October 30, 2007

RECEIVED

1:33 pm, Apr 02, 2008

Alameda County Environmental Health

GROUNDWATER MONITORING REPORT Third Quarter, 2007

807 75th Avenue Oakland, California

AEI Project No. 262157 ACHCS # RO0000508

Prepared For

Mr. Allan Kanady Omega Termite 807 75th Avenue Oakland, CA 95621

Prepared By

AEI Consultants 2500 Camino Diablo Blvd. Walnut Creek, CA 94597 (925) 944-2899

ENVIRONMENTAL & ENGINEERING SERVICES

www.aeiconsultants.com

October 30, 2007

Mr. Allan Kanady Omega Termite 807 75th Avenue Oakland, CA 95621

Subject: Quarterly Groundwater Monitoring Report

Third Quarter, 2007 807 75th Avenue Oakland, California AEI Project No. 262157 ACHCS # RO0000508

Dear Mr. Kanady:

AEI Consultants (AEI) has prepared this report to document the results of the Third Quarter, 2007 groundwater monitoring event at the above referenced site (Figure 1: Site Location Map). This groundwater investigation has been performed in accordance with the requirements of the Alameda County Health Care Services Agency (ACHCSA). The purpose of this activity is to monitor groundwater quality near the location of previously removed underground storage tanks (USTs) at the site.

Site Description and Background

The site is located in an industrial area of the City of Oakland, on the northern corner of the intersection of 75th Avenue and Snell Street, just east of San Leandro Street. The property is approximately 10,000 square feet in size and currently developed with two buildings, occupied by Omega Termite.

On September 15, 1996, AEI removed three (3) gasoline USTs from the subject property. The tanks consisted of one 8,000-gallon UST, one 1,000-gallon UST, and one 500-gallon UST. The former locations of the tanks are shown on Figure 2. Soil and groundwater samples collected during the tank removal activities revealed that a release had occurred from the tank system. Total petroleum hydrocarbons as gasoline (TPH-g), benzene, and methyl tertiary butyl ether (MTBE) were detected in the soil samples at concentrations up to 4,300 mg/kg, 13 mg/kg, and 25 mg/kg, respectively.

In October 1997, soil and groundwater samples were collected from six (6) soil borings (BH-1 through BH-6). In June 1999, four (4) groundwater monitoring wells (MW-1 through MW-4) were also installed by AEI. The construction details for the groundwater monitoring wells on

site are summarized in Table 1. Monitoring well locations are shown on Figure 2. Historical groundwater elevation and historical groundwater sample analytical data are presented in Tables 2 and 3.

Under the direction of the ACHCSA, additional soil was removed from the excavation in March 2000. The excavation was extended to 29 by 48 feet in size and 8 feet deep at the east end of the excavation and 11.5 at the west end. During the excavation activities, an additional 500-gallon UST was discovered at the eastern end of the excavation. This tank was removed under the direction of Oakland Fire Services Agency (OFSA). Six additional soil samples were collected from the sidewalls and bottom of the excavation.

The resulting excavation was then backfilled with pea gravel to bridge the water table, with the remainder of the excavation being filled with the previously aerated soil and later with imported fill. The newly excavated soil was stockpiled on the northern portion of the property. A total of 7,400 gallons of hydrocarbon-impacted groundwater were pumped from the excavation, treated on-site, and discharged to the sanitary sewer system under an East Bay Municipal Utility District permit.

On October 9 and 10, 2003, AEI drilled seven temporary Geoprobe® boreholes (SB-7 through SB-13) to depths ranging from 15 to 20 feet bgs to further delineate the lateral extent of contamination in the Shallow aquifer. One borehole, SB-14 was advanced to a depth of 30 feet bgs to determine if the second aquifer at the site had been impacted. Soil samples were collected in the vadose zone above the first aquifer and from the aquitard between the first and second aquifers. The results of chemical analyses of soil samples collected and analyzed during this investigation and earlier investigations appear to have effectively defined the limits of impacted soil in the vadose zone. A significant amount of impacted soil appears remain in the immediate vicinity of boring SB-14.

The analysis of the water sample from the second aquifer (Soil Boring SB-14, 28 feet bgs) reported TPH-g, TPH-d, MTBE and benzene at concentrations of 2,300 μ g/L, 72,000 μ g/L, 45 μ g/L and 120 μ g/L, respectively. Light non-aqueous phase liquid was observed on the sampler and in the water sample.

On February 15 and February 16, 2006, AEI advanced five soil borings (MW-6 through MW-10) on the site, and completed the borings as groundwater monitoring wells. The Monitoring wells were drilled with a Marl 2.5 D drilling rig. Shallow Zone well MW-6 and Deeper Zone wells MW-7 through MW-10, were drilled with nominal 8-inch diameter hollow stem augers and completed as 2" groundwater monitoring wells. The details of the well completions are summarized in Table 1.

These and existing well were sampled on March 13, 2006. Maximum concentrations of TPH-g, TPH-d, and TPH-mo reported from the Shallow Zone were 3,200 μ g/L (MW-1), 2,400 μ g/L (MW-2), and 320 μ g/L (MW-1), respectively. The maximum concentrations of benzene reported was 1,400 μ g/L in MW-1.

Maximum concentrations of TPH-g, TPH-d, and TPH-mo reported from the Deeper Zone were 1,100 $\mu g/L$, 14,000 $\mu g/L$, and 4,100 $\mu g/L$, respectively in MW-9 with the notation of light immiscible hydrocarbons present in the sample. The maximum concentration of benzene reported was 85 $\mu g/L$ in MW-9.

The results of this investigation are summarized in *Deeper Aquifer Soil and Groundwater Investigation Report*, April 28, 2006. (7)

In a letter dated May 25, 2006, the ACHCSA requested a work plan for installation and pilot testing of the ozone sparging system recommended by AEI. The *Well and Ozone Micro-Sparge System Installation Work Plan* ⁽⁸⁾ was approved by the ACHCSA in a letter dated August 11, 2006. The Ozone Micro-Sparge System was installed during February and March and began continuous operation in early May.

Geology and Hydrology

The site is located at an elevation approximately 11 feet above mean sea level (msl). The site is essentially flat; however, the general topography of the area slopes gently to the west. The surface sediments at the site are mapped as Holocene natural levee and basin deposits (Qhl and Qhb, OF 97-97, E.J. Helley and R.W. Graymer). The Natural Levee Deposits (Holocene) are described as "Loose, moderately to well-sorted sandy or clayey silt grading to sandy or silty clay". The Basin Deposits (Holocene) are described as "Very fine silty clay to clay deposits occupying flat-floored basins at the distal edge of alluvial fans adjacent to the bay mud (Qhbm)". The presence of gravels in several of the onsite soil borings indicates that stream channel deposits are also present.

Based on the soil borings advanced by AEI, the near surface sediments beneath the site can be divided into several water bearing zones which are separated by clay layers. Sediments immediately below the surface consist of black to gray brown to olive brown silty clay depths ranging from 7.5 to 10 feet bgs. No groundwater was encountered during drilling of this interval.

The surface clay is underlain by variable and somewhat discontinuous silty sand and clayey silt, which make up the Shallow Zone. The Shallow Zone extends from the base of the surface clay to depths ranging from 18 to 21 feet bgs. This zone has low to medium permeability. Groundwater is typically seen in the first permeable silt or sand encountered during drilling of this interval. Once encountered, groundwater level typically stabilizes at a depth of 5 feet bgs or less, indicating the zone is at least a semi-confined aquifer.

The Shallow Zone is underlain by several feet of moderately dry light olive brown to yellowish brown clay, except in MW-7, drilled through the former tank hold, in which the clay exhibited significant discoloration (dark greenish gray clay).

At depths ranging from 18 ft (MW-9) to 21 feet (MW-8) bgs second (intermediate) discontinuous water bearing zone (Intermediate Zone) is present. The Intermediate Zone consists of discontinuous gravel, clayey gravel, and silty sand, clayey sand, and clayey silt which are

interbedded with clay layers. Permeability in the Intermediate Zone ranges from high (gravel) to poor (clayey silt). The Intermediate Zone is separated from the Deeper Zone by a layer of brown silty clay that ranges in thickness of 2 to 7 feet.

A third water bearing zone (Deeper Zone) was encountered at a depth of approximately 27 to 28 feet bgs. The lower permeable zone is made up of clayey silt, clayey sand, clean sand and sandy gravel.

Summary of Activities

AEI conducted quarterly groundwater sampling and monitoring of five Shallow Zone monitoring wells (MW-1 through MW-4 and MW-6) and four (deeper Zone wells (MW-7 through MW-10) on October 4, 2007. Backfill well TW-5, which has been damaged and is scheduled for destruction, was not sampled.

Prior to measuring the depth to water, the well caps were removed and the water levels in each well were allowed to equilibrate with atmospheric pressure for at least 15 minutes. The depth to groundwater (from the top of the well casings) for each well was then measured with an electric water level indicator. The wells were then purged using a battery-powered submersible pump. Approximately three (3) well volumes were removed from each well. During purging activities, the groundwater parameters: temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were measured. A visual evaluation of turbidity was made and noted. Groundwater parameters measured in the field are reported on the field sampling forms included in Appendix A.

Following recovery of water levels to 90% of the original level, water samples were collected from each well. Groundwater samples were collected using new disposable bailers and placed into 40-milliliter (ml) Volatile Organic Analysis (VOA) vials and 1-liter amber bottles. The VOAs were filled so that no headspace or air bubbles were visible within the sample containers. Samples were transported in a cooler on ice under appropriate chain-of-custody protocol to McCampbell Analytical, Inc. of Pacheco, California (Department of Health Services Certification #1644).

Groundwater samples from the wells were analyzed for TPH-g, benzene, toluene, ethyl benzene, xylenes (BTEX), MTBE by SW8021B/8015Cm, and TPH-d (as diesel) and TPH-mo (as motor oil) by SW8015C.

Field Results

Groundwater elevations in the Shallow Zone wells ranged from 5.36 (MW-1) to 5.65 (MW-3) feet above mean sea level (amsl). These elevations are an average of 0.50 feet lower than the previous quarterly monitoring event. The groundwater hydraulic gradient in the Shallow Zone is 0.005 ft/ft to the southwest.

Groundwater elevations in the Deeper Zone wells ranged from 5.33 (MW-9) to 6.08 (MW-12) feet amsl. These elevations are an average of 0.66 feet lower than the previous quarterly

monitoring event. The groundwater hydraulic gradient in the Deeper Zone is 0.012 ft/ft to the south.

Current and historical Groundwater elevation data are summarized in Table 3 and 3a. The groundwater elevation contours and the groundwater flow direction are shown in Figures 3 and 4. Refer to Appendix A for the Groundwater Monitoring Well Field Sampling Forms.

Groundwater Quality

TPH-g and benzene concentrations in Shallow Zone monitoring well MW-1 decreased significantly from 2,000 μ g/L to 500 μ g/L and from 620 μ g/L to 140 μ g/L, respectively. TPH-d concentration in MW-1 decreased from 450 μ g/L to 440 μ g/L and TPH-mo increased slightly from <250 μ g/L to 260 μ g/L, respectively.

TPH-g and benzene concentrations in monitoring well MW-2 decreased from 5,300 μ g/L to 660 μ g/L and from 10 μ g/L to 1.8 μ g/L, respectively. TPH-d and TPH-mo also decreased from 2,900 μ g/L to 1,300 μ g/L and from 480 μ g/L to ND<250 μ g/L, respectively.

TPH-g and benzene concentrations in monitoring well MW-3 decreased from 460 μ g/L to 320 μ g/L and from 40 μ g/L to 28 μ g/L, respectively. TPH-d and TPH-mo remained the same at 230 μ g/L and ND<250 μ g/L, respectively.

TPH-g concentration in monitoring well MW-4 decreased slightly from 190 μ g/L to 180 μ g/L, while benzene concentration increased slightly from 40 μ g/L to 44 μ g/L. TPH-d decreased from 59 μ g/L to ND<50 μ g/L and TPH-mo remained at ND<250 μ g/L.

The TPH-d concentration in MW-6 increased from 76 μ g/L to 100 μ g/L. TPH-g, TPH-mo, MTBE and BTEX were all reported as not detected at standard detection limits.

TPH-g, TPH-d, TPH-mo, MTBE and BTEX were reported as not detected at standard detection limits in Deeper Zone MW-7

TPH-g, TPH-d, TPH-mo, MTBE and BTEX continue to be reported as not detected at standard detection limits in MW-8.

The TPH-g concentration in MW-9 decreased from 64 μ g/L to ND<50 μ g/L. Benzene concentration decreased from 12 μ g/L to ND<0.5 μ g/L. TPH-d decreased from 320 μ g/L to 140 μ g/L. TPH-mo, MTBE and BTEX were all reported as not detected at standard detection limits

The TPH-d concentration in MW-10 decreased significantly from 230 μ g/L to 120 μ g/L. TPH-g, TPH-mo, MTBE and BTEX were all reported as not detected at standard detection limits

TPH-g, TPH-d, TPH-mo, MTBE and BTEX were all reported as not detected at standard detection limits in monitoring wells MW-11 and MW-12.

A summary of groundwater analytical data is presented in Table 2 and on Figure 5. Contaminant isopleths are presented in Figures 6 through 11. Laboratory results and chain of custody documents are included in Appendix B.

Summary

The decrease in contaminant concentrations indicate that operation of the ozone injection system is beginning to have a significant effect on hydrocarbon concentrations.

The next quarterly groundwater monitoring event is tentatively scheduled for December 2007, by which time the additional wells should be installed.

Report Limitations and Signatures

This report presents a summary of work completed by AEI Consultants, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide required information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses, observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices in the geologic, environmental engineering and construction fields that existed at the time and location of the work.

Please contact Robert F. Flory at (925) 944-2899 extension 122, if you have any questions regarding the findings and recommendations included in this report.

No. 5825

Sincerely,

AEI Consultants

Leah Levine-Goldberg

Staff Geologist

Robert F. Flory, P.G.

Senior Geologist

Attachments

Figures

Figure 1 Site Location Map
Figure 2 Site Plan
Figure 3 Groundwater Elevation Contours – Shallow Zone (10/04/07)
Figure 4 Groundwater Elevation Contours – Deeper Zone (10/04/07)
Figure 5 Analytical Results (10/04/07)

Tables

Table 1 Groundwater Elevation Data
Table 2 Groundwater Analytical Data

Table 3 Groundwater Elevation and Flow Direction Summary

Appendix A Groundwater Monitoring Well Field Sampling FormsAppendix B Laboratory Reports With Chain of Custody Documentation

Distribution:

Mr. Allan Kanady Omega Termite 807 75th Avenue Oakland, CA 95621

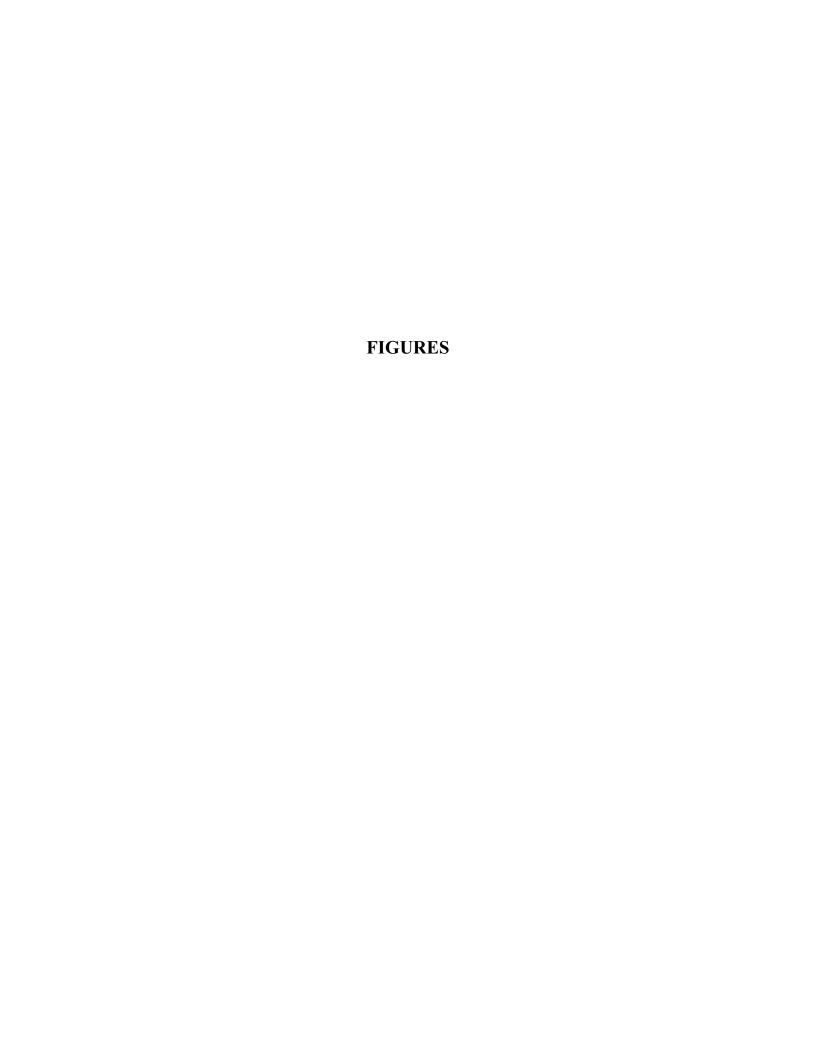
(2 copies)

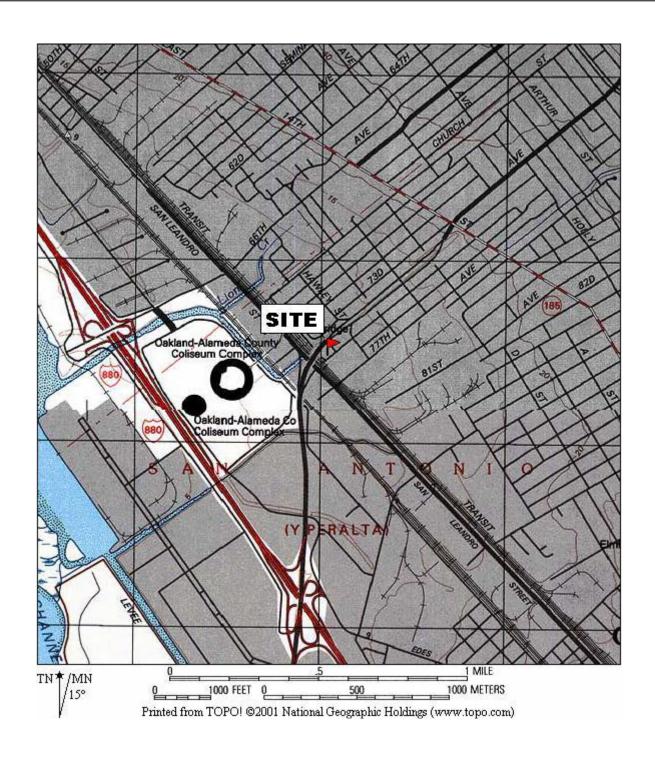
electronic

Mr. Jerry Wickham Alameda Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250

Alameda, CA 94502

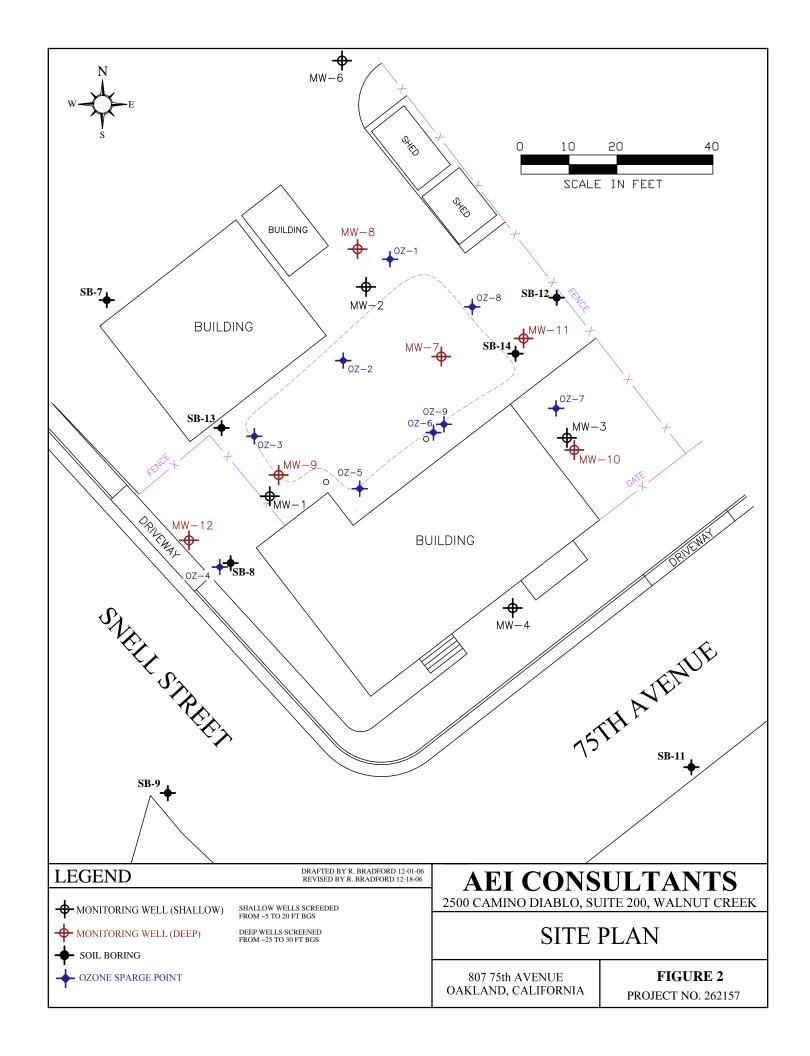
Betty Graham
San Francisco Bay Regional Water Quality Control Board

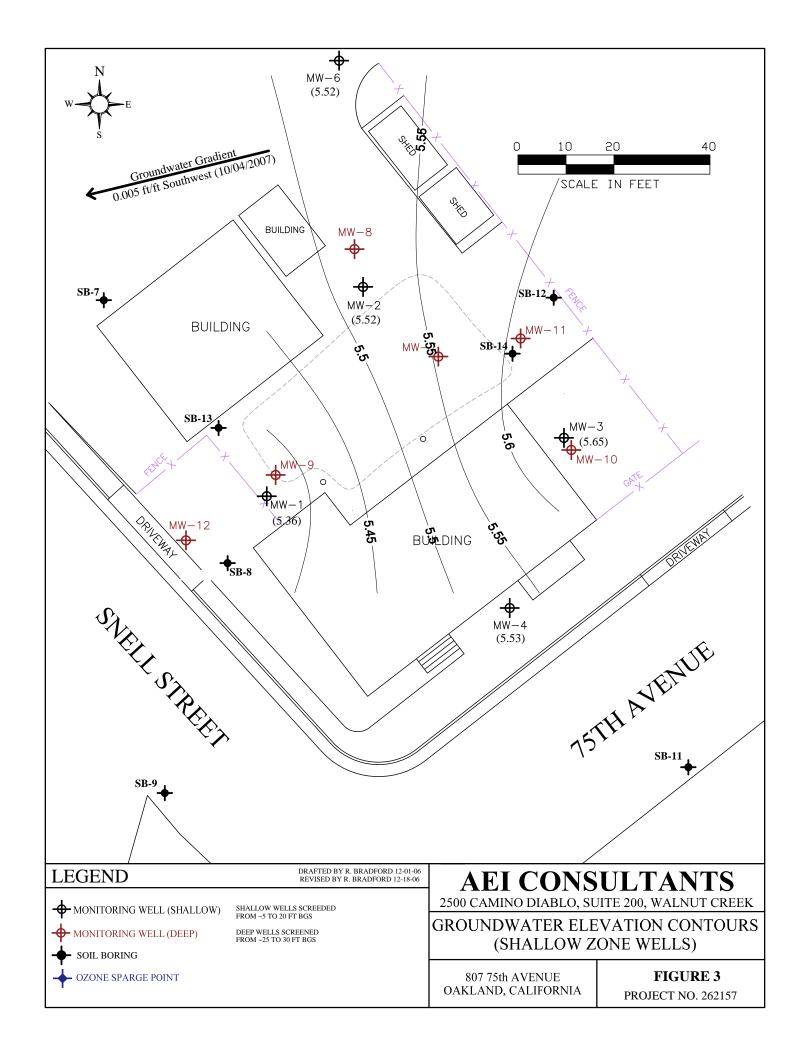

1515 Clay Street, Suite 1400

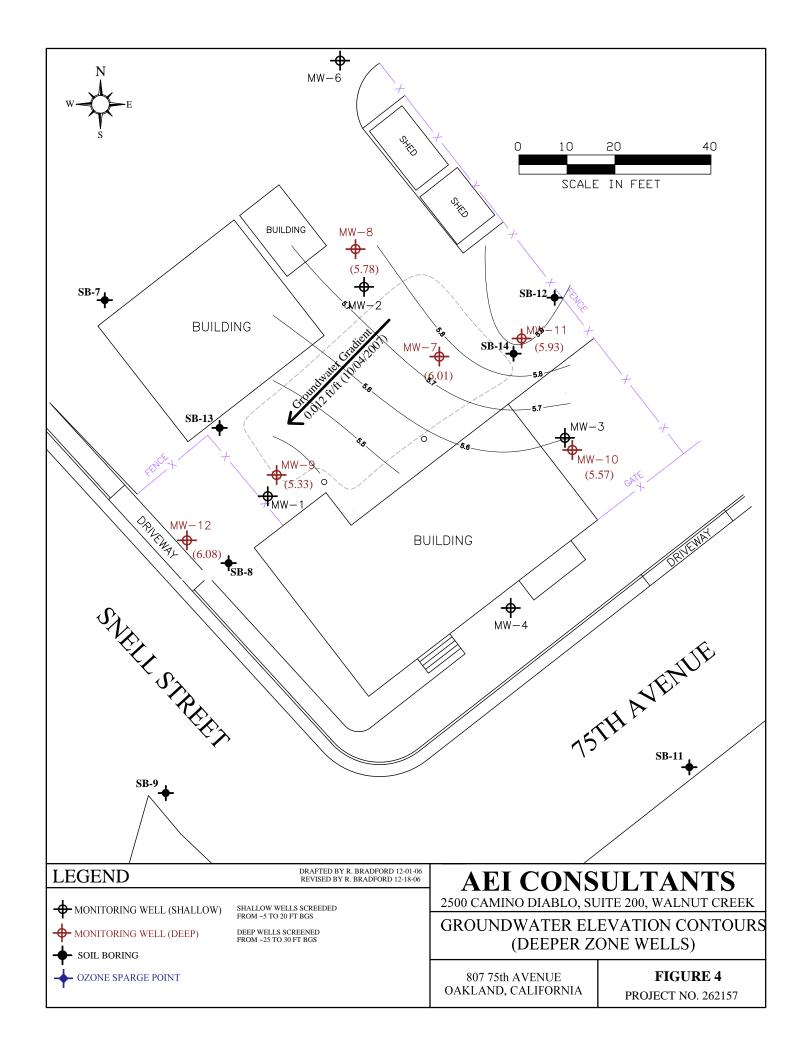

Oakland CA 94612

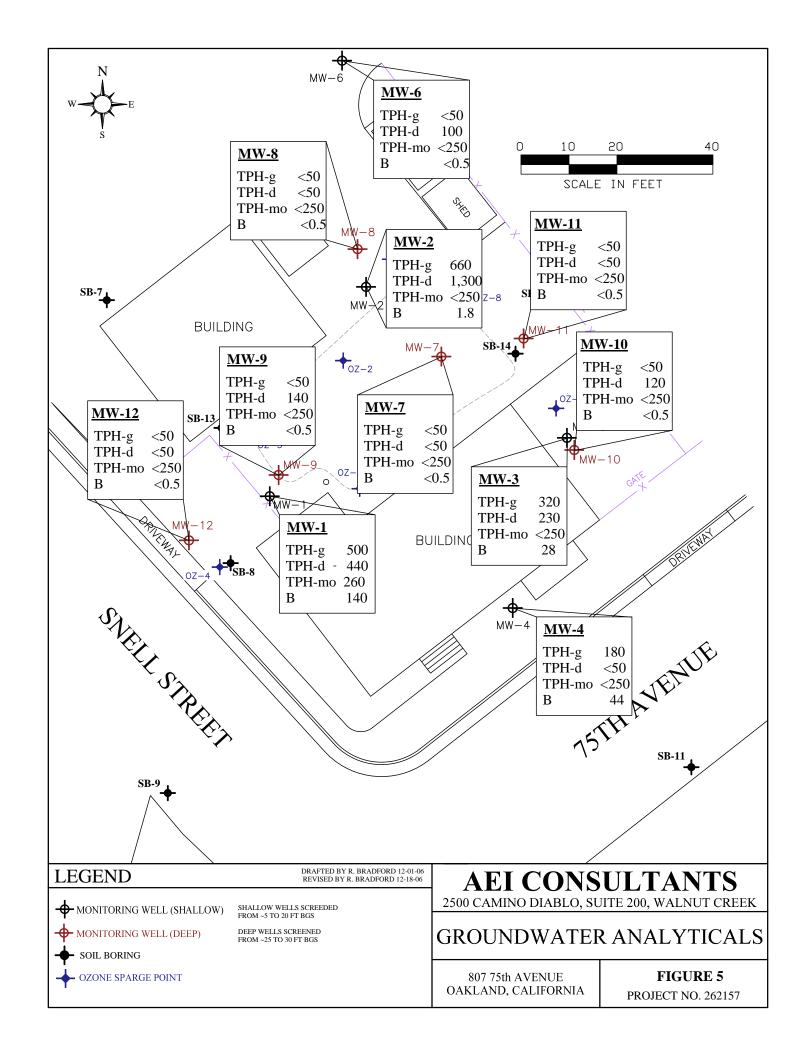
GeoTracker

electronic






AEI CONSULTANTS 2500 CAMINO DIABLO, SUITE 200, WALNUT CREEK, CA


SITE LOCATION MAP

807 75th AVENUE OAKLAND, CALIFORNIA FIGURE 1 AEI PROJECT NO. 262157

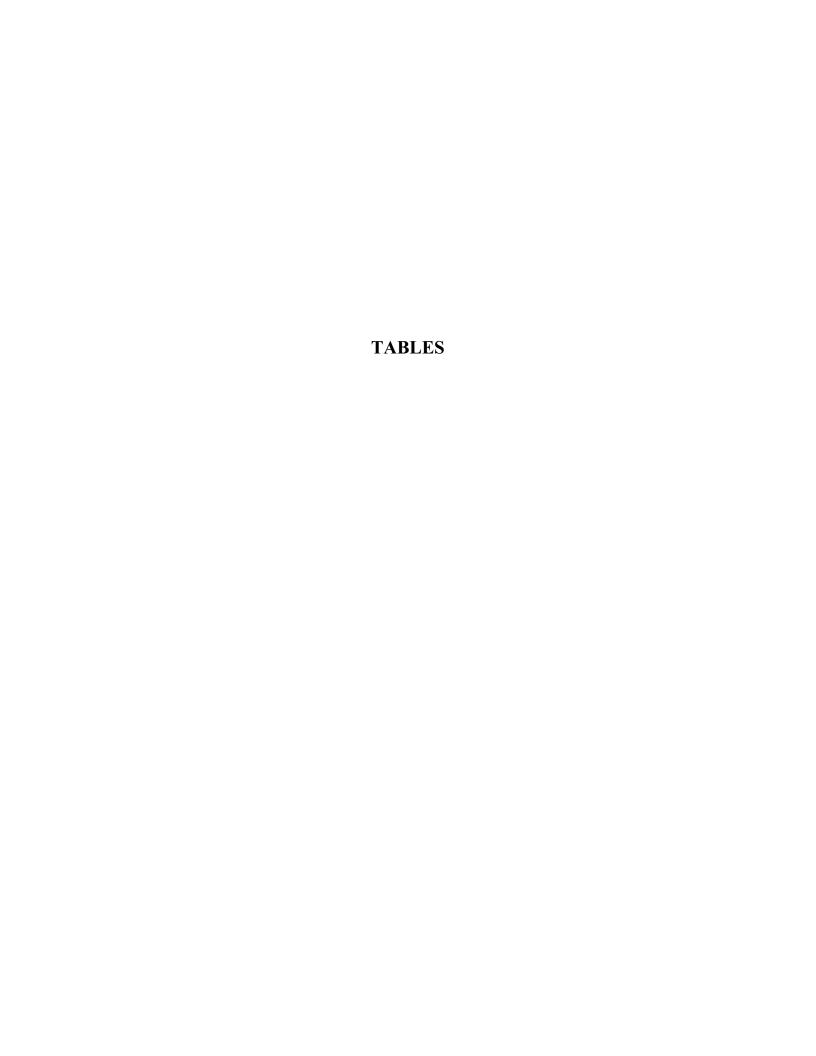


Table 1: Groundwater Elevation Data
Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevation Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
MW-1	07/30/99	10.68	5.82	4.86	
	11/09/99	10.68	5.70	4.98	0.12
	02/23/00	10.68	2.84	7.84	2.86
	05/26/00	10.68	5.50	5.18	-2.66
	10/10/00	10.68	5.70	4.98	-0.20
	02/07/01	10.68	5.25	5.43	0.45
	05/25/01	10.68	5.25	5.43	0.00
	09/19/01	10.68	5.51	5.17	-0.26
	02/06/02	10.68	NM	NM	NM
	05/17/02	10.68	5.30	5.38	
	08/20/02	10.68	5.39	5.29	-0.09
	01/10/03	10.68	4.11	6.57	1.28
	04/14/03	10.68	4.85	5.83	-0.74
	07/14/03	10.68	5.08	5.60	-0.23
	10/14/03	10.68	5.63	5.05	-0.55
	01/13/04	10.68	4.53	6.15	1.10
	04/15/04	10.68	5.14	5.54	-0.61
	07/15/04	10.68	5.42	5.26	-0.28
	10/18/04	10.68	5.24	5.44	0.18
	01/25/05	10.68	4.47	6.21	0.77
	04/19/05	10.68	4.66	6.02	-0.19
	07/18/05	10.68	4.91	5.77	-0.25
	10/18/05	10.68	5.24	5.44	-0.33
	11/03/05	10.68	5.31	5.37	-0.07
	01/11/06	10.68	4.08	6.60	1.23
	03/13/06	10.68	3.76	6.92	0.32
	06/15/06	10.68	4.79	5.89	-1.03
	08/02/06	10.68	5.14	5.54	-0.35
	09/20/06	10.68	5.38	5.30	-0.24
	01/02/07	10.68	4.64	6.04	0.74
	6/6/2007	10.68	5.14	5.54	-0.50
	10/04/07	10.68	5.32	5.36	-0.18
MW-2	07/30/99	12.15	6.64	5.51	
	11/09/99	12.15	6.42	5.73	0.22
	02/23/00	12.15	3.31	8.84	3.11
	05/26/00	12.15	6.34	5.81	-3.03
	10/10/00	12.15	6.52	5.63	-0.18
	02/07/01	12.15	5.90	6.25	0.62
	05/25/01	12.15	6.08	6.07	-0.18
	09/19/01	12.15	6.53	5.62	-0.45
	02/06/02	12.15	5.72	6.43	0.81
	05/17/02	12.15	6.17	5.98	-0.45
	08/20/02	12.15	NM	NM	NM
	01/10/03	12.15	5.12	7.03	
	04/14/03	12.15	4.98	7.17	0.14
	07/14/03	12.15	5.99	6.16	-1.01
	10/14/03	12.15	6.43	5.72	-0.44
	01/13/04	12.15	5.42	6.73	1.01
	04/15/04	12.15	6.02	6.13	-0.60
	07/15/04	12.15	5.27	6.88	0.75
	10/18/04	12.15	6.12	6.03	-0.85
	04/19/05	12.15	5.61	6.54	0.51

Table 1: Groundwater Elevation Data Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevation Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
	07/18/05	12.15	5.84	6.31	-0.23
MW-2	10/19/05	12.15	6.17	5.98	-0.33
continued	11/03/05	12.15	6.21	5.94	-0.04
	01/11/06	12.15	5.11	7.04	1.10
	03/13/06	12.15	5.24	6.91	-0.13
	06/15/06	12.15	6.23	5.92	-0.99
	09/20/06	12.15	6.63	5.52	-0.40
	01/02/06	12.15	6.09	6.06	0.54
	6/6/2007	12.15	6.57	5.58	-0.48
	10/04/07	12.15	6.63	5.52	-0.06
MW-3	07/30/99	10.40	5.35	5.05	
	11/09/99	10.40	5.11	5.29	0.24
	02/23/00	10.40	2.37	8.03	2.74
	05/26/00	10.40	4.98	5.42	-2.61
	10/10/00	10.40	5.24	5.16	-0.26
	02/07/01	10.40	4.73	5.67	0.51
	05/25/01	10.40	4.73	5.67	0.00
	09/19/01	10.40	5.07	5.33	-0.34
	02/06/02	10.40	4.69	5.71	0.38
	05/17/02	10.40	4.80	5.60	-0.11
	08/20/02	10.40	4.97	5.43	-0.17
	01/10/03	10.40	3.59	6.81	1.38
	04/14/03	10.40	5.40	5.00	-1.81
	07/14/03	10.40	4.69	5.71	0.71
	10/14/03	10.40	5.16	5.24	-0.47
	01/13/04	10.40	4.15	6.25	1.01
	04/15/04	10.40	4.73	5.67	-0.58
	07/15/04	10.40	5.03	5.37	-0.30
	10/18/04	10.40	4.85	5.55	0.18
	01/25/05	10.40	4.13	6.27	0.72
	04/19/05	10.40	4.23	6.17	-0.10
	07/18/05	10.40	4.56	5.84	-0.33
	10/18/05	10.40	4.82	5.58	-0.26
	11/03/05	10.40	4.87	5.53	-0.05
	01/11/06	10.40	3.62	6.78	1.25
	03/13/06	10.40	3.47	6.93	0.15
	06/15/06	10.40	4.38	6.02	-0.91
	08/02/06	10.40	4.69	5.71	-0.31
	09/20/26	10.40	4.84	5.56	-0.15
	01/02/07	10.40	3.73	6.67	1.11
	6/6/2007	10.40	4.7	5.7	-0.97
	10/04/07	10.40	4.75	5.65	-0.05

Table 1: Groundwater Elevation Data
Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevation Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
MW-4	07/30/99	10.31	5.45	4.86	
	11/09/99	10.31	5.31	5.00	0.14
	02/23/00	10.31	2.72	7.59	2.59
	05/26/00	10.31	5.07	5.24	-2.35
	10/10/00	10.31	5.32	4.99	-0.25
	02/07/01	10.31	4.73	5.58	0.59
	05/25/01	10.31	4.90	5.41	-0.17
	09/19/01	10.31	5.16	5.15	-0.26
	02/06/02	10.31	4.65	5.66	0.51
	05/17/02	10.31	4.90	5.41	-0.25
	08/20/02	10.31	5.02	5.29	-0.12
	01/10/03	10.31	3.78	6.53	1.24
	04/14/03	10.31	4.11	6.20	-0.33
	07/14/03	10.31	4.75	5.56	-0.64
	10/14/03	10.31	5.28	5.03	-0.53
	01/13/04	10.31	4.07	6.24	1.21
	04/15/04	10.31	4.70	5.61	-0.63
	07/15/04	10.31	5.09	5.22	-0.03
	10/18/04	10.31	4.86	5.45	0.23
	01/25/05	10.31	4.02	6.29	0.23
	04/19/05	10.31	4.17	6.14	-0.15
	07/18/05	10.31	4.49	5.82	-0.32
	10/18/05	10.31	4.83	5.48	-0.34
	11/03/05	10.31	4.88	5.43	-0.05
	01/11/06	10.31	3.58	6.73	1.30
	03/13/06	10.31	3.28	7.03	0.30
	06/15/06	10.31	4.37	5.94	-1.09
	09/20/06	10.31	4.86	5.45	-0.49
	01/02/07	10.31	4.17	6.14	0.69
	6/6/2007 10/04/07	10.31 10.31	4.68 4.78	5.63 5.53	-0.51 -0.10
		10.31		3.33	-0.10
TW-5	09/19/01		6.59		
	05/17/02		6.56		0.03
	08/20/02		6.62		-0.06
	01/10/03		4.66		1.96
	04/14/03		5.30		-0.64
	07/14/03		5.84		-0.54
	07/14/03		5.84		0.00
	10/14/03		6.08		-0.24
	01/13/04		4.83		1.25
	04/15/04		5.64		-0.81
	07/15/04		5.89		-0.25
	10/18/04		5.95		-0.06
	01/25/05		5.13		0.82
	04/19/05		5.27		-0.14
	07/18/05		5.76		-0.49
	10/18/05		6.04		-0.28
	11/03/05		6.09		-0.05
	01/11/06		4.72		1.37
	03/13/06		4.51		0.21
	04/26/06		5.02		-0.51
	01/02/07	Well Destroyed 12/2			

Table 1: Groundwater Elevation Data
Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevation Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
MW-6	03/13/06	12.35	5.69	6.66	
	06/15/06	12.35	6.50	5.85	-0.81
	09/20/06	12.35	6.84	5.51	-0.34
	01/02/07	12.35	6.44	5.91	0.40
	6/6/2007	12.35	6.82	5.53	-0.38
	10/04/07	12.35	6.83	5.52	-0.01
MW-7	03/13/06	11.16	3.36	7.80	
	06/15/06	11.16	3.95	7.21	-0.59
	09/20/06	11.16	4.77	6.39	-0.82
	01/02/07	11.16	4.17	6.99	0.60
	6/6/2007	11.16	4.69	6.47	-0.52
	10/04/07	11.16	5.15	6.01	-0.46
MW-8	03/13/06	12.42	4.64	7.78	
	06/15/06	12.42	5.21	7.21	-0.57
	09/20/06	12.42	6.03	6.39	-0.82
	01/02/07	12.42	5.97	6.45	0.06
	6/6/2007	12.42	5.93	6.49	0.04
	10/04/07	12.42	6.64	5.78	-0.71
MW-9	03/13/06	11.22	4.32	6.90	
	06/15/06	11.22	5.35	5.87	-1.03
	08/02/06	11.22	5.70	5.52	-0.35
	09/20/06	11.22	5.81	5.41	-0.11
	01/02/07	11.22	5.19	6.03	0.62
	6/6/2007	11.22	5.67	5.55	-0.48
	10/04/07	11.22	5.89	5.33	-0.22
MW-10	03/13/06	10.31	3.28	7.03	
	06/15/06	10.31	4.34	5.97	-1.06
	08/02/06	10.31	4.66	5.65	-0.32
	09/20/06	10.31	4.79	5.52	-0.13
	01/02/07	10.31	4.26	6.05	0.53
	6/6/2007	10.31	4.66	5.65	-0.40
	10/04/07	10.31	4.74	5.57	-0.08
MW-11	01/02/07	10.96	3.94	7.02	
	6/6/2007	10.96	4.51	6.45	-0.57
	10/04/07	10.96	5.03	5.93	-0.52
MW-12	01/02/07	10.46	3.43	7.03	
	6/6/2007	10.46	3.81	6.65	-0.38
	10/04/07	10.46	4.38	6.08	-0.57

 $^{^*}$ Original wells surveyed 12/9/02 by Morrow Surveying, resurveyed on 3/02/06, 1/16/07 by Morrow Surveying Depth to water measured from the top of well casing

NM - not monitored

ft amsl = feet above mean sea level

Table 2: Groundwater Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE	MTBE	Benzene	Toluene	Ethyl	Xylenes
	Date	Water								benzene	
				Method &		8260B		r	Method 80		
			(µg/L)	(µg/L)	(µg/L)		(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$
MW-1	07/30/99	5.82	2,700				ND<10	920	5.5	18	130
	11/09/99	5.70	1,800				ND<20	430	1.5	26	60
	02/23/00	2.84	3,800				ND<10	1,500	56	78	35
	05/26/00	5.50	7,100				ND<10	2,800	70	220	81
	10/10/00	5.70	980				ND<5.0	260	2.9	10	11
	02/07/01	5.25	570				ND<5.0	150	1.8	4.9	9.3
	05/25/01	5.25	18,000				ND<100	3,800	350	550	620
	09/19/01	5.51	840				ND<5.0	190	4.0	4.6	5.3
	05/17/02	5.30	13,000	920			ND<5.0	4,500	29	50	58
	08/20/02	5.39	2,100	740	ND<5,000		ND<15	820	4.5	6.4	9.6
	01/10/03	4.11	95	260	ND<5,000		ND<5.0	23	0.66	3.9	6.5
	04/14/03	4.85	340	310			ND<5.0	87	1.3	4.3	5.6
	07/14/03	5.08	750	700			ND<10	420	0.84	3.7	6.0
	10/14/03	5.63	200	930	460.0		ND<5.0	62	0.83	2.2	2.7
	01/13/04	4.53	510	440	ND<250		ND<5.0	190	1.7	11	18.0
	04/15/04	5.14	740	490	ND<250		ND<10	240	ND<0.5	5.0	9.6
	07/15/04	5.42	250	420	260		ND<5.0	78	ND<0.5	5.0	4.4
	10/18/04	5.42	170	510	290		ND<5.0	33	0.75	1.7	3.5
	01/25/05	4.47	240	390	ND<250		ND<5.0	86	0.82	1.3	3.0
	04/19/05	4.66	5,100	460	ND<250		ND<50	2,100	5.2	13	84
	07/18/05	4.91	3,300	700	350		ND<45	1,500	2.8	13	24
	10/18/05	5.24	560	550	330		ND<5.0	190	ND<0.5	3.0	8.6
	01/11/06	4.08	240	270	ND<250		ND<5.0	93	ND<0.5	1.3	3.4
	03/13/06	3.76	840	260	ND<250	0.89	ND<5.0	330	1.3	5.1	17
	06/15/06	4.79	3,200	640	320		ND<25	1,400	3.1	10	71
	09/21/06	5.38	3,500	550	270		ND<25	1,700	ND<2.5	14	23
	01/02/07	4.64	410	240	ND<250		ND<5.0	150	0.55	1.0	7
	06/06/07	5.54	2,500	540	300		ND<20	910	3.4	7.7	55
	07/11/07		2,000	450	ND<250		ND<10	620	1.5	5.9	31
	10/04/07	5.32	500	440	260		ND<5.0	140	ND<0.5	1.8	8
MW-2	07/30/99	6.64	1,200				ND<10	29	2.5	51	100
	11/09/99	6.42	1,300				ND<30	26	1.1	55	32
	02/23/00	3.31	5,000				ND<10	200	18	390	440
	05/26/00	6.34	2,700				ND<10	69	13	83	68
	10/10/00	6.52	810				ND<10	17	4.7	42	46
	02/07/01	5.90	2,600				ND<10	70	15	80	100
	05/25/01	6.08	2,400				ND<5.0	75	16	85	100
	09/19/01	6.53	1,200				ND<5.0	10	8.5	46	55
	02/06/02	5.72	1,800				ND<50	14	11	58	59
	05/17/02	6.17	2,000	860			8.1	19	1.1	0.75	88
	01/10/03	5.12	2,000	910	ND<5000		ND<50	11	11	96	100
	04/14/03	4.98	2,400	800	-		ND<10	16	10	100	73
	07/14/03	5.99	1,900	970	-		ND<15	18	4.8	79	78
	10/14/03	6.43	1,600	1,300	ND<250		ND<10	14	5.9	87	78
	01/13/04	5.72	2,900	960	ND<250		ND<50	26	13	190	150
		· · -	-,- • •	- 00				_0			-50

Table 2: Groundwater Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE	MTBE	Benzene	Toluene	Ethyl	Xylenes
	Date	Water								benzene	
				Method 8		8260B			Method 80		
			(µg/L)	(µg/L)	(µg/L)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2	04/15/04	6.02	2,700	1,100	ND<250		ND<15	28	11	120	100
continued	07/15/04	5.27	2,300	1,000	ND<250		ND<10	8.8	3.8	96	84
	10/18/04	5.27	2,400	910	ND<250		ND<10	8.6	8.9	68	72
	01/25/05	5.41	3,500	1,200	ND<250		ND<50	21	11	170	120
	04/19/05	5.61	3,400	1,700	ND<250		ND<15	15	7.4	150	94
	07/18/05	5.84	3,400	1,400	ND<250		ND<5.0	11	9.7	100	89
	10/18/05	6.17	3,000	2,000	270		ND<5.0	8.4	6.7	88	86
	01/11/06	5.11	3,400	1,700	ND<250		ND<90	18	9.4	170	87
	03/13/06	5.24	3,400	1,200	ND<250	0.76	ND<50	20	9.4	110	80
	06/15/06	6.23	2,200	2,400	270		ND<10	8.4	ND<1.0	81	72
	09/20/06	6.63	2,400	860	ND<250		ND<50	12	13	46	65
	01/02/07	6.09	3,800	2,100	ND<250		ND<25	11	7.6	110	120
	06/06/07	6.57	3,800	1,500	ND<250		ND<20	17	17	75	58
	07/11/07		5,300	2,900	480		ND<17	10	8	47	72
	10/04/07	6.63	660	1,300	ND<250		ND<5.0	1.8	0.83	40	45
MW-3	07/30/99	5.35	2,700				ND<10	220	15	130	230
	11/09/99	5.11	3,100				15	440	8.8	150	96
	02/23/00	2.37	1,800				ND<15	180	11	82	79
	05/26/00	4.98	1,600				6.4	140	10	69	63
	10/10/00	5.24	1,100				ND<10	110	4.4	63	51
	02/07/01	4.73	1,100				ND<10	130	5.1	68	65
	05/25/01	4.73	1,200				ND<6.0	120	5.4	69	64
	09/19/01	5.07	800				< 5.0	78	3.5	52	37
	02/06/02	4.69	1,100				ND<10	130	4.7	77	71
	05/17/02	4.80	2,800	810		2.0	ND<50	410	23	160	210
	08/20/02	4.97	780	270	ND<5000		ND<10	110	2.8	63	41
	01/10/03	3.59	1,100	510	ND<5000		ND<20	160	3.4	98	84
	04/14/03	5.40	690	230	-		ND<5.0	60	2.3	44	34
	07/14/03	4.69	900	380	-		ND<5.0	130	2.0	70	43
	10/14/03	5.16	500	200	ND<250		ND<10	50	2.3	37	18
	01/13/04	4.15	1,500	400	ND<250		ND<30	200	6.2	120	88
	04/15/04	4.73	1,100	280	ND<250		ND<15	130	3.7	75	53
	07/15/04	5.03	610	240	ND<250		ND<5.0	73	2.1	51	29
	10/18/04	5.03	370	270	ND<250		ND<5.0	45	1.2	47	28
	01/25/05	4.13	840	300	ND<250		ND<5.0	85	2.4	68	45
	04/19/05	4.23	1,100	380	ND<250		ND<5.0	140	4.0	95	59
	07/18/05	4.66	740	290	ND<250		ND<5.0	98	2.0	70	35
	10/18/05	4.82	420	220	ND<250		ND<5.0	38	1.1	35	16
	01/11/06	3.73	740	260	ND<250		ND<5.0	75	2.5	60	32
	03/13/06	3.76	1,300	380	ND<250	1.1	ND<17	90	2.5	87	72
	06/15/06	4.38	670	300	ND<250		ND<5.0	76	1.3	60	40
	09/20/09	4.84	510	300	310		ND<17	49	ND<1.7	50	36
	01/02/07	4.73	380	180	ND<250		ND<5.0	33	1.3	32	17
	06/06/07	4.70	460	230	ND<250		ND<5.0	40	1.9	39	22
	10/04/07	4.75	320	230	ND<250		ND<5.0	28	ND<0.5	29	17

Table 2: Groundwater Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE	MTBE	Benzene	Toluene	Ethyl	Xylenes
•	Date	Water								benzene	
				A Method 8		8260B	ı		Method 80		1
			(µg/L)	(µg/L)	(µg/L)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4	07/30/99	5.45	340				ND<10	57	2.2	8.5	6.8
	11/09/99	5.31	1,000				ND<10	220	< 0.5	17	7.1
	02/23/00	2.72	980				ND<5.0	260	7	33	27
	05/26/00	5.07	760				5.7	170	4.8	22	13
	10/10/00	5.32	520				ND<10	130	2.3	22	10
	02/07/01	4.73	680				ND<8.0	180	3.7	29	21
	05/25/01	4.90	1,700				ND<10	510	9.6	44	46
	09/19/01	5.16	680				ND<10	200	2.6	33	12
	02/06/02	4.65	710				ND<15	220	2.8	40	21
	05/17/02	4.90	1,300	190		3.3	ND<10	330	5.6	61	51
	08/20/02	5.02	580	120	ND<5,000		ND<5.0	160	1.7	34	13
	01/10/03	3.78	800	85	ND<5,000		ND<20	240	2.5	46	28
	04/14/03	4.11	850	120			ND<10	220	2.7	47	26
	07/14/03	4.75	780	170			ND<20	220	1.4	44	23
	10/14/03	5.25	420	110	ND<250		ND<5.0	120	0.95	31	8.2
	01/13/04	4.07	120	69	ND<250		ND<10	30	0.52	8.1	4.7
	04/15/04	4.70	660	120	ND<250		ND<25	200	2.2	39	24
	07/15/04	5.09	500	92	ND<250		ND<5.0	130	1.3	35	15
	10/18/04	5.09	350	18	ND<250		ND<5.0	76	0.68	22	4.9
	01/25/05	4.02	580	110	ND<250		ND<5.0	140	1.2	37	20
	04/19/05	4.17	790	130	ND<250		ND<5.0	200	1.7	51	28
	07/18/05	4.49	490	140	ND<250		ND<5.0	140	0.99	36	11
	10/18/05	4.83	320	84	ND<250		ND<5.0	72	0.59	20	4.4
	01/11/06	3.58	310	98	ND<250		ND<5.0	88	0.65	26	9.0
	03/13/06	3.58	490	77	ND<250	1.9	ND<5.0	92	0.88	31	15
	06/15/06	4.37	460	86	ND<250		ND<25	93	ND<0.5	29	9.2
	09/20/06	4.86	260	170	360		ND<10	63	ND<0.5	23	4.7
	01/02/07	4.17	160	78	ND<250		ND<5.0	27	ND<0.5	10	2.0
	06/06/07	4.68	190	59	ND<250		ND<5.0	40	ND<0.5	14	3.6
	10/04/07	4.78	180	ND<50	ND<250		ND<5.0	44	ND<0.5	12	2.2
TW-5	10/10/00		5,800	2,900	ND<250		ND<50	650	60	190	230
	02/07/01		720	650	450		ND<5.0	6.0	4.5	3.2	4.5
	05/25/01		370	420	ND<250		ND<5.0	13.0	4.1	1.6	1.3
	09/19/01	6.59	15,000	2,700,000	¹ 1,100,000 ¹		530	29	2.7	14	240
	02/06/02		280	55,000	$18,000^{1}$		ND<5.0	2.3	0.74	ND<0.5	0.70
	05/17/02	6.56	480	41,000		ND<5.0	ND<5.0	1.6	1.1	0.8	ND<0.5
	08/20/02	6.62	240	21,000	ND<5,000		ND<5.0	8.0	1.2	1.1	0.54
	01/10/03	4.66	ND<50	1,300	ND<5,000		ND<5.0	5.4	0.58	ND<0.5	1.10
	4/14/2003	5.30	160	2,300			ND<5.0	18	5.7	5.9	16
	7/14/2003	5.84	100	16,000			ND<5.0	1.2	0.77	0.63	1.2
	10/14/03	6.08	120	10,000	4,600		ND<5.0	1.6	1.6	ND<0.5	1.2
	01/13/04	4.83	110	2,100	1,400		ND<5.0	8.4	1.2	ND<0.5	3.9
	04/15/04	5.64	170	2,200	1,100		ND<5.0	2.5	1.2	ND<0.5	5.1
	07/15/04	5.89	81	3,000	1,600		ND<5.0	5	1.3	0.85	4.1

Table 2: Groundwater Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Date Water	Sample ID	Comple	Depth to	три с	TPH-d	TPH-mo	MTBE	MTBE	Benzene	Toluene	Ethyl	Xylenes
TW-5 10/18/04 5.89 220 3.700 1.600 ND-5.0 0.54 3.4 ND=0.5 0.93 continued 01/25/05 5.13 6.3 7.50 6.40 ND-5.0 ND=0.5 0.78 ND=0.5 0.70 01/18/05 5.76 ND=5.0 1.100 6.60 ND=5.0 ND=0.5 ND=0.5 ND=0.5 ND=0.5 ND=0.5 10/18/05 5.76 ND=5.0 1.100 6.60 ND=5.0 ND=0.5 ND=0.5 ND=0.5 ND=0.5 10/18/05 5.76 ND=0.5 770 4.90 ND=5.0 ND=0.5 ND=0.5 ND=0.5 10/18/05 5.76 ND=0.5 6.80 5.50 ND=0.5 ND=0.5 ND=0.5 ND=0.5 10/18/05 5.76 ND=0.5 6.80 5.50 ND=0.5 ND=0.5 ND=0.5 ND=0.5 10/18/06 4.51 ND=5.0 1.80 2.60 ND=0.5 ND=0.5 ND=0.5 ND=0.5 03/13/06 4.51 ND=5.0 1.80 2.60 ND=0.5 ND=0.5 ND=0.5 ND=0.5 03/13/06 5.69 8.7 1.60 3.10 ND=0.5 ND=0.5 ND=0.5 ND=0.5 04/18/05 6.50 ND=5.0 1.10 ND=2.50 ND=5.0 ND=0.5 ND=0.5 ND=0.5 04/18/05 6.50 ND=5.0 1.10 ND=2.50 ND=5.0 ND=0.5 ND=0.5 ND=0.5 ND=0.5 04/18/06 6.50 ND=5.0 1.10 ND=2.50 ND=5.0 ND=0.5 ND=0.5 ND=0.5 ND=0.5 04/18/07 6.44 ND=5.0 1.90 ND=2.50 ND=5.0 ND=0.5 ND=0.5 ND=0.5 ND=0.5 04/18/07 6.44 ND=5.0 1.90 ND=2.50 ND=5.0 ND=0.5 ND=0.5 ND=0.5 ND=0.5 04/18/07 6.44 ND=5.0 1.90 ND=2.50 ND=5.0 ND=0.5 ND=0.5 ND=0.5 ND=0.5 ND=0.5 04/18/07 6.45 ND=5.0 ND=2.50 ND=5.0 ND=0.5 ND=0.5 ND=0.5 ND=0.5 ND=0.5 04/18/07 6.45 ND=5.0 ND=5.0 ND=0.5	Sample 1D	_	_	11 n-g	IFII-u	11.11-1110	WIIDE	MIIDE	Delizelle	Toluelle	-	Aylenes
TW-5 10/18/04 5.89 230 3.700 1,600 ND-5.0 0.54 3.4 ND-0.5 0.93 continued 01/25/05 5.13 63 750 640 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 04/19/05 5.27 ND-50 1,100 660 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/18/05 5.76 ND-50 770 490 ND-5.0 ND-0.5 ND-0.5 ND-0.5 10/18/05 6.04 78 1,600 1,100 ND-5.0 ND-0.5 ND-0.5 ND-0.5 10/11/06 4.72 ND-50 180 260 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/11/06 4.72 ND-50 180 260 ND-0.5 ND-50 ND-0.5 ND-0.5 ND-0.5 10/12/07 Well Destroyed 12/20/06 MW-6 03/13/06 6.45 ND-50 110 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 10/12/07 Well Destroyed 12/20/06 MW-7 03/13/06 6.50 ND-50 110 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 10/02/07 6.44 ND-50 120 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/03/07 6.83 ND-50 120 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/03/07 6.84 ND-50 120 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/03/07 6.83 ND-50 100 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/03/07 6.84 ND-50 120 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/03/07 6.84 ND-50 120 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/03/07 6.84 ND-50 120 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/03/07 6.83 ND-50 100 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/03/07 6.84 ND-50 ND-50 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/03/07 6.84 ND-50 ND-50 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/03/07 6.84 ND-50 ND-50 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/03/07 6.84 ND-50 ND-50 ND-250 ND-5.0 ND-0.5 ND-0.5 ND-0.5 ND-0.5 10/03/07 4.17 ND-50 ND-50 ND-250 ND-5.0 ND-0.5 ND-0.5		Date	vv ater	FDA	Mothod 8	2015	8260R		FDΛ	Mathod 80		
TW-5 10/18/04 5.89 230 3,700 1,600 ND<5.0					1	1	0200D	(µg/L)	1			(µg/L)
				(μg/L)	(µg/L)	(μg/ L)		(μς/ Ε)	(μg/L)	(μg/L)	(µg/L)	(μg/L)
MW-10	TW-5	10/18/04	5.89	230	3,700	1,600		ND<5.0	0.54	3.4	ND<0.5	0.93
MW-10	continued	01/25/05	5.13	63	750	640		ND<5.0	ND<0.5	0.78	ND<0.5	1.3
1018/05 6.04 78 1,600 1,100 ND<5.0 ND<0.5 ND		04/19/05	5.27	ND<50	1,100	660		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-10		07/18/05	5.76	ND<50	770	490		ND<5.0	ND<0.5	0.88	ND<0.5	ND<0.5
MW-6		10/18/05	6.04	78	1,600	1,100		ND<5.0	ND<0.5	1.6	ND<0.5	ND<0.5
MW-6		01/11/06	4.72	ND<50	680	550	ND<0.5	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-6		03/13/06	4.51	ND<50	180	260	ND<0.5	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-6 03/13/06 5.69 87 160 310 ND<0.5		06/15/06	Not sample	ed, well da	maged - wi	ill be destro	yed					
06/15/09 6.50 ND<50 110 ND<250 ND<50 ND<0.5		01/02/07	Well Desti	royed 12/2	0/06							
06/15/09 6.50 ND<50 110 ND<250 ND<50 ND<0.5	MW-6	03/13/06	5.69	87	160	310	ND<0.5	ND<5.0	ND<0.5	0.83	1.3	0.80
09/20/06 6.84 ND ND 59 ND ND </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ND<5.0</th> <th>ND<0.5</th> <th>ND<0.5</th> <th></th> <th></th>								ND<5.0	ND<0.5	ND<0.5		
MW-7		09/20/06		ND<50	59	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	
MW-7		01/02/07	6.44	ND<50	120	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-7									ND<0.5			
06/15/09 3.95 ND<50 520 ND<250 ND<50 ND<0.5												
06/15/09 3.95 ND<50 520 ND<250 ND<50 ND<0.5	MW-7	03/13/06	3 36	460	3 500	360	ND<0.5	ND<5.0	2.5	1.0	ND<0.5	3 3
09/20/06	171 77 - 7											
MW-8 01/02/07 4.17 ND<50 99 ND<250 ND<5.0 ND<0.5 ND												
MW-8 06/06/07 4.69 ND<50 ND<50 ND<250 ND<5.0 ND<5.0 ND<0.5												
MW-8 03/13/06 4.64 280 130 ND<250												
MW-8 03/13/06 4.64 280 130 ND<250												
MW-8 03/13/06 4.64 280 130 ND<250												
MW-9 03/13/06 4.32 1,100 14,000 400 2.4 ND<5.0		10/04/07	3.13	ND<30	ND<30	ND<250		ND<5.0	ND<0.3	1110<0.5	ND<0.3	ND<0.5
09/20/06 6.03 ND<50	MW-8						ND<0.5					
MW-9 03/13/06 4.32 1,100 1400 460												
MW-9 05/06/07 5.93 ND<50												
MW-9 03/13/06 4.32 1,100 14,000¹ 4,100 2.4 ND<5.0												
MW-9 03/13/06 4.32 1,100 14,000¹ 4,100 2.4 ND<5.0		06/06/07		ND<50								
06/15/09 5.35 460 2,100 710 ND<5.0		10/04/07	6.64	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
06/15/09 5.35 460 2,100 710 ND<5.0 170 0.73 1.3 8.3 09/21/06 5.81 130 1,400 460 ND<5.0 20 1.2 ND<0.5 2.6 01/02/06 5.19 88 4,300 1,000 ND<5.0 5.1 0.67 ND<0.5 ND<0.5 06/06/07 5.67 64 320 250 ND<5.0 12 ND<0.5 ND<0.5 ND<0.5 10/04/07 5.89 ND<50 140 ND<250 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 MW-10 03/13/06 3.28 ND<50 220 ND<250 2.7 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 06/15/09 4.38 ND<50 300 ND<250 ND<5.0 ND<0.5	MW-9	03/13/06	4.32	1,100	14,000 ¹	4,100	2.4	ND<5.0	85	1.8	0.64	100
MW-10 03/13/06 3.28 ND<50												
MW-10 03/13/06 3.28 ND<50		09/21/06	5.81	130		460		ND<5.0	20	1.2	ND<0.5	2.6
MW-10 03/13/06 06/15/09 4.38 06/15/09 4.79 06/15/09 11/002/07 ND<50 06/15/09 4.66 06/15/09 230 06/15/09 06/1		01/02/06						ND<5.0		0.67	ND<0.5	ND<0.5
MW-10 03/13/06 3.28 ND<50												ND<0.5
06/15/09 4.38 ND<50 300 ND<250 ND<5.0 ND<0.5 ND<0.5 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>												
06/15/09 4.38 ND<50 300 ND<250 ND<5.0 ND<0.5 ND<0.5 <td< th=""><th>MW-10</th><th>03/13/06</th><th>3.28</th><th>ND<50</th><th>220</th><th>ND<250</th><th>2.7</th><th>ND<5.0</th><th>ND<0.5</th><th>ND<0.5</th><th>ND<0.5</th><th>ND<0.5</th></td<>	MW-10	03/13/06	3.28	ND<50	220	ND<250	2.7	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
09/21/06 4.79 ND<50 280 460 ND<5.0 ND<0.5												
01/02/07 4.66 ND<50 230 ND<250 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5												
		06/06/07		ND<50	230	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
10/04/07 4.74 ND<50 120 ND<250 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5												

Table 2: Groundwater Analytical Data Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE	MTBE	Benzene	Toluene	Ethyl	Xylenes
	Date	Water								benzene	
			EPA	Method 8	015	8260B			Method 80		
			$(\mu g/L)$	$(\mu g/L)$	(µg/L)		(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	$(\mu g/L)$
MW-11	01/02/07	3.94	160	2,700	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	1.7
	6//06/07	4.51	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	07/11/07	5.03	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-12	01/02/07	3.43	53	130	ND<250		1.4	ND<0.5	ND<0.5	ND<0.5	0.95
	06/06/07	3.81	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<5.0
	10/04/07	4.38	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<5.0
SB7-W-15	10/09/03		ND <50				ND < 5.0	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
SB8-W-20	10/09/03		1,700.0				8.3	940	2.7	0.58	2.2
SB9-W-20	10/09/03		ND < 50				ND < 5.0	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
SB10-W-15	10/09/03		ND < 50				ND < 5.0	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
SB11-W-15	10/09/03		ND < 50				ND < 5.0	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
SB12-W-15	10/09/03		ND < 50	150	320	320	ND < 5.0	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
SB13-W-20	10/10/03		891				ND < 5.0	27	0.53	2.4	6.2
SB14-W-30	10/10/03		$2,300^{1}$	$72,000^{1}$	ND < 57	ND < 57	45	120	7.8	35	100
GW	09/15/96		4,800.0				<130	4,100	3,500	21,000	6,400
BH-1	01/31/97		13,000				<60	770	67	530	1,800
BH-4	01/31/97		25,000				< 50	1,300	110	1,200	2,400
BH-6	01/31/97		27,000				230	5,000	410	1,100	2,400

TPH-g = total petroleum hydrocarbons as gasoline

TPH-d = total petroleum hydrocarbons as diesel

TPH-mo = total petroleum hydrocarbons as motor oil

MTBE = methyl tert-butyl ether

1 = light non-aqueous phase liquid

 μ g/L = micrograms per liter (parts per billion)

---- not sampled

ND = not detected

Table 3: Groundwater Elevation and Flow Direction Summary Omega Termite, 807 75th Ave., Oakland, CA

Episode #	Date	Average Elevation (ft)	Elevation Change (ft)	Flow Direction / Gradient
1	07/30/99	5.07	_	
2	11/09/99	5.25	0.18	0.0056 / SW
3	02/23/00	8.08	2.83	0.008 / S
4	05/26/00	5.41	-2.66	0.003 / SW
5	10/10/00	5.19	-0.22	0.0036 / S
6	02/07/01	5.73	0.54	0.008 / S
7	05/25/01	5.65	-0.09	0.006 / S
8	09/19/01	5.32	-0.33	0.004 / S
9	02/06/02	5.93	0.62	0.005 / SE
10	05/17/02	5.59	-0.34	0.003 / SW
11	08/20/02	5.34	-0.26	0.002 / S
12	01/10/03	6.74	1.40	0.006 / E-NE
13	04/14/03	6.05	-0.69	0.016 / E-NE
14	07/14/03	5.76	-0.29	.0017 / S-SE
15	10/14/03	5.26	-0.50	0.003 / SE
16	01/13/04	6.34	1.08	0.001 / W
17	04/15/04	5.74	h	0.001 / W
18	07/15/04	5.68	-0.05	0.001 / W
19	10/18/04	5.62	-0.07	0.002 / N
20	01/25/05	6.33	0.71	0.002 / N
21	04/19/05	6.16	-0.17	0.001 / N
22	07/18/05	5.85	-0.31	0.0004 / S
23	10/18/05	5.61	-0.24	0.0017 / SW
24	01/11/06	6.79	1.18	0.0047 / N
25	3/13/06	6.57	-0.21	Shallow Zone .0004 / NW
	3/13/06	7.38		Deeper zone 0.036 / S
26	6/15/06	5.92	-0.65	Shallow Zone 0.0004 / NW
	6/15/06	6.40	-0.98	Deeper zone 0.06 / S
27	9/20/06	5.52	-0.41	Shallow Zone 0.005 / SW
	9/20/06	5.93	-0.47	Deeper zone 0.004/ S
28	1/2/07	6.02	0.50	Shallow Zone 0.0004 / NW
	1/2/07	6.38	0.45	Deeper Zone 0.06 / S
29	6/6/07	6.04	0.02	Shallow Zone 0.0004 / NW
	6/6/07	5.67	-0.71	Deeper Zone 0.06 / S
30	10/4/07	5.52	-0.50	Shallow Zone 0.005 / SW
	10/4/07	5.72	-0.66	Deeper Zone 0.012/ S

Average water table elevation calculated using Microsoft Excel

APPENDIX A

Groundwater Monitoring Well Field Sampling Forms

<u>AEI CONSULTANTS</u>

GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number:	MW-1
Monitorina wen muniber.	IVI VV - I

Project Name:	Omega Termite	Date of Sampling:	10/4/2007
Job Number:	262157	Name of Sampler:	Adrian
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA					
Well Casing Diameter (2"/4"/6")	2				
Wellhead Condition	OK		▼		
Elevation of Top of Casing (feet above msl)		10.68			
Depth of Well		20.00			
Depth to Water (from top of casing)	5.32				
Water Elevation (feet above msl)	5.36				
Well Volumes Purged		3			
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.0				
Actual Volume Purged (gallons)	8.0				
Appearance of Purge Water	Dark and cloudy. Clears @ 2 gal.				
Free Product Present?	t? No Thickness (ft): NA				

GROUNDWATER SAMPLES							
Number of Samples/Container Size				2 - 40ml VOA	s, 1 L Amber		
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
10:54	1	19.21	6.66	1283	1.29	-138.1	Clear
10:55	2	19.52	6.69	1262	1.03	-30.3	Clear
10:56	3	19.70	6.70	1264	0.91	-23.2	Clear
10:57	4	19.73	6.68	1269	0.77	-17.9	Clear
10:58	5	19.53	6.66	1273	0.51	-30.4	Clear
11:01	8	19.28	6.63	1276	0.48	-39.9	Clear

Slightly dark with	slight hydrocarbon odors. Clears at 1 gallon

Monitoring Well Number: MW-2

Project Name:	Omega Termite	Date of Sampling:	10/4/2007
Job Number:	262157	Name of Sampler:	Adrian
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA					
Well Casing Diameter (2"/4"/6")	2				
Wellhead Condition	ОК		▼		
Elevation of Top of Casing (feet above msl)		12.15			
Depth of Well		20.00			
Depth to Water (from top of casing)	6.63				
Water Elevation (feet above msl)	5.52				
Well Volumes Purged		3			
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	6.4				
Actual Volume Purged (gallons)	7.0				
Appearance of Purge Water	Green, clears at 2.0 gallons				
Free Product Present?	? No Thickness (ft): NA				

GROUNDWATER SAMPLES							
Number of Samples/Container Size			2 - 40ml VOA	s, 1 L Amber			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
11:56	1	20.25	6.78	990	1.77	-102.4	Light grey
11:57	2	21.35	6.77	997	1.20	-80.0	Clear
11:58	3	21.53	6.74	1022	1.00	-71.9	Clear
11:59	4	21.36	6.75	1016	0.73	-78.0	Clear
12:00	5	21.00	6.81	1004	0.48	-87.3	Clear
12:02	7	20.54	6.80	997	0.41	-86.6	Clear
		_			_		

Grey with strong hydrocarbon odors noted. Clears by 2 gallons					

Monitoring Well Number: MW-3

Project Name:	Omega Termite	Date of Sampling:	10/4/2007
Job Number:	262157	Name of Sampler:	Adrian
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA					
Well Casing Diameter (2"/4"/6")	2				
Wellhead Condition	ОК		▼		
Elevation of Top of Casing (feet above msl)		10.40			
Depth of Well		20.00			
Depth to Water (from top of casing)	4.75				
Water Elevation (feet above msl)	5.65				
Well Volumes Purged	3				
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.3				
Actual Volume Purged (gallons)	8.0				
Appearance of Purge Water	Clear				
Free Product Present?	? No Thickness (ft): NA				

GROUNDWATER SAMPLES							
Number of Samples/Container Size			2 - 40ml VOAs, 1 L Amber				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
11:08	1	19.27	6.64	1426	1.36	524.9	Clear
11:09	2	19.98	6.61	1409	1.75	526.6	Clear
11:10	3	20.04	6.60	1432	1.13	260.1	Clear
11:11	4	19.90	6.58	1446	0.84	499.8	Clear
11:12	5	19.60	6.61	1445	0.67	162.1	Clear
11:13	6	19.44	6.66	1450	0.54	2.2	Clear
11:15	8	19.23	6.69	1438	0.50	-11.4	Clear

Clear with no hydrocarbon odors	

Monitoring Well Number: MW-4

Project Name:	Omega Termite	Date of Sampling:	10/4/2007
Job Number:	262157	Name of Sampler:	Adrian
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA						
Well Casing Diameter (2"/4"/6")	2					
Wellhead Condition	OK		▼			
Elevation of Top of Casing (feet above msl)		10.31				
Depth of Well		20.00				
Depth to Water (from top of casing)	4.78					
Water Elevation (feet above msl)	5.53					
Well Volumes Purged	3					
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.3					
Actual Volume Purged (gallons)	8.0					
Appearance of Purge Water	Clear					
Free Product Present?	No Thickness (ft): NA					

	GROUNDWATER SAMPLES						
Number of Samp	les/Container S	Size		2 - 40ml VOA	s, 1 L Amber		
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
10:35	1	20.07	6.62	1410	2.45	528.4	Clear
10:36	2	20.75	6.68	1341	2.66	527.3	Clear
10:37	3	20.85	6.66	1371	2.59	527.7	Clear
10:38	4	20.68	6.64	1427	2.17	527.7	Clear
10:39	5	20.43	6.62	1454	1.77	530.9	Clear
10:40	6	20.20	6.60	1471	1.15	529.9	Clear
10:42	8	19.89	6.61	1499	0.84	411.4	Clear

Clear with no hydrocarbon odors noted.	

Monitoring	Well Number:	MW-6
MICHILOHIIM	TTCII ITUIIDCI.	17177-()

Project Name:	Omega Termite	Date of Sampling:	10/4/2007
Job Number:	262157	Name of Sampler:	Adrian
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA						
Well Casing Diameter (2"/4"/6")	2					
Wellhead Condition	OK		▼			
Elevation of Top of Casing (feet above msl)		12.35				
Depth of Well		14.00				
Depth to Water (from top of casing)	6.83					
Water Elevation (feet above msl)	5.52					
Well Volumes Purged						
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	3.4					
Actual Volume Purged (gallons)	4.0					
Appearance of Purge Water	Brown					
Free Product Present?	? No Thickness (ft): NA					

		G	ROUNDWA	TER SAMPL	.ES		
Number of Samp	oles/Container S	Size		2 - 40ml VOA	s, 1 L Amber		
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
8:53	1	19.99	6.79	1279	1.9	179.2	Clear
8:54	2	20.67	6.80	1282	1.16	173.8	Clear
8:55	3	20.54	6.79	1285	1.02	169.1	Clear
8:58	4	20.34	6.78	1281	0.95	159.1	Clear

Brown with no hydrocarbon odors noted. Fast clearing. Brown at 3 gallons

Monitoring Well Number: MW-7

Project Name:	Omega Termite	Date of Sampling:	10/4/2007
Job Number:	262157	Name of Sampler:	Adrian
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA					
Well Casing Diameter (2"/4"/6")	2				
Wellhead Condition	ОК		▼		
Elevation of Top of Casing (feet above msl)		11.16			
Depth of Well		35.00			
Depth to Water (from top of casing)	5.15				
Water Elevation (feet above msl)	6.01				
Well Volumes Purged	3				
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	14.3				
Actual Volume Purged (gallons)	15.0				
Appearance of Purge Water	Brown, Clears @ 3 gallons				
Free Product Present?	? No Thickness (ft): NA				

GROUNDWATER SAMPLES							
Number of Sample	les/Container S	Size		2 - 40ml VOA	s, 1 L Amber		
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
8:37	1	18.46	6.85	1600	10.01	261.5	Brown
8:38	2	18.47	6.81	1599	8.64	245.1	Light Brown
8:39	3	18.48	6.81	1596	8.53	235.2	Clear
8:41	6	18.49	6.84	1587	8.97	211.6	Clear
8:43	9	18.50	6.85	1574	9.43	196.9	Clear
8:45	12	18.50	6.85	1568	9.62	184.8	Clear
8:47	15	18.50	6.84	1563	9.68	186.1	Clear

No hydrocarbon odors noted. High air pressure.
Clears at 3 gallons

Monitoring Well Number: MW-8

Project Name:	Omega Termite	Date of Sampling:	10/4/2007
Job Number:	262157	Name of Sampler:	Adrian
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA						
Well Casing Diameter (2"/4"/6")		2				
Wellhead Condition	ОК					
Elevation of Top of Casing (feet above msl)		12.42				
Depth of Well		35.00				
Depth to Water (from top of casing)	6.64					
Water Elevation (feet above msl)		5.78				
Well Volumes Purged		3				
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	13.5					
Actual Volume Purged (gallons)	14.0					
Appearance of Purge Water	Brown changing to clear @ 3.5gal.					
Free Product Present?	roduct Present? No Thickness (ft): NA					

GROUNDWATER SAMPLES							
Number of Samples/Container Size			2 - 40ml VOA	s, 1 L Amber			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
9:03	1	18.51	6.81	2087	4.38	131.2	Brown
9:04	2	18.58	6.81	2095	4.39	132.1	Brown
9:05	3	18.67	6.81	2103	4.22	133.0	Brown
9:06	4	18.83	6.82	2113	3.82	132.9	Light Brown
9:08	6	18.95	6.83	2114	3.23	130.9	Light Brown
9:10	8	18.92	6.84	2120	2.53	125.7	Light Brown
9:12	10	18.75	6.83	2115	2.26	123.5	Light Brown
9:14	12	18.82	6.84	2116	2.50	123.2	Light Brown
9:16	14	18.82	6.84	2114	2.35	123.1	Light Brown

Milky brown with No hydrocarbon odors noted. Strong air pressure					
Light brown, clears at 3.5 gallons					

Monitoring Well Number:	MW-9
-------------------------	------

Project Name:	Omega Termite	Date of Sampling:	10/4/2007
Job Number:	262157	Name of Sampler:	Adrian
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA						
Well Casing Diameter (2"/4"/6")	2					
Wellhead Condition	OK		▼			
Elevation of Top of Casing (feet above msl)		11.22				
Depth of Well		35.00				
Depth to Water (from top of casing)	5.89					
Water Elevation (feet above msl)	5.33					
Well Volumes Purged		3				
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	13.9					
Actual Volume Purged (gallons)	14.0					
Appearance of Purge Water	Brown then clear @ 4 gal					
Free Product Present?	sent? No Thickness (ft): NA					

GROUNDWATER SAMPLES							
Number of Samples/Container Size				2 - 40ml VOAs, 1 L Amber			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
12:10	1	18.61	6.89	1369	7.75	146.9	Brown
12:11	2	18.89	6.87	1369	7.08	147.7	Light Brown
12:12	3	19.04	6.87	1368	6.71	134.3	Light Brown
12:13	4	19.23	6.88	1368	6.33	119.5	Clear
12:14	5	19.27	6.88	1360	5.83	113.6	Clear
12:16	6	18.86	6.87	1367	5.60	114.1	Clear
12:18	8	18.58	6.92	1480	6.00	118.0	Brown
12:55	10	18.56	6.84	1300	4.81	106.7	Clear
12:57	12	18.76	6.83	1307	3.76	106.8	Clear
12.59	14	18.97	6.83	1315	3.43	110.6	Clear

Brown with no hydrocarbon odors. High air pressure.
Light brown @ 1.5 gallons. Clear @ 4 gallons, became brown @ 7 gallons, went dry at 8.5 gallons @ 12:18 pm
Recharged @ 12:54 pm

Monitoring Well Number: MW-10

Project Name:	Omega Termite	Date of Sampling:	10/4/2007
Job Number:	262157	Name of Sampler:	Adrian
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA						
Well Casing Diameter (2"/4"/6")	2					
Wellhead Condition	OK		▼			
Elevation of Top of Casing (feet above msl)		10.31				
Depth of Well		35.00				
Depth to Water (from top of casing)	4.74					
Water Elevation (feet above msl)	5.57					
Well Volumes Purged		3				
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	14.5					
Actual Volume Purged (gallons)	16.0					
Appearance of Purge Water	Brown, clears at 1 gal					
Free Product Present?	No	Thickness (ft):	NA			

GROUNDWATER SAMPLES							
Number of Samples/Container Size			2 - 40ml VOAs, 1 L Amber				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
9:24	1	18.50	6.61	1664	2.55	-7.0	Clear
9:25	2	18.55	6.62	1662	1.57	-15.2	Clear
9:26	3	18.74	6.63	1657	1.20	-33.9	Clear
9:27	4	18.97	6.66	1641	1.16	-38.5	Clear
9:28	5	19.27	6.73	1615	1.67	-44.1	Clear
9:29	6	18.80	6.64	1650	1.07	-23.6	Clear
10:03	9	18.54	6.68	1504	1.95	-63.4	Light Brown
10:05	12	18.63	6.70	1507	0.96	-71.9	Light Brown
10:07	15	18.79	6.71	1514	0.83	-75.8	Light Brown

Brown with hydrocarbon odors noted. Clears @ 1 gallon
Well dry at 7 gallons 9:30am, recharged @ 10:01 am

Monitoring Well Number: MW-11

Project Name:	Omega Termite	Date of Sampling:	10/3/2007
Job Number:	262157	Name of Sampler:	Adrian
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA					
Well Casing Diameter (2"/4"/6")	2				
Wellhead Condition	ok ▼				
Elevation of Top of Casing (feet above msl)	10.31				
Depth of Well	35.00				
Depth to Water (from top of casing)	5.03				
Water Elevation (feet above msl)	5.28				
Well Volumes Purged	3				
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	14.3				
Actual Volume Purged (gallons)	15.0				
Appearance of Purge Water	Initially brown, then clear @ 2.5 gal.				
Free Product Present?	No Thickness (ft): NA				

GROUNDWATER SAMPLES							
Number of Samples/Container Size				2 - 40ml VOAs, 1 L Amber			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
11:38	1	18.66	7.06	1260	13.97	128.9	Brown
11:39	2	18.60	7.12	130	18.50	142.9	Light Brown
11:40	3	18.59	7.10	1221	19.69	150.5	Clear
11:41	4	18.59	7.09	1220	19.88	152.9	Clear
11:42	5	18.58	7.08	1216	20.14	156.9	Clear
11:44	7	18.59	7.06	1215	20.04	161.1	Clear
11:46	9	18.58	7.06	1214	19.99	161.9	Clear
11:48	11	18.57	7.04	1211	19.83	163.3	Clear
11:50	13	18.58	7.04	1211	19.68	164.1	Clear
11:52	15	18.58	7.04	1210	19.58	164.6	Clear

No hydrocarbon odor. Clear at 2.5 Gallons

<u>AEI CONSULTANTS</u> GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number: MW-12

Project	Name:	Omega Termite	Date of Sampling:	10/4/2007
Job Ni	umber:	262157	Name of Sampler:	Adrian
Project A	ddress:	807 75th Avenue Oakland		

MONITORING WELL DATA									
Well Casing Diameter (2"/4"/6") 2									
Wellhead Condition	ОК								
Elevation of Top of Casing (feet above msl)	10.31								
Depth of Well	35.00								
Depth to Water (from top of casing)	4.38								
Water Elevation (feet above msl)	5.93								
Well Volumes Purged		3							
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		14.6							
Actual Volume Purged (gallons)	15.0								
Appearance of Purge Water	Silty brown. Clears @ 2.5gal								
Free Product Present?	sent? No Thickness (ft): NA								

	GROUNDWATER SAMPLES											
Number of Sampl	es/Container S	Size		2 - 40ml VOAs, 1 L Amber								
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments					
10:14	1	18.72	7.14	1233	17.79	94.5	Brown					
10:15	2	18.83	7.15	1224	18.79	106.9	Brown					
10:16	3	18.94	7.15	1221	18.65	115.5	Clear					
10:18	5	18.99	7.15	1222	18.21	118.8	Clear					
10:20	7	19.05	7.14	1218	17.14	123.8	Clear					
10:22	9	19.06	7.12	1216	16.20	126.6	Clear					
10:24	11	19.01	7.10	1213	15.39	128.8	Clear					
10:26	13	18.93	7.07	1209	14.23	132.1	Clear					
10.28	15	18.90	7.07	1208	14.03	133.7	Clear					

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Brown with No hydrocarbon odor. Clears @ 2.5 Gallons	

APPENDIX B

Laboratory Analytical Reports
With
Chain of Custody Documentation

AEI Consultants	Client Project ID: #262157; Omega Termite	Date Sampled: 06/06/07
2500 Camino Diablo, Ste. #200		Date Received: 06/06/07
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported: 06/13/07
Trainet Crock, CT 94371	Client P.O.:	Date Completed: 06/13/07

WorkOrder: 0706168

June 13, 2007

Dear Robert:

Enclosed are:

- 1). the results of 11 analyzed samples from your #262157; Omega Termite project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

aer 0706168

		McCAN					LI	NC							CHAIN OF CUSTODY RECORD							1_													
			110 2 nd AV PACHEO	VENUE SO CO, CA 945											T	UF	RN.	AR	O	UNI	TC	'IM	E												
	Telephor	ne: (925) 79		100 Table 1			Fax:	(92	5) 7	98-1	1622	2								0		<u> </u>				JSH		24 I	HR	7	48 HI				5 DAY
ŀ													97.	_	G	eoT							On	(DW)											
-	Report To: Rober			В	Bill To	o: Sa	ime							\dashv		_	-		/	Ana	lysi	s Re	que	est	$\overline{}$		_		\vdash	<u> </u>	Oth	er	\dashv	Comn	nents
ŀ	Company: AEI C	Camino Dia	ble Suite	200										\dashv			&F)													ist)				Filter Sample	ec for
1		ut Creek, C.			-Ma	il: rflo	orva	aeic	cons	ultar	nts co			\dashv	TBE		F/B						B		01					et Li			8	Metals	
H	Tel: (925) 944-28					(925)	-			un	110.00)111		\neg	8015)/MTBE		0 E&	3.1)					& EDB		625 / 8270 / 8310					8010 Target List)				Analys	
	Project #: 262157	7		P		et Na				Te	ermi	te			801		(552	(418		6					3270					3010				Yes /	No
	Project Location:	807 75 th , (Oakland,	CA											020 +	r oil	sase	pons	list)	8020			ol DC		3/57			(01)							
	Sampler Signatur	e: How	1												905/8	motor oil	Gre	ocar	0101	05 /	8080	_	8260 incl DCA		EPA 62			2/60		260I					
		110	SAMP	LING	_ s	iers	L	MA	TR	IX	P	MET RESE	THOI ERVI	D ED	as Gas (602/8020		Oil &	Hydr	8) 097	EPA 6	/ 809	0808 /						1/239.		S) S)					
	SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Other		HNO ₃		втех & трн аѕ	TPH (8015) diesel /	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	HVOCs EPA 8260 (8010 list)	BTEX ONLY (EPA 602 / 8020)	Pesticides EPA 608 / 8080	PCBs EPA 608 / 8080	Fuel Aditives by	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI	Halogenated VOCs (8260B					
	MW-1		6/6/07	417	4	OLL	X	\forall			4	X	Н	\dashv	X	X	\forall		\top	\top	\top	\top	\top	\top	\top	\top	\neg		Н	\vdash	\top	+	寸	2	
	MW-2		1	4:22	1		X	\Box		\top	X	V		\exists	X	X		1		\top	\top												\exists		
	MW-3			4:05				\Box			X	->		\dashv	X	X	1	1			\top	\top	\top									\top	\forall		
-	MW-4			3:54		\Box	X	\Box			K	- X		\exists	X	X					\top	\top										\top	\top		
	MW-6			3:38			+				X	: >	-		X	X					\top				T								\exists		
	MW-7			3118			K	-				X			X	X				T	T	T			T	T							\top		
	MW-8			3: 73			X				X	1/			X	X																			
	MW-9			3:73			X				X	- 1	1		X	X					T												1		
	MW-10			4:00			x	П			×	- X			X	X					T	T	1			\top		- 2				T	\neg		
	MW-11			3:30			K				X	X			X	X						\top										\top	\top		
	MW-12		1	3:48	1		X	\Box	\top		×	X			X	X	\top					\top				\top						\top	\top		
				14			7				Ť								1	=	\top	\top			\top	1						\top	\forall		
						\vdash	\top				\top			\exists	\exists				1		\top	\top	\top		\top	\top						\top	\forall		
r	0					\vdash	\top		\top		+			1	\exists		1	1	\top	\top	1		+		+	1					\top	+	\forall		
1	Refinquished By:	Y	Date: 6/6/07	Time:		eived E	El	11	Pu.	M	de	m	m	15	\ I		tº /	72	100			/		D	DES	EED	37 A	TIC		OAS/	0&	èG	М	ETALS	OTHER
	Relinquished By:		Date:	Time:	Rece	eived B	Зу:				1		٤,		G	00	D C	ON	DIT	ION		/		A	PPR		PRI	ATE	Ę/						
	Relinquished By:		Date:	Time:	Rece	eived B	By:													ΓED										LAB	<u></u>		-		

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RFCORD

Page 1 of 1

Prepared by: Melissa Valles

WorkOrder: 0706168 ClientID: AEL ✓ EDF Excel Fax ✓ Email HardCopy ThirdParty Bill t Report to: Requested TAT: 5 davs Denise Mockel Robert Flory Email: rflory@aeiconsultants.com **AEI Consultants** TFI: (925) 283-600 FAX: (925) 944-289 **AEI Consultants** Date Received 06/06/2007 2500 Camino Diablo, Ste. #200 ProjectNo: #262157; Omega Termite 2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597 PO: Walnut Creek, CA 94597 Date Printed: 06/06/2007 dmockel@aeiconsultants.com Requested Tests (See legend below) Sample ID ClientSampID Matrix Collection Date Hold 2 3 10 11 12 0706168-001 MW-1 Water 6/6/07 4:17:00 PM В 0706168-002 MW-2 6/6/07 4:22:00 PM Α В Water 0706168-003 MW-3 Water 6/6/07 4:05:00 PM Α В 0706168-004 MW-4 6/6/07 3:54:00 PM Α В Water 0706168-005 MW-6 Water 6/6/07 3:38:00 PM Α В 0706168-006 MW-7 6/6/07 3:28:00 PM Α В Water 0706168-007 MW-8 Water 6/6/07 3:23:00 PM Α В 0706168-008 MW-9 Water 6/6/07 4:10:00 PM Α В 0706168-009 MW-10 Water 6/6/07 4:00:00 PM Α В В 0706168-010 MW-11 6/6/07 3:30:00 PM Water Α 0706168-011 MW-12 6/6/07 3:44:00 PM В Water Test Legend: 1 G-MBTEX_W 2 PREDF REPORT 3 TPH(DMO)_W 5 6 7 9 10 8

Comments:

12

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	6/6/07 7:4	4:27 PM				
Project Name:	#262157; Omega Termit	e			Check	dist completed and r	eviewed by:	Melissa Valles				
WorkOrder N°:	0706168 Matrix	<u>Water</u>			Carrie	er: <u>Client Drop-In</u>						
	Chain of Custody (COC) Information											
Chain of custody	present?	Ye	es	V	No 🗆							
Chain of custody	signed when relinquished ar	nd received? Ye	es	V	No 🗆							
Chain of custody	agrees with sample labels?	Ye	es	✓	No 🗌							
Sample IDs noted	by Client on COC?	Ye	s	V	No 🗆							
Date and Time of	collection noted by Client on C	COC? Ye	es	~	No 🗆							
Sampler's name r	noted on COC?	Ye	es	✓	No 🗆							
		Samp	ole F	Receipt	Information	<u>!</u>						
Custody seals in	tact on shippping container/co	ooler? Ye	es		No 🗆		NA 🔽					
Shipping containe	er/cooler in good condition?	Ye	es	V	No 🗆							
Samples in prope	er containers/bottles?	Ye	es	✓	No 🗆							
Sample containe	rs intact?	Ye	s	✓	No 🗆							
Sufficient sample	e volume for indicated test?	Ye	es	✓	No 🗌							
	<u>S</u> :	ample Preservat	ion	and Ho	ld Time (HT) Information						
All samples recei	ved within holding time?	Ye	s	✓	No 🗌							
Container/Temp B	Slank temperature	Со	oler	Temp:	19.2°C		NA \square					
Water - VOA vial	ls have zero headspace / no	bubbles? Ye	es	~	No 🗆	No VOA vials subm	itted \square					
Sample labels ch	necked for correct preservation	n? Ye	es	✓	No 🗌							
TTLC Metal - pH	acceptable upon receipt (pH<	2)? Ye	es		No 🗆		NA 🗹					
			==	===				======				
Client contacted:		Date contacted:				Contacted	by:					
Comments:												

AEI Consultants	Client Project ID: #262157; Omega Termite	Date Sampled: 06/06/07
2500 Camino Diablo, Ste. #200		Date Received: 06/06/07
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted: 06/09/07
, united Stock, G119 1897	Client P.O.:	Date Analyzed: 06/09/07

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extracti	on method: SW5030B		Anal	ytical methods: SV	V8021B/8015Cm			Work Order	: 0706	5168
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1	W	2500,a	ND<20	910	3.4	7.7	55	1	98
002A	MW-2	W	3800,a	ND<20	17	17	75	58	1	109
003A	MW-3	W	460,a	ND	40	1.9	39	22	1	102
004A	MW-4	W	190,a	ND	40	ND	14	3.6	1	98
005A	MW-6	W	ND	ND	ND	ND	ND	ND	1	94
006A	MW-7	W	ND	ND	ND	ND	ND	ND	1	97
007A	MW-8	W	ND	ND	ND	ND	ND	ND	1	92
008A	MW-9	W	64,a	ND	12	ND	ND	ND	1	98
009A	MW-10	W	ND	ND	ND	ND	ND	ND	1	90
010A	MW-11	W	ND	ND	ND	ND	ND	ND	1	113
011A	MW-12	W	ND	ND	ND	ND	ND	ND	1	118
Rep	porting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
	means not detected at or	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #262157; Omega Termite	Date Sampled:	06/06/07
2500 Camino Diablo, Ste. #200	Terrinte	Date Received:	06/06/07
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted:	06/06/07
, union Cross, Gray 1097	Client P.O.:	Date Analyzed	06/08/07-06/12/07

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW35	10C	Analytical r	methods: SW8015C	Worl	k Order: 0'	706168
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0706168-001B	MW-1	W	540,b,d	300	1	87
0706168-002B	MW-2	W	1500,d	ND	1	86
0706168-003B	MW-3	W	230,d	ND	1	86
0706168-004B	MW-4	W	59,d,b	ND	1	80
0706168-005B	MW-6	W	76,b	ND	1	88
0706168-006B	MW-7	W	ND	ND	1	112
0706168-007B	MW-8	W	ND	ND	1	89
0706168-008B	MW-9	W	320,a	250	1	93
0706168-009B	MW-10	W	230,k	ND	1	81
0706168-010B	MW-11	W	ND	ND	1	114
0706168-011B	MW-12	W	ND	ND	1	108
	g Limit for DF =1;	W	50	250	με	g/L
	s not detected at or he reporting limit	S	NA	NA	mg	/Kg

ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg						
* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in										

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

QC SUMMARY REPORT FOR SW8021B/8015Cm

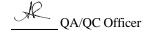
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0706168

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ba	tchID: 28	576	Sp	iked Sam	Acceptance Criteria (%)				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1		
Analyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex [£]	ND	60	102	82.1	22.1	98.1	79.2	21.3	70 - 130	30	70 - 130	30		
MTBE	ND	10	110	95.1	14.5	103	102	1.03	70 - 130	30	70 - 130	30		
Benzene	ND	10	101	91.1	9.83	99	94.9	4.21	70 - 130	30	70 - 130	30		
Toluene	ND	10	97.9	90.9	7.37	99.4	95.3	4.21	70 - 130	30	70 - 130	30		
Ethylbenzene	ND	10	98.7	92	7.01	103	94.8	8.26	70 - 130	30	70 - 130	30		
Xylenes	ND	30	91.3	85.3	6.79	117	100	15.4	70 - 130	30	70 - 130	30		
%SS:	95	10	104	104	0	94	92	2.42	70 - 130	30	70 - 130	30		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 28576 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0706168-001A	06/06/07 4:17 PM	06/09/07	06/09/07 12:56 AM	0706168-001A	06/06/07 4:17 PM	06/09/07	06/09/07 5:18 PM
0706168-002A	06/06/07 4:22 PM	06/09/07	06/09/07 1:29 AM	0706168-003A	06/06/07 4:05 PM	06/09/07	06/09/07 2:02 AM
0706168-004A	06/06/07 3:54 PM	06/09/07	06/09/07 2:35 AM	0706168-005A	06/06/07 3:38 PM	06/09/07	06/09/07 4:47 AM
0706168-006A	06/06/07 3:28 PM	06/09/07	06/09/07 5:54 PM	0706168-007A	06/06/07 3:23 PM	06/09/07	06/09/07 6:29 PM
0706168-008A	06/06/07 4:10 PM	06/09/07	06/09/07 9:08 AM	0706168-009A	06/06/07 4:00 PM	06/09/07	06/09/07 9:21 PM
0706168-010A	06/06/07 3:30 PM	06/09/07	06/09/07 10:15 AM	0706168-011A	06/06/07 3:44 PM	06/09/07	06/09/07 11:23 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0706168

EPA Method SW8015C	Extra	ction SW	3510C		Bat	chID: 28	526	Sp	iked Samı	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	١
Tillalyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	119	129	0.0157	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	116	119	0.198	N/A N/A 70 - 130		30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 28526 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0706168-001B	06/06/07 4:17 PM	06/06/07	06/08/07 5:50 PM	0706168-002B	06/06/07 4:22 PM	06/06/07	06/08/07 6:58 PM
0706168-003B	06/06/07 4:05 PM	06/06/07	06/08/07 8:06 PM	0706168-004B	06/06/07 3:54 PM	06/06/07	06/08/07 9:14 PM
0706168-004B	06/06/07 3:54 PM	06/06/07	06/12/07 3:08 AM	0706168-005B	06/06/07 3:38 PM	06/06/07	06/09/07 12:35 AM
0706168-006B	06/06/07 3:28 PM	06/06/07	06/12/07 7:08 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015C

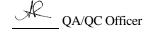
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0706168

EPA Method SW8015C	Extra	ction SW	3510C		Bat	chID: 28	579	Sp	iked Samı	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
Tillalyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	109	107	2.29	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	119	116	2.26	N/A N/A 70 - 130		30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 28579 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0706168-007B	06/06/07 3:23 PM	06/06/07	06/09/07 2:49 AM	0706168-008B	06/06/07 4:10 PM	06/06/07	06/09/07 10:10 AM
0706168-009B	06/06/07 4:00 PM	06/06/07	06/09/07 11:18 AM	0706168-010B	06/06/07 3:30 PM	06/06/07	06/12/07 8:17 PM
0706168-011B	06/06/07 3:44 PM	06/06/07	06/12/07 9:25 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

AEI Consultants	Client Project ID: #115483; Omega termite	Date Sampled: 10/04/07
2500 Camino Diablo, Ste. #200		Date Received: 10/04/07
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported: 10/12/07
wamat creek, crt 54377	Client P.O.:	Date Completed: 10/12/07

WorkOrder: 0710203

October 12, 2007

Dear Robert:

Enclosed are:

- 1). the results of 11 analyzed samples from your #115483; Omega termite project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

	McCAN					LI	VC.					Γ				(CH	AII	N C	F	CU	ST	O	DY	YI	E	CO	RI)	
		PACHEO	VENUE SO CO, CA 945									r	UI	RN	AR	OL	IND	TI	ME	:					li .					•
Telepho	ne: (925) 79		,,			ax:	925)	798-	1622									_				USH		24 H	IR	4	48 HF	1	72 HR	5 DAY
												G	eoT	rac	ker	ED	F 2	≤	PD	F	\boxtimes		Exc	eel]	Wr	ite (On (DW)	
Report To: Rober			В	ill To	: Sa	me						L					Anal	ysis	Req	uest							Oth	er	Com	ments
Company: AEI C												1		0												0			Filter	
	Camino Dia											BE		& Grease (5520 E&F/B&F)												8010 Target List)				les for
	ut Creek, C					_		nsultan	its.co	n		8015)/MTBE		E&F					EDB		8310					arge			Meta Analy	
Tel: (925) 944-28		n 122		ax: (-				••			9015		520	118				8		707					10 T				/ No
Project #: 115483 Project Location:		Valdand (rojec	t Nai	me: (me	ga ter	mite	_		+	lio	e (5	7) Su	0	8020)		inel DCA		/ 82					-80			Yes	/ No
Sampler Signatur			h									(602/8020	tor	ireas	arbo	0 lis	08/	2	incl		625			9010		0B			1	
Sampler Signatur	e. fipm		P			Τ.			1	4ET	HOD		ı ı	8	droc	108	900	00			3PA			9.2/		(826			1	
		SAMP	LING	yo.	ners	I	AAT	RIX			RVED	Gas	sel	O	Hy	790	EPA	000	82	_	by I			1/23		SC			1	
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Sludge	Other	HCI	HNO ₃ Other	BTEX & TPH as	TPH (8015) diesel /	Total Petroleum Oil	Total Petroleum Hydrocarbons (418.1)	HVOCs EPA 8260 (8010 list)	BTEX ONLY (EPA 602 /	PCBs FPA 608 / 8080	Fuel Aditives by	EPA 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI	Halogenated VOCs (8260B				
MW-1		10/4/07	124	4	V/L	X			X	V		X									X						+	+	+-	
MW-2		1	1.20	4	1	X			1	1		X					\top	1			X							\top		
MW-3			19:44	4		X	\top		1	1		X				\forall	+	†	+		X							+		
MW-4			17,29	4		X	\top	++	1	7		X			\forall	\neg		+	†		X							\pm		
MW-6			9:59	4		X	+		1	7		X				\neg		+	+		X							+		
MW-7			2.40	4		X	+	++		1		X				\forall	+	+	+		X							+		
MW-8			0.05	4	+	X		++	1	1	+	X				+	+	+	+		X		1	\neg	\vdash			+	100	11.456
MW-9			1.00	4	\vdash	X	+	++	~	v	+	X			-	\dashv	+	+	+		X				\vdash			+	_	
MW-10			1230	4		X	-	++	1	X	-	-	X		-	+	-	+	+	-	X		-		\vdash			+	-	
					\vdash	X	-	++	-	A	+	X			-	-	+	+	+	-	X		-		\vdash	\vdash	-	+	+	
MW-11			BILL	4	1	-	+	+++	-	1	+	-			-	-	+	+	+	-			-					+	-	
MW-12		**	10,0	4	4	X			1	Λ		X	X								X							·		
				_	_	\vdash	+	++	+		+				-	+	+	+	+				_			\vdash	-	+		100
Relinquished By:	w	Date:	Time: 6'.30	E	ived B	180	te	ecl	ı	7	۷.		CE/	to /	6.	2					PRE	SER	VA	TIO		OAS	0&	:G	METALS	OTHER
Relinquished By: Relinquished By:	en SR.	Date: 10/4/07-	Time: 1829 Time: 1936	Roce	ived B	1	1	8	_	5)	1	GOO HEA	DD C		EA	BSE ED		AB_		CON	ROF	RI.	ATE RS_	Ξ	LAB	3			

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

Report to:

CHAIN-OF-CUSTODY RECORD

✓ Email

ClientID: AEL

HardCopy

WorkOrder: 0710203

Bill t

Fax

Excel

Page 1 of 1

5 days

ThirdParty

Prepared by: Ana Venegas

Requested TAT:

Robert Flory AEI Consultar 2500 Camino Walnut Creek	Diablo, Ste. #200	TEL:	rflory@aeicor (925) 944-289 #115483; Om	9 FAX: (925)	283-6	12	AE 250 Wa	nise Mo I Consu 00 Cam alnut Cre lockel@	ıltants ino Dia eek, C <i>A</i>	94597	7)				10/04// 10/04//	
							1		Requ	uested	Tests (See le	gend be	elow)		1	
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0710203-001	MW-1		Water	10/4/2007 1:24:00		С	Α	Α	В								
0710203-002	MW-2		Water	10/4/2007 1:30:00		С	Α		В								
0710203-003	MW-3		Water	10/4/2007		С	Α		В								
0710203-004	MW-4		Water	10/4/2007		С	Α		В								
0710203-005	MW-6		Water	10/4/2007 9:48:00		С	Α		В								
0710203-006	MW-7		Water	10/4/2007 9:40:00		С	Α		В								
0710203-007	MW-8		Water	10/4/2007 9:55:00		С	Α		В								
0710203-008	MW-9		Water	10/4/2007 1:40:00		С	Α		В								
0710203-009	MW-10		Water	10/4/2007		С	Α		В								
0710203-010	MW-11		Water	10/4/2007		С	Α		В								
0710203-011	MW-12		Water	10/4/2007		С	Α		В								
<u>Test Legend</u> :																	
1 8270D-P	NA W	G-MBTE	· W	3 PRE	DF RE	DODT		4	1	TPH(DI	MO) \A/		Г	5			
		G-IVID I E	-V_AA		טר אב	FURI		4		ורחנטו	VIO)_VV						
6	7			8				9					Ľ	10			
11	12																

✓ EDF

Comments:

Sample Receipt Checklist

Client Name:	AEI Consultants			Date a	and Time Received:	10/4/2007	8:33:28 PM
Project Name:	#115483; Omega termit	е		Check	klist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0710203 Matrix	<u>Water</u>		Carrie	er: <u>Michael Herna</u>	ndez (MAI Cou	<u>ırier)</u>
		Chain of C	ustody (0	COC) Informa	ation		
Chain of custody	present?	Yes	V	No \square			
Chain of custody	signed when relinquished ar	d received? Yes	V	No 🗆			
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?	Yes	V	No 🗆			
Date and Time of	collection noted by Client on C	COC? Yes	✓	No \square			
Sampler's name r	noted on COC?	Yes	V	No \square			
		Sample	e Receip	t Information	<u>1</u>		
Custody seals in	tact on shipping container/coo	oler? Yes		No \square		NA 🗹	
Shipping containe	er/cooler in good condition?	Yes	V	No 🗆			
Samples in prope	er containers/bottles?	Yes	✓	No \square			
Sample containe	rs intact?	Yes	✓	No \square			
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌			
	<u>S:</u>	ample Preservatio	on and H	old Time (HT) Information		
All samples recei	ved within holding time?	Yes	✓	No 🗌			
Container/Temp B	Blank temperature	Coo	ler Temp:	10.2°C		NA \square	
Water - VOA vial	s have zero headspace / no	bubbles? Yes	✓	No \square	No VOA vials subm	itted \square	
Sample labels ch	necked for correct preservation	n? Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon receipt (pH<	2)? Yes		No 🗆		NA 🗹	
=====				====	======	=====	======
Client contacted:		Date contacted:			Contacted	by:	
Comments:							

AEI Consultants

Client Project ID: #115483; Omega
termite

Date Sampled: 10/04/07

Date Received: 10/04/07

Client Contact: Robert Flory

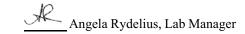
Date Extracted: 10/04/07

Client P.O.:

Date Analyzed: 10/11/07

Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS

Extraction Method: SW3510C Analytical Method: SW8270C Work Order: 0710203


Extraction Method: SW3510C		Anal	lytical Method: SW827	0C		Work Order:	0/10203
	Lab ID	0710203-001C	0710203-002C	0710203-003C	0710203-004C		
	Client ID	MW-1	MW-2	MW-3	MW-4	Reporting DF	
	Matrix	W	W	W	W		
	DF	1	1	1	1	S	W
Compound			Conce	entration		ug/kg	μg/L
Acenaphthene		ND	ND	ND	ND	NA	0.5
Acenaphthylene		ND	ND	ND	ND	NA	0.5
Anthracene		ND	ND	ND	ND	NA	0.5
Benzo(a)anthracene		ND	ND	ND	ND	NA	0.5
Benzo(a)pyrene		ND	ND	ND	ND	NA	0.5
Benzo(b)fluoranthene		ND	ND	ND	ND	NA	0.5
Benzo(k)fluoranthene		ND	ND	ND	ND	NA	0.5
Benzo(g,h,i)perylene		ND	ND	ND	ND	NA	0.5
Chrysene		ND	ND	ND	ND	NA	0.5
Dibenzo(a,h)anthracene		ND	ND	ND	ND	NA	0.5
Fluoranthene		ND	ND	ND	ND	NA	0.5
Fluorene		0.72	ND	ND	ND	NA	0.5
Indeno (1,2,3-cd) pyrene		ND	ND	ND	ND	NA	0.5
1-Methylnaphthalene		ND	17	3.2	ND	NA	0.5
2-Methylnaphthalene		ND	17	1.5	ND	NA	0.5
Naphthalene		ND	26	8.9	ND	NA	0.5
Phenanthrene		ND	ND	ND	ND	NA	0.5
Pyrene		ND	ND	ND	ND	NA	0.5
		Surr	ogate Recoveries	s (%)			
%SS1		80	82	81	79		
%SS2	-	82	83	83	81		
Comments							

^{*} water samples in μ g/L, soil/sludge/solid samples in μ g/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in μ g/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits.

"When Quality Counts"

AEI Consultants

2500 Camino Diablo, Ste. #200

Walnut Creek, CA 94597

Client Project ID: #115483; Omega termite

Date Sampled: 10/04/07

Date Received: 10/04/07

Client Contact: Robert Flory

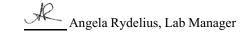
Date Extracted: 10/04/07

Client P.O.:

Date Analyzed: 10/11/07

Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS

Extraction Method: SW3510C Analytical Method: SW8270C Work Order: 0710203


Extraction Method: SW3510C		Anal	ytical Method: SW827	0C		Work Order:	0710203
	Lab ID	0710203-005C	0710203-006C	0710203-007C	0710203-008C		
C	Client ID	MW-6	MW-7	MW-8	MW-9	Reporting DF	
	Matrix	W	W	W	W	1	
	DF	1	1	1	1	S	W
Compound			Conce	entration		ug/kg	μg/L
Acenaphthene		ND	ND	ND	ND	NA	0.5
Acenaphthylene		ND	ND	ND	ND	NA	0.5
Anthracene		ND	ND	ND	ND	NA	0.5
Benzo(a)anthracene		ND	ND	ND	ND	NA	0.5
Benzo(a)pyrene		ND	ND	ND	ND	NA	0.5
Benzo(b)fluoranthene		ND	ND	ND	ND	NA	0.5
Benzo(k)fluoranthene		ND	ND	ND	ND	NA	0.5
Benzo(g,h,i)perylene		ND	ND	ND	ND	NA	0.5
Chrysene		ND	ND	ND	ND	NA	0.5
Dibenzo(a,h)anthracene		ND	ND	ND	ND	NA	0.5
Fluoranthene		ND	ND	ND	ND	NA	0.5
Fluorene		ND	ND	ND	ND	NA	0.5
Indeno (1,2,3-cd) pyrene		ND	ND	ND	ND	NA	0.5
1-Methylnaphthalene		ND	ND	ND	ND	NA	0.5
2-Methylnaphthalene		ND	ND	ND	ND	NA	0.5
Naphthalene		ND	ND	ND	ND	NA	0.5
Phenanthrene		ND	ND	ND	ND	NA	0.5
Pyrene		ND	ND	ND	ND	NA	0.5
		Surre	ogate Recoveries	s (%)			
%SS1		79	80	79	78		
%SS2		81	82	82	79		
Comments							

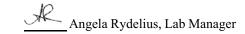
^{*} water samples in μ g/L, soil/sludge/solid samples in μ g/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in μ g/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits.

AEI Consultants	Client Project ID: #115483; Omega termite	Date Sampled: 10/04/07
2500 Camino Diablo, Ste. #200	termite	Date Received: 10/04/07
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted: 10/04/07
	Client P.O.:	Date Analyzed: 10/11/07


Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS Extraction Method: SW3510C Analytical Method: SW8270C Work Order: 0710203 Lab ID 0710203-009C 0710203-010C 0710203-011C MW-10 MW-11 MW-12 Client ID Reporting Limit for DF = 1Matrix W W W DF S W Concentration Compound μg/L ug/kg Acenaphthene ND ND ND NA 0.5 Acenaphthylene ND ND ND NA 0.5 Anthracene ND ND ND NA 0.5 Benzo(a)anthracene ND ND ND NA 0.5 ND ND ND NA 0.5 Benzo(a)pyrene Benzo(b)fluoranthene ND ND ND NA 0.5 ND NA 0.5 Benzo(k)fluoranthene ND ND ND ND NA 0.5 Benzo(g,h,i)perylene ND Chrysene ND ND ND NA 0.5 Dibenzo(a,h)anthracene ND ND ND NA 0.5 Fluoranthene ND ND ND NA 0.5 Fluorene ND ND ND NA 0.5 ND ND ND NA 0.5 Indeno (1,2,3-cd) pyrene ND 1-Methylnaphthalene ND ND NA 0.5 2-Methylnaphthalene ND ND ND NA 0.5 ND NA 0.5 Naphthalene ND ND Phenanthrene ND ND ND NA 0.5 0.5 ND ND ND NA Pyrene **Surrogate Recoveries (%)** %SS1 78 78 78 %SS2 80 79 81 Comments

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP &
SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than \sim 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com

"When Ouality Counts" Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #115483; Omega termite	Date Sampled: 10/04/07
2500 Camino Diablo, Ste. #200		Date Received: 10/04/07
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted: 10/07/07-10/12/07
,, and 61001, 6119 1097	Client P.O.:	Date Analyzed 10/07/07-10/12/07

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Ord												
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	MW-1	W	500,a	ND	140	ND	1.8	8.2	1	97		
002A	MW-2	W	660,b,m	ND	1.8	0.83 40		45	1	98		
003A	MW-3	W	320,a	ND	28	ND	29	17	1	91		
004A	MW-4	W	180,a	ND<10	44	ND	12	2.2	1	100		
005A	MW-6	W	ND	ND	ND	ND	ND	ND	1	97		
006A	MW-7	W	ND	ND	ND	ND	ND	ND	1	95		
007A	MW-8	W	ND	ND	ND	ND	ND	ND	1	94		
008A	MW-9	W	ND	ND	4.2	ND	ND	ND	1	102		
009A	MW-10	W	ND	ND	ND	ND	ND	ND	1	92		
010A	MW-11	W	ND	ND	ND	ND	ND	ND	1	120		
011A	MW-12	W	ND	ND	ND	ND	ND	ND	1	128		
_	orting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L		
	means not detected at or ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg		

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #115483; Omega termite	Date Sampled: 10/04/07
2500 Camino Diablo, Ste. #200	termite	Date Received: 10/04/07
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted: 10/04/07
, union Cross, Crrs 1057	Client P.O.:	Date Analyzed: 10/08/07-10/10/07

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW3510	0C		thods: SW8015C	Wo	Work Order: 0710203				
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS			
0710203-001B	MW-1	W	440,a	260	1	95			
0710203-002B	MW-2	W	1300,d,b	ND	1	97			
0710203-003B	MW-3	W	230,d	ND	1	99			
0710203-004B	MW-4	W	ND	ND	1	87			
0710203-005B	MW-6	W	100,b	ND	1	88			
0710203-006B	MW-7	W	ND	ND	1	102			
0710203-007B	MW-8	W	ND	ND	1	103			
0710203-008B	MW-9	W	140,a	ND	1	106			
0710203-009B	MW-10	W	120,b	ND	1	105			
0710203-010B	MW-11	W	ND	ND	1	95			
0710203-011B	MW-12	W	ND	ND	1	100			
	Limit for DF =1;	W	50	250	μg/L				
ND means	not detected at or	S	NA	NA	mg/Kg				

ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg
* water samples are reported in ug/L, wipe samples in ug/	/wipe. soil/	solid/sludge samples in mg/kg	product/oil/non-aqueous liqu	id samples in mg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant (cooking oil?); h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

QC SUMMARY REPORT FOR SW8270C

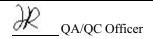
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0710203

EPA Method SW8270C		BatchID: 31136			Sp	Spiked Sample ID: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%))
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Benzo(a)pyrene	N/A	10	N/A	N/A	N/A	81.4	81.3	0.187	N/A	N/A	30 - 130	30
Chrysene	N/A	10	N/A	N/A	N/A	84.4	82	2.90	N/A	N/A	30 - 130	30
1-Methylnaphthalene	N/A	10	N/A	N/A	N/A	88.9	89	0.125	N/A	N/A	30 - 130	30
2-Methylnaphthalene	N/A	10	N/A	N/A	N/A	86.4	85.2	1.46	N/A	N/A	30 - 130	30
Phenanthrene	N/A	10	N/A	N/A	N/A	79.6	79.1	0.561	N/A	N/A	30 - 130	30
Pyrene	N/A	10	N/A	N/A	N/A	80.6	80	0.728	N/A	N/A	30 - 130	30
%SS1:	N/A	5	N/A	N/A	N/A	85	85	0	N/A	N/A	30 - 130	30
%SS2:	N/A	5	N/A	N/A	N/A	91	92	0.281	N/A	N/A	30 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 31136 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0710203-001C	10/04/07 1:24 PM	I 10/04/07	10/11/07 1:59 AM	0710203-002C	10/04/07 1:30 PM	10/04/07	10/11/07 3:17 AM
0710203-003C	10/04/07 12:48 PM	10/04/07	10/11/07 4:35 AM	0710203-004C	10/04/07 12:39 PM	10/04/07	10/11/07 5:53 AM
0710203-005C	10/04/07 9:48 AM	10/04/07	10/11/07 7:11 AM	0710203-006C	10/04/07 9:40 AM	10/04/07	10/11/07 8:29 AM
0710203-007C	10/04/07 9:55 AM	10/04/07	10/11/07 9:47 AM	0710203-008C	10/04/07 1:40 PM	10/04/07	10/11/07 11:06 AM
0710203-009C	10/04/07 12:30 PM	10/04/07	10/11/07 12:25 PM	0710203-010C	10/04/07 11:12 AM	10/04/07	10/11/07 1:45 PM
0710203-011C	10/04/07 12:21 PM	10/04/07	10/11/07 3:05 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

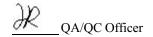
QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0710203

EPA Method SW8021B/8015Cm		BatchID: 31088 Spiked Sample ID: 0710163-005A						5A				
Analyte _	Sample	Spiked	Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD				Acce	Acceptance Criteria (%)				
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf)	ND	60	74.9	76.6	2.23	82.1	88.9	7.91	70 - 130	30	70 - 130	30
MTBE	ND	10	113	107	5.51	112	115	2.50	70 - 130	30	70 - 130	30
Benzene	ND	10	107	103	3.62	98	104	5.73	70 - 130	30	70 - 130	30
Toluene	ND	10	119	114	4.27	108	117	8.17	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	114	112	2.39	105	107	2.35	70 - 130	30	70 - 130	30
Xylenes	ND	30	120	120	0	110	113	2.99	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 31088 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0710203-001A	10/04/07 1:24 PM	1 10/11/07	10/11/07 9:47 AM	0710203-002A	10/04/07 1:30 PM	10/12/07	10/12/07 12:22 AM
0710203-003A	10/04/07 12:48 PM	10/11/07	10/11/07 11:49 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

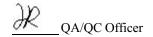
QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0710203

EPA Method SW8021B/8015Cm		BatchID: 31107 Spiked Sample ID: 0710173-001					1A					
Analyte	Sample	ple Spiked MS MSD MS-MSD LCS				LCSD	LCS-LCSD	Acceptance Criteria (%)				
rularyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf)	ND	60	71.8	76.6	6.51	77.3	75.8	1.99	70 - 130	30	70 - 130	30
MTBE	ND	10	109	105	4.34	108	112	3.59	70 - 130	30	70 - 130	30
Benzene	ND	10	103	97.8	5.57	97.8	97.9	0.148	70 - 130	30	70 - 130	30
Toluene	ND	10	114	108	5.22	109	108	0.984	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	111	105	5.09	106	105	1.77	70 - 130	30	70 - 130	30
Xylenes	ND	30	113	110	2.99	113	110	2.99	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 31107 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0710203-004A	10/04/07 12:39 PM	10/07/07	10/07/07 5:03 AM	0710203-005A	10/04/07 9:48 AM	10/07/07	10/07/07 5:36 AM
0710203-006A	10/04/07 9:40 AM	10/07/07	10/07/07 6:08 AM	0710203-007A	10/04/07 9:55 AM	10/07/07	10/07/07 6:41 AM
0710203-008A	10/04/07 1:40 PM	10/07/07	10/07/07 7:14 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

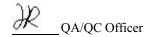
QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0710203

EPA Method SW8021B/8015Cm Extraction SW5030B				BatchID: 31135 Spiked Sample ID: 0710203-011A						1A		
Analyte	Sample Spiked MS		MSD	MSD MS-MSD LCS LCSD LCS-LCSD			Acceptance Criteria (%)					
7 that yes	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf)	ND	60	81.4	90.5	10.6	106	102	4.21	70 - 130	30	70 - 130	30
MTBE	ND	10	96.3	104	7.90	111	117	4.52	70 - 130	30	70 - 130	30
Benzene	ND	10	85.6	98.2	13.7	105	105	0	70 - 130	30	70 - 130	30
Toluene	ND	10	78.5	88.7	12.1	103	98	4.90	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	86.5	95.3	9.76	103	103	0	70 - 130	30	70 - 130	30
Xylenes	ND	30	81.7	92.3	12.3	96.7	96.7	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 31135 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0710203-009A	10/04/07 12:30 PM	10/07/07	10/07/07 2:19 PM	0710203-010A	10/04/07 11:12 AM	10/07/07	10/07/07 6:45 PM
0710203-011A	10/04/07 12:21 PM	10/07/07	10/07/07 7:15 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

QC SUMMARY REPORT FOR SW8015C

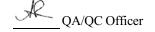
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0710203

EPA Method SW8015C Extraction SW3510C					Bat	tchID: 31	123	Spiked Sample ID: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	SD LCS-LCSD Acceptance (Criteria (%))	
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	104	105	1.50	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	90	89	0.519	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 31123 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0710203-001B	10/04/07 1:24 PM	10/04/07	10/08/07 1:42 PM	0710203-002B	10/04/07 1:30 PM	10/04/07	10/08/07 2:51 PM
0710203-003B	10/04/07 12:48 PM	10/04/07	10/08/07 3:59 PM	0710203-004B	10/04/07 12:39 PM	10/04/07	10/10/07 7:26 PM
0710203-005B	10/04/07 9:48 AM	10/04/07	10/10/07 8:36 PM	0710203-006B	10/04/07 9:40 AM	10/04/07	10/08/07 1:42 PM
0710203-007B	10/04/07 9:55 AM	10/04/07	10/08/07 2:51 PM	0710203-008B	10/04/07 1:40 PM	10/04/07	10/08/07 3:59 PM
0710203-009B	10/04/07 12:30 PM	10/04/07	10/08/07 5:08 PM	0710203-010B	10/04/07 11:12 AM	10/04/07	10/09/07 5:40 AM
0710203-011B	10/04/07 12:21 PM	10/04/07	10/09/07 6:48 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

