	10/31/08	5.53	-0.32	Deeper Zone 0.023/ SSE
34	1/27/09	5.84	0.42	Shallow Zone 0.003/ NW
25	1/27/09	6.26	0.73	Deeper Zone 0.021/ SSE
35	5/4/09	6.04	0.20	Shallow Zone 0.0047/ NE
2:	5/4/09	6.73	0.47	Deeper Zone 0.033/ SSW
36	12/11/09	6.28	0.24	Shallow Zone 0.003/SW
	12/11/09	6.67	-0.06	Deeper Zone 0.033/ SE
37	3/2/10	6.97	0.70	Shallow Zone 0.003/ WSW
	3/2/10	7.56	0.89	Deeper Zone 0.015/ SE
	(10.14.0	< 0.0	0.05	01 11 77 0 004/337
38	6/8/10 6/8/10	6.02 6.87	-0.95 -0.69	Shallow Zone 0.004/ W Deeper Zone 0.026/ S

Average water table elevation calculated using Microsoft Excel Shallow Zone Wells: MW-1, MW-2, MW-3, MW-4, MW-6 Deeper Zone Wells: MW-7. MW-8, MW-9, MW-10, MW-11, MW-12

Table 5: Fuel Oxygenate Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Well	Date	TAME	TBA	EDB	1,2-DCA	DIPE	ETBE	MTBE
Number		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	01/02/07	< 0.5	9.7	< 0.5	4.6	< 0.5	< 0.5	0.97
	03/02/10	< 0.5	4.7	< 0.5	0.82	< 0.5	< 0.5	< 0.5
	06/08/10	<0.5	6.0	<0.5	1.5	<0.5	<0.5	0.54
MW-2	01/02/07	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	03/02/10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	06/08/10	<0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5
MW-3	01/02/07	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.55
	03/02/10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	06/08/10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-4	01/02/07	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.0
	03/02/10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.54
	06/08/10	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-6	03/02/10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.6
	06/08/10	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	4.0
MW-7	03/02/10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	06/08/10	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-8	03/02/10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	06/08/10	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-9	01/02/07	< 0.5	< 0.5	< 0.5	0.62	< 0.5	< 0.5	1.6
	03/02/10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	06/08/10	< 0.5	< 0.5	<0.5	0.72	< 0.5	< 0.5	<0.5
MW-10	01/02/07	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.1
	03/02/10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	06/08/10	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5
MW-11	01/02/07	< 0.5	< 0.5	< 0.5	2.9	< 0.5	< 0.5	< 0.5
	03/02/10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	06/08/10	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5
MW-12	01/02/07	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	03/02/10	< 0.5	< 0.5	< 0.5	0.60	< 0.5	< 0.5	< 0.5
	06/08/10	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5


Notes:

 μ g/L = micrograms per liter (parts per billion)

TAME tert-Amyl methyl ether DIPE Diisopropyl ether
TBA t-Butyl alcohol ETBE Ethyl ter-butyl ether
EDB 1,2-Dibomoethane MTBE Methyl-t-butyl ether
1,2-DCA 1,2-Dichloroethane

APPENDIX A

Preferential Pathway and Well Survey

Well location - Table X

Sensitive receptor location - Table xx

AEI CONSULTANTS

2500 Camino Diablo, Suite 100, Walnut Creek, CA 94597

Well Within 1/2 Mile Radius

807 75th Ave FIGURE X Oakland, CA Job No: 115483

WELLS LOCATED WITHIN 1/2 MILE OF SUBJECT SITE AND SENSITIVE RECEPTORS Omega Termite, 807 75th Ave., Oakland, CA

Site Number	Location	Site Name	Address	Well Number	Date Installed	Boring Depth	Well Depth	Surface Pipe	Casing Diameter	Completion	DTW	Pump Test	Comments
						(feet)	(feet)	(feet)	(inches)		(feet)		
Wells W	ithin 1/2 mile r	adius											
1	2S/3W/16G 01	General Electric Co	1034 66th Ave	1	NA	71	71		NA	NA	18.0		20' seal
2	2S/3W/16G 02	City of Oakland	1016 66th Ave	MW-1	02/07/91	20	20		4	6.0 - 20.0	9.0		
	2S/3W/16G 04			MW-2	02/08/91	21	21		4	8.0-21.0	9.0		
	2S/3W/16G 03			MW-3	02/07/91	20.5	20.5		4	10.0-20.0	10.0		
	2S/3W/16G 05			MW-4	07/15/91	21.4	21.4		4	6.0-21.4	5.0		
3	2S/3W/16K 01	Phillips	830-844 69th Ave		NA	17	17	10" unk	6	8.0-17.0			destroyed 4/15/91
4	2S/3W/16L 01	UNOCAL # 3135	845 66th Ave	MW1	04/26/90	23	23		2	5.0-23.0	14.5		
	2S/3W/16L 02			MW2	04/27/90	23	23		2	5.0-23.0	12.5		
	2S/3W/16L 03			MW3	04/26/90	22	23		2	4.0-22.0	10.5		
	2S/3W/16L 07			MW4	08/14/90	26	25		2	5.0-25.0	15		
	2S/3W/16L 08			MW5	08/14/90	26	26		2	6.0-26.0	13.5		
	2S/3W/16L 09			MW6	08/14/90	26	26		2	6.0-26.0	16.5		
	2S/3W/16L 13			MW8	09/29/92	23	23		2	6.0-23.0	13.5		
	2S/3W/16L 14			MW9	09/28/92	23	23		2	6.0-23.0	13.5		
	2S/3W/16L 15			MW10	09/28/92	23	23		2	5.0-23.0	13.5		
5	2S/3W/16L 04	7-UP Bottling	6506 San Leandro Blvd	MW1	08/09/90	15.5	11		2	6.0-11.0	5.0		
	2S/3W/16L 05			MW2	08/09/90	11.5	10.5		2	5.5-10.5	5.5		
	2S/3W/16L 06			MW3	08/09/90	12	11		2	6.0-11.0	NA		
	2S/3W/16L 10		6506 San Leandro St.	MW4	01/27/92	19.5	19.5	15	2/10	6.0-26.0	9.69		
	2S/3W/16L 11 2S/3W/16L 12			MW5 MW6	01/27/92 01/27/92	30.5 19.5	30.5 19.5	15 15	2/10 2/10	6.0-26.0 6.0-26.0	10.72 10.56		
	25/3 W/10L 12				01/2//92	19.3	19.5	13					
6	2S/3W/16M 01	McGuire and Hester	796 66th Ave	MW-1	NA	31	29		2	5.0-29.0	5.5		Destroyed
	2S/3W/16M 02			MW-2	NA	27	25		2	4.5-27.0	5.5		Destroyed
	2S/3W/16M 03			MW-3	NA	36	26		2	7.5-26	9.5		Destroyed
	DWR 740177	Cruise America	796 66th Ave	MW-1	09/18/02	14	14		4	4.5-14.0	3.90		
	DWR 740178			MW-2	09/18/02	14	14		2	4.5-14.0	4.59		
	DWR 740181			MW-3	09/18/02	14	14		2	4.5-14.0	4.44		
	DWR 740180			MW-4	09/18/02	14	14		2	4.5-14.0	4.11		
	DWR 740179			MW-5	09/18/02	14	14		2	4.5-14.0	4.23		Sparge wells
				S-1	04/17/04	20	18		3/4	15.5-18.0			Sparge wells
				S-2	04/17/04	18	18		3/4	15.5-18.0			Sparge wells
				S-3	04/17/04	18.5	18.5		3/4	16.0-18.5			Sparge wells
				S-4	04/17/04	18	18		3/4	15.5-18.0			Sparge wells
				S-5	04/17/04	18.5	18.5		3/4	16.0-18.5			Sparge wells
				S-6	04/17/04	18	17		3/4	14.5-17.0			Sparge wells
				S-7	04/18/04	16.5	16.5		3/4	14.0-16.5			Sparge wells
				S-8	04/18/04	15	14		3/4	12.5-14.0			Sparge wells
				S-9	04/18/04	16.5	16.5		3/4	14.0-16.5			Sparge wells
				S-10	04/18/04	18	15		3/4	13.5-15.0			Sparge wells
				S-11	04/18/04	17	17		3/4	15.5-17.0			Sparge wells
				S-12	04/18/04	15	13.5		3/4	11.0-13.5			Sparge wells

WELLS LOCATED WITHIN 1/2 MILE OF SUBJECT SITE AND SENSITIVE RECEPTORS Omega Termite, 807 75th Ave., Oakland, CA

Site Number	Location	Site Name	Address	Well Number	Date Installed	Boring Depth (feet)	Well Depth (feet)	Surface Pipe (feet)	Casing Diameter (inches)	Completion	DTW (feet)	Pump Test	Comments
Wells W	ithin 1/2 mile ra	adius											
7	2S/3W/16P 01	Oakland Coliseum	Hegenberger & I-880	OW-5A	09/07/90	74	74		4	54.0-74.0	NA	Yes	
	2S/3W/16P 02			OW-4A	09/06/90	100.5	100		4	80.0-100.0	18	Yes	
	2S/3W/16P 03			OW-1B	09/06/90	93.5	93		4	86.0-93.0	NA	Yes	
	2S/3W/16P 04			OW-5B	09/05/90	107	102		4	92.0-102.0	16.75	Yes	
	2S/3W/16P 05			OW-6B	09/09/90	77	72.5		4	50.5-7.25	18.85	Yes	
	2S/3W/16P 06			OW-2	09/04/90	86	82.5		4	62.0-82.0	14.44	Yes	
	2S/3W/16P 08			OW-1A	09/03/90	80	75.5	54.4	1/6	54.4-74.0	14.42	Yes	Double cased & perf
	2S/3W/16P 09			OW-4A	09/09/90	72	70	51	1/6	51.0-70.0	14.6	Yes	Double cased & perf
	2S/3W/16P 10			OW-7	09/10/90	100	72		4	52.0-72.0	NA		
	2S/3W/16P 11			OW-6A	09/06/90	100	97.5		4	77.5-97.5	18.6	Yes	
8	2S/3W/16Q 01	AeroQuality Plating/DHS		A-1	12/19/90	14.5	14.5		4	11.5-14.5	NA		
	2S/3W/16Q 02			A-2	12/20/90	27	24		4	14.5-24	NA		
	2S/3W/16Q 03			A-3	12/20/90	27	24		4	14.5-24	NA		
	2S/3W/16Q 04			B-1	01/18/91	66.5	63	25	4/12	53.0-63.0	NA		
	2S/3W/16Q 05			B-2	01/16/91	63	63	30	4/12	53.0-63.0	NA		
	2S/3W/16Q 06			B-3	01/16/91	69.5	67	30	4/12	57.0-67.0	NA		
9	2S/3W/16R 01	Amer. Brass & Foundry	7825 San Leandro St.	W-1429	04/04/77	510	495	50	14/30	176.0-495.0	92.5	1000 gpm	Water well
	2S/3W/16R 16	Amer. Brass & Iron		MW-1	02/09/93	23	20		2	10.0-20.0	5		
	2S/3W/16R 17			MW-2	02/09/93	17	17		2	8.0-17.0	5		
	2S/3W/16R 18			MW-3	02/09/93	19.5	19		2	9.0-19.0	NA		
	2S/3W/16R 19			MW-4	02/09/93	26.5	15		2	10.0-25.0	6.3		
	2S/3W/16R 23			MW-4	02/09/93	18	17		2	7.0-17.0	9.3		
10	2S/3W/16R 02	County Recycling Services	800 77th Ave	GX-153A	01/27/84	26	26		8	6.0-26.0	8.8		
11	2S/3W/16R 03	Chip & Steak (Vao Cheney)	958 77th Ave	MW-1	08/09/89	19.8	18.5		2	7.0-18	7.3		
	2S/3W/16R 04			MW-2	08/09/89	24.5	23		2	8.0-23.0	7.45		
	2S/3W/16R 05			MW-3	08/09/89	24.5	24.5		2	9.0-24.5	7.61		
12	2S/3W/16R 08	Samura Trust	860 81st	MW-1	04/08/92	20	20		2	5.0-20	NA		
	2S/3W/16R 09			MW-2	04/08/92	20	20		2	5.0-20	NA		
	2S/3W/16R 10			MW-3	04/08/92	20	20		2	5.0-20	NA		
13	2S/3W/16R 11	Sunshine Biscuits	851 81st Ave.	MW-1	07/23/91	36	35		4	10.0-35.0	NA		
	2S/3W/16R 12			MW-2	07/23/91	36	35		4	9.0-34.0	NA		
	2S/3W/16R 13			MW-3	07/22/91	36	35		4	10.0-35.0	NA		
	2S/3W/16R 14			MW-4	07/22/91	36	35		4	10.0-35.0	NA		
14	2S/3W/16R 06	Mother Cookies	810 81nst Ave	MW-1	04/16/92	37	36.5		4	6.0-36.0	6.17		
	2S/3W/16R 07			MW-2	04/16/92	37	26.5		4	5.0-25.0	6.12		
	2S/3W/16R 15			MW-3	04/16/92	37	26.5		4	5.0-25.0	6.12		
	2S/3W/16R 20			MW-4	10/28/92	25	NA		2	NA	NA		
	2S/3W/16R 21			MW-5	10/28/92	26	24.5		2	4.5-24.5	3.5		

WELLS LOCATED WITHIN 1/2 MILE OF SUBJECT SITE AND SENSITIVE RECEPTORS Omega Termite, 807 75th Ave., Oakland, CA

Site	Location	Site Name	Address	Well	Date	Boring	Well	Surface	Casing	Completion	DTW	Pump	Comments
Number				Number	Installed	Depth	Depth	Pipe	Diameter			Test	
						(feet)	(feet)	(feet)	(inches)		(feet)		
Wells W	ithin 1/2 mile ra	adius											
15	2S/3W/16R 23	Amer. Brass & Iron	865 77th Ave	MW-1	11/16/92	18	17		2	7.0-17.0	9.3		
16	2S/3W/21A 02	Mr. Nissin Saidian	8255 San Leandro St.	MW-1	06/24/93	15	15		2	3.0-15.0	NA		
17	2S/3W/21B 01	Former Morris Equipment Yard	8304 Baldwin St	MW-1	09/30/99	23	20		2	6.0-20.0	NA		
18	2S/3W/21C 01	Malibu Grand Prix	8000 S. Coliseum Dr.	MW-1	09/20/89	20	10.5		4	6.0-10.0	6.5		
	2S/3W/21C 02			MW-2	09/20/89	20	16		4	5.0-15.0	7.38		
	2S/3W/21C 03			MW-3	09/20/89	20	17		4	5.0-15.0	9.1		
	2S/3W/21C 04			MW-4	09/21/89	15	14		4	4.0-14.0	5.45		
	2S/3W/21C 05			MW-5	06/12/90	20	19.5		4	4.0-19.0	10.23		
	2S/3W/21C 06			MW-6	06/12/90	20	19		4	4.0-19.0	9.93		
	2S/3W/21C 07			MW-7	06/12/90	20	19.5		4	4.5-19.5	10.28		
	2S/3W/21C 08			MW-8	06/12/90	20	19.5		4	4.5-19.5	3.82		
	2S/3W/21C 09			MW-9	06/13/90	20	15		4	4.5-15.0	4.8		
	2S/3W/21C 10			MW-10	06/13/90	20	19		4	4.0-19.0	5.91		
	2S/3W/21C 11			MW-11	08/28/91	25	20		4	3.5-19.0	10 ?		
	2S/3W/21C 12			MW-12	08/28/91	25	20		4	4.5-20.0	10 ?		
	2S/3W/21C 13			MW-13	08/28/91	25	20		4	4.5-20.0	10 ?		
	2S/3W/21C 14			MW-14	08/27/91	25	20		4	4.5-20.0	10 ?		
	2S/3W/21C 15			MW-15	08/29/91	25	19		4	3.5-19.0	10 ?		
	2S/3W/21C 16			MW-16	08/29/91	20	18.5		4	3.5-18.5	10 ?		
	2S/3W/21C 17			MW-17	08/30/91	25	19.5		4	3.5-19.0	10 ?		
	2S/3W/21C 18			MW-18	08/29/91	21	21		4	5.0-20.0	10 ?		
19	2S/3W/22D 02	Lincoln Property Co	85th & San Leandro	MW-1	10/08/86	19.5	19.5		4	9.0-19.5	10.9		Destroyed
	2S/3W/22D 03			MW-2	10/08/86	19.5	19.5		4	9.0-19.5	8.5		Destroyed
	2S/3W/22D 04			MW-3	10/08/86	19.5	19.5		4	9.0-19.5	8.25		Destroyed
20	2S/3W/22D 08	Crosby&Overton/Driesbach Assoc.	3410 Amelia St	MW-1	06/30/88	30	30		4	10.0-25.0	10.2		

^{1:} Township, Range, Section

Sensitive Receptors Arroyo creek North Boundry of property

APPENDIX B

Groundwater Monitoring Well Field Sampling Forms

GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number: MW-1

Project Name:	Omega Termite (Q2, 2010)	Date of Sampling:	6/8/2010
Job Number:	262157	Name of Sampler:	John Sigg
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2		
Wellhead Condition	ОК		•	
Elevation of Top of Casing (feet above msl)	Elevation of Top of Casing (feet above msl) 10.68			
Depth of Well		20.00		
Depth to Water (from top of casing)	4.73			
Water Elevation (feet above msl)	5.95			
Well Volumes Purged	Micropurge			
Actual Volume Purged (liters)		5.0		
Appearance of Purge Water	Clear			
Free Product Present?	No	Thickness (ft):	NA	

GROUNDWATER SAMPLES

Number of Samples/Container Size				2 - 40ml VOAs, 1 L Amber			
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
1000	1.0	17.24	7.04	943	1.75	123.5	Clear
	2.0	17.2	6.97	948	1.58	106.0	Clear
	3.0	17.17	6.95	949	0.75	97.7	Clear
	4.0	17.22	6.94	951	0.52	88.0	Clear
	5.0	17.25	6.92	956	0.43	74.9	Clear

Purge line @ 12 feet bgs.		

GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring	Well Number:	MW-2
------------	--------------	------

Project Name:	Omega Termite (Q2, 2010)	Date of Sampling:	6/8/2010
Job Number:	262157	Name of Sampler:	John Sigg
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2		
Wellhead Condition	ОК		▼]	
Elevation of Top of Casing (feet above msl)		12.15		
Depth of Well		20.00		
Depth to Water (from top of casing)	6.18			
Water Elevation (feet above msl)	5.97			
Well Volumes Purged	Micropurge			
Actual Volume Purged (liters)		5.0		
Appearance of Purge Water	Clear			
Free Product Present?	No	Thickness (ft):	NA	

GROUNDWATER SAMPLES

Number of Samples/Container Size				2 - 40ml VOAs, 1 L Amber			
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
0940	1.0	17.76	7.14	793	0.90	222.1	Clear
	2.0	17.70	7.03	785	0.48	186.7	Clear
	3.0	17.71	7.02	784	0.40	173.2	Clear
	4.0	17.73	7.07	784	0.37	160.4	Clear
	5.0	17.76	7.09	785	0.36	139.3	Clear

Purge line @ 12 feet bgs.		

GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring	Well Number:	MW-3
------------	--------------	------

Project Name:	Omega Termite (Q2, 2010)	Date of Sampling:	6/8/2010
Job Number:	262157	Name of Sampler:	John Sigg
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2			
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)		10.40			
Depth of Well		20.00			
Depth to Water (from top of casing)	4.29				
Water Elevation (feet above msl)	6.11				
Well Volumes Purged	Micropurge				
Actual Volume Purged (liters)		4.0			
Appearance of Purge Water	Clear				
Free Product Present?	No	Thickness (ft):	NA		

GROUNDWATER SAMPLES

Number of Samples/Container Size			2 - 40ml VOA	s, 1 L Amber			
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
1220	1.0	18.27	7.10	1087	2.33	193.1	Clear
	2.0	17.92	6.98	1080	0.65	187.4	Clear
	3.0	17.79	6.95	1077	0.44	181.3	Clear
	4.0	17.78	6.91	1077	0.38	175.0	Clear

Purge line @ 11 feet bgs.			

GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number:	MW-4
-------------------------	------

Project Name:	Omega Termite (Q2, 2010)	Date of Sampling:	6/8/2010
Job Number:	262157	Name of Sampler:	John Sigg
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2					
Wellhead Condition	OK ▼					
Elevation of Top of Casing (feet above msl)		10.31				
Depth of Well		20.00				
Depth to Water (from top of casing)	4.25					
Water Elevation (feet above msl)	6.06					
Well Volumes Purged	Micropurge					
Actual Volume Purged (liters)	4.0					
Appearance of Purge Water	Clear					
Free Product Present?	No	Thickness (ft):	NA			

GROUNDWATER SAMPLES

Number of Samples/Container Size			2 - 40ml VOAs, 1 L Amber				
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
1140	1.0	18.59	7.08	1093	9.90	199.3	Clear
	2.0	18.44	7.01	1091	2.52	195.2	Clear
	3.0	18.43	6.99	1101	2.17	192.7	Clear
	4.0	18.46	6.96	1136	1.84	189.0	Clear

Purge line @ 12 feet bgs.

GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number:	MW-6
-------------------------	------

Project Name:	Omega Termite (Q2, 2010)	Date of Sampling:	6/8/2010
Job Number:	262157	Name of Sampler:	John Sigg
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA

MONITORING WELL DATA							
Well Casing Diameter (2"/4"/6")		2					
Wellhead Condition	ОК						
Elevation of Top of Casing (feet above msl)		12.35					
Depth of Well		14.00					
Depth to Water (from top of casing)	6.47						
Water Elevation (feet above msl)	5.88						
Well Volumes Purged	Micropurge						
Actual Volume Purged (liters)		5.0					
Appearance of Purge Water	Clear						
Free Product Present?	No	Thickness (ft):	NA				

GROUNDWATER SAMPLES

Number of Samples/Container Size			2 - 40ml VOAs, 1 L Amber				
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
0900	1.0	16.70	7.39	811	3.20	322.4	Clear
	2.0	16.58	7.09	810	1.63	321.7	Clear
	3.0	16.57	7.04	810	1.16	310.4	Clear
	4.0	16.57	7.06	799	1.03	300.6	Clear
	5.0	16.57	7.03	789	0.94	291.8	Clear

Purge line @ 10 feet bgs	

GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring V	Well Number:	MW-7
--------------	--------------	------

Project Name:	Omega Termite (Q2, 2010)	Date of Sampling:	6/8/2010
Job Number:	262157	Name of Sampler:	John Sigg
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2	
Wellhead Condition	ОК		▼
Elevation of Top of Casing (feet above msl)		11.16	
Depth of Well		35.00	
Depth to Water (from top of casing)	3.89		
Water Elevation (feet above msl)	7.27		
Well Volumes Purged	Micropurge		
Actual Volume Purged (liters)		5.0	
Appearance of Purge Water		Clear	
Free Product Present?	No	Thickness (ft):	NA

GROUNDWATER SAMPLES

Number of Samples/Container Size		2 - 40ml VOAs, 1 L Amber					
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
1040	1.0	18.45	7.32	117	7.68	156.0	
	2.0	18.41	7.24	1173	6.68	155.3	
	3.0	18.41	7.2	1173	6.34	155.8	
	4.0	18.41	7.18	1169	6.29	157.0	
	5.0	18.42	7.19	1170	6.23	158.4	

Purge line @ 29 feet bgs.		

GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number:	MW-8
-------------------------	------

Project Name:	Omega Termite (Q2, 2010)	Date of Sampling:	6/8/2010
Job Number:	262157	Name of Sampler:	John Sigg
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA

MONTO WELL DATA						
Well Casing Diameter (2"/4"/6")		2				
Wellhead Condition	ОК		▼			
Elevation of Top of Casing (feet above msl)		12.42				
Depth of Well		35.0				
Depth to Water (from top of casing)	5.09					
Water Elevation (feet above msl)	7.33					
Well Volumes Purged	Micropurge					
Actual Volume Purged (liters)		5.0				
Appearance of Purge Water		Slightly brown				
Free Product Present?	No	Thickness (ft):	NA			

GROUNDWATER SAMPLES

Number of Samples/Container Size		2 - 40ml VOAs, 1 L Amber					
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
0920	1.0	17.89	7.01	1684	0.68	278.1	Cloudy
	2.0	17.95	7.05	1690	0.56	274.0	Cloudy
	3.0	18.00	7.05	1692	0.47	272.0	Cloudy
	4.0	17.98	7.04	1691	0.43	270.6	Cloudy
	5.0	18.04	6.99	1699	0.69	270.5	Cloudy

Purge line @ 29 feet bgs.		

GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number: MW-9

Project Name:	Omega Termite (Q2, 2010)	Date of Sampling:	6/8/2010
Job Number:	262157	Name of Sampler:	John Sigg
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2		
Wellhead Condition	ОК		▼	
Elevation of Top of Casing (feet above msl)		11.22		
Depth of Well		35		
Depth to Water (from top of casing)	5.25			
Water Elevation (feet above msl)		5.97		
Well Volumes Purged		Micropurge		
Actual Volume Purged (liters)		5.0		
Appearance of Purge Water		Clear		
Free Product Present?	No	Thickness (ft):	NA	

GROUNDWATER SAMPLES

Number of Samples/Container Size			2 - 40ml VOAs, 1 L Amber				
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
1020	1.0	17.62	7.54	763	1.57	116.3	Clear
	2.0	17.64	7.46	763	0.67	117.0	Clear
	3.0	17.69	7.44	764	0.59	117.4	Clear
	4.0	17.69	7.40	833	0.64	118.4	Clear
	5.0	17.84	7.23	1227	5.59	123.7	Clear

Purge line @ 29 feet bgs			

GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number:	MW-10
-------------------------	-------

Project Name:	Omega Termite (Q2, 2010)	Date of Sampling:	6/8/2010
Job Number:	262157	Name of Sampler:	John Sigg
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2		
Wellhead Condition	OK		•	
Elevation of Top of Casing (feet above msl)		10.31		
Depth of Well		35.00		
Depth to Water (from top of casing)	4.15			
Water Elevation (feet above msl)		6.16		
Well Volumes Purged	Micropurge			
Actual Volume Purged (liters)		5.0		
Appearance of Purge Water		Clear		
Free Product Present?	No	Thickness (ft):	NA	

GROUNDWATER SAMPLES

Number of Sample	Number of Samples/Container Size			2 - 40ml VOAs, 1 L Amber			
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
1200	1.0	18.38	6.91	1361	4.30	20.4.1	Clear
	2.0	18.21	6.80	1360	1.32	199.1	Clear
	3.0	18.20	6.77	1357	0.96	197.8	Clear
	4.0	18.15	6.76	1352	0.79	196.3	Clear
	5.0	18.13	6.75	1346	0.66	191.5	Clear

Purge line @ 29 feet bgs.		

GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number: MW-11

Project Name:	Omega Termite (Q2, 2010)	Date of Sampling:	6/8/2010
Job Number:	262157	Name of Sampler:	John Sigg
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2		
Wellhead Condition	ОК		•	
Elevation of Top of Casing (feet above msl)		10.96		
Depth of Well		35.00		
Depth to Water (from top of casing)	3.63			
Water Elevation (feet above msl)		7.33		
Well Volumes Purged	Micropurge			
Actual Volume Purged (liters)		5.0		
Appearance of Purge Water		Clear		
Free Product Present?	No	Thickness (ft):	NA	

GROUNDWATER SAMPLES

Number of Samples/Container Size			2 - 40ml VOAs, 1 L Amber				
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
1100	1.0	18.73	7.55	937	7.94	170.1	Cloudy
	2.0	18.50	7.43	1026	6.71	166.9	Clearing
	3.0	18.42	7.44	1046	7.60	164.1	Clear
	4.0	18.41	7.45	1046	7.73	163.0	Clear
	5.0	18.40	7.45	1046	7.83	162.4	Clear

Purge line @ 29 feet bgs.		

GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number: MW-12

Project Name:	Omega Termite (Q2, 2010)	Date of Sampling:	6/8/2010
Job Number:	262157	Name of Sampler:	John Sigg
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2					
Wellhead Condition	OK		•				
Elevation of Top of Casing (feet above msl)		10.46					
Depth of Well		35.00					
Depth to Water (from top of casing)		3.21					
Water Elevation (feet above msl) 7.25							
Well Volumes Purged		Micropurge					
Actual Volume Purged (liters)		4.0					
Appearance of Purge Water		Clear					
Free Product Present?	No	Thickness (ft):	NA				

GROUNDWATER SAMPLES

Number of Sample	es/Container S	Size		2 - 40ml VOAs, 1 L Amber							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments				
1120	1.0	18.80	7.64	785	12.60	182.1	Cloudy				
	2.0	18.73	7.51	783	13.50	179.7	Clearing				
	3.0	18.70	7.46	780	13.99	178.0	Clear				
	4.0	18.68	7.44	780	14.14	177.8	Clear				
	5.0	18.67	7.35	788	14.88	180.4	Clear				

Рι	Purge line @ 29 feet bgs.	

APPENDIX C

Laboratory Analytical Reports
With
Chain of Custody Documentation

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #262157; Omega Termite (Q2,2010)	Date Sampled: 06/08/10
2500 Camino Diablo, Ste. #200		Date Received: 06/09/10
2500 Cammo Diaoto, Ste. 11200	Client Contact: Robert Flory	Date Reported: 06/15/10
Walnut Creek, CA 94597	Client P.O.: #WC082436	Date Completed: 06/11/10

WorkOrder: 1006237

June 15, 2010

L
L

Enclosed within are:

- 1) The results of the 11 analyzed samples from your project: #262157; Omega Termite (Q2,2010),
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

	McCAN		ANAI				NC					7.							CF	ΓΔI	N	OF	0	TI	TZ	n	D	VI	REC	CO	RI	n			
	I'ACCIAI.	1538 V	Villow Pass	Road		_, _								Г	TIE	N	AR			DI					3	V		_	CE		10				
Telephone: (925)	252-0262	Bay l	Point, CA 9	14565				Fay	: (9	25)	252	-02	60	1	O.				011		A.L.V.				SH		24 I	-	4	8 HF	R	72	HR	5	DAY
retephone. (923)	4J2-J2U2								. (>	20)			0,	G	eoT	rac	ker	ED	F	\boxtimes]	PDF		N		Exc	el			Wr	rite	On	(DW		
Report To: Rober	t Flory; Ric	cky Bradf	ord E	Bill To	: Sar	ne	P.O	. #1	WC	082	436								An	alysi	s R	eque	st							Oth	er		Com	mer	its
Company: AEI Co	onsultants													(iii			(E)									4								10	
	amino Dial	and the same of th						597	9					SCm			& Grease (5520 E&F/B&F)	8010 list)	10																
E-Mail: rflory@aei						_								8/801	0	9	E&F	010						8310											
Tel: (925) 746-600	0, ext. 122;	ext. 148		ax: (W8021B/8015C	(SW8015C)	(8260)	520							8270 / 8310								- 1			
Project #: 262157	00= ==th .			rojec	t Nar	ne:	Ome	ga 7	erm	ite ((Q2	, 201	(0)	SW8	SW8	DCA	e (5.)B i.						~			_					- 1			
Project Location:		/ 1	-	A				_					-	BE (reas	826	B					625			0109								
Sampler Signatur	e: • 🕠		100					_			MEZ	ГНО	D	MI	motor oil	EDB/1,2		SW	8021		00			EPA			9.2/6								
		SAMP	LING	wo.	Type Containers		MA	FRI	X			ERV		rex.		+ E	Total Petroleum Oil	Halogenated VOCs (SW8260B i.e.,	BTEX ONLY! (SW8021B)		PCBs EPA 608 / 8080				co.	20.50	Lead (7240/7421/239.2/6010)					- 1			
	FIELD			Containers	tair									W/B	TPH as diesel/	ives	enm)A P	X		809	000	0778 / 6710	PAH's / PNA's by	CAM-17 Metals	stals	742					- 1			
SAMPLE ID	POINT	Dete	Tr:	itai	Con				υ,			-		gas	s die	Additives	etro	nate	NO		PA	1	0	N N	7 M	5 Me	240					- 1			
	NAME	Date	Time	Con	be (Water	=	-	Other		15	HNO3	Other	Н ав	Ha	el A	Tal P	loge	EX		BS E	1	A 02	E St	Ž.	LUFT 5 Metals	Dpt ()	_				- 1			
				#	T,	=	Soil	AIL	2 0	Ice	HCI	H	ō	TPH	TP	Fuel	F ₀	Ha	BI		2	1	EFA	PA	Š	3	La	RCI							
MW-1	MW-1	6-8-10	1000	. 4		Х				X	X			X	X	X										+:									
MW-2	MW-2	1	0940	4		X				X	X			X	X	X																			
MW-3	-MW-3		1220	4		X				X	X			X	X	X																			
MW-4	MW-4		1140	4		X				X	X			X	X	X																			
MW-6	MW-6		0900	4		X				Х	X			X	X	X																1			
MW-7	MW-7		1040	4		X				X	X			X	X	X																			
MW-8	MW-8		0920	4		X				X	X			X	X	X								T	\top			×			T				
MW-9	MW-9		1020	4		X			\top	X	X			X	X	X					T			T						\forall		\neg			
MW-10	MW-10		1200	4		X		1		X	+			X	X	X								1								1			
MW-11	MW-11		1100	4		X				X	X			X	X	X								1								\top	-		
MW-12	MW-12	4	1120	4		X		1		X	X			X	X	X								1						\top	1	\dashv			
			1100					Ť		T													T	1								\top			
							\top		+	t							\dashv			\top	\top	+		1	\top					\top	1	†			
									+	+			\dashv				+			_			+			+				+		+			
Relinguished By:		Date:	Time:	Recei	ved B	v:				_		-	\vdash								_		_	_	_	_					_	_			-
Ch 1 1	OCA	69-10	0826		2//	1	1	×	-	_	>					/	2	2										v	OAS	08	G	MI	TALS	01	HER
Relinquished By:	(10)	Date:	Time:	Recei	ved B	v:	12				0		\dashv	I	CE/	0 4		4		.7	/	^					TIO		V	_	-		-	2	_
	00														GOO IEA						_	V					ATE RS	·							
Relinquished By: Date: Time: Received By:						DECHLORINATED IN LAB PERSERVED IN LAB																													

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsbur	g, CA 94565-1701 52-9262					Work	Order	: 10062	237	(C lient(Code: A	EL				
		WaterTrax	WriteOn	✓ EDF		Excel		Fax	E	✓ Email		Hard	Сору	Thir	rdParty	J-	flag
	ants o Diablo, Ste. #200 k, CA 94597	cc: PO: ProjectNo:	#WC082436	sultants.com iconsultants.com ega Termite (Q2,			AE 25 Wa	enise Mo El Consu 00 Cam alnut Cr nockel@	ultants nino Dia eek, CA	4 94597	7		Dat	uested e Rece e Print	vived:	5 06/09/ 06/14/	
									Req	uested	Tests	(See le	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1006237-001	MW-1		Water	6/8/2010 10:00		С	Α	Α	В								
1006237-002	MW-2		Water	6/8/2010 9:40		С	Α		В								
1006237-003	MW-3		Water	6/8/2010 12:20		С	Α		В								
1006237-004	MW-4		Water	6/8/2010 11:40		С	Α		В								
1006237-005	MW-6		Water	6/8/2010 9:00		С	Α		В								
1006237-006	MW-7		Water	6/8/2010 10:40		С	Α		В								
1006237-007	MW-8		Water	6/8/2010 9:20		С	Α		В								
1006237-008	MW-9		Water	6/8/2010 10:20		С	Α		В								
1006237-009	MW-10		Water	6/8/2010 12:00		С	Α		В								
1006237-010	MW-11		Water	6/8/2010 11:00		С	Α		В								
1006237-011	MW-12		Water	6/8/2010 11:20		С	Α		В								
Test Legend: 1 5-0XYS+ 6 11	PBSCV_W 2 7 12	G-MBTE	X_W	3 PRI	EDF RE	PORT		9		TPH(D	MO)_W			5 10			
													Prepa	red by:	Maria	a Venega	as

Comments:

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	6/9/2010 8	3:32:10 AM
Project Name:	#262157; Omega Termi	te (Q2,2010)			Check	list completed and r	eviewed by:	Maria Venegas
WorkOrder N°:	1006237 Matrix	<u>Water</u>			Carrie	r: <u>Client Drop-In</u>		
		Chain o	of Cu	stody (C	OC) Informa	ition		
Chain of custody	present?	,	Yes	V	No 🗆			
Chain of custody	signed when relinquished ar	d received?	Yes	V	No 🗆			
Chain of custody	agrees with sample labels?	,	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?	,	Yes	✓	No 🗆			
Date and Time of	collection noted by Client on C	COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?		Yes	~	No 🗆			
		Sar	nple	Receipt	Information			
Custody seals in	tact on shipping container/coo	oler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good condition?	,	Yes	V	No 🗆			
Samples in prope	er containers/bottles?	,	Yes	V	No 🗆			
Sample containe	rs intact?	,	Yes	✓	No 🗆			
Sufficient sample	e volume for indicated test?		Yes	✓	No 🗌			
	<u>S</u>	ample Preserv	atior	and Ho	old Time (HT)) Information		
All samples recei	ived within holding time?	,	Yes	✓	No 🗌			
Container/Temp B	Blank temperature	(Coole	r Temp:	2.2°C		NA \square	
Water - VOA vial	ls have zero headspace / no	bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels ch	necked for correct preservation	n?	Yes	✓	No 🗌			
Metal - pH accep	table upon receipt (pH<2)?	,	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ice Type:	WE	TICE)			
* NOTE: If the "N	No" box is checked, see com	ments below.						
Client contacted:		Date contacted	d:			Contacted	by:	
Comments:								

AEI Consultants Client Project ID: #262157; Omega Date Sampled: 06/08/10 Termite (Q2,2010) Date Received: 06/09/10 2500 Camino Diablo, Ste. #200 Date Extracted: 06/09/10 Client Contact: Robert Flory Walnut Creek, CA 94597 Client P.O.: #WC082436 Date Analyzed: 06/11/10

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

Extraction Method: SW5030B	Anal	ytical Method: SW826	0B		Work Order:	1006237			
Lab ID	1006237-001C	1006237-002C	1006237-003C	1006237-004C					
Client ID	MW-1	MW-2	MW-3	MW-4	Reporting Limit for DF =1				
Matrix	W	W	W	W]				
DF	1	1	1	1	S	W			
Compound		Conce	entration		ug/kg	μg/L			
tert-Amyl methyl ether (TAME)	ND	ND	ND	ND	NA	0.5			
t-Butyl alcohol (TBA)	6.0	ND	ND	ND	NA	2.0			
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	NA	0.5			
1,2-Dichloroethane (1,2-DCA)	1.5	ND	ND	ND	NA	0.5			
Diisopropyl ether (DIPE)	ND	ND	ND	ND	NA	0.5			
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	ND	NA	0.5			
Methyl-t-butyl ether (MTBE)	0.54	ND	ND	ND	NA	0.5			
	Surr	ogate Recoveries	s (%)						
%SS1:	116	117	120	119					
Comments									

					1
* water and vapor samples are reported in	μg/L, soil/sludge/so	olid samples in mg/k	g, product/oil/non-ac	queous liquid sample	s and all TCLP & SPLP
extracts are reported in mg/L, wipe sampl	es in µg/wipe.				

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

AEI Consultants Client Project ID: #262157; Omega Date Sampled: 06/08/10 Termite (Q2,2010) Date Received: 06/09/10 2500 Camino Diablo, Ste. #200 Date Extracted: 06/09/10 Client Contact: Robert Flory Walnut Creek, CA 94597 Client P.O.: #WC082436 Date Analyzed: 06/11/10

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

Extraction Method: SW5030B	Anal	ytical Method: SW826	0B		Work Order:	1006237			
Lab ID	1006237-005C	1006237-006C	1006237-007C	1006237-008C					
Client ID	MW-6	MW-7	MW-8	MW-9	Reporting Limit fo DF =1				
Matrix	W	W	W	W]				
DF	1	1	1	1	S	W			
Compound		Conce	entration		ug/kg	μg/L			
tert-Amyl methyl ether (TAME)	ND	ND	ND	ND	NA	0.5			
t-Butyl alcohol (TBA)	ND	ND	ND	ND	NA	2.0			
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	NA	0.5			
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND	0.72	NA	0.5			
Diisopropyl ether (DIPE)	ND	ND	ND	ND	NA	0.5			
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	ND	NA	0.5			
Methyl-t-butyl ether (MTBE)	4.0	ND	ND	ND	NA	0.5			
	Surre	ogate Recoveries	s (%)						
%SS1:	120	121	121	117					
Comments									

ſ	vater and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & S	SPLP
ı	racts are reported in mg/L, wine samples in ug/wine	

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

AEI Consultants	Client Project ID: #262157; Omega	Date Sampled: 06/08/10
2500 Camino Diablo, Ste. #200	Termite (Q2,2010)	Date Received: 06/09/10
	Client Contact: Robert Flory	Date Extracted: 06/09/10
Walnut Creek, CA 94597	Client P.O.: #WC082436	Date Analyzed: 06/11/10

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

Extraction Method: SW5030B	Anal	Work Order:	1006237							
Lab ID	1006237-009C	1006237-010C	1006237-011C							
Client ID	MW-10	MW-11	MW-12		g Limit for					
Matrix	W	W W W								
DF	1	1	1	S	W					
Compound		Concentration								
tert-Amyl methyl ether (TAME)	ND	ND	ND	NA	0.5					
t-Butyl alcohol (TBA)	ND	ND	ND	NA	2.0					
1,2-Dibromoethane (EDB)	ND	ND	ND	NA	0.5					
1,2-Dichloroethane (1,2-DCA)	ND	ND	0.94	NA	0.5					
Diisopropyl ether (DIPE)	ND	ND	ND	NA	0.5					
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	NA	0.5					
Methyl-t-butyl ether (MTBE)	ND	ND	ND	NA	0.5					
Surrogate Recoveries (%)										
%SS1:	122	120	118							
Comments										

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

extracts are reported in mg/L, wipe samples in $\mu g/\text{wipe}$.

AEI Consultants

2500 Camino Diablo, Ste. #200

Walnut Creek, CA 94597

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Client Project ID: #262157; Omega	Date Sampled: 06/08/10
Termite (Q2,2010)	Date Received: 06/09/10
Client Contact: Robert Flory	Date Extracted: 06/09/10-06/11/10
Client P.O.: #WC082436	Date Analyzed: 06/09/10-06/11/10

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method: SW5030B Analytical methods: SW8021B/8015Bm Work Order: 1006237

Extracti	Extraction method: SW5030B Analytical methods: SW8021B/8015Bm									Work Order: 1006237			
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
001A	MW-1	W	72	ND	1.4	0.95	ND	ND	1	113	d1		
002A	MW-2	W	330	ND<15	ND	9.7	ND	0.67	1	90	d9		
003A	MW-3	W	ND	ND	ND	ND	ND	ND	1	102			
004A	MW-4	W	ND	ND	ND	ND	ND	ND	1	109			
005A	MW-6	W	ND	ND	ND	ND	ND	ND	1	105			
006A	MW-7	W	ND	ND	ND	ND	ND	ND	1	112			
007A	MW-8	W	ND	ND	ND	ND	ND	ND	1	104			
008A	MW-9	W	ND	ND	10	ND	ND	ND	1	105			
009A	MW-10	W	ND	ND	ND	ND	ND	ND	1	119			
010A	MW-11	W	ND	ND	ND	ND	ND	ND	1	119			
011A	MW-12	W	ND	ND	ND	ND	ND	ND	1	125			
_	rting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/L	,		
ND means not detected at or above the reporting limit		S	1.0	0.05	0.005	0.005	0.005	0.005		mg/K	Ţg.		

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all
TCLP & SPLP extracts in mg/L.

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

- d1) weakly modified or unmodified gasoline is significant
- d9) no recognizable pattern

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

McCampbell Analytical, Inc. "When Quality Counts"

C. 1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #262157; Omega	Date Sampled:	06/08/10
2500 Camino Diablo, Ste. #200	Termite (Q2,2010)	Date Received:	06/09/10
	Client Contact: Robert Flory	Date Extracted:	06/09/10
Walnut Creek, CA 94597	Client P.O.: #WC082436	Date Analyzed:	06/09/00-06/10/10

Total Extractable Petroleum Hydrocarbons*

Extraction method: SW3510C Analytical methods: SW8015B Work Order: 1006237

Extraction method:	Work Order: 1006237						
Lab ID	Client ID	Client ID Matrix TPH-Diesel TPH-Motor Oil (C10-C23) (C18-C36)			DF	% SS	Comments
1006237-001B	MW-1	W	180	ND	1	96	e2
1006237-002B	MW-2	W	110	ND	1	96	e2
1006237-003B	MW-3	W	ND	ND	1	98	
1006237-004B	MW-4	w	ND	ND	1	98	
1006237-005B	MW-6	w	ND	ND	1	95	
1006237-006B	MW-7	W	ND	ND	1	95	
1006237-007B	MW-8	w	ND	ND	1	95	
1006237-008B	MW-9	W	ND	ND	1	101	
1006237-009B	MW-10	W	ND	ND	1	102	
1006237-010B	MW-11	w	ND	ND	1	103	
1006237-011B	MW-12	W	ND	ND	1	100	

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 51113 WorkOrder 1006237

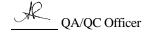
EPA Method SW8260B Extraction SW5030B Spiked Sample ID: 1006217-005B									005B			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	1
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	93.2	93.8	0.654	99.8	96.3	3.59	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	30	50	72.5	82.1	7.00	113	108	4.11	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	108	111	2.88	106	106	0	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	113	115	1.09	121	118	2.47	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	123	126	2.11	123	119	3.01	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	113	114	1.31	109	107	2.01	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	5.7	10	122	124	1.08	116	113	2.35	70 - 130	30	70 - 130	30
%SS1:	123	25	120	118	1.61	118	116	1.97	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 51113 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1006237-001C	06/08/10 10:00 AM	06/11/10	06/11/10 3:44 PM	1006237-002C	06/08/10 9:40 AM	06/11/10	06/11/10 12:30 AM
1006237-003C	06/08/10 12:20 PM	06/11/10	06/11/10 1:13 AM	1006237-004C	06/08/10 11:40 AM	06/11/10	06/11/10 1:56 AM
1006237-005C	06/08/10 9:00 AM	06/11/10	06/11/10 2:39 AM	1006237-006C	06/08/10 10:40 AM	06/11/10	06/11/10 3:21 AM
1006237-007C	06/08/10 9:20 AM	06/11/10	06/11/10 4:04 AM	1006237-008C	06/08/10 10:20 AM	06/11/10	06/11/10 4:28 PM
1006237-009C	06/08/10 12:00 PM	06/11/10	06/11/10 5:28 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 51141 WorkOrder 1006237

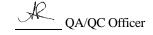
EPA Method SW8260B Extraction SW5030B Spiked Sample ID: 1006237-011C									111C			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	96.9	96.5	0.479	90	87.4	2.89	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	96.3	91.4	5.12	79.8	84.9	6.22	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	110	112	1.76	110	106	3.67	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	0.94	10	101	99.9	0.763	99.3	93.9	5.57	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	113	112	1.10	104	99	5.17	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	114	114	0	105	98.1	7.11	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	123	120	2.37	113	105	6.95	70 - 130	30	70 - 130	30
%SS1:	118	25	115	115	0	103	99	3.13	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 51141 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1006237-010C	06/08/10 11:00 AM	06/11/10	06/11/10 6:10 AM	1006237-011C	06/08/10 11:20 AM	06/11/10	06/11/10 5:11 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 51128 WorkOrder 1006237

EPA Method SW8021B/8015Bm	Extra	ction SW	5030B		Spiked Sample ID: 1006233-001A						001A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	SD Acceptance Criteria (%)			1
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	88.5	88.9	0.390	86.6	90.1	3.86	70 - 130	20	70 - 130	20
MTBE	ND	10	121	121	0	109	118	7.16	70 - 130	20	70 - 130	20
Benzene	ND	10	107	105	1.84	104	104	0	70 - 130	20	70 - 130	20
Toluene	ND	10	89.1	89.3	0.175	92	92.1	0.113	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	93.3	94.2	0.977	91.9	91.8	0.0893	70 - 130	20	70 - 130	20
Xylenes	ND	30	105	106	0.843	103	103	0	70 - 130	20	70 - 130	20
%SS:	109	10	105	102	2.85	104	103	0.584	70 - 130	20	70 - 130	20

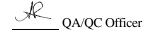
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 51128 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1006237-001A	06/08/10 10:00 AM	06/10/10	06/10/10 4:47 AM	1006237-002A	06/08/10 9:40 AM	06/09/10	06/09/10 10:13 PM
1006237-003A	06/08/10 12:20 PM	06/09/10	06/09/10 10:42 PM	1006237-004A	06/08/10 11:40 AM	06/09/10	06/09/10 11:12 PM
1006237-005A	06/08/10 9:00 AM	06/10/10	06/10/10 12:11 AM	1006237-006A	06/08/10 10:40 AM	06/10/10	06/10/10 1:38 AM
1006237-007A	06/08/10 9:20 AM	06/10/10	06/10/10 2:37 AM	1006237-008A	06/08/10 10:20 AM	06/10/10	06/10/10 7:33 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 51139 WorkOrder 1006237

EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample										nple ID	: 1006237-0)11A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf)	ND	60	111	109	2.14	91	97.6	7.00	70 - 130	20	70 - 130	20
MTBE	ND	10	102	101	0.723	90.4	92.7	2.48	70 - 130	20	70 - 130	20
Benzene	ND	10	85	84.4	0.666	94.8	92.7	2.25	70 - 130	20	70 - 130	20
Toluene	ND	10	86.6	86.1	0.566	96	94.1	2.00	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	87.5	86.5	1.15	95.2	93.3	2.04	70 - 130	20	70 - 130	20
Xylenes	ND	30	87.4	86.7	0.829	96.4	95.3	1.15	70 - 130	20	70 - 130	20
%SS:	125	10	92	92	0	106	99	6.43	70 - 130	20	70 - 130	20

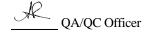
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 51139 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1006237-009A	06/08/10 12:00 PM	1 06/10/10	06/10/10 3:35 AM	1006237-010A	06/08/10 11:00 AM	06/11/10	06/11/10 2:27 AM
1006237-011A	06/08/10 11:20 AM	06/10/10	06/10/10 5:03 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015B

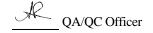
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 51074 WorkOrder 1006237

EPA Method SW8015B		Spiked Sample ID: N/A										
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	cceptance Criteria (%)		
, analyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	104	105	1.12	N/A	N/A	70 - 130	30
%SS:	N/A	625	N/A	N/A	N/A	96	97	1.06	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 51074 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1006237-001B	06/08/10 10:00 AM	06/09/10	06/09/10 8:59 PM	1006237-002B	06/08/10 9:40 AM	06/09/10	06/09/10 10:07 PM
1006237-003B	06/08/10 12:20 PM	06/09/10	06/09/10 11:15 PM	1006237-004B	06/08/10 11:40 AM	06/09/10	06/10/10 12:23 AM
1006237-005B	06/08/10 9:00 AM	06/09/10	06/09/10 10:07 PM	1006237-006B	06/08/10 10:40 AM	06/09/10	06/09/10 11:15 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015B

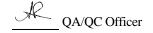
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 51140 WorkOrder 1006237

EPA Method SW8015B	Spiked Sample ID: N/A											
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Acceptance Criteria (%)		
Analyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	103	106	2.33	N/A	N/A	70 - 130	30
%SS:	N/A	625	N/A	N/A	N/A	102	105	2.77	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 51140 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1006237-007B	06/08/10 9:20 AM	06/09/10	06/10/10 12:23 AM	1006237-008B	06/08/10 10:20 AM	06/09/10	06/09/00 8:47 PM
1006237-009B	06/08/10 12:00 PM	06/09/10	06/09/00 9:55 PM	1006237-010B	06/08/10 11:00 AM	06/09/10	06/09/00 11:03 PM
1006237-011B	06/08/10 11:20 AM	06/09/10	06/10/10 4:52 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

