Fax: 415-547-5043

Phone: 415-547-5420

Geologic and Environmental Services

5500 Shellmound Street, Emeryville, CA 94608

TRANSMITTAL LETTER AMIL: 37

FROM: Tom Fojut			<u>DATE</u> : March 5, 1991				
<u>TO</u> ;	Alam of E 80 Sv	Smith seda County Department Environmental Health van Way, Room 200 and, CA 94621-1426		VIA:		First Cl Fax UPS (Su Federal Courier	pages irface) Express
<u>SUBJ</u> I	ECT:	Shell Service Station 29 Wildwood Avenue Piedmont, California				JOB:	81-463-01
<u>AS</u> :	<u></u>	We discussed on the telephoral You requested We believe you may be into Is required	erested	-		_	
<u>WE Al</u>	RE SE	NDING: X Enclosed Under Sep	arate Cover	Via			
Quarte	erly st	atus report for the subject sid	t e				
<u>FOR</u> :		Your information Your use Your review & comments Return to you	PLEASE:	F	Return	is mater within 2 vledge re	weeks
MESS	AGE:	Please call if you have any	questions.				

Geologic and Environmental Services

5500 Shellmound Street, Emeryville, CA 94608

March 5, 1991

Paul Smith Alameda County Department of Environmental Health Hazardous Materials Division 80 Swan Way, Room 200 Oakland, California 94621-1426

> Re: Shell Service Station WIC #204-6001-0109 29 Wildwood Avenue Piedmont, California WA Job #81-463-01

Dear Mr. Smith:

This letter describes Weiss Associates' (WA) first quarter 1991 activities at the Shell service station referenced above (Figure 1.) This status report satisfies the quarterly reporting requirements prescribed by California Administrative Code Title 23 Waters, Chapter 3, Subchapter 16, Article 5, Section 265.d. Included below are:

- Descriptions and results of activities performed to date in the first quarter 1991, and
- Proposed work for the remainder of the first quarter 1991 and the second quarter 1991.

FIRST QUARTER 1991 ACTIVITIES

During this quarter, WA:

- Collected ground water samples from all six ground water monitoring wells,
- Measured ground water depths in the wells and determined ground water elevations and flow direction,
- Analyzed the ground water samples for hydrocarbons and tabulated the analytic results, and

Mr. Paul Smith March 5, 1991

• Evaluated the site for sampling frequency modifications.

These activities are described below.

Ground Water Sampling

WA collected ground water samples from all six wells on January 31, 1991, as part of the quarterly ground water monitoring program at Shell Service Station WIC #204-6001-0109 in Piedmont, California. Ground water samples from monitoring well MW-3 (Figure 2) contained benzene above the California Department of Health Services (DHS) maximum contaminant level (MCL) for drinking water.

Sampling Personnel: WA Environmental Technicians David Charles and James Martin

Monitoring Wells Sampled: MW-1 through MW-5 and E-4

Method of Purging Wells:

<u>Wells</u>

Steam-cleaned PVC bailers

E-4

Dedicated PVC bailers

MW-1 through MW-5

Volume of Water Purged Prior to Sampling:

- Wells MW-1 through MW-5 were purged of four well-casing volumes, about 13 to 31 gallons each.
- Well E-4 was purged dry; water level was allowed to recover for at least two hours prior to sampling.

Method of Collecting Ground Water Samples:

Wells

• Decanted from a steam-cleaned Teflon bailer

E-4

 Drawn through the sampling ports on the sides of dedicated PVC bailers

MW-1 through MW-5

Mr. Paul Smith March 5, 1991

Methods of Containing Ground Water Samples:

• 40 ml glass volatile organic analysis (VOA) vials, preserved with hydrochloric acid and packed in protective foam sleeves

All samples were refrigerated and transported under chain-of-custody to the analytical laboratory.

Water Samples Transported to:

 National Environmental Testing (NET) Pacific, Inc., Santa Rosa, California, and were received on February 1, 1991

Quality Assurance/Quality Control:

• A travel blank and a bailer blank were submitted for analysis.

Water sample collection records and chain-of-custody forms are included in Attachments A and B, respectively.

Ground Water Elevations and Flow Direction

- The depth to water was measured in wells MW-1 through MW-5 on January 31, 1991. Ground water elevations increased slightly from the previous quarter in wells MW-1, MW-2 and MW-3 and decreased slightly in wells MW-4 and MW-5.
- Ground water flows westward to southwestward, which is consistent with the general flow pattern over the past year.
- The potentiometric surface of flowing artesian well E-4 was greater than 4.5 ft above the top-of-casing in July 1989. This well is screened in a deeper water bearing zone than the other wells.

Depth to water measurements and ground water elevations are presented in Table 1. Ground water elevation contours are plotted on Figure 2. Previous ground water elevation contour maps are included in Attachment C.

Chemical Analyses

The Ground Water Samples were Analyzed for:

- Total petroleum hydrocarbons as gasoline (TPH-G) by Modified EPA Method 8015, and
- Benzene, ethylbenzene, toluene and xylenes (BETX) by EPA Method 602.

The laboratory analyzed the samples on February 7 and 8, 1991. The results are presented in Table 2 and the analytic reports are included in Attachment B.

Discussion of Ground Water Analytic Results for this Quarter:

- Water samples from monitoring well MW-3 contained benzene above the DHS MCL for drinking water.
- No BETX or TPH-G were detected in samples from wells MW-1 and E-4.
- A non-fuel compound was detected by Modified EPA Method 8015 at or slightly above laboratory detection limits in samples from wells MW-1 and MW-5. NET Pacific speculated that the non-fuel compound could be a purgeable halocarbon. WA will analyze for purgeable halocarbons by EPA Method 601 in the second quarter 1991.
- Hydrocarbon concentrations in samples from wells MW-2 and MW-3 were consistent with previous results.

Sampling Frequency Modification

WA has developed criteria to determine when the ground water sampling frequency can be modified for ground water monitoring programs (Attachment D). Based on these criteria, WA recommends modifying the sampling frequency of the site wells as shown in Table 3. Subject to your approval, WA will initiate this program for the next quarterly sampling, scheduled in April 1991.

¹Telephone conversation between Thomas Fojut, WA Staff Geologist and Linda DeMartino, NET Pacific, March 1, 1991.

ANTICIPATED WORK FOR SECOND QUARTER 1991

During the remainder of the first quarter 1991 and the second quarter 1991, on behalf of Shell Oil, WA plans to:

- · Continue quarterly monitoring of ground water at this site,
- Prepare a quarterly status report presenting all data generated during the previous quarter including water sampling results and analysis, and
- Pursue WA's recommendations for sampling frequency modifications.

We trust that this submittal satisfies your requirements. Please contact Tom Fojut or Scott MacLeod if you have any questions.

No. 4981

Sincerely, Weiss Associates

Thomas J. Fojut Staff Geologist

Joseph P. Theisen, R.G.

Senior Project Hydrogeologist

homas Fogut

TJF/JPT:jg

E:\ALL\SHELL\450\463QMFE1.WP

Figures

Tables

Attachments:

A - Water Sample Collection Records

B - Analytic Reports and Chain-of-Custody Form

C - Previous Ground Water Elevation Contour Maps

D - Sampling Frequency Modification Criteria

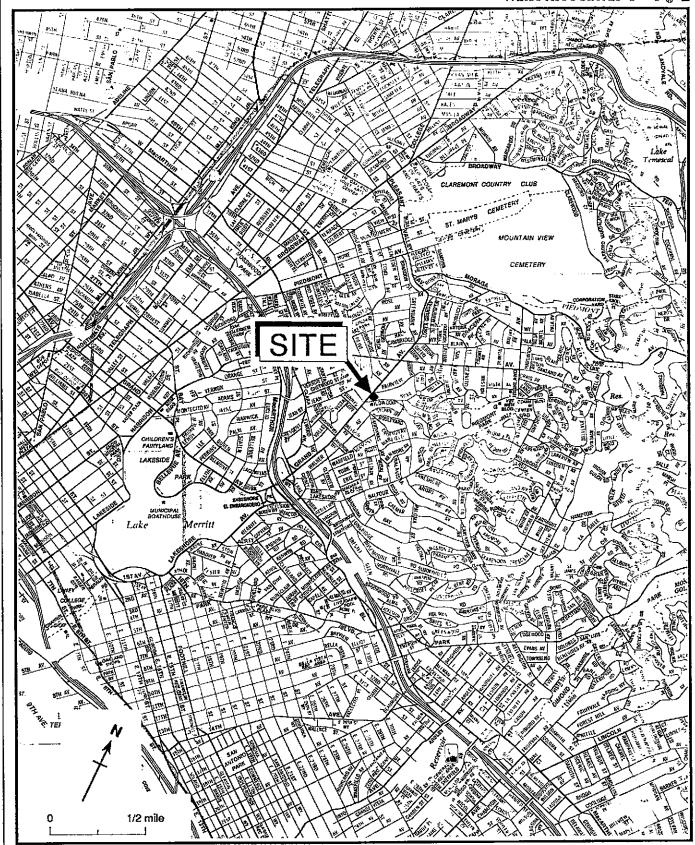


Figure 1. Site Location Map - Shell Service Station WIC #204-6001-0109, 29 Wildwood Avenue, Piedmont, California

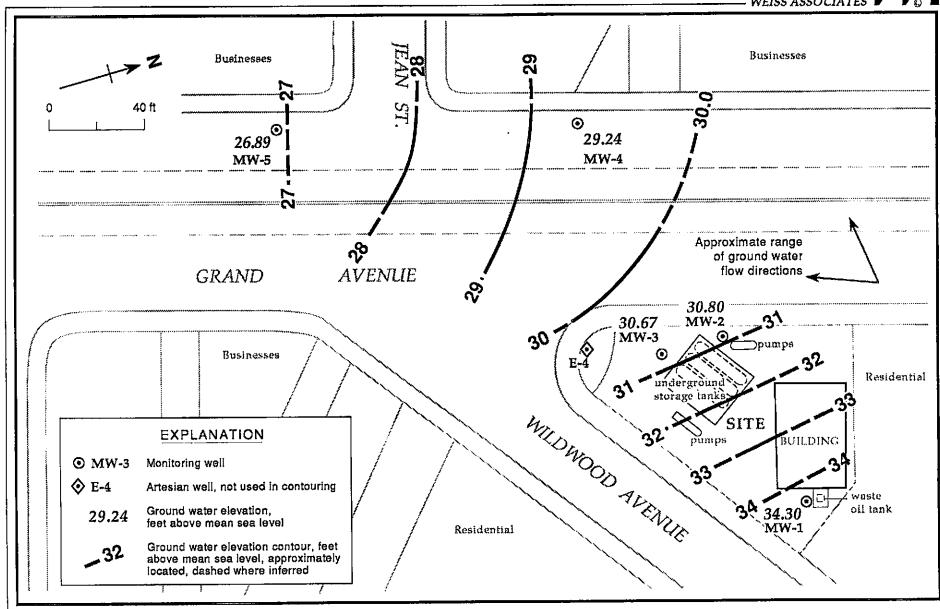


Figure 2. Ground Water Elevation Contours - January 31, 1991 - Shell Service Station, WIC #204-6001-0109, 29 Wildwood Avenue, Piedmont, California

TABLE 1. Ground Water Elevation Data, Shell Service Station WIC #204-6001-0109, 29 Wildwood Avenue, Piedmont, California

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Ground water Elevation (ft above msl)
MW-1	07/12/89	37.96	2.76	35.20
	01/30/90		3.10	34.86
	04/27/90		3.24	34.72
	07/31/90		4.26	33.70
	10/30/90		4.25	33.71
	01/31/91		3.66	34.30
MW-2	07/12/89	34.89	3.66	31.23
	01/30/90		3.49	31.40
	04/27/90		3.79	31.10
	07/31/90		4.03	30.86
	10/30/90		4.21	30.68
	01/31/91		4.09	30.80
MW-3	07/12/89	35.00	3.83	31.17
	01/30/90		3.24	31.76
	04/27/90		4.02	30.98
	07/31/90		4.31	30.69
	10/30/90		4.52	30.48
	01/31/91		4.33	30.67
MW-4	01/30/90	33.73	4.50	29.23
	04/27/90		3.62	30.11
	07/31/90		4.19	29.54
	10/30/90		4.19	29.54
	01/31/91		4.49	29.24
MW-5	01/30/90	31.38	7.12	24.26
	04/27/90		4.19	27.19
	07/31/90		4.09	27.29
	10/30/90		4.39	26.99
	01/31/91		4.49	26.89
E-4	07/12/89	34.63	a.	>39.13
	01/30/90		b	>34.63
	04/27/90		ь	>34.63
	07/31/90		ь	>34.63
	10/30/90		b	>34.63
	01/31/91		ь	>34.63

^a = Well E-4 is a flowing artesian well. The potentiometric surface was greater than 4.5 ft above ground surface.

b = Well E-4 potentiometric surface was higher than the top of well casing.

Well	Date	Analytical	Depth to	TPH-G	В	E	T	X	VOCs
ID	Sampled	Laboratory	Water (ft)	<		- parts per mil	lion (mg/L)		*******
W-1	07/12/89	IT	2.76	<0.050	<0.0005	<0.001	<0.001	<0.003	ND
	01/30/90	NET	3.10	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	04/27/90	NET	3.24	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	07/31/90	NET	4.26	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	10/30/90	NET	4.25	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	01/31/91	NET	3.66	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
W-2	07/12/89	IT	3,66	0.060	0.0027	<0.001	<0.001	<0.003	ND
	01/30/90	NET	3.49	<0.050	0.0066	0.00054	<0.0005	0.00093	
	04/27/90	NET	3.79	0.060	0.0021	<0.0005	<0.0005	<0.0005	
	07/31/90	NET	4.03	0.070	0.0015	<0.0005	<0.0005	<0.0005	
	10/30/90	NET	4.21	0.070	<0.0005	<0.0005	0.0007	0.0016	
	01/31/91	NET	4.09	0.080	<0.0005	0.0009	<0.0005	0.0019	
W-3	07/12/89	ΙΤ	3.83	3.9	0.38	0.099	0.041	0.030	â
	01/30/90	NET	3.24	5.5	0.44	0.079	0.035	0.13	
	04/27/90	NET	4.02	4.5	0.31	0.037	0.026	0.11	
	07/31/90	NET	4.31	3.5	0.21	0.0084	0.017	0.062	
	10/30/90	NET	4.52	2.3	0.061	<0.0005	<0.0005	0.028	
	01/31/91	NET	4.33	4.1	0.30	0.019	0.020	0.081	
W-4	01/31/90	NET	4.50	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	04/27/90	NET	3.62	0.13 ^b	<0.0005	<0.0005	<0.0005	<0.0005	
	07/31/90	NET	4.19	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	10/30/90	NET	4.19	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	01/31/91	NET	4.49	0.050 ^b	<0.0005	<0.0005	<0.0005	<0.0005	
IW-5	01/31/90	NET	7.12	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	04/27/90	NET	4.19	0.21 ^b	<0.0005	<0.0005	<0.0005	<0.0005	
	07/31/90	NET	4.09	0.090	<0.0005	<0.0005	<0.0005	<0.0005	
	10/30/90	NET	4.39	0.10	0.0008	0.0006	0.0007	0.0014	
	01/31/91	NET	4.49	0.080 ^b	<0.0005	<0.0005	<0.0005	<0.0005	
-4	07/12/89	ΙT	c	<0.050	<0.0005	<0.001	<0.001	<0.003	ND
	01/31/90	NET	C	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	04/27/90	NET	c	0.12 ^b	<0.0005	<0.0005	<0.0005	<0.0005	
	07/31/90	NET	C	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	10/30/90	NET	¢	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	01/31/91	NET	С	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	

⁻⁻ Table 2 continues on next page --

TABLE 2. Analytic Results for Ground Water, Shell Service Station WIC #204-6001-0109, 29 Wildwood Avenue, Piedmont, California (continued)

₩ell	Date	Analytical	TPH-G	В	E	T	x	VOCs
ID	Sampled	Laboratory	< parts per million (mg/L)					
Trip	07/12/89	17	<0.050	<0.0005	<0.001	<0.001	<0.003	
Blank	01/31/90	NET	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	04/27/90	NET	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	07/31/90	NET	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	10/30/90	NET	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
	01/31/91	NET	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
Bailer	04/27/90	NET	0.11 ^b	<0.0005	<0.0005	<0.0005	<0.0005	
Blank	01/31/91	NET	<0.050	<0.0005	<0.0005	<0.0005	<0.0005	
DHS MCLs			NE	0.0010	0.68	0.10 ^d	1.75	

Abbreviations:

TPH-G = Total Petroleum Hydrocarbons as Gasoline by Modified EPA Method 8015

B = Benzene by EPA Method 602 or 8020

E = Ethylbenzene by EPA Method 602 or 8020

T = Toluene by EPA Method 602 or 8020

X = Xylenes by EPA Method 602 or 8020

VOCs = Volatile Organic Compounds by EPA Method 624

ND = Not detected at detection limits of 0.0005 to 0.010 parts per million

--- = Not analyzed for these compounds

NE = DHS MCL not established

DHS MCLs = California Department of Health Services, maximum contaminant levels for drinking water

<n = Not detected at detection limit of n ppm

Notes:

- ^a = BETX detected at 0.41, 0.097, 0.036 and 0.30 parts per million, respectively by EPA Method 624
- b = Non-fuel peak reported as TPH-G by Modified EPA Method 8015
- c = Artesian well; ground water elevation above top-of-casing elevation DHS Recommended Action Level for drinking water, MCL not established

Analytical Laboratory:

- NET = National Environmental Testing (NET) Pacific, Inc., Santa Rosa, California

Table 3.	Recommended Modifications to Ground Water Sampling Schedule, Shell Service Station, WIC #204-6001-0109, 29 Wildwood Avenue, Piedmont, California						
Well ID	Current Sampling Frequency	Recommended Future Sampling Frequency	Rationale for Recommended Sampling Frequency				
MW-1	Quarterly	Annually	No hydrocarbons detected for five consecutive quarters; up-gradient well				
MW-2	Quarterly	Semi-Annually	Low hydrocarbon concentrations detected for five consecutive quarters; source area well				
MW-3	Quarterly	Semi-Annually	Stable hydrocarbon concentrations detected for five consecutive quarters; source area well				
MW-4	Quarterly	Quarterly	Down-gradient monitoring well				
MW-5	Quarterly	Quarterly	Down-gradient monitoring well				
E-4	Quarterly	Semi-Annually	No verified hydrocarbons detected for five consecutive quarters; down-gradient well in a deeper water-bearing zone				

ATTACHMENT A

WATER SAMPLE COLLECTION RECORDS

WATER SAMPLING DATA , ,
Well Name MW Date 1/3/91 Time of Sampling 15/9
Job Name Shall Produced Job Number 31-463:01 Initials 1/11
Sample Point Description [7] (M = Monitoring W. 11)
Location E sale of statum - upful well (M = Mointoring well
WELL DATA: Depth to Water 3.66 ft (static, pumping) Depth to Product 44- ft
Product Thickness NF Well Depth 15 It (spec) Well Depth ft(sounded) Well Diameter in
Initial Height of Water in Casing 11.34 ft. = volume 7.4/ gal
Casing Volumes to be Evacuated. Total to be evacuated gal
EVACUATION METHOD: Pump # and type Hose # and type gai
Bailer# and type 3×36 PVC Dedicated VBS (Y/N)
Other _ NA
Evacuation Time: Stop 1450 1502 15.7
Start 1441 1457 1505 Formulas/Conversions
Total Evacation Time // r = well radius in ft.
Total Evacuated Prior to Sampling gal. h = ht of water col in ft.
Evacuation Rate $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Depth to Water during Evacuation 40% ft time time 500 103
Dental to the control of the state of the st
Depth to water at Sampling f_1/G ft. G_2/G time V_2'' casing = 0.163 gal/ft Evacuated Dry? V_2 After V_2/G gal. Time V_2/G
Evacuated Dry? $\frac{1}{\sqrt{2}}$ After $\frac{1}{\sqrt{2}}$ gal. Time $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ After $\frac{1}{\sqrt{2}}$ gal. Time $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ casing = 0.367 gal/ft $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ casing = 0.653 gal/ft $\frac{1}{\sqrt{2}}$
n
4.3
V ₆ " casing = 1.47 gal/ft CHEMICAL DATA: Meter Brand/Number
Calibration: 4.0 7.0 10.0
7.0 7.0 10.0
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
SAMPLE: Color None Description of matter in sample: 1824 1862 Amount of class Canada
SAMPLE: Color None Description of matter in sample: 1904 from Prive Sampling Method: Fort on dedicated barber
SAMPLE: Color Now Description of matter in sample: 1921 trees from four four four four four four four four
SAMPLE: Color None Description of matter in sample: 1904 from Prive Sampling Method: Fort on dedicated barber
SAMPLE: Color Now Description of matter in sample: Sampling Method: Fort on dedicated Sample Port: Rate Noghm Totalizer Banker For Sample Port: Rate Noghm Totalizer Banker # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB
SAMPLE: Color Now Description of matter in sample: 1900 frage fra
SAMPLE: Color / OM Odor Now Description of matter in sample: 1924 from from from from Sampling Method: 10 to our description of Sample Port: Rate 1929 Totalizer 1929 gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
SAMPLE: Color Now Description of matter in sample: 1994 1995 1996 1996 1996 1996 1996 1996 1996
SAMPLE: Color / OM Odor Now Description of matter in sample: 1924 from from from from Sampling Method: 10 to our description of Sample Port: Rate 1929 Totalizer 1929 gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
SAMPLE: Color / OM Odor Now Description of matter in sample: 1924 from from from from Sampling Method: 10 to our description of Sample Port: Rate 1929 Totalizer 1929 gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
SAMPLE: Color / OM Odor Now Description of matter in sample: 1924 from from from from Sampling Method: 10 to our description of Sample Port: Rate 1929 Totalizer 1929 gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
SAMPLE: Color / OM Odor Now Description of matter in sample: 1924 from from from from Sampling Method: 10 to our description of Sample Port: Rate 1929 Totalizer 1929 gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
SAMPLE: Color / OM Odor Now Description of matter in sample: 1924 from from from from Sampling Method: 10 to our description of Sample Port: Rate 1929 Totalizer 1929 gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
SAMPLE: Color / OM Odor Now Description of matter in sample: 1924 from from from from Sampling Method: 10 to our description of Sample Port: Rate 1929 Totalizer 1929 gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
SAMPLE: Color / OM Odor Now Description of matter in sample: 1924 from from from from Sampling Method: 10 to our description of Sample Port: Rate 1929 Totalizer 1929 gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method

Cap Codes: PT = Plastic, Teflon lined;

2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)

5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]

ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

0 - 1		/- /-		(1 c:
				79
1.00	inting 100 Number	<u> 51-963-01</u>	Initials	Vin
	7)		(M	= Monitoring Well)
)_ Ave		
Product Thickness	pin to water No 11 (si	tatic) pumping)	Depth to P.	roductft.
Troduct Thickness	well Depth F	t (spec) Well Depth !!	$\frac{-60}{}$ ft(sounded) W	ell Diameter <u>4</u> in
<u> </u>				$\frac{7}{9}$ gal.
FVACHATION ME				ated $\frac{7^{\frac{6}{16}} \cdot 6}{2}$ gal.
		and type		=
	Other A/A	Dedicated	(Y/N)	
		7.0		
	Name Spell Product Job Number Spells of Sampling Initials Magnet Point Description Mation Neth News (M = Monitoring Well) LL DATA: Depth to Water Monitoring Well) LL DATA: Depth to Water Mell Depth Trispec) Well Depth Mell Of It (Sounded) Well Diameter Initial Height of Water in Casing 1 ft. = volume 1 gal. 1 Casing Volumes to be Evacuated. Total to be evacuated Total to be evacuated Total to be evacuated Total to be evacuated Other Nother Not			
	Date 2 1 1 2 2 2 2 2 2 2			
		-m	_	
ı T	Evacuation Pass	, ,		
		•	· ·	= πr ² h
Depth to Water at S	ampling 5 11 64		= •	
Evacuated Dry?	/- c		_	
			V ₃ " casing =	= 0.367 gal/ft
	ale Time 49 of Time	CONTA BAILING		
to the total of the built	7 3 72 11h	ic 4 CAC VOLS. PO	4,5	
CHEMICAL DATA	Meter Brand /Number			
Calibration:		10.0	V8 casing ≈	2.61 gal/ft
Measured:			**	
	oc/μmnos pH	Time	Volume Evacuate	ed (gal.)
•			÷	
				·
			-	
			<u> </u>	
SAMPLE: Color _	no we	Od	0= 4/2734 A	
Description of matte	er in sample: _/,		01 2010	
Sampling Method:	Kast on declarate	Wile_		· · · · · · · · · · · · · · · · · · ·
Sample Port: Kate/	gpm Totalizer <u>VA</u>	gal.		
Tinc	201;			
	Cont. Vol ² Fil ³	Ref ⁴ Preservative	Analytic	Tuen ⁵ FAD
Cont. ID	Type ¹			iuin LAB
3 011-2	What we it	,	/	
<u> </u>	The goal N.	1 NONE	EPA 805/800	N NET
				

Sample Type Codes: W = Water, S = Soil, Describe Other.
 Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other Cap Codes: PT = Plastic, Teflon lined;
 Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
 ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS;

Well Name		// TA
	Time of Samp (C. 2007) Job Number (St. 4/6)	oling /620 Initials ///
Sample Point Descri	_	
Location M.		(M = Monitoring WcII)
	// 22	Donth to Bradust
Product Thickness	Well Depth 1 (spec) Well Depth 110 ft(s	Depth to Product ft.
Ī	nitial Height of Water in Casingft. =	volume 7 / col
_		o be evacuated/ S gal.
EVACUATION ME	·	# and type
В	ailer# and type 3×36 PVC Dedicated $\sqrt{25}$	· · · · · · · · · · · · · · · · · · ·
	ther	1
Evacuation Time: S		
	tart <u>1404 1439 1537</u>	Formulas/Conversions
	otal Evacation Time <u>6 miles</u>	r = well radius in ft.
Т	otal Evacuated Prior to Sampling gal.	h = ht of water col in ft.
E	vacuation Rate gal. per minute	vol. in cyl. = $\pi r^2 h$
	ng Evacuation ft time	7.48 gal/(t ³
Depth to Water at Sa	impling $\frac{4.413}{1.616}$ ft. $\frac{1616}{1.616}$ time	V2" casing = 0.163 gal/ft
Evacuated Dry? V	After 4 gal. Time 1706	V_3 " casing = 0.367 gal/ft
	5.27 DTV * COURD BRILING UNTIL 4	
w Recovery at Samp	le Time Time CAS. YOLS PURCED	V _{4.5} " casing = 0.826 gal/ft
CHEMICAL DATA	Meter Brand/Number	V_6 " casing = 1.47 gal/ft
Calibration:		V8 casing = 2.61 gal/ft
Measured:	00/ 1	
Measureu.	SC/μmhos pH T°C Time Volur	ne Evacuated (gal.)
		
SAMPLE: Color	NONE Odor	17. TO DED GOSTORM
Description of matte	r in sample: NONA	1.T. TO MED. 665/CROSS
Description of matte Sampling Method:	r in sample: NONE OUT	17. TO MED. GOS JORGES
Description of matter Sampling Method: Sample Port: Rate	r in sample: NONA	LT. TO MED. GOS JORGA
Description of matte Sampling Method: Sample Port: Rate Time	r in sample: FONE OUT FOR SEA GOOD FOR TOTAL GOOD GOOD GOOD GOOD GOOD GOOD GOOD GOO	1.T. TO MED. GOS JORNS
Description of matter Sampling Method: Sample Port: Rate Time # of Sample	r in sample: 100000. From School For Park -gpm Totalizer - gal. Cont. Vol ² Fil ³ Ref ⁴ Preservative An	alytic Turn ⁵ LAB
Description of matte Sampling Method: Sample Port: Rate Time	r in sample:	
Description of matter Sampling Method: Sample Port: Rate Time # of Sample	r in sample:	alytic Turn ⁵ LAB
Description of matter Sampling Method: Sample Port: Rate Time # of Sample	Cont. Vol ² Fil ³ Ref ⁴ Preservative An Type ¹ (specify) M	alytic Turn ⁵ LAB
Description of matter Sampling Method: Sample Port: Rate Time # of Sample	r in sample:	alytic Turn ⁵ LAB
Description of matter Sampling Method: Sample Port: Rate Time # of Sample	r in sample:	alytic Turn ⁵ LAB
Description of matter Sampling Method: Sample Port: Rate Time # of Sample	r in sample:	alytic Turn ⁵ LAB
Description of matter Sampling Method: Sample Port: Rate Time # of Sample	r in sample:	alytic Turn ⁵ LAB
Description of matter Sampling Method: Sample Port: Rate Time # of Sample	r in sample:	alytic Turn ⁵ LAB

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined:

Container Type Codes: V = VOA/1 letton Septa, V = VOA/1 etton Septa

Well Name // // // Job Name SHEAL	Must 1/3/9 Time of Sampling $\frac{1}{5.55}$	
Job Name SHEEL	Inte of Sampling / >-/-	
	Job Number 2 463-61 Initials OK	
Sample Point Descr		WcII)
	ROSS GRAND AROM SHELL	,
WELL DATA: De	epth to Water 4.5.4 ft (static, pumping) Depth to Product	
Product Thickness	Well Depth 16 ft (spec) Well Depth 12 17 ft (sounded) Well Diameter	-/in
1	Initial Height of Water in Casing ft. = volume	gal
-	Casing Volumes to be Evacuated. Total to be evacuated 20.0	gal.
EVACUATION ME	ETHOD: Pump # and type Hose # and type	
· ·	Bailer# and type 3x36 fVC Dedicated \\/\E\S (Y/N)	·
	Other	
	Stop 1427 1454 1548	
	Start 14/8 1451 1516 Formulas/Conversions	
	Total Evacation Time ? r = well radius in ft.	
ີ່ງ -	Total Evacuated Prior to Sampling gal. h = ht of water col in ft.	
I I	Evacuation Rate gal. per minute vol. in cyl. = $\pi r^2 h$	
Depth to Water duri	ing Evacuation ft time 7.48 gal/ft ³	
Depth to Water at S	Sampling /// ft time V2" casing = 0.163 gal/ft	
Evacuated Dry?	After 7 gal. Time / 502 V ₃ " casing = 0.367 gal/ft	
80% Recovery = /	$\frac{V_3 \text{ casing } = 0.367 \text{ gal/ft}}{COMTO BALLONG V_4^* \text{ casing } = 0.653 \text{ gal/ft}}$	
% Recovery at Samp	ple Time Time V_{1} V_{2} V_{3} V_{4} casing = 0.633 gal/ft	
	Ve" casing = 1.47 gal/ft	
	: Meter Brand/Number V8 casing = 2.61 gal/ft	
	4.0 7.0 10.0	
Measured:	SC/μmhos pH T°C Time Volume Evacuated (gal.)	
SAMPLE: Color	MES RECEIVE Odor APPRE	
Description of matte	er in sample: VERV THE COMPLETE OF SOME	
Description of matter Sampling Method:	er in sample: VERY TIME SIME (CIT IN SUREL AME)	
Description of matte	er in sample: VERY FIRE STARY CAT IN GOOD PORT	
Description of matte Sampling Method: Sample Port: Rate Time	er in sample: VERY THE SINE CIT IN SUREL FORT FROM FORT ON DED. PIE. gpm Totalizer gal.	
Description of matter Sampling Method: Sample Port: Rate Time # of Sample	gpm Totalizer gal. Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LA	
Description of matter Sampling Method: Sample Port: Rate Time # of Sample Cont. ID	gpm Totalizer gal.	—— \B
Description of matter Sampling Method: Sample Port: Rate Time # of Sample	cer in sample: VERY THE STAND CITY ON SMALL FORT GROW FORT ON DED. PIR. gpm Totalizer gal. Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LA Type ¹ (specify) Method	
Description of matter Sampling Method: Sample Port: Rate Time # of Sample Cont. ID	gpm Totalizer gal. Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LA	
Description of matter Sampling Method: Sample Port: Rate Time # of Sample Cont. ID	cer in sample: VERY THE STAND CITY ON SMALL FORT GROW FORT ON DED. PIR. gpm Totalizer gal. Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LA Type ¹ (specify) Method	
Description of matter Sampling Method: Sample Port: Rate Time # of Sample Cont. ID	cer in sample: VERY THE STAND CITY ON SMALL FORT GROW FORT ON DED. PIR. gpm Totalizer gal. Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LA Type ¹ (specify) Method	
Description of matter Sampling Method: Sample Port: Rate Time # of Sample Cont. ID	cer in sample: VERY THE STAND CITY ON SMALL FORT GROW FORT ON DED. PIR. gpm Totalizer gal. Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LA Type ¹ (specify) Method	
Description of matter Sampling Method: Sample Port: Rate Time # of Sample Cont. ID	cer in sample: VERY THE STAND CITY ON SMALL FORT GROW FORT ON DED. PIR. gpm Totalizer gal. Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LA Type ¹ (specify) Method	
Description of matter Sampling Method: Sample Port: Rate Time # of Sample Cont. ID	cer in sample: VERY THE STAND CITY ON SMALL FORT GROW FORT ON DED. PIR. gpm Totalizer gal. Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LA Type ¹ (specify) Method	
Description of matter Sampling Method: Sample Port: Rate Time # of Sample Cont. ID	cer in sample: VERY THE STAND CITY ON SMALL FORT GROW FORT ON DED. PIR. gpm Totalizer gal. Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LA Type ¹ (specify) Method	

Sample Type Codes: W = Water, S = Soil, Describe Other
 Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
 Cap Codes: PT = Plastic, Teflon lined;
 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
 Turnaround [N = Normal, W = I week, R = 24 hour, HOLD (spelt)]
 ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

ATTACHMENT B

ANALYTIC RESULTS AND CHAIN-OF-CUSTODY FORM

NET Pacific, Inc. 435 Tesconi Circle Santa Rosa, CA 95401

Tel: (707) 526-7200 Fax: (707) 526-9623

Tom Fojut Weiss Associates 5500 Shellmound St. Emeryville, CA 94608 Date: 02-13-91

NET Client Acct No: 18.09 NET Pacific Log No: 5923 Received: 02-01-91 2300

Client Reference Information

SHELL- 29 Wildwood Ave., Piedmont, Project: 81-463-01

Sample analysis in support of the project referenced above has been completed and results are presented on following pages. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please feel welcome to contact Client Services.

Approved by:

Jules Skamarack Laboratory Manager

JS:rct Enclosure(s)

® Client Name: Weiss Associates

NET Log No: 5923

Date: 02-13-91

Page: 2

Ref: SHELL- 29 Wildwood Ave., Piedmont, Project: 81-463-01

			011-1 01-31-91	011-2 01-31-91		
Parameter	Method	Reporting Limit	73975	73976	Units	
PETROLEUM HYDROCARBONS						
VOLATILE (WATER)						
DILUTION FACTOR *			1	1		
DATE ANALYZED			02-07-91	02-08-91		
METHOD GC FID/5030						
as Gasoline		0.05	ND	0.08	mg/L	
METHOD 602						
DILUTION FACTOR *			1	1		
DATE ANALYZED			02-07-91	02-08-91		
Benzene		0.5	ND	ND	ug/L	
Ethylbenzene		0.5	ND	0.9	ug/L	
Toluene		0.5	ND	ND	ug/L	
Xylenes, total		0.5	ND	1.9	ug/L	

Client Name: Weiss Associates

NET Log No: 5923

Date: 02-13-91

Page: 3

Ref: SHELL- 29 Wildwood Ave., Piedmont, Project: 81-463-01

			011-3 01-31-91	011-4 01-31-91	Units	
Parameter	Method	Reporting Limit	73977	73978		
		····				
PETROLEUM HYDROCARBONS						
VOLATILE (WATER)						
DILUTION FACTOR *			10	1		
DATE ANALYZED			02-07-91	02-07-91		
METHOD GC FID/5030						
as Gasoline		0.05	4.1	0.05 *	mg/L	
METHOD 602					37	
DILUTION FACTOR *			10	1		
DATE ANALYZED			02-07-91	02-07-91		
Benzene		0.5	300	ND	ug/L	
Ethylbenzene		0.5	19	ND	ug/L	
Toluene		0.5	20	ND	ug/L	
Xylenes, total		0.5	81	ND	ug/L	

^{*} NOTE: Not gasoline, result due to large unidentified peak.

Client Name: Weiss Associates

NET Log No: 5923

Date: 02-13-91

Page: 4

Ref: SHELL- 29 Wildwood Ave., Piedmont, Project: 81-463-01

			011-E4 01-31-91	011 - 5 01-31-91		
Parameter	Method	Reporting Limit	73979	73980	Units	
PETROLEUM HYDROCARBONS		-				
VOLATILE (WATER)						
DILUTION FACTOR * DATE ANALYZED			1	1		
METHOD GC FID/5030			02-07-91	02-07-91		
as Gasoline		0.05	ND	0.08 *	mg/L	
METHOD 602					9, –	
DILUTION FACTOR *			1	1		
DATE ANALYZED			02-07-91	02 - 07-91		
Benzene		0.5	ND	ND	ug/L	
Ethylbenzene		0.5	ND	ND	ug/L	
Toluene		0.5	ND	ND	ug/L	
Xylenes, total		0.5	ND	ND	ug/L	

^{*} NOTE: Not gasoline, result due to large unidentified peak.

© Client Name: Weiss Associates

NET Log No: 5923

Date: 02-13-91

Page: 5

Ref: SHELL- 29 Wildwood Ave., Piedmont, Project: 81-463-01

			011-21 01-31-91	011-22 01-31-91	
Parameter	Method	Reporting Limit	73981	73982	Units
PETROLEUM HYDROCARBONS					
VOLATILE (WATER)					
DILUTION FACTOR *			1	1	
DATE ANALYZED			02-07-91	02-07-91	
METHOD GC FID/5030					
as Gasoline		0.05	ND	ND	mg/L
METHOD 602					٠.
DILUTION FACTOR *			1	1	
DATE ANALYZED			02-07-91	02-07-91	
Benzene		0.5	ND	ND	ug/L
Ethylbenzene		0.5	ND	ND	ug/L
Toluene		0.5	ND	ND	ug/L
Xylenes, total		0.5	ND	ND	ug/L

KEY TO ABBREVIATIONS and METHOD REFERENCES

<	:	Less than; When appearing in results column indicates analyte
		not detected at the value following. This datum supercedes
		the listed Reporting Limit.

* : Reporting Limits are a function of the dilution factor for any given sample. To obtain the actual reporting limits for this sample, multiply the stated Reporting Limits by the dilution factor (but do not multiply reported values).

ICVS : Initial Calibration Verification Standard (External Standard).

mean : Average; sum of measurements divided by number of measurements.

mg/Kg (ppm): Concentration in units of milligrams of analyte per kilogram of sample, wet-weight basis (parts per million).

mg/L : Concentration in units of milligrams of analyte per liter of sample.

mL/L/hr : Milliliters per liter per hour.

MPN/100 mL : Most probable number of bacteria per one hundred milliliters of sample.

N/A : Not applicable.

NA : Not analyzed.

ND : Not detected; the analyte concentration is less than applicable listed reporting limit.

----**,**

NTU : Nephelometric turbidity units.

RPD : Relative percent difference, 100 [Value 1 - Value 2]/mean value.

SNA : Standard not available.

ug/Kg (ppb) : Concentration in units of micrograms of analyte per kilogram

of sample, wet-weight basis (parts per billion).

ug/L : Concentration in units of micrograms of analyte per liter of

sample.

umhos/cm : Micromhos per centimeter.

Method References

Methods 100 through 493: see "Methods for Chemical Analysis of Water & Wastes", U.S. EPA, 600/4-79-020, rev. 1983.

Methods 601 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants" U.S. EPA, 40 CFR, Part 136, rev. 1988.

Methods 1000 through 9999: see "Test Methods for Evaluating Solid Waste", U.S. EPA SW-846, 3rd edition, 1986.

 \underline{SM} : see "Standard Methods for the Examination of Water & Wastewater, 16th Edition, APHA, 1985.

WEISS ASSOCIATES 5500 Shellmound St., Emeryville, CA 94608 Phone: 415-547-5420 FAX: 415-547-5043 CHAIN-OF-CUSTODY RECORD AND ANALYTIC INSTRUCTION Sampled by: D.C. & J.M. No. of Sample ID Container Sample	Laboratory Name: NET Vol ² Fil ³ Ref ⁴ Preservative	on GC or other 3) ANY QUESTIONS, Analyze for Analytic	tic method and detection limit
S	(specify)	GAS BETX EFA 8015/803	
Released by (Signature), Date Affiliation Affiliation Affiliation	Affiliation Affiliation Chipping Carrier, Method, Date 4	Released by (Signature), Date 5	Seat Ingact?

ATTACHMENT C

PREVIOUS GROUND WATER ELEVATION CONTOUR MAPS

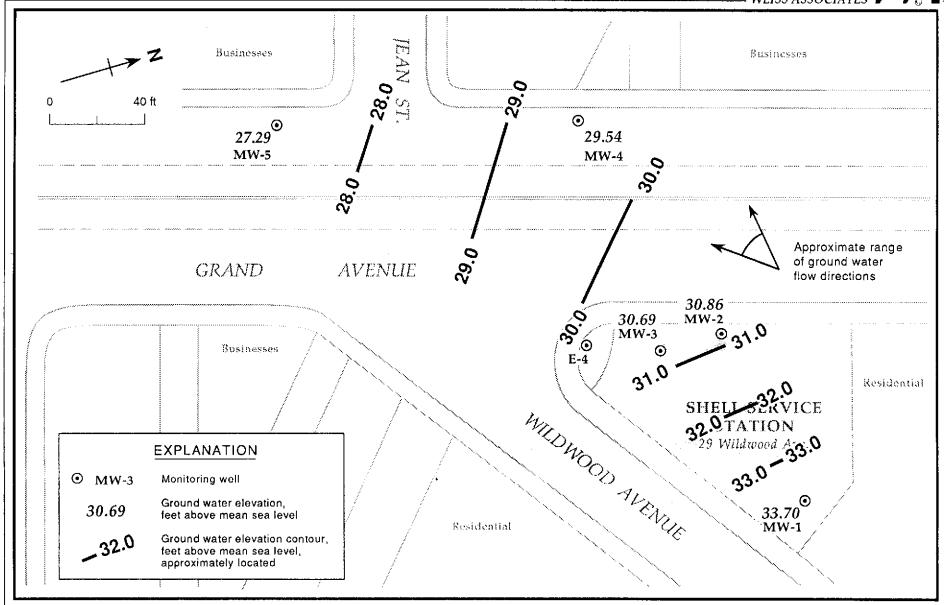


Figure 5. Ground Water Elevation Contours - July 31, 1990 - Shell Service Station, WIC #204-6001-0109, 29 Wildwood Avenue, Piedmont, California

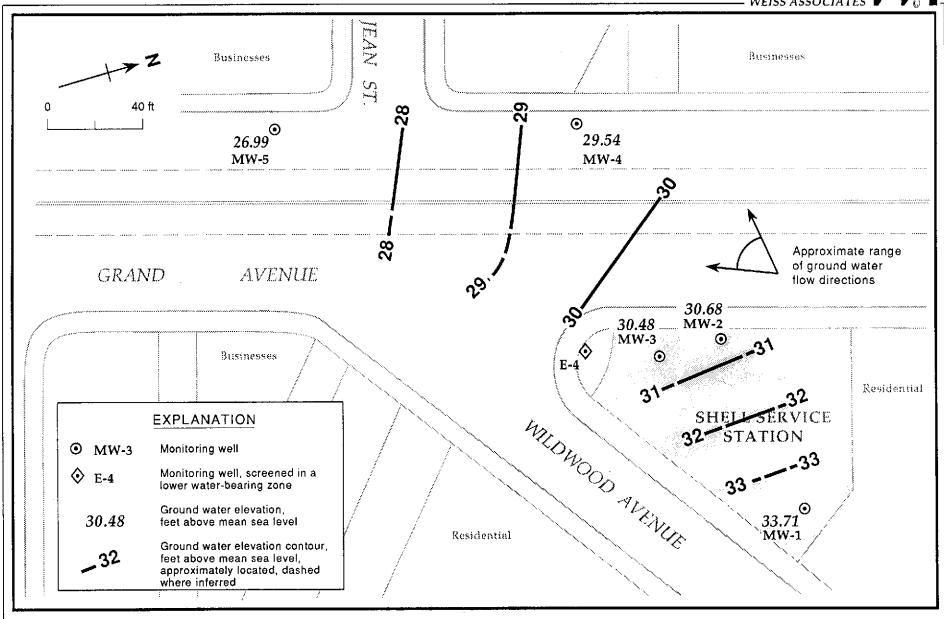


Figure 2. Monitoring Well and Ground Water Elevation Contours - October 30, 1990 - Shell Service Station, WIC #204-6001-0109, 29 Wildwood Avenue, Piedmont, California

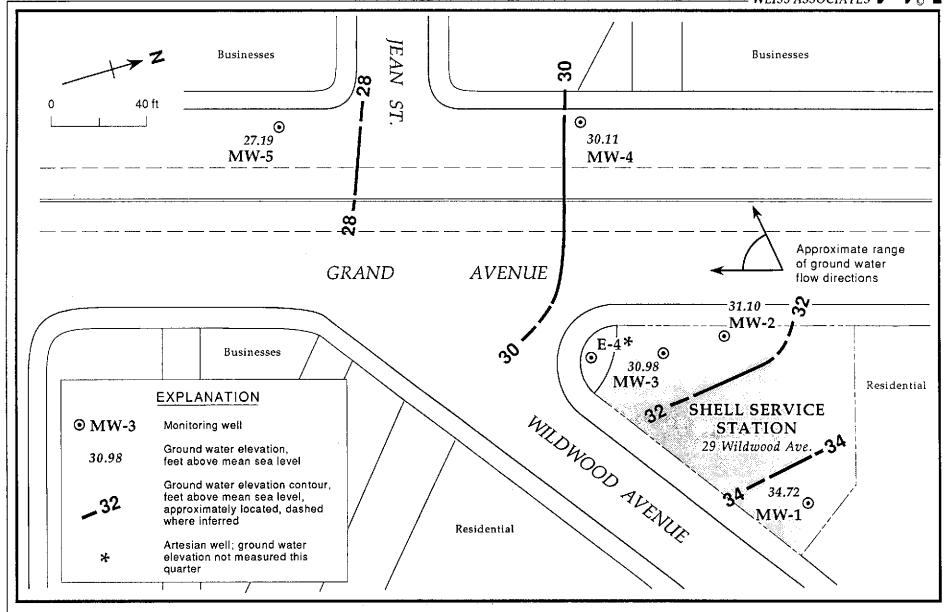


Figure 5. Ground Water Elevation Contours - April 27, 1990 - Shell Service Station, WIC #204-6001-0109, 29 Wildwood Avenue, Piedmont, California

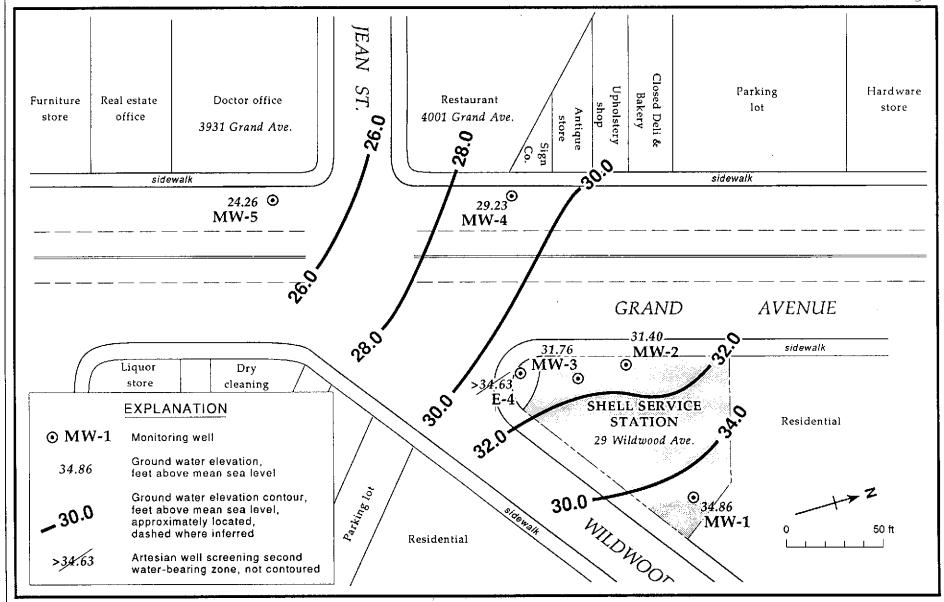


Figure 3. Monitoring Well Locations and Ground Water Elevation Contours - January 30, 1990 - Shell Service Station, WIC #204-6001-0109, 29 Wildwood Avenue, Piedmont, California

ATTACHMENT D

SAMPLING FREQUENCY MODIFICATION CRITERIA

ATTACHMENT D

SAMPLING FREQUENCY MODIFICATION CRITERIA

Shell typically samples ground water on a quarterly basis at their operating or former service stations. The California Water Quality Control Board's ground water monitoring guidelines state that: "Quarterly (ground water) monitoring is the maximum sampling interval typically allowed when ground water contamination is present unless other arrangements are made with Regional Water Quality Control Board staff"². California Regional Water Quality Control Board - San Francisco Bay Region (RWQCB-SFBR) personnel have indicated that the board will allow reduction of the sampling frequency on a site-specific basis if the frequency modification is justified by site conditions. Therefore, WA has developed generalized criteria for determining when sampling frequency can be modified.

The recommended sampling frequency for specific monitoring wells is based upon the following factors:

- The reliability of the ground water quality analytic data,
- The trend of the dissolved hydrocarbon concentration in water samples from the well, and
- The location of the well in relation to the hydrocarbon source.

Each of these factors is discussed below.

Reliability of Ground Water Quality Analytic Data

Since the reproducibility of ground water analytic data is highly sensitive to hydrogeologic conditions as well as field sampling and laboratory analytic procedures, ground water analytic data of ten shows variability between sampling episodes. Seasonal ground water elevation fluctuations can also affect hydrocarbon concentrations in ground water. Therefore, WA will reduce the sampling frequency only for wells that:

- · Have been sampled quarterly for at least one year, and
- Have consistent historical analytic results allowing a reliable assessment of
 hydrocarbon concentrations in the well. If the variability of the analytic data
 prevents a reliable assessment of hydrocarbon concentrations, then we will
 continue to sample the well(s) quarterly until a reliable assessment can be made.

North Coast, San Francisco Bay, Central Valley Regional Water Quality Control Boards, June 2, 1988 (revised May 18, 1989), "Regional Board Staff Recommendations for Initial Evaluation and Investigation of Underground Tanks; pg.12.

Trend of Hydrocarbon Concentration

Sampling frequency will be reduced only for wells showing stable or decreasing hydrocarbon concentrations. Wells with increasing concentration trends will be sampled quarterly to monitor the trends and determine whether the hydrocarbon concentration in a particular well is approaching a threshold concentration such as the saturation concentration, maximum contaminant level (MCL) for drinking water or a California Department of Health Services action level.

Well Location

Ground water monitoring wells generally fall into one of the following classifications relative to the suspected hydrocarbon source:

- 1) Clean up- and cross-gradient wells,
- 2) Clean down-gradient wells,
- 3) High concentration source-area wells, and
- 4) Low to high concentration intermediate wells.

WA recommends the following sampling frequency for each of these classifications:

- 1) If no offsite source is indicated by the initial sampling of the up-gradient and cross-gradient site wells, and if no hydrocarbons are detected in water samples from the wells, WA recommends sampling these wells annually.
- 2) Since clean down-gradient wells define the "leading edge" of dissolved hydrocarbons in ground water and hence are used to monitor hydrocarbon breakthrough, WA recommends sampling these wells quarterly.
- High hydrocarbon concentration source-area wells are used to monitor source-area hydrocarbon concentrations and the effectiveness of natural biodegradation. WA recommends sampling these wells semi-annually unless the hydrocarbon concentrations are increasing, in which case the wells will be sampled quarterly. High hydrocarbon concentration source area wells with a history of floating hydrocarbons will be inspected at least quarterly, and sampled if possible.
- 4) Intermediate wells are located at a distance from the source area and may contain low to high dissolved hydrocarbon concentrations, depending on their distance from the source and hydrogeologic factors. Although these wells are not used to track the migration of the dissolved-hydrocarbon front, they can be used to track the migration of the dissolved hydrocarbon plume and the rates of natural biodegradation. Therefore, WA recommends sampling these wells semi-annually.

WATER SAMPLING DATA
Well Name $\frac{MW-5}{}$ Date $\frac{1/31/91}{}$ Time of Sampling $\frac{1}{}$
Job Name SHELL Fleament Job Number 81-463-0 Initials OC
Sample Point Description (M = Monitoring Well)
Location IN STREET W. BOWNE GRAVE PUL NEAR BUSSTOP
WELL DATA: Depth to Water 4.4% ft (static, pumping) Depth to Product ft.
Product Thickness Well Depth ft (spec) Well Depth ft (sounded) Well Diameter in
Initial Height of Water in Casingft. = volumegal.
Casing Volumes to be Evacuated. Total to be evacuated gal.
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type $3x36f^2V^2$ Dedicated VES (Y/N)
Other
Evacuation Time: Stop $\frac{\sqrt{5/8}}{\sqrt{8}}$
Start 1504 Formulas/Conversions
Total Evacation Time $\int \frac{2f}{f} \int \frac{r}{f} dr$ $r = \text{well radius in ft.}$
Total Evacuated Prior to Sampling gal. h = ht of water col in ft.
Evacuation Rate gal, per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft time 7.48 gal/ft ³
Depth to Water at Sampling 6.6 ft. 5.25 time v_2 " casing = 0.163 gal/ft
Evacuated Dry? \sqrt{V} After $\sqrt{\ }$ gal. Time $\sqrt{\ }$ V_3 " casing = 0.367 gal/ft
80% Recovery = V_4 " casing = 0.653 gal/ft
% Recovery at Sample Time Time V _{4.5} " casing = 0.826 gal/ft
V_6 " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0 10.0
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
SAMPLE: Color NED REGUN Odor NONE
Description of matter in sample: VERY FILE SAND / CDARGE SILT Sampling Method: FRUM PART ON DED, RAR.
Sample Port: Rategpm Totalizergal.
Time —
W.C. C. J
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB Cont. ID Type ¹ (specify) Method
3 011-5 W/CV 40M N Y NONE EM 8015/2020 N NET
· · · · · · · · · · · · · · · · · · ·

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WEISS ASSOCIATES	7	,	Į	∑ ∃

Well Name	/// Data	15/10		/620	L
Job Name SHELL	PIEDMANT Job		71-4163-01	of Sampling 1629	07-1
Sample Point Descr	iption \mathcal{A}	Number	<u> 121 - 1763 - 107 - </u>	Initials	(1/1)
Location _ Cours		+ Wildows	. /	(M	= Monitoring Well)
WELL DATA: De				Depth to Pr	advat A
Product Thickness	Well Depti	37 2 ft (snc	oumping)	ft(sounded) We	roduct ft.
j	Initial Height of W	ater in Casing	34.2.6	ft = volume	$\frac{12.5}{2}$ gal.
_		olumes to be		Total to be evacua	
EVACUATION ME		Pump # and t		Hose # and type	
- · F	Bailer# and type 2	78 X 48 PVC)	Dedicated	<u> </u>	
	Other				
Evacuation Time: S	Stop <u>1343</u>				
S	Start <u>1333</u>			Formulas/Co	nversions
ר	Total Evacation Ti	me <u>/0 /201</u> /	v	r = well radio	
7	Fotal Evacuated Pr	ior to Samplin	ıg <u>⊋</u> ⊘	$gal. \qquad h = ht of was$	
I	Evacuation Rate 🕒	2	gal, per r	ninute vol. in cyl. =	
Depth to Water duri	ing Evacuation 🚣	<u></u>	<i>√A</i> time	7.48 gal/ft ³	
Depth to Water at S	ampling <u>16.79</u>	ft <i>[6</i>	ユア time	V2" casing =	0.163 gal/ft
Evacuated Dry?	\triangle After 20	_gal. Time	/343	V ₃ " casing =	
80% Recovery =/				V ₄ " casing =	
% Recovery at Samp	ple Time <u>45 %</u>	<u></u>	1627		= 0.826 gal/ft
GTTT1 67 G . 7				V ₆ " casing =	1.47 gal/ft
CHEMICAL DATA:	: Meter Brand/Nui	mber		V8 casing = 3	2.61 gal/ft
					0140
Calibration:	4.0	7.0	10.0		6
		7.0	10.0 Time	Volume Evacuate	
Calibration:	4.0	7.0			
Calibration:	4.0	7.0			
Calibration:	4.0	7.0			
Calibration:	4.0	7.0			
Calibration:	4.0	7.0			
Calibration:	SC/μmhos pH	7.0	Time	Volume Evacuate	
Calibration: Measured: SAMPLE: Color Description of matte	AOνε er in sample:	7.0	Time		
SAMPLE: Color Description of matter Sampling Method:	AONO er in sample:	T°C	Time	or Acres	
SAMPLE: Color Description of matter Sampling Method: Sample Port: Rate	4.0 SC/μmhos pH Acous er in sample: gpm Totalizer	T°C	Time Od	Volume Evacuate	
SAMPLE: Color Description of matter Sampling Method:	4.0 SC/μmhos pH Acous er in sample: gpm Totalizer	T°C T°C Faring officer End of J	Time Od word from Hand look-her see	or Acres	
SAMPLE: Color Description of matter Sampling Method: Sample Port: Rate # of Sample	AOUA er in sample: Decand from gpm Totalizer	Fire of I	Od world from gal.	Volume Evacuate	d (gal.)
SAMPLE: Color Description of matter Sampling Method: Sample Port: Rate Time	ACUA er in sample: Decand from gpm Totalizer	T°C T°C Faring officer End of J	Time Od word from Hand look-her see	or Acres	
SAMPLE: Color	Cont. Vol ²	Fil ³ Ref ⁴	Preservative (specify)	Or Analytic Method	Turn ⁵ LAB
SAMPLE: Color Description of matter Sampling Method: Sample Port: Rate # of Sample	AOUA er in sample: Decand from gpm Totalizer	Fil ³ Ref ⁴	Preservative (specify)	Volume Evacuate	d (gal.)
SAMPLE: Color	Cont. Vol ²	Fil ³ Ref ⁴	Preservative (specify)	Or Analytic Method	Turn ⁵ LAB
SAMPLE: Color	Cont. Vol ²	Fil ³ Ref ⁴	Preservative (specify)	Or Analytic Method	Turn ⁵ LAB
SAMPLE: Color	Cont. Vol ²	Fil ³ Ref ⁴	Preservative (specify)	Or Analytic Method	Turn ⁵ LAB
SAMPLE: Color	Cont. Vol ²	Fil ³ Ref ⁴	Preservative (specify)	Or Analytic Method	Turn ⁵ LAB
SAMPLE: Color	Cont. Vol ²	Fil ³ Ref ⁴	Preservative (specify)	Or Analytic Method	Turn ⁵ LAB

Sample Type Codes: W = Water, S = Soil, Describe Other
 Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
 Cap Codes: PT = Plastic, Teflon lined;
 Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
 ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

TRAVEL BLANK

WEISS ASSOCIATES

Well Name	Data	1/26			27 -	•
Job Name (#RALL	P. EDMON Toloh	Number (Time	of Sampling	1620	 -
Sample Point Descri	intion	ivanioei	7 - 12 - 42			
Location					= Monitor	ing WcII)
WELL DATA: De		ft (static n	umning)	Dooth to D		
Product Thickness	Well Depth	rt (statio, p) Well Death	Depth to Pr	oauct	it.
Ī	nitial Height of Wa	ater in Casing	, wen bepth _		ii Diameio	:rin
_	Casing V	olumes to be l	Evacuated	Total to be evacua		gai.
EVACUATION ME		oump # and ty		Hose # and type	ica	gai.
В	lailer# and type	Γ	edicated	(Y/N)		
· C	Other		——	(1/11/		ı
Evacuation Time: S	top		1		•	
S	tart		$\mathcal{L}_{\mathcal{L}}$	Formulas/Co	nversion.	
T	tart otal Evacation Tin	ne	NI	r = well radio	· · · - ·	
	otal Evacuated Pri		g	_ gal. h = ht of wat		
E	vacuation Rate		gal ner n	ninute vol. in cyl. =		
Depth to Water duri	ng Evacuation	f t.	time	7.48 gal/ft ³	41 H	
Depth to Water at Sa	ampling	£t.	time	V ₂ " casing =	0.163 gal/ft	
Evacuated Dry?	After	gal./ Time	<u></u>	V ₃ " casing =		
80% Recovery =		- /		V ₄ " casing =		
% Recovery at Samp	le Time			V _{4_5} " casing		4
CHEMICAL DATA: Calibration: Measured:	Meter Brand/Nun 4.0 SC/μmhos pH	7.0	10.0 Time	V ₆ " casing = 1 V8 casing = 1 Volume Evacuate	2.61 gal/ft	
SAMPLE: Color	r in sample:	DINZ	Od-	or <u>Nanz</u> e		
# of Sample Cont. ID	Type	Fil ³ Ref ⁴	Preservative (specify)	Analytic Method	Turn ⁵	LAB
	u/ci/ HamL		/ 0 / 0 / 0	EFO SUS /40 NO		NOST.

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;

^{2 =} Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

BAILE BAIL WEISS ASSO	CIATES V
WATER SAMPLING DATA	
Well Name Date 1/3/9/ Time of Sampling 60%	1 //
Job Name Sill Perkmont Job Number 31- 463-01 Initials UN	(
• • • • • • • • • • • • • • • • • • • •	onitoring Well)
Location	
WELL DATA: Depth to Water ft (static, pumping) Depth to Produc	·— /
Product Thickness Well Depth ft (spec) Well Depth ft(sounded) Well Di	_
Initial Height of Water in Casingft. = volume	
Casing Volumes to be Evacuated. Total to be evacuated	
EVACUATION METHOD: Pump # and type Hose # and type	
Bailer# and type Dedicated(Y/N)	
Other	
Evacuation Time: Stop	
Start Formulas/Conversi	ons
Total Evacation Time r = well radius in f	t.
Total Evacuated Prior to Sampling gal. h = ht of water col	in ft.
Evacuation Rate gal. per minute vol. in cyl. = $\pi r^2 h$	
Depth to Water during Evacuation ft time 7.48 gal/ft ³	
Depth to Water at Sampling ft time V_2 " casing = 0.163	gal/ft
Evacuated Dry? After gal. /Time V ₃ " casing = 0.367	gal/ft
80% Recovery = V_4 " casing = 0.653	gal/ft
% Recovery at Sample Time V _{4.5} " casing = 0.8	26 gal/ft
V_6 " casing = 1.47	gal/ft
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 g	al/ft
Calibration: 4.0 7.0 10.0	
Measured: SC/μμπhos pH T°C Time Volume Evacuated (g	al.)
<u> </u>	
<u> </u>	
	
1 1 1 1 1 1 1 1 2 - 1 0m Plate 10	\$
ARROWING ACT DISTIFE WITH THE	\mathcal{I}
SAMPLE Color 1000 Odor Nove	
Sampling Method: De white City and of Affect Little, ADD	
Sample Port: Rate gpm Totalizer gal.	
Time	
	5 * * * * *
# of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic To	urn ⁵ LAB
Cont. ID Type ¹ (specify) Method	
3 011-22 WW 46mi N Y NOWE EPASCIS/5000 A	L NET

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS: