RECEIVED By dehloptoxic at 8:42 am, Nov 22, 2006

November 13, 2006

GROUNDWATER MONITORING REPORT Third Quarter, 2006

807 75th Avenue Oakland, California

AEI Project No. 115483 ACHCS # RO0000508

Prepared For

Mr. Allan Kanady Omega Termite 807 75th Avenue Oakland, CA 95621

Prepared By

AEI Consultants 2500 Camino Diablo Blvd., Suite 100 Walnut Creek, CA 94597 (925) 944-2899

November 13, 2006

Mr. Allan Kanady Omega Termite 807 75th Avenue Oakland, CA 95621

Subject: Quarterly Groundwater Monitoring Report Third Quarter, 2006 807 75th Avenue Oakland, California AEI Project No. 115483 ACHCS # RO0000508

Dear Mr. Kanady:

AEI Consultants (AEI) has prepared this report to document the results of the third Quarter, 2006 groundwater monitoring event at the above referenced site (Figure 1: Site Location Map). This groundwater investigation has been performed in accordance with the requirements of the Alameda County Health Care Services Agency (ACHCSA). The purpose of this activity is to monitor groundwater quality near the location of previously removed underground storage tanks (USTs) at the site.

Site Description and Background

The site is located in an industrial area of the City of Oakland, on the northern corner of the intersection of 75th Avenue and Snell Street, just east of San Leandro Street. The property is approximately 10,000 square feet in size and currently developed with two buildings, occupied by Omega Termite.

On September 15, 1996, AEI removed three (3) gasoline USTs from the subject property. The tanks consisted of one 8,000-gallon UST, one 1,000-gallon UST, and one 500-gallon UST. The former locations of the tanks are shown on Figure 2. Soil and groundwater samples collected during the tank removal activities revealed that a release had occurred from the tank system. Total petroleum hydrocarbons as gasoline (TPH-g), benzene, and methyl tertiary butyl ether (MTBE) were detected in the soil samples at concentrations up to 4,300 mg/kg, 13 mg/kg, and 25 mg/kg, respectively.

In October 1997, soil and groundwater samples were collected from six (6) soil borings (BH-1 through BH-6). In June 1999, four (4) groundwater monitoring wells (MW-1 through MW-4) were also installed by AEI. The construction details for the groundwater monitoring wells on site are summarized in Table 1. Monitoring well locations are shown on Figure 2. Historical groundwater elevation and historical groundwater sample analytical data are presented in Tables 2 and 3.

Under the direction of the ACHCSA, additional soil was removed from the excavation in March 2000. The excavation was extended to 29 by 48 feet in size and 8 feet deep at the east end of the excavation and 11.5 at the west end. During the excavation activities, an additional 500-gallon UST was discovered at the eastern end of the excavation. This tank was removed under the direction of Oakland Fire Services Agency (OFSA). Six additional soil samples were collected from the sidewalls and bottom of the excavation.

The resulting excavation was then backfilled with pea gravel to bridge the water table, with the remainder of the excavation being filled with the previously aerated soil and later with imported fill. The newly excavated soil was stockpiled on the northern portion of the property. A total of 7,400 gallons of hydrocarbon-impacted groundwater were pumped from the excavation, treated on-site, and discharged to the sanitary sewer system under an East Bay Municipal Utility District permit.

On October 9 and 10, 2003, AEI drilled seven temporary Geoprobe® boreholes (SB-7 through SB-13) to depths ranging from 15 to 20 feet bgs to further delineate the lateral extent of contamination in the Shallow aquifer. One borehole, SB-14 was advanced to a depth of 30 feet bgs to determine if the second aquifer at the site had been impacted. Soil samples were collected in the vadose zone above the first aquifer and from the aquitard between the first and second aquifers. The results of chemical analyses of soil samples collected and analyzed during this investigation and earlier investigations appear to have effectively defined the limits of impacted soil in the vadose zone. A significant amount of impacted soil appears remain in the immediate vicinity of boring SB-14.

The analysis of the water sample from the second aquifer (Soil Boring SB-14, 28 feet bgs) reported TPH-g, TPH-d, MTBE and benzene at concentrations of 2,300 μ g/L, 72,000 μ g/L, 45 μ g/L and 120 ug/L, respectively. Light non-aqueous phase liquid was observed on the sampler and in the water sample.

On February 15 and February 16, 2006, AEI advanced five soil borings (MW-6 through MW-10) on the site, and completed the borings as groundwater monitoring wells. The Monitoring wells were drilled with a Marl 2.5 D drilling rig. Shallow Zone well MW-6 and Deeper Zone wells MW-7 through MW-10, were drilled with nominal 8-inch diameter hollow stem augers and completed as 2" groundwater monitoring wells. The details of the well completions are summarized in Table 1.

These and existing well were sampled on March 13, 2006. Maximum concentrations of TPH-g, TPH-d, and TPH-mo reported from the Shallow Zone were 3,200 μ g/L (MW-1), 2,400 μ g/L

(MW-2), and 320 μ g/L (MW-1), respectively. The maximum concentrations of benzene reported was 1,400 μ g/L in MW-1.

Maximum concentrations of TPH-g, TPH-d, and TPH-mo reported from the Deeper Zone were 1,100 μ g/L, 14,000 μ g/L, and 4,100 μ g/L, respectively in MW-9 with the notation of light immiscible hydrocarbons present in the sample. The maximum concentration of benzene reported was 85 μ g/L in MW-9.

Geology and Hydrology

The site is located at an elevation approximately 11 feet above mean sea level (msl). The site is essentially flat; however, the general topography of the area slopes gently to the west. The surface sediments at the site are mapped as Holocene natural levee and basin deposits (Qhl and Qhb, OF 97-97, E.J. Helley and R.W. Graymer). The Natural Levee Deposits (Holocene) are described as "Loose, moderately to well-sorted sandy or clayey silt grading to sandy or silty clay. The Basin Deposits (Holocene) are described as "Very fine silty clay to clay deposits occupying flat-floored basins at the distal edge of alluvial fans adjacent to the bay mud (Qhbm)". The presence of gravels in several of the onsite soil borings indicate that stream channel deposits are also present.

Based on the soil borings advanced by AEI, the near surface sediments beneath the site can be divided into several water bearing zones which are separated by clay layers. Sediments immediately below the surface consist of black to gray brown to olive brown silty clay depths ranging from 7.5 to 10 feet bgs. No groundwater was encountered during drilling of this interval.

The surface clay is underlain by variable and somewhat discontinuous silty sand and clayey silt, which make up the Shallow Zone. The Shallow Zone extends from the base of the surface clay to depths ranging from 18 to 21 feet bgs. This zone has low to medium permeability. Groundwater is typically seen in the first permeable silt or sand encountered during drilling of this interval. Once encountered, groundwater level typically stabilizes at a depth of 5 feet bgs or less, indicating the zone is at least a semi-confined aquifer.

The Shallow Zone is underlain by several feet of moderately dry light olive brown to yellowish brown clay, except in MW-7, drilled through the former tank hold, in which the clay exhibited significant discoloration (dark greenish gray clay).

At depths ranging from 18 ft (MW-9) to 21 feet (MW-8) bgs second (intermediate) discontinuous water bearing zone (Intermediate Zone) is present. The Intermediate Zone consists of discontinuous gravel, clayey gravel, and silty sand, clayey sand, and clayey silt which are interbedded with clay layers. Permeability in the Intermediate Zone ranges from high (gravel) to poor (clayey silt). The Intermediate Zone is separated from the Deeper Zone by a layer of brown silty clay that ranges in thickness of 2 to 7 feet.

A third water bearing zone (Deeper Zone) was encountered at a depth of approximately 27 to 28 feet bgs. The lower permeable zone is made up of clayey silt, clayey sand, clean sand and sandy gravel.

Summary of Activities

AEI conducted quarterly groundwater sampling and monitoring of five Shallow Zone monitoring wells (MW-1 through MW-4 and MW-6) and four (deeper Zone wells (MW-7 through MW-10) on September 20, 2006. Backfill well TW-5, which has been damaged and is scheduled for destruction, was not sampled.

Prior to measuring the depth to water, the well caps were removed and the water levels in each well were allowed to equilibrate with atmospheric pressure for at least 15 minutes. The depth to groundwater (from the top of the well casings) for each well was then measured with an electric water level indicator. The wells were then purged using a battery-powered submersible pump. Approximately three (3) well volumes were removed from each well. During purging activities, the groundwater parameters: temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were measured. A visual evaluation of turbidity was made and noted. Groundwater parameters measured in the field are reported on the field sampling forms included in Appendix A.

Following recovery of water levels to 90% of the original level, water samples were collected from each well. Groundwater samples were collected using new disposable bailers and placed into 40-milliliter (ml) Volatile Organic Analysis (VOA) vials and 1-liter amber bottles. The VOAs were filled so that no headspace or air bubbles were visible within the sample containers. Samples were transported in a cooler on ice under appropriate chain-of-custody protocol to McCampbell Analytical, Inc. of Pacheco, California (Department of Health Services Certification #1644).

Groundwater samples from the wells were analyzed for TPH-g, benzene, toluene, ethyl benzene, xylenes (BTEX), MTBE by SW8021B/8015Cm, and TPH-d (as diesel) and TPH-mo (as motor oil) by SW8015C.

Field Results

Groundwater elevations in the Shallow Zone wells ranged from 5.30 (MW-1) to 5.52 (MW-2) feet above mean sea level (amsl). These elevations are an average of 0.93 feet lower than the previous quarterly monitoring event. The groundwater hydraulic gradient in the Shallow Zone is 0.005 ft/ft to the southwest.

Groundwater elevations in the Deeper Zone wells ranged from 5.41 (MW-9) to 6.39 (MW-7 & MW-8) feet amsl. These elevations are an average of 0.47 feet lower than the previous quarterly monitoring event. The groundwater hydraulic gradient in the Deeper Zone is 0.043 ft/ft to the south.

Current and historical Groundwater elevation data are summarized in Table 3 and 3a. The groundwater elevation contours and the groundwater flow direction are shown in Figures 3 and 4. Refer to Appendix A for the Groundwater Monitoring Well Field Sampling Forms.

Groundwater Quality

TPH-g and benzene concentrations in Shallow Zone monitoring well MW-1 increased from 3,200 μ g/L to 3,500 μ g/L and from 1,400 μ g/L to 1,700 μ g/L, respectively. TPH-d and TPH-mo concentrations in MW-1 decreased from 640 μ g/L to 550 μ g/L and from 320 μ g/L to 270 μ g/L, respectively.

TPH-g and benzene concentrations in monitoring well MW-2 increased from 2,200 μ g/L to 2,400 μ g/L and from 8.4 μ g/L to 12 μ g/L, respectively. However, TPH-d and TPH-mo increased from 2,400 μ g/L to 860 μ g/L and from 270 μ g/L to ND<250 μ g/L, respectively.

TPH-g and benzene concentrations in monitoring well MW-3 decreased from 670 μ g/L to 510 μ g/L and from 76 μ g/L to 49 μ g/L, respectively. TPH-d remained the same at 300 μ g/L while TPH-mo increased from ND<250 μ g/L to 310 μ g/L.

TPH-g and benzene concentrations in monitoring well MW-4 decreased from 460 μ g/L to 260 μ g/L and from 93 μ g/L to 63 μ g/L, respectively. TPH-d and TPH-mo increased from 86 μ g/L to 170 μ g/L and from ND<250 μ g/L to 360 μ g/L, respectively.

The TPH-d concentration in MW-6 decreased from 110 μ g/L to 59 μ g/L. TPH-g, TPH-mo, MTBE and BTEX were all reported as not detected at standard detection limits.

The TPH-d concentration in MW-7 decreased from 520 μ g/L to 150 μ g/L. TPH-g, TPH-mo, MTBE and BTEX continue to be reported as not detected at standard detection limits.

The TPH-d concentration in MW-8 decreased from 140 μ g/L to 65 μ g/L. TPH-g, TPH-mo, MTBE and BTEX continue to be reported as not detected at standard detection limits.

TPH-g concentrations in Deeper Zone monitoring well MW-9 decreased from 460 μ g/L to 130 μ g/L, while benzene decreased from 170 μ g/L to 20 μ g/L, respectively. TPH-d and TPH-mo concentrations in MW-9 decreased from 2,100 μ g/L to 1,400 μ g/L and from 710 μ g/L to 460 μ g/L, respectively.

TPH-g and benzene concentrations in monitoring well MW-10 remained at ND<50 μ g/L and ND<0.5 μ g/L, respectively, while TPH-d and TPH-mo increased from below detection limits to 280 μ g/L and 460 μ g/L, respectively.

A summary of groundwater analytical data is presented in Table 2 and on Figure 5. Contaminant isopleths are presented in Figures 6 through 11. Laboratory results and chain of custody documents are included in Appendix B.

Summary

Contaminant concentrations are reasonably consistent with previous findings. The noted decreases appear to be consistent with historical seasonal lows in the 3rd and 4th quarters. The lower concentrations in deeper wells are not consistent with the non-aqueous phase liquid (NAPL) petroleum observed during the drilling of MW-9 and SB-14.

During the 4th Quarter, as required by ACHCSA, the additional deeper groundwater monitoring wells MW-11 and MW-12 and the ozone sparging groundwater treatment system will be installed. The next quarterly groundwater monitoring event is tentatively scheduled for December 2006, by which time the additional wells should be installed.

Report Limitations and Signatures

This report presents a summary of work completed by AEI Consultants, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide required information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses, observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices in the geologic, environmental engineering and construction fields that existed at the time and location of the work.

Please contact Robert F. Flory at (925) 944-2899 extension 122, if you have any questions regarding the findings and recommendations included in this report.

GA Sincerely, **AEI Consultants** No. 5825 Robert F. Flory P.G. **Ricky Bradford** Senior Geologist Senior Staff Engineer Peter McIntyrel P.G

Senior Project Manager

Attachments

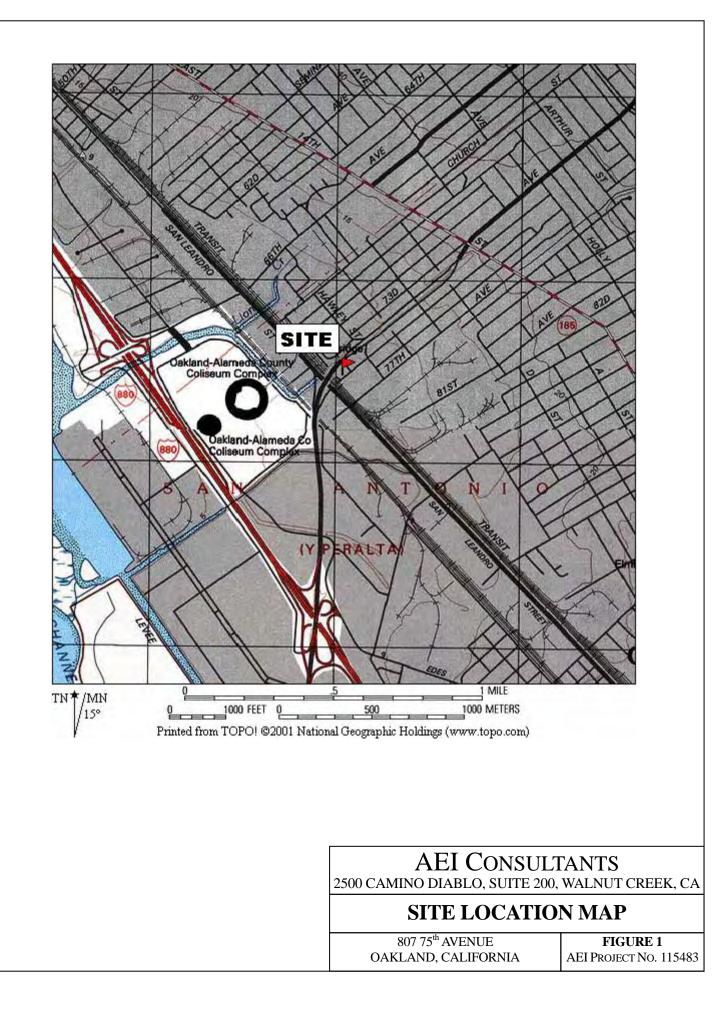
Figures

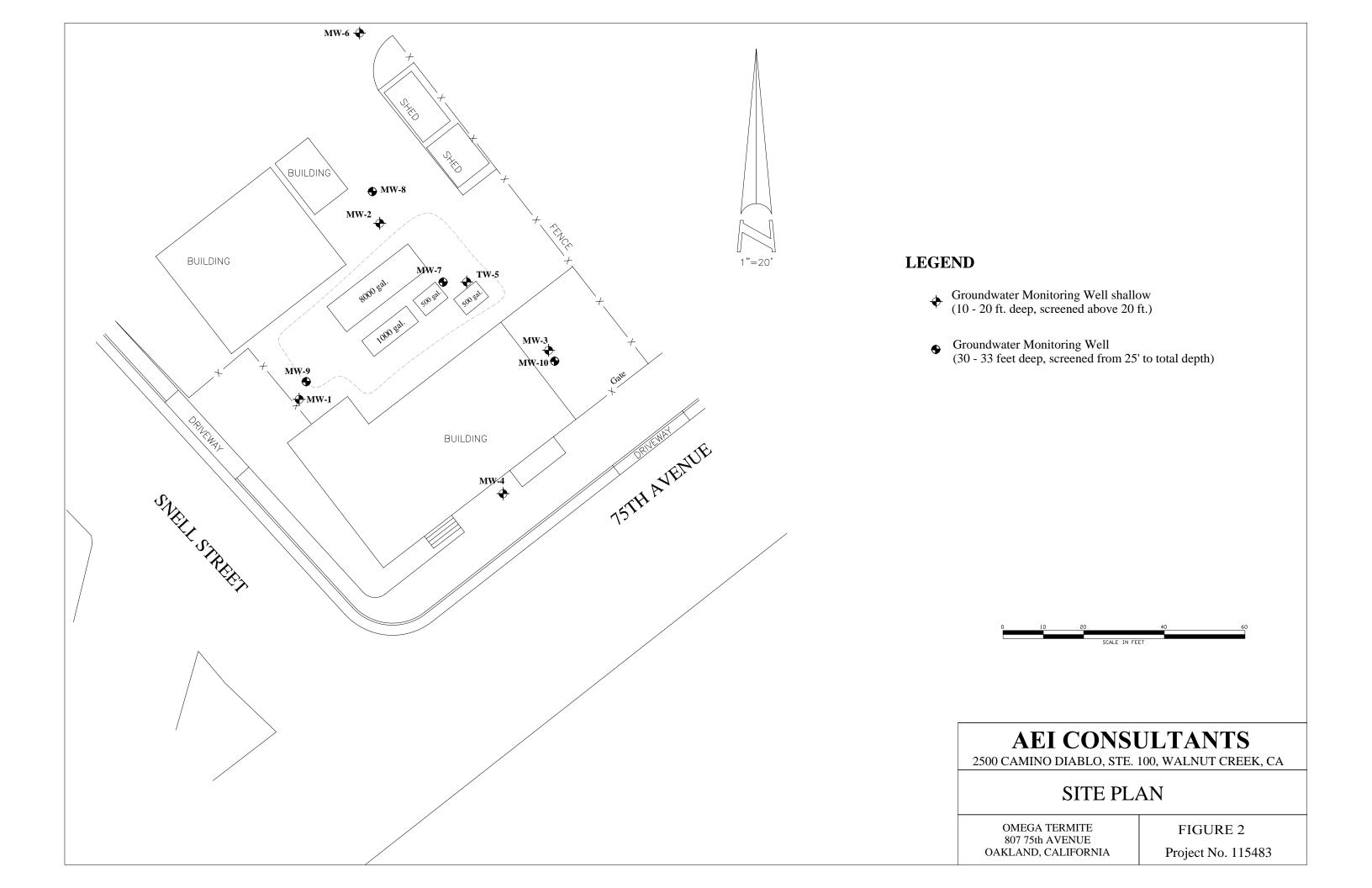
Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Groundwater Gradient – Shallow Zone (9/20/06)
Figure 4	Groundwater Gradient – Deeper Zone (9/20/06)
Figure 5	Analytical Results (9/20/06)
Figure 6	TPH-g Isopleths – Shallow Zone (9/20/06)
Figure 7	TPH-g Isopleths – Deeper Zone (9/20/06)
Figure 8	TPH-d Isopleths – Shallow Zone (9/20/06)
Figure 9	TPH-d Isopleths – Deeper Zone (9/20/06)
Figure 10	Benzene Isopleths – Shallow Zone (9/20/06)
Figure 11	Benzene Isopleths – Deeper Zone (9/20/06)

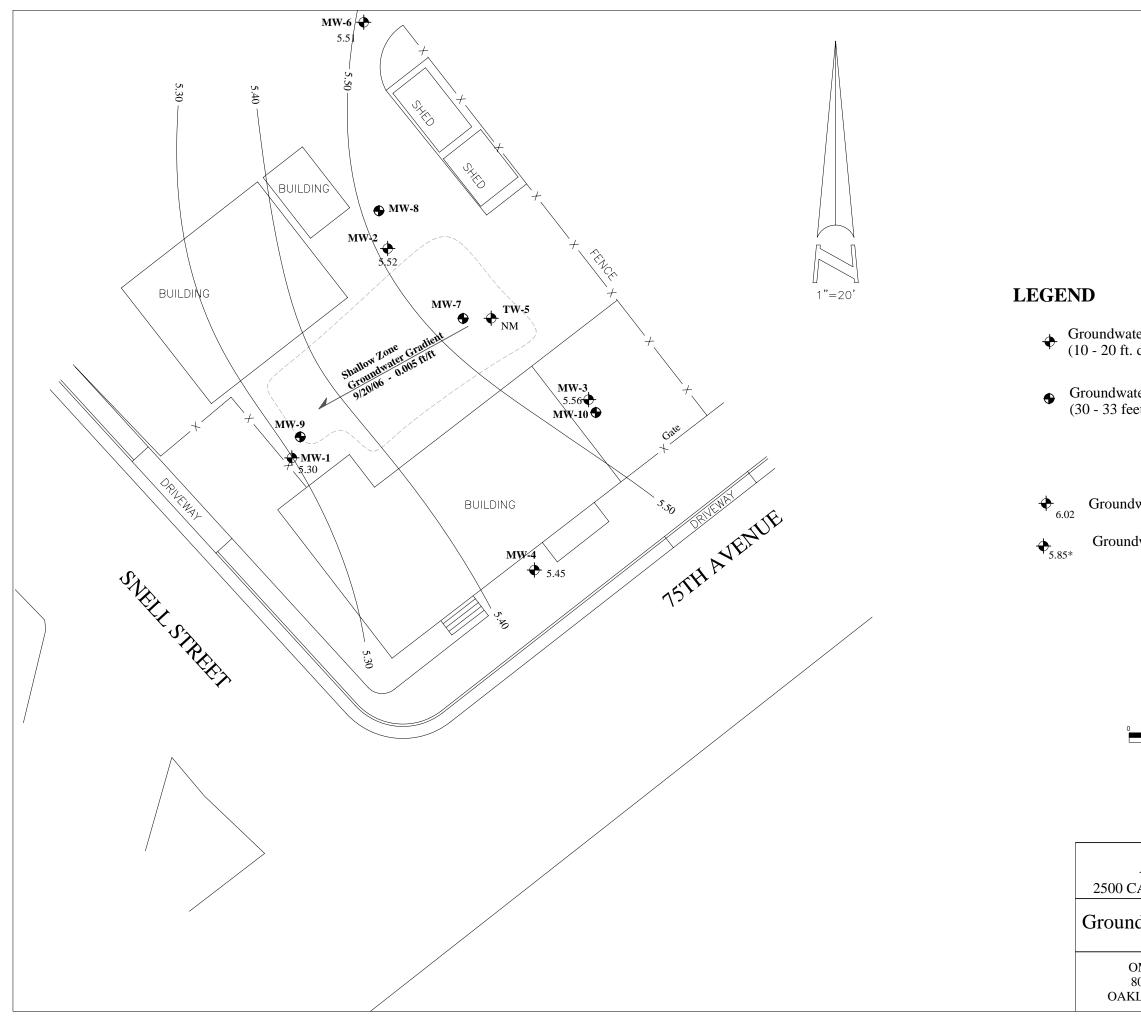
Tables

Table 1	Monitoring Well Construction Details
Table 2	Historical Groundwater Sample Analytical Data
Table 3	Historical Groundwater Elevations
Table 3a	Historical Groundwater Elevation and Flow Direction Summary
Appendix A	Groundwater Monitoring Well Field Sampling Forms
Appendix B	Laboratory Reports With Chain of Custody Documentation

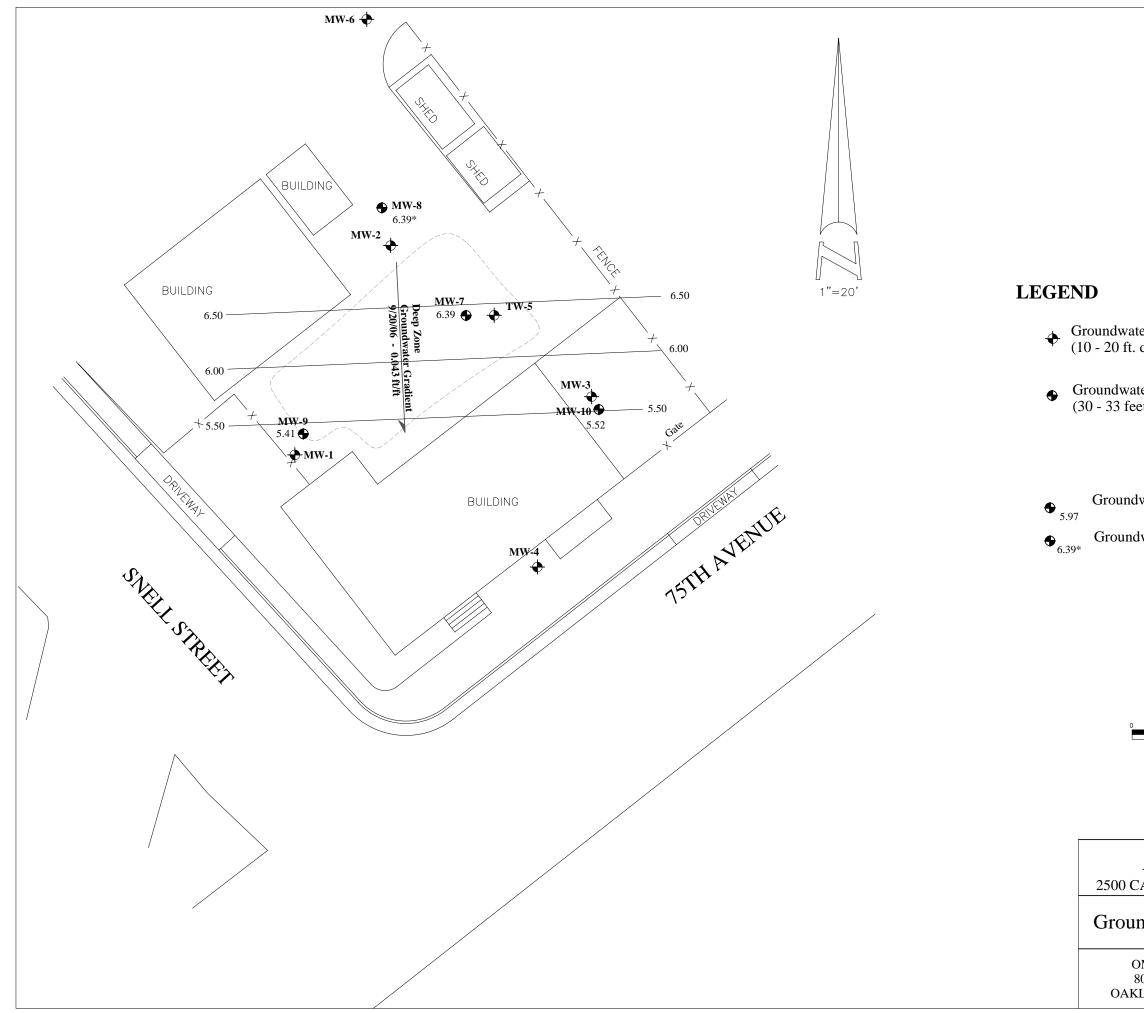
Distribution:

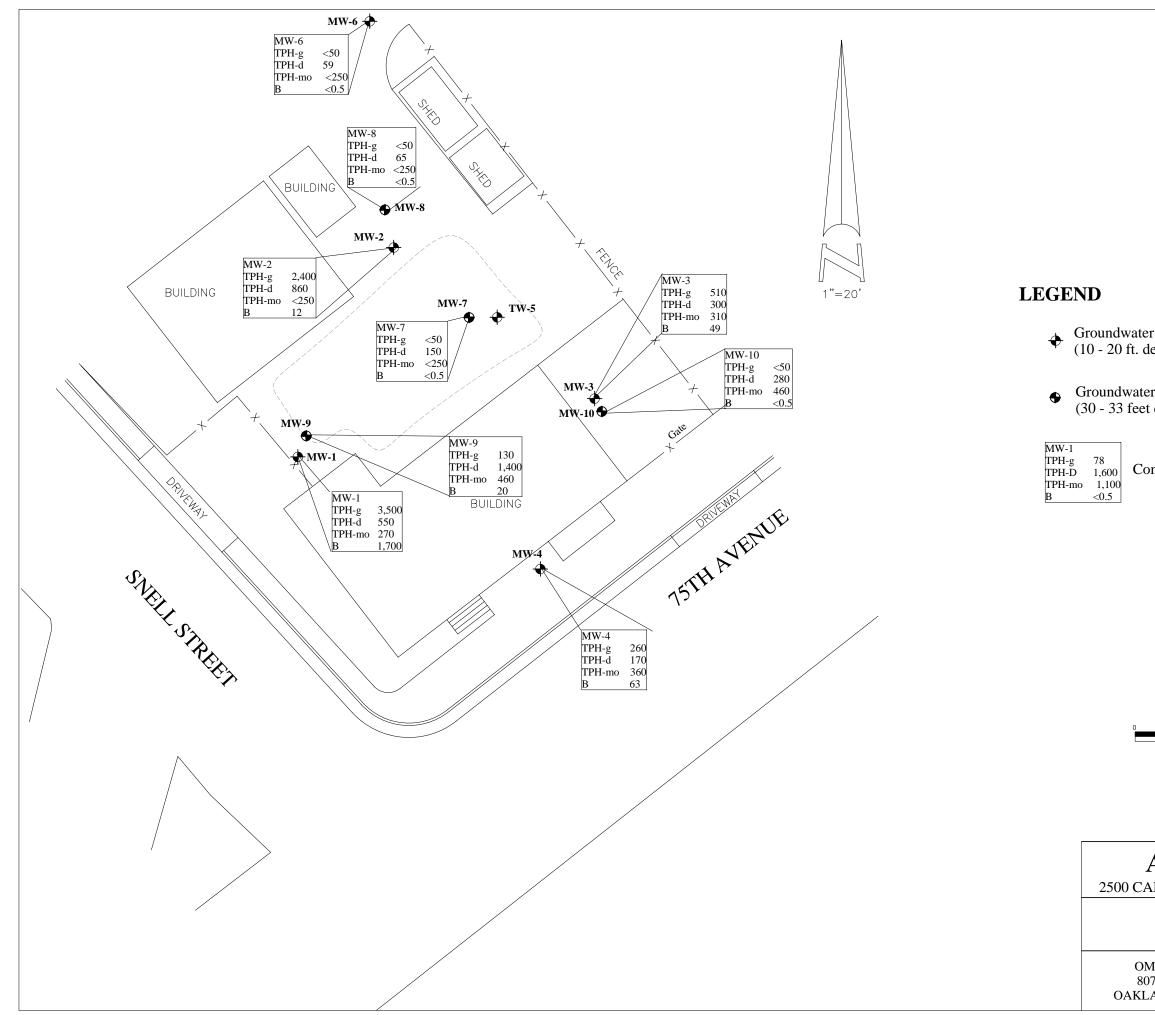

Mr. Allan Kanady Omega Termite 807 75th Avenue Oakland, CA 95621 (2 copies) Mr. Jerry Wickham electronic

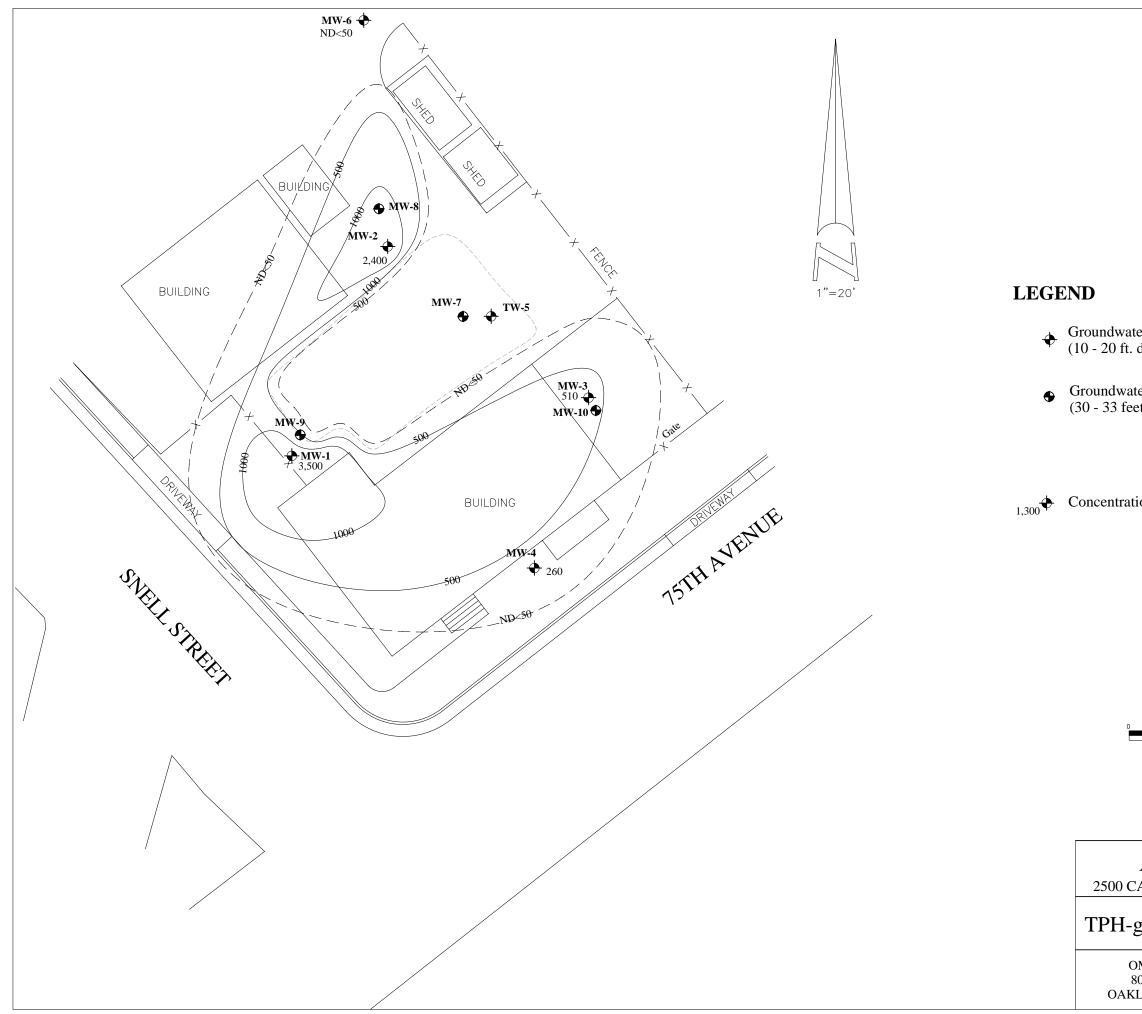

Alameda Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

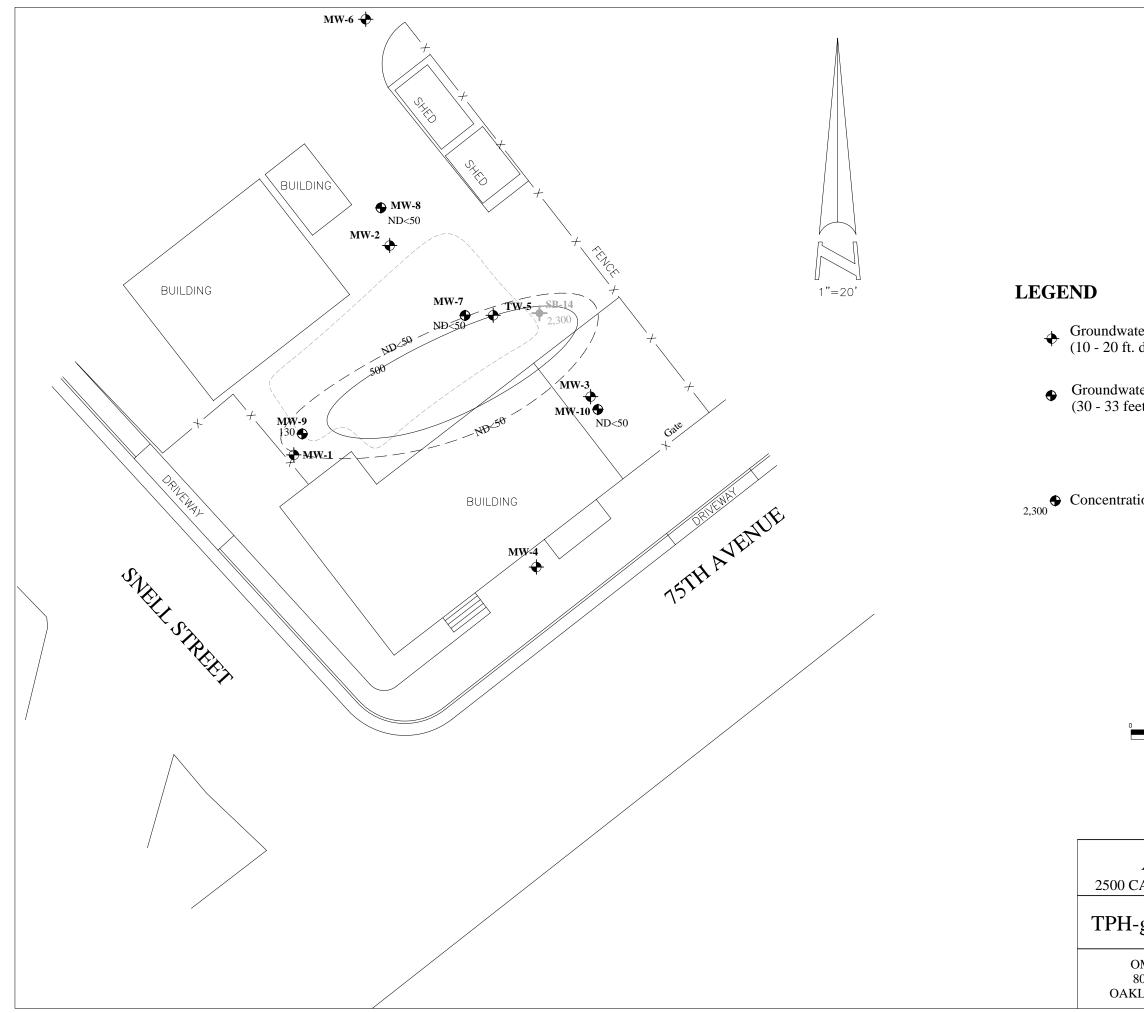

Betty GrahamelectronicSan Francisco Bay Regional Water Quality Control Board1515 Clay Street, Suite 1400Oakland CA 9461294612

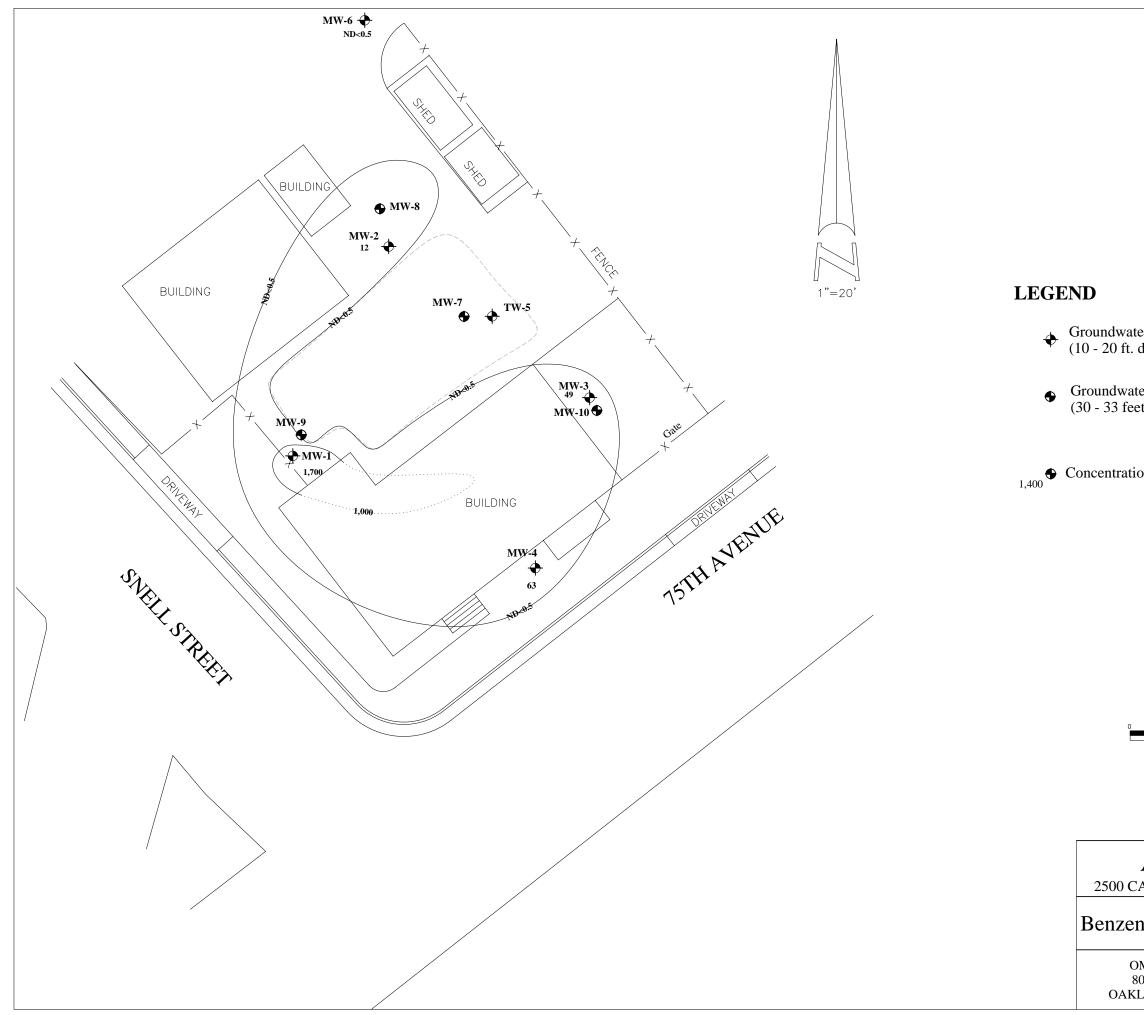
GeoTracker

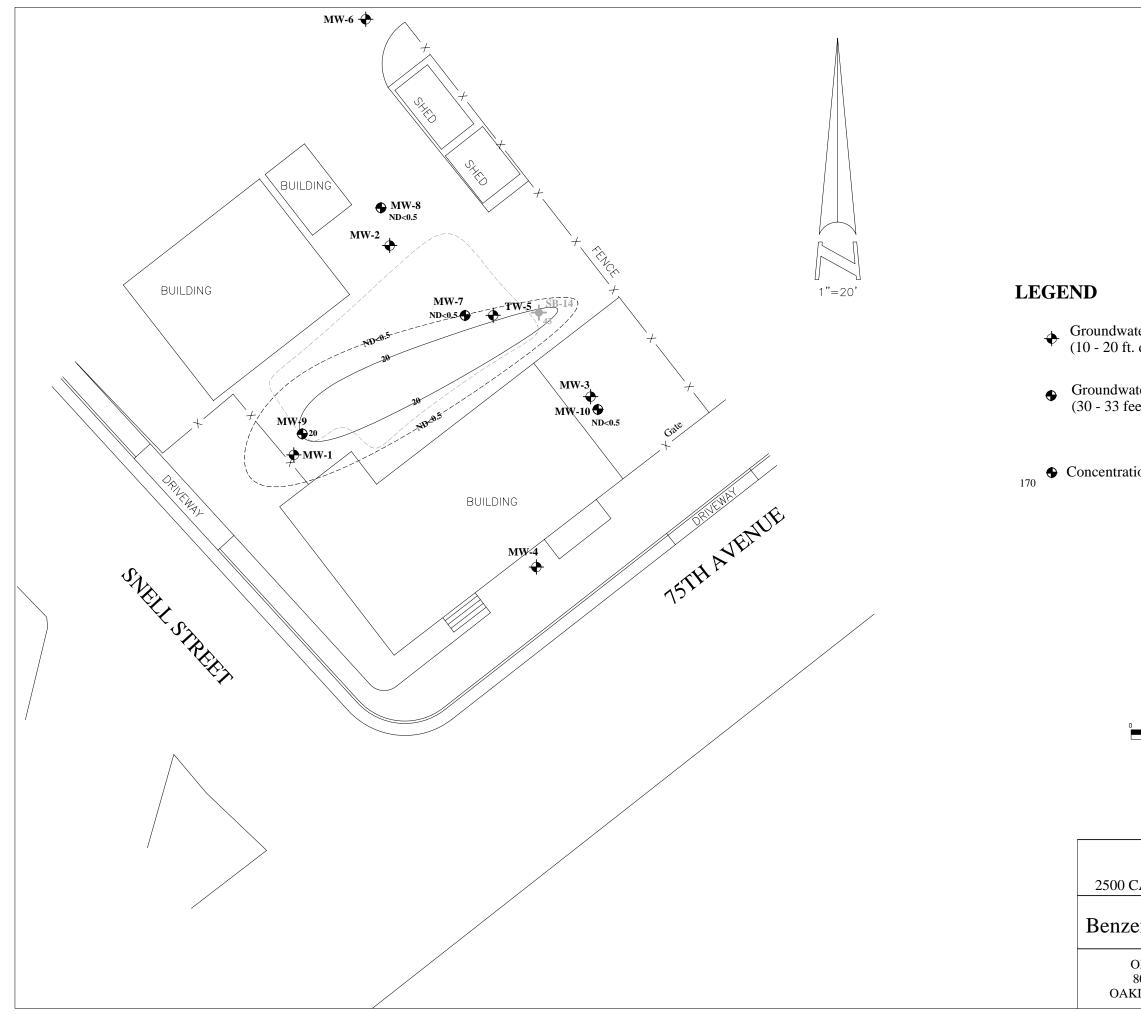

FIGURES

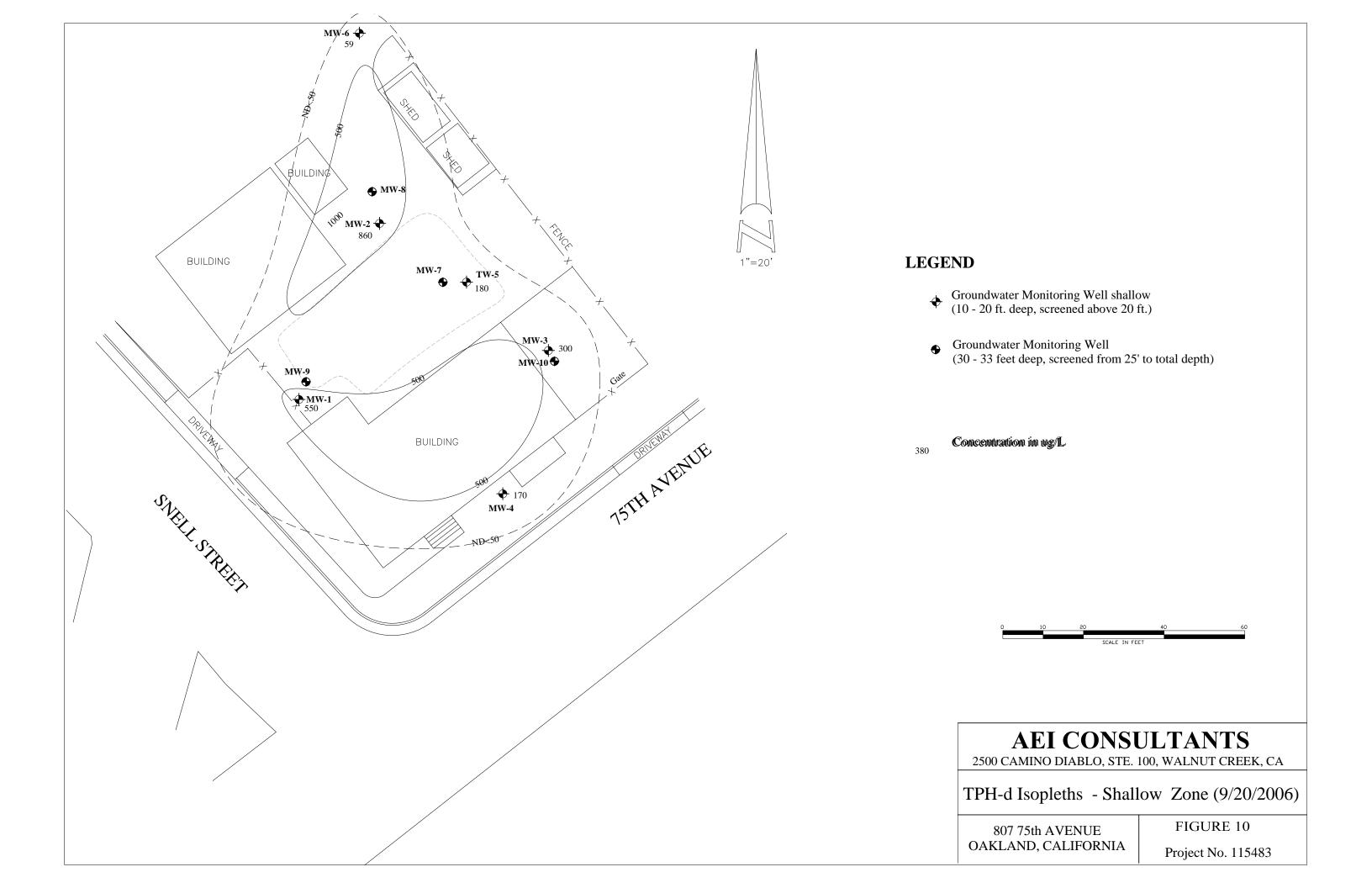


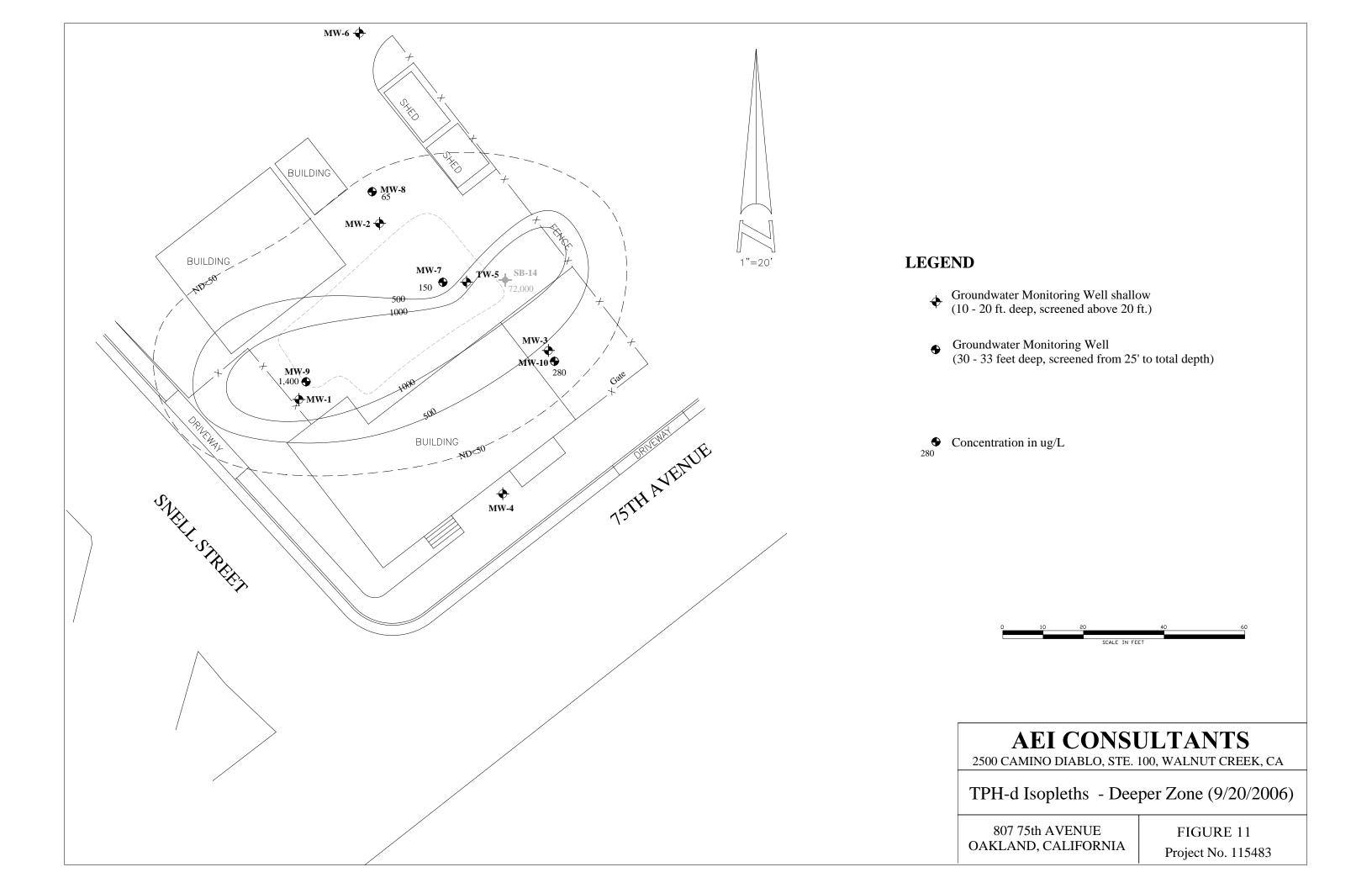

er Monitoring Well shallo	NW/
deep, screened above 20 f	
ter Monitoring Well et deep, screened from 25'	to total depth)
water elevation used for c	ontouring
dwater elevation not used	for contouring
10 20	40 60
SCALE IN FER	ET
AEI CONSU	TLTANTS
	100, WALNUT CREEK, CA
dwater Gradient - S	Shallow Zone (9/20/06)
OMEGA TERMITE 807 75th AVENUE	FIGURE 3
LAND, CALIFORNIA	Project No. 115483


er Monitoring Well shallo deep, screened above 20 f	
ter Monitoring Well et deep, screened from 25'	to total depth)
water elevation used for c	ontouring
lwater elevation not used f	for contouring
10 20 Scale in Fee	40 60
AEI CONSU CAMINO DIABLO, STE. 1	J LIANIS 100, WALNUT CREEK, CA
ndwater Gradient -	Deeper Zone (9/20/06)
OMEGA TERMITE 807 75th AVENUE LAND, CALIFORNIA	FIGURE 4 Project No. 115483
	110ject 110. 115465


ter Monitoring Well shallo deep, screened above 20 f	
ter Monitoring Well et deep, screened from 25'	to total depth)
Concentrations in ug/L	
10 20	40 60
SCALE IN FER	T
AEI CONSU CAMINO DIABLO, STE.	U LTANTS 100, WALNUT CREEK, CA
Analytical Res	oults (9/20/06)
OMEGA TERMITE 807 75th AVENUE	FIGURE 5
LAND, CALIFORNIA	Project No. 115483


er Monitoring Well shallo	NW
deep, screened above 20 f	
er Monitoring Well et deep, screened from 25'	to total depth)
ion in ug/L	
10 20	40 60
	-
AEI CONSU AMINO DIABLO, STE.	J LTANTS 100, WALNUT CREEK, CA
g Isopleths - Shall	low Zone (9/20/2006)
MEGA TERMITE 07 75th AVENUE	FIGURE 6
LAND, CALIFORNIA	Project No. 115483


er Monitoring Well shallo deep, screened above 20 f	
ter Monitoring Well et deep, screened from 25'	to total depth)
ion in ug/L	
10 20	40 60
AEI CONSU AMINO DIABLO, STE. 1	U LTANTS 100, WALNUT CREEK, CA
g Isopleths - Deep	per Zone (9/20/2006)
OMEGA TERMITE 307 75th AVENUE LAND, CALIFORNIA	FIGURE 7 Project No. 115483



er Monitoring Well shallo deep, screened above 20 f	
ter Monitoring Well et deep, screened from 25'	to total depth)
on in ug/L	
10 20	40 60
SCALE IN FE	ст — — — — — — — — — — — — — — — — — — —
AEI CONSU CAMINO DIABLO, STE.	J LTANTS 100, WALNUT CREEK, CA
ne Isopleths - Sha	llow Zone (9/20/2006)
OMEGA TERMITE 307 75th AVENUE LAND, CALIFORNIA	FIGURE 8 Project No. 115483
LAND, CALIFORNIA	Project No. 115483

er Monitoring Well shalld deep, screened above 20 f	
ter Monitoring Well et deep, screened from 25'	to total depth)
on in ug/L	
10 20	40 60
SCALE IN FE	
AEI CONSU CAMINO DIABLO, STE.	J LTANTS 100, WALNUT CREEK, CA
ene Isopleths - De	eper Zone (9/20/2006)
DMEGA TERMITE 807 75th AVENUE LAND, CALIFORNIA	FIGURE 9 Project No. 115483
	5

TABLES

Well ID	Date Installed	Box Elevation (feet)	Top of Casing (feet)	Water Depth (3/11/06)	Casing Material	Total Depth (feet)	Well Depth (feet)	Borehole Diameter (inches)	Casing Diameter (inches)	Screened Interval (feet)	Slot Size (inches)	Filter Pack Interval (feet)	Filter Pack Material (feet)	Bentonite Seal (feet)	Grout Seal (feet)
MW-1	06/25/99	11.28	10.68	5.38	PVC	20	20	8 1/4	2	20.0-5.0	0.020	20.0-3.5	#3 sand	3.5-2.5	2.5-0.5
MW-2	06/25/99	12.55	12.15	6.63	PVC	20	20	8 1/4	2	20.0-5.0	0.020	20.0-3.5	#3 sand	3.5-2.5	2.5-0.5
MW-3	06/25/99	10.67	10.40	4.84	PVC	20	20	8 1/4	2	20.0-5.0	0.020	20.0-3.5	#3 sand	3.5-2.5	2.5-0.5
MW-4	06/25/99	10.56	10.31	4.86	PVC	20	20	8 1/4	2	20.0-5.0	0.020	20.0-3.5	#3 sand	3.5-2.5	2.5-0.5
TW-5	March 2000	11.69	11.58		PVC	10	10	NA	4	10.0-5.0	1/4" drilled	NA	NA	NA	2.0-0.5
MW-6	02/15/06	12.74	12.35	6.84	PVC	14	14	8 1/4	2	14.0-5.0	0.010	14.0-4.5	# 2/12	4.5-3.5	3.5-0.5
MW-7	02/16/06	11.64	11.16	4.77	PVC	33	33	8 1/4	2	33.0-26.0	0.010	33.0-25.0	# 2/12	25.0-23.0	23.0-0.5
MW-8	02/15/06	12.57	12.42	6.03	PVC	31	31	8 1/4	2	31.0-26.0	0.010	31.0-25.0	# 2/12	25.0-23.0	23.0-0.5
MW-9	02/16/06	11.41	11.22	8.81	PVC	30	30	8 1/4	2	30.0-25.0	0.010	30.0-24.0	# 2/12	24.0-22.0	22.0-0.5
MW-10	02/15/06	10.60	10.31	4.79	PVC	30	30	8 1/4	2	30.0-25.0	0.010	30.0-24.0	# 2/12	24.0-22.0	22.0-0.5

Table 1: Monitoring Well Construction DetailsOmega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d TPH-mo		MTBE ¹	MTBE	Benzene	Toluene	Ethyl	Xylenes
	Date	Water	ED	M.d 1.9015		0 2 60D		EDA	M - 41 - 1 90	benzene	
		-		EPA Method 8015		8260B	(u.~/I.)		Method 80 $(\psi \alpha A)$		$(u \alpha I)$
			(µg/L)	(µg/L)	(µg/L)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	07/30/99	5.82	2,700				ND<10	920	5.5	18	130
	11/09/99	5.70	1,800				ND<20	430	1.5	26	60
	02/23/00	2.84	3,800				ND<10	1,500	56	78	35
	05/26/00	5.50	7,100				ND<10	2,800	70	220	81
	10/10/00	5.70	980				ND<5.0	260	2.9	10	11
	02/07/01	5.25	570				ND<5.0	150	1.8	4.9	9.3
	05/25/01	5.25	18,000				ND<100	3,800	350	550	620
	09/19/01	5.51	840				ND<5.0	190	4.0	4.6	5.3
	05/17/02	5.30	13,000	920			ND<5.0	4,500	29	50	58
	08/20/02	5.39	2,100	740	ND<5,000		ND<15	820	4.5	6.4	9.6
	01/10/03	4.11	95	260	ND<5,000		ND<5.0	23	0.66	3.9	6.5
	04/14/03	4.85	340	310			ND<5.0	87	1.3	4.3	5.6
	07/14/03	5.08	750	700			ND<10	420	0.84	3.7	6.0
	10/14/03	5.63	200	930	460.0		ND<5.0	62	0.83	2.2	2.7
	01/13/04	4.53	510	440	ND<250		ND<5.0	190	1.7	11	18.0
	04/15/04	5.14	740	490	ND<250		ND<10	240	ND<0.5	5.0	9.6
	07/15/04	5.42	250	420	260		ND<5.0	78	ND<0.5	5.0	4.4
	10/18/04	5.42	170	510	290		ND<5.0	33	0.75	1.7	3.5
	01/25/05	4.47	240	390	ND<250		ND<5.0	86	0.82	1.3	3.0
	04/19/05	4.66	5,100	460	ND<250		ND<50	2,100	5.2	13	84
	07/18/05	4.91	3,300	700	350		ND<45	1,500	2.8	13	24
	10/18/05	5.24	560	550	330		ND<5.0	190	ND<0.5	3.0	8.6
	01/11/06	4.08	240	270	ND<250		ND<5.0	93	ND<0.5	1.3	3.4
	03/13/06	3.76	840	260	ND<250	0.89	ND<5.0	330	1.3	5.1	17
	06/15/06	4.79	3,200	640	320		ND<25	1,400	3.1	10	71
	09/21/06	5.38	3,500	550	270		ND<25	1,700	ND<2.5	14	23
MW-2	07/30/99	6.64	1,200				ND<10	29	2.5	51	100
	11/09/99	6.42	1,300				ND<30	26	1.1	55	32
	02/23/00	3.31	5,000				ND<10	200	18	390	440
	05/26/00	6.34	2,700				ND<10	69	13	83	68
	10/10/00	6.52	810				ND<10	17	4.7	42	46
	02/07/01	5.90	2,600				ND<10	70	15	80	100
	05/25/01	6.08	2,400				ND<5.0	75	16	85	100
	09/19/01	6.53	1,200				ND<5.0	10	8.5	46	55
	02/06/02	5.72	1,800				ND<50	14	11	58	59
	05/17/02	6.17	2,000	860			8.1	19	1.1	0.75	88
	01/10/03	5.12	2,000	910	ND<5000		ND<50	11	11	96	100
	04/14/03	4.98	2,400	800	-		ND<10	16	10	100	73
	07/14/03	5.99	1,900	970	-		ND<15	18	4.8	79	78
	10/14/03	6.43	1,600	1,300	ND<250		ND<10	14	5.9	87	78
	01/13/04	5.72	2,900	960	ND<250		ND<50	26	13	190	150
	04/15/04	6.02	2,700	1,100	ND<250		ND<15	28	11	120	100
	07/15/04	5.27	2,300	1,000	ND<250		ND<10	8.8	3.8	96	84
	10/18/04	5.27	2,400	910	ND<250		ND<10	8.6	8.9	68	72
	01/25/05	5.41	3,500	1,200	ND<250		ND<50	21	11	170	120

Table 2:Historical Groundwater Sample Analytical Data
Omega Termite, 807 75th Ave., Oakland, CA

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	94 89 86 87 80 72 65 230
continued 07/18/05 5.84 3,400 1,400 ND<250	 89 86 87 80 72 65 230
continued 07/18/05 5.84 3,400 1,400 ND<250	 89 86 87 80 72 65 230
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	86 87 80 72 65 230
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	87 80 72 65 230
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80 72 65 230
06/15/06 6.23 2,200 2,400 270 ND<10	72 65 230
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	65 230
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	230
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	79
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	63
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	71
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	210
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18
04/15/04 4.73 1,100 280 ND<250	88
07/15/04 5.03 610 240 ND<250	53
10/18/045.03370270ND<250	29
04/19/05 4.23 1,100 380 ND<250 ND<5.0 140 4.0 95	28
04/19/05 4.23 1,100 380 ND<250 ND<5.0 140 4.0 95	45
	59
07/18/05 4.66 740 290 ND<250 ND<5.0 98 2.0 70	35
10/18/05 4.82 420 220 ND<250 ND<5.0 38 1.1 35	16
01/11/06 3.73 740 260 ND<250 ND<5.0 75 2.5 60	32
03/13/06 3.76 1,300 380 ND<250 1.1 ND<17 90 2.5 87	72
06/15/06 4.38 670 300 ND<250 ND<5.0 76 1.3 60	40
09/20/09 4.84 510 300 310 ND<17 49 ND<1.7 50	36
MW-4 07/30/99 5.45 340 ND<10 57 2.2 8.5	6.8
11/09/99 5.31 1,000 ND<10 220 <0.5 17	7.1
02/23/00 2.72 980 ND<5.0 260 7 33	27
05/26/00 5.07 760 5.7 170 4.8 22	13
10/10/00 5.32 520 ND<10 130 2.3 22	10
02/07/01 4.73 680 ND<8.0 180 3.7 29	21
05/25/01 4.90 1,700 ND<10 510 9.6 44	46
09/19/01 5.16 680 ND<10 200 2.6 33	12
02/06/02 4.65 710 ND<15 220 2.8 40	
05/17/02 4.90 1,300 190 3.3 ND<10 330 5.6 61	21

Table 2:Historical Groundwater Sample Analytical Data
Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE ¹	MTBE	Benzene	Toluene	Ethyl	Xylenes
	Date	Water								benzene	
			EP	A Method &	8015	8260B		EPA	Method 80	21B	
			(µg/L)	(µg/L)	(µg/L)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4	08/20/02	5.02	580	120	ND<5,000		ND<5.0	160	1.7	34	13
continued	01/10/03	3.78	800	85	ND<5,000		ND<20	240	2.5	46	28
	04/14/03	4.11	850	120			ND<10	220	2.7	47	26
	07/14/03	4.75	780	170			ND<20	220	1.4	44	23
	10/14/03	5.25	420	110	ND<250		ND<5.0	120	0.95	31	8.2
	01/13/04	4.07	120	69	ND<250		ND<10	30	0.52	8.1	4.7
	04/15/04	4.70	660	120	ND<250		ND<25	200	2.2	39	24
	07/15/04	5.09	500	92	ND<250		ND<5.0	130	1.3	35	15
	10/18/04	5.09	350	18	ND<250		ND<5.0	76	0.68	22	4.9
	01/25/05	4.02	580	110	ND<250		ND<5.0	140	1.2	37	20
	04/19/05	4.17	790	130	ND<250		ND<5.0	200	1.7	51	28
	07/18/05	4.49	490	140	ND<250		ND<5.0	140	0.99	36	11
	10/18/05	4.83	320	84	ND<250		ND<5.0	72	0.59	20	4.4
	01/11/06	3.58	310	98	ND<250		ND<5.0	88	0.65	26	9.0
	03/13/06	3.58	490	77	ND<250	1.9	ND<5.0	92	0.88	31	15
	06/15/06	4.37	460	86	ND<250		ND<25	93	ND<0.5	29	9.2
	09/20/06	4.86	260	170	360		ND<10	63	ND<0.5	23	4.7
TW-5	10/10/00		5,800	2,900	ND<250		ND<50	650	60	190	230
	02/07/01		720	650	450		ND<5.0	6.0	4.5	3.2	4.5
	05/25/01		370	420	ND<250		ND<5.0	13.0	4.1	1.6	1.3
	09/19/01	6.59	15,000		1,100,000		530	29	2.7	14	240
	02/06/02		280	55,000	18,000		ND<5.0	2.3	0.74	ND<0.5	0.70
	05/17/02	6.56	480	41,000		ND<5.0	ND<5.0	1.6	1.1	0.8	ND<0.5
	08/20/02	6.62	240	21,000	ND<5,000		ND<5.0	8.0	1.2	1.1	0.54
	01/10/03	4.66	ND<50	1,300	ND<5,000		ND<5.0	5.4	0.58	ND<0.5	1.10
	4/14/2003	5.30	160	2,300			ND<5.0	18	5.7	5.9	16
	7/14/2003	5.84	100	16,000			ND<5.0	1.2	0.77	0.63	1.2
	10/14/03	6.08	120	10,000	4,600		ND<5.0	1.6	1.6	ND<0.5	1.2
	01/13/04	4.83	110	2,100	1,400		ND<5.0	8.4	1.2	ND<0.5	3.9
	04/15/04	5.64	170	2,200	1,100		ND<5.0	2.5	1.2	ND<0.5	5.1
	07/15/04	5.89	81	3,000	1,600		ND<5.0	5	1.3	0.85	4.1
	10/18/04	5.89	230	3,700	1,600		ND<5.0	0.54	3.4	ND<0.5	0.93
	01/25/05	5.13	63	750	640		ND<5.0	ND<0.5	0.78	ND<0.5	1.3
	04/19/05	5.27	ND<50	1,100	660		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	07/18/05	5.76	ND<50	770	490		ND<5.0	ND<0.5	0.88	ND<0.5	ND<0.5
	10/18/05	6.04	78	1,600	1,100		ND<5.0	ND<0.5	1.6	ND<0.5	ND<0.5
	01/11/06	4.72	ND<50	680	550	ND<0.5	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/13/06	4.51	ND<50	180	260	ND<0.5	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/15/06	Not sampl	ed. well d	amaged - v	vill be destr	oved					

Table 2:Historical Groundwater Sample Analytical Data
Omega Termite, 807 75th Ave., Oakland, CA

06/15/06 Not sampled, well damaged - will be destroyed

09/20/06 Not sampled, well damaged - will be destroyed

	a l				TIDII	1			75 1	T (1, 1	
Sample ID	Sample	Depth to	TPH-g	TPH-d	TPH-mo	MTBE ¹	MTBE	Benzene	Toluene	Ethyl	Xylenes
	Date	Water								benzene	
				A Method 8	015	8260B	P		Method 80	21B	
-			(µg/L)	(µg/L)	(µg/L)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-6	03/13/06	5.69	87	160	310	ND<0.5	ND<5.0	ND<0.5	0.83	1.3	0.80
	06/15/09	6.50	ND<50	110	ND<250		ND<5.0	ND<0.5	ND<0.5	1.0	0.58
	09/20/06	6.84	ND<50	59	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-7	03/13/06	3.36	460	3,500	360	ND<0.5	ND<5.0	2.5	1.0	ND<0.5	3.3
	06/15/09	3.95	ND<50	520	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	09/20/06	4.77	ND<50	150	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-8	03/13/06	4.64	280	130	ND<250	ND<0.5	ND<5.0	ND<0.5	2.0	ND<0.5	1.3
	06/15/09	5.21	ND<50	140	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	09/20/06	6.03	ND<50	65	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-9	03/13/06	4.32	1,100	$14,000^2$	4,100	2.4	ND<5.0	85	1.8	0.64	100
	06/15/09	5.35	460	2100	710		ND<5.0	170	0.73	1.3	8.3
	09/21/06	5.81	130	1400	460		ND<5.0	20	1.2	ND<0.5	2.6
MW-10	03/13/06	3.28	ND<50	220	ND<250	2.7	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/15/09	4.38	ND<50	300	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	09/21/06	4.79	ND<50	280	460		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5

Table 2:Historical Groundwater Sample Analytical DataOmega Termite, 807 75th Ave., Oakland, CA

Notes

1 = See Table 5 for complete fuel additive fuel additive data

TPH-g = total petroleum hydrocarbons as gasoline

TPH-d = total petroleum hydrocarbons as diesel

TPH-mo = total petroleum hydrocarbons as motor oil

2 =light non aqueous phase liquid

 $\mu g/L = micrograms$ per liter (parts per billion)

- ----- not sampled
- ND = not detected

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevation Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
MW-1	07/30/99	10.68	5.82	4.86	
	11/09/99	10.68	5.70	4.98	0.12
	02/23/00	10.68	2.84	7.84	2.86
	05/26/00	10.68	5.50	5.18	-2.66
	10/10/00	10.68	5.70	4.98	-0.20
	02/07/01	10.68	5.25	5.43	0.45
	05/25/01	10.68	5.25	5.43	0.00
	09/19/01	10.68	5.51	5.17	-0.26
	02/06/02	10.68	NM	NM	NM
	05/17/02	10.68	5.30	5.38	
	08/20/02	10.68	5.39	5.29	-0.09
	01/10/03	10.68	4.11	6.57	1.28
	04/14/03	10.68	4.85	5.83	-0.74
	07/14/03	10.68	5.08	5.60	-0.23
	10/14/03	10.68	5.63	5.05	-0.23
	01/13/04	10.68	4.53	6.15	-0.33
	04/15/04	10.68	4.55 5.14	5.54	-0.61
	07/15/04				
		10.68	5.42	5.26	-0.28
	10/18/04	10.68	5.24	5.44	0.18
	01/25/05	10.68	4.47	6.21	0.77
	04/19/05	10.68	4.66	6.02	-0.19
	07/18/05	10.68	4.91	5.77	-0.25
	10/18/05	10.68	5.24	5.44	-0.33
	11/03/05	10.68	5.31	5.37	-0.07
	01/11/06	10.68	4.08	6.60	1.23
	03/13/06	10.68	3.76	6.92	0.32
	06/15/06	10.68	4.79	5.89	-1.03
	08/02/06	10.68	5.14	5.54	-0.35
	09/20/06	10.68	5.38	5.30	-0.24
MW-2	07/30/99	12.15	6.64	5.51	
	11/09/99	12.15	6.42	5.73	0.22
	02/23/00	12.15	3.31	8.84	3.11
	05/26/00	12.15	6.34	5.81	-3.03
	10/10/00	12.15	6.52	5.63	-0.18
	02/07/01	12.15	5.90	6.25	0.62
	05/25/01	12.15	6.08	6.07	-0.18
	09/19/01	12.15	6.53	5.62	-0.45
	02/06/02	12.15	5.72	6.43	0.81
	05/17/02	12.15	6.17	5.98	-0.45
	08/20/02	12.15	NM	NM	NM
	01/10/03	12.15	5.12	7.03	
	04/14/03	12.15	4.98	7.17	0.14
	07/14/03	12.15	5.99	6.16	-1.01
	10/14/03	12.15	6.43	5.72	-0.44
	01/13/04	12.15	5.42	6.73	1.01

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevation Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
MW-2	07/15/04	12.15	5.27	6.88	0.75
continued	10/18/04	12.15	6.12	6.03	-0.85
commutu	04/19/05	12.15	5.61	6.54	0.51
	07/18/05	12.15	5.84	6.31	-0.23
	10/19/05	12.15	6.17	5.98	-0.33
	11/03/05	12.15	6.21	5.94	-0.04
	01/11/06	12.15	5.11	7.04	1.10
	03/13/06	12.15	5.24	6.91	-0.13
	06/15/06	12.15	6.23	5.92	-0.99
	09/20/06	12.15	6.63	5.52	-0.40
MW-3	07/30/99	10.40	5.35	5.05	
	11/09/99	10.40	5.11	5.29	0.24
	02/23/00	10.40	2.37	8.03	2.74
	05/26/00	10.40	4.98	5.42	-2.61
	10/10/00	10.40	5.24	5.16	-0.26
	02/07/01	10.40	4.73	5.67	0.51
	05/25/01	10.40	4.73	5.67	0.00
	09/19/01	10.40	5.07	5.33	-0.34
	02/06/02	10.40	4.69	5.71	0.38
	05/17/02	10.40	4.80	5.60	-0.11
	08/20/02	10.40	4.97	5.43	-0.17
	01/10/03	10.40	3.59	6.81	1.38
	04/14/03	10.40	5.40	5.00	-1.81
	07/14/03	10.40	4.69	5.71	0.71
	10/14/03	10.40	5.16	5.24	-0.47
	01/13/04	10.40	4.15	6.25	1.01
	04/15/04	10.40	4.73	5.67	-0.58
	07/15/04	10.40	5.03	5.37	-0.30
	10/18/04	10.40	4.85	5.55	0.18
	01/25/05	10.40	4.13	6.27	0.72
	04/19/05	10.40	4.23	6.17	-0.10
	07/18/05	10.40	4.56	5.84	-0.33
	10/18/05	10.40	4.82	5.58	-0.26
	11/03/05	10.40	4.87	5.53	-0.05
	01/11/06	10.40	3.62	6.78	1.25
	03/13/06	10.40	3.47	6.93	0.15
	06/15/06	10.40	4.38	6.02	-0.91
	08/02/06	10.40	4.69	5.71	-0.31
	09/20/26	10.40	4.84	5.56	-0.15
MW-4	07/30/99	10.31	5.45	4.86	
	11/09/99	10.31	5.31	5.00	0.14
	02/23/00	10.31	2.72	7.59	2.59
	05/26/00	10.31	5.07	5.24	-2.35
	10/10/00	10.31	5.32	4.99	-0.25
	02/07/01	10.31	4.73	5.58	0.59

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevation Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
MW-4	05/25/01	10.31	4.90	5.41	-0.17
continued	09/19/01	10.31	5.16	5.15	-0.26
	02/06/02	10.31	4.65	5.66	0.51
	05/17/02	10.31	4.90	5.41	-0.25
	08/20/02	10.31	5.02	5.29	-0.12
	01/10/03	10.31	3.78	6.53	1.24
	04/14/03	10.31	4.11	6.20	-0.33
	07/14/03	10.31	4.75	5.56	-0.64
	10/14/03	10.31	5.28	5.03	-0.53
	01/13/04	10.31	4.07	6.24	1.21
	04/15/04	10.31	4.70	5.61	-0.63
	07/15/04	10.31	5.09	5.22	-0.39
	10/18/04	10.31	4.86	5.45	0.23
	01/25/05	10.31	4.02	6.29	0.84
	04/19/05	10.31	4.17	6.14	-0.15
	07/18/05	10.31	4.49	5.82	-0.32
	10/18/05	10.31	4.83	5.48	-0.34
	11/03/05	10.31	4.88	5.43	-0.05
	01/11/06	10.31	3.58	6.73	1.30
	03/13/06	10.31	3.28	7.03	0.30
	06/15/06	10.31	4.37	5.94	-1.09
	09/20/06	10.31	4.86	5.45	-0.49
TW-5	09/19/01		6.59		
	05/17/02		6.56		0.03
	08/20/02		6.62		-0.06
	01/10/03		4.66		1.96
	04/14/03		5.30		-0.64
	07/14/03		5.84		-0.54
	07/14/03		5.84		0.00
	10/14/03		6.08		-0.24
	01/13/04		4.83		1.25
	04/15/04		5.64		-0.81
	07/15/04		5.89		-0.25
	10/18/04		5.95		-0.06
	01/25/05		5.13		0.82
	04/19/05		5.27		-0.14
	07/18/05		5.76		-0.49
	10/18/05		6.04		-0.28
	11/03/05		6.09		-0.05
	01/11/06		4.72		1.37
	03/13/06		4.51		0.21
	04/26/06		5.02		-0.51

Sampling discontiuned - well damaged and to be destroyed

Well ID	Date	Well Elevation *	Depth to Water	Groundwater Elevation	Elevation Change
		(ft amsl)	(ft)	(ft amsl)	(ft)
MW-6	03/13/06	12.35	5.69	6.66	
	06/15/06	12.35	6.50	5.85	-0.81
	10/20/06	12.35	6.84	5.51	-0.34
MW-7	03/13/06	11.16	3.36	7.80	
	06/15/06	11.16	3.95	7.21	-0.59
	10/20/06	11.16	4.77	6.39	-0.82
MW-8	03/13/06	12.42	4.64	7.78	
	06/15/06	12.42	5.21	7.21	-0.57
	10/20/06	12.42	6.03	6.39	-0.82
MW-9	03/13/06	11.22	4.32	6.90	
	06/15/06	11.22	5.35	5.87	-1.03
	08/02/06	11.22	5.70	5.52	-0.35
	10/20/06	11.22	5.81	5.41	-0.11
MW-10	03/13/06	10.31	3.28	7.03	
	06/15/06	10.31	4.34	5.97	-1.06
	08/02/06	10.31	4.66	5.65	-0.32
	10/20/06	10.31	4.79	5.52	-0.13

* Original wells surveyed 12/9/02 by Morrow Surveying, resurveyed on 3/02/06 Morrow Surveying Depth to water measured from the top of well casing NM - not monitored

ft amsl = feet above mean sea level

Episode #	Date	Average Elevation (ft)	Elevation Change (ft)	Flow Direction / Gradien
1	07/30/99	5.07	-	I
2	11/09/99	5.25	0.18	0.0056 / SW
3	02/23/00	8.08	2.83	0.008 / S
4	05/26/00	5.41	-2.66	0.003 / SW
5	10/10/00	5.19	-0.22	0.0036 / S
6	02/07/01	5.73	0.54	0.008 / S
7	05/25/01	5.65	-0.09	0.006 / S
8	09/19/01	5.32	-0.33	0.004 / S
9	02/06/02	5.93	0.62	0.005 / SE
10	05/17/02	5.59	-0.34	0.003 / SW
11	08/20/02	5.34	-0.26	0.002 / S
12	01/10/03	6.74	1.40	0.006 / E-NE
13	04/14/03	6.05	-0.69	0.016 / E-NE
14	07/14/03	5.76	-0.29	.0017 / S-SE
15	10/14/03	5.26	-0.50	0.003 / SE
16	01/13/04	6.34	1.08	0.001 / W
17	04/15/04	5.74	-0.60	0.001 / W
18	07/15/04	5.68	-0.05	0.001 / W
19	10/18/04	5.62	-0.07	0.002 / N
20	01/25/05	6.33	0.71	0.002 / N
21	04/19/05	6.16	-0.17	0.001 / N
22	07/18/05	5.85	-0.31	0.0004 / S
23	10/18/05	5.61	-0.24	0.0017 / SW
24	01/11/06	6.79	1.18	0.0047 / N
25	3/13/06	6.57	-0.21	Shallow Zone .0004 / NW
	3/13/06	7.38		Deeper zone 0.036 / S
26	6/15/06	5.92	-1.46	Shallow Zone .0004 / NW
	6/15/06	6.40	-0.98	Deeper zone 0.06 / S
26	10/20/06	5.47	-0.93	Shallow Zone .005 / NW
	10/20/06	5.93	-0.47	Deeper zone 0.043/ S

Table 3a:Historical Groundwater Elevation and Flow Direction Summary
Omega Termite, 807 75th Ave., Oakland, CA

Average water table elevation calculated using Microsoft Excel Shallow Zone Wells: MW-1, MW-2, MW-3, MW-4, MW-6 Deeper Zone Wells: MW-7. MW-8, MW-9, MW-10

APPENDIX A

Groundwater Monitoring Well Field Sampling Forms

AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

	Mor	nitoring Well Number:	MW-1
Project Name:	Omega Termite	Date of Sampling:	9/21/2006
Job Number:	115483	Name of Sampler:	Adrian Nieto
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA							
Well Casing Diameter (2"/4"/6")		2					
Wellhead Condition	ОК		-				
Elevation of Top of Casing (feet above msl)		10.68					
Depth of Well		20.00					
Depth to Water (from top of casing)	5.38						
Water Elevation (feet above msl)	5.30						
Well Volumes Purged		3					
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.0						
Actual Volume Purged (gallons)	8.0						
Appearance of Purge Water	dark gray, clear at 1.0 gallons						
Free Product Present?	t? No Thickness (ft): NA						

GROUNDWATER SAMPLE	S
---------------------------	---

Number of Sampl	es/Container S	Size	1	2 - 40ml VOA	s, 1 L Amber		
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
	2	19.46	6.86	919	0.22	-40.1	
	4	19.69	6.88	946	0.14	-29.9	
	6	19.47	7.25	973	0.11	-71.4	
	8	19.13	7.35	984	0.09	-82.5	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

dark gray with strong odor, clears at 1.0 gallon

AEI CONSULTANTS

GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number: MW-2

Project Name:	Omega Termite	Date of Sampling:	9/20/2006
Job Number:	115483	Name of Sampler:	Adrian Nieto
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2				
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)		12.15			
Depth of Well		20.00			
Depth to Water (from top of casing)	6.63				
Water Elevation (feet above msl)	5.52				
Well Volumes Purged	3				
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.1				
Actual Volume Purged (gallons)	7.0				
Appearance of Purge Water	Light gray, clear at 0.5 gallons				
Free Product Present?	nt? No Thickness (ft): NA				

GROUNDWATER SAMPLES

Number of Samples/Container Size			2 - 40ml VOA	s, 1 L Amber	1		
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
	1	20.74	7.23	962	0.24	-93.0	
	3	21.55	6.99	983	0.13	-74.1	
	5	21.43	6.98	993	0.09	-60.7	
	7	21.31	6.87	996	0.08	-63.9	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Light gray with strong hydrocarbon odor, clear at 0.5 gallons

AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

	Monitoring Well Number:		
Project Name:	Omega Termite	Date of Sampling:	9/20/2006
Job Number:	115483	Name of Sampler:	Adrian Nieto

807 75th Avenue Oakland

MONITORING WELL DATA						
Well Casing Diameter (2"/4"/6")		2				
Wellhead Condition	ок					
Elevation of Top of Casing (feet above msl)		10.40				
Depth of Well		20.00				
Depth to Water (from top of casing)	4.84					
Water Elevation (feet above msl)	5.56					
Well Volumes Purged	3					
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.3					
Actual Volume Purged (gallons)	8.0					
Appearance of Purge Water	Clear					
Free Product Present?	No	Thickness (ft):	NA			

GROUNDWATER SAMPLE	S
---------------------------	---

Number of Samples/Container Size 2 - 40ml VOAs, 1 L Amber							
			2 - 40111 007				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
	2	20.12	6.32	1403	0.09	240.5	
	4	20.52	6.66	1407	0.08	527.1	
	6	20.37	6.89	1419	0.07	381.9	
	8	19.80	6.42	1421	0.06	93.3	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Clear with no hydrocarbon odor.

Project Address:

AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

		Mor	hitoring Well Number:	MW-4	
Project Name:	Omega Termite		Date of Sampling:	9/20/2006	
Job Number:	115483		Name of Sampler:	Adrian Nieto	
Project Address:	807 75th Avenue Oakland	d			
	MONITORIN	G WELL DA	TA		
Well Casing Diameter (2	2"/4"/6")		2		
Wellhead Condition		ок ▼			
Elevation of Top of Casi	ng (feet above msl)		10.31		
Depth of Well	epth of Well 20.00				
Depth to Water (from top	o of casing)		4.86		
Water Elevation (feet ab	ove msl)		5.45		
Well Volumes Purged		3			
	urged: formula valid only for casing 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.3			
Actual Volume Purged (gallons)	8.0			
Appearance of Purge W	ater	Clear			

	GROUNDWATER SAMPLES						
Number of Samples/Container Size			2 - 40ml VOAs, 1 L Amber				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
	2	20.24	6.39	1375	0.13	277.9	
	4	20.91	6.34	1326	0.11	248.7	
	6	20.96	6.33	1336	0.10	289.7	
	8	20.37	6.36	1406	0.08	390.8	

No

Thickness (ft):

NA

Free Product Present?

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Brown, clearing quickly, no hydrocarbon odor.

		Monitoring Well Number:	MW-6
Project Name:	Omega Termite	Date of Sampling:	9/20/2006
Job Number:	3190	Name of Sampler:	Adrian Nieto
Project Address:	807 75th Avenue Oakland		

.......

MONITORING WELL DATA							
Well Casing Diameter (2"/4"/6")	2						
Wellhead Condition	ОК	•					
Elevation of Top of Casing (feet above msl)		12.35					
Depth of Well		14.00					
Depth to Water (from top of casing)	6.84						
Water Elevation (feet above msl)	5.51						
Well Volumes Purged							
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	3.9						
Actual Volume Purged (gallons)	6.0						
Appearance of Purge Water	Brown, clear at 2.0 gallons						
Free Product Present?	Thickness (ft): NA						

GROUNDWATER SAMPLES

Number of Samples/Container Size				2 - 40ml VOA	s, 1 L Amber		
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
	1	21.35	6.72	1195	0.16	109.8	
	3	21.35	6.70	1188	0.14	107.6	
	5	21.27	6.69	1178	0.12	107.1	
	6	20.94	6.58	1178	0.09	103.2	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

initially brown, with no hydrocarbon odor, clear at 2.5 gallons

	Mor	nitoring Well Number:	MW-7
Project Name:	Omega Termite	Date of Sampling:	9/20/2006
Job Number:	3190	Name of Sampler:	Adrian Nieto
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA						
Well Casing Diameter (2"/4"/6")	4					
Wellhead Condition	ОК	▼				
Elevation of Top of Casing (feet above msl)		11.16				
Depth of Well		35.00				
Depth to Water (from top of casing)	4.77					
Water Elevation (feet above msl)	er Elevation (feet above msl) 6.39					
Well Volumes Purged		3				
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	15.1					
Actual Volume Purged (gallons)	15.0					
Appearance of Purge Water	earance of Purge Water clear at 1.5 gallons					
Free Product Present?	t? No Thickness (ft): NA					

GROUNDWATER SAMPLE	S
--------------------	---

Number of Sample		2 - 40ml VOAs, 1 L Amber					
TimeVol Removed (gal)Temperature (deg C)pHC		Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments		
	3	18.60	6.84	1652	0.18		
	6	18.58	6.70	1645	0.15		
	9	18.89	6.56	1635	0.11		
	12	18.58	6.42	1631	0.09		
	15	18.59	6.41	1630	0.08		

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Initially milky brown with slight hydrocarbon odor, clear at 1.5 gallons

	Mor	nitoring Well Number:	MW-8
Project Name:	Omega Termite	Date of Sampling:	9/20/2006
Job Number:	3190	Name of Sampler:	Adrian Nieto
Project Address:	807 75th Avenue Oakland		

MONITORING WELL DATA							
Well Casing Diameter (2"/4"/6")	2						
Wellhead Condition	ОК	▼					
Elevation of Top of Casing (feet above msl)		12.42					
Depth of Well		35.00					
Depth to Water (from top of casing)	6.03						
Water Elevation (feet above msl)	6.39						
Well Volumes Purged		3					
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	14.5						
Actual Volume Purged (gallons)	15.0						
Appearance of Purge Water Clear at 1.0 gallons							
Free Product Present?	t? No Thickness (ft): NA						

GROUNDWATER SAMPLE	S
--------------------	---

Number of Samples/Container Size				2 - 40ml VOA	s, 1 L Amber		
Time Vol Removed Temperature (gal) PH		рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments	
	3	18.86	6.80	1785	0.14	153.0	
	6	19.42	6.61	1818	0.09	116.7	
	9	19.66	6.65	1829	0.07	89.7	
	12	19.87	6.63	1830	0.06	86.2	
	15	19.99	6.89	1834	0.06	84.6	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Initially light brown, no hydrocarbon odor, clear at 1 gallons

	Mor	nitoring Well Number:	MW-9
Project Name:	Omega Termite	Date of Sampling:	9/21/2006
Job Number:	3190	Name of Sampler:	Adrian Nieto
Project Address:	807 75th Avenue Oakland		

MONITORIN	G WELL DA	ТА	
Well Casing Diameter (2"/4"/6")		2	
Wellhead Condition	ОК		-
Elevation of Top of Casing (feet above msl)		11.22	
Depth of Well		35.00	
Depth to Water (from top of casing)		5.81	
Water Elevation (feet above msl)		5.41	
Well Volumes Purged		3	
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		14.7	
Actual Volume Purged (gallons)		15.0	
Appearance of Purge Water		Clear at 2.0 gallons	
Free Product Present?	No	Thickness (ft):	NA

GROUNDWATER SAMPLE	S
--------------------	---

Number of Sample	es/Container S	Size		2 - 40ml VOA	s, 1 L Amber		
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
	3	18.81	6.73	1289	0.10	77.7	
	6	18.93	6.69	1291	0.09	80.6	
	9	18.97	6.68	1290	0.08	76.7	
	12	18.72	6.69	1215	0.17	106.1	
	15	19.1	6.73	1213	0.10	91.8	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Brown with strong hydrocarbon odor, clear at 2.0 gallons

Pump failed 10/21/06

Monitoring Well Number: MW-10

Project Name:	Omega Termite	Date of Sampling:	9/20/2006
Job Number:	3190	Name of Sampler:	Adrian Nieto
Project Address:	807 75th Avenue Oakland		

MONITORIN	G WELL DA	ТА
Well Casing Diameter (2"/4"/6")		2
Wellhead Condition	ОК	•
Elevation of Top of Casing (feet above msl)		10.31
Depth of Well		35.00
Depth to Water (from top of casing)		4.79
Water Elevation (feet above msl)		5.52
Well Volumes Purged		
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		15.2
Actual Volume Purged (gallons)		15.0
Appearance of Purge Water		Clear by 1.5 gallon
Free Product Present?	No	Thickness (ft): NA

GROUNDWATER SAMPLES

Number of Sample	es/Container S	Size		2 - 40ml VOA	s, 1 L Amber		
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
	3	18.98	6.81	1601	0.19	-24.0	
	6	19.19	6.81	1619	0.10	-88.2	
	9	19.64	6.80	1612	0.12	29.1	
	12	19.57	6.67	1548	0.09	9.9	
	15	19.75	6.69	1554	0.08	13.9	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Milky brown with no hydrocarbon odor, clear by 1.5 gallony

APPENDIX B

Laboratory Analytical Reports With Chain of Custody Documentation

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #115483; Omega Termite	Date Sampled: 09/20/06
2500 Camino Diablo, Ste. #200		Date Received: 09/21/06
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported: 09/27/06
	Client P.O.:	Date Completed: 09/28/06

WorkOrder: 0609433

September 28, 2006

Dear Robert:

Enclosed are:

- 1). the results of **9** analyzed samples from your **#115483; Omega Termite project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

Telephon	McCAM e: (925) 798	110 2 nd AV PACHEC		UTH,	#D7 60			5) 79	98-1	622							AR	01	UN	D T	IM	E		RI	D JSH		24 H)			72 H	IR :	5 DA
					0				_				-	G	eoT	rac	ker	_	-	×		PDF		X		Exc	el			Write	_		
Report To: Robert	and the second se		В	ill Te	o: Sa	me							\rightarrow	_	-		-	_	Ana	lysi	s Re	equ	est	-	_	_	_			Other	_	omm	ents
Company: AEI Co	amino Dial	blo Suito	200						-				-			&F)													(st)			ilter ample	e fo
	t Creek, CA			-Mai	il: rflo	rv(a	aei	one	ltan	te re				8015)/MTBE		F/B						A		0					et L			letals	
Tel: (925) 944-289										10.01			-	S)/M		0 E&	(1)					, TC		/ 83					Targ		A	nalysi	is:
Tel: (925) 944-2899, extension 122 Fax: (925) 944-2895 Project #:115483 Project Name: Omega termite								801		552	(418	1	0			EDB		8270 / 8310					8010 Target List)		Y	es /	No						
Project Location:	807 75 th		1					-						+ 07	r oil	ase (suo	ist)	8020			Icl]		5/8			(01						
Sampler Signature		n N	reso											(602/8020	lotor	Gre	cart	101	02/1	080		60 ir		EPA 625 /			2/60		260E				
METHO							as Gas (6	liesel / m	m Oil &	m Hydro	8260 (80	(EPA 6(A 608 / 8	8 / 8080	s by 82	0/	's by EP.	als	S	121/239.2		/OCs (82											
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Unner	HCI	HNO ₃	Other	BTEX & TPH	TPH (8015) diesel / motor oil	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	HVOCs EPA 8260 (8010 list)	BTEX ONLY (EPA 602 / 8020)	Pesticides EPA 608 / 8080	PCBs EPA 608 / 8080	Fuel Dditi8ves by 8260 incl EDB, TCA	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI	Halogenated VOCs (8260B				
MW-1	+	9/2/06	8:250.	61	Veris	-				X	-	-		X	×							1									+		-
MW-2		9/20/06		1		Î				Í			1	4	X																-	1	
MW-3		1000	1:30P			It			-	+				×	X						1										-		
MW-4			1.SUPM	+		H			-	+	\parallel				x	-						-									-		-
MW-5			1-2-1-1			H			-	+	$\left \right $	1			~					-		+				-					1	st S	
MW-6			11:52	+		+			-	+	-	-		~	N					-	-	-					-				10		971
MW-7				-		11		-	-	+	-	-		X	X						-	-					-				-		-
MW-8			12:409	+	-	+		-	-	+	-	-		T	X					-	-	-	-	-		-	-	-			-		-
MW-9		alli	1220	+	-	11		-	-	+		-		X	X		-		-		-	-		-	-	-			-		-		
		9/21/06	8:0300			11		-	-	+		-		X	X					-	-	-									-	_	_
MW-10		9/10/06	1: 42 pm	1		2				1				X	X																		
										-																							_
1 1 2 2 1 1 2 1 -	to	Date:	Time:	1	eited P	11	u	e	/	1	2/	5			CE/		/				1		P	PRE	SER	VA	TIC		OAS	O&G	MET	ALS	оті
Relinquished By: <i>l</i> Relinquished By:	-	Date: ' Date:	Time: Time:		eived E						GOOD CONDITION APPROPRIATE HEAD SPACE ABSENT CONTAINERS DECHLORINATED IN LAB PERSERVED IN LAB																						

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9	9262			Wo	orkOre	der: 00	509433		Clie	ntID: A	EL		EDH	F: YES			
Report to: Robert Flory AEI Consultants	S	Email: TEL:	rflory@aeicon (925) 283-600		283-6			nise Mo I Consi					Rec	lueste	d TAT:	5	days
	- Diablo, Ste. #200		#115483; Om	· · ·		. –				blo, St	e. #200)	Da	te Rec	eived:	: 09/21	/2006
Walnut Creek, 0	,	PO:	,	- 9						\$ 94597			Da	te Pri	nted:	09/21	/2006
									Req	uested	Tests	(See le	gend b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0609433-001	MW-1		Water	09/21/2006		A	А	В								<u> </u>	
0609433-002	MW-2		Water	09/20/2006		Α		В									
0609433-003	MW-3		Water	09/20/2006		Α		В									
0609433-004	MW-4		Water	09/20/2006		Α		В									
0609433-005	MW-6		Water	09/20/2006		Α		В									
0609433-006	MW-7		Water	09/20/2006		Α		В									
0609433-007	MW-8		Water	09/20/2006		Α		В									
0609433-008	MW-9		Water	09/21/2006		Α		В									
0609433-009	MW-10		Water	09/20/2006		Α		В									

Test Legend:

1 G-MBTEX_W	2 PREDF REPORT	3 TPH(DMO)_W	4	5
6	7	8	9	10
11	12			

Prepared by: Melissa Valles

Comments:


NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	McCampbell	Analyt ality Counts"	ical, Inc	<u>.</u>	Web: www.m		Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	mpbell.com				
AEI Cons	sultants		Client Proj	ect ID: #115	483; Omega To	ermite	Date Sample		5-09/21	/06		
2500 Cam	ino Diablo, Ste. #200						Date Receive	ed: 09/21/06	5			
			Client Cor	ntact: Robert	Flory		Date Extract	ed: 09/24/06	5-09/26	5/06		
Walnut Cı	reek, CA 94597		Client P.O.	.:			Date Analyzed 09/24/06-09/26/0					
Extraction m	Gasoline ethod SW5030B	e Range (O		•	rbons as Gaso W8021B/8015Cm	line with BTI	EX and MTBE	* Work Orde	r: 060	9433		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	MW-1	W	3500,a	ND<25	1700	ND<2.5	14	23	5	113		
002A	MW-2	W	2400,a	ND<50	12	13	46	65	10	116		
003A	MW-3	W	510,a	ND<17	49	ND<1.7	50	36	3.3	101		
004A	MW-4	W	260,a	ND<10	63	ND	23	4.7	1	103		
005A	MW-6	W	ND	ND	ND	ND	ND	ND	1	96		
006A	MW-7	W	ND	ND	ND	ND	ND	ND	1	99		
007A	MW-8	w	ND	ND	ND	ND	ND	ND	1	103		
008A	MW-9	w	130,a	ND	20	1.2	ND	2.6	1	106		
009A	MW-10	w	ND	ND	ND	ND	ND	ND	1	93		
										<u> </u>		
										<u> </u>		
-	ting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	µg/L		
	ans not detected at or e the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/K		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

<u> </u>	Campbell Analyti "When Ouality Counts"	cal, Inc.	Web: www.mc	low Pass Road, Pittsburg, CA 945 ccampbell.com E-mail: main@mc one: 877-252-9262 Fax: 925-252	campbell.con	n							
AEI Consultants		•	D: #115483; Omega	Date Sampled: 09/	Date Sampled: 09/20/06-09/21/06								
2500 Camino Diat	olo, Ste. #200	Termite		Date Received: 09/	Date Received: 09/21/06								
Walnut Creek, CA	94597	Client Contact	: Robert Flory	Date Extracted: 09/	/21/06								
		Client P.O.: Date Analyzed 09/23/06											
Extraction method: SW3		-	tractable Hydrocarbons methods: SW8015C	as Diesel and Motor Oil* Wor		609433							
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS							
0609433-001B	MW-1	W	550,b,d	270	1	106							
0609433-002B	MW-2	W	860,d	ND	1	106							
0609433-003B	MW-3	W	300,d,g	310	1	107							
0609433-004B	MW-4	W	170,g,d	360	1	107							
0609433-005B	MW-6	W	59,b	ND	1	108							
0609433-006B	MW-7	w	150,k	ND	1	106							
0609433-007B	MW-8	W	65,b	ND	1	107							
0609433-008B	MW-9	W	1400,a	460	1	107							
0609433-009B	MW-10	W	280,g,b	460	1	107							
						<u> </u>							
					<u> </u>	<u> </u>							
Reporti	ing Limit for DF =1;	w	50	250									
ND mea	nns not detected at or the reporting limit	S	NA	NA	μg/L mg/Kg								

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

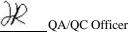
QC Matrix: Water

WorkOrder: 0609433

EPA Method: SW8021B/8	015Cm E	xtraction	: SW5030)B		Batchl	D: 23868	S	piked San	nple ID	: 0609433-0	009A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (º	%)
, and you	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	105	107	2.03	102	103	1.08	70 - 130	30	70 - 130	30
MTBE	ND	10	79.1	80.9	2.29	110	116	4.78	70 - 130	30	70 - 130	30
Benzene	ND	10	112	111	0.504	103	105	1.95	70 - 130	30	70 - 130	30
Toluene	ND	10	110	110	0	96.3	98.6	2.29	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	116	115	1.28	104	104	0	70 - 130	30	70 - 130	30
Xylenes	ND	30	130	127	2.60	95.3	95.7	0.349	70 - 130	30	70 - 130	30
%SS:	93	10	109	108	0.383	105	102	2.80	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23868 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609433-001	9/21/06 8:25 AM	9/25/06	9/25/06 7:27 AM	0609433-002	9/20/06 1:00 PM	9/24/06	9/24/06 2:08 PM
0609433-003	9/20/06 1:30 PM	9/26/06	Э/26/06 12:34 AM	0609433-004	9/20/06 1:50 PM	9/24/06	9/24/06 2:43 PM
0609433-005	Э/20/06 11:52 AM	9/24/06	9/24/06 3:20 PM	0609433-006	9/20/06 12:40 PM	9/24/06	9/24/06 3:56 PM
0609433-007	9/20/06 12:29 PM	9/25/06	9/25/06 3:50 PM	0609433-008	9/21/06 8:03 AM	9/26/06	9/26/06 1:06 AM
0609433-009	9/20/06 1:42 PM	9/24/06	9/24/06 5:09 PM				ľ

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

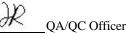
QC Matrix: Water

WorkOrder: 0609433

	ktraction	: SW3510)C		Batchl	D: 23865	S	piked San	nple ID:	N/A	
Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ac	cceptan	ce Criteria (%)
µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
N/A	1000	N/A	N/A	N/A	97.2	101	3.59	N/A	N/A	70 - 130	30
N/A	2500	N/A	N/A	N/A	102	103	1.27	N/A	N/A	70 - 130	30
	μg/L N/A	μg/L μg/L N/A 1000	μg/L μg/L % Rec. N/A 1000 N/A	μg/L μg/L % Rec. % Rec. N/A 1000 N/A N/A	μg/L μg/L % Rec. % Rec. % RPD N/A 1000 N/A N/A N/A	μg/L μg/L % Rec. % Rec. % RPD % Rec. N/A 1000 N/A N/A N/A 97.2	µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. N/A 1000 N/A N/A N/A 97.2 101	μg/L μg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD N/A 1000 N/A N/A N/A 97.2 101 3.59	μg/L μg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD N/A 1000 N/A N/A N/A 97.2 101 3.59 N/A	µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD N/A 1000 N/A N/A N/A 97.2 101 3.59 N/A N/A	μg/L μg/L % Rec. % Rec. % Rep. % Rec. % Rec.

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23865 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609433-001	9/21/06 8:25 AM	9/21/06	Э/23/06 11:12 AM	0609433-002	9/20/06 1:00 PM	9/21/06	9/23/06 12:21 PM
0609433-003	9/20/06 1:30 PM	9/21/06	9/23/06 1:29 PM	0609433-004	9/20/06 1:50 PM	9/21/06	9/23/06 2:37 PM
0609433-005	Э/20/06 11:52 AM	9/21/06	9/23/06 3:46 PM	0609433-006	9/20/06 12:40 PM	9/21/06	9/23/06 4:54 PM
0609433-007	9/20/06 12:29 PM	9/21/06	9/23/06 6:02 PM	0609433-008	9/21/06 8:03 AM	9/21/06	9/23/06 7:11 PM
0609433-009	9/20/06 1:42 PM	9/21/06	9/23/06 8:19 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #115483; Omega Termite	Date Sampled: 09/20/06
2500 Camino Diablo, Ste. #200		Date Received: 09/21/06
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported: 09/27/06
	Client P.O.:	Date Completed: 09/28/06

WorkOrder: 0609433

September 28, 2006

Dear Robert:

Enclosed are:

- 1). the results of **9** analyzed samples from your **#115483; Omega Termite project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

Telephon	McCAM e: (925) 798	110 2 nd AV PACHEC		UTH,	#D7 60			5) 79	98-1	622							AR	01	UN	D T	IM	E		RI	D JSH		24 H)			72 H	IR :	5 DA
					0				_				-	G	eoT	rac	ker	_	-	×		PDF		X		Exc	el			Write	_		
Report To: Robert	and the second se		В	ill Te	o: Sa	me							\rightarrow	_	-		-	_	Ana	lysi	s Re	equ	est	-	_	_	_			Other	_	omm	ents
Company: AEI Co	amino Dial	blo Suito	200						-				-			&F)													(st)			ilter ample	e fo
	t Creek, CA			-Mai	il: rflo	rv(a	aei	one	ltan	te re				8015)/MTBE		F/B						A		0					et L			letals	
Tel: (925) 944-289					(925)					10.01			-	S)/M		0 E&	(1)					, TC		/ 83					Targ		A	nalysi	is:
Project #:115483	,			and the second se	t Na		and the owner where the party is not the party of the par		term	nite				801		552	(418	1	0			EDB		8270 / 8310					8010 Target List)		Y	es /	No
Project Location:	807 75 th		1					-						+ 07	r oil	ase (suo	ist)	8020			Icl]		5/8			(01						
Sampler Signature		n N	reso											(602/8020	lotor	Gre	cart	101	02/1	080		60 ir		EPA 625 /			2/60		260E				
	.,	SAMP	LING	srs	iners		MA	TR	IX			THO		as Gas (6	liesel / m	m Oil &	m Hydro	8260 (80	(EPA 6(A 608 / 8	8 / 8080	s by 82	0/	's by EP.	als	S	121/239.2		/OCs (82				
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Unner	HCI	HNO ₃	Other	BTEX & TPH	TPH (8015) diesel / motor oil	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	HVOCs EPA 8260 (8010 list)	BTEX ONLY (EPA 602 / 8020)	Pesticides EPA 608 / 8080	PCBs EPA 608 / 8080	Fuel Dditi8ves by 8260 incl EDB, TCA	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI	Halogenated VOCs (8260B				
MW-1	+	9/2/06	8:250.	61	Veris	-				X	-	-		X	×							1									+		-
MW-2		9/20/06		1		Î				Í			1	4	X																-	1	
MW-3		1000	1:30P			It			-	+				×	X						1										-		
MW-4			1.SUPM	+		H			-	+	\parallel				x	-						-									-		-
MW-5			1-2-1-1			H			-	+	$\left \right $	1			~					-		+				-					1	st S	
MW-6			11:52	+		+			-	+	-	-		~	N					-	-	-					-				10		971
MW-7				-				-	-	+	-	-		X	X						-	-					-				-		-
MW-8			12:409	+	-	+		-	-	+	-	-		T	X					-	-	-	-	-		-	-	-			-		-
MW-9		alli	1220	-	-	11		-	-	+		-		X	X		-		-		-	-		-	-	-			-		-		
		9/21/06	8:0300			11		-	-	+		-		X	X					-	-	-									-	_	_
MW-10		9/10/06	1: 42 pm	1		2				1				X	X																		
										-																							_
1 1 2 2 1 1 2 1 -	to	Date:	Time:	1	eited P	11	u	e	/	1	2/	5			CE/		/				1		P	PRE	SER	VA	TIC		OAS	O&G	MET	ALS	оті
Relinquished By: <i>l</i> Relinquished By:	-	Date: ' Date:	Time: Time:		eived E		-				271.S	-	_	I	IEA	DS	CON PAC ORI	E A	ABS	ENT		3_		ON	ROF TAI RSF	INE	RS_						

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9	262		Wo	rkOr	der: 06	509433	i	Clie	ntID: A	AEL		ED	F: YES			
Report to: Robert Flory AEI Consultants		Email: rflory@aeicor TEL: (925) 283-60		202 E			nise Mo I Consi					Rec	queste	d TAT:	5	days
	iablo, Ste. #200	ProjectNo: #115483; Om		203-0	12			nino Dia	hla St	م #200)	Da	te Rec	eived	: 09/21	/2006
Walnut Creek, C		PO:	lega remite					eek, CA	,)				09/21	
								Requ	uested	Tests	(See le	gend b	elow)			
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0609433-001	MW-1	Water	09/21/2006		Α	A	В								<u> </u>	
0609433-002	MW-2	Water	09/20/2006		Α		В									
0609433-003	MW-3	Water	09/20/2006		Α		В									
0609433-004	MW-4	Water	09/20/2006		Α		В									
0609433-005	MW-6	Water	09/20/2006		Α		В									
0609433-006	MW-7	Water	09/20/2006		Α		В									
0609433-007	MW-8	Water	09/20/2006		Α		В									
0609433-008	MW-9	Water	09/21/2006		Α		В									
0609433-009	MW-10	Water	09/20/2006		Α		В									Τ

Test Legend:

1 G-MBTEX_W	2 PREDF REPORT	3 TPH(DMO)_W	4	5
6	7	8	9	10
11	12			

Prepared by: Melissa Valles

Comments:


NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	McCampbell	Analyt ality Counts"	ical, Inc	<u>.</u>	Web: www.m		Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	mpbell.com		
AEI Cons	sultants		Client Proj	ect ID: #115	483; Omega To	ermite	Date Sample		5-09/21	/06
2500 Cam	ino Diablo, Ste. #200						Date Receive	ed: 09/21/06	5	
			Client Cor	ntact: Robert	Flory		Date Extract	ed: 09/24/06	5-09/26	5/06
Walnut Cı	reek, CA 94597		Client P.O.	.:			Date Analyz	ed 09/24/06	5-09/26	5/06
Extraction m	Gasoline ethod SW5030B	e Range (O		•	rbons as Gaso W8021B/8015Cm	line with BTI	EX and MTBE	* Work Orde	r: 060	9433
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1	W	3500,a	ND<25	1700	ND<2.5	14	23	5	113
002A	MW-2	W	2400,a	ND<50	12	13	46	65	10	116
003A	MW-3	W	510,a	ND<17	49	ND<1.7	50	36	3.3	101
004A	MW-4	W	260,a	ND<10	63	ND	23	4.7	1	103
005A	MW-6	W	ND	ND	ND	ND	ND	ND	1	96
006A	MW-7	W	ND	ND	ND	ND	ND	ND	1	99
007A	MW-8	w	ND	ND	ND	ND	ND	ND	1	103
008A	MW-9	w	130,a	ND	20	1.2	ND	2.6	1	106
009A	MW-10	w	ND	ND	ND	ND	ND	ND	1	93
										<u> </u>
										<u> </u>
-	ting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	µg/L
	ans not detected at or e the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/K

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

<u> </u>	Campbell Analyti "When Ouality Counts"	cal, Inc.	Web: www.mc	low Pass Road, Pittsburg, CA 945 ccampbell.com E-mail: main@mc one: 877-252-9262 Fax: 925-252	campbell.con	n	
AEI Consultants		•	D: #115483; Omega	Date Sampled: 09/	/20/06-09/	21/06	
2500 Camino Diat	olo, Ste. #200	Termite		Date Received: 09/	/21/06		
Walnut Creek, CA	94597	Client Contact	: Robert Flory	Date Extracted: 09/	/21/06		
		Client P.O.:		Date Analyzed 09/	/23/06		
Extraction method: SW3		-	tractable Hydrocarbons methods: SW8015C	as Diesel and Motor Oil* Wor		609433	
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS	
0609433-001B	MW-1	W	550,b,d	270	1	106	
0609433-002B	MW-2	W	860,d	ND	1	106	
0609433-003B	MW-3	W	300,d,g	310	1	107	
0609433-004B	MW-4	W	170,g,d	360	1	107	
0609433-005B	MW-6	W	59,b	ND	1	108	
0609433-006B	MW-7	w	150,k	ND	1	106	
0609433-007B	MW-8	W	65,b	ND	1	107	
0609433-008B	MW-9	W	1400,a	460	1	107	
0609433-009B	MW-10	W	280,g,b	460	1	107	
						<u> </u>	
					<u> </u>	<u> </u>	
Reporti	ing Limit for DF =1;	w	50	250			
ND mea	nns not detected at or the reporting limit	S	NA	250 μg/L NA mg/Kg			

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

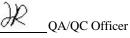
QC Matrix: Water

WorkOrder: 0609433

EPA Method: SW8021B/8	8015Cm E	xtraction	: SW5030)B		Batchl	D: 23868	S	piked San	nple ID	0609433-0	09A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (%)
, and y to	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	105	107	2.03	102	103	1.08	70 - 130	30	70 - 130	30
MTBE	ND	10	79.1	80.9	2.29	110	116	4.78	70 - 130	30	70 - 130	30
Benzene	ND	10	112	111	0.504	103	105	1.95	70 - 130	30	70 - 130	30
Toluene	ND	10	110	110	0	96.3	98.6	2.29	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	116	115	1.28	104	104	0	70 - 130	30	70 - 130	30
Xylenes	ND	30	130	127	2.60	95.3	95.7	0.349	70 - 130	30	70 - 130	30
%SS:	93	10	109	108	0.383	105	102	2.80	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23868 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609433-001	9/21/06 8:25 AM	9/25/06	9/25/06 7:27 AM	0609433-002	9/20/06 1:00 PM	9/24/06	9/24/06 2:08 PM
0609433-003	9/20/06 1:30 PM	9/26/06	Э/26/06 12:34 AM	0609433-004	9/20/06 1:50 PM	9/24/06	9/24/06 2:43 PM
0609433-005	Э/20/06 11:52 AM	9/24/06	9/24/06 3:20 PM	0609433-006	9/20/06 12:40 PM	9/24/06	9/24/06 3:56 PM
0609433-007	9/20/06 12:29 PM	9/25/06	9/25/06 3:50 PM	0609433-008	9/21/06 8:03 AM	9/26/06	9/26/06 1:06 AM
0609433-009	9/20/06 1:42 PM	9/24/06	9/24/06 5:09 PM				ľ

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

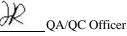
QC Matrix: Water

WorkOrder: 0609433

EPA Method: SW8015C Extraction: SW3510C					BatchID: 23865 Spiked Sample ID: N/A				N/A		
Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			%)
µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
N/A	1000	N/A	N/A	N/A	97.2	101	3.59	N/A	N/A	70 - 130	30
N/A	2500	N/A	N/A	N/A	102	103	1.27	N/A	N/A	70 - 130	30
	μg/L N/A	μg/L μg/L N/A 1000	μg/L μg/L % Rec. N/A 1000 N/A	μg/L μg/L % Rec. % Rec. N/A 1000 N/A N/A	μg/L μg/L % Rec. % Rec. % RPD N/A 1000 N/A N/A N/A	μg/L μg/L % Rec. % Rec. % RPD % Rec. N/A 1000 N/A N/A N/A 97.2	μg/L μg/L % Rec. % Rec. % RPD % Rec. % Rec. N/A 1000 N/A N/A N/A 97.2 101	μg/L μg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD N/A 1000 N/A N/A N/A 97.2 101 3.59	μg/L μg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD N/A 1000 N/A N/A N/A 97.2 101 3.59 N/A	µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD N/A 1000 N/A N/A N/A 97.2 101 3.59 N/A N/A	μg/L μg/L % Rec. % Rec. % Rep. % Rec. % Rec.

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23865 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609433-001	9/21/06 8:25 AM	9/21/06	Э/23/06 11:12 AM	0609433-002	9/20/06 1:00 PM	9/21/06	9/23/06 12:21 PM
0609433-003	9/20/06 1:30 PM	9/21/06	9/23/06 1:29 PM	0609433-004	9/20/06 1:50 PM	9/21/06	9/23/06 2:37 PM
0609433-005	Э/20/06 11:52 AM	9/21/06	9/23/06 3:46 PM	0609433-006	9/20/06 12:40 PM	9/21/06	9/23/06 4:54 PM
0609433-007	9/20/06 12:29 PM	9/21/06	9/23/06 6:02 PM	0609433-008	9/21/06 8:03 AM	9/21/06	9/23/06 7:11 PM
0609433-009	9/20/06 1:42 PM	9/21/06	9/23/06 8:19 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

