

Phone: (925) 283-6000

Fax: [925] 944-2895

December 7, 2004

Mr. Amir Gholami Alameda Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject:

4th Quarter 2004 Groundwater Monitoring Report

807 75th Street Oakland, CA 94621 AEI Project No. 3190

Dear Mr. Gholami:

Enclosed is the most recent quarterly monitoring report for the above referenced site.

Please call me at (925) 944-2899 ext. 132 if you have any questions.

Sincerely,

Adrian Angel Staff Geologist The Office of Courts

December 7, 2004

GROUNDWATER MONITORING REPORT Fourth Quarter, 2004

807 75th Avenue Oakland, California

Project No. 3190

Prepared For

Mr. Allan Kanady Omega Termite 807 75th Avenue Oakland, CA 95621 Alcount County

Prepared By

AEI Consultants 2500 Camino Diablo Blvd., Suite 200 Walnut Creek, CA 94597

(925) 283-6000

Phone: (925) 944-2899

Fax: (925) 944-2895

December 7, 2004

Mr. Allan Kanady Omega Termite 807 75th Avenue Oakland, CA 95621

Subject:

Quarterly Groundwater Monitoring Report

Fourth Quarter 2004

807 75th Avenue Oakland, California Project No. 3190

Dear Mr. Kanady:

AEI Consultants (AEI) has prepared this report to document the results of the fourth quarter 2004 groundwater monitoring event at the above referenced site (Figure 1: Site Location Map). This groundwater investigation has been performed in accordance with the requirements of the Alameda County Health Care Services Agency (ACHCSA). The purpose of this activity is to monitor groundwater quality near the previous location of underground storage tanks (USTs) at the site.

Site Description and Background

The site is located in an industrial area of the City of Oakland, on the northern corner of the intersection of 75th Avenue and Snell Street, just east of San Leandro Street. The property is approximately 10,000 square feet in size and currently developed with two buildings, occupied by Omega.

On September 15, 1996, AEI removed three gasoline USTs from the subject property. The tanks consisted of one 8,000-gallon UST, one 1,000-gallon UST, and one 500-gallon UST. The former locations of the tanks are shown in Figure 2. Five soil samples and one groundwater sample collected during the tank removal activities revealed that a release had occurred from the tank system. Total petroleum hydrocarbons as gasoline (TPH-g), benzene, and methyl tertiary butyl ether (MTBE) were detected up to 4,300 mg/kg, 13 mg/kg, and 25 mg/kg, respectively in soil samples. The excavation was not backfilled. Soil removed from the excavation was stockpiled on the northern portion of the property. In 1999 soil samples collected from the stockpiled soil contained non-detectable to minor concentrations of TPH-g. Mr. Barney Chan of the ACHCSA approved the stockpiled soil for reuse in the excavation.

In October 1997, soil and groundwater samples were collected from six soil borings (BH-1 through BH-6). In June 1999, four groundwater monitoring wells (MW-1 through MW-4) were also installed by AEI. The construction details for the groundwater monitoring wells on site are

summarized in Table 1. Monitoring well locations are shown on Figure 2. Historical groundwater elevation and historical groundwater sample analytical data are presented in Tables 2 and 3.

Under the direction of the ACHCSA, additional soil was removed from the excavation in March 2000. The excavation was extended to 29 by 48 feet in size and 8 feet deep at the east end of the excavation and 11.5 at the west end. During the excavation activities, an additional 500-gallon UST was discovered at the eastern end of the excavation. This tank was removed under the direction of Oakland Fire Services Agency (OFSA). Six additional soil samples were collected from the sidewalls and bottom of the excavation.

The resulting excavation was then backfilled with pea gravel to bridge the water table, with the remainder of the excavation being filled with the previously aerated soil and later with imported fill. The newly excavated soil was stockpiled on the northern portion of the property. A total of 7,400 gallons of hydrocarbon impacted groundwater were pumped from the excavation, treated on-site, and discharged under an East Bay Municipal Utility District permit to the sanitary sewer system.

AEI carried out a site characterization on October 9 and 10, 2003, to address ACHCSA's requests for additional delineation of the vertical and lateral extents of impacted soil and groundwater. Seven temporary Geoprobe® boreholes (SB-7 through SB-13) were advanced to depths ranging from 15 to 20 feet bgs. One borehole, SB-14 was advanced to a depth of 30 feet bgs to determine if the second aquifer at the site had been impacted. Soil samples were collected in the vadose zone above the first aquifer and from the aquitard between the first and second aquifers. Groundwater samples were collected from both aquifers. The analysis of water samples from the second aquifer found that hydrocarbons had impacted that aquifer.

Summary of Activities

AEI conducted quarterly groundwater monitoring of four monitoring wells (MW-1, MW-2, MW-3 and MW-4) and the one temporary backfill extraction well (TW-5) on October 18, 2004. Prior to measuring depth to water measurements, the caps were removed from the top of all wells and the water level allowed to equilibrate with atmospheric pressure for at least 15 minutes. The depth to groundwater (from the top of the well casings) for each well was measured with an electric water level indicator. The wells were then purged using a battery powered submersible pump. Approximately three well volumes were removed from each well. Temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were measured and the turbidity was visually noted during the purging of the wells.

Once the groundwater parameters stabilized, and following recovery of water levels, water samples were collected from each well. Sample waters were collected using new disposable bailers and placed into 40-milliliter (ml) Volatile Organic Analysis (VOA) vials and 1-liter amber bottles. The VOAs were capped so that no headspace or air bubbles were visible within the vials. Samples were transported in a cooler on ice under appropriate chain-of-custody

protocol to McCampbell Analytical, Inc. of Pacheco, California (Department of Health Services Certification #1644).

Groundwater samples from the five wells were analyzed for TPH-g, benzene, toluene, ethyl benzene, xylenes (BTEX), and MTBE by SW8021B/8015Cm. The groundwater samples were also analyzed for TPH-d (as diesel) and TPH-mo (as motor oil) by SW8015C.

Field Results

Hydrocarbon odor was detected in wells MW-1, MW-2, MW-3 and TW-5. Groundwater levels for this sampling episode ranged from 4.59 to 5.95 feet above mean sea level (arnsl). These elevations are an average of 0.07 feet lower than at the time of the previous quarterly monitoring event. Groundwater flow direction was estimated to be to the north with a hydraulic gradient of 0.002 ft/ft. The hydraulic gradient is an increase over the previous quarter's gradient of 0.014ft/ft. The temporary extraction well, TW-5, is not included in calculating the groundwater direction flow or the hydraulic gradient due to variation in well construction and its location on the backfilled tank excavation.

Groundwater elevation data are summarized in Table 2. The groundwater elevation contours and the groundwater flow direction are shown in Figure 4. Refer to Appendix A for the Groundwater Monitoring Well Field Sampling Forms.

Groundwater Quality

TPH-g concentration increased in wells MW-2, MW-3, TW-5, but decreased MW-1 and MW-4. TPH-d concentrations increased in wells MW-1 and MW-3 through TW-5, but decreased in well MW-2. MTBE has not been detected above laboratory reporting limits in any of the wells sampled since the September 19, 2001 monitoring event. Benzene concentrations decreased in all wells. TPH-g and benzene highs were reported in MW-2 and MW-4 at 2,400 μ g/L and 76 μ g/L, respectfully. TPH-mo increased over last quarter in well MW-1 from 260 μ g/L to 290 μ g/L. TPH-mo remained constant in TW-5 at 1,600 μ g/L. No detectable levels of TPH-mo were found in monitoring wells MW-2 through MW-4.

A summary of groundwater analytical data is presented in Table 3. Laboratory results and chain of custody documents are included in Appendix B.

Conclusions

Concentrations of TPH-g and benzene have shown seasonal fluctuations in all wells as groundwater levels rise and fall.

Groundwater monitoring and sampling of the five wells will continue, with the next episode scheduled for October 2004.

Report Limitations and Signatures

This report presents a summary of work completed by AEI Consultants, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide required information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses, observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices in the environmental engineering and construction field that existed at the time and location of the work.

Please contact me if you have any questions regarding the findings outlined in this report.

Sincerely,

AEI Consultants

Adrian Angel

Staff Geologist

Robert F. Flory, RG

Senior Geologist

cc: Mr. Amir Gholami

ACHCSA

1131 Harbor Bay Parkway, Suite 250

Alameda, CA 94502

References

- 1. Underground Storage Tank Removal Final Report, prepared by AEI October 10, 1996
- 2. Phase II Soil and Groundwater Investigation Report, prepared by AEI March 17, 1997
- 3. Workplan, prepared by AEI May 21, 1999
- 4. Soil Boring and Groundwater Monitoring Well Installation Report, prepared by AEI-September 16, 1999
- 5. Quarterly Groundwater Monitoring and Sampling Report, prepared by AEI-July 28, 2000.
- 6. Quarterly Groundwater Monitoring and Sampling Report, prepared by AEI-November 3, 2000.
- 7. Quarterly Groundwater Monitoring and Sampling Report, prepared by AEI-February 7, 2001.
- 8. Quarterly Groundwater Monitoring and Sampling Report, prepared by AEI-July 2, 2001.
- 9. Quarterly Groundwater Monitoring and Sampling Report, prepared by AEI-February 20, 2002.
- 10. Quarterly Groundwater Monitoring and Sampling Report, prepared by AEI-June 21, 2002.
- 11. Quarterly Groundwater Monitoring and Sampling Report, prepared by AEI-October 14, 2002.
- 12. Quarterly Groundwater Monitoring and Sampling Report, prepared by AEI-January 31, 2003.
- 13. Groundwater Monitoring Report, 13th Episode 2003, prepared by AEI-March 19, 2003.
- 14. Groundwater Monitoring Report, 14th Episode 2003, prepared by AEI-September 8, 2003.
- 15. Groundwater Monitoring Report, Fourth Quarter 2003, prepared by AEI-October 24, 2003.
- 16. Groundwater Monitoring Report, First Quarter 2004, prepared by AEI-January 29, 2004.
- 17. Groundwater Monitoring Report, Second Quarter 2004, prepared by AEI-May 24, 2004.
- 18. Groundwater Monitoring Report, Third Quarter 2004, prepared by AEI-August 23, 2004.

Figures

Figure 1 Site Location Map

Figure 2 Site Map

Figure 3 Groundwater Analytical Data

Figure 4 Groundwater Gradient

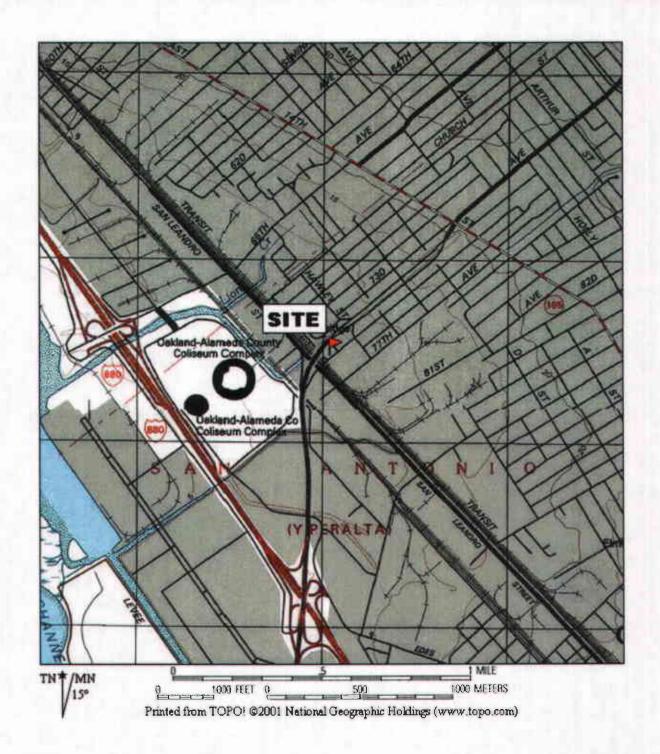
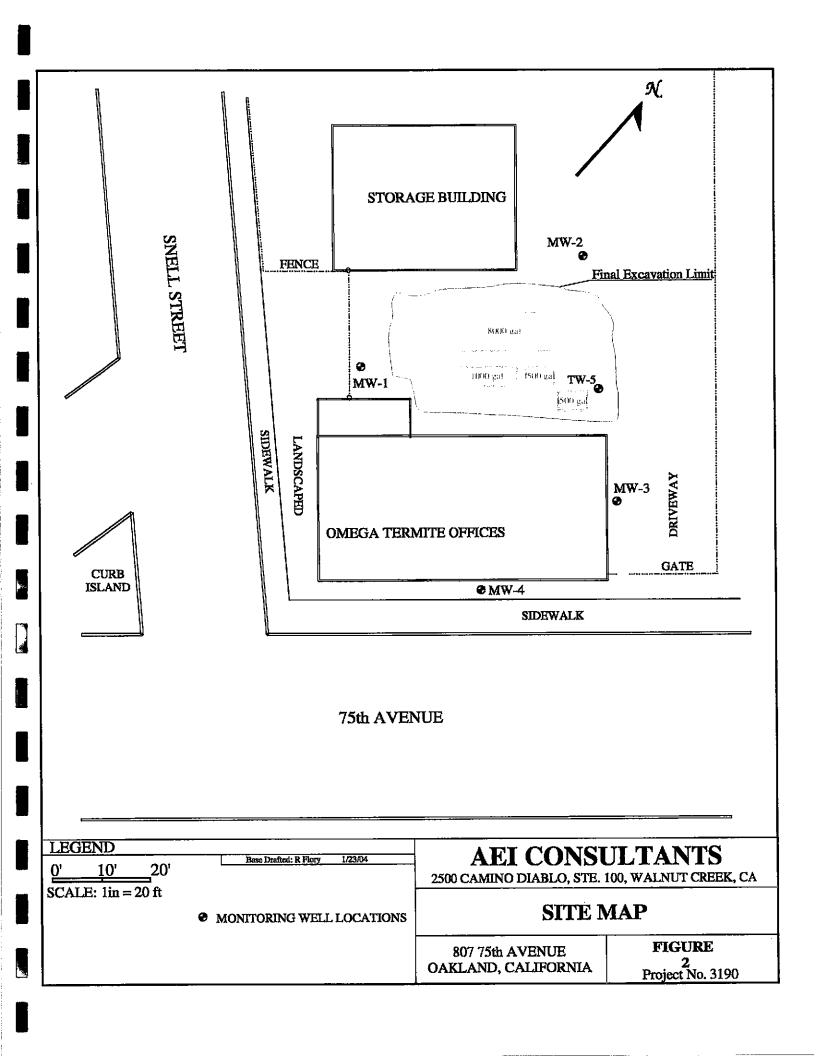
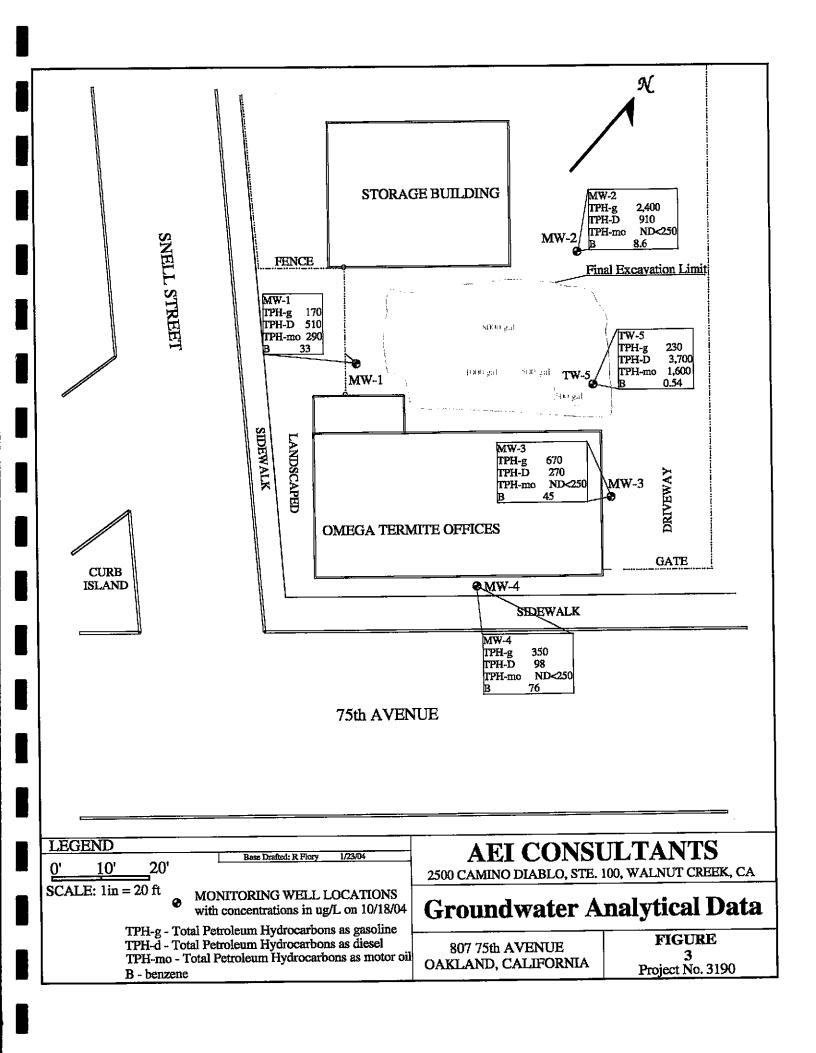

Tables

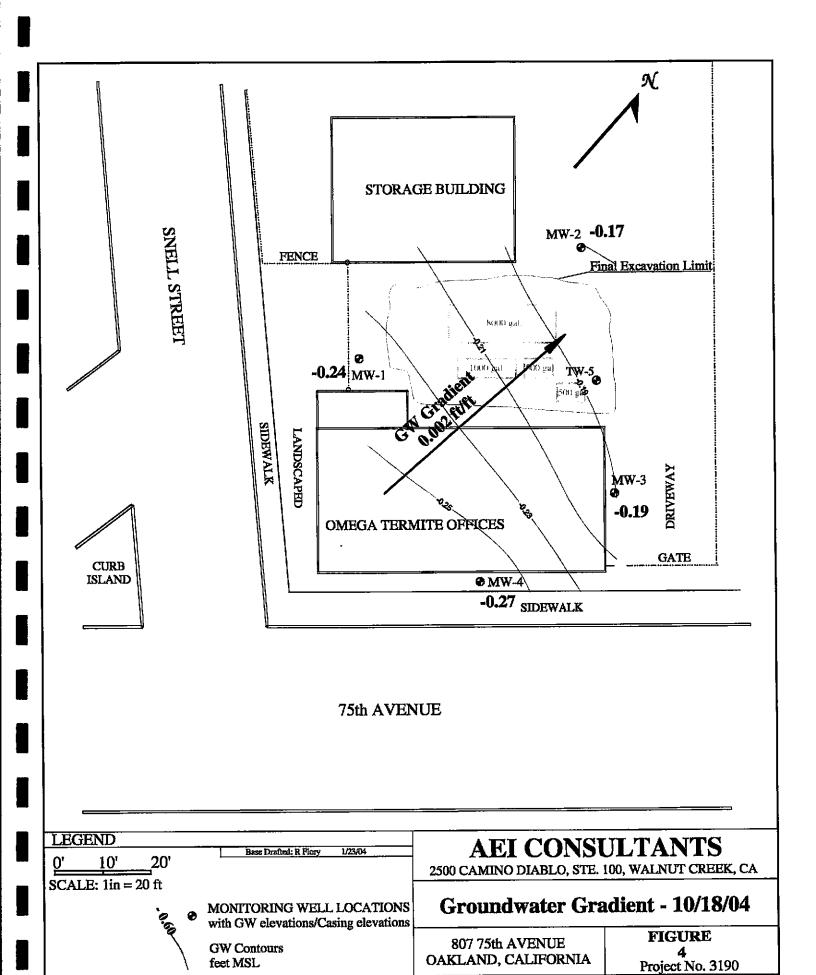
Table 1 Historical Groundwater Elevations

Table 2 Historical Groundwater Analytical Results

Appendix A Groundwater Monitoring Well Field Sampling Forms


Appendix B Laboratory Reports With Chain of Custody Documentation




AEI CONSULTANTS 2500 CAMINO DIABLO, STE 200, WALNUT CREEK, CA

SITE LOCATION MAP

807 75th AVENUE OAKLAND, CALIFORNIA FIGURE 1 PROJECT No. 3190

feet MSL

Table 1 - Groundwater Elevations, Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation (ft amsl)	Depth to Water (ft)	Groundwater Elevation (ft amsl)
MW-1	07/30/99	5.00	5.82	-0.82
	11/09/99	5.00	5.70	-0.70
•	02/23/00	5.00	2.84	2.16
	05/26/00	5.00	5.50	-0.50
	10/10/00	5.00	5.70	-0.70
	02/07/01	5.00	5.25	-0.25
	05/25/01	5.00	5.25	-0.25
	09/19/01	5.00	5.51	-0.51
	02/06/02	NS	NS	NS
	05/17/02	5.00	5.30	-0.30
	08/20/02	5.00	5.39	-0.39
	01/10/03	5.00	4.11	0.89
	04/14/03	5.00	4.85	0.15
	07/14/03	5.00	5.08	-0.08
	10/14/03	5.00	5.63	-0.63
	01/13/04	5.00	4.53	0.47
	04/15/04	5.00	5.14	-0.14
	07/15/04	5.00	5.42	-0.42
	10/18/04	5.00	5.24	-0.24
MW-2	07/30/99	5.95	6.64	-0.69
	11/09/99	5.95	6.42	-0.47
	02/23/00	5.95	3.31	2.64
	05/26/00	5.95	6.34	-0.39
	10/10/00	5.95	6.52	-0.57
	02/07/01	5.95	5.90	0.05
	05/25/01	5.95	6.08	-0.13
	09/19/01	5.95	6.53	-0.58
	02/06/02	5.95	5.72	0.23
	05/17/02	5.95	6.17	-0.22
	08/20/02	5.95	NS	NS
	01/10/03	5.95	5.12	0.83
	04/14/03	5.95	4.98	0.97
	07/14/03	5.95	5.99	-0.04
	10/14/03	5.95	6.43	-0.48
	01/13/04	5.95	5.42	0.53
	04/15/04	5.95	6.02	-0.07
	07/15/04	5.95	5.27	0.68
	10/18/04	5.95	6.12	-0.17

Table 1 - Groundwater Elevations, Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation (ft amsl)	Depth to Water (ft)	Groundwate Elevation (ft amsl)
MW-3	07/30/99	4.66	5.35	-0.69
	11/09/99	4.66	5.11	-0.45
	02/23/00	4.66	2.37	2.29
	05/26/00	4.66	4.98	-0.32
	10/10/00	4.66	5.24	-0.58
	02/07/01	4.66	4.73	-0.07
	05/25/01	4.66	4.73	-0.07
	09/19/01	4.66	5.07	-0.41
	02/06/02	4.66	4.69	-0.03
	05/17/02	4.66	4.80	-0.14
	08/20/02	4.66	4.97	-0.31
	01/10/03	4.66	3.59	1.07
	04/14/03	4.66	5.40	-0.74
	07/14/03	4.66	4.69	-0.03
	10/14/03	4.66	5.16	-0.50 0.51
	01/13/04	4.66	4.15	-0.07
	04/15/04	4.66	4.73 5.03	-0.07 -0.37
	07/15/04 10/18/04	4.66 4.66	4.85	-0.19
				0.00
MW-4	07/30/99	4.59	5.45	-0.86
	11/09/99	4.59	5.31	-0.72
	02/23/00	4.59	2.72	1.87
	05/26/00	4.59	5.07	-0.48 -0.73
	10/10/00	4.59	5.32 4.73	-0.14
	02/07/01	4.59	4.73	-0.31
	05/25/01	4.59 4.59	5.16	-0.57
	09/19/01 02/06/02	4.59	4.65	-0.06
	05/17/02	4.59	4.90	-0.31
	08/20/02	4.59	5.02	-0.43
	01/10/03	4.59	3.78	0.81
	04/14/03	4.59	4.11	0.48
	07/14/03	4.59	4.75	-0 .16
	10/14/03	4.59	5.28	-0.69
	01/13/04	4.59	4.07	0.52
	04/15/04	4.59	4.70	-0.11
	07/15/04	4.59	5.09	-0.50
	10/18/04	4.59	4.86	-0.27

Table 1 - Groundwater Elevations, Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date	Well Elevation (ft amsl)	Depth to Water (ft)	Groundwater Elevation (ft amsl)
TW-5	09/19/01	ns	6.59	na
	05/17/02	ns	6.56	0.03
	08/20/02	n s	6.62	-0.06
	01/10/03	ns	4.66	1.96
	04/14/03	ns	5.30	-0.64
	07/14/03	ns	5.84	-0.54
	07/14/03	ns	5.84	0.00
	10/14/03	ns	6.08	-0.24
	01/13/04	ns	4.83	1.25
	04/15/04	ns	5.64	-0.81
	07/15/04	ns	5.89	-0.25
	10/18/04	ns	5.95	-0.06

Depth to water measured from the top of well casing ft amsl = feet above mean sea level

ns - TW-5 Not surveyed na - not available

Table 1 - Groundwater Elevations, 807 75th Ave., Oakland, CA

Episode	Date	Average Water	Water Table	Hydraulic Gradient/
		Table Elevation	Elevation Change	
		(ft amsl)	(ft)	(ft/ft)
1	07/30/99	-0.77	-	
2	11/09/99	-0.59	0.18	0.0056 / SW
3	02/23/00	2.24	2.83	0.008 / S
4	05/26/00	-0.42	-2.66	0.003 / SW
5	10/10/00	-0.65	-0.22	0.0036 / S
6	02/07/01	-0.10	0.54	0.008 / S
7	05/25/01	-0.19	-0.09	0.006 / S
8	09/19/01	-0.52	-0.33	0.004 / S
9	02/06/02	0.05	0.56	0.005 / SE
10	05/17/02	-0.24	-0.29	0.003 / SW
11	08/20/02	-0.38	-0.13	0.002 / S
12	01/10/03	0.90	1.28	0.006 / E-NE
13	04/14/03	0.22	-0.69	0.016 / E-NE
14	07/14/03	-0.08	-0.29	.0017 / S-SE
15	10/14/03	-0.58	-0.50	.003 / SE
16	01/13/04	0.51	1.08	$.001$ / ${f W}$
17	04/15/04	-0.08	-0.59	.001 / W
18	07/15/04	-0.15	-0.08	.001 / W
19	10/18/04	-0.22	-0.07	.002 / N

Table 2 Historical Groundwater Analyses, Omega Termite, 807 75th Ave., Oakland, CA

Sample ID	Sample Collection	Water depth	TPH-g	TPH-d	TPHmo	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes
ш	Date	depth	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-1	07/30/99	5.82	2,700			ND<10	920	5.5	18	130
141 41 2	11/09/99	5.70	1,800			ND<20	430	1.5	26	60
	02/23/00	2.84	3,800			ND<10	1,500	56	78	35
	05/26/00	5.50	7,100			ND<10	2,800	70	220	81
	10/10/00	5.70	980			ND<5.0	260	2.9	10	11
	02/07/01	5.25	570			ND<5.0	150	1.8	4.9	9.3
	05/25/01	5.25	18,000			ND<100	3,800	350	550	620
	09/19/01	5.51	840			ND<5.0	190	4.0	4.6	5.3
	02/06/02	NS			=					
	05/17/02	5.30	13,000	920		ND<5.0	4,500	29	50	58
	08/20/02	5.39	2,100	740	$ND < 5000^2$	ND<15	820	4.5	6.4	9.6
	01/10/03	4.11	95	260	ND<5000 ²	ND<5.0	23	0.66	3.9	6.5
	04/14/03	4.85	340	310		ND<5.0	87	1.3	4.3	5.6
	07/14/03	5.08	750	700		ND<10	420	0.84	3.7	6.0
	10/14/03	5.63	200	990^{3}	460.0	ND<5.0	62	0.83	2.2	2.7
	01/13/04	4.53	510 ⁴	440 ⁶	ND<250	ND<5.0	190	1.7	11	18.0
	04/15/04	5.14	740 ⁴	490^{6}	ND<250	ND<10	240	ND<0.5	5.0	9.6
	07/15/04	5.42	250 ⁴	420	260	ND<5.0	78	ND<0.5	5.0	4.4
	10/18/04	5.42	170 ⁴	510	290	ND<5.0	33	0.75	1.7	3.5
MW-2	07/30/99	6.64	1,200			ND<10	29	2.5	51	100
IVI VV -Z	11/09/99	6.42	1,300			ND<30	26	1.1	55	32
	02/23/00	3.31	5,000			ND<10	200	18	390	440
	05/26/00	6.34	2,700			ND<10	69	13	83	68
	10/10/00	6.52	810			ND<10	17	4.7	42	46
	02/07/01	5.90	2,600			ND<10	70	15	80	100
	05/25/01	6.08	2,400			ND<5.0	75	16	85	100
	09/19/01	6.53	1,200			ND<5.0	10	8.5	46	55
	02/06/02	5.72	1,800			ND<50	14	11	58	59
	05/17/02	6.17	2,000	860		8.1	19	1.1	0.75	88
	08/20/02	NS	NS	NS	NS	NS	NS	NS	NS	NS
	01/10/03	5.12	2,000	910	ND<5000 ²	ND<50	11	11	96	100
	04/14/03	4.98	2,400	800	-	ND<10	16	10	100	73
	07/14/03	5.99	1,900	970	-	ND<15	18	4.8	79	78
	10/14/03	6.43	$1,600^{5,6}$	1,300	ND<250	ND<10	14	5.9	87	78
	01/13/04	5.72	2,900 ⁴	960 ^{5, 6}	ND<250	ND<50	26	13	190	150
	04/15/04	6.02	2,700 ⁴	1,100 ^{5, 6}	ND<250	ND<15	28	11	120	100
	07/15/04	5.27	$2,300^4$	1,000 ^{5,6}	ND<250	ND<10	8.8	3.8	96	84
	10/18/04	5.27	2,400 ⁴	910 ^{5, 6}	ND<250	ND<10	8.6	8.9	68	72

Table 2 Historical Groundwater Analyses, Omega Termite, 807 75th Ave., Oakland, CA

Sample	Sample	Water	ТРН-д	TPH-d	TPHmo	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes
ID	Collection Date	depth	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-3	07/30/99	5.35	2,700			ND<10	220	15	130	230
IAN AA -D	11/09/99	5.11	3,100			15	440	8.8	150	96
	02/23/00	2.37	1,800			ND<15	180	11	82	79
	05/26/00	4.98	1,600			6.4	140	10	69	63
	10/10/00	5.24	1,100			ND<10	110	4.4	63	51
	02/07/01	4.73	1,100			ND<10	130	5.1	68	65
	05/25/01	4.73	1,200			ND<6.0	120	5.4	69 50	64 37
	09/19/01	5.07	800			<5.0	78	3.5	52 77	71
	02/06/02	4.69	1,100			ND<10	130	4.7		
	05/17/02	4.80	2,800	810		ND<50/2.0 ¹	410	23	160	210
	08/20/02	4.97	780	270	ND<5000 ²	ND<10	110	2.8	63	41
	01/10/03	3.59	1,100	510	$ND < 5000^2$	ND<20	160	3.4	98	84
	04/14/03	5.40	690	230	-	ND<5.0	60	2.3	44	34
	07/14/03	4.69	900	380	-	ND<5.0	130	2.0	70	43
	10/14/03	5.16	500	2005,6	ND<250	ND<10	50	2.3	37	18
	01/13/04	4.15	1500 ⁴	400 ⁶	ND<250	ND<30	200	6.2	120	88
	04/15/04	4.73	$1,100^{4}$	280^{6}	ND<250	ND<15	130	3.7	75	53
	07/15/04	5.03	610 ⁴	240 ^{5, 6}	ND<250	ND<5.0	73	2.1	51	29
	10/18/04	5.03	670 ⁴	270 ^{5, 6}	ND<250	ND<5.0	45	1.2	4 7	28
BASSE A		5.45	340	,		ND<10	57	2.2	8.5	6.8
MW-4	11/09/99	5.31	1,000			ND<10	220	< 0.5	17	7.1
	02/23/00	2.72	980		~~=	ND<5.0	260	7	33	27
	05/26/00	5.07	760			5.7	170	4.8	22	13
	10/10/00	5.32	520			ND<10	130	2.3	22	10
	02/07/01	4.73	680			ND<8.0	180	3.7	29	21
	05/25/01	4.90	1,700			ND<10	510	9.6	44	46
	09/19/01	5.16	680			ND<10	200	2.6	33	12
	02/06/02	4.65	710			ND<15	220	2.8	40	21
	05/17/02	4.90	1,300	190		3.3 ¹	330	5.6	61	51
	08/20/02	5.02	580	120	ND<5000 ²	ND<5.0	160	1.7	34	13
	01/10/03	3.78	800	85	ND<5000 ²	ND<20	240	2.5	46	28
	04/14/03	4.11	850	120		ND<10	220	2.7	47	26
	07/14/03	4.75	780	170		ND<20	220	1.4	44	23
	10/14/03	5.25	420	1105,6	ND<250	ND<5.0	120	0.95	31	8.2
	01/13/04	4.07	120 ⁴	69^{6}	ND<250	ND<10	30	0.52	8.1	4.7
	04/15/04	4.70	660 ⁴	120 ⁶	ND<250	ND<25	200	2.2	39	24
	07/15/04	5.09	500 ⁴	92 ^{5; 6}	ND<250	ND<5.0	130	1.3	35	15
	10/18/04		350 ⁴	98 ^{5, 6}	ND<250	ND<5.0	.76	0.68	22	4.9

Table 2 Historical Groundwater Analyses, Omega Termite, 807 75th Ave., Oakland, CA

Sample	Sample	Water	TPH-g	TPH-d	TPHmo	MTBE	Benzene	Toluene	Ethyl	Xylenes
ID	Collection	depth	_		į				benzene	
	Date	•	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L i	μg/L	μg/L
TW-5	10/10/00		5,800	2,900	ND<250	ND<50	650	60	190	230
1,, 0	02/07/01		720	650	450	ND<5.0	6.0	4.5	3.2	4.5
	05/25/01		370	420	ND<250	ND<5.0	13.0	4.1	1.6	1.3
	09/19/01	6.59	15,000	2,700,000	1,100,000	530	29	2.7	14	240
	02/06/02		280	55,000	18,000	ND<5.0	2.3	0.74	ND<0.5	0.70
	05/17/02	6.56	480	41,000		ND<5.0/<5.0 ¹	1.6	1.1	0.8	ND<0.5
	08/20/02	6.62	240	21,000	ND<5000 ²	ND<5.0	8.0	1.2	1.1	0.54
	01/10/03	4.66	ND<50	1,300	ND<5000 ²	ND<5.0	5.4	0.58	ND<0.5	1.10
	4/14/2003	5.30	160	2,300		ND<5.0	18	5.7	5.9	16
	7/14/2003	5.84	100	16,000		ND<5.0	1.2	0.77	0.63	1.2
	10/14/03	6.08	1207	10,000 ⁷	4,600	ND<5.0	1.6	1.6	ND<0.5	1.2
	01/13/04	4.83	110^{4}	2,100	1,400	ND<5.0	8.4	1.2	ND<0.5	3.9
	04/15/04	5.64	170 ⁴	2,200	1,100	ND<5.0	2.5	1.2	ND<0.5	5.1
	07/15/04	5.89	814	3,000	1,600	ND<5.0	5	1.3	0.85	4.1
	10/18/04	5.89	230 ⁴	3,700	1,600	ND<5.0	0.54	3.4	ND<0.5	0.93

Notes

mg/L micrograms per liter (parts per billion)

--- not sampled

ND not detected

TPH-g total petroleum hydrocarbons as gasoline

TPH-d total petroleum hydrocarbons as diesel

TPH-mo total petroleum hydrocarbons as motor oil

- 1 MTBE concentrations by methods 8021B/8260B
- 2 analysis for total oil and grease by method 5520
- 3 fuel oil
- 4 unmodified or weakly modified gasoline is significant
- 5 diesel range compounds are significant; no recognizable pattern
- 6 gasoline range compounds are significant
- 7 lighter than water immiscible sheen/product is present
- 8 unmodified or weakly modified diesel is significant

APPENDIX A

Groundwater Monitoring Well Field Sampling Forms

Monitoring Well Number: MW-1

Project Name:	Omega Termite	Date of Sampling: 10/18/2004
Job Number:	3190	Name of Sampler: AN
Project Address:	807 75th Avenue Oakland	

WELL BONDORK	SWITTER STATE OF THE SWITTER STATE OF THE SWITTER SWIT	· 建原理的特色。	
Well Casing Diameter (2"/4"/6")	2		
Wellhead Condition	ОК	▼	
Elevation of Top of Casing (feet above msl)	5.00		
Depth of Well	20.00		
Depth to Water (from top of casing)	5.24		
Water Elevation (feet above msl)	-0.24		
Well Volumes Purged	3		
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.1		
Actual Volume Purged (gallons)	8.0		
Appearance of Purge Water	clears at 4.5 gallons		
Free Product Present	No Thickness (ft):	NA	

ber of Sample	es/Container S	Size	<u> </u>	2 - 40ml VOAs	, 1 L Amber		
Time	Voi Removed (gal)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
	2	19.56	6.38	140	5.7	-84	
	4	19.63	6.44	140	2.6	-85	
	6	19.69	6.47	140	1.6	-91	
	8	19.68	6.48	140	1.4	-93	
			",				

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Initially dark with strong hydrocarbon odors	
Light sheen noted in samples	

Monitoring Well Number:

MW-2

Project Name:	Omega Termite	Date of Sampling: 10/18/2004
Job Number:	3190	Name of Sampler: AN
Project Address:	807 75th Avenue Oakland	

OF THE WONITORIN	EWALITED		門山川州海	
Well Casing Diameter (2"/4"/6")	2			
Wellhead Condition	OK			
Elevation of Top of Casing (feet above msl)	5.95			
Depth of Well	20.00			
Depth to Water (from top of casing)	6.12			
Water Elevation (feet above msl)	-0.17			
Well Volumes Purged	3			
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.2			
Actual Volume Purged (gallons)	8.0			
Appearance of Purge Water	clears quickly			
Free Product Present?	No -	Thickness (ft):	NA	

ber of San	nples/Container S	Size		2 - 40ml VOAs	, 1 L Amber		
Time	Vol Removed (gal)	Temperature (deg C)	На	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
	2	20.58	6.64	121	6.15	-122	
	4	20.43	6.63	122	5.93	-138	
	6	20.37	6.62	121	5.24	-129	
	7	20.36	6.63	121	5.12	-128	
			~ //				

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)
Initially light grey and strong hydrocarbon odor

Monitoring Well Number: MW-3

Project Name:	Omega Termite	Date of Sampling: 10/18/2004
Job Number:	3190	Name of Sampler: AN
Project Address:	807 75th Avenue Oakland	

AL CERTIFICATION OF THE PROPERTY OF THE PROPER	CWELDAY FEET WITE	
Well Casing Diameter (2"/4"/6")	2	
Wellhead Condition	ОК	_
Elevation of Top of Casing (feet above msl)	4.66	
Depth of Well	20.00	
Depth to Water (from top of casing) 4.85		
Water Elevation (feet above msl) -0.19		
Well Volumes Purged	3	
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.3	
Actual Volume Purged (gallons)	8.0	
Appearance of Purge Water	clear	
Free Product Present	No Thickness (ft): NA	

ber of San	nples/Container S	Size	:	2 - 40ml VOAs	, 1 L Amber		· · · · · · · · · · · · · · · · · · ·
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
	2	19.67	6.59	162	5.99	-37	
	4	19.64	6.57	164	6.41	-32	
	6	19.36	6.62	164	5.96	-52	
	8	19.23	6.63	159	5.83	-63	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Shows up clear and with slight HC odor			

Monitoring Well Number:

MW-4

Project Name:	Omega Termite	Date of Sampling: 10/18/2004
Job Number:	3190	Name of Sampler: AN
Project Address:	807 75th Avenue Oakland	

THE PROPERTY OF THE PROPERTY O	caware biling	ACAMANIMATELA	
Well Casing Diameter (2"/4"/6")		2	
Wellhead Condition	ОК		
Elevation of Top of Casing (feet above msl)	4.59		
Depth of Well	20.00		
Depth to Water (from top of casing)	4.86		
Water Elevation (feet above msl)	-0.27		
Well Volumes Purged	3		
Calculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.3		
Actual Volume Purged (gallons)	8.0		
Appearance of Purge Water	clear		
Free Product Present	? No	Thickness (ft):	NA

per of San	nples/Container S	SIZE	·	2 - 40ml VOAs	, I L Amber	· · · · · · · · · · · · · · · · · · ·	
Time	Vol Removed (gal)	Temperature (deg C)	pН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comment
	2	19.42	6.85	177	5.93	186	-
	4	19.89	6.69	174	4.82	322	
	6	19.69	6.56	172	6.48	153	
	8	19.42	6.53	180	2.62	119	,
		ļ					

	COMMENTS (i.e., sample odor, well recharge time & percent, etc.)				
clear, no hydrocar	bon odor			 	

Monitoring Well Number:

TW-5

Project Name:	Omega Termite	Date of Sampling: 10/18/2004
Job Number:	3190	Name of Sampler: AN
Project Address:	807 75th Avenue Oakland	

THE MONTORIN	ICMIZE CBAIA FROM THE PARTY OF			
Well Casing Diameter (2"/4"/6")	4			
Wellhead Condition	OK 🔻			
Elevation of Top of Casing (feet above msl)				
Depth of Well	10.00			
Depth to Water (from top of casing)	5.95			
Water Elevation (feet above msl)				
Well Volumes Purged	3			
Caculated Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7. 9			
Actual Volume Purged (gallons)	8.0			
Appearance of Purge Water	clears quickly			
Free Product Present	? No Thickness (ft): NA			

	11111111111111111111111111111111111111		(O) E) VID) VI	MERISAME!	HS III III		
lumber of San	nples/Container S	Size		2 - 40ml VOA	s, 1 L Amber		
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
	2	21.82	6.68	123	7.42	-78	
	4	21,91	6.67	126	2.33	-79	
	6	21.92	6.67	127	1.65	-78	
	8	21.86	6.72	122	2.87	-66	——————————————————————————————————————
						-	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Initially light grey with strong hydrocarbon odors, clears quickly	

APPENDIX B

Sample Analytical Data and Chain of Custody Documentation

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

All Environmental, Inc.	Client Project ID: #3190; Omega	Date Sampled: 10/18/04
2500 Camino Diablo, Ste. #200		Date Received: 10/18/04
W7-1 Carata CA 04507	Client Contact: Robert Flory	Date Extracted: 10/19/04
Walnut Creek, CA 94597	Client P.O.:	Date Analyzed: 10/19/04

		ine Rang	e (C6-C12)				th BTEX and I			
Extraction m	ethod: SW5030B			<u> </u>	methods: SW80211				Order: 0	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1	w	170,a	ND	33	0.75	1.7	3.5	1	110
002A	MW-2	w	2400,a	ND<10	8.6	8.9	68	72	I	100
003A	MW-3	w	670,a	ND	45	1.2	47	28	1	109
004A	MW-4	w	350,a	ND	76	0.68	22	4.9	1	104
005A	TW-5	w	230,a,m	ND	0.54	3.4	ND	0.93	1	108
			·							
										<u> </u>
<u> </u>		-				,				
-										+
				İ						
						-				
										
	Limit for DF =1; not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/]
	e reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/K

above the reporting limit	S	NA	NA	NA	NA.	NA NA	NA NA	l	mg
* water and vapor samples an	d all TCI	P & SPLP extrac	ets are reported in u	g/L, soil/sludg	e/solid samples ir	n mg/kg, wipe sa	mples in μg/wip	e,	

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

product/oil/non-aqueous liquid samples in mg/L.

Angela Rydelius, Lab Manager

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

All Environmental, Inc.	Client Project ID: #3190; Omega	Date Sampled: 10/18/04
2500 Camino Diablo, Ste. #200		Date Received: 10/18/04
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted: 10/18/04
Walnut Creek, CA 94397	Client P.O.:	Date Analyzed: 10/18/04-10/19/04

		Client P.O.	<u>. </u>	Date Analyzed:	10/18/04-10/1	19/04
Extraction method: SW		3) and Oil (C18+) Range Extractable Hyd Analytical methods: SW8015	rocarbons as Diesel and Moto		rder: 0410245
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0410245-001B	MW-1	w	510,c	290	1	84.0
0410245-002B	MW-2	w	910,d,b	ND	1	89.0
0410245-003B	MW-3	w	270,d,b	ND	1	92.0
0410245-004B	MW-4	w	98,d,b	ND	1	88.0
0410245-005B	TW-5	w	3700,a	1600	1	97.0
			- 10 Miles 10 Miles			
	, p. 1 — 10,000 — 1					
_						
	imit for DF =1;	W	50	250	ı	ıg/L
ND means n	ot detected at or	S	NA NA	NA	m	1g/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / STLP / TCLP extracts are reported in µg/L.

NA

mg/Kg

NA

above the reporting limit

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (automatic transmission fluid); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

NONE

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone : 925-798-1620 Fax : 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0410245

EPA Method: SW8021	B/8015Cm E	xtraction:	SW5030	3	Batch	ID: 13584	S	piked Sampl	e ID: 04102	235-001B
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Law	High
TPH(btex) ^f	ND	60	92.4	100	8.32	94.9	96.7	1.88	70	130
MTBE	ND	10	98.4	92.3	6.38	101	100	0.294	70	130
Benzene	ND	10	102	102	0	99.5	101	1.15	70	130
Toluene	ND	10	96.9	98.1	1.28	97	96.5	0.534	70	130
Ethylbenzene	ND	10	98.4	102	3.24	96.8	99.6	2.90	70	130
Xylenes	ND	30	85.3	90.3	5.69	85	86	1.17	70	130
%SS:	101	10	111	104	5.67	106	104	1.54	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0410245

	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) ^E	ND	60	97.5	98.3	0.853	95.7	98.6	2.94	70	130
мтве	ND	10	105	106	0.262	104	106	1.71	70	130
Benzene	ND	10	101	100	0.294	102	99	2.61	70	130
Toluene	ND	10	95.1	96.5	1.47	95.8	94.4	1.56	70	130
Ethylbenzene	ND	10	99.9	99.1	0.759	99.2	98.3	0.882	70	130
Xylenes	ND	30	86	86	0	85.7	85.7	0	70	130
%SS:	107	10	103	102	1.55	107	103	3.82	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0410245

EPA Method: SW8015C	E	xtraction:	SW35100	2	Batch	ID: 13588	s	Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)			
Analyte	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High			
TPH(d)	N/A	7500	N/A	N/A	N/A	92.4	101	8.83	70	130			
%SS:	N/A	2500	N/A	N/A	N/A	90	94	5.14	70	130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

QA/QC Officer

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

CHAIN-OF-CUSTODY RECORD

1 of 1

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0410245

ClientID: AEL

Report to:

Robert Flory

TEL:

PO:

(925) 283-6000

FAX:

(925) 283-6121 ProjectNo: #3190; Omega

Walnut Creek, CA 94597

2500 Camino Diablo, Ste. #200

All Environmental, Inc.

Bill to:

Requested TAT:

Date Received:

5 days

Diane

All Environmental, Inc.

2500 Camino Diablo, Ste. #200

Date Printed:

10/18/04

Walnut Creek, CA 94597

10/18/04

				ſ				-	-	Req	uest	ed Test	s (See I	egend b	elow)					
Sample ID	ClientSampiD	Matrix	Collection Date	Hold	1	2	3	4	5		6	7	8	9	10	11	12	13	14	15
	•	÷														,	,			
0410245-001	MW-1	Water	10/18/04		Α	В						<u> </u>	ļ	<u> </u>			ļ <u>.</u>	-		+
0410245-002	MW-2	Water	10/18/04		Α	В								<u> </u>			ļ	<u> </u>		+
0410245-003	MW-3	Water	10/18/04		Α	В								ļ	<u> </u>				<u> </u>	+
0410245-004	MW-4	Water	10/18/04		Ā	В							<u> </u>		ļ			ļ	 	
0410245-005	TW-5	Water	10/18/04		A	В		l						<u> </u>	<u> </u>		<u> </u>		<u> </u>	

Test Legend:

1	G-MBTEX_W
6	
11	

2	TPH(DMO)_W
7	
12	

3	
8	
13	

4	
9	
14	

5	
10	
15	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

04145

CHAIN OF CUSTODY RECORD **AEI Consultants** 2500 Camino Diablo, Suite 100 TURN AROUND TIME Walnut Creek, CA 9459 RUSH 24 HR 48 HR 72 HR 5 DAY EDF Required? Coelt (Normal) Telephone: (925) 944-2899 Fax: (925) 944-2895 Write On (DW) No No Comments Analysis Request Other Bill To: Report To: Robert Flory **AEI Consultants** Company: AEl Consultants Total Petroleum Oil & Grease (5520 E&F/B&F) 2500 Camino Diablo, Suite 100 8015)/MTBE TPH Multi-range diesel/motor oil (8015) PAH's / PNA's by EPA 625 / 8270 / 8310 Lead (7240/7421/239.2/6010) Toatal lead E-Mail: rflory@aeiconsultants.com Walnut Creek, CA 94597 Total Petroleum Hydrocarbons (418.1) Fax: (925) 944-2895 Tele: (925) 944-2899 ext. 122 BTEX ONLY (By EPA 602 / 8020) Project Name: Omega EPA 8010 - basic list (by 8260) Project #: 3190 BTEX & TPH as Gas (602/8020 + EPA 608 / 8010 PCB's ONLY Project Location: 807 75th Street, Oakland, CA TPH multi-range EPA 8015 EPA 601 / 8010 (basic list) Sampler Signature: EPA 624 / 8240 / 8260 METHOD MATRIX SÁMPLING Type Containers PRESERVED # Containers CAM-17 Metals EPA 625 / 8270 LUFT 5 Metals SAMPLE ID OCATION Sludge (Field Point Name) Water Other HNO3 Time Date Other HCI Soil RCI Ĭce Ą; X X MW-1X X MW-2 U X $\bar{\mathbf{x}}$ MW-3 11 XX MW-4 $\mathbf{X} \mid \mathbf{X}$ TW-5 Time: Received By: Relinquished By: Date: voas/ 0&c METALS OTHER 6:3 **PRESERVATION** Time: Received By: Relinquished By: APPROPRIATE CONTAINERS HEAD SPACE ABSENT DECHLORINATED IN LAB PERSERVED IN LAB Received By: Time: Relinquished By: Date: