

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-070

www.CRAworld.com

(510) 420-0700 Fax: (510) 420-9170

TRANSMITTAL

· · · · · · · · · · · · · · · · · · ·				IKA	ANS	MIII/	AL		
DATE:	June 26	5, 2009			REFE	RENCE NO).:	060119	
					Proj	ЕСТ Nамі	E:		368) Harrison Street, Oakland
To:	Jerry V	Vickham	L						
	-		ıty Health Ca	re Servi	ces Àø	encv	_		RECEIVED
			ay Parkway, S			jeriej			9:23 am, Jun 30, 2009
			ornia 94502-6				_		Alameda County
	Manie	ua, Cam	OTTHA 94502-0	3377			-		Environmental Health
			·						
Please find	l enclose	d:	Draft Originals Prints			Final Other			
Sent via:			Mail Overnight C	ourier		Same Day Other	•		d Alameda County FTP
QUAN	TITY	<u> </u>				DESCR	RIPTI	ION	
1		Subsui	face Investig	ation Re	eport				
									
	equested (our Use			For R	Review	and Comm	nent		
COMMEN If you hav		iestions	regarding the	e conten	its of tl	nis docum	ient, p	olease call	l Peter Schaefer at
(510) 420-3			<u> </u>				4		
Copy to:			own, Shell O Burge, 490 G			Suite 100,	Oakl		evenue, Carson, CA 90810 94610
Complete	d by:!	Peter Scl	naefer			Signed:	1)	yu-	July
Filing: C	Correspo	ndence F	ile				- 1		\mathcal{O}

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Denis L. Brown Shell Oil Products US

HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.1.brown@shell.com

Subject:

Former Shell Service Station

2350 (2368) Harrison Street

Oakland, California SAP No. 173318 Incident No. 97743969

Fuel Leak Case No. RO0000505

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

As always, please feel free to contact me directly at (707) 865-0251 with any questions or concerns.

Sincerely,

Denis L. Brown Project Manager

SUBSURFACE INVESTIGATION REPORT

FORMER SHELL SERVICE STATION 2350 (2368) HARRISON STREET OAKLAND, CALIFORNIA

SAP CODE

173318

INCIDENT NO.

97743969

AGENCY NO.

RO0000505

JUNE 26, 2009 REF. NO. 060119 (8) This report is printed on recycled paper. Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

TABLE OF CONTENTS

		PAGE
1.0	INTRO	DUCTION1
2.0	EXECU	TIVE SUMMARY2
3.0	SOIL BO	ORINGS
	3.1	PERMIT3
	3.2	FIELD DATES3
	3.3	DRILLING COMPANY3
	3.4	PERSONNEL PRESENT3
	3.5	DRILLING METHOD
	3.6	NUMBER OF BORINGS3
	3.7	BORING DEPTHS3
	3.8	GROUNDWATER DEPTH4
	3.9	WASTE DISPOSAL4
4.0	HYDRO	DPUNCH BORINGS5
	4.1	PERMIT5
	4.2	FIELD DATES5
	4.3	DRILLING COMPANY5
	4.4	PERSONNEL PRESENT5
	4.5	DRILLING METHOD5
	4.6	NUMBER OF BORINGS5
	4.7	BORING DEPTHS6
	4.8	GROUNDWATER DEPTH6
	4.9	WASTE DISPOSAL6
5.0	SOIL V	APOR PROBE INSTALLATION AND SAMPLING7
	5.1	PERMIT7
	5.2	FIELD DATES7
	5.3	DRILING COMPANY7
	5.4	PERSONNEL PRESENT7
	5.5	DRILLING METHOD7
	5.6	NUMBER OF PROBES7
	5.7	VAPOR POINT MATERIALS7
	5.8	SCREENED INTERVALS8
	5.9	SOIL VAPOR SAMPLING8
	5.10	WASTE DISPOSAL8
6.0	FINDI	NGS9
	6.1	SOIL9
	6.2	GROUNDWATER9
	6.3	SOIL VAPOR 9

7.0	CONCLUSIONS	10
8.0	RECOMMENDATIONS	11

LIST OF FIGURES (Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 SITE PLAN

FIGURE 3 SOIL CONCENTRATIONS MAP

FIGURE 4 GRAB GROUNDWATER CONCENTRATIONS MAP

LIST OF TABLES (Following Text)

TABLE 1 HISTORICAL SOIL ANALYTICAL DATA

TABLE 2 HISTORICAL SOIL ANALYTICAL DATA – VOCs AND SVOCs

TABLE 3 GRAB GROUNDWATER ANALYTICAL DATA

LIST OF APPENDICES

APPENDIX A SITE HISTORY

APPENDIX B PERMIT

APPENDIX C BORING LOGS

APPENDIX D CERTIFIED ANALYTICAL REPORTS

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to document the recent subsurface investigation at this site. The purpose of the investigation was to further assess the horizontal and vertical extent of petroleum hydrocarbons in soil at the location of the former waste oil tank and adjacent to the former hydraulic lifts, to assess the horizontal extent of petroleum hydrocarbons in groundwater down gradient of the site, and to assess the potential for soil gas migration to indoor air. CRA followed the scope of work presented in CRA's November 12, 2008 work plan, which was approved by Alameda County Health Care Services Agency (ACHCSA) in their December 5, 2008 letter.

Due to interference with underground utilities, one of the proposed soil borings (B-5) could not be safely installed. In addition, due to ongoing access agreement negotiations with the City of Oakland for the Oakland Senior Center property, two of the proposed hydropunch borings (HP-3 and HP-4) could not be drilled. CRA sampled soil vapor probes SVP-1 through SVP-3 on May 28, 2009, and these results will be provided under separate cover.

The subject property is a former Shell service station located on the southern corner of the Harrison Street and Bay Place intersection in Oakland, California (Figure 1). The former station, whose address was 2368 Harrison Street, layout included underground fuel storage tanks (USTs), a waste oil tank, three dispenser islands, and a station building (Figure 2). The site is currently occupied by a 7-Eleven Store, whose address is 2350 Harrison Street, and the area surrounding the station is predominantly a mix of commercial and residential use.

A summary of previous work performed at the site and additional background information is contained in Appendix A.

2.0 EXECUTIVE SUMMARY

- Two hydropunch borings (HP-1 and HP-2) were drilled to collect groundwater grab samples down gradient of the site. Proposed borings HP-3 and HP-4 could not be drilled due to ongoing access agreement negotiations with the City of Oakland for the Oakland Senior Center property.
- Three soil borings (B-1, B-2, and B-3) were drilled to collect shallow soil samples in the area of the former waste oil tank.
- One soil boring (B-4) was drilled to collect shallow soil samples in the area adjacent to the former hydraulic lifts. Proposed boring B-5 could not be safely drilled due to interference with underground utilities at the proposed location.
- Three soil vapor probes (SVP-1 through SVP-3) were installed. CRS sampled soil vapor on May 28, 2009, and the results will be provided under separate cover.
- No ethylbenzene, toluene, xylenes, fuel oxygenates, or lead scavengers were detected in soil samples collected during this investigation. Only the TPHg (up to 920 mg/kg), TPHd (up to 700 mg/kg), and benzene (up to 2.4 mg/kg) detections exceed the ESLs.
- No BTEX or fuel oxygenates were detected in grab groundwater samples collected from the hydropunch borings. Only TPHg (up to 14,000 μ g/l) and TPHd (up to 58,000 μ g/l) exceeded the ESLs in the two samples; no other constituents of concern exceeded ESLs. O&G (up to 715,000 μ g/l) was also detected in both samples. The concentrations of TPHg, TPHd, and O&G in the grab groundwater samples are considerably higher than concentrations detected in the on-site wells. During the first quarter of 2009 on-site wells contained concentrations of TPHg up to 6,100 μ g/l, TPHd concentrations up to 1,700 μ g/l, and O&G concentrations up to 1,000 μ g/l. CRA notes that hydrocarbon concentrations in the borings increase with distance from the site. This suggests that the site is not the source and that there is or was an off-site source.

3.0 SOIL BORINGS

3.1 PERMIT

CRA obtained a drilling permit from Alameda County Public Works Agency (ACPWA). A copy is included in Appendix B.

3.2 FIELD DATES

May 19 through May 21, 2009.

3.3 DRILLING COMPANY

Gregg Drilling & Testing, Inc.

3.4 PERSONNEL PRESENT

Geologist Erin Reinhart-Koylu directed the drilling activities under the supervision of California Professional Geologist Peter Schaefer.

3.5 DRILLING METHOD

Geoprobe®.

3.6 NUMBER OF BORINGS

Four soil borings were drilled (B-1 through B-4). Proposed boring B-5 could not be safely installed due to interference with underground utilities at the proposed location.

The soil types encountered are described on the boring logs contained in Appendix C. The boring locations are shown on Figure 2.

3.7 BORING DEPTHS

16 feet below grade (fbg) with Geoprobe[®]. Each boring was then backfilled with neat grout and capped with concrete.

3.8 GROUNDWATER DEPTH

Groundwater depth was not measured in the soil borings. Saturated soils were initially encountered at 7 fbg in B-1 and at 5 fbg in B-2.

3.9 WASTE DISPOSAL

Soil and water-knife sludge generated during field activities were stored on site in 55-gallon drums, sampled, and profiled for disposal. Waste disposal confirmation documentation is pending and will be provided by CRA upon request.

4.0 <u>HYDROPUNCH BORINGS</u>

4.1 PERMIT

CRA obtained a drilling permit from ACPWA and encroachment and obstruction permits from the City of Oakland (Appendix B).

4.2 FIELD DATES

May 19 through May 20, 2009.

4.3 DRILLING COMPANY

Gregg Drilling & Testing, Inc.

4.4 PERSONNEL PRESENT

Geologist Erin Reinhart-Koylu directed the drilling activities under the supervision of California Professional Geologist Peter Schaefer.

4.5 DRILLING METHOD

Hydropunch.

4.6 NUMBER OF BORINGS

Two soil borings (HP-1 and HP-2) were drilled for grab-groundwater sampling. Proposed borings HP-3 and HP-4 could not be drilled due to ongoing access agreement negotiations with the City of Oakland for the Oakland Senior Center property.

The hydropunch screen intervals for grab groundwater samples and depth to first-encountered groundwater are shown on the boring logs contained in Appendix C. The boring locations are shown on Figure 2.

4.7 BORING DEPTHS

10 fbg.

4.8 GROUNDWATER DEPTH

Groundwater was first-encountered at 4 to 5 fbg.

4.9 WASTE DISPOSAL

Soil and water-knife sludge generated during field activities were stored on site in 55-gallon drums, sampled, and profiled for disposal. Waste disposal confirmation documentation is pending and will be provided by CRA upon request.

5.0 SOIL VAPOR PROBE INSTALLATION AND SAMPLING

5.1 PERMIT

CRA obtained a drilling permit from ACPWA (Appendix B).

5.2 FIELD DATES

May 18, May 19, and May 21, 2009.

5.3 **DRILING COMPANY**

Gregg Drilling & Testing, Inc.

5.4 PERSONNEL PRESENT

Geologist Erin Reinhart-Koylu directed the probe installation working under the supervision of California Professional Geologist Peter Schaefer.

5.5 **DRILLING METHOD**

Air-knife.

5.6 **NUMBER OF PROBES**

CRA installed three soil vapor probes (SVP-1 through SVP-3). The probe specifications and soil types encountered are described on the boring logs contained in Appendix C. The probe locations are shown on Figure 2.

5.7 <u>VAPOR POINT MATERIALS</u>

The vapor probes were constructed using $\frac{1}{4}$ -inch diameter Teflon tubing attached to 1-inch length plastic screen intervals, and $\frac{42}{12}$ Monterey sand filter pack. Probe diagrams are provided with boring logs in Appendix C.

7

5.8 SCREENED INTERVALS

4.4 to 4.5 fbg.

5.9 SOIL VAPOR SAMPLING

CRA sampled soil vapor probes SVP-1 through SVP-3 on May 28, 2009. Soil vapor sampling results will be provided under separate cover.

5.10 WASTE DISPOSAL

Soil and water-knife sludge generated during field activities were stored on site, in 55-gallon drums, sampled, and profiled for disposal. Waste disposal confirmation documentation is pending and will be provided by CRA upon request.

8

6.0 <u>FINDINGS</u>

6.1 SOIL

The soil chemical analytical data are summarized in Tables 1 and 2, and selected analytical results are presented on Figure 3. Laboratory analytical reports are presented in Appendix D.

6.2 **GROUNDWATER**

The groundwater grab sample chemical analytical data are summarized in Table 3, and total petroleum hydrocarbons as gasoline (TPHg), total petroleum hydrocarbons as diesel (TPHd), benzene, toluene, ethylbenzene, xylenes (BTEX), fuel oxygenates, and oil and grease (O&G) analytical results are presented on Figure 4. Laboratory analytical reports are presented in Appendix D.

6.3 SOIL VAPOR

As discussed above, soil vapor sampling results will be submitted to ACHCSA under separate cover.

7.0 <u>CONCLUSIONS</u>

No ethylbenzene, toluene, xylenes, fuel oxygenates, or lead scavengers were detected in soil samples collected during this investigation. Only the TPHg (up to 920 milligrams per kilogram [mg/kg]), TPHd (up to 700 mg/kg), and benzene (up to 2.4 mg/kg) detections exceed the San Francisco Bay Regional Water Quality Control Board's (RWQCB's) environmental screening levels (ESLs) for shallow soil where groundwater is not a source of drinking water.

Four of the samples from borings B-1 through B-3, drilled in the area of the former waste oil tank, contained n-propylbenzene (up to 2.5 mg/kg in B-3-10'). No other solvents, including 1,1,2,2-tetrachloroethane, which was detected in soil samples from well boring S-2, were detected in soil samples from these borings. This suggests the former waste oil tank is not the source of the 1,1,2,2-tetrachloroethane previously detected.

Soil samples from boring B-4, in the area adjacent to the former hydraulic lifts, contained TPHg concentrations which exceed ESLs (up to 200 mg/kg) and also contained total petroleum hydrocarbons as motor oil (TPHmo), and O&G. These concentrations are lower than those found in other borings at the site, indicating that the former hydraulic lifts are not a likely source of other TPH and O&G detections at the site.

No BTEX or fuel oxygenates were detected in the two shallow (4 to 10 fbg) grab groundwater samples collected from the hydropunch borings. Only TPHg (up to 14,000 micrograms per liter [$\mu g/l$]) and TPHd (up to 58,000 $\mu g/l$) exceeded the ESLs in the two samples; no other constituents of concern exceeded ESLs. O&G (up to 715,000 $\mu g/l$) was also detected in both samples. The RWQCB guidance¹ advises that "TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g. BTEX, polynuclear aromatic hydrocarbons, oxidizers, etc.)." In this case, BTEX would be the appropriate related chemicals, and no BTEX concentrations were detected in shallow groundwater. The concentrations of TPHg, TPHd, and O&G in the grab groundwater samples are also considerably higher than concentrations detected in the on-site wells and were highest in HP-2, which was the farthest from the site. During the first quarter of 2009 on-site wells contained up to 6,100 $\mu g/l$ TPHg, up to 1,700 $\mu g/l$ TPHd, and up to 1,000 $\mu g/l$ O&G. This suggests that the site is not the source and that there is or was an off-site source.

Screening for Environmental Concerns at Site With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, Interim Final – November 2007 [Revised May 2008]

8.0 **RECOMMENDATIONS**

Based on these results, no additional monitoring wells or soil borings are proposed as part of the former Shell site investigation, and we recommend suspending our efforts to reach an access agreement with the City of Oakland to conduct a hydropunch investigation on the Oakland Senior Center property. We anticipate providing additional recommendations with the soil vapor probe sampling results.

All of which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Peter Schaefer, CEG, CHG

Aubrey K. Cool, PG

FIGURES

Former Shell Service Station

2350 (2368) Harrison Street Oakland, California

Vicinity Map

CONESTOGA-ROVERS & ASSOCIATES

Former Shell Service Station

2350 (2368) Harrison Street Oakland, California

EXPLANATION

Monitoring well location

Water line (W)

Gas line (G)

Electrical line (E)

Unknown utility line,

HP-1 5/20/2009 11,000 36,000 ND ND 111,000 Grab groundwater sample ID and date and sample

results, in micrograms per liter.

<X = Not reported at detection limit X

ND = Not detected

Parking Lot

Storm drain (STM)

Sanitary sewer line (SAN)

Telecommunications line (T)

indicated by private utility locator

TPHg TPHd BTEX Oxys (5) O&G

B-1

Soil boring location

SVP-1 Soil vapor probe location

FIGURE

Sample Date ND ND HP-1 5/20/2009 11,000 36,000 111,000 Rouse Tire Rouse Tire Offices

Former Shell Station

2368 Harrison St.

Former USTs

SVP-3

Former Tire/Wheel Hoist

B-3

SVP-2

--

B-2

SVP-1

Former Waste Oil UST

7-11 Store Building

2350 Harrison St.

Beck BMW

/ -∳-S-1

S-6

Former Dispenser Island

Sidewalk

Former Drive-on Hoist

Former Station Building

Lamp Pos

● S-5

Fenced Enclosure

Sample Sample ТРНд TPHd BTEX Oxys (5) 0&G Date HP-2 5/20/2009 14,000 58,000 ND ND 715,000

HP-2 ∕

Scale (ft)

Former Hotel

(Apt. Bldg.)

O&G

TPHd BTEX Oxys (5)

TPHg

HP-1 **◎**/

Underground (Storm D'ain (A

HARUSON STREET

TABLES

TABLE 1

HISTORICAL SOIL ANALYTICAL DATA FORMER SHELL SERVICE STATION 2350 (2368) HARRISON STREET, OAKLAND, CALIFORNIA

Sample ID	Date	Depth (fbg)	0&G	трнд	ТРНа	ТРНто	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Oxygenates	1,2- DCA	EDB __	Cd	Cr	Pb	Ni	Zn	PCBs
S-1-5.5	6/5/2008	5.5	<10	5.4	21 a	26	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	< 0.0050	<0.0050	NA	NA	NA	NA	NA	NA
S-1-7.5	6/5/2008	<i>7</i> .5	130	860	120 a	99	<0.0050	<0.0050	<0.0050	0.0086	ND	<0.0050	<0.0050	NA	NA	NA	NA	NA	NA
S-2-5.5	6/5/2008	5.5	<10	<0.50	13 a	<25	<0.0050	<0.0050	<0.0050	<0.0050	ND	<0.0050	<0.0050	<0.500	28.9	5.40	27.2	21.7	< 0.050
S-2-7.0	6/5/2008	7	26	2,700	270 a	<25	< 0.50	< 0.50	< 0.50	< 0.50	ND	< 0.50	< 0.50	< 0.500	20.2	4.80	19.8	25.1	< 0.050
S-2-10.0	6/5/2008	10	<10	1,900	150 a	<25	<1.2	<1.2	<1.2	<1.2	ND	<1.2	<1.2	< 0.500	33.0	10.8	51.5	38.6	< 0.050
S-2-15.5	6/5/2008	15.5	22	18	14 a	<25	< 0.0050	< 0.0050	0.0067	0.0063	ND	< 0.0050	< 0.0050	< 0.500	28.2	5.98	30.1	25.7	< 0.050
	., .,																		
S-3-5	6/4/2008	- 5	<10	5.9	22 a	<25	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	< 0.0050	<0.0050	NA	NA	NA	NA	NA	NA
S-3-10	6/4/2008	10	<10	< 0.50	11 a	<25	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	< 0.0050	< 0.0050	NA	NA	NA	NA	NA	NA
	, ,																		
S-4-5	6/4/2008	5	600	6.8	630 a	660	0.012	<0.0050	< 0.0050	0.012	ND	< 0.0050	< 0.0050	NA	NA	NA	NA	NA	NA
S-4-10	6/4/2008	10	28	< 0.50	41 a	54	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	< 0.0050	< 0.0050	NA	NA	NA	NA	NA	NA
•																			
S-5-6.0	6/5/2008	6	8,600	2,300	22,000 a	23,000	0.016	0.0063	0.0082	0.0485	ND	< 0.0050	< 0.0050	NA	NA	NA	NA	NA	NA
S-5-9.0	6/5/2008	9	<10	< 0.50	42 a	49	< 0.0050	< 0.0050	0.014	0.0094	ND	< 0.0050	< 0.0050	NA	NA	NA	NA	NA	NA
S-5-12.5	6/5/2008	12.5	<10	< 0.50	8.7 a	<25	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	< 0.0050	< 0.0050	NA	NA	NA	NA	NA	NA
S-5-15.5	6/5/2008	15.5	<10	< 0.50	25 a	37	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	< 0.0050	< 0.0050	NA	NA	NA	NA	NA	NA
		3																	
S-6-6.0	6/5/2008	6	140	9.2	53 a	85	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	< 0.0050	< 0.0050	NA	NA	NA	NA	NA	NA
S-6-7.5	6/5/2008	7.5	24	12	39 a	44	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	< 0.0050	< 0.0050	NA	NA	NA	NA	NA	NA
B-1-5.5'	5/20/2009	5.5	3,000	100	700 a	NA	< 0.50	< 0.50	< 0.50	< 0.50	ND	< 0.50	<0.50	NA	NA	NA	NA	NA	NA
B-1-7'	5/20/2009	7	290	230	510 a	NA	<10	<10	<10	<10	ND	<10	<10	NA	NA	NA	NA	NΑ	NA
B-1-10'	5/20/2009	10	<10	170	.81 a	NA	< 0.50	< 0.50	< 0.50	< 0.50	ND	< 0.50	< 0.50	NA	NA	NA	NA	. NA	NA
B-1-13'	5/20/2009	13	11	160	89 a	NA	< 0.50	< 0.50	< 0.50	< 0.50	ND	< 0.50	< 0.50	NA	NA	NA	NA	NA	NA
B-1-15'	5/20/2009	15	<10	180	100 a	NA	< 0.50	<0.50	< 0.50	< 0.50	ND	< 0.50	< 0.50	NA	NA	NA	NA	NA	NA
B-2-5.5'	5/21/2009	5.5	40	64	<5.0	NA	1.5	< 0.50	< 0.50	< 0.50	ND	< 0.50	<0.50	NA	NA	NA	NA	NA	NA
B-2-7'	5/21/2009	7	600	2.8	190 a	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	< 0.0050	< 0.0050	NA	NA	NA	NA	NA	NA
B-2-10'	5/21/2009	10	<10	870	39 a	NA	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<2.0	NA	NA	NA	NA	NA	NA

CRA 060119 (8)

TABLE 1

HISTORICAL SOIL ANALYTICAL DATA FORMER SHELL SERVICE STATION 2350 (2368) HARRISON STREET, OAKLAND, CALIFORNIA

Sample ID	Date	Depth (fbg)	O&G	ТРНg	ТРНА	ТРНто	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Oxygenates	1,2- DCA	EDB	Cd	Cr	Pb	Ni	Zn	PCBs
B-2-15'	5/21/2009	15	24	200	5.2 a.	NA	<0.50	<0.50	<0.50	<0.50	ND	<0.50	<0.50	NA	NA	NA	NA	NA	NA
B-3-5.5'	5/21/2009	5.5	38:	56	6.4 a	NA	2.4	<0.50	0.87	<0.50	ND	<0.50	<0.50	NA	NA	NA	NA	NA	NA
B-3-10'	5/21/2009	10	230	920	44 a	NA	<2.5	<2.5	<2.5	<2.5	ND	<2.5	<2.5	NA	NA	NA	NA	NA	NA
B-3-15'	5/21/2009	15	<10	2.1	<5.0	NA	<0.0050	< 0.0050	<0.0050	<0.0050	ND	<0.0050	<0.0050	NA	NA	NA	NA	NA	NA
B-4-5.5'	5/20/2009	5.5	190	NA	200 a	230	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B-4-10'	5/20/2009	10	68	ΝA	170 a	140	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B-4-15'	5/20/2009	15	<10	NA	10	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Shallow S	soil (≤10 fbg)	ESL b:		180	180		0.27	9.3	4.7	11	Varies	0.48	0.044	7.4	-	<i>7</i> 50	150	600	0.74
10.55 (10.	(>10 fbg) ES	2.00	8 - - 1	180	180	-	2.0	9.3	4.7	11	Varies	1.8	1.0.	39	5,000	<i>7</i> 50	260	5,000	6.3

Notes:

All results in miligrams per kilograms (mg/kg) unless otherwise indicated.

fbg = Feet below grade

O&G = Oil and grease as hexane extractable material analyzed by EPA Method 1664 A (Modified)

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B

TPHd = Total petroleum hydrocarbons as diesel analyzed by EPA Method 8015B

TPHmo = Total petroleum hydrocarbons as motor oil analyzed by EPA Method 8015B Modified

Benzene, toluene, ethylbenzene, and xylenes analyzed by EPA Method 8260B.

Oxygenates = Methyl tertiary-butyl ether, di-isopropyl ether, ethyl tertiary-butyl ether, tertiary-amyl methyl ether, and tertiary-butanol analyzed by EPA Method 8260B

1,2-DCA = 1,2-Dichloroethane analyzed by EPA Method 8260B

EDB = 1,2-Dibromoethane analyzed by EPA Method 8260B

TRPH - Total recoverable petroleum hydrocabons analyzed by EPA Method 418.1M

Cd = Cadmium analyzed by EPA Method 6010B

Cr = Chromium (total) analyzed by EPA Method 6010B

Pb = Lead analyzed by EPA Method 6010B

Ni = Nickel analyzed by EPA Method 6010B

Zn = Zinc analyzed by EPA Method 6010B

PCBs = Polychlorinated biphenyls analyzed by EPA Method 8082; see laboratory analytical report for a complete list of specific constituents

< x =Not detected at reporting limit x

NA = Not analyzed

TABLE 1

HISTORICAL SOIL ANALYTICAL DATA FORMER SHELL SERVICE STATION 2350 (2368) HARRISON STREET, OAKLAND, CALIFORNIA

Sample Depth Ethyl- Total 1,2ID Date (fbg) O&G TPHg TPHd TPHmo Benzene Toluene benzene Xylenes Oxygenates DCA EDB Cd Cr Pb Ni Zn PCBs

ND = Not detected; see laboratory analytical report for constituent-specific reporting limits

ESL = Environmental screening level

-- = No applicable environmental screening level

a = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based on the specified standard.

b = San Francisco Bay Regional Water Quality Control Board (RWQCB) commercial land use ESL for soil where groundwater is not a current or potential source of drinking water (Tables B and D of Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, Interim Final - November 2007 [Revised May 2008]).

Data in BOLD equals or exceeds applicable RWQCB ESL.

TABLE 2

HISTORICAL SOIL ANALYTICAL DATA - VOCS AND PAHS FORMER SHELL SERVICE STATION 2350 (2368) HARRISON STREET, OAKLAND, CALIFORNIA

Sample ID	Date	Depth (fbg)	Acetone	n-Butyl- benzene	sec-Butyl- benzene	1,2 - Dichloro- propane	Isopropyl- benzene	n-Propyl- benzene	1,1,2,2-Tetra- chloroethane	Naphthalene	1-Methyl- naphthalene	2-Methyl- naphthalene
S-2-5.5	6/5/2008	5.5	<0.12	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.020	<0.020	<0.020
S-2-7.0	6/5/2008	7.0	<12	2.7	2.3	< 0.50	2.9	1.2	18	< 0.020	1.4	0.036
S-2-10.0	6/5/2008	10.0	<31	2.5	1.9	<1.2	2.4	3.4	13	< 0.020	0.048	0.063
S-2-15.5	6/5/2008	15.5	0.13	0.044	0.032	0.026	0.039	0.041	0.22	0.20 a	0.15	0.17
B-1-5.5'	5/20/2009	5.5	<12	<0.50	<0.50	<0.50	<0.50	0.68	<0.50	<5.0	NA	NA
B-1-7'	5/20/2009	7	<250	<10	<10	<10	<10	<10	<10	<100	NA	NA
B-1-10'	5/20/2009	10	<12	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0	NA	NA
B-1-13'	5/20/2009	13	<12	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0	NA	NA
B-1-15'	5/20/2009	15	<12	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<5.0	NA	NA
B-2-5.5'	5/21/2009	5.5	<12	<0.50	<0.50	<0.50	<0.50	0.57	<0.50	<5.0	NA	NA
B-2-71	5/21/2009	7	< 0.12	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050	NA	NA
B-2-10'	5/21/2009	10	< 50	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<20	NA	NA
B-2-15'	5/21/2009	15	<12	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	NA	NA
B-3-5.5'	5/21/2009	5.5	<12	<0.50	<0.50	<0.50	<0.50	0.75	<0.50	<5.0	NA	NA
B-3-10 ¹	5/21/2009		<62	<2.5	<2.5	<2.5	<2.5	2.5	<2.5	<25	NA	NA
B-3-15'	5/21/2009		<0.12	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	NA	NA
Shallow!	Soil (≤10 fbg) ESL ^b :	0.5			1.0		-1	0.6	2,8		0.25
270 1000	l (>10 fbg) ES		0.5		12	2.5			. 16	4.8		0.25

Notes:

All results in miligrams per kilograms (mg/kg) unless otherwise indicated.

TABLE 2

HISTORICAL SOIL ANALYTICAL DATA - VOCS AND PAHS FORMER SHELL SERVICE STATION 2350 (2368) HARRISON STREET, OAKLAND, CALIFORNIA

VOCs = Volatile organic compounds analyzed by EPA Method 8260B. All detected constituents tablulated; see laboratory analytical report for a complete list of specific constituents and results

PAHs = Polynuclear aromatic hydrocarbons analyzed by EPA Method 8270C. All detected constituents tablulated; see laboratory analytical report for a complete list of specific constituents and results.

fbg = Feet below grade

<x = Not detected at reporting limit x

NA = Not analyzed

ESL = Environmenal screening level

- --- = No applicable environmental screening level
- a = When analyzed by EPA Method 8260B, naphthalene was detected in this sample at 0.079 mg/kg.
- b = San Francisco Bay Regional Water Quality Control Board (RWQCB) commercial land use ESL for soil where groundwater is not a current or potential source of drinking water (Tables B and D of *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater*, California Regional Water Quality Control Board, Interim Final November 2007 [Revised May 2008]).

Data in BOLD equals or exceeds applicable RWQCB ESL.

TABLE 3

GRAB GROUNDWATER ANALYTICAL DATA FORMER SHELL SERVICE STATION 2350 (2368) HARRISON STREET, OAKLAND, CALIFORNIA

Sample ID	Date	0&G	трнд	ТРНА	Benzene	Toluene	Ethyl- benzene		МТВЕ	TBA	DIPE	ETBE	TAME
HP-1	5/20/2009	111,000	11,000	36,000	<5.0	<10	<10	<10	<10	<100	<20	<20	<20
HP-2	5/20/2009	715,000	14,000	58,000	<5.0	<10	<10	<10	<10	<100	<20	<20	<20
ESL ª:		-	210	210	46	130	43	100	1,800	18,000			3

Notes:

All results in micrograms per liter ($\mu g/l$) unless otherwise indicated.

O&G = Oil and grease as hexane extractable material analyzed by EPA Method 1664 A (Modified)

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B

TPHd = Total petroleum hydrocarbons as diesel analyzed by EPA Method 8015B

Benzene, toluene, ethylbenzene, and xylenes analyzed by EPA Method 8260B

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8260B

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

ESL = Environmental screening level

< x =Not detected at reporting limit x

-- = No applicable ESL

Data in BOLD equals or exceeds applicable RWQCB ESL

a = San Francisco Bay Regional Water Quality Control Board (RWQCB) commercial land use ESL for groundwater where groundwater is not a current or potential source of drinking water (Tables B and D of *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater*, California Regional Water Quality Control Board, Interim Final - November 2007 [Revised May 2008]).

APPENDIX A

SITE HISTORY

SITE HISTORY

March 1977 *Underground Storage Tank* (*UST*) *Removal*: According to Alameda County Health Care Services Agency (ACHCSA), Shell Oil (Shell) obtained a permit to remove four USTs with volumes of 10,000 gallons, 8,000 gallons, 5,000 gallons, and 550 gallons when they sold the property to Mr. Richard Burge. In a March 16, 2007 letter to Shell ACHCSA stated that no documentation of the UST removal was available.

November 1992 *Construction Activities*: Samples collected during light pole installation contained 3,200 milligrams per kilogram (mg/kg) lube oil and 89 mg/kg total petroleum hydrocarbons as gasoline (TPHg). Laboratory reports and a site plan are presented in GTEL Environmental Laboratories, Inc.'s (GTEL's) December 15, 1992 letter to Groundwater Technologies, Inc.

March 1993 *Soil Borings*: Samples from four soil borings contained concentrations of up to 7,900 mg/kg lube oil and 620 mg/kg TPHg. Laboratory reports are presented in GTEL's March 24, 1993 letter to Groundwater Technologies, Inc.

June 2008 Monitoring Well Installation: Conestoga-Rovers & Associates (CRA) installed six monitoring wells (S-1 through S-6) to evaluate the extent of soil and groundwater impacts at the site. Soil analytical data indicated that TPHg and total petroleum hydrocarbons as diesel (TPHd) concentrations exceeded San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) for shallow soil in borings S-1, S-2, S-4, and S-5. The TPHd chromatographic patterns did not match the diesel standard, and may represent motor oil or hydraulic oil. CRA's July 9, 2008 Subsurface Investigation Report documents these activities.

Groundwater Monitoring: Quarterly groundwater monitoring was initiated during the second quarter of 2008. Groundwater gradient and flow direction have been variable. First quarter 2009 groundwater samples from the wells contained up to 6,100 micrograms per liter (μg/l) TPHg, 1,700 μg/l TPHd, 1,000 μg/l oil and grease, 270 μg/l benzene, 69 μg/l ethylbenzene, 6.3 μg/l toluene, 6.8 μg/l xylenes, 180 μg/l tertiary-butyl alcohol (TBA), 26 μg/l diisopropyl ether (DIPE), 14 μg/l isopropylbenzene, 7.6 μg/l p-isopropyltoluene, and 14 μg/l n-propylbenzene. Since the initiation of quarterly groundwater monitoring, no total petroleum hydrocarbons as motor oil (TPHmo), lead scavengers, or methyl tertiary-butyl ether (MTBE) have been detected in any of the groundwater samples. TPHg, TPHd, benzene,

and ethylbenzene concentrations exceed the RWQCB ESLs for sites where groundwater is not a current or potential source of drinking water.

APPENDIX B

PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 04/27/2009 By jamesy

Permit Numbers: W2009-0326 to W2009-0329 Permits Valid from 04/27/2009 to 04/30/2009

City of Project Site: Oakland

Application Id:

1239313530908

Site Location: **Project Start Date:** 2350 (2368) Harrison St., Oakland, CA

04/27/2009

Completion Date: 04/30/2009

Assigned Inspector:

Contact Vicky Hamlin at (510) 670-5443 or vickyh@acpwa.org

Applicant:

Conestoga-Rovers & Associates - Erin Reinhart-

Phone: 510-420-0700

5900 Hollis St., Suite A, Emeryville, CA 94608

Phone: 510-452-1433

Property Owner:

Richard Burge

490 Grand Ave, Suite 200, Oakland, CA 94610 Denis Brown Shell Oil Products US

Phone: 707-865-0251

Client:

20945 S. Wilmington Ave, Carson, CA 90810

Phone: 510-420-3372

Cell: 510-385-0074

Contact:

Erin Reinhart-Koylu

Total Due:

Receipt Number: WR2009-0157 **Total Amount Paid:** \$1265.00 \$1265.00

Payer Name: Conestoga Rovers and Paid By: CHECK

PAID IN FULL

Associates

Works Requesting Permits:

Well Construction-Vapor Monitoring Well-Vapor Monitoring Well - 3 Wells

Driller: Gregg Drilling - Lic #: 485165 - Method: other

Work Total: \$1035.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing	Seal Depth	Max. Depth
			ld	2.00 in.	Diam.	*	
W2009-	04/27/2009	07/26/2009	SVP-1	2.00 in.	0.25 in.	3.50 ft	5.00 ft
0326							
W2009-	04/27/2009	07/26/2009	SVP-2	2.00 in.	0.25 in.	3.50 ft	5.00 ft
0327					1		
W2009-	04/27/2009	07/26/2009	SVP-3	2.00 in.	0.25 in.	3.50 ft	5.00 ft
0328							

Specific Work Permit Conditions

- 1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.
- 2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit

Alameda County Public Works Agency - Water Resources Well Permit

number and site map.

- 4. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 5. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 7. Minimum surface seal thickness is two inches of cement grout placed by tremie
- 8. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 9. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Borehole(s) for Investigation-Environmental/Monitorinig Study - 9 Boreholes

Driller: Gregg Drilling - Lic #: 485165 - Method: other

Work Total: \$230.00

Specifications

Opcomoduo					
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2009-	04/27/2009	07/26/2009	9	2.00 in.	15.00 ft
0329					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

W. G. Jan.

Alameda County Public Works Agency - Water Resources Well Permit

at the least the

- 6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

CITY OF OAKLAND . Community and Economic Development Agency 250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 1: Phone (510) 238-3443 1 Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired:

App1# CP09075

Job Site 2332 HARRISON ST

Parcel# 010 -0768-005-00

Descriptn permit to do soil/water sampling in creek areas

Filed 04/17/09

JOB SITE

- Exterior Work Category 2

Requested Starting Date 05/19/09

Estimated/Complete Date 08/19/09

Applent

/Phone# Lic# :-License Classes--

(650)328-7178

Owner Mulugeta Benyam & Paula R

ontractor

rch/engr conestoga rovers and assoc

Agent ERIN REINHART

(510)420-0700

plic Addr 5900 Hollis ST, EMERYVILLE, CA, 94608

\$548:51 TOTAL REES PAID AT FILING \$66.00 Applic \$249.00 Permit

S163.00 Process S45.41 Rec Mgmt S.00 Gen Plan S.00 Invetg

s.00 Other

\$25.10 Tech Enh

Permit Issued B

\$.00 TOTAL FEES PAID AT ISSUANCE

Date

CITY OF OAKL

CITY OF OAKLAND . Community and Economic Development Agency 250 Frank H. Ogawa Piaza 2nd Floor, Oakland, QA 94612 ▼ Phone (510) 238-3443 ▼ Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired

Appl# X0900449

Job:Site 2332 HARRISON ST

// Parcel# 010 =0768-005+00

Descr permit to drill for water sampling

Filed 04/17/09

WOLK Type EXCAVATION PRIVATE P

USA #

Util Co. Job # Util Fund #:

HOP SITE

Applent

Phone# Lic# -- License Classes-

Owner MULUGETA BENYAM & PAULA R

. (650)328÷7178

ontractor

Arch/Engr GREGG DRILLING & TESTING, INC. X

(925)313+5800:485165

Agent

ic Addr 950 HOWE RD; MARTINEZ, CA., 94553

\$419.99 TOTAL FEES PAID AT ISSUANCE

\$66.00 Applic \$300.00 Permit

\$34,77 Rec Mgmt

S.00 Process

\$.00 Invstg

s.00-Gen Plan 00 Other

\$19:22 Tech Enh

inaled By

Permit Issued B

Date

CITYOFOAKLAND

CITY OF OAKLAND . Community and Economic Development Agency

250 Frank H. Qgawa Plaza, 2nd Floor, Oakland, OA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired.

Permit No. X0900449 Parcel #: 010 -0768-005-00 Project Address: 2332 HARRISON ST Page 2 of 2

Licensed Contractors' Declaration

I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect.

Construction Lending Agency Declaration I hereby affirm under penalty of perjury that there is a construction-lending agency for the performance of the work for which this permit is issued; as provided by Section 30,97 of the Business and Professions Code: N/A under Lender implies No Lending Agency:

T.					923	Ą							33						Ż	d	ď	re	В	s	1 W				11.5	4				Ň			. 2	
ч	۲	111	76	1	850	200	-2-32 e	300	200	nys	(5) (6) (4) (5)	<u>000</u>	7	78	- C	19.45. 19.66	(7	١.		N				 36		100				17		70	#.	J.Y	2	\mathbb{Z}

Workers! Compensation Declaration

I hereby affirm under penalty of perjury one of the following declarations:

- [1] I have and will maintain a centificate of consent to self-insure for workers! compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.
- [] I have and will maintain workers; compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

EXCAVATION PERMIT

CIVIL ENGINEERING

lanning and Building TOE	CAVATE IN ST	TREETS OR OTHER SPECIFIED WORK
PAGE 2 of 2	1011	Permit valid for 90 days from date of issuance.
*		
PERMIT NUMBER X 0	9 00 4	77 X 7332 HERRISON OT.
APPROX, START DATE	APPROX. END DATE	24-HOUR EMERGENCY PHONE NUMBER (Permit not valid without 24-Hour number)
CONTRACTO 40	3165	CITY BUSINESS TAX #
ATTENTION: 1- State law requires secured an inquiry	hat the contractor/owner call U	Jonderground Service Alert (USA) two working days before excavating. This permit is not valid unless applicant has USA. The USA telephone number is 1-800-642-2444. Underground Service Alert (USA) #
construct, alter, improve, demonsta, provisions of the Contractor's Licer alleged exemption. Any violation o I, as an owner of the property, or Professions Code: The Contractor' provided that such improvements are burden of proving that he did not but I, as owner of the property, am be performed prior to sale, (3) I have	ss law Chapter 9 (commencing Section 7031.5 by any applier my employees with wages as a License Law does not apply the not intended or offered for still or improve for the purpose exempt from the sale requirement of the residence for the purpose of the purpose	aw for the following reason (Sec. 7031.5 Business and Professions Code: Any city or county which requires a permit to to its issuance, also requires the applicant for such permit to file a signed statement that he is licensed pursuant to the gwith Sec. 7000) of Division 3 of the Business and Professions Code, or that he is exempt therefrom and the basis for the cant for a permit subjects the applicant to a civil penalty of not more than \$500): cant for a permit subjects the applicant to a civil penalty of not more than \$500): can compensation, will do the work, and the structure is not intended or offered for sale (Sec. 7044, Business to an owner of property who builds or improves thereon, and who does such work himself or through his own employees, sale. If however, the building or improvement is sold within one year of completion, the owner-builder will have the se of sale). The sale of the above due to: (1) I am improving my principal place of residence or appurtenances thereto, (2) the work will the 12 months prior to completion of the work, and (4) I have not claimed exemption on this subdivision on more than two 44 Business and Professions Code: The Contractor's License Law hereon, and who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law).
		are, or a certificate of Worker's Compensation Insurance, or a certified copy thereof (Sec. 3700, Labor Code).
	C	Name
Policy #	of the work for which this D	ermit is issued, I shall not employ any person in any manner so as to become adoject to any
comply with such provisions or an granted upon the express condition perform the obligations with respet and employees, from and against a sustained or arising in the construc- permit is void 90 days from the da	that the permittee shall be resent to street maintenance. The my and all suits, claims, or action of the work performed unter of issuance unless an extension	Exemption, you should become subject to the Worker's Compensation provisions of the Labor Code, you must forthwith sked. This permit is issued pursuant to all provisions of Title 12 Chapter 12.12 of the Oakland Municipal Code. It is sponsible for all claims and liabilities arising out of work performed under the permit or arising out of permittee's failure to permittee shall, and by acceptance of the permit agrees to defend, indemnify, save and hold harmless the City, its officers permittee shall, and by acceptance of the permit agrees to defend, indemnify, save and hold harmless the City, its officers permittee shall by any person for or on account of any bodily injuries, disease or illness or damage to persons and/or property tions brought by any person for or on account of any bodily injuries, disease or illness or damage to persons and/or property tions brought or in consequence of permittee's failure to perform the obligations with respect to street maintenance. This sion is granted by the Director of the Office of Planning and Building.
I hereby affirm that I am licensed this permit and agree to its require Signature of Permittee	Agent for Contract SPECIAL PAVING DI	ETAIL HOLIDAY RESTRICTION CAMPAM & 4PM-6PM) DIVES DING
RESURFACED ISSUED BY	REQUIRED7 □ XE	8 BNO (NOV 1 JAN 1) BY ES BNO (VAM-PAIN C. T.) DATE ISSUED

CITY OF OAKLAND. • Community and Economic Development Agency 250 Frank H. Ogawa Plaza, 2nd Eloor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired,

Appl# ,0B090274

Job Site 2332 HARRISON ST

Parcel# 010 +0768-005-00

permit to block parking and trafic lanes 200ft each lane

Filed 04/17/09

Nbr of days: 2

Effective: 05/19/09

05/20/09

SHORT TERM NON-METERED

, Applent : Phone# (650)328-7178

Lic# --License Classes-

Owner MULUGETA BENYAM & PAULA R

ontractor

Arch/Engr CONESTOGA ROVERS AND ASSOC

Agent ERIN REINHART

7(510)/420-0700

pric Addr 5900 Hollts St. EMERYVILLE, CA, 94608

\$672,44 TOTAL FEES PAID AT FILING

\$66.00 Applic \$520.00 Permit \$5.00 Process \$55.67 Rec Mgmt \$5.00 Gen Plan \$5.00 Invets \$30.77 Tech Enh

\$ 00 TOTAL FEES PAID AT ISSUANCE

TY of OAKLAND

TSD Invoice #:

Community Economic Development Agency • 250 Frank H. Ogawa Plaza • Suite 4344 • Oakland, California 94612-2033

Transportation Services Division

April 14, 2009

Date:

Office (510) 238-3466 FAX (510) 238-7415 TDD (510) 839-6451

Traffic Engineering Services Analysis Fee Invoice

Date:	April 14, 2009	•	TSD Invoice #:	<u>09-0040</u>
To:	Erin Reinhart		•	
Company:	Conestoga Rovers &	Associates	•	
Address:	5900Hollis Street, Ste	. A, Emeryville, CA 94608	•	
Phone: Created/R	510-420-0700 eceived By:	Joe Watson	•	
	Location	Description of Work	Project Name / Permit #	# of Hours *
Harrisor	Street / 23rd Street	Lane Closure		1
<u> </u>				
			Total Hours	.1
ă.			TSD Service Rate	\$ 123.00
			Total Fee	\$ 123.00
* - minimu	m 1 hour service			

(FOR O	TYJUSE ONLY
Cost Center No.	W659
Organization No.	88363
Account No.	45119
Fund No.	1750

Cc: Rosalie

APPLICATION FOR TRAFFIC CONTROL PLAN

Community & Economic Development Agency
Transportation Services Division

Transportation Services Fee: \$123/hour (Check or Money Order Only)

. /	Check the box that apply: New Application (Lality, Excavation
X	New Application (LEllty, Excavation
	Renewal Applicaticn
	New Development // Mgmt Plan
	City of Oakland Pr⊨ect

Please			

- Processing time for a Traffic Control Application is a minimum of 10 working days.
- 2. Traffic Control review is scheduled only on Tuesdays and Thursdays from 9:00 am thru 11:30am by appointment or y.
- 3. A scheduled appointment by phone or email with a TSD staff member is necessary to discuss any and all traffic corrol application ε
- 4. Please call ahead to confirm that the traffic control application is ready for pickup @ 510-238-3467.
- 5. Businesses and residences edjacent to the work area must be provided 72 hour advance notice.
- 6. A completed traffic control application may be faxed to (510) 238-7415.
- Incomplete traffic control applications will not be processed and will be returned to applicant.
- 8. The initial approval for a traffic control plan is 1 month, the renewal submittal may be approved up to 3 months.
- 9. The traffic control provision dates cannot be changed or extended if work has already commenced.
- 10. Upon receiving TSD approval of the traffic control plan, the applicant (or contractor) shall proceed to the Building Sevices Division cobtain an "Obstruction Permit." CEDA is located at 250 Frank Ogawa Plaza, 2nd Floor, Oakland, CA 94612.

Contact Person:	Erin Reinham	-1 - Koylu	Pho	ne: (510) 420	-0700	
Name of Company:	Conestoga-Ro	vers & Assoc	<u>iates</u> F	ax: <u>(510) 42</u>	0-3372	
Address of Company:	5900 Hillis	Street Si	wite A Em	ernville, CA	94608	
Describe type of work	o be performed: Groun dwater sa	Vertical box mples (En	ing using dire	ct push meth ock)	d, to obtai.	**************************************
Leasting of work that	Harrison hin Sidewalk as	Between*	24 th St Bay Pla	ce And 23-d	street.	
within-theroad on	Hacrison Street	e Between"	24 th st/Bay Pla 24 th st/Bay Pla	ce And Zzrd	Street	
Work date (sk Tue	re the boundaries of your work Clay April 28 11 April 29 5		Work Hours:	9:004mto	3:00 pm	· · · · · · · · · · · · · · · · · · ·
Ploaso Follow	diese Slens and	the Attached	Examples to	Complete a T	raffic Cont	ol Plan

- A. Drawing Area: The full width of all streets adjacent to the site MUST be included in the drawing.

 Include the entire block in which your work is located for every street that is adjacent to your site.
- B. Include Street Names, Direction of Traffic on the Street, and North Arrow
- C. Show Existing Number of Lanes In all Directions (with any pavement arrows)
- D. Check the Box(s) that Apply: All checked items MUST be shown on the drawing
 - Lane Closure

 Street Closures (must provide detour plan)
- Use of Median
- Stdewalk Closure
- Use Parking Lane
- (must provide pedestrian walk way)
- E. Show All Dimensions of street widths (curb to curb), lane widths, sidewalk widths, and work area dimension.

 (Note: Traffic Control Application / Plans missing the above information will not be accepted or proce_sed.)
- F. Show the Name and Locations of all applicable advanced warning devices, flaggers, delineators, warning and construction signs.

RENEWAL PROCESS: Resubmit a completed Traffic Control Application with the old approved plan (with the necessary modifications / change=to the plans).

FOR HELP in preparing a traffic control plan, see Temporary Traffic Control Pocket Reference Guide 2007, Work Area Traffic Control Handbook 006, or the California Manual on Uniform Traffic Control (MUTCD) 2003, Chapter B.

http://www.dol.ca.gov/hg/traffops/signtech/mulcdsupp/ca_mulcd.htm

For City Website: http://www.oeklendnet.com/cedehome_com/SiteDeta/cedehome/InetPub/wwwroot/main/dcsd_transportationservices_app_tcp.e p

SPECIAL PROVISION 7-10.1 TRAFFIC REQUIREMENTS

Project Name:	A 1 /
Project Number: TSD-09	0.040
Reviewed By: J.Watson	MINT
Date: 4/14/2009_	V OW 1
Review good from5/19/2	2009
to_5/20/2009	

ADD NEW SUBSECTION TO READ: SP 7-10.1.4 Vehicular Traffic

Attention is directed to Section 7-10. Public Convenience and Safety, of the City of Oakland Standard Specification for Public Works Construction, 2000 Edition (Include this paragraph for p-jobs, excavation permits or obstruction permits).

The Contractor shall conduct its work in such a manner as to provide public convenience and safety and according to the provisions in this subsection. The provisions shall not be modified or altered without written approval from the Engineer.

Standard traffic control devices shall be placed at the construction zone according to the latest edition of the <u>Work Area Traffic Control Handbook</u> or <u>Manual on Uniform Traffic Control Devices (MUTCD)</u>, Chapter 6 — "Traffic Controls for Construction and Maintenance Work Zone," or as directed by the Engineer.

All trenches and excavations in any public street or roadway shall be back filled and opened to traffic, or covered with suitable steel plates securely placed and opened to traffic at all times except during actual construction operations unless otherwise permitted by the Engineer.

Each section of work shall be completed or temporarily paved and open to traffic in not more than 5 days after commencing vork unless otherwise permitted in writing by the Engineer.

Where construction encroaches into the sidewalk area, a minimum of 5 ½ feet of unobstructed sidewalk shall be maintained it all times for pedestrian use. Pedestrian barricades, shelter, and detour signs per Caltrans standards may be required.

The contractor shall conduct its operation in such a manner as to leave the following traffic lanes unobstructed and in a condition satisfactory for vehicular travel during the Obstruction Period. At all times traffic lanes will be restricted and eopened to travel. Emergency access shall be provided at all times.

Street Name Limits	Obstruction Period	North Bound	South Bound	East Bound	West Bound
Harrison Street between 23 rd Street and 24 th Street	Mon. – Fri. 9am – 4pm	2-12' lane open minimum	N/A	Sidewalk Closure	N/A

he Contractor Shall Also include all check item:

- 1. Design a construction traffic control plan and submit (2) copies to the Engineer for approval prior to starting any work.
- 2. Replace all signs, pavement markings, and traffic detector loops damaged or removed due to construction within 3 days of completion of work or the final pavement lift.
- 3. Provide advance notice to Oakland Police at (510) 777-3333 (24-hrs) and Oakland Fire at (510) 238-3331 (2-rhs) when a single lane of traffic or less is provided on any street.
- 4. Provide 72-hour advance notice to AC Transit at (510) 891-4909 when affecting a bus stop.
- 5. For Caltrans roadways, ramps, or maintained facilities, the Contractor shall obtain appropriate permits and notify the Traffic Management Center 24 hours in advance of any work.
- 6. Flagger control is required. Certified Flagger is required.
- 7. Pedestrian walkway by K-rail, Canopy or Plywood is required. (See detour plan)
- 8. Pedestrian traffic shall be maintained and guided through the project at all times.
- 9. Provide advance notice to Business and Residence within 72-hours.
- 10. Allow all traffic movement at intersection.

othing specified herein shall prohibit emergency work and/or repair necessary to ensure public health and safety.

APPENDIX C

BORING LOGS

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME B	-1		
JOB/SITE NAME	Former Shell Service Station	DRILLING STARTED19	9-May-09		
LOCATION	2350 Harrison Street, Oakland, CA	DRILLING COMPLETED 20	0-May-09		
PROJECT NUMBER	060119	WELL DEVELOPMENT DATE	(YIELD) _	NA	
DRILLER	Gregg Drilling, C-57 #485165	GROUND SURFACE ELEVAT	ION _	NA	
DRILLING METHOD	Direct push	TOP OF CASING ELEVATION	l _	NA	
BORING DIAMETER	2"	SCREENED INTERVALS		NA	
	E. Reinhart	DEPTH TO WATER (First End	ountered)	NA	$ar{\Sigma}$
LOGGED BY	P. Schaefer	DEPTH TO WATER (Static)	·	NA	Ţ
REVIEWED BY	P. Schaeler				<u> </u>

REMARK	KS	A	ir knifed	to 5	tog					
PID (ppm)	BLOW	SAMPLE ID	EXTENT	(fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIA	AGRAM
				-	ML		ASPHALT Sandy SILT with gravel (ML); dark yellowish brown (10YR 4/6); moist; 10% clay, 40% silt, 30% fine to coarse sand, 20% fine to coarse gravel; medium plasticity.	0.3		
			-	-	CL		CLAY (CL); black (2.5Y 2.5/1); moist; 95% clay, 5% silt; high plasticity.			
255 2.8 208		B-1-5 .5'		» – -			@ 5' - very dark gray (2.5Y 3/1). Sandy SILT (ML); very dark gray (2.5Y 3/1); wet; 10%	6.5		
255 2.8 208 140 258 40 274 116 8.6				1	ML		clay, 55% silt, 35% fine to coarse sand; medium plasticity. Sandy CLAY (CL): very dark gray (2.5Y 3/1); moist;	8.5	P	ortland Type I/II
258		B-1-1 0'		10-	CL		50% clay, 30% silt, 20% fine sand; medium plasticity. Sandy SILT (ML); very dark gray (2.5Y 3/1); moist; 20% clay, 40% silt, 30% fine sand, 10% gravel; medium	10.0		e e
40				-			plasticity; red chert nodules. @ 12' - strong brown (7.5YR 5/6); moist; 5% clay, 60% silt, 35% fine sand; low plasticity.			
274	7	B-1-1 3'		 	ML		SILT (ML); strong brown (7.5YR 5/6); moist; 30% clay, 60% silt, 10% fine sand.	14.0		
; [B-1-1 5		-15-			60% silt, 10% fine sand.	16.0		ottom of Borir
WELL LOG (PID) INSHELLIB-CHARSINGOT								,		16 fbg
L LOG (PID) IN										
Ę.										

REVIEWED BY

REMARKS

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

LIENT NAME	Shell Oil Products US
OB/SITE NAME	Former Shell Service Station
OCATION	2350 Harrison Street, Oakland, CA
ROJECT NUMBER	060119
ORILLER	Gregg Drilling, C-57 #485165
ORILLING METHOD	Direct push
BORING DIAMETER	2"
OGGED BY	E. Reinhart

P. Schaefer

Air knifed to 5 fbg

BORING/WELL NAME B-2 21-May-09 DRILLING STARTED DRILLING COMPLETED 21-May-09 WELL DEVELOPMENT DATE (YIELD) NΑ NA **GROUND SURFACE ELEVATION** NA TOP OF CASING ELEVATION NΑ SCREENED INTERVALS NA **DEPTH TO WATER (First Encountered)** NA **DEPTH TO WATER (Static)**

REMAR				ineu to					
PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
				_	ML		ASPHALT Sandy SILT with gravel (ML); dark yellowish brown (10YR 4/6); moist; 10% clay, 40% silt, 30% fine to coarse sand, 20% fine to coarse gravel; medium plasticity.	0.3	
WELL LOG (PID) I./SHELL/6-CHARS/08601/0860119-JARLAND 2350 (2360) FANNADAR PROPERTY OF THE PARTY OF THE PAR		B-2-5 .5'		- 5 -			CLAY (CL); black (2.5Y 2.5/1); moist; 95% clay, 5% silt; high plasticity. @ 4' - very dark gray (2.5Y 3/1).	3.0	
280 150		B-2-7'		 - -				8.5	Portland Type I/II
630		B-2-1 0'		10-	CI	-	Sandy CLAY (CL); dark grayish brown (2.5Y 4/2); moist; 50% clay, 30% silt, 15% fine sand, 5% gravel; medium plasticity; red chert.	11.0	
56 56 82				-	+		@ 11' - yellowish brown (10YR 5/6); 65% clay, 30% silt, 5% fine sand; medium to high plasticity.		
130		B-2-1 5	,	- 15-			@ 14' - yellowish brown (10YR 5/4); 80% clay, 20% silt. Sandy CLAY (CL); olive brown (2.5Y 4/3); moist; 50% clay, 25% silt, 25% fine sand; medium plasticity.	15.0	
SHELL/6-CHARS/06						<i>X//////</i>			Bottom of Boring @ 16 fbg
WELL LOG (PID) 1:1									

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700

Tele	phone:	510-420-0
		20-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME _	B-3		
JOB/SITE NAME	Former Shell Service Station	DRILLING STARTED	21-May-09		
LOCATION	2350 Harrison Street, Oakland, CA	DRILLING COMPLETED	21-May-09		
PROJECT NUMBER	060119	WELL DEVELOPMENT DA	TE (YIELD) _	NA .	·
DRILLER	Gregg Drilling, C-57 #485165	GROUND SURFACE ELEV		NA	
	Direct push	TOP OF CASING ELEVAT		NA	
DRILLING METHOD		SCREENED INTERVALS		NA	
BORING DIAMETER	2"	DEPTH TO WATER (First	– (Encountered		∇
LOGGED BY	E. Reinhart			NA NA	
REVIEWED BY	P. Schaefer	DEPTH TO WATER (Station	9	147	

REMARK	KS	A	ir kr	ifed to	5 fbg					
PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL	DIAGRAM
WELL LOG (PID) INSHELLIG-CHARSIO601-J060119-OAKLAND 2350 (2368) HARRISON STI060119-GINTIGGUI GPJ DEFAULT.GDT 6/17/09 6 8 81 LL		B-3-5 .5'			SC		CLAY with sand (CL); very dark gray (2.5Y 3/1); moist; 80% clay, 5% silt, 15% fine to medium sand; high plasticity. Clayey SAND (SC); dark gray (2.5Y 4/1); moist; 25% clay, 25% silt, 50% fine to medium sand. @ 12' - olive brown (2.5Y 4/3). SILT with sand (ML); yellowish brown (10YR 5/6); moist; 25% clay, 60% silt, 15% fine sand; medium plasticity.	11.0 14.0 16.0		Bottom of Boring @ 16 fbg

Conestoga - Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA, 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME	B-4		·
JOB/SITE NAME	Former Shell Service Station	DRILLING STARTED _	19-May-09		
LOCATION	2350 Harrison Street, Oakland, CA	DRILLING COMPLETED	20-May-09		
PROJECT NUMBER	060119	WELL DEVELOPMENT DA	TE (YIELD)	NA	
DRILLER	Gregg Drilling, C-57 #485165	GROUND SURFACE ELEV	ATION _	NA	
DRILLING METHOD	Direct push	TOP OF CASING ELEVATI	ON _	NA	
BORING DIAMETER	2"	SCREENED INTERVALS	_	NA	
LOGGED BY	E. Reinhart	DEPTH TO WATER (First i	Encountered)	NA	∇
REVIEWED BY	P. Schaefer	DEPTH TO WATER (Static)	NA	<u> </u>
	A. J. 15 J. 4 5 G				

REMARI	KS	A	ir kr	nifed to	5 fbg					
PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELI	. DIAGRAM
					ML		ASPHALT Sandy SILT with gravel (ML); dark yellowish brown (10YR 4/6); moist; 50% silt, 30% fine to coarse sand, 20% coarse gravel; low to medium plasticity. @ 2' - 60% silt, 30% fine to coarse sand, 10% coarse gravel. Poorly graded SAND (SP); dark gray (2.5Y 4/1); moist; 5% silt, 95% fine to medium sand.	3.0		
628 18 28 17.5 20 50 11.2		B-4-5 .5'		_ 5 _ 5 _	SP		very dark gray (10YR 3/1); wet			
18		B-4-1 0'					CLAY (CL); very dark gray (2.5Y 3/1); moist; 95% clay, 5% silt; high plasticity.	9.0		■ Portland Type I/II
17.5				10 	CL SP		Poorly graded SAND (SP); dark gray (2.5Y 4/1); moist; 5% silt, 95% fine to medium sand.	10.5		
20				- -	CL		CLAY (CL); very dark gray (5Y 3/1); moist; 60% clay, 40% silt; high plasticity. SILT with sand (ML); very dark gray (5Y 3/1); moist;	12.5		
50 11.2		B-4-1 5'		15- -	ML		25% clay, 50% silt, 25% fine to medium sand; medium plasticity. @ 15' - yellowish brown (10YR 5/6); 35% clay, 45% silt, 20% fine sand.	16.0		Dettern of Paring
ID) I.SHELLS-CHARS										Bottom of Boring @ 16 fbg
A) 900 - 1100 M										1 OF 1

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME	HP-1		
JOB/SITE NAME	Former Shell Service Station	 DRILLING STARTED	19-May-09		
LOCATION	2350 Harrison Street, Oakland, CA	DRILLING COMPLETED	20-May-09		
PROJECT NUMBER	060119	WELL DEVELOPMENT DA	TE (YIELD) _	NA	
DRILLER	Gregg Drilling, C-57 #485165	GROUND SURFACE ELEV	/ATION _	NA	
DRILLING METHOD	Direct push	TOP OF CASING ELEVAT	ION _	NA	
BORING DIAMETER		SCREENED INTERVALS		NA	
LOGGED BY	E. Reinhart	 DEPTH TO WATER (First	Encountered)	4.50 fbg	$ar{ar{\lambda}}$
REVIEWED BY	P. Schaefer	DEPTH TO WATER (Statio	c)	NA	
LEALEASED D	1, Condition	 -	•	***	

LITHOLOGIC DESCRIPTION Control of the control o	REMARKS	Air knifed to 5 fbg			
Boring air-knifed to 5 fbg.: direct-push to 10 fbg.; grab groundwater sample collected using hydropunch with a screened interval of 6-10 fbg.; soil types not logged. Bottom of Boring @ 10 fbg	PID (ppm) BLOW COUNTS	SAMPLE ID EXTENT DEPTH (fbg) U.S.C.S.	CRAPHIC LOG CRAPHIC LOG COMPANY COMPAN	CONTACT DEPTH (fbg)	WELL DIAGRAM
שנו נכ	FELL LOG (PID) 1:SHELL'6-CHARS\060119-OAKLAND 2350 (2368) HARRISON STUDOTTO-GINTUGOTTO-G		Boring air-knifed to 5 fbg.; direct-push to 10 fbg.; grab groundwater sample collected using hydropunch with a screened interval of 6-10 fbg.; soil types not logged.		

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

HP-2 **BORING/WELL NAME** Shell Oil Products US **CLIENT NAME** 19-May-09 DRILLING STARTED Former Shell Service Station JOB/SITE NAME 20-May-09 DRILLING COMPLETED _ 2350 Harrison Street, Oakland, CA LOCATION NA WELL DEVELOPMENT DATE (YIELD) PROJECT NUMBER 060119 NA **GROUND SURFACE ELEVATION** Gregg Drilling, C-57 #485165 DRILLER NA TOP OF CASING ELEVATION Direct push **DRILLING METHOD SCREENED INTERVALS** NA **BORING DIAMETER** DEPTH TO WATER (First Encountered) 5.00 fbg E. Reinhart LOGGED BY NA **DEPTH TO WATER (Static)** P. Schaefer REVIEWED BY

REMARKS	· · · · · · · · · · · · · · · · · · ·	Ai	ır kn	ifed to	o ibg			1. 3	3	
PID (ppm)	COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	WELL	DIAGRAM
WELL LOG (PID) INSPELLED - FRANS MOOT - FOOD TO STANK FOOD							Boring air-knifed to 5 fbg.; direct push to 10 fbg.; grab groundwater sample collected using hydropunch with screened interval of 6-10 fbg.; soil types not logged.	0.5		Bottom of Boring @ 10 fbg

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME SVP-1		
JOB/SITE NAME	Former Shell Service Station	DRILLING STARTED 18-May-09		
LOCATION	2350 Harrison Street, Oakland, CA	DRILLING COMPLETED 18-May-09		
PROJECT NUMBER	060119	WELL DEVELOPMENT DATE (YIELD)	NA	
DRILLER	Gregg Drilling, C-57 #485165	GROUND SURFACE ELEVATION	NA	
DRILLING METHOD	Air-knife	TOP OF CASING ELEVATION	NA	
BORING DIAMETER	6"	SCREENED INTERVALS	4.42 to 4.5 fbg	
	E. Reinhart	DEPTH TO WATER (First Encountered)	NA NA	<u></u>
LOGGED BY	P. Schaefer	DEPTH TO WATER (Static)	NA	
		-		

REMARKS CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG PID (ppm) U.S.C.S. BLOW COUNTS EXTENT DEPTH (fbg) WELL DIAGRAM LITHOLOGIC DESCRIPTION ASPHALT
Sandy SILT with gravel (ML); dark yellowish brown
(10YR 4/6); moist; 50% silt, 30% fine to coarse sand, 20% coarse gravel; low to medium plasticity; fill. 0.3 ■ Flush-grade 5" well 1/4" teflon sample tubing ML Portland Type I/II @ 2' - 60% silt, 30% fine to coarse sand, 10% coarse 27.4 3.0 CLAY (CL); black (2.5Y 2.5/1); moist; 95% clay, 5% silt; high plasticity. WELL LOG (PID) 1:\SHELL\6-CHARS\0601-\060119-OAKLAND 2350 (2368) HARRISON ST\060119-GINT\060119-GINT\GPJ DEFAULT GDT 6/17/09 Bentonite Seal Monterey Sand CL #2/12 1/4" diam. HDPE 5.0 screen Bottom of Boring @ 5 fbg

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME SVP-2		
JOB/SITE NAME	Former Shell Service Station	DRILLING STARTED 21-May-09		
LOCATION	2350 Harrison Street, Oakland, CA	DRILLING COMPLETED 21-May-09		
PROJECT NUMBER	060119	WELL DEVELOPMENT DATE (YIELD)	NA	
DRILLER	Gregg Drilling, C-57 #485165	GROUND SURFACE ELEVATION	NA	
DRILLING METHOD	Air-knife	TOP OF CASING ELEVATION	NA	
BORING DIAMETER	6"	SCREENED INTERVALS	4.42 to 4.5 fbg	
LOGGED BY	E. Reinhart	DEPTH TO WATER (First Encountered)	NA	<u>Z</u>
REVIEWED BY	P. Schaefer	DEPTH TO WATER (Static)	NA	

REMARKS CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG BLOW U.S.C.S. PID (ppm) EXTENT DEPTH (fbg) WELL DIAGRAM LITHOLOGIC DESCRIPTION ASPHALT
Sandy SILT with gravel (ML); dark yellowish brown
(10YR 4/6); moist; 50% silt, 30% fine to coarse sand, 20%
coarse gravel; medium plasticity. 0.3 ■ Flush-grade 5" well 1/4" teflon sample tubing Portland Type I/II 27.4 ML WELL LOG (PID) INSHELLIG-CHARS/0601-\060119-OAKLAND 2350 (2368) HARRISON ST\060119-GINT\060119-GINT.GPJ DEFAULT GDT 6/17/09 Bentonite Seal CLAY (CL); black (2.5Y 2.5/1); moist; 95% clay, 5% silt; high plasticity. Monterey Sand #2/12 1/4" diam. HDPE CL 5.0 Bottom of Boring @ 5 fbg

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

LIENT NAME	Shell Oil Products US	BORING/WELL NAMES	SVP-3		
OB/SITE NAME	Former Shell Service Station	DRILLING STARTED 1	9-May-09		
OCATION	2350 Harrison Street, Oakland, CA	DRILLING COMPLETED1	9-May-09		
ROJECT NUMBER	060119	WELL DEVELOPMENT DATE	(YIELD) _	NA	
RILLER	Gregg Drilling, C-57 #485165	GROUND SURFACE ELEVAT	TION _	NA	
RILLING METHOD	Air-knife	TOP OF CASING ELEVATION	N	NA	
ORING DIAMETER	6"	SCREENED INTERVALS		4.42 to 4.5 fbg	
	E. Reinhart	DEPTH TO WATER (First En	countered)	NA	$\overline{\Sigma}$
OGGED BY	P Schaefer	DEPTH TO WATER (Static)	•	NA	<u> </u>

REMARKS CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG U.S.C.S. PID (ppm) BLOW COUNTS DEPTH (fbg) EXTENT WELL DIAGRAM LITHOLOGIC DESCRIPTION 0.3 ▼ Flush-grade 5" well **ASPHALT** Sandy SILT with gravel (ML); dark yellowish brown (10YR 4/6); moist; 50% silt, 30% fine to coarse sand, 20% coarse gravel; low to medium plasticity; fill. 1/4" teflon sample tubing Portland Type I/II ML @ 2' - 65% silt, 35% fine to coarse sand. 27.4 3.5 SAND (SW); dark gray (2.5Y 4/1); moist; 5% silt; 95% fine to medium sand. WELL LOG (PID) 1:\SHELL\G-CHARS\0601-\060119-OAKLAND 2350 (2368) HARRISON ST\060119-GINT\060119-GINT\GPJ DEFAULT\GDT 6/17/09 Bentonite Seal Monterey Sand #2/12 1/4" diam. HDPE SW 5.0 screen Bottom of Boring @ 5 fbg

APPENDIX D

CERTIFIED ANAYLTICAL REPORTS

June 08, 2009

Peter Schaefer Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.:

Client Reference:

09-05-2010

2350 Harrison St., Oakland, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 5/22/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Philip Samelle for

Laboratories, Inc. Jessie Lee

Project Manager

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation:

Method:

09-05-2010 **EPA 3550B EPA 8015B**

05/22/09

Project: 2350 Harrison St., Oakland, CA

Page 1 of 3

Client Sample Num	ber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-5.5		09-05-2010-1-A	05/20/09 13:26	Solid	GC 43	05/24/09	05/26/09 18:47	090524B05
Comment(s):	-The sample chromatographic patt of the unknown hydrocarbon(s) in				d.	specified st	andard. Qua	intitation
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			

Diesel Range Organics

700

50 **Control Limits** 10

mg/kg

Surrogates:

REC (%)

Qual

Decachlorobiphenyl

96

61-145

B-1-10")-05-2010-2-A	05/20/09 13/30	Solid (GC 43 05/24/09	05/26/09 090524B05 19:07
Comment(s):	-The sample chromatogra of the unknown hydrocarl	aphic pattern for bon(s) in the san	TPH does not mate	ch the chroma	atographic pat ed standard.	tern of the specified s	tandard. Quantitation
<u>Parameter</u>	·	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	
Diesel Range Organi	CS ·	81	5.0	1		mg/kg	

Surrogates:

REC (%)

Qual

Decachlorobiphenyl

Control Limits 61-145

B-1-15'		9-05-2010	-3-A ()5/20/09 13:35	Solid	GC 43 05/	24/09 05/26/09 090524B0 19:28	5
Comment(s):	-The sample chromatographic pattern fo	r TPH does	s not matc	h the chro	matographic pat	ttern of the spec	cified standard. Quantitation	
	of the unknown hydrocarbon(s) in the sa	ımple was t	pased upoi	n the spe	cified standard.			
Parameter	Result	RL	at spil	DF	Qual	Units		

Diesel Range Organics

100

5.0

mg/kg

Qual

Surrogates:

REC (%)

Control Limits

Decachlorobiphenyl

104

61-145

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

05/22/09 09-05-2010 **EPA 3550B EPA 8015B**

Project: 2350 Harrison St., Oakland, CA

Page 2 of 3

Client Sample Number	Client Sample Number		Date/Time Coilected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
(B.4-5(5).		09-05-2010-4-A	05/20/09 -14:35	Solid	GC 43	05/24/09	05/26/09 19:48	090524B05
Comment(s):	-The sample chromatographic patter of the unknown hydrocarbon(s) in the	ern for TPH does not n he sample was based	natch the chror upon the spec	matographio ified standa	c pattern of the	e specified s	standard. Qua	ntitation
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organi	cs 200	5.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		mg/kg	Ī		•

REC (%) Surrogates: 107

Qual

Decachlorobiphenyl

61-145

B410	09-05-2010-5-A 05/20/09 Solid GC 43 05/24/09 05/26/09 090524B05
Comment(s):	-The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation

<u>Parameter</u>

Result

<u>RL</u>

<u>DF</u>

Qual

<u>Units</u>

Diesel Range Organics

170

5.0

mg/kg

Surrogates:

REC (%)

Control Limits

Qual

Decachlorobiphenyl

100

61-145

B4-15 mg		09-05-2010-6-A	05/20/09 14:45	Solid.	GC 43 05/24/0	9 (15/26/09) 20:29	/090524B05
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
Diesel Range Organics	10	5.0	1		mg/kg		
Surrogates:	REC (%)	Control Limits		Qual	4		·
Decachlorobiphenyl	101	61-145		÷ .			

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation:

09-05-2010 **EPA 3550B EPA 8015B**

05/22/09

Project: 2350 Harrison St., Oakland, CA

Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1413	09-05-2010-7-A	05/20/09 18:33	Solid *	Ge#8	05/24/09	05/26/09 20:49	090524B05

Comment(s):

-The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation

Method:

of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

Parameter

Result

<u>RL</u>

DF

Units

Diesel Range Organics

89

5.0 **Control Limits** 1

mg/kg

Surrogates:

REC (%)

Qual

Qual

Decachlorobiphenyl

101

61-145

B-1-7		THE PERSON NAMED IN COLUMN TO SERVICE AND	09-05-2010-8-A	05/20/09 13:28	Solid	GC 43 : 05/24	//09 05/26/09 0900 21:09	524B05
Comment(s):							ied standard. Quantitation	on
£ "	of the unknown hydroc	arbon(s) in the s	ample was based upo	n the speci	fied standard.			
<u>Parameter</u>	•	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
· ·			to decrease and the					
<u>.</u>		E40	E 0	4				

Diesel Range Organics

510

mg/kg

Surrogates:

REC (%)

Control Limits

Qual

Decachlorobiphenyl

111

61-145

Method Blank		099-12-025-726	NA	Solid	GC 43	05/24/09	05/26/09 09 15:03	0524805
Parameter	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	96	61-145						

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

05/22/09 09-05-2010 EPA 3550B EPA 8015B (M)

Project: 2350 Harrison St., Oakland, CA

Page 1 of 1

Project. 2330 Harrison St., Oak	lanu, CA	100				rage rorr			
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-4-5.5		09-05-2010-4-A	05/20/09 14:35	Solid	GC 43	05/24/09	05/26/09 19:48	090524B06	
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>				
TPH as Motor Oil	230	25	1		mg/kg				
Surrogates:	REC (%)	Control Limits		Qual					
Decachlorobiphenyl	107	61-145							
B'4-10'		09-05-2010 5-A	05/20/09 14:40	Solid	GC 43	05/24/09	05/28/09 20:08	090524806	
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>				
TPH as Motor Oil	140	25	1		mg/kg				
Surrogates:	REC (%)	Control Limits		Qual					
Decachlorobiphenyl	100	61-145		1		•			
B-4-15		09-05-2010-6-A	05/20/09 14:45	Šolid	GC 48	05/24/09	05/26/09 20:29	∍090524B06	
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>				
TPH as Motor Oil	ND	25	1		mg/kg	I			
Surrogates:	REC (%)	Control Limits		Qual					
Decachlorobiphenyl	101	61-145							
Method Blank		099-12-254-767	NA :	Solid	GIC 48		05/26/09 15:03	7 090524B06	
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	:			
TPH as Motor Oil	ND	25	. 1		mg/k)			
Surrogates:	REC (%)	Control Limits		Qual					
Decachlorobiphenyl	96	61-145		*.					

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

05/22/09

Work Order No:

09-05-2010

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

ug/kg

Project: 2350 Harrison St., Oakland, CA

Page 1 of 7

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	\sim	Batch ID
PROCESSOR OF THE PROCES			09-05-20		05/20/09	Solid	GC/MS PP	05/29/09	05/29/09	091	0529L02
B-1-5:5					13:26				18:51		
								enstrut (ministra in i		SIESIALEUALI.	311 <u>1100 X 42341 10541113</u>
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result		<u>DF</u>	Qual
Acetone	ND	12000	100	i i i glenci ti: Stani tida i	c-1,3-Dichloro			ND		100	
Benzene	ND	500	100	A AMERICAN	t-1,3-Dichlorop	oropene		ND		100	
Bromobenzene	ND	500	100		Ethylbenzene			ND		100	
Bromochloromethane	ND	500	100	, · ·	2-Hexanone			ND	5000	100	
Bromodichloromethane	ND	500	100		Isopropylbenz			ND	500	100	
Bromoform	ND	500	100		p-Isopropyltol			ND	500	100 100	
Bromomethane	ND	2500	100		Methylene Ch			ND ND	5000 5000	100	
2-Butanone	ND	5000	100		4-Methyl-2-Pe	entanone		ND	5000	100	
n-Butylbenzene	ND	500	100		Naphthalene			680	500	100	
sec-Butylbenzene	ND	500	100		n-Propyibenze Styrene	3116		ND	500	100	
tert-Butylbenzene	ND	500	100		1,1,1,2-Tetrac	chloroethane	4 - Carlon 1984	ND	500	100	
Carbon Disulfide	ND	5000	100 100		1,1,2,2-Tetrac			ND	500	100	
Carbon Tetrachloride	ND ND	500 500	100		Tetrachloroeti			ND	500	100	
Chlorobenzene	ND	500	100		Toluene	10110		ND	500	100	
Chloroethane	ND	500	100		1,2,3-Trichlor	obenzene		ND	1000	100	
Chloroform Chloromethane	ND	2500	100		1,2,4-Trichlor			ND	500	100	
2-Chlorotoluene	ND	500	100		1,1,1-Trichlor			ND	500	100	
4-Chlorotoluene	ND	500	100		1.1.2-Trichlor			ND	500	100	
Dibromochloromethane	ND	500	100		1,1,2-Trichlor	o-1,2,2-Triflu	oroethane	ND	5000	100	
1.2-Dibromo-3-Chloropropane	ND	2500	100		Trichloroethe	ne		ND	500	100	
1,2-Dibromoethane	ND	500	100		1,2,3-Trichlor	opropane		ND	500	100	
Dibromomethane	ND	500	100		1,2,4-Trimeth	ylbenzene		ND	500	100	
1,2-Dichlorobenzene	ND	500	100		Trichlorofluor			ND	5000	100	
1.3-Dichlorobenzene	ND	500	100	ŧ	1,3,5-Trimeth			ND .	500	100	
1,4-Dichlorobenzene	ND	500	100		Vinyl Acetate			ND	5000	100	
Dichlorodifluoromethane	ND	500	100	1 TON	Vinyl Chloride			ND	500	100	
1,1-Dichloroethane	ND	500	100	1.4	Xylenes (tota	•		ND	500	100	
ু1,2-Dichloroethane	ND	500	100		Methyl-t-Buty		BE)	ND	500	100	
1,1-Dichloroethene	ND	500	100	1 1 1 A 1	Tert-Butyl Ak			ND	5000	100	
c-1,2-Dichloroethene	ND	500	100	į.	Diisopropyl E			ND ND	1000 1000	100 100	
t-1,2-Dichloroethene	ND	500	100		Ethyl-t-Butyl		•	ND ND	1000	100	
1,2-Dichloropropane	ND	500	100		Tert-Amyl-Mo	etnyi Etner (i	AIVIE)	ND ND	50000	100	
1,3-Dichloropropane	ND	500	100		Ethanol			100000	50000	100	
2,2-Dichloropropane	ND	500	100		TPPH			1,00000	30000	. 100	
1,1-Dichloropropene	ND	500	100	Qual	Surrogates:			REC (%)	Control		Qual
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surroyales.				<u>Limits</u>		
Dibromofluoromethane	108	73-139			1,2-Dichloro	ethane-d4		112	73-145		
Toluene-d8	104	90-108			1,4-Bromoflu			101	71-113		
Toluene-do Toluene-d8-TPPH	106	88-112			,						
15,40110 40 11 11											

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

05/22/09

Work Order No:

09-05-2010

Preparation:

EPA 5030B

Method:

EI A 3030D

Units:

LUFT GC/MS / EPA 8260B

ug/kg

Project: 2350 Harrison St., Oakland, CA

Page 2 of 7

Client Sample Number				Sample lumber	Date/Time Collected	Matrix I	nstrument	Date Prepared	Date/T Analyz		C Batch ID
B-1-10' - 72 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			09-05-2	010-2-A	05/20/09 13:30	Solid (GC/MS PP	05/29/09	5, 05/29 19-1	09 0 8	90529L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Acetone	ND	12000	100		c-1,3-Dichlorop	ropene		ND	500	100	
Benzene	ND	500	. 100		t-1,3-Dichloropr	ropene		ND	500	100	
Bromobenzene	ND	500	100		Ethylbenzene			ND	500	100	
Bromochloromethane	ND	500	100		2-Hexanone			ND	5000	100	
Bromodichloromethane	ND	500	100	, , ,	Isopropylbenze	ne		ND	500	100	
Bromoform	ND	500	100	,	p-Isopropyltolue	ene		ND:	500	100	
Bromomethane	ND	2500	100	1	Methylene Chlo	ride		ND	5000	100	
2-Butanone	ND	5000	100		4-Methyl-2-Pen	tanone		ND	5000	100	
n-Butylbenzene	ND	500	100	41 JAN	Naphthalene			ND	5000	100	
sec-Butylbenzene	ND	500	100		n-Propylbenzen	ne		ND	500	100	
tert-Butylbenzene	ND	500	100		Styrene			ND	500	100	
Carbon Disulfide	ND	5000	100		1,1,1,2-Tetrach	loroethane		ND	500	100	
Carbon Tetrachloride	ND	500	100		1,1,2,2-Tetrach	loroethane		ND	500	100	
Chlorobenzene	ND	500	100		Tetrachloroethe	ene		ND	500	100	
Chloroethane	ND	500	100		Toluene			ND	500	100	
Chloroform	ND	500	100		1,2,3-Trichlorol	benzene		ND	1000	100	
Chloromethane	ND	2500	100		1,2,4-Trichlorol	benzene		ND	500	100	
2-Chlorotoluene	ND	500	100		1,1,1-Trichloro	ethane		ND	500	100	
4-Chlorotoluene	ND	500	100		1,1,2-Trichloro	ethane		ND	500	100	
Dibromochloromethane	ND	500	100		1,1,2-Trichloro	-1,2,2-Trifluc	roethane	ND	5000	100	
1,2-Dibromo-3-Chloropropane	ND	2500	100		Trichloroethene	e		ND	500	100	
1.2-Dibromoethane	ND	500	100		1,2,3-Trichloro	propane		ND	500	100	
Dibromomethane	ND	500	100		1,2,4-Trimethyl	lbenzene		ND	500	100	
1,2-Dichlorobenzene	ND	500	100		Trichlorofluoro	methane		ND	5000	100	
1,3-Dichlorobenzene	ND	500	100		1,3,5-Trimethy	lbenzene		ND	500	100	
1,4-Dichlorobenzene	ND	500	100		Vinyl Acetate			ND	5000	100	
Dichlorodifluoromethane	ND	500	100		Vinyl Chloride			ND	500	100	
1,1-Dichloroethane	ND	500	100		Xylenes (total)			ND	500	100	
1,2-Dichloroethane	ND	500	100		Methyl-t-Butyl I)	ND	500	100	
1,1-Dichloroethene	ND	500	100		Tert-Butyl Alco	hol (TBA)		ND	5000	100	
c-1,2-Dichloroethene	ND	500	100		Diisopropyl Eth	ner (DIPE)		ND	1000	100	
t-1,2-Dichloroethene	ND	500	100		Ethyl-t-Butyl Et	ther (ETBE)		ND	1000	100	
1,2-Dichloropropane	ND	500	100		Tert-Amyl-Metl	hyl Ether (TA	ME)	ND	1000	100	
1,3-Dichloropropane	ND	500	100		Ethanol			ND	50000	100	
2,2-Dichloropropane	ND	500	100	1	TPPH			170000	50000	100	
1.1-Dichloropropene	. ND	500	100	100	ka afara i						
Surrogates:	REC (%)	Control Limits	g di de	<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	109	73-139		1 4	1,2-Dichloroeth	hane-d4		115	73-145		
Toluene-d8	105	90-108			1,4-Bromofluo			105	71-113		
Toluene-d8-TPPH	108	88-112									

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: 05/22/09

Preparation:

09-05-2010

Method:

EPA 5030B

LUFT GC/MS / EPA 8260B

Units:

ug/kg

Project: 2350 Harrison St., Oakland, CA

Page 3 of 7

Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyze		C Batch ID
B-1-15'			Committee and the committee of the	010-3-A	05/20/09	Solid	GC/MS PP	05/27/09	05/28/0	9 08	50927L04
					13:35				06:35		
(1) 1		1.00			Tariff (Marie Control				7.33 to 14.22 to 15.00 to 15.00 to	ESPENICHEEN	HE TOURS HERE LETTER OF THE SPEED WAS ENGINEERING
Parameter	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	. Qual
Acetone	ND	12000	100		c-1,3-Dichloro			ND	500	100	
Benzene	ND	500	100		t-1,3-Dichloro	oropene		ND	500	100	
Bromobenzene	ND	500	100		Ethylbenzene			ND	500	100	
Bromochloromethane	ND	500	100		2-Hexanone			ND	5000	100	
Bromodichloromethane	ND	500	100		Isopropylbenz			ND	500	100	
Bromoform	ND	500	100		p-Isopropyltolu			ND	500	100	
Bromomethane	ND	2500	100		Methylene Ch			ND	5000	100	
2-Butanone	ND	5000	100		4-Methyl-2-Pe	ntanone		ND	5000	100	
n-Butylbenzene	ND	500	100		Naphthalene			ND	5000	100	
sec-Butylbenzene	ND	500	100		n-Propylbenze	ene		ND	500	100	
tert-Butylbenzene	ND	500	100		Styrene			ND	500	100	
Carbon Disulfide	ND	5000	100		1,1,1,2-Tetrac			ND ND	500 500	100 100	
Carbon Tetrachloride	ND	500	100		1,1,2,2-Tetrac			ND ND	500 500	100	
Chlorobenzene	ND	500	100		Tetrachloroeth	nene			500	100	
Chloroethane	ND	500	100	The state of	Toluene 1,2,3-Trichlorobenzene			ND ND	1000	100	
Chloroform	ND	500	100	1000				ND	500	100	
Chloromethane	ND	2500	100		1,2,4-Trichlor			ND	500	100	
2-Chlorotoluene	ND	500	100		1,1,1-Trichlor			ND	500	100	
4-Chlorotoluene	ND	500	100	9	1,1,2-Trichlor		uoroothono	ND	5000	100	
Dibromochloromethane	ND	500	100	1.0	Trichloroethe		uoioetiiane	ND	500	100	
1,2-Dibromo-3-Chloropropane	ND	2500	100		1,2,3-Trichlor			ND	500	100	
1,2-Dibromoethane	ND	500 500	100 100		1,2,3-Trichlor 1,2,4-Trimeth			ND	500	100	
Dibromomethane	ND ND	500	100		Trichlorofluor	•		ND	5000	100	
1,2-Dichlorobenzene	ND	500	100		1,3,5-Trimeth			ND	500	100	
1,3-Dichlorobenzene	ND	500	100		Vinyl Acetate	•		ND	5000	100	
1,4-Dichlorobenzene Dichlorodifluoromethane	ND	500	100		Vinyl Chloride			ND	500	100	
1,1-Dichloroethane	ND	500	100		Xylenes (total			ND	500	100	
1,2-Dichloroethane	ND	500	100		Methyl-t-Buty	•	BE)	ND	500	100	
1,1-Dichloroethene	ND	500	100		Tert-Butyl Ald		,	ND	5000	100	
c-1,2-Dichloroethene	ND	500	100		Diisopropyl E			ND	1000	100	
t-1,2-Dichloroethene	ND	500	100		Ethyl-t-Butyl		E)	ND	1000	100	
1,2-Dichloropropane	ND	500	100		Tert-Amyl-Me	•	•	ND	1000	100	
1,3-Dichloropropane	ND	500	100		Ethanol	· ·	•	ND	50000	100	
2,2-Dichloropropane	ND	500	100		TPPH			180000	50000	100	
1,1-Dichloropropene	ND	500	100								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		Limits							<u>Limits</u>		
Dibromofluoromethane	101	73-139			1,2-Dichloro			103	73-145		
Toluene-d8	103	90-108			1,4-Bromoflu	orobenzene		102	71-113		
Toluene-d8-TPPH /	106	88-112		1.7							

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

05/22/09

Work Order No:

09-05-2010

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

ug/kg

.

Dogo 4 of

Project: 2350 Harrison St., Oakland, CA

Page 4 of 7

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tir Analyze	~	Batch ID
B-193			09-05-2		05/20/09	Solid	GC/MS PP	05/27/09	05/28/0)9 OS	0927L04
					13-33		s selución (s.		07:02		
						272064 T. S. T. S.					
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual .	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Acetone	ND	12000	100	*.	c-1,3-Dichlorop	oropene		ND	500	100	
Benzene	ND	500	100		t-1,3-Dichlorop	ropene		ND	500	100	
Bromobenzene	ND	500	100	· y 5	Ethylbenzene			ND	500	100	
Bromochloromethane	ND	500	100		2-Hexanone			ND	5000	100	
Bromodichloromethane	ND	500	100		Isopropylbenze	ene		ND	500	100	
Bromoform	ND	500	100		p-Isopropyltolu	ene	•	ND	500	100	
Bromomethane	ND	2500	100	4	Methylene Chl	oride		ND	5000	100	
2-Butanone	ND	5000	100	1 41	4-Methyl-2-Per	ntanone		ND	5000	100	
n-Butylbenzene	ND	500	100		Naphthalene			ND	5000	100	
sec-Butylbenzene	ND	. 500	100		n-Propylbenze	ne		ND	500	100	
tert-Butylbenzene	ND	500	100		Styrene			ND	500	100	
Carbon Disulfide	ND	5000	100		1,1,1,2-Tetrac	hloroethane		ND	500	100	
Carbon Tetrachloride	ND	500	100		1,1,2,2-Tetrac	hloroethane		ND	500	100	
Chlorobenzene	ND	500	100		Tetrachloroeth	ene		ND	500	100	
Chloroethane	ND	500	100		Toluene			ND	500	100	
Chloroform	ND	500	100		1,2,3-Trichlord	obenzene		ND	1000	100	
Chloromethane	ND	2500	100		1,2,4-Trichlore	obenzene		ND	500	100	
2-Chlorotoluene	ND	500	100		1,1,1-Trichlore	oethane		ND	500	100	
4-Chlorotoluene	ND	500	100		1,1,2-Trichlore	oethane		ND	500	100	
Dibromochloromethane	ND	500	100		1,1,2-Trichlore	o-1,2,2-Triflu	oroethane	ND	5000	100	
1,2-Dibromo-3-Chloropropane	ND	2500	100		Trichloroether	ne		ND	500	100	
1,2-Dibromoethane	ND	500	100		1,2,3-Trichlore			ND	500	100	
Dibromomethane	ND	500	100		1,2,4-Trimethy	ylbenzene		ND	500	100	
1,2-Dichlorobenzene	ND	500	100		Trichlorofluor			ND	5000	100	
1,3-Dichlorobenzene	ND	500	100		1,3,5-Trimeth	ylbenzene		ND	500	100	
1,4-Dichlorobenzene	ND	500	100		Vinyl Acetate			ND	5000	100	
Dichlorodifluoromethane	, ND	500	100		Vinyl Chloride			ND	500	100	
1,1-Dichloroethane	ND	500	100		Xylenes (total	,		ND	500	100	
1,2-Dichloroethane	ND	500	100		Methyl-t-Butyl		E)	ND	500	100	
1,1-Dichloroethene	ND	500	100		Tert-Butyl Alc			ND	5000	100	
c-1,2-Dichloroethene	ND	500	100	2.4	Diisopropyl E			ND	1000	100	
t-1,2-Dichloroethene	ND	500	100		Ethyl-t-Butyl I	•	•	ND .	1000	100	
1,2-Dichloropropane	' ND	500	100		Tert-Amyl-Me	thyl Ether (T	AME)	ND	1000	100	
1,3-Dichloropropane	ND	500	100	4	Ethanol			ND	50000	100	
2,2-Dichloropropane	ND	500	100		TPPH			160000	50000	100	
1,1-Dichloropropene	ND	500	100								01
Surrogates:	<u>REC (%)</u>	Control		Qual	Surrogates:			REC (%)	Control Limits		Qual
	404	<u>Limits</u>			1,2-Dichloroe	thana d4		102	73-145		
Dibromofluoromethane	101	73-139			1,2-Dichloroe			104	73-143		
Toluene-d8	103	90-108			1,4-010110110			10-7	, 1-113		
Toluene-d8-TPPH	106	88-112									

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

05/22/09

Work Order No:

09-05-2010

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

ug/kg

Project: 2350 Harrison St., Oakland, CA

Page 5 of 7

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tir Analyze	\sim	Batch ID
B177			09-05-2	010-8-A	05/20/09 13:28	Solid	GC/MS PP	-05/27/09-	05/28/0 07:29	9 05	0927L04
	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Parameter		·	2000	Quai	c-1,3-Dichlorop	ronene		ND	10000	2000	
Acetone	ND ND	250000 10000	2000	1 1	t-1,3-Dichlorop			ND	10000	2000	
Benzene	ND .		2000		Ethylbenzene	ropene		ND	10000	2000	
Bromobenzene Bromochloromethane	ND	10000 10000	2000		2-Hexanone			ND	100000	2000	
	ND		2000		Isopropylbenze	ane.		ND	10000	2000	
Bromodichloromethane	ND	10000 10000	2000		p-isopropyltolu			ND	10000	2000	
Bromoform					Methylene Chle			ND	100000	2000	
Bromomethane	ND ND	50000	2000 2000		4-Methyl-2-Per			ND	100000	2000	
2-Butanone		100000			Naphthalene	itanone		ND	100000	2000	
n-Butylbenzene	ND	10000	2000 2000		n-Propylbenze	ne		ND	100000	2000	
sec-Butylbenzene	ND	10000			Styrene	iie		ND	10000	2000	
tert-Butylbenzene	ND	10000	2000		1,1,1,2-Tetracl	hloroethane		ND	10000	2000	
Carbon Disulfide	ND	100000	2000		1,1,1,2-Tetraci			ND	10000	2000	
Carbon Tetrachloride	ND	10000	2000		Tetrachloroeth			ND	10000	2000	
Chlorobenzene	ND	10000	2000		Toluene	ene		ND	10000	2000	
Chloroethane	ND	10000	2000			bonzono		ND	20000	2000	
Chloroform	ND	10000	2000		1,2,3-Trichlord			ND	10000	2000	
Chloromethane	ND	50000	2000		1,2,4-Trichlord			ND	10000	2000	
2-Chlorotoluene	ND	10000	2000		1,1,1-Trichlord			ND	10000	2000	
4-Chlorotoluene	ND	10000	2000		1,1,2-Trichlord			ND	10000	2000	
Dibromochloromethane	ND	10000	2000		1,1,2-Trichloro Trichloroethen		ioroemane	ND ND	100000	2000	
1,2-Dibromo-3-Chloropropane	ND	50000	2000	1.	1 1 .			ND ND	10000	2000	
1,2-Dibromoethane	ND	10000	2000		1,2,3-Trichlord			ND	10000	2000	
Dibromomethane	ND	10000	2000		1,2,4-Trimethy				10000	2000	
1,2-Dichlorobenzene	ND	10000	2000	11	Trichlorofluoro			ND ND	10000	2000	
1,3-Dichlorobenzene	ND	10000	2000		1,3,5-Trimethy	/ibenzene		ND	100000	2000	
1,4-Dichlorobenzene	ND	10000	2000	j a	Vinyl Acetate			ND	100000	2000	
Dichlorodifluoromethane	ND	10000	2000	111	Vinyl Chloride			ND	10000	2000	
1,1-Dichloroethane	ND	10000	2000	ŧ.	Xylenes (total)		<u></u>	ND	10000	2000	
1,2-Dichloroethane	ND	10000	2000		Methyl-t-Butyl	•	· E)	ND	10000	2000	
1,1-Dichloroethene	ND	10000	2000		Tert-Butyl Alc	, ,		ND		2000	
c-1,2-Dichloroethene	ND	10000	2000		Diisopropyl Et		`		20000		
t-1,2-Dichloroethene	ND	10000	2000		Ethyl-t-Butyl E			ND	20000	2000	
1,2-Dichloropropane	ND	10000	2000		Tert-Amyl-Me	tnyi Etner (i	AME)	ND ND	20000	2000	
1,3-Dichloropropane	ND	10000	2000		Ethanol			–	1000000	2000 200	
2,2-Dichloropropane	ND	10000	2000		TPPH			230000	100000	200	
1,1-Dichloropropene	ND	10000	2000	0 -1	0			DEC (0/)	Control		Qual
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits		<u>Qual</u>	<u>Surrogates:</u>			REC (%)	Control Limits		Qual
Dibromofluoromethane	101	73-139			1,2-Dichloroe	thane-d4		103	73-145		
Toluene-d8	102	90-108			1,4-Bromofluo	orobenzene		103	71-113		
Toluene-d8-TPPH	104	88-112									

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received:

05/22/09

Work Order No:

09-05-2010

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

ug/kg

Project: 2350 Harrison St., Oakland, CA

Page 6 of 7

Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim		Batch ID
Method Blank,				798-455	ANA TER	Solid	GC/MS PP	05/27/09	05/28/09	05	0927L04
Method States									02:30		
		50 T163 LL 000 LL 310 02		armannikan mener				:		D.E.	OI
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result		<u>DF</u>	<u>Qual</u>
Acetone	ND	12000	100		c-1,3-Dichloro	•		ND	500	100	
Benzene	ND	500	100	100	t-1,3-Dichlorop	ropene		ND	500	100	
Bromobenzene	ND .	500	100		Ethylbenzene			ND	500	100	
Bromochloromethane	ND	500	100		2-Hexanone			ND	5000	100	
Bromodichloromethane	ND	500	100		Isopropylbenze			ND	500	100	
Bromoform	ND	500	100		p-Isopropyltolu			ND	500	100	
Bromomethane	ND	2500	100		Methylene Chi			ND	5000	100	**
2-Butanone	ND	5000	100		4-Methyl-2-Pe	ntanone		ND	5000	100	
n-Butylbenzene	ND	500	100		Naphthalene			ND	5000	100	
sec-Butylbenzene	ND	500	100		n-Propylbenze	ene		ND	500	100	
tert-Butylbenzene	ND	500	100		Styrene			ND	500	100	
Carbon Disulfide	ND	5000	100		1,1,1,2-Tetrac			ND	500	100	
Carbon Tetrachloride	ND	500	100		1,1,2,2-Tetrac		ND	500	100		
Chlorobenzene	ND	500	100		Tetrachloroeth	nene	ND	500	100		
Chloroethane	ND	500	100		Toluene		ND	500	100		
Chloroform	ND	500	100		1,2,3-Trichlore	and the second second	ND	1000	100		
Chloromethane	ND	2500	100		1,2,4-Trichlore			ND	500	100	
2-Chlorotoluene	ND	500	100		1,1,1-Trichlore			ND	500	100	
4-Chlorotoluene	ND	500	100		1,1,2-Trichlor			ND	500	100	
Dibromochloromethane	ND	500	100		1,1,2-Trichlor		uoroethane	ND	5000	100	
1,2-Dibromo-3-Chloropropane	ND	2500	100		Trichloroether			ND	500	100	
1,2-Dibromoethane	ND	500	100		1,2,3-Trichlor			ND	500	100	
Dibromomethane	ND	500	100		1,2,4-Trimeth			ND	500	100	
1,2-Dichlorobenzene	ND	500	100		Trichlorofluor			ND	5000	100	
1,3-Dichlorobenzene	ND	500	100		1,3,5-Trimeth	ylbenzene		ND	500	100	
1,4-Dichlorobenzene	ND	500	100		Vinyl Acetate			ND	5000	100	
Dichlorodifluoromethane	ND	500	100		Vinyl Chloride			ND	500	100	
1,1-Dichloroethane	ND	500	100	1	Xylenes (total			ND	500	100	
1,2-Dichloroethane	ND	500	100		Methyl-t-Buty	•	3E)	ND	500	100	
1,1-Dichloroethene	ND	500	100		Tert-Butyl Alc			ND	5000	100	
c-1,2-Dichloroethene	ND	500	100	- 1 Sec.	Diisopropyl E			ND	1000	100	
t-1,2-Dichloroethene	ND	500	100		Ethyl-t-Butyl I	•		ND	1000	100	
1,2-Dichloropropane	ND	500	100	p.	Tert-Amyl-Me	ethyl Ether (TAME)	ND	1000	100	
1,3-Dichloropropane	ND	500	100		Ethanol			ND .	50000	100	
2,2-Dichloropropane	ND	500	100	. 4	TPPH			ND	50000	100	
1,1-Dichloropropene	ND ·	500	100					550 (04)	0		Our
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane `	98	73-139			1,2-Dichloroe			97	73-145		
Toluene-d8	99	90-108			1,4-Bromoflu	orobenzene		101	71-113		
Toluene-d8-TPPH	99	88-112									
							1	*			

DF - Dilution Factor

100

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

05/22/09

Work Order No:

09-05-2010

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

ug/kg

Project: 2350 Harrison St., Oakland, CA

Page 7 of 7

Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tii Analyz	~ ~ ~	C Batch ID
Method Blank			A DE LOS DELOS DE LOS DELOS DE LOS DELOS DE LOS DE	798-460	. NA	Solid	GCIMS PP	05/29/09	05/29/ 13:46		05291.02
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual .
Acetone	ND	12000	100		c-1,3-Dichlorop	oropene		ND	500	100	
Benzene	ND	500	100		t-1,3-Dichlorop	ropene		ND	500	100	
Bromobenzene	ND	500	100		Ethylbenzene			ND	500	100	
Bromochloromethane	ND	500	100		2-Hexanone			ND	5000	100	
Bromodichloromethane	ND	500	100		Isopropylbenze	ene		ND	500	100	
Bromoform	ND	500	100		p-Isopropyltolu	ene		ND	500	100	
Bromomethane	ND	2500	100		Methylene Chlo	oride		ND	5000	100	
2-Butanone	ND	5000	100		4-Methyl-2-Per	ntanone		ND	5000	100	
n-Butylbenzene	ND	500	100		Naphthalene			ND	5000	100	
sec-Butylbenzene	ND	500	100		n-Propylbenze	ne		ND	500	100	
tert-Butylbenzene	ND	500	100		Styrene			ND	500	100	
Carbon Disulfide	ND	5000	100		1,1,1,2-Tetracl	hloroethane		ND	500	100	
Carbon Tetrachloride	ND	500	100		1,1,2,2-Tetracl	hloroethane		ND	500	100	
Chlorobenzene	ND	500	100		Tetrachloroeth	ene		ND	500	100	
Chloroethane	ND	500	100		Toluene			ND	500	100	
Chioroform	ND	500	100		1,2,3-Trichlord	benzene		ND	1000	100	
Chloromethane	ND	2500	100		1,2,4-Trichlord	benzene		ND	500	100	
2-Chlorotoluene	ND	500	100		1,1,1-Trichlord	ethane		ND	500	100	
4-Chlorotoluene	ND	500	100		1,1,2-Trichlord	ethane		ND	500	100	
Dibromochloromethane	ND	500	100		1,1,2-Trichlord	5-1,2,2-Trifluo	oroethane	ND	5000	100	
1,2-Dibromo-3-Chloropropane	ND	2500	100		Trichloroethen	ie		ND	500	100	
1,2-Dibromoethane	ND	500	100		1,2,3-Trichlord	propane		ND .	500	100	
Dibromomethane	ND	500	100		1,2,4-Trimethy	/ibenzene		ND	500	100	
1,2-Dichlorobenzene	ND	500	100		Trichlorofluoro	methane		ND	5000	100	
1,3-Dichlorobenzene	ND	500	100		1,3,5-Trimethy	ylbenzene		ND	500	100	
1,4-Dichlorobenzene	ND	500	100		Vinyl Acetate			ND	5000	100	
Dichlorodifluoromethane	ND	500	100		Vinyl Chloride			ND ·	500	100	
1,1-Dichloroethane	ND	500	100		Xylenes (total))		ND	500	100	
1,2-Dichloroethane	ND	500	100		Methyl-t-Butyl		Ξ)	ND	500	100	
1,1-Dichloroethene	ND	500	100		Tert-Butyl Alc			ND	5000	100	
c-1,2-Dichloroethene	ND	500	100		Diisopropyl Et			ND	1000	100	
t-1,2-Dichloroethene	ND	500	100		Ethyl-t-Butyl E	ther (ETBE)		ND	1000	100	
1,2-Dichloropropane	ND	500	100		Tert-Amyl-Me	thyl Ether (T/	AME)	ND	1000	100	
1,3-Dichloropropane	ND	500	100		Ethanol			ND	50000	100	
2,2-Dichloropropane	ND	500	100		TPPH			ND	50000	100	
1,1-Dichloropropene	ND	500	100								
Surrogates:	REC (%)	Control Limits	Ţ.	Qual	Surrogates:			<u>REC (%)</u>	Control Limits		Qual
Dibromofluoromethane	107	73-139	1	1.738	1,2-Dichloroel	thane-d4		110	73-145		
Toluene-d8	100	90-108	(h)		1,4-Bromofluo	orobenzene		97	71-113		
Toluene-d8-TPPH	100	88-112	84	3							

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received:

05/22/09

Work Order No:

09-05-2010

Project: 2350 Harrison St., Oakland, CA

Page 1 of 2

Client Sample Number		Lab S	ample Num	nber Dat Collec		1atrix		
B-1, 5.5		09-0	5-2010:1	05/20	yō9 l s	solia :		
		.	DE.	Overl	Lleite	Data Branarad	Data Analyzad	Method
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	
HEM: Oil and Grease	3000	100	1		mg/kg	05/28/09	05/28/09	EPA 1664A M
	Service Control	00.0	5-2010-2	05/20	ning	Solid	Adjula	
B-1-10'		U3- 0	15-20 10-2		141		113	
_	·	Di	DE	Ougl	Linito	Date Prepared	Date Analyzed	Method
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		•	
HEM: Oil and Grease	ND	10	1		mg/kg	05/28/09	05/28/09	EPA 1664A M
	ISTRALITY I THE I WAS A RELIGIO	1775115957F)		05/2		Solid	NATSHAISES.	
BC1-15*			05-2010-3					
			s Toleya.					
<u>Parameter</u>	Result	RL 🔓	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
HEM: Oil and Grease	ND	10	1		mg/kg	05/28/09	05/28/09	EPA 1664A M
Brown word and the second of t		COMMENSACION TO			Est Salitale			
B.4.5.5 (1)		. 1	05520(10:24	, , , , , , , , , , , , , , , ,		Solid :		
						•		
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	Method
HEM: Oil and Grease	190	10	1		mg/kg	05/28/09	05/28/09	EPA 1664A M
					TO SHARE SECTION AS A STATE OF THE SECTION AS		esante suprembrazante si il a si di s	
B-4-10%		09-	05:2010-5	05/2	20/09	Solid		
Internation are stated in a property of the state of the								
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	Method
HEM: Oil and Grease	68	10	. 1		mg/kg	05/28/09	05/28/09	EPA 1664A M

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

Work Order No:

05/22/09 09-05-2010

Project: 2350 Harrison St., Oakland, CA

Page 2 of 2

Client Sample Number		Lab San	nple Numb	oer Date Collect		Matrix		
B-4-161		(09-05-	2010-6	05/20/	09	Solid		
Secretaria de la Companio de La Comp			y year have					
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	Method
HEM: Oil and Grease	ND	10.	1		mg/kg	05/28/09	05/28/09	EPA 1664A M
				orae ar ar	uhise 3 S.	140411111111111111111111111111111111111		
B-15 3		09405	2010:74*.	05/20		Solic		
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
HEM: Oil and Grease	11	10	1		mg/kg	05/28/09	05/28/09	EPA 1664A M
			A Section 1	ar Kara Salahan	elektristis	programme and the second	- Para Sura Burg	
B-1-7'		09-05	-2010-8	05/20	/09	Solid	200 100 - 100 100 100 100 100 100 100 100 10	
					:			
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
HEM: Oil and Grease	290	10	1		mg/kg	05/28/09	05/28/09	EPA 1664A M
		STN 1937 SEASON		Sifemen				
Method Blank				NV#		Solig - Program		
			1.74					
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	Method
HEM: Oil and Grease	ND	10	1 ,		mg/kg	05/28/09	05/28/09	EPA 1664A M

RL - Reporting Limit

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method: 05/22/09 09-05-2010 EPA 3550B EPA 8015B

Project 2350 Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	M ed	S/MSD Batch Number	
B-1-10's	Solid	GC 43	05/24/09	05/26/	09	090524S05
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Diesel Range Organics	88	95	64-130	6	0-15	

CL - Control Limit

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 05/22/09 09-05-2010 EPA 3550B EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepare	d	Date Analyzed	MS/MSD Batch Number
B.4:15	≓j, '' ≥ Solid	GC 43	05/24/09		05/26/09	090524506
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	89	99	64-130	11	0-15	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

05/22/09 09-05-2010 **EPA 5030B** LUFT GC/MS / EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Malyzed	S/MSD Batch Number
09-05-2122-2	Solid	GCINS PP.	05/27/09	0.	J28/09	090527501
The state of the s	MANAGARIA CAMILE ANGO COMO MASO A COMO COMO COMO COMO COMO COMO COMO C					
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	98	98	79-115	. 1	0-13	
Carbon Tetrachloride	107	108	55-139	2	0-15	
Chlorobenzene	96	97	79-115	1	0-17	
1,2-Dibromoethane	99	99	70-130	0	0-30	
1,2-Dichlorobenzene	93	94	63-123	1	0-23	
1,1-Dichloroethene	96	96	69-123	0	0-16	
Ethylbenzene	99	99	70-130	0 .	0-30	
Toluene	97	97	79-115	0	0-15	
Trichloroethene	96	96	66-144	0	0-14	
Vinyl Chloride	113	112	60-126	0	0-14	
Methyl-t-Butyl Ether (MTBE)	1007	1058	68-128	2	0-14	3
Tert-Butyl Alcohol (TBA)	92	89	44-134	3	0-37	
Diisopropyl Ether (DIPE)	91	92	75-123	1	0-12	
Ethyl-t-Butyl Ether (ETBE)	99	98	75-117	. 0	0-12	
Tert-Amyl-Methyl Ether (TAME)	99	99	79-115	1	0-12	
Ethanol	16	36	42-138	75	0-28	3,4

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 05/22/09 09-05-2010 EPA 5030B LUFT GC/MS / EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Α	Date nalyzed	MS/MSD Batch Number
09-05-2431-1	Solid	GC/MS PP	05/29/09	Ō	5/29/09	090529801
	,					
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
	1.4	() 18				
Benzene	98	99	79-115	2	0-13	
Carbon Tetrachloride	120	125	55-139	5	0-15	
Chlorobenzene	101	102	79-115	1	0-17	
1,2-Dibromoethane	102	103	70-130	1	0-30	
1,2-Dichlorobenzene	98	100	63-123	2	0-23	
1,1-Dichloroethene	101	102	69-123	2	0-16	
Ethylbenzene	103	103	70-130	1	0-30	
Toluene	99	101	79-115	2	0-15	
Trichloroethene	105	107	66-144	2	0-14	
Vinyl Chloride	113	117	60-126	3	0-14	
Methyl-t-Butyl Ether (MTBE)	101	105	68-128	4	0-14	
Tert-Butyl Alcohol (TBA)	98	97	44-134	1	0-37	
Diisopropyl Ether (DIPE)	89	93	75-123	4	0-12	
Ethyl-t-Butyl Ether (ETBE)	93	96	75-117	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	94	98	79-115	3	0-12	
Ethanol	120	118	42-138	2	0-28	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/À 09-05-2010 EPA 3550B EPA 8015B

Project: 2350 Harrison St., Oakland, CA

Quality Control Sample ID	Matrix I	nstrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
099-12-025-726	Solid :	GC 43	05/24/09	05/26/09	090524B05	
<u>Parameter</u>	LCS %REC	LCSD %F	REC %RE	C CL RPD	RPD CL	Qualifiers
Diesel Range Organics	97	98	75	-123 1	0-12	

CL - Control Limit

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

N/A 09-05-2010 **EPA 3550B** EPA 8015B (M)

Quality Control Sample ID	Matrix Ir	nstrument F	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
099-12-254-767	Solid	GC 43	05/24/09	05/26/09	090524B06	
<u>Parameter</u>	LCS %REC	LCSD %RE	C %REC C	L RPD	RPD CL	Qualifiers
TPH as Motor Oil	85	87	75-123	2	0-12	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

N/A

Work Order No:

09-05-2010

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Project: 2350 Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD E Number	
099-12-798-455	Solid	GC/MS PP	05/27/09	05/28	09	050927L0	4
Parameter	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	96	99	84-114	79-119	3	0-7	
Carbon Tetrachloride	103	. 109	66-132	55-143	6	0-12	
Chlorobenzene	98	100	87-111	83-115	2	0-7	
1,2-Dibromoethane	104	106	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	101	99	79-115	73-121	2	0-8	
1,1-Dichloroethene	92	98	73-121	65-129	6	0-12	
Ethylbenzene	100	103	80-120	73-127	2	0-20	
Toluene	96	100	78-114	72-120	4	0-7	
Trichloroethene	106	105	84-114	79-119	1	0-8	
Vinyl Chloride	104	112	63-129	52-140	8	0-15	
Methyl-t-Butyl Ether (MTBE)	97	98	77-125	69-133	2	0-11	
Tert-Butyl Alcohol (TBA)	96	95	47-137	32-152	1	0-27	•
Diisopropyl Ether (DIPE)	86	87	76-130	67-139	2	0-8	
Ethyl-t-Butyl Ether (ETBE)	94	95	76-124	68-132	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	96	97	82-118	76-124	1	0-11	
Ethanol	118	106	59-131	47-143	11	0-21	
ТРРН	96	100	65-135	53-147	3	0-30	

Total number of LCS compounds: 17
Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result : Pass

171 18

09-05-2010

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Project: 2350 Harrison St., Oakland, CA

Matrix	Instrument	Date Prepared			LCS/LCSD E Number	
. Solie	GCIMS PP	05/29/08	- 05/29	09.	09052914) 2
LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
99	97	84-114	79-119	3	0-7	
118	115	66-132	55-143	2	0-12	
103	101	87-111	83-115	2	0-7	
104	107	80-120	73-127	3	0-20	
104	101	79-115	73-121	3	0-8	
99 - <u> 1</u>	., 97	73-121	65-129	2	0-12	
104	101	80-120	73-127	2	0-20	
100	98	78-114	72-120	3	0-7	
106	101	84-114	79-119	5	0-8	
108	107	63-129	52-140	1	0-15	
98	102	77-125	69-133	3	0-11	
97	99	47-137	32-152	2	0-27	
90	90	76-130	67-139	0	0-8	
96	98	76-124	68-132	2	0-12	
98	100	82-118	76-124	2	0-11	
127	115	59-131	47-143	10	0-21	
97	96	65-135	53-147	1	0-30	
	99 118 103 104 104 100 106 108 98 97 90 96 98 127	LCS %REC LCSD %REC 99 97 118 115 103 101 104 107 104 101 99 97 104 101 109 97 104 101 100 98 106 101 108 107 98 102 97 99 90 90 96 98 98 100 127 115	Matrix Instrument Prepared Solid GC/MS PP 05/29/09 LCS %REC LCSD %REC %REC CL 99 97 84-114 118 115 66-132 103 101 87-111 104 107 80-120 104 101 79-115 99 97 73-121 104 101 80-120 100 98 78-114 106 101 84-114 108 107 63-129 98 102 77-125 97 99 47-137 90 90 76-130 96 98 76-124 98 100 82-118 127 115 59-131	Matrix Instrument Prepared Analysis Solid GC/MS PP 05/29/09 05/29/09 LCS %REC LCSD %REC %REC CL ME CL 99 97 84-114 79-119 118 115 66-132 55-143 103 101 87-111 83-115 104 107 80-120 73-127 104 101 79-115 73-121 99 97 73-121 65-129 104 101 80-120 73-127 100 98 78-114 72-120 106 101 84-114 79-119 108 107 63-129 52-140 98 102 77-125 69-133 97 99 47-137 32-152 90 90 76-130 67-139 96 98 76-124 68-132 98 100 82-118 76-124 127 115	Matrix Instrument Prepared Analyzed Solid GC/MS PP 05/29/09 05/29/09 LCS %REC LCSD %REC %REC CL ME CL RPD 99 97 84-114 79-119 3 118 115 66-132 55-143 2 103 101 87-111 83-115 2 104 107 80-120 73-127 3 104 101 79-115 73-121 3 99 97 73-121 65-129 2 104 101 80-120 73-127 2 104 101 80-120 73-127 2 100 98 78-114 72-120 3 106 101 84-114 79-119 5 108 107 63-129 52-140 1 98 102 77-125 69-133 3 97 99 47-137 32-152 2	Matrix Instrument Prepared Analyzed Number Solid GC/MS PP 05/29/09 05/29/09 05/29/09 080529 Lt LCS %REC LCSD %REC %REC CL ME CL RPD RPD CL 99 97 84-114 79-119 3 0-7 118 115 66-132 55-143 2 0-12 103 101 87-111 83-115 2 0-7 104 107 80-120 73-127 3 0-20 104 101 79-115 73-121 3 0-8 99 97 73-121 65-129 2 0-12 104 101 80-120 73-127 2 0-20 100 98 78-114 72-120 3 0-7 106 101 84-114 79-119 5 0-8 108 107 63-129 52-140 1 0-15 98 102 77-125<

Total number of LCS compounds: 17
Total number of ME compounds: 0

Total number of ME compounds allowed :

LCS ME CL validation result: Pass

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No.

N/A 09-05-2010

Matrix: Solid 1999									
<u>Parameter</u>	Method	<u>Quality Control</u> Sample ID	<u>Date</u> Extracted	<u>Date</u> Analyzed	LCS % REC	LCSD % REC	%REC CL R	PD CL	Qual
HEM: Oil and Grease	EPA 1664A M	099-12-040-206	05/28/09	05/28/09	92	92	80-120	0 0-20	

Glossary of Terms and Qualifiers

Work Order Number: 09-05-2010

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
C	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

	LAB (LOCATION)				()		Sh	ell	Oil	Pi	roc	luc	:ts	C	ha	in (Of	Cus	tody	y R	ec	orc	1						
⊘ CAL	SCIENCE ()	14.14.14.14.14.14.14.14.14.14.14.14.14.1	ما 🛭 🔆	ase Check	k Apr	orop	riate					it Bil									IN	CIDI	ΝŢ	‡ (El	۷V.S	ER∖	/ICE	S) c	CHECK IF	NO INCIDENT # APPL	
SPL	. ()	ENV	. SERVICES		OTIVA				HELL RE			Den									9	7	7	4	3	9	6	9	DATE:	5/20/0	29
☐ XEN	чсо ()	=	TIVA SD&CM		ONSULT					==	-:-:-:-	en∪	13 D	. UWI	_	PO	Ĥ∵.					:::::		SAF						-17	
TES	ST AMERICA ()					ANI		ا سار		-		•	· · · · · · · · · · · · · · · · · · ·	•	····'		<u></u>	······	1					••••	Ť	Ť	Ť	::::	PAGE: _	1 of _	1_
🗖 от	HER ()	SHE	LL PIPELINE						=												1 State	7	3	GLOE	1 ALIDNO	8					
SAMPLING					LOG CO							ADDRE				, e+	٥.	aklan	ıd		CA				6001	102	237				
Cones	toga-Rovers & Associates		-		CRA	VV					EDF DE	U (23	LE TO (Name, Co	mpany.	Office Lo	cation)	aklan	<u>j</u>	HONE NO:	19.	<u> </u>		E MAIL:						CONSULTANT PROJECT NO	ō:
5900 H	CONTACT (Hardsop or PDF Report to)	· · ·										nda C			, Em	eryv	ille			10-420-	3343			shel	edf@d	crawo	orid.c		USE ONLY:	i0119	
	Schaefer											Rei			/lu															• Om	10
TELEPHO	510-420-3319 FAX 510-420-9170		E-MAIL:	pscha	aefer@	<u>Dcraw</u>	orld.co	<u>om</u>																					U	j- 20	٠,٠
	AROUND TIME (CALENDAR DAYS):							SULTS N													REQUE	STE	ANA C	\LY!	SIS						
	NDARD (14 DAY) 5 DAYS 3 DAYS		2 DAYS	☐ 24 HO	URS				ON WE	EKEND	 		1			1		П		\neg		Γ				\neg		Т	TEA	PERATURE ON RE	ECEIDT
□ 14	- RWQCB REPORT FORMAT UST AGENCY:				40:		TP										_							8				- [I EM	C°	UVEIT I
SPE	ECIAL INSTRUCTIONS OR NOTES:			SHELL STATE					rFS		_						2608			1				(6010)						•	
			. :	☐ EDD N			CHI KAI	, c Arru			88			<u></u>			ne(8;	8									ا _				
				☐ EDD N			ON REO	UESTED)		TPH - Purgeable (8260B)			(8260B)			1,1,2,2-tetrachloroethane(8260B)	Scan VOCs (8260B)	<i>:</i> -	.		Ξ	3K)	- Total			Oil & Grease (418.1)			- 1	100
		2	3 - A. 	a neece							ğ	<u>~</u>	<u>ش</u>		<u>a</u>		loro	ပ္လ	-			200	(8015M)	als.	00	اء	e (4	<u>§</u>	- 1		401
		ŞAM	PLING		L.,	PR	ESERVA	TIVE	\dashv		ğ	260E	260E	nate	260	80B	trach	٥	- 1			Methanol (8015M)	0	CAM17 Metals	SVOCs (8270C)	VOCs (8260)	reas	TPHd (8015M)	- 1		Salta 1
	Field Sample Identification		teria.	MATRIX						NO. OF CONT.	٦	3 (8,	(8) X	yge	8	(82	2-tel	Sca				la j	TPH - MO	417	ŭ	8	20	₽	٥ ا	ontainer PID Read or Laboratory Not	
LAB USE OMLY	The manifest indicated and	DATE	TIME						ke OTUEP		Ĕ	TPHg (8260B)	BTEX (8260B)	5 Oxygenates	MTBE (8260B)	TBA (8260B)	1,1	臣		.		Met	Ē	Ş	SK	Š	₹	₽		2000.atory (10)	- 150 - 3+1 4.
ONLY	B-1 ← 5.5 ′··	5/20/-	1:26	Soil	HCL	HNO3	H2SO4	NONE	X	a	H	X				-	Ė	X					Π				Х	х			
		ومامد	1:30		\vdash	\vdash		-			十	1	\vdash	H	\neg	-	Т	x		一	\top	П					х	х		****	,-
2	B- 1 - 10' ··			Soil	_		,		X	<u> 2</u>	┢	X	-	Н	-		-	l - 1			+-	\vdash	╁	┢	-		X	$\frac{\hat{x}}{x}$			
ź	B- 1-15' **		1:35	Soil	_	_			X	1	\vdash	X	L				-	X			+-	+-	1.,	-	\vdash	\dashv	-	ᢌ	+-		
4	B. 4-5.5		2:35	Soil		$oxed{oxed}$			Х	2	<u> </u>	<u> </u>					-	\vdash		- -	+-	├-	X	_	\vdash		X	싃	+-	·	
5	B- 4 - 10' ··		2.40	Soil					Х	1	L	_					_	Ш			_	<u> </u>	X	<u> </u>	\vdash		X	4	-		
6	B-4-15'	V	2:45						X	2							L						X	_			$ \mathcal{X} $	<u> </u>	4-		
	· · · · · · · · · · · · · · · · · · ·	•																				L	1_	_	Ш						
						П						Π																			
			 	C 1	+-	\vdash				_	+	1	-			_	-	X	Н	\dashv	$\exists \vdash$	<u> </u>	1	Г	П		1	0			
7			1133	1100	_			_	χ	7	╀	X.	-			-	_			+	-	\vdash	╁╴	\vdash	\vdash		X		-+-		
8	B-1-7'.	5/20/6	1:28	501)					X	2	<u> </u>	X	<u> </u>					X					Date	<u> </u>	لِـا		Ш	M	Time:		
Relinquis	shed by: (Signature)			Received by: (S	Signature	») —		0																ち	1/2	ع	/		; 5	:00	
Tr	- Huchan			<u> </u>	ec	مر	<u> </u>	<u> </u>	00	a	₹ ~									-			Date	<u> </u>	/		`		Time:		
Retinquis	shed by: (Signature)	/	_	Received by: (\$	Popular	~ :-	>	_		_		(`_F	£(_					•				5	21	~(\mathcal{S}^{a}		15	15	
Relinquis	shed by: (Signature)	<u> </u>	<u> </u>	Received by: (S	Signature			(<u> </u>	,												Dat	/		1	~ ~		Time:	1:00	
(4	shad by: (Signature)	1-03	<u> </u>				D	41	10	4	le			CZ		_								7	11		9			2/06 Revision	
	TK#51191286	5						,		•				,																	

Calscience Environmental Laboratories, Inc.

WORK ORDER #: 09-05-26 of 26

SAMPLE RECEIPT FORM

CLIENT: CRA	DATE:	05/24	109
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature 3 0 °C - 0.2 °C (CF) = 2 8 °C Sample(s) outside temperature criteria (PM/APM contacted by:). Sample(s) outside temperature criteria but received on ice/chilled on same	Blank	□ Sample	e
☐ Received at ambient temperature, placed on ice for transport by C Ambient Temperature: ☐ Air ☐ Filter ☐ Metals Only ☐ PCB	Courier.		<u>M</u>
CUSTODY SEALS INTACT:	;	Initia Initial	
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples		No	N/A
COC document(s) received complete			
Sampler's name indicated on COC			
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition	. •		
Correct containers and volume for analyses requested			
Analyses received within holding time			
Proper preservation noted on COC or sample container	u	, u	
Volatile analysis container(s) free of headspace	П		D/
Tedlar bag(s) free of condensation	1		D
CONTAINER TYPE:			•
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores®	□TerrjaCc	res® □	
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AG	B p □1ÅGB	□1AGBna₂	□1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CG	Bs □1PB	□500PB □	500PB na
□250PB □250PBn □125PB □125PBznna □100PB □100PBna₂ □	J]]
Air: ☐Tedlar® ☐Summa® ☐ Other: ☐ Container: C: Clear A: Amber P: Plastic G: Glass J: Jar (Wide-mouth) B: Bottle (Narrov Preservative: h: HCL n: HNO3 na ₂ :Na ₂ S ₂ O ₃ Na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ znna: ZnAc ₂ +Nat	v-mouth)	ed/Labeled by Reviewed by Scanned by	1: Wis

June 08, 2009

Peter Schaefer Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.:

Client Reference:

09-05-2011

2350 Harrison St., Oakland, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 5/22/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Jessi Cee

Calscience Environmental Laboratories, Inc. Jessie Lee Project Manager

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 05/22/09 09-05-2011 N/A

EPA 1664A

Project: 2350 Harrison St., Oakland, CA

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HP-1		09-05-2011-1-F	05/20/09 09:37	Aqueous	N/A	06/02/09	06/02/09 12:45	90602HEML1
Parameter	Result	I. RL	<u>DF</u>	Qual	<u>Units</u>			
HEM: Oil and Grease	111	10	1		mg/L			
HP-2		09-05-2011-2-F	05/20/09 11.37	Aqueous	N/A	06/02/09	06/02/09 12:45	90602HEML1
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
HEM: Oil and Grease	715	10	1		mg/L			
Method Blank		099-05-11-9-1;91	5 NA	Aqueous	. NA	06/02/09	06/02/09 12:45	90602HEML1
Parameter	, <u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>		Access and the second s	Hole-esten profiter to all the resulting and the resulting of the resulting and the
HEM: Oil and Grease	ND	1.0	1		mg/L			

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

05/22/09 09-05-2011 EPA 3510C EPA 8015B

Project: 2350 Harrison St., Oakland, CA

Page 1 of 1

Project: 2350 Harrison St., C	Jakiand, CA						га	ge i oi i
Client Sample Number	-	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-1		09-05-2011-1-A	05/20/09 09:37	Aqueous	GC 46	05/27/09	06/01/09 13:29	090526B(3:
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	36000	2500	50		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	109	68-140				-		
HP-2 Transfer of the State Sta		09:05-2011:2-A	05/20/09 11/31	Aqueous	GC 46	05/27/09	06/01/09 13:45	. 090526B13
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	58000	2500	50		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	118	68-140						
Method Blank		099-12-211-1,16	g NÁ	. Aqueous	GC 46	05/26/09	05/29/09 21:43	: 090526B4K
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			•
Diesel Range Organics	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	111	68-140	•					
		*						

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

05/22/09

Work Order No:

09-05-2011

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

ug/L

Project: 2350 Harrison St., Oakland, CA

Page 1 of 1

	· · · · · · · · · · · · · · · · · · ·										
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		C Batch
uHP-1000				2011-1-6	05/20/09	Adienis	GC/MS RK		06/01/		90601L0
					09:37				20:3	9 1	
				,2103.54 L							
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	5.0	10		Tert-Butyl Alco	ohol (TBA)		ND	100	10	
Ethylbenzene	ND	10	10		Diisopropyl Eth	ner (DIPE)		ND	20	10.	
Toluene	ND	10	10		Ethyl-t-Butyl E	•	,	ND .	20	10	
Xylenes (total)	ND	10	10		Tert-Amyl-Met	hyl Ether (1	ΓAME)	ND	20	10	
Methyl-t-Butyl Ether (MTBE)	ND	10	10		TPPH			11000	500	10	
<u>Surrogates:</u>	REC (%)	<u>Control</u>		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>
Dib we we offly a very season of the season	07	<u>Limits</u>			4.2 Dichlars -#	hono 44		98	<u>Limits</u> 74-146		
Dibromofluoromethane Toluene-d8	97 99	74-140			1,2-Dichloroet Toluene-d8-TF			98 97	74-146 88-112		
1,4-Bromofluorobenzene	99 97	88-112 74-110			i diuerie-uo- i i			91	00-112		
ENDOS EN TRE EN					[594254851 <u>][5]153045</u> 18						
HR2			09-05-	2011-2-C	05/20/09 11/31	Aqueous	: GC/MS RF	: 06/01/09	21:0	4 4	090601110
			ide. F								
Darameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
<u>Parameter</u>				Quai		-b-1/TDA\					<u>Quai</u>
Benzene Ethylbenzene	ND ND	5.0 10	10 10	4.44	Tert-Butyl Alco Diisopropyl Et	,		ND ND	100 20	10 10	
Toluene	ND ND	10	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ethyl-t-Butyl E	` ,		ND	20	10	
Xvienes (total)	ND	10	10		Tert-Amyl-Me	• .	•	ND	20	10	
Methyl-t-Butyl Ether (MTBE)	ND	10	10		TPPH	aryr Euror (i AiviL)	14000	500	10	
Surrogates:	REC (%)	Control	10	Qual	Surrogates:			REC (%)	Control	10	Qual
<u>ourrogatoo.</u>	1120 (70)	Limits			Janegarea				Limits		
Dibromofluoromethane	97	74-140			1,2-Dichloroet	hane-d4		97	74-146		
Toluene-d8	99	88-112			Toluene-d8-T	PPH		98	88-112		
1,4-Bromofluorobenzene	100	74-110	<u> </u>		<u> </u>			41.100			•
Method Blank			099-12	≥767-1.8B	ž L Nati	Aqueous	GC/MS R	R 06/01/09	06/01	/09###	0906011
									16.5	i3	
The model article of the production of the first of the state of the s	Control Company (Control Control Contr				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						
<u>Parameter</u>	<u>Result</u>	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
Ethylbenzene	ND	1.0	1		Diisopropyl Et	,		ND	2.0	1	
Toluene	ND	1.0	1		Ethyl-t-Butyl E	•	,	ND	2.0	1	
Xylenes (total)	ND ·	1.0	1		Tert-Amyl-Me	thyl Ether (TAME)	ND	2.0	1	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1	,	TPPH			ND	50	• 1	0 -1
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>	Surrogates:			REC (%)	Control		<u>Qual</u>
Dibromofluoromothana		<u>Limits</u>			1.2 Diablaras	thano d4		100	Limits		
Dibromofluoromethane	99 99	74-140			1,2-Dichloroe Toluene-d8-T			100 97	74-146 88-112		
Toluene-d8	99 98	88-112 74-110			i Oluelle-ud- I	FER		ופ	00-112		
1,4-Bromofluorobenzene	90	14-110									

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 05/22/09 09-05-2011 EPA 5030B LUFT GC/MS / EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09=05-2040=1	Aque	ous GC/MS RR	06/01/09		06/02/09	090601801: ÷
Rose to the Assertance I college of a second regime in a second of the Assertance in Co. at a second in the second of a second of the second o						
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	92	93	88-118	1	0-7	
Carbon Tetrachloride	79	85	67-145	7	0-11	•
Chlorobenzene	89	89	88-118	1,	0-7	
1,2-Dibromoethane	94	93	70-130	. 1	0-30	
1,2-Dichlorobenzene	88	88	86-116	1	0-8	
1,1-Dichloroethene	87	88	70-130	0	0-25	
Ethylbenzene	88	88	70-130	1	0-30	
Toluene	90	90	87-123	0	0-8	
Trichloroethene	88	89	79-127	1	0-10	
Vinyl Chloride	91	92	69-129	2	0-13	
Methyl-t-Butyl Ether (MTBE)	93	92	71-131	2	0-13	
Tert-Butyl Alcohol (TBA)	93	96	36-168	2	0-45	
Diisopropyl Ether (DIPE)	91	92	81-123	1	0-9	
Ethyl-t-Butyl Ether (ETBE)	91	90	72-126	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	90	90	72-126	0	0-12	
Ethanol	92	87	53-149	5	0-31	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 09-05-2011 N/A EPA 1664A

Quality Control Sample ID	//atrix	Instrument	Date Prepared	Date Analyzed		SD Batch mber
099-05-119-1,915 Aqu	leous	N/A	06/02/09	06/02/09	90602	HEML1
<u>Parameter</u>	LCS %RE	C LCSD %	REC %RE	EC CL R	PD RPI	O CL Qualifiers
HEM: Oil and Grease	92	91	78	-114	1 0	-18

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 09-05-2011 EPA 3510C EPA 8015B

Project: 2350 Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number	1
099-12-211-1;169	Aqueous	GC 46	05/26/09	05/29/09	090526B13	
<u>Parameter</u>	LCS %RI	EC LCSD %F	REC %REC C	L RPD	RPD CL	Qualifiers
Diesel Range Organics	113	115	75-117	2	0-13	

CL - Control Limit

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No:

N/A 09-05-2011

Preparation:

EPA 5030B

FAX; (714) 894-7501

Method:

LUFT GC/MS / EPA 8260B

Project: 2350 Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD E Number	
099-12-767-1,882	Aqueous	GC/MS RR	06/01/09	06/01	/09	090601L0	n
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	92	91	84-120	78-126	2	0-8	
Carbon Tetrachloride	91	91	63-147	49-161	0	0-10	
Chlorobenzene	92	91	89-119	84-124	1	0-7	
1,2-Dibromoethane	94	96	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	92	90	89-119	84-124	2	0-9	
1,1-Dichloroethene	92	90	77-125	69-133	2	0-16	
Ethylbenzene	92	91	80-120	73-127	1	0-20	
Toluene	91	90	83-125	76-132	2	0-9	
Trichloroethene	92	90	89-119	84-124	3	0-8	
Vinyl Chloride	93	99	63-135	51-147	6	0-13	
Methyl-t-Butyl Ether (MTBE)	93	94	82-118	76-124	1	0-13	
Tert-Butyl Alcohol (TBA)	90	89	46-154	28-172	1	0-32	
Diisopropyl Ether (DIPE)	94	93	81-123	74-130	1	0-11	
Ethyl-t-Butyl Ether (ETBE)	92	93	74-122	66-130	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	92	93	76-124	68-132	1	0-10	
Ethanol	81	· 72	60-138	47-151	12	0-32	
TPPH	77	78	65-135	53-147	2	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

d :

Glossary of Terms and Qualifiers

Work Order Number: 09-05-2011

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.
	•

LAB (LOCATION)			<u>⊮</u> } She	II C	Dil	Pro	odu	cts	s C	na	ın (of Cus									
☑ CALSCIENCE ()	Ple	ase Check Appr	opriate Box:		Print	Bill	To C	onta	ct N	ame			INC	DEN	#.(1	ΝV	SER	AICE	S):	CHE	CK IF NO INCIDENT # APPLIES
SPL ()	ENV. SERVICES	MOTIVA RET	AIL SHELL RETA	Œ.		enis	Bro	٧n					9	7	7 4	1 3	9	6	9	DAT	E 5/20/05
XENCO ()	MOTIVA SD&CM	CONSULTAN	T UBES						PO	#::					S/	P:#				DAC	6E:1 of1
TEST AMERICA ()	SHELL PIPELINE	OTHER		干片	1	T	1	T	1					7	3	3	Τ.			PAG	E 01 1
OTHER ()		LOG COOE		=\	SITE AL	DRESS	Street a	nd City	L				State		T1	OBAL ID N	10:				
Conestoga-Rovers & Associates		CRAW		<u>:</u>	2350	(236	8) Ha	ırrise	on S	t., O	aklan	d	CA		T	260	010	2237	7		CONSULTANT PROJECT NO:
ADDRESS: 5900 Hollis Street, Suite A, Emeryville, CA 94608					OF DELM	ERABLE 1	ter, Cl	Company.	Office Lo	cation):		PHONE NO.:				~				•	
PROJECT CONTACT (Hardcopy or PDF Report to).					SAMPLE							510-420-	3343		sh	elledf(@crav	vorld.c		use o	60119 MCV
Peter Schaefer TELEPHONE FAX	E-MAIL						nart-K	oylu													S- 2011
510-420-3319 510-420-9170		pschaefer@ci	raworld.com																	V	<i>2 4</i> 2 1
TURNAROUND TIME (CALENDAR DAYS): STANDARD (14 DAY) 5 DAYS 3 DAYS	2 DAYS	24 HOURS	RESULTS NEEDED ON WEEKEND							.		F	REQUEST	ED A	VAL)	'SIS	, -	,			
☐ LA - RWQCB REPORT FORMAT ☐ UST AGENCY:																				Т	EMPERATURE ON RECEIPT C°
SPECIAL INSTRUCTIONS OR NOTES :		SHELL CONTRACT														1					
SPECIAL INSTRUCTIONS OR NOTES.		_	SEMENT RATE APPLIES								90										
	4	EDD NOT NEEDE		•		1					TAME, & TBA (8260B)								 		
		RECEIPT VERIFIC	ATION REQUESTED							_	種							2664			
	SAMPLING		PRESERVATIVE					11.50		1,1,2,2-tetrachloroethane(8260B)	и <u>і</u>				(6010)			7,5	,		* 16 T
	"			- [(8260B)	. .			-) (8)	MA				9			-			
							B T EX (8260B) 5 Oxygenates (8260B)	1 1 3		etha	ETBE,			e §	CAM17 Metals . Total		1	Oil & Grease (418.1)			
Field Sample Identification	DATE TIME	MATRIX		O. OF ONT.	TPH - Purgeable		_ 33 33 33	ត	۱	물				Methanol (8015M)	į,	ုပ္ခ		4	SM)		Container PID Readings or Laboratory Notes
	DATE			- 1	ag n	TPHg (8260B)	BTEX (8260B) 5 Oxygenates	MTBE (8260B)	TBA (8260B)	trac	MTBE, DIPE,	-		8 3	2	SVOCs (8270C)	Vocs (8260)	reas	(8015M)		
					:	8 5	2 3 X	E (A (82	2,2-46	ä		11.	than 1	1	ဗွ	SS (8	TPHd		ar as a second
Lige Lige Chief		Hal HN	03 H2SO4 NONE OTHER		₽	Ē	5 50	탈	E	=	ξ			ž (: 8	8	×	ō	4		
HP-1	\$/2969 9:37	gw X	\times	<u>(</u>		X	x _	1_	_		X	_ _ _		-	-	+	-	X	X		<u> </u>
2 HP-2	5/20/09 11:31	gw X	\times	6		X .	<u>x</u>		┪-	<u> </u>	X		$\bot \bot$	_	+	+	 	X	X	$\perp \downarrow$	
1							_	L					_ _ _		\perp		_	<u>}</u>			
				\neg		1			}		\	-				Ŀ					
	1			ヿ		T															
			+	\dashv		\dashv	十	\dagger	\vdash	T											
					-		+	+-	┼-	-	\vdash		++	+	+	+	+	\vdash	-	\vdash	
						_	_	_	ļ_	_			1		- -	-	ļ	-		\vdash	
				$oldsymbol{\bot}$										٠,	ate:	<u> </u>		<u>. </u>		Time:	
Relinquished by: (Signature)		Received by: (Signature)	0			. A	_								5	/ 2	X	/	79	-	5:00
mi infant		Received by A (Signature)	<u> </u>	<u> </u>	α	4/r	\sim								#0:		- 0	<u> </u>		Time:	
Reductive by: (Bigneture)			×	0	\	EC						_			5	<u>ک</u>	-	0	1	Time:	1515
Maliniquistre by Signature) CO 5-2	H-09	Received by: (Signature)	D.C.			0		c	e L	_					[/2	7/8	99	î	INIT.	11:00
650	1737		Dan	<u> </u>	<u> </u>	<u> </u>					<u> </u>						<u>′ </u>			<u>. </u>	05/2/06 Revision
TK#5/19/2	865																				

²age 10 of 11

WORK ORDER #: 09-05-2 0 1 1

SAMPLE RECEIPT FORM

Cooler __/ of __/

CLIENT: CRA	DATE:	051 24	109
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature 3.0 °C - 0.2 °C (CF) = 2.8 °C Sample(s) outside temperature criteria (PM/APM contacted by:). Sample(s) outside temperature criteria but received on ice/chilled on same data contacted at ambient temperature, placed on ice for transport by Contacted at ambient temperature, placed on ice for transport by Contacted at ambient temperature, placed on ice for transport by Contacted by:	urier.	☐ Sample ing. Initial: _	M
CUSTODY SEALS INTACT: Cooler	□ N/A	Initial: Initial:	ge GP
	Yes	<u>_</u> :	N/A
Chain-Of-Custody (COC) document(s) received with samples	~		
COC document(s) received complete		Ш	
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.	•		
☐ COC not relinquished. ☐ No date relinquished. ☐ No time relinquished.			_
Sampler's name indicated on COC	- :		
Sample container label(s) consistent with COC	<		
Sample container(s) intact and good condition			
Correct containers and volume for analyses requested			
Analyses received within holding time	,		
Proper preservation noted on COC or sample container	Ø		
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace	•		
Tedlar bag(s) free of condensation			Ţ.
CONTAINER TYPE:	. :		
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® □	•		
Water: □VOA □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB	□1AGBna ₂ 🔀	1AGBs
□500AGB Ø500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1РВ	□500PB □50	0PBna
□250PB □250PBn □125PB □125PB z nna □100PB □100PBna₂ □			
Air: □Tedlar [®] □Summa [®] □Other: □	Checke	d/Labeled bỳ: _	<u> </u>
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar (Wide-mouth) B: Bottle (Narrow-mol Preservative: h: HCL n: HNO3 na ₂ :Na ₂ S ₂ O ₃ Na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ znna: ZnAc ₂ +NaOH f		Reviewed by:)	Nico

Supplemental Report 2

June 26, 2009

Additional requested analyses have been added to the original report.

Peter Schaefer Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.:

Client Reference:

09-05-2153

2350 Harrison St., Oakland, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 5/23/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Jessi Cec

Calscience Environmental Laboratories, Inc. Jessie Lee Project Manager

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 05/23/09 09-05-2153 EPA 3550B EPA 1664A M

Project: 2350 Harrison St., Oakland, CA

Page 1 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2-5.5		09-05-2153-1-B	05/21/09 12:30	Solid	N/A	06/12/09	06/12/09 12:30	90612HEML1
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
HEM: Oil and Grease	40	10	1		mg/kg			
B-2-10!		09-05-2153-2-B	05/21/09 12:35	Solid	N/A	06/12/09	06/12/09 12:30	90612HEML1
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
HEM: Oil and Grease	ND	10	1		mg/kg			
B-2-15'		09-05-2153-3-B	05/21/09 12:40	Solid	N/A	06/12/09	06/12/09 12:30	90612HEML1
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
HEM: Oil and Grease	24	10	1		mg/kg			
B-3-5.5	entre de la constitución de la c	09-05-2153-4-B	05/21/09 13:10	Solid	N/A	06/12/09	06/12/09 12:30	90612HEML1
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
HEM: Oil and Grease	38	10	1		mg/kg	ı		
B-3-10'		09-05-2153-5-B	05/21/09 13:15	Solid	N/A	06/12/09	06/12/09 12:30	90612HEML
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
HEM: Oil and Grease	230	10	1		mg/kg	9		
B-3-15		09-05-2153-6-B	05/21/09 13:20	Solid	N/A	06/12/09	06/12/09 12:30	90612HEML
Parameter	Result	RL	<u>DF</u>	Qual	Units	<u>.</u>		
HEM; Oil and Grease	ND	10	1 1 ·		mg/k	9		

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

09-05-2153 EPA 3550B EPA 1664A M

05/23/09

Project: 2350 Harrison St., Oakland, CA

Page 2 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2-7'		09-05-2153-7-B	05/21/09 12:32	Solid	N/A	06/12/09	06/12/09 12:30	90612HEML1
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>			
HEM: Oil and Grease	600	10	1		mg/kg			
Method Blank		099-12-040-228	N/A	Solid	N/A	06/12/09	06/12/09 12:30	90612HEML1
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
HEM: Oil and Grease	ND	10	1		mg/kg	ı	1	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

09-05-2153 **EPA 3550B EPA 8015B**

05/23/09

Project: 2350 Harrison St., Oakland, CA

Page 1 of 3

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2-5.51		09-05-2153-1-A	05/21/09 12:30	Solid	GC 47	05/29/09	05/30/09 10:41	090529B07
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg		÷	
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	95	61-145						
B-2-10'	- Albania Albania	09-05-2153-2-A	05/21/09 12:35	Solid	GC 47	05/29/09	05/30/09 10:59	090529B07
Comment(s): -The sample chromato of the unknown hydroc						e specified s	tandard. Qua	antitation
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	39	5.0	1		mg/kg	I		
Surrogates:	REC (%)	Control Limits		Qual				
	89	61-145						
Decachlorobiphenyl	09	01110						

1	<u>Parameter</u>	
	D:I D	- 0:

-The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard. Result Qual

5.2

RL

<u>DF</u>

<u>Units</u>

Diesel Range Organics

5.0

1

mg/kg

Surrogates:

REC (%)

Control Limits

Qual

Decachlorobiphenyl

92

61-145

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation:

09-05-2153 **EPA 3550B EPA 8015B**

05/23/09

Project: 2350 Harrison St., Oakland, CA

Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3-5.5'	09-05-2153-4-A	05/21/09 13:10	Solid	GC 47	05/29/09	05/30/09 11:33	090529B07

Comment(s):

-The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation

Method:

of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

<u>Parameter</u>

Result

<u>RL</u>

<u>Units</u>

Diesel Range Organics

6.4

5.0 **Control Limits** 1

mg/kg

Surrogates:

REC (%)

Qual

Decachlorobiphenyl

90

61-145

of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

<u>DF</u> Qual Result

<u>Parameter</u>

<u>RL</u>

Diesel Range Organics

5.0

1

mg/kg

Units

Surrogates:

REC (%)

Control Limits

Qual

Decachlorobiphenyl

92

61-145

B-3-151		. 09-05-2153-6-A	05	/21/09 3:20	Solid	GC 47	05/29/09	05/30/09 12:06	090529B07
<u>Parameter</u>	Result	<u>RL</u>		<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	5.0		1		mg/kg			
Surrogates:	REC (%)	Control Limits			<u>Qual</u>			٠	
Decachlorobiphenyl	90	61-145							

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation:

09-05-2153 **EPA 3550B**

05/23/09

Method:

EPA 8015B

Project: 2350 Harrison St., Oakland, CA

Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2-7	09-05-2153-7-A	05/21/09 12:32	Solid	GC 47	05/29/09	05/30/09 12:23	090529B07

Comment(s):

-The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation

of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

<u>Parameter</u>

<u>DF</u>

Qual

Units

Result

Diesel Range Organics

190

10 **Control Limits** 2

mg/kg

Surrogates:

REC (%)

<u>Qual</u>

Decachlorobiphenyl

95

61-145

Method Blank	100 m 100 m 100 m	099-12-025-731	N/A	Solid	GC 47 05/29/0	9 05/30/09 090529B07 05:20
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>	
Diesel Range Organics	ND	5.0	1		mg/kg	
Surrogates:	REC (%)	Control Limits		Qual		
Decachlorobiphenyl	92	61-145				

noc

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

05/23/09

Work Order No:

09-05-2153

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

mg/kg

Project: 2350 Harrison St., Oakland, CA

Page 1 of 10

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyzed	\sim	Batch ID
B-2-5.5'		172	09-05-2	arani fali pulhipuwi il	05/21/09 12:30	Solid	GC/MS PP	co, pare attached	06/02/09 16:19	090)602L02
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Acetone	ND	12	100		c-1,3-Dichloro	oropene		ND	0.50	100	
Benzene	1.5	0.50	100		t-1,3-Dichlorop	ropene		ND	0.50	100	
Bromobenzene	ND	0.50	100		Ethylbenzene			ND	0.50	100	
Bromochloromethane	ND	0.50	100		2-Hexanone			ND	5.0	100	
Bromodichloromethane	ND	0.50	100		Isopropylbenze	ene		ND	0.50	100	
Bromoform	ND	0.50	100		p-Isopropyltolu	ene		ND	0.50	100	
Bromomethane	ND	2.5	100		Methylene Chl	oride		ND	5.0	100	
2-Butanone	ND	5.0	100		4-Methyl-2-Per	ntanone		ND	5.0	100	
n-Butylbenzene	ND	0.50	100		Naphthalene			ND	5.0	100	
sec-Butylbenzene	ND	0.50	100		n-Propylbenze	ne		0.57	0.50	100	
tert-Butylbenzene	ND	0.50	100		Styrene			ND	0.50	100	
Carbon Disulfide	ND	5.0	100		1,1,1,2-Tetrac	hloroethane		ND	0.50	100	
Carbon Tetrachloride	ND	0.50	100		1,1,2,2-Tetrac	hloroethane		ND	0.50	100	
Chlorobenzene	ND	0.50	100		Tetrachloroeth	ene		ND	0.50	100	
Chloroethane	ND	0.50	100		Toluene			ND	0.50	100	
Chloroform	ND -	0.50	100		1,2,3-Trichlord	benzene		ND	1.0	100	
Chloromethane	ND	2.5	100		1,2,4-Trichlord	obenzene		ND	0.50	100	
2-Chlorotoluene	ND	0.50	100		1,1,1-Trichlore	oethane		ND	0.50	100	
4-Chlorotoluene	ND	0.50	100		1,1,2-Trichlore	oethane		ND	0.50	100	
Dibromochloromethane	ND	0.50	100		1,1,2-Trichlord	o-1,2,2-Triflu	oroethane	ND	5.0	100	
1,2-Dibromo-3-Chloropropane	ND	2.5	100		Trichloroether	ne		ND	0.50	100	
1,2-Dibromoethane	ND	0.50	100		1,2,3-Trichlor	opropane		ND	0.50	100	
Dibromomethane	ND	0.50	100		1,2,4-Trimeth	ylbenzene		ND	0.50	100	
1,2-Dichlorobenzene	ND	0.50	100		Trichlorofluor	omethane		ND	5.0	100	
1,3-Dichlorobenzene	ND -	0.50	100		1,3,5-Trimeth	ylbenzene		ND	0.50	100	
1,4-Dichlorobenzene	ND	0.50	100		Vinyl Acetate			ND	5.0	100	
Dichlorodifluoromethane	ND	0.50	100		Vinyl Chloride			ND	0.50	100	
1,1-Dichloroethane	ND	0.50	100		Xylenes (total)	*		ND	0.50	100	
1,2-Dichloroethane	ND	0.50	100		Methyl-t-Butyl	•	E)	ND	0.50	100	
1,1-Dichloroethene	ND	0.50	100		Tert-Butyl Alc	, ,		ND	5.0	100	
c-1,2-Dichloroethene	ND	0.50	100		Diisopropyl Et			ND	1.0	100	
t-1,2-Dichloroethene	ND	0.50	100		Ethyl-t-Butyl E	•	•	ND	1.0	100	
1,2-Dichloropropane	ND	0.50	100		Tert-Amyl-Me	thyl Ether (T	AME)	ND	1.0	100	
1,3-Dichloropropane	ND	0.50	100		Ethanol			ND	50	100	
2,2-Dichloropropane	√ ND	0.50	100		TPPH		•	64	50	100	
1,1-Dichloropropene	ND	0.50	100					DEO (0/)	0 41		0
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits	4	<u>Qual</u>
Dibromofluoromethane	100	73-139			1,2-Dichloroe			104	73-145		
Toluene-d8	102	90-108			1,4-Bromoflu	orobenzene		100	71-113		
Toluene-d8-TPPH	103	88-112									

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

05/23/09

Work Order No:

09-05-2153

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

mg/kg

....9,

Project: 2350 Harrison St., Oakland, CA

Page 2 of 10

Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyze		atch ID
B-2-10*			09-05-2	ri endamentina	05/21/09 12:35	Solid	GC/MS PP	06/02/09	06/02/0 16:47	9 09060	02L02
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF Q	<u>lual</u>
Acetone	ND	50	400		c-1,3-Dichlorog	propene		ND	2.0	400	
Benzene	ND	2.0	400		t-1,3-Dichlorop	ropene		ND	2.0	400	
Bromobenzene	. ND	2.0	400		Ethylbenzene			ND	2.0	400	
Bromochloromethane	ND	2.0	400		2-Hexanone			ND	20	400	
Bromodichloromethane	ND	2.0	400		Isopropylbenze	ene		ND	2.0	400	
Bromoform	ND	2.0	400		p-Isopropyltolu	ene		ND	2.0	400	
Bromomethane	ND	10	400		Methylene Chlo	oride		ND	20	400	
2-Butanone	ND	20	400		4-Methyl-2-Per	ntanone		ND	20	400	
n-Butylbenzene	ND	2.0	400		Naphthalene			ND	20	400	
sec-Butylbenzene	ND	2.0	400		n-Propylbenze	ne		ND	2.0	400	
tert-Butylbenzene	ND	2.0	400		Styrene			ND	2.0	400	
Carbon Disulfide	ND	20	400		1,1,1,2-Tetracl	hloroethane		ND	2.0	400	
Carbon Tetrachloride	ND	2.0	400		1,1,2,2-Tetracl	hloroethane		ND	2.0	400	
Chlorobenzene	ND	2.0	400		Tetrachloroeth	ene		ND	2.0	400	
Chloroethane	ND	2.0	400		Toluene			ND	2.0	400	
Chloroform	ND	2.0	400		1,2,3-Trichlord	benzene		ND	4.0	400	
Chloromethane	ND	10	400		1,2,4-Trichlord	benzene		ND	2.0	400	
2-Chlorotoluene	ND	2.0	400		1,1,1-Trichlord	ethane		ND	2.0	400	
4-Chlorotoluene	ND	2.0	400		1,1,2-Trichlord	ethane		ND	2.0	400	
Dibromochloromethane	ND	2.0	400		1,1,2-Trichlord		ıoroethane	ND	20	400	
1,2-Dibromo-3-Chloropropane	ND	10	400		Trichloroethen	e		ND	2.0	400	
1,2-Dibromoethane	ND	2.0	400		1,2,3-Trichlord	propane		ND	2.0	400	
Dibromomethane	ND	2.0	400		1,2,4-Trimethy	/lbenzene		ND	2.0	400	
1,2-Dichlorobenzene	ND	2.0	400		Trichlorofluoro	methane		ND	20	400	
1,3-Dichlorobenzene	ND	2.0	400		1,3,5-Trimethy	/lbenzene		ND	2.0	400	
1,4-Dichlorobenzene	ND	2.0	400		Vinyl Acetate			ND	20	400	
Dichlorodifluoromethane	ND	2.0	400		Vinyl Chloride			ND	2.0	400	
1,1-Dichloroethane	ND	2.0	400		Xylenes (total)			ND	2.0	400	
1,2-Dichloroethane	ND	2.0	400		Methyl-t-Butyl		iE)	ND	2.0	400	
1,1-Dichloroethene	ND	2.0	400		Tert-Butyl Alco			ND	20	400	
c-1,2-Dichloroethene	ND	2.0	400		Diisopropyl Et			ND	4.0	400	
t-1,2-Dichloroethene	ND	2.0	400		Ethyl-t-Butyl E			ND	4.0	400	
1,2-Dichloropropane	ND	2.0	400		Tert-Amyl-Me	thyl Ether (T	AME)	ND	4.0	400	
1,3-Dichloropropane	ND	2.0	400		Ethanol			ND	200	400	
2,2-Dichloropropane	ND	2.0	400		TPPH			870	200	400	
1,1-Dichloropropene	ND	2.0	400		_					_	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits	<u>Qu</u>	<u>ial</u>
Dibromofluoromethane	102	73-139			1,2-Dichloroe	thane-d4		107	73-145		
Toluene-d8	102	90-108			1,4-Bromofluc	orobenzene		104	71-113	-	*
Toluene-d8-TPPH	105	88-112									

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received:

05/23/09

Work Order No:

09-05-2153

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

mg/kg

Project: 2350 Harrison St., Oakland, CA

Page 3 of 10

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	\sim	Batch ID
B-2-15'	and the second		09-05-2	a territoria establicar	05/21/09 12:40	Solid	GC/MS PP	05/30/09	05/31/09 07:06	09	0530L04
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Acetone	ND	12	100		c-1,3-Dichloro	propene		ND	0.50	100	
Benzene	ND	0.50	100		t-1,3-Dichlorop	ropene		ND	0.50	100	
Bromobenzene	ND	0.50	100		Ethylbenzene			ND -	0.50	100	
Bromochloromethane	ND	0.50	100		2-Hexanone			ND	5.0	100	
Bromodichloromethane	ND	0.50	100		Isopropylbenze	ene		ND	0.50	100	
Bromoform	ND	0.50	100		p-Isopropyltolu	ene		ND	0.50	100	
Bromomethane	ND	2.5	100		Methylene Chl	oride		ND	5.0	100	
2-Butanone	ND	5.0	100		4-Methyl-2-Pe	ntanone		ND	5.0	100	
n-Butylbenzene	ND	0.50	100		Naphthalene			ND	5.0	100	
sec-Butylbenzene	ND	0.50	100		n-Propylbenze	ne		ND	0.50	100	
tert-Butylbenzene	ND	0.50	100		Styrene			ND	0.50	100	
Carbon Disulfide	ND	5.0	100		1,1,1,2-Tetrac	hloroethane	e ´	ND	0.50	100	
Carbon Tetrachloride	ND	0.50	100		1,1,2,2-Tetrac			ND	0.50	100	
Chlorobenzene	ND	0.50	100		Tetrachloroeth	ene		ND	0.50	100	
Chloroethane	ND	0.50	100		Toluene			ND	0.50	100	
Chloroform	ND	0.50	100		1,2,3-Trichlord	benzene		ND	1.0	100	
Chloromethane	ND	2.5	100		1,2,4-Trichlore	benzene		ND	0.50	100	
2-Chlorotoluene	ND	0.50	100		1,1,1-Trichlore	oethane		ND	0.50	100	
4-Chlorotoluene	ND	0.50	100		1,1,2-Trichlore	oethane		ND	0.50	100	
Dibromochloromethane	ND	0.50	100		1,1,2-Trichlore	o-1,2,2-Trif	luoroethane	ND	5.0	100	
1,2-Dibromo-3-Chloropropane	ND	2.5	100		Trichloroether	ne		ND	0.50	100	
1,2-Dibromoethane	ND	0.50	100		1,2,3-Trichlor	opropane		ND	0.50	100	
Dibromomethane	ND	0.50	100		1,2,4-Trimeth	ylbenzene		ND	0.50	100	
1,2-Dichlorobenzene	ND	0.50	100		Trichlorofluore			ND	5.0	100	
1,3-Dichlorobenzene	ND	0.50	100		1,3,5-Trimeth	ylbenzene		ND	0.50	100	
1,4-Dichlorobenzene	ND	0.50	100		Vinyl Acetate	•		ND	5.0	100	
Dichlorodifluoromethane	ND	0.50	100		Vinyl Chloride)		ND	0.50	100	
1,1-Dichloroethane	ND	0.50	100		Xylenes (total)		ND	0.50	100	
1.2-Dichloroethane	ND	0.50	100		Methyl-t-Butyl	Ether (MT	BE)	ND	0.50	100	
1,1-Dichloroethene	ND	0.50	100		Tert-Butyl Alc	ohol (TBA)		ND	5.0	100	
c-1,2-Dichloroethene	ND	0.50	100		Diisopropyl E	ther (DIPE))	ND	1.0	100	
t-1,2-Dichloroethene	ND	0.50	100		Ethyl-t-Butyl I			ND	1.0	100	
1,2-Dichloropropane	ND	0.50	100		Tert-Amyl-Me	thyl Ether (TAME)	ND	1.0	100	
1,3-Dichloropropane	ND	0.50	100		Ethanol			ND	50	100	
2,2-Dichloropropane	ND	0.50	100		TPPH			200	50	100	
1,1-Dichloropropene	ND	0.50	100								
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			<u>REC (%)</u>	Control Limits		<u>Qual</u>
Dibromofluoromethane	103	73-139			1,2-Dichloroe	thane-d4		107	73-145		
Toluene-d8	106	90-108			1,4-Bromoflu	orobenzene)	105	71-113		

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received:

05/23/09

Work Order No:

09-05-2153

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

mg/kg

Project: 2350 Harrison St., Oakland, CA

Page 4 of 10

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	OO D-4-6-1	iD
B-3-5.5'			09-05-2	153-4-B	05/21/09 13:10	Solid	GC/MS PP	06/02/09	06/02/09 17:14	090602L02	2
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF Qual	
Acetone	ND	12	100		c-1,3-Dichloro	propene		ND	0.50	100	
Benzene	2.4	0.50	100		t-1,3-Dichlorop	ropene		ND	0.50	100	
Bromobenzene	ND	0.50	100		Ethylbenzene			0.87	0.50	100	
Bromochloromethane	ND	0.50	100		2-Hexanone			ND	5.0	100	
Bromodichloromethane	ND	0.50	100		Isopropylbenze	ene		ND	0.50	100	
Bromoform	ND	0.50	100		p-Isopropyltolu	iene		ND	0.50	100	
Bromomethane	ND	2.5	100		Methylene Chl	oride		ND	5.0	100	
2-Butanone	ND	5.0	100		4-Methyl-2-Pe	ntanone		ND	5.0	100	
n-Butylbenzene	ND	0.50	100		Naphthalene			ND	5.0	100	
sec-Butylbenzene	ND	0.50	100		n-Propylbenze	ene		0.75	0.50	100	
tert-Butylbenzene	ND	0.50	100		Styrene			ND	0.50	100	
Carbon Disulfide	ND	5.0	100		1,1,1,2-Tetrac	hloroethane)	ND	0.50	100	
Carbon Tetrachloride	ND	0.50	100		1,1,2,2-Tetrac	hloroethane	•	ND	0.50	100	
Chlorobenzene	ND	0.50	100		Tetrachloroeth	ene		ND	0.50	100	
Chloroethane	ND	0.50	100		Toluene			ND	0.50	100	
Chloroform	ND	0.50	100		1,2,3-Trichlore	obenzene		ND	1.0	100	
Chloromethane	ND	2.5	100		1,2,4-Trichlore			ND	0.50	100	
2-Chlorotoluene	ND	0.50	100		1,1,1-Trichlore			ND	0.50	100	
4-Chlorotoluene	ND	0.50	100		1,1,2-Trichlore			ND	0.50	100	
Dibromochloromethane	ND	0.50	100		1,1,2-Trichlore		uoroethane	ND	5.0	100	
1,2-Dibromo-3-Chloropropane	ND	2.5	100		Trichloroether			ND	0.50	100	
1,2-Dibromoethane	ND	0.50	100		1,2,3-Trichlor			ND	0.50	100	
Dibromomethane	ND	0.50	100		1,2,4-Trimeth	•		ND	0.50	100	
1,2-Dichlorobenzene	ND	0.50	100		Trichlorofluor			ND	5.0	100	
1,3-Dichlorobenzene	ND	0.50	100		1,3,5-Trimeth	ylbenzene		ND	0.50	100	
1,4-Dichlorobenzene	ND	0.50	100		Vinyl Acetate			ND	5.0	100	
Dichlorodifluoromethane	ND	0.50	100		Vinyl Chloride			ND	0.50	100	
1,1-Dichloroethane	ND	0.50	100		Xylenes (total	•		ND	0.50	100	
1,2-Dichloroethane	ND	0.50	100		Methyl-t-Buty	•	BE)	ND	0.50	100	
1,1-Dichloroethene	ND	0.50	100		Tert-Butyl Alc			ND	5.0	100	
c-1,2-Dichloroethene	ND	0.50	100		Diisopropyl E			ND	1.0	100	
t-1,2-Dichloroethene	ND	0.50	100		Ethyl-t-Butyl I			ND	1.0	100	
1,2-Dichloropropane	ND	0.50	100		Tert-Amyl-Me	ethyl Ether (TAME)	ND	1.0	100	
1,3-Dichloropropane	ND	0.50	100		Ethanol			ND	50	100	
2,2-Dichloropropane	ND	0.50	100		TPPH			56	50	100	
1,1-Dichloropropene	ND	0.50	100					DEO (81)	0 41	01	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	<u>Control</u> <u>Limits</u>	<u>Qual</u>	
Dibromofluoromethane	99	73-139			1,2-Dichloroe	thane-d4		104	73-145		
Toluene-d8	100	90-108			1,4-Bromoflu	orobenzene	•	101	71-113		
Toluene-d8-TPPH	101	88-112									

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

05/23/09

Work Order No:

09-05-2153

Preparation:

EPA 5030B

Method:

EFA 3030D

Units:

LUFT GC/MS / EPA 8260B

•

mg/kg

Project: 2350 Harrison St., Oakland, CA

Page 5 of 10

Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyze	\sim	C Batch ID
B-3=10'		100	TRACLAR PRODUCTION OF	153-5-B	05/21/09 13:15	Solid	GC/MS PP	05/30/09	05/31/09 08:01	9 09	90530L04
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Acetone	ND	62	500		c-1,3-Dichloro	propene		ND	2.5	500	
Benzene	ND	2.5	500		t-1,3-Dichlorop	oropene		ND	2.5	500	
Bromobenzene	ND	2.5	500		Ethylbenzene			ND	2.5	500	
Bromochloromethane	ND	2.5	500		2-Hexanone			ND	25	500	
Bromodichloromethane	ND	2.5	500		Isopropylbenze	ene		ND	2.5	500	
Bromoform	ND	2.5	500		p-Isopropyltolu	iene		ND	2.5	500	
Bromomethane	ND	12	500		Methylene Chl			ND	25	500	
2-Butanone	ND	25	500		4-Methyl-2-Pe	ntanone		ND	25	500	
n-Butylbenzene	ND	2.5	500		Naphthalene			ND	25	500	
sec-Butylbenzene	ND	2.5	500		n-Propylbenze	ene		2.5	2.5	500	
tert-Butylbenzene	ND	2.5	500		Styrene			ND	2.5	500	
Carbon Disulfide	ND	25	500		1,1,1,2-Tetrac	hloroethane		ND	2.5	500	
Carbon Tetrachloride	ND	2.5	500		1,1,2,2-Tetrac	hloroethane		ND	2.5	500	
Chlorobenzene	ND	2.5	500		Tetrachloroeth	nene		ND	2.5	500	
Chloroethane	ND	2.5	500		Toluene			ND	2.5	500	
Chloroform	ND	2.5	500		1,2,3-Trichlore	obenzene		ND	5.0	500	
Chloromethane	ND	12	500		1,2,4-Trichlor	obenzene		ND	2.5	500	
2-Chlorotoluene	ND	2.5	500		1,1,1-Trichlor	oethane		ND	2.5	500	
4-Chlorotoluene	ND	2.5	500		1,1,2-Trichlor	oethane		ND	2.5	500	
Dibromochloromethane	ND	2.5	500		1,1,2-Trichlor	o-1,2,2-Trifl	uoroethane	ND	25	500	
1,2-Dibromo-3-Chloropropane	ND	12	500		Trichloroether	ne		ND	2.5	500	
1,2-Dibromoethane	ND	2.5	500		1,2,3-Trichlor	opropane		ND	2.5	500	
Dibromomethane	ND	2.5	500		1,2,4-Trimeth	ylbenzene		ND	2.5	500	
1,2-Dichlorobenzene	ND	2.5	500		Trichlorofluor	omethane		ND	25	500	
1,3-Dichlorobenzene	ND	2.5	500		1,3,5-Trimeth	ylbenzene		ND	2.5	500	
1,4-Dichlorobenzene	ND	2.5	500		Vinyl Acetate			ND	25	500	
Dichlorodifluoromethane	ND	2.5	500		Vinyl Chloride	•		ND	2.5	500	
1,1-Dichloroethane	ND	2.5	500		Xylenes (total)		ND	2.5	500	
1,2-Dichloroethane	ND	2.5	500		Methyl-t-Buty	,	BE)	ND	2.5	500	
1,1-Dichloroethene	ND	2.5	500		Tert-Butyl Ald			ND	25	500	
c-1,2-Dichloroethene	ND	2.5	500		Diisopropyl E	ther (DIPE)		ND	5.0	500	
t-1,2-Dichloroethene	ND	2.5	500		Ethyl-t-Butyl I	•	•	ND	5.0	500	
1,2-Dichloropropane	ND	2.5	500		Tert-Amyl-Me	ethyl Ether (ГАМЕ)	ND	5.0	500	
1,3-Dichloropropane	ND	2.5	500		Ethanol			ND	250	500	
2,2-Dichloropropane	ND	2.5	500		TPPH			920	250	500	
1,1-Dichloropropene	ND	2.5	500								
Surrogates:	REC (%)	Control Limits	•	<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	103	73-139			1,2-Dichloroe	ethane-d4		105	73-145		
Toluene-d8	103	90-108	•		1,4-Bromoflu	orobenzene		105	71-113		
Toluene-d8-TPPH	107	88-112									

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No:

05/23/09 09-05-2153

Preparation:

EPA 5030B

Method: Units: LUFT GC/MS / EPA 8260B

mg/kg

Project: 2350 Harrison St., Oakland, CA

Page 6 of 10

	ole Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tir Analyze		QC Batch	ID.
Acetone			- 449	ang an ing syarah		05/21/09	Solid	GC/MS PP	06/02/09			090602L)1
Acetone		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	
Senzene ND 0.050 1		ND.	0.12			c-1,3-Dichloro	propene		ND	0.0050	1		
Ethylbenzene						t-1,3-Dichloro	oropene		ND	0.0050	1		
December ND 0.0050 1 1 1 1 1 1 1 1 1	ene					Ethylbenzene	·		ND	0.0050	1		
Bromodichloromethane				1		2-Hexanone			ND	0.050	1		
Bromoform ND 0.0050 1 p-Isopropyloluene ND 0.0050 1 Bromomethane ND 0.025 1 Methylene Chloride ND 0.050 1 2-Butanone ND 0.050 1 4-Methyl-2-Pentanone ND 0.050 1 Naphthalene Naphthalene ND 0.050 1 Naphthalene N			•			Isopropylbenz	ene		ND	0.0050	1		
Bromomethane	STOTTIONIUM					p-Isopropyltolu	jene		ND	0.0050	1		
2-Butanone ND 0.050 1 4-Methyl-2-Pentanone ND 0.050 1 n-Butylbenzene ND 0.0050 1 Naphthalene ND 0.050 1 sec-Butylbenzene ND 0.0050 1 n-Propylbenzene ND 0.0050 1 carbon Tetrachloride ND 0.0050 1 Styrene ND 0.0050 1 Carbon Tetrachloride ND 0.0050 1 1,1,2-Tetrachloroethane ND 0.0050 1 Chloroferman ND 0.0050 1 Tetrachloroethane ND 0.0050 1 Chloroform ND 0.0050 1 Tetrachloroethane ND 0.0050 1 Chloroform ND 0.0050 1 1,2,3-Trichloroebnzene ND 0.0050 1 Chloroform ND 0.0050 1 1,1,2-Trichloroebnzene ND 0.0050 1 Chlorotoluene ND 0.0050 1 1,1,2-Trichloroebnzene	ane			1		Methylene Ch	loride		ND	0.050	1		
No				1		4-Methyl-2-Pe	ntanone		ND	0.050	1		
Sec_Butylbenzene ND 0.0050 1 N-Propylbenzene ND 0.0050 1				1					ND	0.050	1		
tert-Butylbenzene ND 0.0550 1 Styrene ND 0.0550 1 Carbon Disulfide ND 0.050 1 1,1,2,2-Tetrachloroethane ND 0.0050 1 Carbon Tetrachloride ND 0.0050 1 Tetrachloroethane ND 0.0050 1 Chlorobenzene ND 0.0050 1 Tetrachloroethane ND 0.0050 1 Chloroethane ND 0.0050 1 Toluene ND 0.0050 1 Chlorothuene ND 0.0050 1 1,2,4-Trichloroebnzene ND 0.0050 1 4-Chlorotoluene ND 0.0050 1 1,1,2-Trichloroethane ND 0.0050 1 4-Chlorotoluene ND 0.0050 1 1,1,2-Trichloroethane ND 0.0050 1 Dibromochloromethane ND 0.0050 1 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.0050 1 1,2-Dibromochane ND 0.0050 1 </td <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>n-Propylbenze</td> <td>ene</td> <td></td> <td>ND</td> <td>0.0050</td> <td>1</td> <td></td> <td></td>				1		n-Propylbenze	ene		ND	0.0050	1		
Carbon Disulfide ND 0.050 1 1,1,1,2-Tetrachloroethane ND 0.0050 1 Carbon Tetrachloride ND 0.0050 1 1,1,2,2-Tetrachloroethane ND 0.0050 1 Chlorobenzene ND 0.0050 1 Tetrachloroethane ND 0.0050 1 Chloroform ND 0.0050 1 Toluene ND 0.0050 1 Chloroform ND 0.0050 1 1,2,3-Trichlorobenzene ND 0.0050 1 Chlorofoluene ND 0.0050 1 1,2,1-Trichloroethane ND 0.0050 1 4-Chlorotoluene ND 0.0050 1 1,1,2-Trichloroethane ND 0.0050 1 4-Chlorotoluene ND 0.0050 1 1,1,2-Trichloroethane ND 0.0050 1 4-Chlorotoluene ND 0.0050 1 1,1,2-Trichloroethane ND 0.0050 1 1/2-Dibroroethane ND 0.0050 1		ND	0.0050	1		Styrene			ND	0.0050	1		
Carbon Tetrachloride ND 0.0050 1 1,1,2,2-Tetrachloroethane ND 0.0050 1 Chlorobenzene ND 0.0050 1 Tetrachloroethane ND 0.0050 1 Chloroethane ND 0.0050 1 Toluene ND 0.0050 1 Chloroform ND 0.025 1 1,2,3-Trichlorobenzene ND 0.0050 1 C-Chlorotoluene ND 0.0050 1 1,1,1-Trichloroethane ND 0.0050 1 4-Chlorotoluene ND 0.0050 1 1,1,1-Trichloroethane ND 0.0050 1 4-Chlorotoluene ND 0.0050 1 1,1,2-Trichloroethane ND 0.0050 1 4-Chlorotoluene ND 0.0050 1 1,1,2-Trichloroethane ND 0.0050 1 1-Dibromo-breathane ND 0.0050 1 1,2-Trichloroethane ND 0.0050 1 1,2-Dichlorobenzene ND 0.0050 1		ND	0.050	1		1,1,1,2-Tetrac	hloroethane	•	ND	0.0050	1		
Chlorobenzene ND 0.0050 1 Tetrachloroethene ND 0.0050 1		ND	0.0050	1		1,1,2,2-Tetrac	hloroethane	•	ND	0.0050	1		
Chloroethane		ND	0.0050	1		Tetrachloroeth	nene		ND	0.0050	1		
Chloroform		ND	0.0050	1		Toluene			ND	0.0050	1		
Chloromethane		ND	0.0050	1		1,2,3-Trichlor	obenzene		ND	0.010	1		
2-Chlorotoluene ND 0.0050 1 1,1,1-Trichloroethane ND 0.0050 1 4-Chlorotoluene ND 0.0050 1 1,1,2-Trichloroethane ND 0.0050 1 Dibromochloromethane ND 0.0050 1 1,1,2-Trichloroethane ND 0.0050 1 1,2-Dibromo-3-Chloropropane ND 0.025 1 Trichloroethene ND 0.0050 1 1,2-Dibromoethane ND 0.0050 1 1,2,3-Trichloropropane ND 0.0050 1 Dibromomethane ND 0.0050 1 1,2,4-Trimethylbenzene ND 0.0050 1 1,2-Dichlorobenzene ND 0.0050 1 Trichlorofluoromethane ND 0.0050 1 1,4-Dichlorobenzene ND 0.0050 1 1,3,5-Trimethylbenzene ND 0.0050 1 1,4-Dichloroethane ND 0.0050 1 Vinyl Acetate ND 0.0050 1 1,2-Dichloroethane ND	ane	ND	0.025	1		1,2,4-Trichlor	obenzene		ND	0.0050	1		
4-Chlorotoluene ND 0.0050 1 1,1,2-Trichloroethane ND 0.0050 1 Dibromochloromethane ND 0.0050 1 1,1,2-Trichloroethane ND 0.050 1 1,2-Dibromoc3-Chloropropane ND 0.005 1 Trichloroethene ND 0.0050 1 1,2-Dibromoethane ND 0.0050 1 1,2,3-Trichloropropane ND 0.0050 1 1,2-Dibromoethane ND 0.0050 1 1,2,4-Trimethylbenzene ND 0.0050 1 1,2-Dichlorobenzene ND 0.0050 1 Trichlorofluoromethane ND 0.050 1 1,3-Dichlorobenzene ND 0.0050 1 Trichlorofluoromethane ND 0.0050 1 1,4-Dichlorobenzene ND 0.0050 1 Vinyl Acetate ND 0.0050 1 1,4-Dichloroethane ND 0.0050 1 Vinyl Chloride ND 0.0050 1 1,2-Dichloroethane ND <t< td=""><td></td><td>ND</td><td>0.0050</td><td>、 1</td><td></td><td>1,1,1-Trichlor</td><td>oethane</td><td></td><td>ND</td><td>0.0050</td><td>1</td><td></td><td></td></t<>		ND	0.0050	、 1		1,1,1-Trichlor	oethane		ND	0.0050	1		
1,2-Dibromo-3-Chloropropane		ND	0.0050	1		1,1,2-Trichlor	oethane		ND	0.0050	1		
1,2-Dibromo-3-Chloropropane ND 0.025 1 Trichloroethene ND 0.0050 1 1,2-Dibromoethane ND 0.0050 1 1,2,3-Trichloropropane ND 0.0050 1 1,2-Dichlorobenzene ND 0.0050 1 1,2,4-Trimethylbenzene ND 0.0050 1 1,3-Dichlorobenzene ND 0.0050 1 1,3,5-Trimethylbenzene ND 0.0050 1 1,4-Dichlorobenzene ND 0.0050 1 Vinyl Acetate ND 0.0050 1 1,4-Dichlorobenzene ND 0.0050 1 Vinyl Acetate ND 0.0050 1 1,4-Dichlorobenzene ND 0.0050 1 Vinyl Acetate ND 0.050 1 1,1-Dichloroethane ND 0.0050 1 Xylenes (total) ND 0.0050 1 1,2-Dichloroethane ND 0.0050 1 Methyl-t-Butyl Ether (MTBE) ND 0.0050 1 1,1-Dichloroethene ND 0.0	loromethane	ND	0.0050	1		1,1,2-Trichlor	o-1,2,2-Trifl	uoroethane	ND	0.050	1		
1,2-Dibromoethane ND 0.0050 1 1,2,3-Trichloropropane ND 0.0050 1 Dibromomethane ND 0.0050 1 1,2,4-Trimethylbenzene ND 0.0050 1 1,2-Dichlorobenzene ND 0.0050 1 Trichlorofluoromethane ND 0.050 1 1,3-Dichlorobenzene ND 0.0050 1 Vinyl Acetate ND 0.050 1 Dichlorodifluoromethane ND 0.0050 1 Vinyl Chloride ND 0.0050 1 1,1-Dichloroethane ND 0.0050 1 Xylenes (total) ND 0.0050 1 1,2-Dichloroethane ND 0.0050 1 Methyl-t-Butyl Ether (MTBE) ND 0.0050 1 1,1-Dichloroethene ND 0.0050 1 Tert-Butyl Alcohol (TBA) ND 0.050 1 1,2-Dichloroethene ND 0.0050 1 Ethyl-t-Butyl Ether (DIPE) ND 0.010 1 1,2-Dichloropropane ND		ND	0.025	1		Trichloroethe	ne		ND	0.0050	1		
1,2-Dichlorobenzene	• •	ND	0.0050	1		1,2,3-Trichlor	opropane			0.0050	1		
1,3-Dichlorobenzene ND 0.0050 1 1,3,5-Trimethylbenzene ND 0.0050 1 1,4-Dichlorobenzene ND 0.0050 1 Vinyl Acetate ND 0.050 1 Dichlorodifluoromethane ND 0.0050 1 Vinyl Chloride ND 0.0050 1 1,1-Dichloroethane ND 0.0050 1 Xylenes (total) ND 0.0050 1 1,2-Dichloroethane ND 0.0050 1 Methyl-t-Butyl Ether (MTBE) ND 0.0050 1 1,1-Dichloroethene ND 0.0050 1 Tert-Butyl Alcohol (TBA) ND 0.050 1 1,2-Dichloroethene ND 0.0050 1 Ethyl-t-Butyl Ether (DIPE) ND 0.010 1 1,2-Dichloropropane ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 1 1,3-Dichloropropane ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.50 1 2,2-Dichloropropane	ethane	ND	0.0050	1		1,2,4-Trimeth	ylbenzene		ND	0.0050	1		
1,3-Dichlorobenzene ND 0.0050 1 1,3,5-Trimethylbenzene ND 0.0050 1 1,4-Dichlorobenzene ND 0.0050 1 Vinyl Acetate ND 0.050 1 Dichlorodifluoromethane ND 0.0050 1 Vinyl Chloride ND 0.0050 1 1,1-Dichloroethane ND 0.0050 1 Xylenes (total) ND 0.0050 1 1,2-Dichloroethane ND 0.0050 1 Methyl-t-Butyl Ether (MTBE) ND 0.0050 1 1,1-Dichloroethene ND 0.0050 1 Tert-Butyl Alcohol (TBA) ND 0.050 1 1,2-Dichloroethene ND 0.0050 1 Ethyl-t-Butyl Ether (DIPE) ND 0.010 1 1,2-Dichloropropane ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.010 1 1,3-Dichloropropane ND 0.0050 1 TPPH 2.1 0.50 1 2,2-Dichloropropane ND <	obenzene	ND	0.0050	1		Trichlorofluor	omethane		ND	0.050	1		
1,4-Dichlorobenzene ND 0.0050 1 Vinyl Acetate ND 0.050 1 Dichlorodifluoromethane ND 0.0050 1 Vinyl Chloride ND 0.0050 1 1,1-Dichloroethane ND 0.0050 1 Xylenes (total) ND 0.0050 1 1,2-Dichloroethane ND 0.0050 1 Methyl-t-Butyl Ether (MTBE) ND 0.0050 1 1,1-Dichloroethene ND 0.0050 1 Tert-Butyl Alcohol (TBA) ND 0.050 1 t-1,2-Dichloroethene ND 0.0050 1 Diisopropyl Ether (DIPE) ND 0.010 1 t-1,2-Dichloroethene ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 1 1,2-Dichloropropane ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.050 1 2,2-Dichloropropane ND 0.0050 1 TPPH 2.1 0.50 1 1,1-Dichloropropane ND	obenzene	ND	0.0050	1		1,3,5-Trimeth	ylbenzene		ND	0.0050	1		
Dichlorodifluoromethane ND 0.0050 1 Vinyl Chloride ND 0.0050 1 1,1-Dichloroethane ND 0.0050 1 Xylenes (total) ND 0.0050 1 1,2-Dichloroethane ND 0.0050 1 Methyl-t-Butyl Ether (MTBE) ND 0.0050 1 1,1-Dichloroethene ND 0.0050 1 Tert-Butyl Alcohol (TBA) ND 0.050 1 c-1,2-Dichloroethene ND 0.0050 1 Diisopropyl Ether (DIPE) ND 0.010 1 t-1,2-Dichloroethene ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 1 1,2-Dichloropropane ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.010 1 2,2-Dichloropropane ND 0.0050 1 TPPH 2.1 0.50 1 1,1-Dichloropropene ND 0.0050 1 TPPH 2.1 0.50 1 Surrogates: REC (%) Contr		ND	0.0050	1		Vinyl Acetate			ND	0.050	1		
1,2-Dichloroethane ND 0.0050 1 Methyl-t-Butyl Ether (MTBE) ND 0.0050 1 1,1-Dichloroethene ND 0.0050 1 Tert-Butyl Alcohol (TBA) ND 0.050 1 c-1,2-Dichloroethene ND 0.0050 1 Diisopropyl Ether (DIPE) ND 0.010 1 t-1,2-Dichloroethene ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 1 1,2-Dichloropropane ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.010 1 1,3-Dichloropropane ND 0.0050 1 Ethanol ND 0.50 1 2,2-Dichloropropane ND 0.0050 1 TPPH 2.1 0.50 1 1,1-Dichloropropene ND 0.0050 1 TPPH 2.1 0.50 1 Surrogates: REC (%) Control Limits Limits Limits Limits Limits 1,2-Dichloroethane-d4 120 73-145	luoromethane	ND	0.0050	1		Vinyl Chloride	€						
1,2-Dichloroethene ND 0.0050 1 Tert-Butyl Alcohol (TBA) ND 0.050 1 c-1,2-Dichloroethene ND 0.0050 1 Diisopropyl Ether (DIPE) ND 0.010 1 t-1,2-Dichloroethene ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 1 1,2-Dichloropropane ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.010 1 1,3-Dichloropropane ND 0.0050 1 Ethanol ND 0.50 1 2,2-Dichloropropane ND 0.0050 1 TPPH 2.1 0.50 1 1,1-Dichloropropene ND 0.0050 1 TPPH 2.1 0.50 1 Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Limits Dibromofluoromethane 108 73-139 1,2-Dichloroethane-d4 120 73-145	oethane	ND	0.0050	1		Xylenes (total	1)			0.0050			
C-1,2-Dichloroethene ND 0.0050 1 Diisopropyl Ether (DIPE) ND 0.010 1 t-1,2-Dichloroethene ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 1 1,2-Dichloropropane ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.010 1 1,3-Dichloropropane ND 0.0050 1 Ethanol ND 0.50 1 2,2-Dichloropropane ND 0.0050 1 TPPH 2.1 0.50 1 1,1-Dichloropropene ND 0.0050 1 TPPH 2.1 0.50 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Dibromofluoromethane 108 73-139 1,2-Dichloroethane-d4 120 73-145	oethane	ND	0.0050	1		Methyl-t-Buty	l Ether (MTI	BE)					
t-1,2-Dichloroethene	oethene	ND	0.0050	1		Tert-Butyl Ald	cohol (TBA)		ND	0.050	1		
t-1,2-Dichloroethene ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 1 1,2-Dichloropropane ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.010 1 1,3-Dichloropropane ND 0.0050 1 Ethanol ND 0.50 1 2,2-Dichloropropane ND 0.0050 1 TPPH 2.1 0.50 1 1,1-Dichloropropene ND 0.0050 1 Surrogates: REC (%) Control Limits Dibromofluoromethane 108 73-139 1,2-Dichloroethane-d4 120 73-1445	oroethene	ND	0.0050	1		Diisopropyl E	ther (DIPE)		ND	0.010	1		
1,3-Dichloropropane ND 0.0050 1 Ethanol ND 0.50 1 2,2-Dichloropropane ND 0.0050 1 TPPH 2.1 0.50 1 1,1-Dichloropropene ND 0.0050 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Dibromofluoromethane 108 73-139 1,2-Dichloroethane-d4 120 73-145		ND	0.0050	1					ND	0.010	1		
1,2-Dichloropropane	ropropane	ND	0.0050	1		Tert-Amyl-Me	ethyl Ether (TAME)					
2,2-Dichloropropane ND 0.0050 1 TPPH 2.1 0.50 1 1,1-Dichloropropene ND 0.0050 1 Qual Surrogates: REC (%) Control Limits Dibromofluoromethane 108 73-139 1,2-Dichloroethane-d4 120 73-145		ND	0.0050	1									
1,1-Dichloropropene ND 0.0050 1 Qual Surrogates: REC (%) Control Limits Qual Limits REC (%) Control Limits Emits Limits Inchesion of the properties of the propertie	• •	ND	0.0050	1		TPPH			2.1	0.50	1		
Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Limits Dibromofluoromethane 108 73-139 1,2-Dichloroethane-d4 120 73-145	• •	ND	0.0050	1									
Diplomondo menane	<u>3:</u>	REC (%)			<u>Qual</u>	Surrogates:			REC (%)			<u>Qual</u>	
400 74 440	ioromethane	108				1,2-Dichloroe	ethane-d4			73-145			
						1,4-Bromoflu	orobenzene	•	106	71-113			
Toluene-d8-TPPH 109 88-112		109											

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No:

05/23/09

Preparation:

09-05-2153

Method:

EPA 5030B

Units:

LUFT GC/MS / EPA 8260B

mg/kg

Project: 2350 Harrison St., Oakland, CA

Page 7 of 10

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tin Analyze		QC Batch ID
B-2-7'			09-05-2	153-7-B	05/21/09 12:32	Solid	GC/MS PP	06/02/09	06/02/0 15:52		90602L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Acetone	ND	0.12	1		c-1,3-Dichloro	oropene		ND	0.0050	1	
Benzene ·	ND	0.0050	1		t-1,3-Dichlorop	ropene		ND	0.0050	1	
Bromobenzene	ND	0.0050	1		Ethylbenzene			ND	0.0050	1	
Bromochloromethane	ND	0.0050	1		2-Hexanone			ND	0.050	1	
Bromodichloromethane	ND	0.0050	1		Isopropylbenze	ene		ND	0.0050	1	
Bromoform	ND	0.0050	1		p-Isopropyltolu	ene		ND	0.0050	1	
Bromomethane	ND	0.025	1		Methylene Chl			ND	0.050	1	
2-Butanone	ND	0.050	1		4-Methyl-2-Per	ntanone		ND	0.050	1	
n-Butylbenzene	ND	0.0050	. 1		Naphthalene			ND	0.050	1	
sec-Butylbenzene	ND	0.0050	1		n-Propylbenze	ne		ND	0.0050	1	
tert-Butylbenzene	ND	0.0050	1		Styrene			ND	0.0050	1	
Carbon Disulfide	ND	0.050	1		1,1,1,2-Tetrac	hloroethane		ND	0.0050	1	
Carbon Tetrachloride	ND	0.0050	1		1,1,2,2-Tetrac	hloroethane		ND	0.0050	1	
Chlorobenzene	ND	0.0050	1		Tetrachloroeth	ene	•	ND	0.0050	1	
Chloroethane	ND	0.0050	1		Toluene			ND	0.0050	1	
Chloroform	ND	0.0050	1		1,2,3-Trichlord	benzene		ND	0.010	1	
Chloromethane	ND	0.025	1		1,2,4-Trichlord	benzene		ND	0.0050	1	
2-Chlorotoluene	ND	0.0050	1		1,1,1-Trichlord	oethane		ND	0.0050	1	
4-Chlorotoluene	ND	0.0050	1		1,1,2-Trichlor	oethane		ND	0.0050	1	
Dibromochloromethane	ND	0.0050	1		1,1,2-Trichlord	o-1,2,2-Trifl	uoroethane	ND	0.050	1	
1,2-Dibromo-3-Chloropropane	ND	0.025	- 1		Trichloroether	ne		ND	0.0050	1	
1,2-Dibromoethane	ND.	0.0050	1		1,2,3-Trichlord	opropane		ND	0.0050	1	
Dibromomethane	ND	0.0050	1		1,2,4-Trimethy	ylbenzene		ND	0.0050	1	
1,2-Dichlorobenzene	ND	0.0050	1		Trichlorofluoro	omethane		ND .	0.050	1	
1,3-Dichlorobenzene	ND	0.0050	1		1,3,5-Trimethy	ylbenzene		ND	0.0050	1	
1,4-Dichlorobenzene	ND	0.0050	1		Vinyl Acetate			ND	0.050	1	
Dichlorodifluoromethane	ND	0.0050	1		Vinyl Chloride	;		ND	0.0050	1	
1,1-Dichloroethane	ND	0.0050	1		Xylenes (total))		ND	0.0050	1	
1,2-Dichloroethane	ND .	0.0050	1		Methyl-t-Butyl	•	3E)	ND	0.0050	1	
1,1-Dichloroethene	ND	0.0050	1		Tert-Butyl Alc			ND	0.050	1	
c-1,2-Dichloroethene	ND.	0.0050	1		Diisopropyl El	ther (DIPE)		ND	0.010	1	
t-1,2-Dichloroethene	ND	0.0050	1		Ethyl-t-Butyl E	Ether (ETBE	E)	ND	0.010	1	
1,2-Dichloropropane	ND	0.0050	1		Tert-Amyl-Me	thyl Ether (rame)	ND	0.010	1	
1,3-Dichloropropane	ND	0.0050	1		Ethanol			ND	0.50	1	
2,2-Dichloropropane	ND	0.0050	1		TPPH			2.8	0.50	1	
1,1-Dichloropropene	ND	0.0050	1						_		
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	109	73-139			1,2-Dichloroe	thane-d4		119	73-145		
Toluene-d8	100	90-108			1,4-Bromoflu	orobenzene		102	71-113		
Toluene-d8-TPPH	105	88-112									

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received:

05/23/09

Work Order No:

09-05-2153

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

mg/kg

Units:

Project: 2350 Harrison St., Oakland, CA

Page 8 of 10

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyze	\sim	C Batch ID
Method Blank			099-12-	averaga seigne en	N/A	Solid	GC/MS PP	05/30/09	05/31/0 02:34	9 09	0530L04
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	<u>Qual</u>
Acetone	ND	12	100		c-1,3-Dichloro	propene		ND	0.50	100	
Benzene	ND	0.50	100		t-1,3-Dichlorop	ropene		ND	0.50	100	
Bromobenzene	ND	0.50	100		Ethylbenzene			ND	0.50	100	
Bromochloromethane	ND	0.50	100		2-Hexanone			ND	5.0	100	
Bromodichloromethane	ND	0.50	100		Isopropylbenze	ene		ND	0.50	100	
Bromoform	ND	0.50	100		p-Isopropyltolu	iene		ND	0.50	100	
Bromomethane	ND	2.5	100		Methylene Chl	oride		ND	5.0	100	
2-Butanone	ND	5.0	100		4-Methyl-2-Per	ntanone		ND	5.0	100	
n-Butylbenzene	ND	0.50	100		Naphthalene			ND	5.0	100	
sec-Butylbenzene	ŅD	0.50	100		n-Propylbenze	ne		ND	0.50	100	
tert-Butylbenzene	ND	0.50	100		Styrene			ND	0.50	100	
Carbon Disulfide	ND	5.0	100		1,1,1,2-Tetrac	hloroethane		ND	0.50	100	
Carbon Tetrachloride	ND	0.50	100		1,1,2,2-Tetrac	hioroethane		ND	0.50	100	
Chlorobenzene	ND	0.50	100		Tetrachloroeth	ene		ND	0.50	100	
Chloroethane	ND	0.50	100		Toluene			ND	0.50	100	
Chloroform	ND	0.50	100		1,2,3-Trichlord	benzene		ND	1.0	100	
Chloromethane	ND	2.5	100		1,2,4-Trichlord	benzene		ND	0.50	100	
2-Chlorotoluene	ND	0.50	100		1,1,1-Trichlord	oethane		ND	0.50	100	
4-Chlorotoluene	ND	0.50	100		1,1,2-Trichlord	oethane		ND	0.50	100	
Dibromochloromethane	ND	0.50	100		1,1,2-Trichlord		oroethane	ND	5.0	100	
1,2-Dibromo-3-Chloropropane	ND	2.5	100		Trichloroether	ne		ND	0.50	100	
1,2-Dibromoethane	ND	0.50	100		1,2,3-Trichlord	opropane		ND	0.50	100	
Dibromomethane	ND	0.50	100		1,2,4-Trimethy	ylbenzene		ND	0.50	100	
1,2-Dichlorobenzene	ND	0.50	100		Trichlorofluoro	omethane		ND	5.0	100	
1,3-Dichlorobenzene	ND	0.50	100		1,3,5-Trimethy	ylbenzene		ND	0.50	100	
1,4-Dichlorobenzene	ND	0.50	100		Vinyl Acetate			ND	5.0	100	
Dichlorodifluoromethane	ND	0.50	100		Vinyl Chloride			ND	0.50	100	
1,1-Dichloroethane	ND	0.50	100		Xylenes (total)			ND	0.50	100	
1,2-Dichloroethane	ND	0.50	100		Methyl-t-Butyl	•	E)	ND	0.50	100	
1,1-Dichloroethene	ND	0.50	100		Tert-Butyl Alc	, ,		ND	5.0	100	
c-1,2-Dichloroethene	ND	0.50	100		Diisopropyl Et	. ,		ND	1.0	100	
t-1,2-Dichloroethene	ND	0.50	100		Ethyl-t-Butyl E	•	•	ND	1.0	100	
1,2-Dichloropropane	ND	0.50	100		Tert-Amyl-Me	thyl Ether (T	AME)	ND	1.0	100	
1,3-Dichloropropane	ND	0.50	100		Ethanol			ND	50	100	
2,2-Dichloropropane	ND	0.50	100		TPPH			ND	50	100	
1,1-Dichloropropene	ND	0.50	100	_	_			DEC (21)			01
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	103	73-139			1,2-Dichloroe			102	73-145		
Toluene-d8	100	90-108			1,4-Bromofluo	orobenzene		99	71-113		
Toluene-d8-TPPH	100	88-112									

DF - Dilution Factor ,

Qual - Qualifiers

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received:

05/23/09

Work Order No: Preparation:

09-05-2153

Method:

EPA 5030B

Units:

LUFT GC/MS / EPA 8260B

mg/kg

Project: 2350 Harrison St., Oakland, CA

Page 9 of 10

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tin Analyze		QC Batch ID
Method Blank			099-12-	eroneron kielendel	N/A	Solid	GC/MS PP	06/02/09	06/02/0 13:09	9 ()90602L01
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Acetone	ND	0.12	1		c-1,3-Dichloro	propene		ND	0.0050	1	
Benzene	ND	0.0050	1		t-1,3-Dichlorop	ropene		ND	0.0050	1	
Bromobenzene	ND	0.0050	1		Ethylbenzene			ND	0.0050	1	
Bromochloromethane	ND	0.0050	1		2-Hexanone			ND	0.050	1	
Bromodichloromethane	ND	0.0050	1		Isopropylbenze	ene		ND	0.0050	1	
Bromoform	ND	0.0050	1		p-isopropyltolu	ene		ND	0.0050	1	
Bromomethane	ND	0.025	1		Methylene Chl	oride		ND	0.050	1	
2-Butanone	ND	0.050	1		4-Methyl-2-Per	ntanone		ND	0.050	1	
n-Butylbenzene	ND	0.0050	1		Naphthalene			ND	0.050	1	
sec-Butylbenzene	ND	0.0050	1		n-Propylbenze	ne		ND	0.0050	1	
tert-Butylbenzene	ND	0.0050	1		Styrene			ND	0.0050	1	
Carbon Disulfide	ND	0.050	1		1,1,1,2-Tetrac	hloroethane	,	ND	0.0050	1	
Carbon Tetrachloride	ND	0.0050	1		1,1,2,2-Tetrac	hloroethane	;	ND	0.0050	1	
Chlorobenzene	ND	0.0050	1		Tetrachloroeth	ene		ND	0.0050	1	
Chloroethane	ND	0.0050	1		Toluene			ND	0.0050	1	
Chloroform	ND	0.0050	1		1,2,3-Trichlord	benzene		ND	0.010	1	
Chloromethane	ND	0.025	1		1,2,4-Trichlord			ND	0.0050	1	
2-Chlorotoluene	ND	0.0050	1		1,1,1-Trichlore			ND	0.0050	1	
4-Chlorotoluene	ND	0.0050	1		1,1,2-Trichlord	ethane		ND	0.0050	1	
Dibromochloromethane	ND	0.0050	1		1,1,2-Trichlord		uoroethane	ND	0.050	1	
1,2-Dibromo-3-Chloropropane	ND	0.025	1		Trichloroether	ie		ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		1,2,3-Trichlor			ND	0.0050	1	
Dibromomethane	ND	0.0050	1		1,2,4-Trimethy	/lbenzene		ND	0.0050	1	
1,2-Dichlorobenzene	ND	0.0050	1		Trichlorofluoro	methane		ND	0.050	1	
1,3-Dichlorobenzene	ND	0.0050	1		1,3,5-Trimeth	ylbenzene		ND	0.0050	1	
1,4-Dichlorobenzene	ND	0.0050	1		Vinyl Acetate			ND	0.050	1	
Dichlorodifluoromethane	ND	0.0050	1		Vinyl Chloride			ND	0.0050	1	
1,1-Dichloroethane	ND	0.0050	1		Xylenes (total))		ND	0.0050	1	
1,2-Dichloroethane	ND .	0.0050	1		Methyl-t-Butyl	•	3E)	ND	0.0050	1	
1,1-Dichloroethene	ND	0.0050	1		Tert-Butyl Alc	, ,		ND	0.050	1	
c-1,2-Dichloroethene	ND	0.0050	1		Diisopropyl Et	• •		ND	0.010	1	
t-1,2-Dichloroethene	ND	0.0050	1		Ethyl-t-Butyl E			ND	0.010	1	
1,2-Dichloropropane	ND	0.0050	1		Tert-Amyl-Me	thyl Ether (TAME)	ND	0.010	1	
1,3-Dichloropropane	ND	0.0050	1		Ethanol			ND	0.50	1	
2,2-Dichloropropane	ND	0.0050	1		TPPH			ND	0.50	1	
1,1-Dichloropropene	ND	0.0050	1								
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	108	73-139			1,2-Dichloroe	thane-d4		114	73-145		*
Toluene-d8	97	90-108			1,4-Bromoflu			98	71-113		
Toluene-d8-TPPH	97	88-112									

DF - Dilution Factor ,

Qual - Qualifiers

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Project: 2350 Harrison St., Oakland, CA

Date Received:

05/23/09

Work Order No:

09-05-2153

Preparation:

EPA 5030B

Method:

Units:

LUFT GC/MS / EPA 8260B

mg/kg

Page 10 of 10

Client Sample Number	,	-		Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyze	00	Batch ID
Method Blank			099-12-	798-465	N/A	Solid	GC/MS PP	06/02/09	06/02/0 13:36	9 09	0602L02
Parameter	Result	RL	<u>DF</u>	Qual	Parameter	,		Result	<u>RL</u>	<u>DF</u>	Qual
Acetone	ND	12	100		c-1,3-Dichlorop	oropene		ND	0.50	100	
Benzene	ND	0.50	100		t-1,3-Dichlorop	ropene		ND	0.50	100	
Bromobenzene	ND	0.50	100		Ethylbenzene			ND	0.50	100	
Bromochloromethane	ND	0.50	100		2-Hexanone			ND	5.0	100	
Bromodichloromethane	ND	0.50	100		Isopropylbenze	ene		ND	0.50	100	
Bromoform	ND	0.50	100		p-Isopropyltolu			ND	0.50	100	
Bromomethane	ND	2.5	100		Methylene Chlo	oride		ND	5.0	100	
2-Butanone	ND	5.0	100		4-Methyl-2-Per	ntanone		ND	5.0	100	
n-Butylbenzene	ND ·	0.50	100		Naphthalene			ND	5.0	100	
sec-Butylbenzene	ND	0.50	100		n-Propylbenze	ne		ND	0.50	100	
tert-Butylbenzene	ND	0.50	100		Styrene			ND	0.50	100	
Carbon Disulfide	ND ·	5.0	100		1,1,1,2-Tetracl	hloroethane	•	ND	0.50	100	
Carbon Tetrachloride	ND	0.50	100		1,1,2,2-Tetracl	hloroethane	:	ND	0.50	100	
Chlorobenzene	ND	0.50	100		Tetrachloroeth	ene		ND	0.50	100	
Chloroethane	ND	0.50	100		Toluene			ND	0.50	100	
Chloroform	ND	0.50	100		1,2,3-Trichlord	benzene		ND	1.0	100	
Chloromethane	ND	2.5	100		1,2,4-Trichlord	benzene		ND	0.50	100	
2-Chlorotoluene	ND	0.50	100		1,1,1-Trichlord	ethane		ND	0.50	100	
4-Chlorotoluene	ND	0.50	100		1,1,2-Trichlord	ethane		ND	0.50	100	
Dibromochloromethane	ND	0.50	100		1,1,2-Trichlord	-1,2,2-Trifl	uoroethane	ND	5.0	100	
1,2-Dibromo-3-Chloropropane	ND	2.5	100		Trichloroethen			ND	0.50	100	
1.2-Dibromoethane	ND	0.50	100		1,2,3-Trichlord	propane		ND	0.50	100	
Dibromomethane	ND	0.50	100		1,2,4-Trimethy	/lbenzene		ND	0.50	100	
1,2-Dichlorobenzerie	ND	0.50	100		Trichlorofluoro	methane		ND	5.0	100	
1,3-Dichlorobenzene	ND	0.50	100		1,3,5-Trimethy	/lbenzene		ND	0.50	100	
1,4-Dichlorobenzene	ND	0.50	100		Vinyl Acetate			ND	5.0	100	
Dichlorodifluoromethane	ND	0.50	100		Vinyl Chloride			ND	0.50	100	
1.1-Dichloroethane	ND	0.50	100		Xylenes (total))		ND	0.50	100	
1,2-Dichloroethane	ND	0.50	100		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.50	100	
1,1-Dichloroethene	ND	0.50	100		Tert-Butyl Alco	ohol (TBA)	,	ND	5.0	100	
c-1,2-Dichloroethene	ND	0.50	100		Diisopropyl Et			ND	1.0	100	
t-1,2-Dichloroethene	ND	0.50	100		Ethyl-t-Butyl E	ther (ETBE	≣)	ND	1.0	100	
1,2-Dichloropropane	ND	0.50	100		Tert-Amyl-Me	thyl Ether (1	ΓΑΜΕ)	ND	1.0	100	
1,3-Dichloropropane	ND	0.50	100		Ethanol			ND	50	100	
2,2-Dichloropropane	ND	0.50	100		TPPH			ND	50	100	
1,1-Dichloropropene	ND	0.50	100								
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	105	73-139			1,2-Dichloroet	thane-d4		110	73-145		
Toluene-d8	99	90-108			1,4-Bromofluo			98	71-113		
Toluene-d8-TPPH	99	88-112									

16C

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 05/23/09 09-05-2153 EPA 3550B EPA 8015B

Project 2350 Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-05-2322-8	Solid	GC 47	05/29/09		05/30/09	090529807
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Diesel Range Organics	79	82	64-130	4	0-15	

RPD - Relative Percent Difference, CL - Control Limit

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

05/23/09 09-05-2153 EPA 5030B LUFT GC/MS / EPA 8260B

Project 2350 Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Þ	Date Analyzed	MS/MSD Batch Number	
09-05-2116-2	Solid	GC/MS PP	05/30/09	. (05/31/09	090530S02	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	85	88	79-115	4	0-13		
Carbon Tetrachloride	104	107	55-139	3	0-15		
Chlorobenzene	83	85	79-115	2	0-17		
1,2-Dibromoethane	84	85	70-130	2	0-30		
1,2-Dichlorobenzene	78	78	63-123	1	0-23		
1,1-Dichloroethene	93	94	69-123	1	0-16		
Ethylbenzene	84	86	70-130	2	0-30		
Toluene	85	88	79-115	4	0-15		
Trichloroethene	89	93	66-144	5	0-14		
Vinyl Chloride	95	97	60-126	2	0-14		
Methyl-t-Butyl Ether (MTBE)	87	87	68-128	0	0-14		
Tert-Butyl Alcohol (TBA)	84	80	44-134	5	0-37		
Diisopropyl Ether (DIPE)	79	82	75-123	3	0-12		
Ethyl-t-Butyl Ether (ETBE)	86	88	75-117	3	0-12		
Tert-Amyl-Methyl Ether (TAME)	85	86	79-115	2	0-12		
Ethanol	20	12	42-138	48	0-28	3,4	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 05/23/09 09-05-2153 EPA 5030B LUFT GC/MS / EPA 8260B

Project 2350 Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
B-3-15'	Solid	GC/MS PP	06/02/09		06/02/09	090602801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	94	95	79-115	1	0-13	
Carbon Tetrachloride	112	114	55-139	2	0-15	
Chlorobenzene	93	98	79-115	5	0-17	
1,2-Dibromoethane	93	100	70-130	7	0-30	
1,2-Dichlorobenzene	89	92	63-123	4	0-23	
1,1-Dichloroethene	97	98	69-123	1	0-16	
Ethylbenzene	96	99	70-130	4	0-30	
Toluene	. 92	95	79-115	4	0-15	
Trichloroethene	108	115	66-144	6	0-14	
Vinyl Chloride	104	106	60-126	2	0-14	
Methyl-t-Butyl Ether (MTBE)	88	94	68-128	6	0-14	
Tert-Butyl Alcohol (TBA)	71	86	44-134	18	0-37	
Diisopropyl Ether (DIPE)	82	85	75-123	4	0-12	
Ethyl-t-Butyl Ether (ETBE)	89	93	75-117	5	0-12	
Tert-Amyl-Methyl Ether (TAME)	90	95	79-115	5	0-12	
Ethanol	11	13	42-138	13	0-28	3

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method: N/A 09-05-2153 EPA 3550B EPA 1664A M

Project: 2350 Harrison St., Oakland, CA

Quality Control Sample ID		Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD E Number	
099-12-040-228		Solid	N/A	06/12/09	06/12/09	90612HEN	IL1
<u>Parameter</u>	,	LCS %	REC LCSD	<u>%REC</u>	EC CL R	PD RPD CL	Qualifiers
HEM: Oil and Grease		100	92	8	0-120	0-20	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method: N/A 09-05-2153 EPA 3550B EPA 8015B

Project: 2350 Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bat Number	ch
099-12-025-731	Solid	GC 47	05/29/09	05/30/09	090529B07	
Parameter	LCS %RE	EC LCSD %	REC %REC	CL RPD	RPD CL	Qualifiers
Diesel Range Organics	90	92	75-1	23 3	0-12	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No:

09-05-2153

N/A

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Project: 2350 Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed 05/31/09		LCS/LCSD E Number	
099-12-798-463	Solid	GC/MS PP	05/30/09			090530L	04
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	95	96	84-114	79-119	1	0-7	
Carbon Tetrachloride	105	107	66-132	55-143	2	0-12	
Chlorobenzene	95	96	87-111	83-115	1	0-7	
1,2-Dibromoethane	102	102	80-120	73-127	0	0-20	
1,2-Dichlorobenzene	93	94	79-115	73-121	1	8-0	
1,1-Dichloroethene	95	96	73-121	65-129	1	0-12	
Ethylbenzene	95	96	80-120	73-127	1	0-20	
Toluene	95	96	78-114	72-120	1	0-7	
Trichloroethene	95	96	84-114	79-119	0	0-8	
Vinyl Chloride	93	95	63-129	52-140	2	0-15	
Methyl-t-Butyl Ether (MTBE)	101	101	77-125	69-133	0	0-11	
Tert-Butyl Alcohol (TBA)	89	92	47-137	32-152	4	0-27	
Diisopropyl Ether (DIPE)	88	88	76-130	67-139	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	98	98	76-124	68-132	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	99	99	82-118	76-124	0	0-11	
Ethanol	99	101	59-131	47-143	2	0-21	
TPPH	90	88	65-135	53-147	3	0-30	

Total number of LCS compounds: 17 Total number of ME compounds: 0

Total number of ME compounds allowed :

LCS ME CL validation result: Pass

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

09-05-2153

N/A

Work Order No: Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Project: 2350 Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD B Number	atch
099-12-798-464	Solid	GC/MS PP	06/02/09	06/02/0	9	090602L0	1
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	97	97	84-114	79-119	0	0-7	
Carbon Tetrachloride	118	120	66-132	55-143	2	0-12	
Chlorobenzene	102	103	87-111	83-115	1	0-7	
1,2-Dibromoethane	105	108	80-120	73-127	3	0-20	
1,2-Dichlorobenzene	105	104	79-115	73-121	1	0-8	
1,1-Dichloroethene	103	102	73-121	65-129	0	0-12	•
Ethylbenzene	104	104	80-120	73-127	1	0-20	
Toluene	99	99	78-114	72-120	1	0-7	
Trichloroethene	104	101	84-114	79-119	2	0-8	
Vinyl Chloride	107	106	63-129	52-140	1	0-15	
Methyl-t-Butyl Ether (MTBE)	97	100	77-125	69-133	3	0-11	•
Tert-Butyl Alcohol (TBA)	90	88	47-137	32-152	3	0-27	
Diisopropyl Ether (DIPE)	86	86	76-130	67-139	0	0-8	
Ethyl-t-Butyl Ether (ETBE)	95	95	76-124	68-132	0	0-12	•
Tert-Amyi-Methyl Ether (TAME)	97	98	82-118	76-124	1	0-11	
Ethanol	105	105	59-131	47-143	0	0-21	
TPPH	96	93	65-135	53-147	3	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: LCS ME CL validation result: Pass

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No:

Preparation:

Method: Ll

N/A

09-05-2153 EPA 5030B

LUFT GC/MS / EPA 8260B

Project: 2350 Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date nt Prepared				Batch r
099-12-798-465	Solid	GC/MS PP	06/02/09	06/02	09	090602L0	02
Parameter	LCS %REC	LCSD %REC	%REC CL,	ME_CL	RPD	RPD CL	Qualifiers
Benzene	97	97	84-114	79-119	0	0-7	
Carbon Tetrachloride	118	120	66-132	55-143	2	0-12	
Chlorobenzene	102	103	87-111	83-115	1	0-7	
1,2-Dibromoethane	105	108	80-120	73-127	3	0-20	
1,2-Dichlorobenzene	105	104	79-115	73-121	1	8-0	
1,1-Dichloroethene	103	102	73-121	65-129	0	0-12	
Ethylbenzene	104	104	80-120	73-127	1	0-20	
Toluene	99	99	78-114	72-120	1	0-7	
Trichloroethene	104	101	84-114	79-119	2	0-8	
Vinyl Chloride	107	106	63-129	52-140	1	0-15	
Methyl-t-Butyl Ether (MTBE)	97	100	77-125	69-133	3	0-11	
Tert-Butyl Alcohol (TBA)	90	88	47-137	32-152	3	0-27	
Diisopropyl Ether (DIPE)	86	86	76-130	67-139	0	0-8	
Ethyl-t-Butyl Ether (ETBE)	95	95	76-124	68-132	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	97	98	82-118	76-124	1	0-11	
Ethanol	105	105	59-131	47-143	0	0-21	
TPPH	96	93	65-135	53-147	3	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 09-05-2153

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.
*	

LAB (LOCATION)					C III	?		Sh	iell	Oi	il P	ro	du	cts	Cł	ıai	n C	of C	ust	od	y F	ec	or	d						
CALSCIENCE ()	111111	Þ	ease Che	ck Ar	prop	riate	Box.			Print Bill To Contact Name: NCIDENT # (ENV SERVICES) C CHECK IF NO INCIDENT # APPLIES																				
SPL ()	☑ E	NV. SERVICE	s 0	MOTIV	A RETAI	IL	o s	HELL RE	ETAIL		 De	nis E	erou.	m		• • • •				9				$\overline{}$		$\overline{}$	9			1/09
	O M	OTIVA SD&C	M 0	CONSU	LTANT		10 u	UBES		333			310V		2O #	e i i i i						1	SA					DATE		- / - /
☐ TEST AMERICA () ☐ OTHER ()		IELL PIPELIN		OTHER					=	'	1	1	T	1	·····	1	<u> </u>	<u> </u>	1			1		ः स्ट 	() () 	T	Ī	PAGE	::1_	of1
MPUNG COMPANY		icu riruu	و ا	LOGO					لــــــــــــــــــــــــــــــــــــــ	617	- 100	RESS: S		d (%)						1 State	7	7 3	3	1 BALIDA	8					<u>.</u>
onestoga-Rovers & Associates				CRA										nisor Tisor	ı St	Oak	dand			CA			ľ	600		223	7		٠	
ADDRESS 900 Hollis Street, Suite A, Emeryville, CA 94608	}									EDF 0	EUVER.	ABLE TO	(Name, 0	company, C	Mice Loca	ation):		PHON	E NO				E-MAI						CONSULTANTE	PROJECT NO:
PROJECT CONTACT (Hardcopy or PDF Report to):								·		1				A, Em	eryvii	iie		510	420-3	343			shel	ledf@	<u>)</u> сгач	vorld	.com		60119	
eter Schaefer ELEPHONE: FAX		E-MAIL										inha		ylu													LAE	USE ONL	r	
510-420-3319 510-420-91	70	E-MAIL	psc	haefer	@crav	world.c	mox							•													6	4-6)5 - 2	153
TURNAROUND TIME (CALENDAR DAYS): STANDARD (14 DAY)	YS	2 DAYS	□ 24 H	OLIPS		II A	ESULTS N	EEDED											RI	QUE	STE) AN	ALY	SIS						
☐ LA - RWQCB REPORT FORMAT ☐ UST AGENCY:								OIV IVE	LKEND	╁	$\overline{1}$	T	T -	П	т	Т	\top	Т	_			T T	Γ		Г			T		
			☑ SHE	L CONTI	RACT RA	ATE APP	LIES			1	ľ					<u>_</u>							5					TE	MPERATUR C	E ON RECEIPT
SPECIAL INSTRUCTIONS OR NOTES :			☐ STAT	E REIME	BURSEM	ient ra	TE APPLI	ES		<u>a</u>						1,1,2,2-tetrachloroethane(8260B)	۱ ـ						(6010)		1					•
			☐ EDD	NOT NE	EDED					3260			(B)			ane(更	ļ		_				
		: .	☑ RECI	IPT VER	RIFICATI	ION REC	QUESTED			Purgeable (8260B)			(8260B)			et e	ruii scan voes (8260B)				(FIG	(8015M)	- Total			Oll & Grease (418.1)		.		
	SAM	IPLING		T	PR	ESERVA	TIVE	7		geal	9	0B)	tes	(B)	a :		3				801	8	tals	200	9	Se (15m)] .		
Field Sample Identification			MATRIX		Π		П		NO. OF	2	(826	(826	gena	(826	3260	tetra	cau '				2	S S	7 Me	88	(826	Grea	8		Contolner Di	D Beadless
AB SEE	DATE	TIME		1.			-		CONT.	Ŧ	TPHg (8260B)	BTEX (8260B)	5 Oxygenates	MTBE (8260B)	TBA (8260B)	1,2,2	Ď ^		İ		Methanol (8015M)	TPH - MO	CAM17 Metals	SVOCs (8270C)	VOCs (8260)	85	TPHd (8015M)		Container Pi or Laborat	
MEY:	F/ /	-		HCL	HNO3	H2SO4	NONE O	THER		⊢	+	1	5	Σ	F			+			Σ	F	ý	S	Š	_	 			
1 Ba~5.5′ ·	1/21/0	12:30	Soil	1_				X	1	_	X			_ _		-	X	-								Х	X	4		
Z B-2-10' ·		12:35	Soil					X	2	_	X					;	X									Х	X			
3 B- a -15' ·		12:40	Soil					x	2		x					2	x									Х	x			
	\top	1:10	Soil					х	2		X				\top	1	/									χ	X			
4 B-3-5.5' · 5 B-3-10' · 6 B-3-15' ·	11	1:15	Soil					$\frac{\hat{x}}{x}$	<u>F</u>	1	X				-	一		1	_	\Box						X	X	_		
6 β-3-15 ·	+	-		+-	H					 	_			-+	+			+		\dashv				_		X	γ.			
5 0 3 1 3 1	14	1:20	Soil	+			- -	X	2	-	X	\vdash	-		-	K	4	+-		-		-				X		+		
	1			1										_			\bot										اريا			
7 B-2-7' ·	5/21/2	12:32	Soil			.		X	1		X	1 1				X										X	X			
	100			\top			<u> </u>	\dashv						_	十	1	T					П						\neg		
				+				-+		_		$\vdash \vdash$		- -	+	-	-	-		\dashv		\square					$\vdash \vdash$			
																														•
linquished by: (Signature)		-1/	Received by: (S	ignature)))													Date:	. 1	2	,)			Time:		
	~			رم	i	سد	ر	X.	BC		0 5	tic	\ \ \									5	/-	2	//	0	1	5	00	
En Venles	9													-								Date:						Time:		
Englished by (Signature)	9		Received by (S	ignature)																						_				
Englished by (Signature) B Cal			Received by (S	ignature)	بلا	_		,		C	F	, L									į	5	-22	> ~	2	ጎ		12	LUS	_
Englished by: (Signature) B Call Paylished by: (Signature)		250	Received by: (S	ignature)	بر	\		· 		<u>C</u>	E	-/		۷.								Date:	,	<u> </u>	<u>عر</u>	7	$\frac{1}{1}$	Time:	LUS	
B Cal	5:	22-D	Received by: (S	ignature)	5	1		,		C	X Z	1	Z	5			-		200			Dete:	,) ~	1/	7			245 36	

work order #: **09-05-** □ □ □ □ □ □

saboratories, Inc. SAMPLE RECEIPT FORM

Cooler ___ of __/

CLIENT:	DATE:	05/23	109									
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature3 _ °C - 0.2 °C (CF) =3 _ / _ °C												
CUSTODY SEALS INTACT: ☐ Cooler ☐ ☐ No (Not Intact) ☐ Not Present ☐ Sample ☐ ☐ No (Not Intact) ☐ Not Present		Initial: . Initial: .										
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples COC document(s) received complete	6	No □ □	N/A									
□ COC not relinquished. □ No date relinquished. □ No time relinquished. Sampler's name indicated on COC	p p p											
☐ Unpreserved vials received for Volatiles analysis Volatile analysis container(s) free of headspace Tedlar bag(s) free of condensation	🛮	□ □ res® □	Z Z									
Water: UVOA UVOAh UVOAna2 U125AGB U125AGBh U125AGB U500AGB U500AGJ U500AGJs U250AGB U250CGB U250CGB U250PB U250PBn U125PB U125PBznna U100PB U100PBna2 U Air: UTedlar® USumma® U Other: U Container: C: Clear A: Amber P: Plastic G: Glass J: Jar (Wide-mouth) B: Bottle (Narrow-r Preservative: h: HCL n: HNO3 na2:Na2S2O3 Na: NaOH p: H3PO4 s: H2SO4 znna: ZnAc2+NaOH	p □1AGB Bs □1PB Checke	□1AGBna₂ □ □500PB □50 □d/Labeled by: Reviewed by:	I1AGBs 00PB na									

June 11, 2009

Peter Schaefer Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.:

Client Reference:

09-05-2154

2350 (2368) Harrison St., Oakland, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 5/23/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Jessi Cee

Calscience Environmental Laboratories, Inc. Jessie Lee Project Manager

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received:

05/23/09

Work Order No:

09-05-2154

Preparation:

EPA 3050B / EPA 7471A Total

Method:

EPA 6010B / EPA 7471A

mg/kg

Units:

Project: 2350 (2368) Harrison St., Oakland, CA

Page 1 of 1

Client Sample Nu	mber		Lab Sample Number	Date /Time Collected	Matrix Instrument	Date Date/Tim Prepared Analyze	OC Datak	h ID
CRA-A			09-05-2154-3 -A	05/21/09 14:05	Solid ICP 5300	05/27/09 05/28/09 18:41	9 090527L	.03
Comment(s):	-Mercury was analyze	ed on 5/27/2009	1:50:54 PM with batc	h 090527L03				
Parameter	Result	<u>RL</u>	DF Q	ual Parameter	Result	<u>RL</u>	DF	Qual
Antimony	ND	0.750	1	Mercury	0.311	0.0835	1	
Arsenic	7.66	0.750	1	Molybdenum	ND	0.250	1	
Barium	109	0.500	1	Nickel	47.3	0.250	- 1	
Beryllium	0.256	0.250	1	Selenium	ND	0.750	1	
Cadmium	ND	0.500	1	Silver	ND	0.250	1	
Chromium	34.3	0.250	1 :	Thallium	ND	0.750	1	
Cobalt	11.1	0.250	1	Vanadium	32.4	0.250	1	
Copper	35.8	0.500	1	Zinc	90.9	1.00	1	
Lead	30.0	0.500	1					
Method Blank			099-04-007-6,30	8 N/A	Solid Mercury	05/27/09 05/27/0 13:12		_03
				<u>(985) </u>	<u> </u>			90090240

Parameter Mercury	<u>Result</u> ND	<u>RL</u> 0.0835	<u>DF</u> <u>Qual</u>				
Method Blank			097-01-002-12,342	N/A Sol	id ICP 5300	05/27/09 05/27 19:5	
Parameter	Result	RL	<u>DF</u> Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u> <u>Qual</u>
Antimony	ND	0.750	1	Lead	ND	0.500	1
Arsenic	ND	0.750	1	Molybdenum	ND	0.250	1
Barium	ND	0.500	1	Nickel	ND	0.250	1
Beryllium	ND	0.250	1	Selenium	ND	0.750	1
Cadmium	ND	0.500	1. 1 . 1	Silver	ND	0.250	1
Chromium	ND	0.250	1	Thallium	ND	0.750	1
Cobalt	ND	0.250	1	Vanadium	ND	0.250	1
Copper	ND	0.500	1	Zinc	ND	1.00	1

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No:

Preparation:

09-05-2154 EPA 3550B

Method:

EPA 8015B

05/23/09

Project: 2350 (2368) Harrison St., Oakland, CA

Page 1 of 1

Project: 2350	(2368) Harrison	St., Oakia	na, CA					Га	ige i oi i
Client Sample Numbe	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CRA-A			09-05-2154-3-A	05/21/09 ,14:05	Solid	GC 49	05/29/09	05/30/09 07:37	090529B17
Comment(s):	-The sample chromato of the unknown hydroc	graphic patteri arbon(s) in the	n for TPH does not no e sample was based	natch the chron upon the specif	natographic ied standa	pattern of the	specified st	tandard. Qua	antitation
<u>Parameter</u>	ŕ	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organi	cs	1100	75	15		mg/kg			•
Surrogates:		REC (%)	Control Limits		Qual				•
Decachlorobiphenyl		92	61-145						
Method Blank			099-12-025-730	N/A	Solid	GC 49	05/29/09	05/30/09 04:01	090529B17
Parameter		Result	RL	<u>DF</u>	Qual	<u>Units</u>			

Decachlorobiphenyl

Surrogates:

Diesel Range Organics

101

ND

61-145

Control Limits

5.0

Qual

. 1

mg/kg

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

05/23/09 09-05-2154 EPA 3550B EPA 8015B (M)

Project: 2350 (2368) Harrison St., Oakland, CA

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CRA-A		09-05-2154-3-A	05/21/09 14:05	Solid	GC 49	05/29/09	05/30/09 07:37	090529B18
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	6100	380	15		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	92	61-145						
Method Blank		099-12-254-772	: N/A	Solid	GC 49	05/29/09	05/30/09 04:01	090529B18
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg	1		
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	101	61-145	•					

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 05/23/09 09-05-2154 DHS LUFT DHS LUFT

Project: 2350 (2368) Harrison St., Oakland, CA

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CRA-A		09-05-2154-3-A	05/21/09 14:05	Solid	FLAA2	05/28/09	06/09/09 00:00	090528L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Organic Lead	ND	1.00	1		mg/kg			
Method Blank		099-10-020-1,199	N/A	Solid	FLAA2	05/28/09	05/28/09 19:54	090528L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Organic Lead	ND	1.00	1		mg/kg			

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

05/23/09

Work Order No:

09-05-2154

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

mg/kg

Project: 2350 (2368) Harrison St., Oakland, CA

Page 1 of 1

Client Sample Number				o Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
CRA-A			09-05-2	154-3-A	05/21/09 14:05	Solid	GC/MS PP	05/30/09	05/30/ 21:0		090530L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	0.0074	0.0050	1		Xylenes (total)			0.0057	0.0050	1	
Ethylbenzene	0.0053	0.0050	1		TPPH			2.6	0.50	1	
Toluene	ND	0.0050	1								4
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	102	73-139			1,2-Dichloroetha	ane-d4		100	73-145		
Toluene-d8	100	90-108			1,4-Bromofluoro	benzene		100	71-113		
Toluene-d8-TPPH	103	88-112									
Method Blank			099-12	-798-461	N/A	Solid	GC/MS PF	05/30/09	05/30 12:5		090530L01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	0.0050	1		Xylenes (total)			ND	0.0050	1	
Ethylbenzene	ND	0.0050	1		TPPH			ND	0.50	1	
Toluene	ND	0.0050	1								
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	<u>Control</u> <u>Limits</u>		Qual
Dibromofluoromethane	108	73-139	1		1,2-Dichloroeth	ane-d4		111	73-145		
Toluene-d8	99	90-108			1,4-Bromofluor	obenzene		96	71-113		
Toluene-d8-TPPH	99	88-112	ية در ا	e y vy	And Astron						

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

05/23/09 09-05-2154 **EPA 3050B EPA 6010B**

Project 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date nalyzed	MS/MSD Batch Number
09-05-1984-2	Solid	ICP 5300	05/27/09	0	5/27/09	090527S03
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Antimony	25	25	-50-115	1	0-20	3
Arsenic	112	103	75-125	4	0-20	
Barium	4X	4X	75-125	4X	0-20	Q
Beryllium	100	99	75-125	2	0-20	
Cadmium	96	96	75-125	0	0-20	
Chromium	110	66	75-125	14	0-20	3
Cobalt	97	97	75-125	0	0-20	
Copper	100	99	75-125	. 0	0-20	
Lead	4X	4X	75-125	4X	0-20	Q
Molybdenum	98	97	75-125	1	0-20	
Nickel	96	95	75-125	1	0-20	
Selenium	100	95	75-125	4	0-20	
Silver	98	97	75-125	1	0-20	
Thallium	87	87	75-125	1	0-20	
Vanadium	96	95	75-125	1	0-20	
Zinc	4X	4X	75-125	4X	0-20	Q

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 05/23/09 09-05-2154 EPA 3550B EPA 8015B

Project 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-05-2155-9	Solid	GC 49	05/29/09		05/30/09	090529S17
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Diesel Range Organics	100	97	64-130	3	0-15	

RPD - Relative Percent Difference,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 05/23/09 09-05-2154 EPA 3550B EPA 8015B (M)

Project 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	ļ	Date Analyzed	MS/MSD Batch Number
09-05-2155-9	Solid	GC 49	05/29/09		05/30/09	090529S18
					•	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	110	102	64-130	8	0-15	

RPD - Relative Percent Difference,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 05/23/09 09-05-2154 DHS LUFT DHS LUFT

Project 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-05-1680-3	Solid	FLAA2	05/28/09		05/28/09	090528S01
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	-Arabi ki sana a ka				
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Organic Lead	93	95	22-148	2	0-18	

The state of the s

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

05/23/09 09-05-2154 EPA 7471A Total EPA 7471A

Project 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date I Analyzed	MS/MSD Batch Number
09-05-1984-2	Solid	Mercury	05/27/09		05/27/09	090527803
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Mercury	104	103	71-137 ⁵	1	0-14	

RPD - Relative Percent Difference,

0-14

0-14

0-14

0-37

0-12

0-12

0-12

0-28

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

66-144

60-126

68-128

44-134

75-123

75-117

79-115

42-138

3

6

17

2

2

0

8

05/23/09 09-05-2154 **EPA 5030B EPA 8260B**

Project 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-05-2567-1	Solid	GC/MS PP	05/30/09		05/30/09	090530S01
						,
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	101	101	79-115	0	0-13	
Carbon Tetrachloride	123	123	55-139	1	0-15	
Chlorobenzene	103	100	79-115	3	0-17	
1,2-Dibromoethane	107	103	70-130	4	0-30	
1,2-Dichlorobenzene	100	100	63-123	0	0-23	
1,1-Dichloroethene	106	106	69-123	0	0-16	
Ethylbenzene	.104	102	70-130	2	0-30	
Toluene	99	101	79-115	1	0-15	

105

112

3250

1461

90

100

101

107

106

109

3563

1238

88

98

100

99

RPD - Relative Percent Difference,

Toluene

Ethanol

Trichloroethene

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

Tert-Amyl-Methyl Ether (TAME)

Vinyl Chloride

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

N/A 09-05-2154 **EPA 3050B EPA 6010B**

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD E Number	
097-01-002-12,342	Solid	ICP 5300	05/27/09	05/27	/09	090527L0	03
<u>Parameter</u>	LCS %REC	LCSD, %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Antimony	100	98	80-120	73-127	2	0-20	
Arsenic	102	101	80-120	73-127	2	0-20	
Barium	107	107	80-120	73-127	0	0-20	
Beryllium	99	99	80-120	73-127	0	0-20	
Cadmium	103	103	80-120	73-127	0	0-20	
Chromium	99	99	80-120	73-127	0	0-20	
Cobalt	107	106	80-120	73-127	1	0-20	
Copper	101	100	80-120	73-127	1	0-20	
Lead	107	106	80-120	73-127	1	0-20	
Molybdenum	106	105	80-120	73-127	1	0-20	
Nickel	107	107	80-120	73-127	1	0-20	
Selenium	95	96	80-120	73-127	, 1	0-20	•
Silver	101	101	80-120	73-127	0	0-20	
Thallium	104	103	80-120	73-127	1	0-20	
Vanadium	99	99	80-120	73-127	0	0-20	,
Zinc	103	103	80-120	73-127	0	0-20	

Total number of LCS compounds: 16 Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

RPD - Relative Percent Difference,

nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 09-05-2154 EPA 3550B EPA 8015B

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File I	D LC	S Batch Number
099-12-025-730	Solid	GC 49	05/30/09	G2000044	l	090529B17
Parameter		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Diesel Range Organics		400	426	107	75-123	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:
Work Order No:
Preparation:
Method:

N/A 09-05-2154 EPA 3550B EPA 8015B (M)

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrur	Da nent Prep	ate pared	Date Analyzed	LCS/LCSD Bat Number	tch .
099-12-254-772	Solid	GC 4	9 05/2	9/09	05/30/09	090529B18	
<u>Parameter</u>	LCS %F	REC	LCSD %REC	%REC	CL RPD	RPD CL	Qualifiers
TPH as Motor Oil	85		83	75-12	23 3	0-12	

alscience nvironm

nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 09-05-2154 DHS LUFT DHS LUFT

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrumen	t Date Analyzed	Lab File	e ID LC:	S Batch Number
099-10-020-1,199	Solid	FLAÄ2	05/28/09	NONE		090528L01
<u>Parameter</u>		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Organic Lead		25.0	25.7	103	72-126	

RPD - Relative Percent Difference ,
7440 Lincolr

14

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 09-05-2154 EPA 7471A Total EPA 7471A

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	1	LCS/LCSD Bate Number	ch
099-04-007-6,308	Solid	Mercury	05/27/09	05/27/09		090527L03	
Parameter	LCS %	REC ICSD	%REC %R	EC CL	RPD	RPD CL	Qualifiers
Mercury	100	101	1 .	5-121	1	0-10	<u>a.commoro</u>

RPD - Relative Percent Difference, CL - Control Limit

Alena.

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received:

Work Order No:

09-05-2154

Preparation:

EPA 5030B

N/A

Method:

LUFT GC/MS / EPA 8260B

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD E Number	
099-12-798-461	Solid	GC/MS PP	05/30/09	05/30/	/09	090530L0	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	99	99	84-114	79-119	1	0-7	
Carbon Tetrachloride	126	127	66-132	55-143	1	0-12	
Chlorobenzene	101	100	87-111	83-115	1	0-7	
1,2-Dibromoethane	103	106	80-120	73-127	3	0-20	
1,2-Dichlorobenzene	100	99	79-115	73-121	1	8-0	
1,1-Dichloroethene	105	105	73-121	65-129	0	0-12	
Ethylbenzene	101	100	80-120	73-127	1	0-20	
Toluene	100	99	78-114	72-120	0	0-7	
Trichloroethene	101	103	84-114	79-119	2	0-8	
Vinyl Chloride	109	107	63-129	52-140	1	0-15	
Methyl-t-Butyl Ether (MTBE)	101	104	77-125	69-133	3	0-11	
Tert-Butyl Alcohol (TBA)	93	93	47-137	32-152	0	0-27	
Diisopropyl Ether (DIPE)	90	91 [°]	76-130	67-139	2	0-8	
Ethyl-t-Butyl Ether (ETBE)	98	99	76-124	68-132	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	99	102	82-118	76-124	3	0-11	
Ethanol	111	108	59-131	47-143	3	0-21	
TPPH	98	95	65-135	53-147	3	0-30	

Total number of LCS compounds: 17 Total number of ME compounds: 0 Total number of ME compounds allowed:

LCS ME CL validation result : Pass

Glossary of Terms and Qualifiers

Work Order Number: 09-05-2154

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Ε	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

LAB (LOCATION)						?		Sh	lell	Oi	II P	ro	du	cts	C	na	ın (Ot 1	Cus	sto	ay i	Ked	or	a								
CALSCIENCE ()	10000	Ple	ase Che	ck Ar			Box	(1000)		Prí	nt B	Siliti	o Co	ntac	t Na	me:					INCH	DEN	'#:(l	ENV	SEF	VIC	ES)	☑ cr	IECK IF N	O INCIDE	IT # APPLI	IES
☐ SPL ()	E EN	V. SERVICES			A RETAIL		~	HELL RE	TAIL	l								.*.*.*.*		ŀ		7	τ	1 3							21/0	
□ XENCO ()		OTIVA SD&CM	== :=						=		De	nis E	Brow		2.1.4.						9	4			9 3	71 0	1 3	J DA	\1 =. <u></u>	J -	2// 5	
TEST AMERICA ()	[U m	JIIVA SUACM	二 旨	CONSU			ا	OBES							PO	# ::							SA	P.#				P#	AGE:	1_	of	1_
OTHER ()	☐ SH	ELL PIPELINE		OTHER	·	<u> </u>													1	ĺ	1	7	3 :	3	1 8	3						
MPLING COMPANY				LOG	CODE:					SITE	E ADDI	RESS: S	treet a	nd City						- 1	tate		1	OBAL ID								
onestoga-Rovers & Associates										235	50 (2	2368)) Hai	rriso	n St	., Oa	klan	ıd 🙃	ONE NO.		CA		T(<u> 260</u>	010	223	7		- 1 a	NSUL TANT F	ROJECT NO.	
odress: 900 Hollis Street, Suite A, Emeryville, CA 946	108											Carte						ľ	IOAL NO.													
ROJECT CONTACT (Hardcopy or PDF Report to):										<u> </u>	ICK ECT N	IAMÉ(S) (F	Drivet					5	10-42	0-334	3		she	elledf	@cra	world		B USE (601	19		333333
eter Schaefer		E-MAIL:										inha		ylu																		
510-420-3316 510-385-	0212		<u>a</u>	cool@	crawor	rld.∞n	1																				10	9 -	05	- Z	154	1
TURNAROUND TIME (CALENDAR DAYS): STANDARD (14 DAY)	DAYS	2 DAYS	□ 24 H	IOURS		R		NEEDED ON WEI												REC	QUEST	ED AI	IALY	/SIS								
LA - RWQCB REPORT FORMAT UST AGENC	Y:										Π												6						TEMPI	ERATUR	E ON RE	CEIPT
OPPOINT INOTHINGTONS OF NOTES .			☑ SHE	LL CONT	RACT RA	ATE APP	LIES			1	E												(6010)				ļ		i	c		
SPECIAL INSTRUCTIONS OR NOTES:			☐ STA	TE REIM	IBURSEM	ENT RA	TE APPL	IES		260	804		<u>a</u>						-										l			
cc: Kari Dupler, kDupler@craworld.coi	n		EDD							- Purgeable (8260B)	TPH - Extractable (8015M)		(8260B)								_ £	NS SE	CAM17 Metals - Total			ľ			· 			
Call Composite Sample "CRA-A Follow at	tached conti	ngent ana	Ø REC lysis.	EIPT VE	RIFICATI	ION REC	UESTE			eap	ctab	a	es (a	<u>@</u>	_	€	<u>@</u>	<u>@</u>	1.2 DCA (8260B)	a	Ethanol (8260B) Methanol (8015M	TPH - MO (8015M)	SE	SVOCs (8270C)	=	=			l			
Can Composite Sample Cros-A Follow at		MPLING	aysis.	-1		ESERVA		$\neg \tau$	-	Ē	tra	260	inat	3260	B09	2606	3260	3260	88	9097	<u> </u>	0	Met	(82	826(808			ļ			
Field Sample Identification			MATRIX		\Box				NO, OF	1:	1	BTEX (8260B)	5 Oxygenates	MTBE (8260B)	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	ပ္ထဲ	EDB (8260B)	anol	≥ +	M17	Š	VOCs (8260)	PCBs (8082)					ID Readl	
Field Sample Identification	DATE	TIME	agent in	HCL	HNQ3	H2SQ4	NONE	ica I	CORT.	F.	E	BTE	50	MTE) 1	PIO	TA		1.2			Ē	₹) S	Š	2			01	r Labora	tory Note	ıs
7 0004	5/21/0	2:05	so					х	1	x	x	X						::"				Х	X		Τ	Τ	T	П		W 2005	. علاً:	
TO THE PERSON OF				+	+-+		-+	_	- 	-	-		 			\vdash	\dashv	\dashv	1		_	x	乜	/ 	1	十	1	П	End	oles	ite sica	<u>u</u>
2 CRA -2/	3/2/10	2:05	56	100				X		1	\vdash	/ `	_	\sqcup			-	_		-+	+	4^	1	+-	╀╌	╁	+	-4	7	RA.	- A	
	_			- 1-								<u> </u>											1		\perp	↓_	1_	\Box				
																		ţ									1					
				十	$\dagger \lnot \dagger$					 		1	\vdash					$\neg \uparrow$						Т	1	Т		П				
				+	╫					┢	-	-	\vdash	-	-	\dashv	\dashv	-	+	\dashv	-	+	+	+	十	+	+	\vdash				
				1							ļ	<u> </u>	_				_	_		-		-	+-	-	╄	+	-	\vdash				
					1 1	. [- 1			l		1												丄	Т.	_		igsquare				
				\top														l											į			
				+	-		-			╁	┼─	 	-	\vdash	-			\dashv	_	┰	\dashv	+	+	+	+	+-	+	\vdash			-	
						1	- 1			l																	<u> </u>					
					\Box																						1		į			
elinquished by: (Signature)		┸	Received by: (Sonature			1			<u> </u>	<u>_</u>	1					1					Da	le:	 		┼—		Time:				
2 Verleet				-cogniaa.	9) <u>1</u> 21		0.		- 0														万.	12	11	10	Ĵ	F	5:0	6		
welles	/ / L	•	Reserved by:	en	يكيد		$\underline{\mathcal{C}}$	ca	<u>U</u>	7 5	<u>ハ</u>											Da			1/1			Time:				
elinfquished by: (Signature)		.]	Received by:	Signature	•						_		_									- 1			_	a		1				
15 (2)		.]	(نگ	>		<u>\</u>	0				`#	二(-								<u>``</u>	> ~	}	<u>~C</u>	<u>٦ ر</u>		<u> </u>	74	7		
Singuished by: (Signature)	5-22	09	Received by: (Signature	**	-	<i>(</i>					1/	7	1								Da	2 /		1			Time:				
		37			>	\not	_		\rightarrow	L,	h		1		-				4		<u> </u>	- -	/z	31	04	7		0	92/	つ		
980		///			//					_	2								- 4										05/2/06	Revision		
050 5/1921000			•																													-

Contingent analyses

- Organic lead required if TTLC lead ≥ 13 mg/kg
- Aquatic bioassay required if any TPH (gasoline, diesel, or motor oil) ≥ 5,000 mg/kg
- TCLP benzene required if benzene ≥ 10 mg/kg
- TCLP and STLC required for metals per table below

3.4.4.1	Trigger level	Dogwinson and
Metal	TTLC	Requirement
	(mg/kg)	
Antimony	150	STLC required if TTLC ≥ 150 mg/kg
e .		STLC required if TTLC ≥ 50 mg/kg;
Arsenic	50/100	STLC and TCLP required if TTLC ≥ 100 mg/kg
	1	STLC required if TTLC ≥ 1,000 mg/kg;
Barium	1,000/2,000	STLC and TCLP required if TTLC ≥ 2,000 mg/kg
Beryllium	7.5	STLC required if TTLC ≥ 7.5 mg/kg
	ी वि	STLC required if TTLC ≥ 10 mg/kg;
Cadmium	10/20	STLC and TCLP required if TTLC ≥ 20 mg/kg
		STLC required if TTLC ≥ 50 mg/kg;
Chromium	50/100	STLC and TCLP required if TTLC ≥ 100 mg/kg
Cobalt	800	STLC required if TTLC ≥ 800 mg/kg
Copper	250	STLC required if TTLC ≥ 250 mg/kg
		STLC required if TTLC ≥ 50 mg/kg;
Lead	50/100	STLC and TCLP required if TTLC ≥ 100 mg/kg
		STLC required if TTLC ≥ 2 mg/kg;
Mercury	2/4	STLC and TCLP required if TTLC ≥ 4 mg/kg
Molybdenum	350	STLC required if TTLC ≥ 350 mg/kg
Nickel	200	STLC required if TTLC ≥ 200 mg/kg
		STLC required if TTLC ≥ 10 mg/kg;
Selenium	10/20	STLC and TCLP required if TTLC ≥ 20 mg/kg
		STLC required if TTLC ≥ 50 mg/kg;
Silver	50/100	STLC and TCLP required if TTLC ≥ 100 mg/kg
Thallium	70	STLC required if TTLC ≥ 70 mg/kg
Vanadium	240	STLC required if TTLC ≥ 240 mg/kg
Zinc	2,500	STLC required if TTLC ≥ 2,500 mg/kg

aboratories, Inc. SAMPLE RECEIPT FORM Cooler / of /

CLIENT: CRA DATE:	05/23/	09
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature	□ Sample	
☐ Received at ambient temperature, placed on ice for transport by Courier. Ambient Temperature: ☐ Air ☐ Filter ☐ Metals Only ☐ PCBs Only	Initial:	A
CUSTODY SEALS INTACT: Cooler	Initial: _ Initial: _	\$0
SAMPLE CONDITION: Yes	No i	N/A
Chain-Of-Custody (COC) document(s) received with samples		
COC document(s) received complete	<u> </u>	
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
☐ COC not relinquished. ☐ No date relinquished. ☐ No time relinquished.		
Sampler's name indicated on COC.		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Correct containers and volume for analyses requested		
Analyses received within holding time		
Proper preservation noted on COC or sample container □		
☐ Unpreserved vials received for Volatiles analysis		
Volatile analysis container(s) free of headspace □		
Tedlar bag(s) free of condensation □		
CONTAINER TYPE:		
Solid: □4ozCGJ □8ozCGJ □16ozCGJ ☑Sleeve □EnCores® □TerraCore	es® □	
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB	□1AGB na₂ □1	1AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB	□500PB □500	OPB na
□250PB □250PBn □125PB □125PBznna □100PB □100PBna₂ □ □		
Air: □Tedlar [®] □Summa [®] □ Other: □ Checke	d/Labeled by: _	80
Container: C; Clear A: Amber P: Plastic G: Glass J: Jar (Wide-mouth) B: Bottle (Narrow-mouth)	Reviewed by:	<u> </u>