

By Alameda County Environmental Health at 4:20 pm, Feb 03, 2014

Atlantic Richfield Company

Chuck Carmel

Remediation Management Project Manager

PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3804 Mobile: (510) 798-8314 E-Mail: chuck.carmel@bp.com

January 31, 2014

Re: Soil and Groundwater Investigation, Updated Conceptual Site Model, First Quarter 2014

Groundwater Monitoring and Sampling Report and Case Closure Request

Atlantic Richfield Company Station #2111 1156 Davis Street, San Leandro, California

ACEH Case #RO0000494

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Submitted by,

Chuck Carmel

Remediation Management Project Manager

Attachment:

Prepared for

Mr. Chuck Carmel Environmental Business Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

SOIL AND GROUNDWATER INVESTIGATION, UPDATED CONCEPTUAL SITE MODEL, FIRST QUARTER 2014 GROUNDWATER MONITORING AND SAMPLING REPORT AND CASE CLOSURE REQUEST

Atlantic Richfield Company Station No.2111 1156 Davis Street San Leandro, California Prepared by

875 Cotting Lane, Suite G Vacaville, California 95688 (707) 455-9270 www.broadbentinc.com

January 31, 2014

Project No. 06-88-615

broadbentinc.com

January 31, 2014

Project No. 06-88-615

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Chuck Carmel

Re:

Soil and Groundwater Investigation, Updated Conceptual Site Model, First Quarter 2014

Groundwater Monitoring and Sampling Report and Case Closure Request

Atlantic Richfield Company Station No.2111 1156 Davis Street, San Leandro, California

ACEH Case No.RO0000494

Dear Mr. Carmel:

Broadbent & Associates, Inc. (Broadbent) is pleased to submit this *Soil and Groundwater Investigation*, *Updated Conceptual Site Model, First Quarter 2014 Groundwater Monitoring and Sampling Report and Case Closure Request* for Atlantic Richfield Company Station No.2111 located at 1156 Davis Street, San Leandro, California (Site). This document was prepared to document the recently conducted field work intended to evaluate the downgradient extent of petroleum hydrocarbons, current onsite soil and groundwater conditions, confirm Site geology/lithology, provide an updated conceptual Site model (CSM), and document first quarter monitoring and sampling activities. Based on the data presented in the included updated CSM, case closure is also recommended in this document.

Should you have questions or require additional information, please do not hesitate to contact me at (707) 455-7290.

TIDWELL

Sincerely,

BROADBENT & ASSOCIATES, INC.

Kristene Tidwell, P.G., C.Hg.

Senior Geologist

Enclosures

cc: Mr. Jerry Wickham, Alameda County Environmental Health (Submitted via ACEH ftp site)

Electronic copy uploaded to GeoTracker

SOIL AND GROUNDWATER INVESTIGATION, UPDATED CONCEPTUAL SITE MODEL, FIRST QUARTER 2014 GROUNDWATER MONITORNIG AND SAMPLING REPORT AND CASE CLOSURE REQUEST

Atlantic Richfield Company Station No.2111 1156 Davis Street, San Leandro, California Fuel Leak Case No. RO0000494

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 BACKGROUND INFORMATION	1
3.0 FIELD INVESTIGATION	1
3.1 CPT Boring Advancement	2
3.1.2 Prefield Activities	2
3.1.3 CPT Boring Activities	3
3.1.4 Soil Collection and Analysis	3
3.1.5 Groundwater Collection and Analysis	4
3.1.6 Investigation-Derived Waste	4
3.2 Sensitive Receptor Survey	4
3.3 Additional Monitoring Well Sampling	4
4.0 FIRST QUARTER 2014 GROUNDWATER MONITORING AND SAMPLING EVENT	5
4.1 Groundwater Monitoring Activities	5
4.2 Quarterly Monitoring Plan Summary	5
4.3 Quarterly Results Summary	
4.4 Activities Conducted and Results	6
5.0 INVESTIGATION RESULTS	6
5.1 Lithology	6
5.2 Soil Analytical Results	
5.3 Groundwater Analytical Results from Grab-Groundwater and Well Samples	8
5.4 Sensitive Receptor Survey Results	9
5.5 Updated Conceptual Site Model	9
6.0 JUSTIFICATION FOR SITE CLOSURE	9
6.1 General Criteria	10
6.2 Media-Specific Criteria-Groundwater	11
6.3 Media-Specific Criteria-Petroleum Vapor Intrusion to Indoor Air	11
6.4 Media-Specific Criteria-Direct Contact and Outdoor Air Exposure	11
6.5 Recommendation for Case Closure	12
7 O DECEDENCES	12

SOIL AND GROUNDWATER INVESTIGATION, UPDATED CONCEPTUAL SITE MODEL, FIRST QUARTER 2014 GROUNDWATER MONITORNIG AND SAMPLING REPORT AND CASE CLOSURE REQUEST

Atlantic Richfield Company Station No.2111 1156 Davis Street, San Leandro, California Fuel Leak Case No. RO0000494

TABLE OF CONTENTS

DRAWINGS

- 1-Site Location Map
- 2-Site Plan with Recent CPT Boring Locations
- 3-Groundwater Elevation and Analytical Summary Map January 9, 2014
- 4-Cross-Section Location Map
- 5-Geologic Cross-Section A-A'
- 6- Geologic Cross-Section B-B'
- 7- Geologic Cross-Sections C-C' and D-D'
- 8-GRO Isoconcentration Contour Map November 2013/January 9, 2014
- 9-Benzene Isoconcentration Contour Map November 2013/January 9, 2014
- 10-MTBE Isoconcentration Contour Map November 2013/January 9, 2014

TABLES

- 1-Conceptual Site Model
- 2-Soil Analytical Results November 2013 CPT Investigation
- 3-Grab-Groundwater Analytical Results-November 2013 CPT Investigation
- 4-Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
- 5-Summary of Fuel Additives Analytical Data
- 6-Summary of Historical Groundwater Gradient Direction and Magnitude
- 7-Summary of Detected Compounds in Well MW-3 January 2014

APPENDICES

- A Recent Regulatory Correspondence
- B Site History
- C Historical Site Data
- D Drilling and Encroachment Permits
- E Utility Clearance Report
- F CPT Report
- **G** Laboratory Analytical Reports
- H Well Survey Results
- I Groundwater Monitoring and Sampling Field Methods
- J Well Sampling Field Data Sheets
- K Surrounding Site Data
- L Analytical Concentration Trend Graphs

SOIL AND GROUNDWATER INVESTIGATION, UPDATED CONCEPTUAL SITE MODEL, FIRST QUARTER GROUNDWATER MONITORNIG AND SAMPLING REPORT AND CASE CLOSURE REQUEST Atlantic Richfield Company Station No.2111 1156 Davis Street, San Leandre, California

1156 Davis Street, San Leandro, California Fuel Leak Case No. RO0000494

1.0 INTRODUCTION

On behalf of the Atlantic Richfield Company (ARC)- a BP affiliated company, Broadbent & Associates, Inc. (Broadbent) has prepared this *Soil and Groundwater Investigation, Updated Conceptual Site Model, First Quarter 2014 Groundwater Monitoring and Sampling Report and Case Closure Request* (Report) for the Atlantic Richfield Company (ARC) Station No. 2111, located at 1156 Davis Street, San Leandro, California (Site). This Report has been prepared in compliance with the following documents (collectively hereinafter noted as "Work Plan Documents):

- Revised Soil & Groundwater Investigation Work Plan dated November 6, 2012 (Broadbent, 2012)
- Revised Soil & Groundwater Investigation Work Plan dated February 28, 2013 (Broadbent, 2013a)
- Addendum to the Revised Soil & Groundwater Investigation Work Plan dated June 19, 2013 (Broadbent, 2013b).

The scope of work outlined in these Work Plans and Addendum were approved by the ACEH in a letter dated August 9, 2013 (ACEH, 2013). A copy of this letter is included in Appendix A.

2.0 BACKGROUND INFORMATION

The Site is located at 1156 Davis Street in San Leandro, California, and is an active ARCO branded gasoline station. Current improvements at the Site include two gasoline underground storage tanks (USTs) believed to have been installed in 2000, two fuel dispenser islands with a total of four double-sided dispensers, and a station building. The majority of the Site surface is paved with asphalt and concrete. The Site is bound by Preda Street to the east, Davis Street to the south, single-family residential dwellings to the north and the First Christian Church property and a preschool immediately to the west. A Site Location Map is provided as Drawing 1. A recent aerial photo showing the Site and local area development is provided as Drawing 2. A detailed Site history description is presented as Appendix B. Historic Site Data is included in Appendix C.

A Conceptual Site Model (CSM) was prepared and included in the Work Plan Addendum dated June 19, 2013. This CSM has been updated with the results of this current investigation and is included as Table 1. Additional Site background information including regional and Site geology, nearby receptors, and historical soil and groundwater data is presented in this table.

3.0 FIELD INVESTIGATION

The work described herein was carried out in order to move this Site towards closure based on the Low Threat UST Closure Policy (LTCP). Based on a review of Site data, several data gaps were initially identified in the Work Plan Documents. Specific data gaps identified were as follows:

Downgradient characterization of petroleum compounds in first-encountered groundwater

- Evaluation of necessity of onsite vertical assessment in groundwater
- Onsite shallow soil sampling to determine the current, post-remediation, concentrations of petroleum compounds
- Assessment of the need for offsite soil vapor assessment based on the current investigation
- Additional information needed regarding presence of downgradient domestic well, as identified by Closure Solutions, Inc. (Closure Solutions) in Sensitive Receptor Survey (SRS) (Closure Solutions, 2012).

In response to the data gaps identified in CSM and the Revised Work Plans, Broadbent carried out following scope of work:

- Advanced seven CPT borings at the locations indicated in Drawing 2
- Collected soil and groundwater samples from boreholes
- Conducted additional well survey activities including a well records request from the Alameda County Public Works Agency (ACPWA)
- Conducted additional well sampling activities at well MW-3 to evaluate a potential former waste oil tank release

CPT boring were advanced to address data gaps regarding downgradient plume definition, Site lithology, and current, post-remediation concentrations of petroleum compounds in soil. Soil borings SB-3, SB-4, SB-6, SB-7, and SB-8 were advanced for downgradient plume definition. Soil boring SB-9 was advanced to collect current, post remediation soil and groundwater data, and evaluate the necessity for vertical groundwater characterization. Soil boring SB-10 was advanced to evaluate lithology near to onsite well MW-8, where some inconsistent data has been historically noted (See Table 1, CSM). Details of the CPT boring advancement and other activities conducted are presented below.

3.1 CPT Boring Advancement

Details of the CPT boring advancement are presented below.

3.1.2 Prefield Activities

Prior to conducting field activities, Broadbent notified the property owners at 1190 Davis Street of the upcoming work, where four of the borings were advanced (SB-3, SB-6, SB-7, and SB-8). An access agreement was already in place at that time from previous work. Additionally, a letter and several phone calls were made to the property owners at 1290 Davis Street to obtain access for advancing a boring in the parking lot of the property (previously noted in the Work Plan documents as SB-5). As was the case during previous attempts, the property owner was not responsive to our access requests so the remainder of the scope of work not including this boring (SB-5) was carried out.

Necessary permits including drilling permits from the Alameda County Public Works Agency (ACPWA) and an encroachment permit (for boring SB-4 located in Douglas Ct., see Drawing 2) from the City of San Leandro were secured prior to carrying out the field investigation. Copies of these permits are included in Appendix D. Additionally, all borings were marked and areas were outlined with white spray paint, and an Underground Service Alert (USA) ticket was secured to notify all utility companies on the area of the upcoming activities. Additionally, all boring locations were cleared for underground utilities by NorCal Geophysical (Norcal) on October 29, 2013. NorCal's utility locate report is included in Appendix E.

ARCO Station No.2111 January 31, 2014

Page 3

Upon completion of access, notifications, and utility clearance activities, Gregg Drilling & Testing (Gregg) mobilized to the Site on November 18, 19 and 23 to clear the boring locations to 6.5 feet below ground surface (bgs). Borings SB-9 and SB-10 were cleared on November 18, boring SB-4 on November 19, and borings SB-3, SB-6, SB-7, and SB-8 were cleared on November 23, 2013. All work for these borings were performed on Saturday, November 23, 2013 at a request of the property owner.

3.1.3 CPT Boring Activities

On November 20, 21, and 23, 2013 Gregg advanced CPT borings as described above at locations shown in Drawing 2. A Broadbent field geologist observed the soil borings advancement. All CPT borings were advanced to approximately 30 feet bgs, with the exception of source area boring SB-9, which was advanced to approximately 50 feet bgs. Soils were logged by the contractor using the CPT designated soil behavior types. These soil behavior types are based on measurements made by the CPT rig including sleeve friction, tip friction, and pore pressure. All borings were logged beginning at a depth of 6.5 feet following borehole clearance, to total depth. The CPT report including the borehole logs are included in Appendix F.

Soil samples from the capillary fringe within each boring were collected and submitted to the laboratory for chemical analysis. For each soil boring, historic encountered groundwater was evaluated to observe possible fluctuations relative to historical measurements and samples were collected at different levels within the smear zone (approximately 12 and 16 feet bgs). Additionally, shallow soil samples (3 and 7 feet bgs) were collected from boring SB-9 to evaluate current, post-remediation vadose soil concentrations of residual petroleum hydrocarbons.

Collection of one grab-groundwater sample from each boring was attempted using a hydropunch-type sampler. However, discrete-depth hydropunch-type sampling was not possible in some locations due to low-flow groundwater conditions. For borings SB-4 and SB-6, an open-hole sample was collected after the hydropunch sample did not contain water after waiting 15 minutes. In these cases, a separate hole was advanced to 28 and 25 feet bgs, respectively and temporary casing was placed in the borehole and left to sit for several hours so that water was allowed to accumulate. The same procedure was attempted for boring SB-7, but after approximately six hours of equilibration time, no water had accumulated in the borehole.

Groundwater sampling was conducted by lowering a small-diameter bailer into the CPT rods or temporary casing. Upon completion, the soil borings were abandoned by filling cement bentonite grout mix from the bottom of the borehole to the surface.

3.1.4 Soil Collection and Analysis

Soil samples were collected in stainless steel sampling sleeves for laboratory analysis and were capped with Teflon tape and plastic caps, placed on ice and submitted under chain-of-custody protocol to TestAmerica Environmental Laboratories, Inc. of Irvine, California, a State-certified environmental laboratory. Soil samples were analyzed for GRO (hydrocarbon chain lengths of C6-12) by EPA Method 8015B; benzene, toluene, ethylbenzene, and xylenes (BTEX); methyl-tert butyl ether (MTBE); tert-butyl alcohol (TBA); t-amyl methyl ether (TAME), ethyl-tert butyl ether (ETBE), di isolpropyl ether (DIPE); ethylene dibromide (EDB); 1,2 dichoroethane (1,2-DCA), and Ethanol by EPA Method 8260. Select soil

ARCO Station No.2111 January 31, 2014

Page 4

samples were additionally analyzed for Naphthalene. Soil analytical results are included in Table 2. Laboratory analytical reports are presented in Appendix G.

3.1.5 Groundwater Collection and Analysis

Groundwater samples were collected in a 45 mL Volatile Organic Analysis (VOA) vial preserved with hydrochloric acid, placed on ice, and were submitted under chain-of-custody protocol to TestAmerica. Groundwater samples collected during this phase of investigation were analyzed for the following: for GRO (hydrocarbon chain lengths of C6-12) by EPA Method 8015B; BTEX, MTBE, TBA, TAME, ETBE, DIPE, EDB, 1,2-DCA, and Ethanol by EPA Method 8260. Grab-groundwater analytical results from the November 2013 investigation are presented in Table 3. Laboratory analytical reports are presented in Appendix G.

3.1.6 Investigation-Derived Waste

Investigation-derived residuals are being temporarily stored onsite in 55-gallon, DOT-approved drums, pending characterization, removal and transportation of surplus soils and liquids to appropriate California-regulated facilities.

3.2 Sensitive Receptor Survey

Results of a SRS performed by Closure Solutions (Closure Solutions, 2012) indicated potential private-use wells are located downgradient of the Site. One potential downgradient well located approximately 820 feet northwest (downgradient) of the Site. In addition to the SRS activities already conducted by Closure Solutions (which included a Department of Water Resources [DWR] records request), a well records search with ACPWA for the locations and/or uses of any wells in the vicinity of the Site was carried out. The results from Closure Solutions and the current ACPWA well search are included in Table 1 (CSM) and Appendix H.

3.3 Additional Monitoring Well Sampling

Soil samples were historically collected at the time of waste oil tank removal (see Section 2.2), and these samples were tested for a variety of analyses including volatile organic compounds (VOCs) and poly aromatic hydrocarbons (PAHs). However, the reporting limits at the time were elevated, and groundwater in the area has not been analyzed for these compounds. Data collected to date indicates that naphthalene is not present in soil above 10 ft bgs above concentrations listed in the LTCP, and little if any was ever present in groundwater due to the non-detect historic soil concentrations. However concentrations of VOCs and PAHs in groundwater have not been evaluated explicitly. Although the existing data strongly indicates that "the unauthorized release consists only of petroleum" (SWRCB, 2012), well MW-3 was sampled one time for a full list of VOCs by EPA Method 8260 and poly aromatic hydrocarbons (PAHs) by EPA Method 8270 to definitively confirm the absence of non-petroleum related compounds in groundwater The additional sampling was carried out during regularly scheduled semi-annual groundwater monitoring activities during the first quarter on January 9, 2014. Due to sample container breakage, well MW-3 was resampled (PAHs only) on January 16, 2014. Well sampling procedures are described in Section 4.0, below.

4.0 FIRST QUARTER 2014 GROUNDWATER MONITORING AND SAMPLING EVENT

Monitoring activities at the Site were performed in accordance with an agency directive issued by ACEH, and additional sampling as described in Section 3.3. Details of work performed are provided below.

4.1 Groundwater Monitoring Activities

WORK PERFORMED THIS QUARTER (First Quarter 2014):

- 1. Conducted the first quarter monitoring and sampling event on January 9 and 16, 2014.
- 2. Prepared and submitted Fourth Quarter 2013 Status Report on January 24, 2014.
- 3. Prepared and submitted *Soil and Groundwater Investigation, Updated CSM, First Quarter 2014 Groundwater Monitoring Report, and Case Closure Request* (contained herein).

WORK SCHEDULED FOR NEXT QUARTER (Second Quarter 2014):

1. No environmental activities are scheduled at this time.

4.2 Quarterly Monitoring Plan Summary:

Groundwater level gauging:

	MW-1 through MW-8	(Semi-Annually, 1Q & 3Q)
Groundwater sample collection:	MW-1 through MW-5, MW-7 and	_
·	MW-8	(Semi-Annually, 1Q & 3Q)
	MW-6	(Annually, 3Q)
4.3 Quarterly Results Summary:		
LNAPL		
LNAPL observed this quarter:	No	(yes\no)
LNAPL recovered this quarter:	None	(gal)
Cumulative LNAPL recovered:	None	(gal)
Groundwater Elevation and Gradie	ent:	
Depth to groundwater:	16.15 (MW-6) to 18.82 (MW-1)	(ft below TOC)
Gradient direction:		(compass direction)
	West-Northwest	<u> </u>
Gradient magnitude:	0.006	(ft/ft)
Average change in elevation:	-0.36	(ft since last measurement)
_		

Laboratory Analytical Data

Summary:

Analytical results are as follows:

- GRO was detected in two wells with concentrations of 73 μg/L and 500 μg/L in wells MW-2 and MW-7, respectively.
- Benzene was detected in well MW-2 with a concentration of 0.58 μg/L.
- MTBE was detected in five wells with a maximum concentration of 100 μ g/L in well MW-7.
- TBA was detected in two wells with concentrations of 230 μ g/L and 27,000 μ g/L in wells MW-2 and MW-7, respectively.

January 31, 2014 Page 6

 The remaining petroleum hydrocarbon constituents were below the laboratory reporting limits, with the exception of additional analytes which are discussed below in Section 5.3.

4.4 Activities Conducted and Results

First quarter groundwater monitoring was conducted at the Site on January 9, 2014 by Broadbent personnel in accordance with the monitoring plan summary detailed above. No irregularities were noted during water level gauging. Depth to water measurements ranged from 16.15 ft bgs at MW-6 to 18.82 ft bgs at MW-1. Resulting groundwater surface elevations ranged from 20.58 ft above msl in well MW-5 to 21.51 ft above msl in well MW-7. Groundwater elevations are summarized in Table 4. Water level elevations yielded a potentiometric groundwater gradient to the west-northwest at approximately 0.006 ft/ft. Field methods used during groundwater monitoring are provided in Appendix I. Field data sheets are included in Appendix J. A Site Location Map is provided as Drawing 1. Potentiometric groundwater elevation contours are presented in Drawing 3.

Groundwater samples were collected on January 9, 2014, consistent with the current monitoring schedule. No irregularities were reported during sampling activities. Samples were submitted under chain-of-custody protocol to Test America Laboratories, Inc. of Irvine, California, for analysis of GRO, by EPA Method 8015B; for BTEX, MTBE, ETBE, TAME, DIPE, EDB, 1,2-DCA, TBA, and Ethanol by EPA Method 8260B. Additionally, groundwater from well MW-3 was analyzed for VOCs and PAHs. Due to sample container breakage in transport, this well was resampled on January 16, 2014 (PAHs only; see Section 3.3 above). No irregularities were encountered during analysis of the samples. The laboratory analytical report, including chain-of-custody documentation, is provided in Appendix G. Routine groundwater analytical sampling results are presented in Tables 4 and 5. A summary of historical groundwater gradient directions and magnitudes is included as Table 6.

Results of the sampling event are included in the laboratory analytical summary presented above. These results indicate that the highest overall concentrations of petroleum hydrocarbons are present in well MW-7, which is consistent with previous data. All detected hydrocarbon concentrations were within historical ranges. Further discussion of these results is presented below.

5.0 INVESTIGATION RESULTS

5.1 Lithology

CPT logs were generated for each borehole location investigated. Lithology encountered as detailed in these CPT logs were generally consistent with previous data. Clays were largely encountered in borings SB-3, SB-6, SB-7, and SB-8, and SB-10. Of the CPT borings recently advanced, only onsite boring SB-9 indicated sand and gravel. The log for this boring indicated a large sand layer present from approximately 24 to 36 feet bgs. All other lithologies noted were clay or silty clay.

Lithologic cross sections were created for the Site including the new CPT borings. A cross section location map is included as Drawing 4. The cross sections are included as Drawings 5 through 7. Similar to the discussion above, the Site subsurface is largely dominated by fine-grained clays and silts. Cross section A-A', which extends west to east through the middle of the Site, shows that clay is dominant to the west of the Site, with a sand/gravely layer present in boring SB-9 and offsite, upgradient well MW-6.

ARCO Station No.2111 January 31, 2014

Page 7

Cross Section B-B' parallels the alley/driveway located in between the offsite church and apartment buildings. Lithology in this cross section indicates that clays and silts are dominant with only minor sand lenses present. A minor sand layer was previously noted in this area in 2003 when boring H-2 was drilled. However, the current CPT data from boring SB-3, advanced directly adjacent to former boring H-2, did not contain any sand in the entire borehole. It appears that any sand in this area, if present, is very limited in extent.

Cross section C-C' extends north to south along the western property edge. A small gravel layer is noted in boring SB-2 and well MW-2, but not noted further north in boring SB-10 and well MW-8. Cross section D-D' extends from north to south near the eastern property edge and, similar to C-C', sands/gravels are indicated in southernmost well MW-4 and boring SB-9, but is absent further south in well MW-7. Based on these observations, it appears lithology at the Site is consistent with sand channel or alluvial deposits, consisting of few large intervals of sand and gravel with minor amounts of thin, discontinuous sand lenses encased in clays and silts.

It had been noted in previous Work Plan Documents that data from well MW-8 had seemed inconsistent with other Site well data and had a different screened interval. In order to evaluate why this well may have suspect data, CPT boring SB-10 was advanced near well MW-8. As noted in the CPT log, boring SB-10 consisted entirely of clay to a total depth of 32 feet bgs. Additionally, very slow groundwater recharge was noted in this borehole. It is likely that the difference in groundwater elevation data from this well compared to the remaining Site wells is due in part to these very slow recharge conditions, and the different screen interval of this well. However, groundwater analytical data from boring SB-10 indicates that the data from MW-8 is comparable to boring SB-10. The groundwater analytical data is discussed in further detail below.

Overall, the Site lithology indicates a slow recharge and flat gradient direction. Groundwater movement is potentially occurring in the noted gravel layer in boring SB-9, but this gravely layer/channel does not extend in the downgradient direction.

5.2 Soil Analytical Results

Soil samples were collected in each borehole location at depths of approximately 12 and 16 feet bgs. Soil samples collected at these depths were selected to evaluate soil concentrations in the capillary fringe zone. Additionally, in boring SB-9, shallower samples (3 and 7 feet bgs) were collected in order to evaluate vadose, post-remediation samples. Soil analytical data from the current CPT investigation is presented Table 2.

As indicated in Table 2, the highest residual concentrations of petroleum compounds in soil were detected in boring SB-9, which is located near the former source area, at approximately 17 feet bgs. Petroleum compounds detected included GRO at 13 milligrams per kilogram (mg/kg), ehtylbenzene at 0.065 mg/kg, total xylenes at 0.0044 mg/kg, MTBE at 0.022 mg/kg, and naphthalene at 0. 26 mg/kg. Additionally, TBA was detected at 0.17 mg/kg at 12.5 feet bgs in boring SB-9. In borings SB-4, SB-7, SB-8, and SB-10, no petroleum compounds were detected. In borings SB-3 and SB-6, only minor concentrations of GRO (maximum of 1.8 mg/kg) were detected in select samples, but no other constituents were detected. In boring SB-10, only TBA at 0.49 mg/kg and MTBE at a maximum concentration of 0.26 mg/kg was detected, and no other petroleum compounds (including GRO) were detected. Overall, the concentrations detected in soil samples indicate that minimal to no hydrocarbon impacts remain in soil in the capillary fringe at the Site. Additionally, no petroleum compounds were

ARCO Station No.2111 January 31, 2014

Page 8

detected in either sample collected at 3 and 7 feet bgs, indicating that current soil vadose soil conditions in the former source area have been effectively remediated by previous DPE activities and natural biodegradation processes.

5.3 Analytical Results from Grab-Groundwater and Well Samples

Groundwater samples were collected from each CPT boring advanced during the current investigation, with the exception of boring SB-7, where, as noted above, water did not accumulate in the borehole after leaving it open to approximately 26 feet bgs for a total of six hours. No petroleum compounds were detected in groundwater samples from borings SB-3, SB-4, SB-6, SB-8, and SB-9, with the exception of MTBE at a maximum concentration of 2.1 μ g/L. The groundwater samples collected from boring SB-10 contained GRO at 120 μg/L, benzene at 1.3 μg/L, MTBE at 10 μg/L, and TBA at 270 μg/L. This data indicates that groundwater near the former source area (SB-9) has been effectively remediated by former DPE and natural biodegradation processes, and only minimal concentrations of residual impacts are present on the edge of the property (SB-10). These concentrations will degrade over time to nondetect. Natural biodegradation in this area is evidenced by the relatively higher concentration of TBA, indicating the MTBE is being broken down in this area. Further downgradient (borings SB-3, SB-6, SB-8, SB-4), impacts above cleanup levels are not noted, with the exception of GRO at 270 μg/L in SB-6. Historically, groundwater near SB-3 has contained higher concentrations. In 2004, boring H-2 was advanced adjacent to boring SB-3, and GRO was detected at a concentration of 260,000 μg/L. As current data indicates that almost no concentrations of petroleum compounds are present adjacent to this location in soil or groundwater (only MTBE and GRO at concentrations below cleanup levels were detected in groundwater from SB-3; see Table 3), it appears that onsite remedial activities were successful in eliminating the source for these offsite impacts, and natural attenuation has already nearly completely remediated any offsite impacts that remained after onsite remediation.

Residual impacts of GRO at boring SB-6 appear to be isolated, and likely the result of the fact that prior to remedial activities, the petroleum plume was much larger and extended somewhat offsite. This observation is supported by the data from the 2004 offsite groundwater investigation (Appendix C). Due to the fine-grain nature of soils at the Site, a small amount of residual mass is likely trapped in the soil matrix in this location. Additionally, because the nature of collecting grab-groundwater samples in clays, the concentration is likely biased higher. This bias can happen when dissolved-phase hydrocarbons adhere to soil particles present in grab-groundwater samples. These higher concentrations are even more likely if the water collected is sourced from clays, which are comprised of very fine grains. GRO is not typically detected in well MW-8, thus it appears that impacts noted in boring SB-6 are not connected to the Site plume, and are the result of a small amount of petroleum trapped in the clays in this area. No GRO was detected in downgradient boring SB-4. No benzene or MTBE above maximum contaminant levels (MCLs) were detected in boring SB-6. Based on these observations and analysis, the small residual impacts noted in boring SB-6 are not a risk for vapor intrusion to offsite properties, and do not threaten any offsite wells.

Although the concentrations of petroleum detected in boring SB-10 are higher than generally detected in adjacent well MW-8, it is likely due to often noted higher impacts in grab-groundwater samples as opposed to well samples. As noted above, the lithology in boring SB-10 is comprised entirely of clay. Well MW-8 has a similar lithology, however due to the filtration of the sand pack a cleaner sample is collected. Additionally, the concentrations noted in boring SB-10 do not indicate high residual concentrations. Therefore, data from well MW-8 is considered valid.

Page 9

As noted above, the groundwater sample collected from well MW-3 during routine, first quarter 2014 groundwater monitoring and sampling activities was analyzed for additional analytes including VOCs and PAHs. No petroleum compounds were reported in this well (with the exception of one detection of naphthalene slightly above the 8270 reporting limit of 0.24 μ g/L), indicating that any historical impacts from the former Waste Oil Tank, if ever existed, have completely degraded over time due to onsite DPE and natural attenuation. Details of the groundwater monitoring activities are presented in Section 4 above.

No PAHs or VOCs with the exception of tetracholorethylene (PCE) and chloroform were detected in this groundwater sample (Table 7). The cause of these VOCs present in this groundwater is likely the result of nearby solvent plumes (Caterpillar Inc., located at 800 Davis Street; San Leandro Crossing; see Appendix K). Concentrations of PCE related to this Site have been recently reported in vicinity near the concentration detected in well MW-3. Since no other contaminant concentrations are present, PCE impacts resulting from a former waste oil tank release are less likely than the impacts being related to the upgradient solvent plume. Recent data from nearby solvent sites are included in Appendix K. A summary of detected compounds for additional sampling at well MW-3 is included as Table 7.

5.4 Sensitive Receptor Survey Results

Additional sensitive receptor survey activities included conducting a well search with the ACPWA, as indicated above. The results of this survey are included in Appendix H. A number of wells being primarily irrigation, were located within 2000 feet of the Site. These wells are primarily located to the west of this Site along or slightly to the north of near Davis Street. One domestic well was noted to the northwest (downgradient) of the Site at approximately 820 feet from the Site, similar to the results of the 2012 Closure Solutions SRS. No wells were identified within 250 feet of the edge of the Site property.

Based on the small size of the low-concentration residual plume, the wells identified during the ACWPA well survey activities are not threatened by residual petroleum associated with the Site.

5.5 Updated Conceptual Site Model

As noted above, the CSM that was initially submitted with the June 13, 2013 Work Plan Addendum has been updated to reflect the data collected during this current Site investigation. This CSM is included as Table 1.

6.0 JUSTIFICATION FOR SITE CLOSURE

The Site was evaluated for Closure based on comparing data presented in the CSM (Table 1) against the Low Threat UST Closure Policy. Closure Criteria in the Low Threat UST Closure Policy are organized into the following categories:

- General Criteria
- Media Specific Criteria-Groundwater
- Media Specific Criteria Petroleum Vapor Intrusion to Indoor Air
- Media Specific Criteria Direct Contact and Outdoor Air Exposure
- Additional Criteria

The following sections present the details of the evaluation.

January 31, 2014

Page 10

6.1 General Criteria

The general criteria relate to the Site use, presence of free product, sources, and completeness of the Site understanding. As evidenced in the data presented in the CSM, a sufficiently good understanding of Site conditions, on- and offsite receptors, and Site history has been established. These general criteria and a discussion of how the Site is consistent with these criteria are presented below.

The unauthorized release is located within the service area of a public water system

The Site is located within the East Bay Municipal Utilities District Service Area.

The unauthorized release consists only of petroleum

The release at the Site occurred in the area of the former UST farm dispensing system. Additionally, all analytical data collected to date has shown no indication of any other contaminant releases other than petroleum (Tables 2, 3 and 7), with the exception of PCE detected in one Site well, most likely related to an upgradient solvent plume (Appendix K). The Site has been a retail service station and there is no evidence that any other activities have occurred at the Site which may have caused non-petroleum releases.

PCE and chloroform were detected in well MW-3 during the most recent well sampling, however these analytes are likely associated with nearby solvent sites (Caterpillar, San Leandro Crossing; Appendix K), where PCE concentrations similar to those detected in well MW-3 have been recently reported.

The unauthorized release has been stopped

The USTs and pipelines where the releases occurred have been removed and/or replaced, and the waste oil tank has been removed; thereby, removing the primary sources of releases (Table 1).

Free product has been removed to the extent possible

Measurable Free product has not been observed in any groundwater monitoring well since October 24, 2006, after Site remediation activities began. Therefore, LNAPL has been removed to the extent possible.

A conceptual site model that assesses the nature, extent, and mobility of the release has been developed

A CSM has been prepared and updated with recent data for this Site and is presented as Table 1.

Secondary source has been removed to the extent practical

Soils around the former UST complex, former product pipelines, and former waste oil tank has been previously overexcavated. In addition, operation of the dual phase extraction (DPE) and treatment system performed between 2007 and 2009 removed approximately 895 pounds of total hydrocarbons (as GRO) from the Site. Therefore, the secondary source has been removed to the extent practical.

Soil and groundwater have been tested for MTBE and results reported in accordance with Health and Safety Code 25296.15

Soil and groundwater samples collected have been analyzed for gasoline range organics (GRO), benzene, and methyl tert-butyl ether (MTBE). Based on recent and historical data, the MTBE plume has been fully delineated. Maximum concentration of MTBE was observed in a grab-groundwater sample collected in

Page 11

March 2004 from boring H-2 at a concentration of 7,600 μ g/L. However, groundwater data from current, adjacent boring SB-3 contained MTBE at 1.4 μ g/L, below cleanup objectives and only slightly above reporting limits. An MTBE isoconcentration contour map for the most recent groundwater monitoring and sampling event (1Q14) is presented as Drawing 10. MTBE concentration trend graphs for wells MW-2, MW-5, MW-7, and MW-8 are included in Appendix I. These graphs show a strong decreasing trend for MTBE in all Site wells, indicating a shrinking plume.

Nuisance as defined by the Water Code section 13050 does not exist at this site. A nuisance as defined by the water code section 13050 does not exist at this Site.

6.2 Media-Specific Criteria - Groundwater

The Low Threat UST Closure Policy lists four scenarios for groundwater plumes. Recent groundwater monitoring (1Q14) and CPT investigation results (November 2013) indicates that the petroleum hydrocarbon concentrations only exceed cleanup levels in three sampling locations, well MW-7 and borings SB-6 and SB-10. Isoconcentration maps based on the current data are included in Drawings 8 through 10. These drawings show a plume length of less than 100 feet. Based on current well data, it appears that the small concentration of GRO in boring SB-6 is likely isolated, and the result of a small amount of residual dissolved mass trapped in the fine-grained clay matix in this area, and also likely biased high due to the sampling methodology and lithology (as explained in Section 5.3 above). This isolated GRO concentration does not appear connected to the onsite plume.

Free-product has not been observed at the Site since prior onsite remediation in 2006. Furthermore, the nearest water supply well and surface water are over 250 feet away, as presented in the CSM table (Table 1). The combination of these factors indicates Criteria 1 of the LTCP is met, and a very low to no threat to possible drinking or surface water from the petroleum plume at the Site.

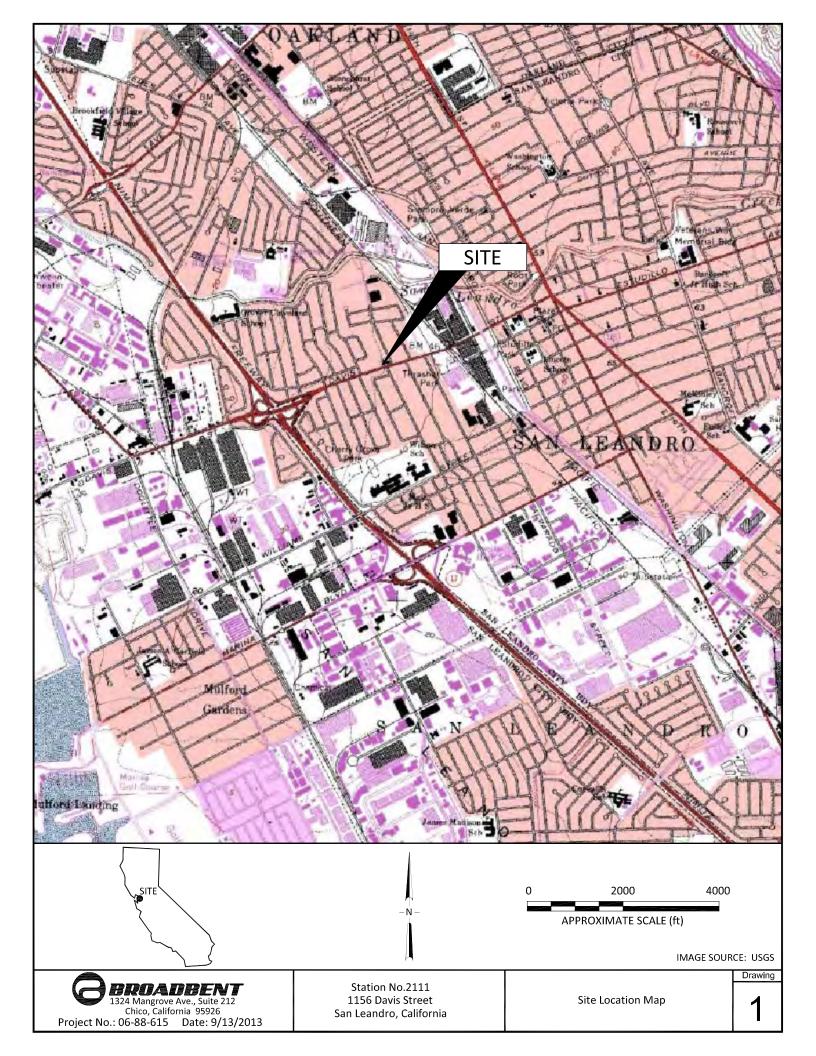
6.3 Media Specific Criteria – Petroleum Vapor Intrusion to Indoor Air

The Site is an active service station, therefore the Low Threat UST Closure Policy considers that petroleum vapors from onsite fueling activities are a far greater risk than those associated with exposure to vapors from historic petroleum releases; therefore, this Site meets this criteria from closure according to the Low Threat UST Closure Policy. Additionally, recent groundwater analytical from samples collected offsite (borings SB-3, SB-4, SB-6, and SB-8) contain no significant petroleum compounds no offsite plume migration of volatiles above cleanup levels is occurring to non-service station locations, so the exemption applies. GRO was detected in boring SB-6 above cleanup levels, but this concentration is likely biased high and is not considered a risk for vapor intrusion to offsite building occupants.

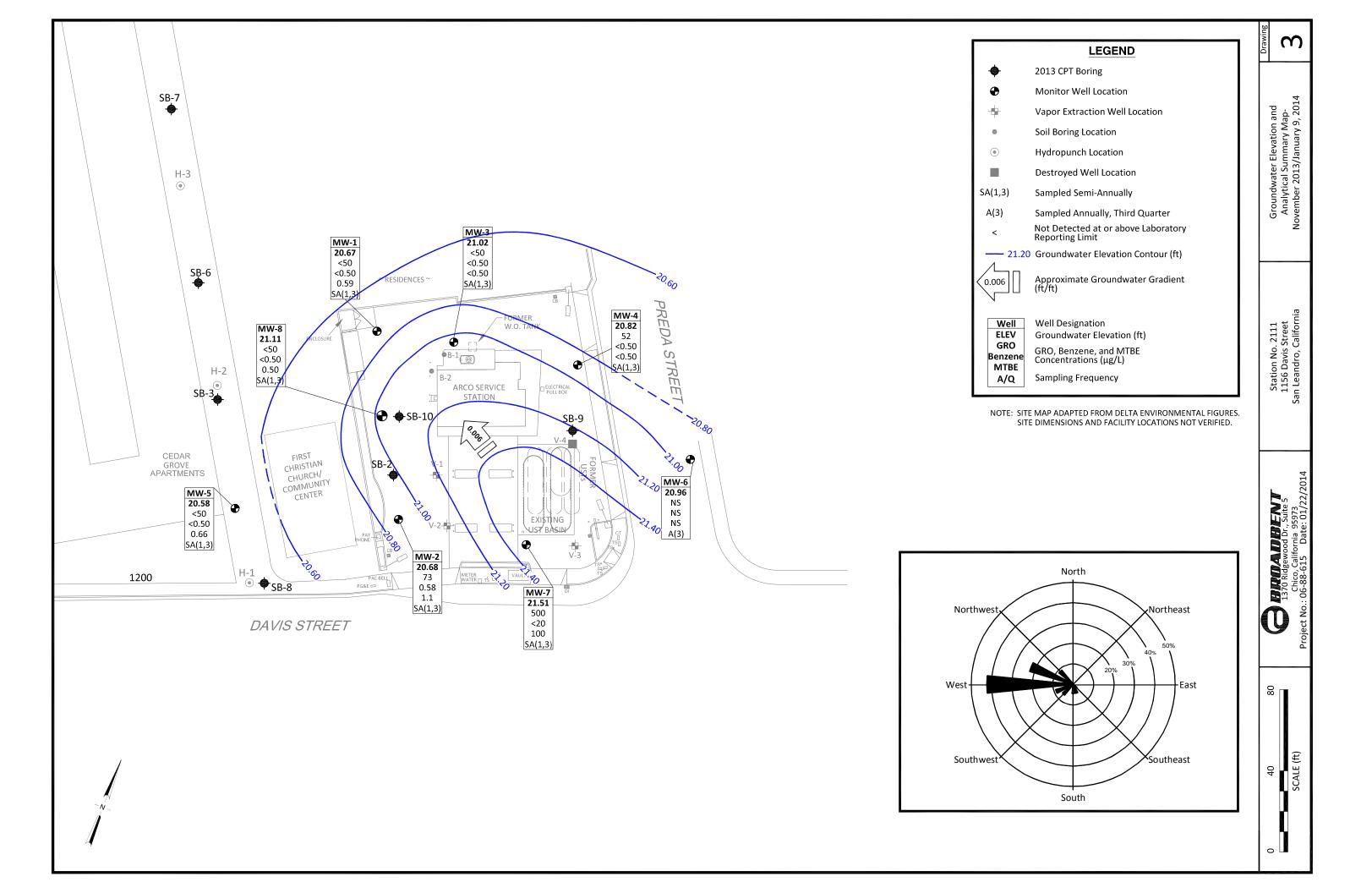
6.4 Media Specific Criteria – Direct Contact and Outdoor Air Exposure

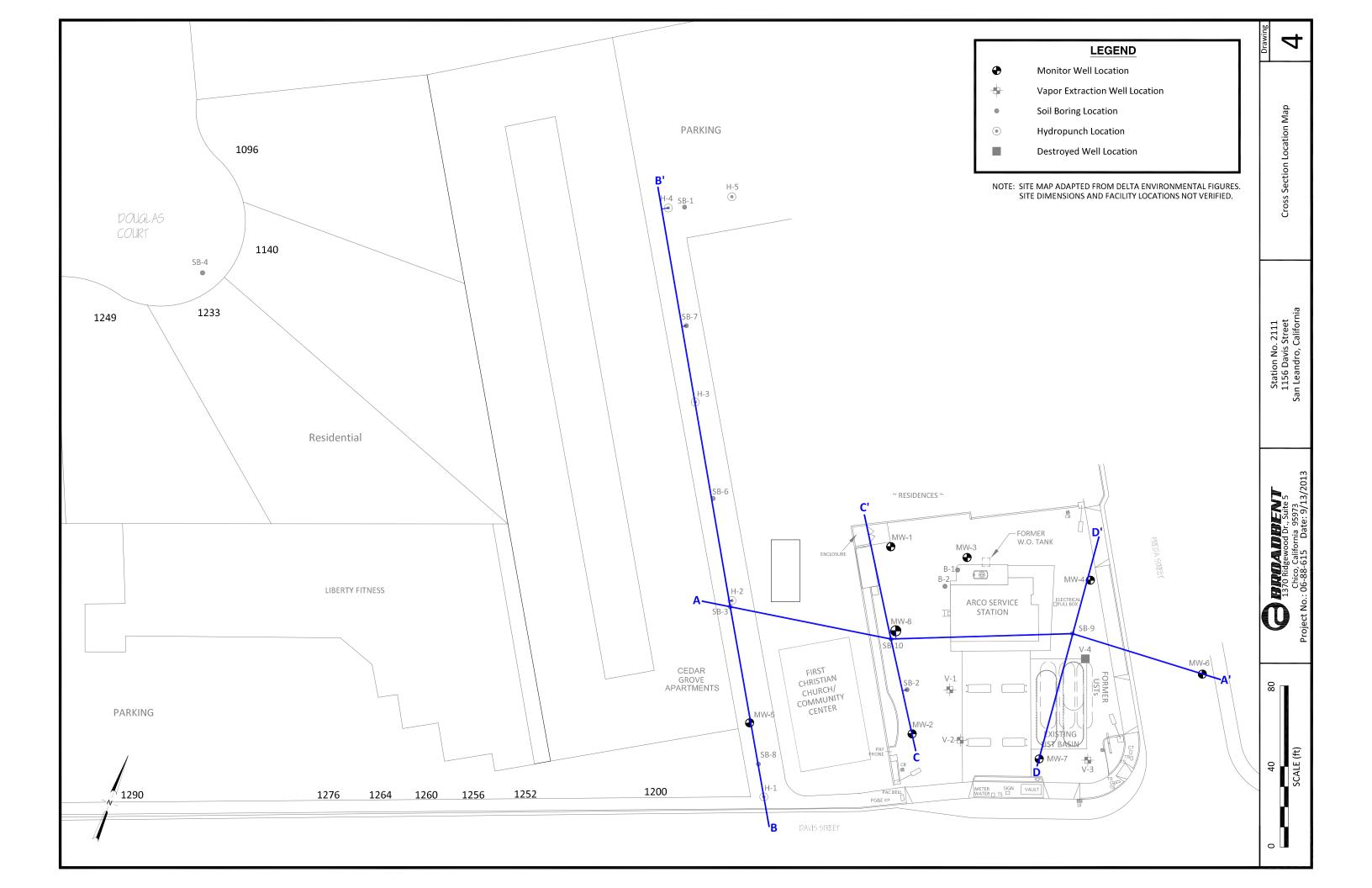
For the direct contact and outdoor air exposure, only current soil data was considered. One soil boring (SB-9) was advanced near the former source areas at the Site in November 2013, as described above. Soil samples were collected from two intervals above 10 ft bgs (3 and 7 ft). The soil samples had no detections above the laboratory reporting limits for benzene, ethylbenzene, MTBE, and naphthalene, indicating values listed in the Low Threat UST closure Policy a Commercial/Industrial exposure scenario are not exceeded, and there no significant risk of adversely affecting human health from any remaining compounds. Soil sample analytical results are presented in Table 2.

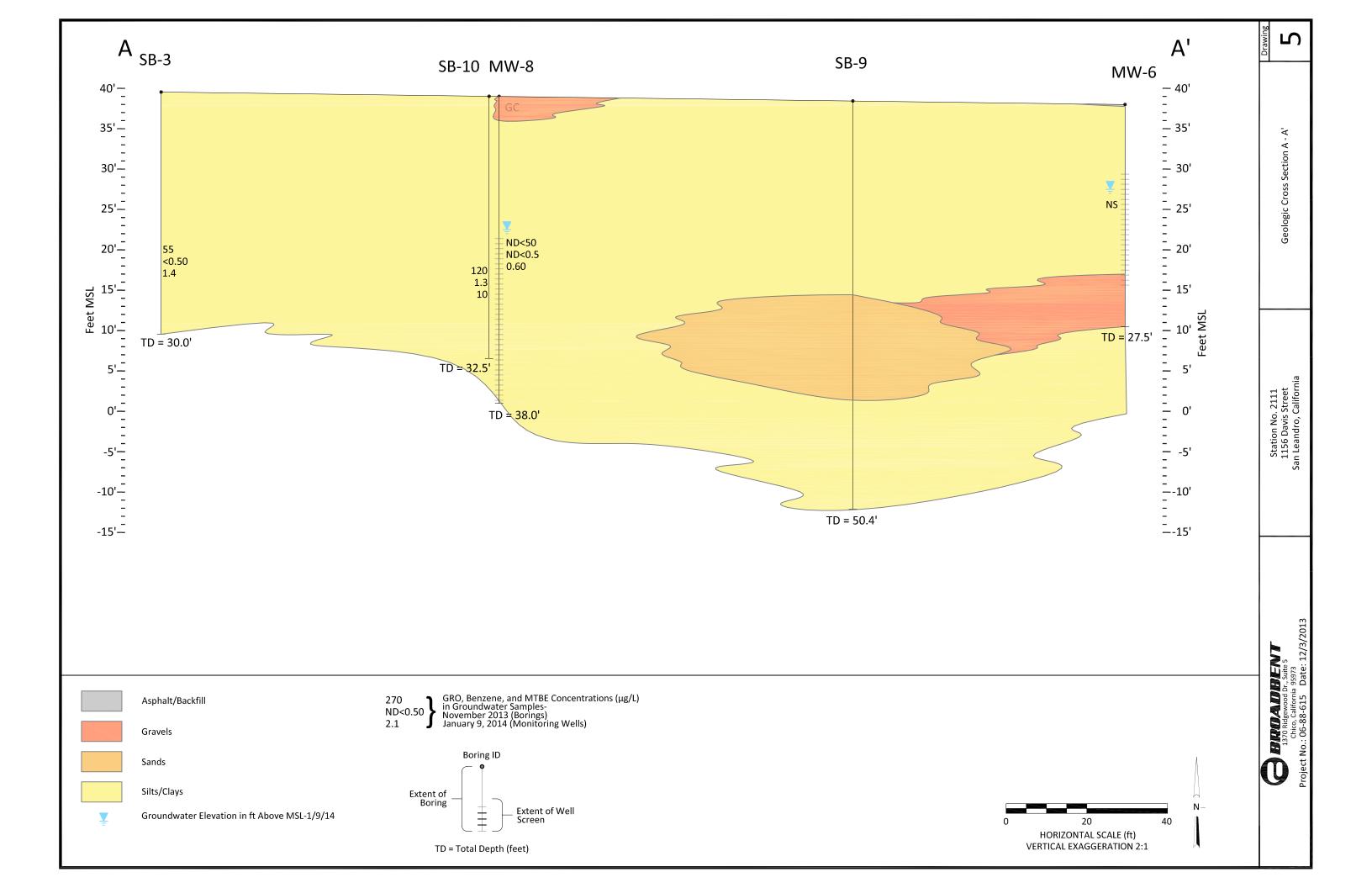
January 31, 2014

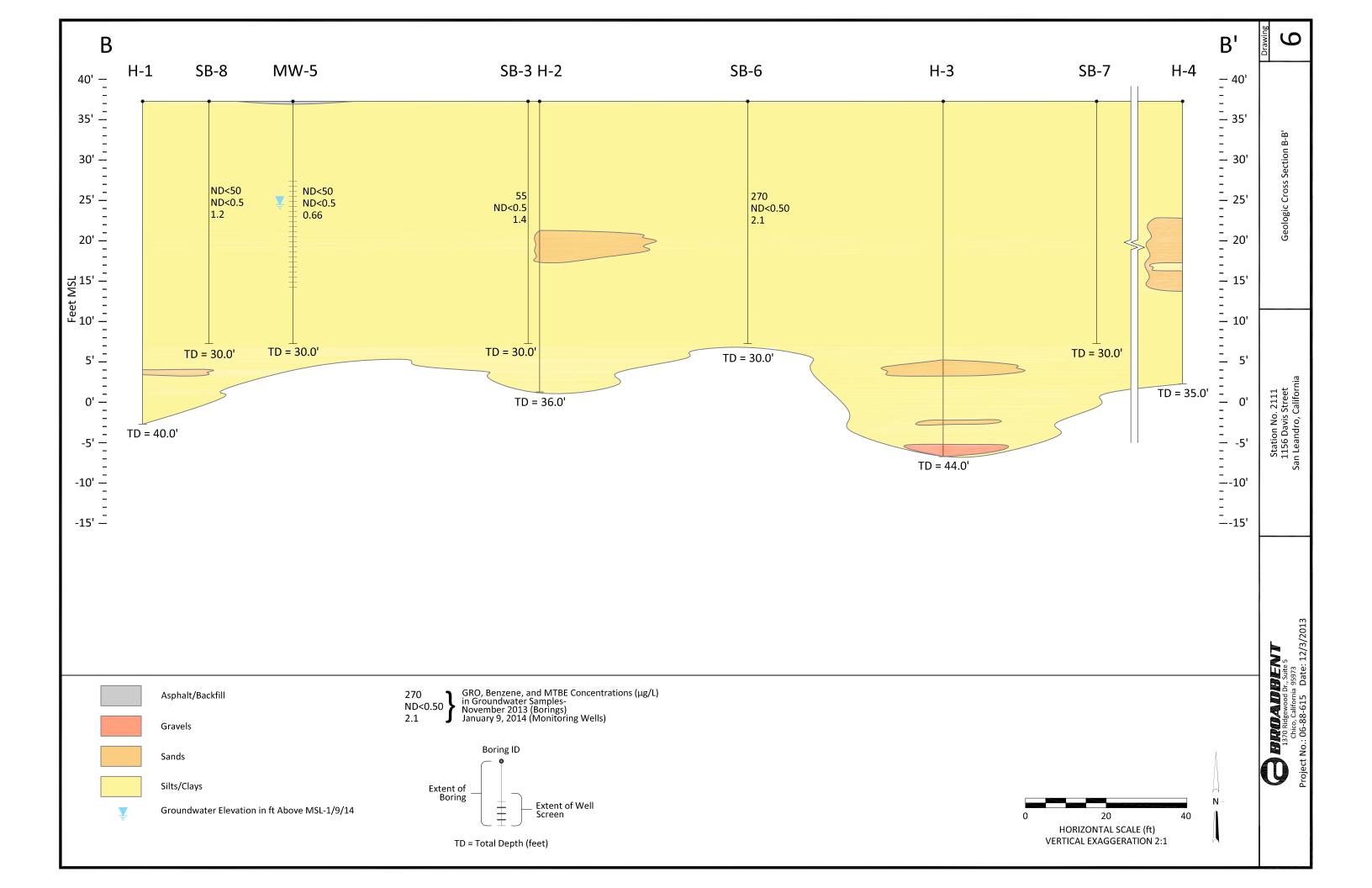

Page 12

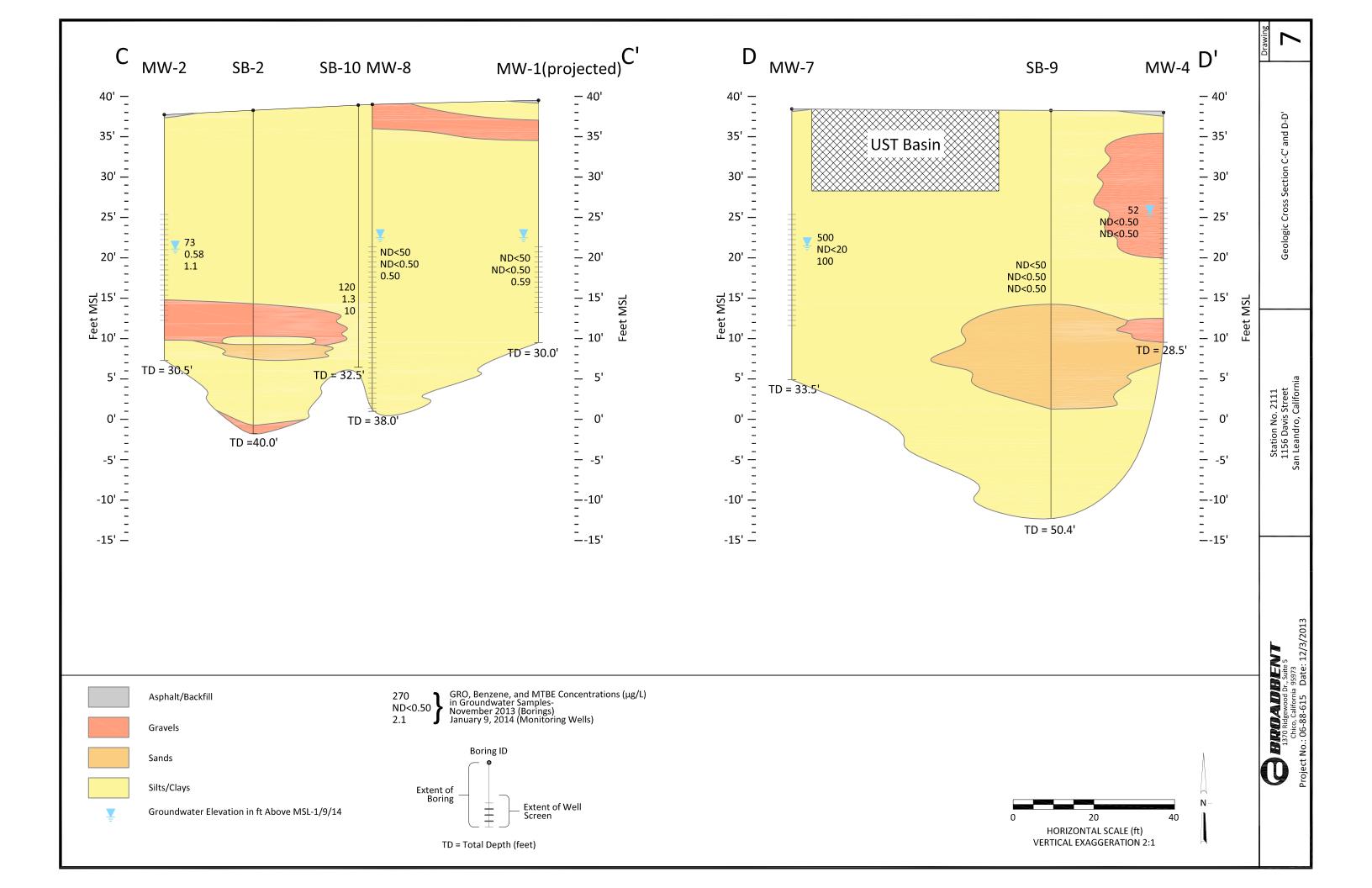
6.5 Recommendation for Case Closure

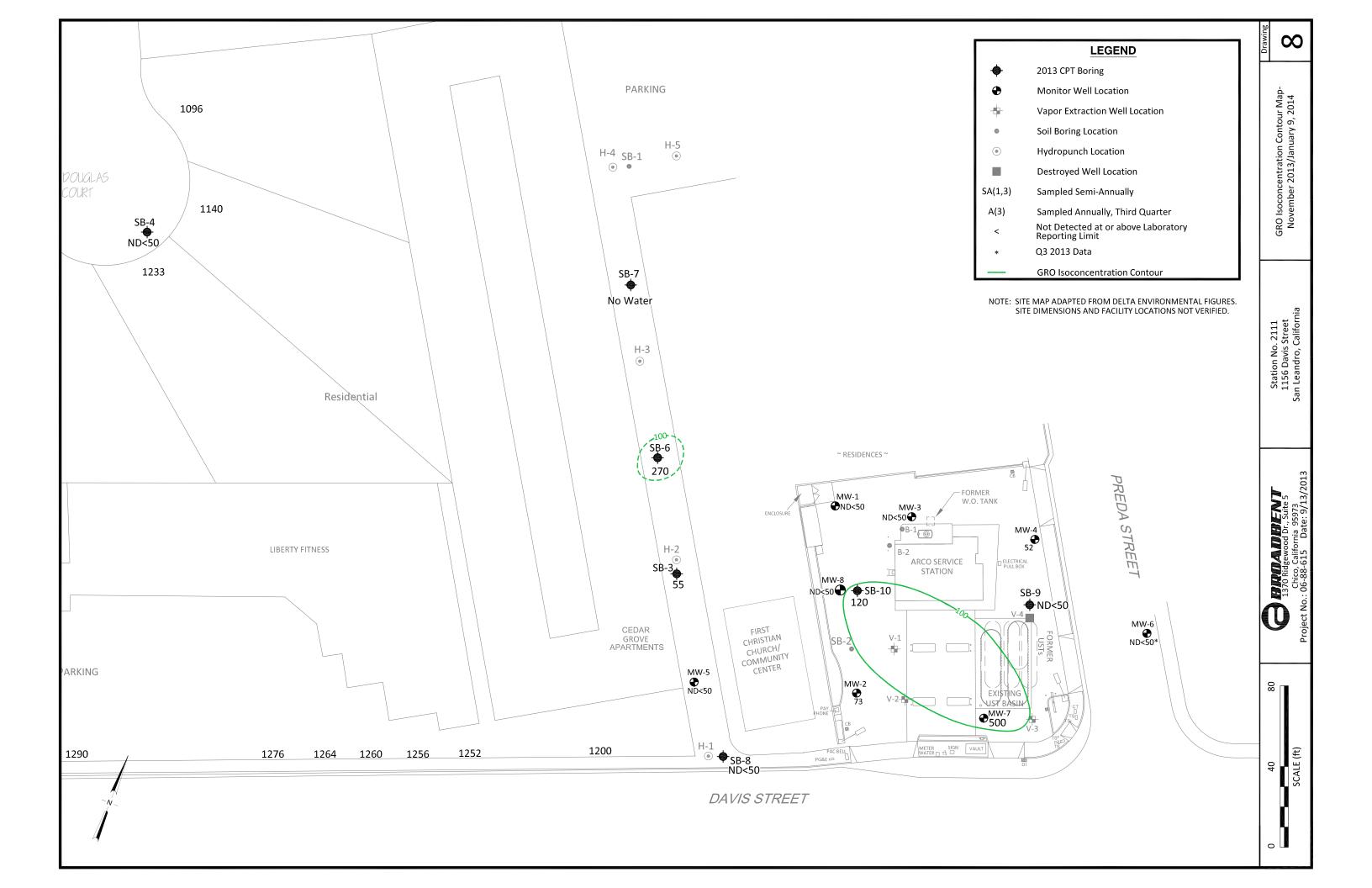

As presented above and in the attached CSM table (Table 1), this Site appears to meet all applicable criteria for case closure under the Low Threat Closure Policy. Over 20 years of groundwater monitoring history has shown petroleum compounds at the site has been effectively remediated by the previous DPE activities and natural attenuation. Previous high petroleum hydrocarbon concentrations in offsite locations (2004 boring H-2) are no longer present as evidenced by recently collected nearby groundwater samples (boring SB-3). Since no significant offsite impacts are present, vapor intrusion risks are not present to offsite building occupants. The closest surface water and potential offsite drinking water well is 820 feet from the Site, with locations where groundwater samples were nondetect in between the Site and the offsite well. Adequate Site characterization both on- and offsite, evaluation of receptors, historical descriptions, and technical analysis have been performed at the Site and in this document to support a recommendation for case closure. We hereby recommend that a determination of No Further Action be made for this Site. Upon concurrence of this recommendation from the ACEH, closure activities including well decommissioning should be carried out.

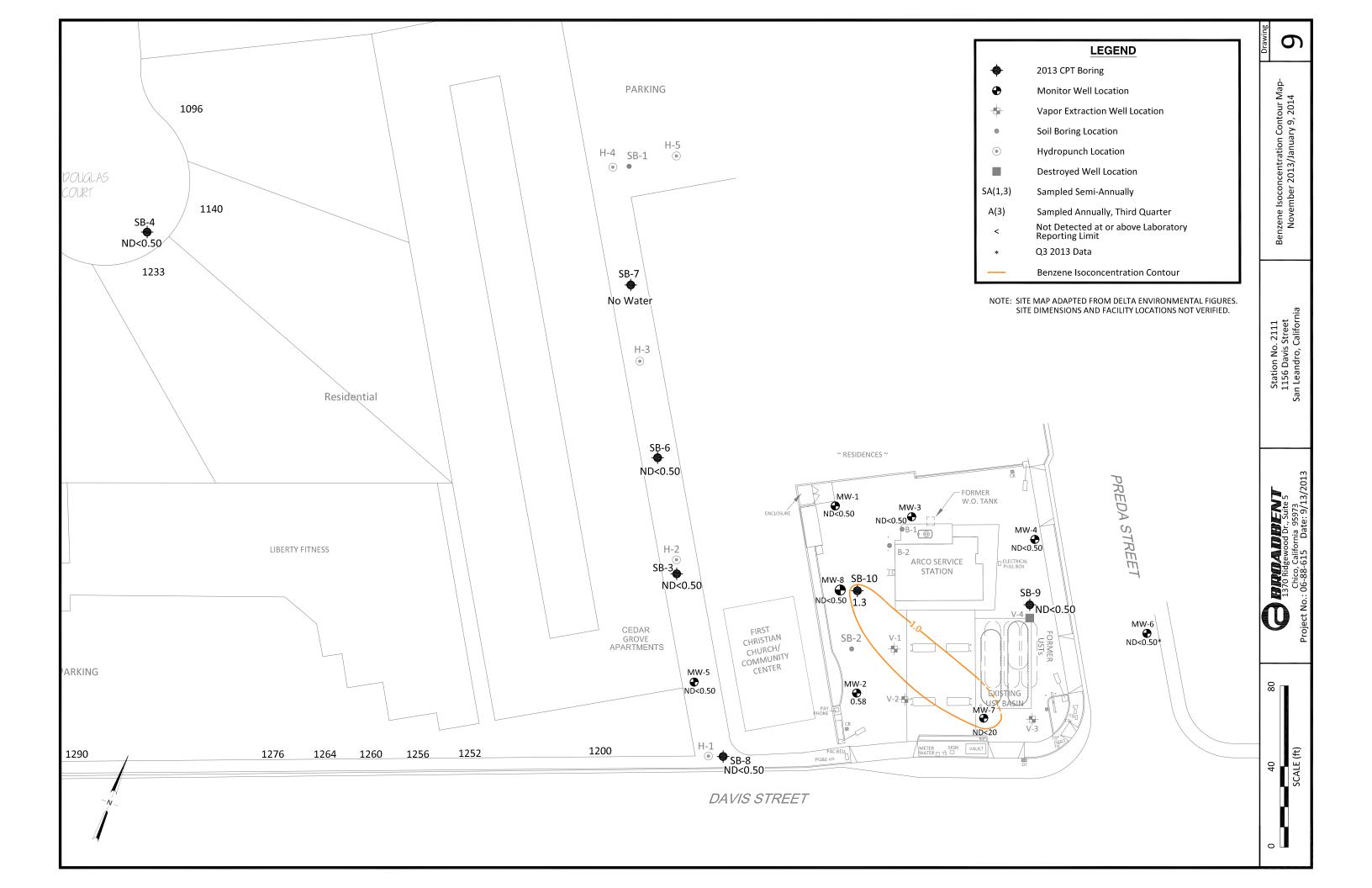

7.0 REFERENCES

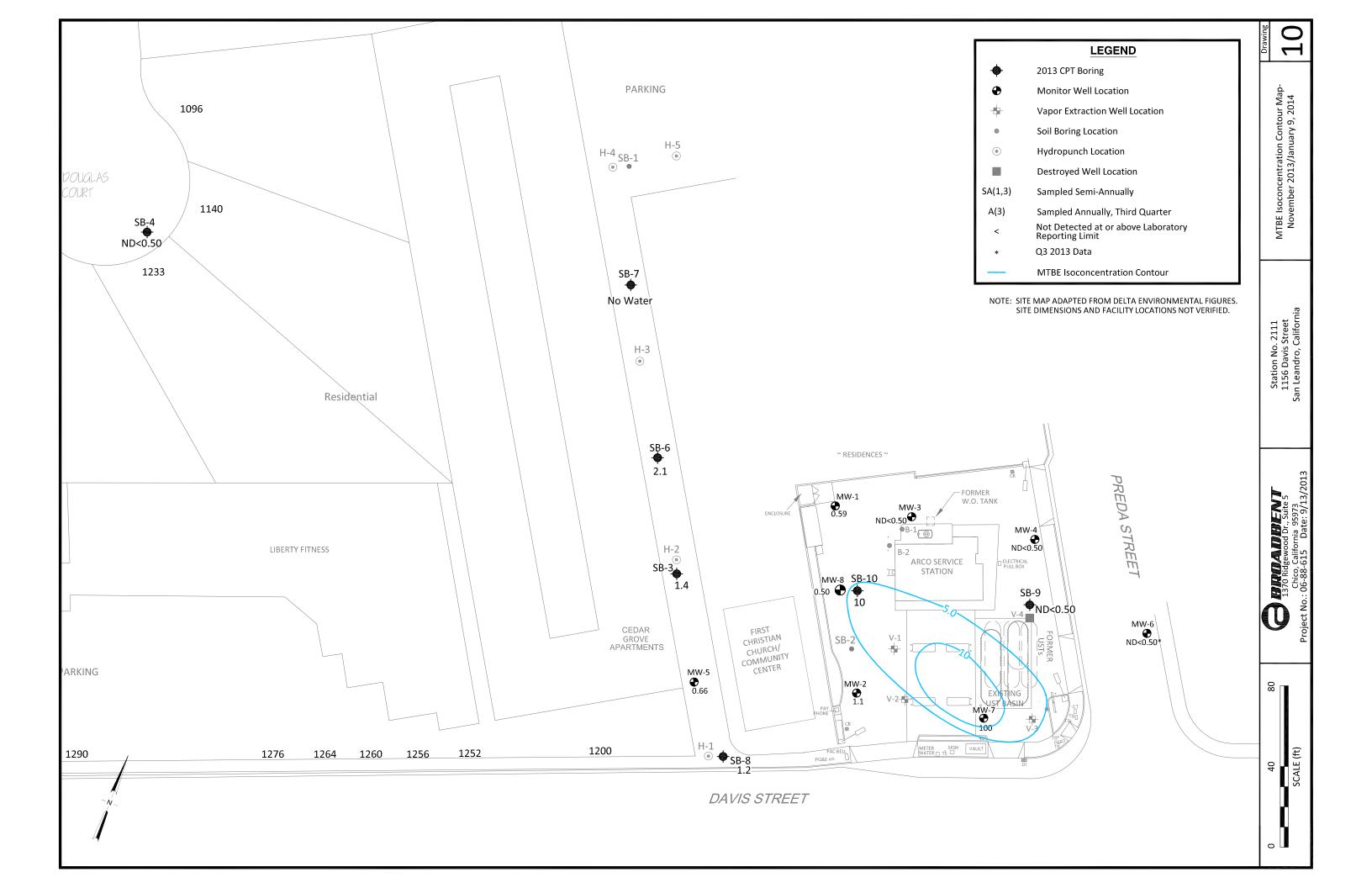

- Alameda County Environmental Health (ACEH, 2013). Approval Letter. Atlantic Richfield Company Station #2111, 1156 Davis Street, San Leandro, California; Fuel Leak Case No. #RO0000494. August 9.
- Broadbent & Associates, Inc. (Broadbent, 2012). Revised Soil & Groundwater Investigation Work Plan, Atlantic Richfield Company Station #2111, 1156 Davis Street, San Leandro, California; ACEH Case #RO0000494. November 6.
- Broadbent & Associates, Inc. (Broadbent, 2013a). Revised Soil & Groundwater Investigation Work Plan, Atlantic Richfield Company Station #2111, 1156 Davis Street, San Leandro, California; ACEH Case #RO0000494. February 28.
- Broadbent & Associates, Inc. (Broadbent, 2013a). Addendum to the Revised Soil & Groundwater Investigation Work Plan, Atlantic Richfield Company Station #2111, 1156 Davis Street, San Leandro, California; ACEH Case #RO0000494. June 19.
- California State Water Resources Control Board (SWRCB, 2012). Low-Threat Underground Storage Tank Closure Policy. August 17.
- Closure Solutions, Inc. (Closure Solutions, 2012). Sensitive Receptor Survey, Atlantic Richfield Company Station #2111, 1156 Davis Street, San Leandro, California; ACEH Case #R00000494. October 30.
- Delta Environmental Consultants, Inc., (Delta, 2001). *Tank Basin, Product Line and Dispenser Island Sampling Results, ARCO Station No.2111, 1156 Davis Street, San Leandro, California*. February 2.
- GeoStrategies, Inc. (GSI, 1993). Letter Report of The Results of Soil Sampling Associated with Hydraulic Hoist Removal at ARCO Station 2111, 1156 Davis Street in San Leandro, California. October 4.
- San Francisco Regional Water Quality Control Board. (SFRWQCB, 1999). East Bay Plain Groundwater Basin Beneficial Use Evaluation Report. June.











CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Geology and Hydrogeology	Regional	According to the East Bay Plain Groundwater Basin Beneficial Use Evaluation Report (SFRWQCB, June 1999), the Site is located within the San Leandro Sub-Area, near the northern boundary of the San Lorenzo Sub-Area, in the East Bay Plain of the San Francisco Basin. These Sub-Areas share the same hydrogeologic characteristics, yet are separated by the junction of the surface trace between the San Leandro and San Lorenzo alluvial fans. These Sub-Areas consist primarily of alluvial fan sediments with the distinction of the Yerba Buena Mud extending west into the San Leandro and San Lorenzo Sub-Areas, unlike the northern Sub-Areas. The Yerba Buena Mud forms a major aquitard between the shallow and deep aquifers throughout much of southwestern area of the East Bay Plain. The San Leandro and San Lorenzo Sub-Areas alluvial fans are finer grained and produce less groundwater than the Niles Cone basin to the south.	None	NA
	Site	Sediments encountered during previous Site investigations consist of silty clay and clayey silt near the surface to approximately 50 ft bgs. Varying thicknesses of beds and lenses of clay, clayey sand, sandy clay, sandy silts, gravel, and gravely sand are located below the silty clay and clayey silt layer to maximum depth explored. The lithology data presented in the boring log from well MW-8 has been validated by the CPT log from boring SB-10. It appears that the very clay dominant lithology in this are causes low-flow groundwater conditions, and potential anomalies in groundwater elevation data. Towards the eastern portion of the Site, and across Preda Street, the underlying layer from the surface to 25 ft bgs consists of beds and lenses of varying thicknesses of clay, clayey gravel, and sandy clay. The groundwater was first encountered in soil at an approximate depth ranging from 13.5 to 17.5 ft bgs. Lithologic cross-sections are	None	NA

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Geology and Hydrogeology (continued)	Site (continued)	included as Drawings 4 through 7. The lithology represented in the cross-sections is consistent with the geologic environment of sand channel or alluvial deposits and consistent with the regional geologic environment. Historical depth to groundwater in Site wells have ranged from 10.56 to 24.10 ft bgs. Average groundwater flow direction is to the west-northwest and is shown on the groundwater contour map (Drawing 3).		
Surface Water Bodies		Results of a Sensitive Receptor Survey performed by Closure Solutions, Inc. in October 2012 identified the nearest surface water body as the San Leandro Creek, located approximately 1,600 ft north and cross-gradient of the Site. The San Leandro Creek eventually empties into the Pacific Ocean at San Leandro Bay located approximately 2.6 mile northwest of the Site.	None	NA
Nearby Wells		Results of a Sensitive Receptor Survey performed by Closure Solutionsidentified the presence of 10 wells within a half-mile radius. Two of the 10 wells are located within 1,000 ft from the Site. The closest well, located approximately 820 ft west-northwest and downgradient of the Site, appears to be a domestic well. The second well, located 950 ft southeast and upgradient of the Site, is of unknown use. Additional well survey activities were recently conducted including checking the Alameda County Public Works Agency (ACPWA) records. The results were similar to those gathered during the previous well survey, with the closest well being located 800 to 900 feet northwest (downgradient) of the Site, as was indicated during the DWR records search in 2012. However, based on the plume size (less than 100 feet; see Drawings 8 through 10) that no petroleum compounds were detected in groundwater collected from boring SB-4 (located in Douglas Court, between the Site and the potential downgradient well), there is no risk to this well from petroleum hydrocarbons migrating to this well.	None	NA

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Constituents of Concern	Light-Non Aqueous Phase Liquid (LNAPL)	Periodically between January 28, 1999 and October 24, 2006, measurable LNAPL had been observed in monitoring well MW-2. LNAPL was also detected in well MW-7 on February 9, 2000; however, LNAPL has not been observed prior to or after the February 9, 2000 detection. Thus, the single observation of LNAPL may be an isolated event. Measurable LNAPL has not been observed in any groundwater monitoring well since October 24, 2006.	None	NA
	Gasoline Range Organics (GRO)	Historically, concentrations of GRO have been detected in monitoring wells MW-1 through MW-5 and MW-7 through MW-8. Concentrations of GRO in well MW-6 have not been detected, with the exception of one detection on July 23, 2010 at 210 μ g/L. Since concentrations of GRO have not been observed prior to and after the July 23, 2010 sampling event in well MW-6, it is assumed that the single detection was an anomaly. One GRO detection of 52 μ g/L GRO was detected during the first quarter 2014 event. However, this concentration is only slightly above the reporting limit of 50 μ g/L. A historical maximum concentration of GRO was reported in well MW-2 at 160,000 μ g/L in January 28, 1999. Maximum detected concentration within the last four monitoring events was reported in well MW-7 at 600 μ g/L, indicating a strong decreasing GRO trend over time.	None	NA
		Based on recent and historical data, the GRO plume has been delineated, except to the south near the two dispensers. Historic and current groundwater gradient has generally been to the west/northwest and the Site GRO plume has decreased significantly over time and will continue to degrade; therefore, migration up-gradient (south and southeast) of the Site is not anticipated. Historically offsite and downgradient (to the west and northwest) migration was noted at a maximum concentration of GRO in boring H-2 at a concentration of 260,000 µg/L. However,		

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Constituents of Concern (continued)	GRO (continued)	groundwater sampling of an adjacent boring (SB-3; Drawing 2) in 2013 indicates that GRO is largely not currently present at offsite, downgradient locations. One detection of 270 µg/L GRO was noted in groundwater collected from downgradient boring SB-6. However, based on Site data it appears that this concentration is not continuous with the onsite plume. It is likely a very small amount of degraded GRO is trapped in the very fine-grained matrix. The isolated GRO in this area will degrade over time. A GRO isoconcentration contour map for the most recent groundwater monitoring and sampling event (1Q14) is presented as Drawing 8. GRO concentration trend graphs for wells MW-2, MW-5, MW-7, and MW-8 are included in Appendix L. These graphs show a strong decreasing trend for GRO in all Site wells, indicating a shrinking plume.		
	Benzene	Historically, concentrations of benzene have been detected in monitoring wells MW-1 through MW-4 and MW-7. Benzene concentrations have been detected sporadically and in low concentrations in wells MW-5 and MW-8, and have not been detected in well MW-6. Historical maximum concentration of benzene was reported in well MW-2 at 6,900 μ g/L in June 25, 1999. Detected concentrations within the last four monitoring events have been reported at less than 20 μ g/L, indicating a strong decreasing benzene trend over time.	None	NA
		Based on recent and historical data, the benzene plume has been delineated. During the recent downgradient investigation, benzene was not detected above the cleanup level, with the exception of one 1.3 μ g/L in groundwater collected at boring SB-10. Additional downgradient borings advanced west of the Site to further delineate the extent of the benzene plume in 2013 indicates that benzene is not present offsite, and has been fully delineated in the offsite, downgradient direction (borings SB-3, SB-6, and SB-8; Drawing 2). A benzene isoconcentration contour map for the most recent		

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Constituents		groundwater monitoring and sampling event (1Q14) is presented as Drawing 9.		
of Concern		Benzene concentration trend graphs for wells MW-2, MW -5, MW-7, and MW-8 are		
(continued)	Benzene	included in Appendix L. These graphs show a strong decreasing trend for benzene in		
	(continued)	all Site wells, indicating a shrinking plume.		
	Methyl tert-	Historically, concentrations of MTBE have been detected in monitoring wells MW-1	None	NA
	butyl ether	through MW-5 and MW-7 through MW-8. MTBE concentrations have been detected		
	(MTBE)	sporadically and in low concentrations in well MW-6. Historical maximum		
		concentration of MTBE was reported in well MW-7 at 120,000 µg/L in October 9,		
		2002. Maximum detected concentration within the last four monitoring events was		
		reported in well MW-7 at 210 μg/L, indicating a strong decreasing MTBE trend over		
		time. In all monitoring wells, with the exception of monitoring well MW-7, current		
		concentrations of MTBE did not exceed 5 µg/L, indicating that MTBE in groundwater		
		has almost completely degraded over time. In groundwater samples collected		
		recently from CPT borings, no MTBE was detected over 5 μg/L with the exception of		
		boring SB-10, located near well MW-8.		
		Based on recent and historical data, the MTBE plume has been fully delineated.		
		Maximum concentration of MTBE was observed in a grab-groundwater sample		
		collected in March 2004 from boring H-2 at a concentration of 7,600 µg/L. However,		
		groundwater data from current, adjacent boring SB-3 contained MTBE at 1.4 μg/L,		
		below cleanup objectives and only slightly above reporting limits. An MTBE		
		isoconcentration contour map for the most recent groundwater monitoring and		
		sampling event (1Q14) is presented as Drawing 10. MTBE concentration trend graphs		
		for wells MW-2, MW-5, MW-7, and MW-8 are included in Appendix L. These graphs		
		show a strong decreasing trend for MTBE in all Site wells, indicating a shrinking plume.		

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Potential Sources	Onsite	The exact release source and volume released at the Site is unknown; however, it is assumed that the source was the former UST and former waste oil tank complex located at the southeastern and northern portion of the Site, respectively. These assumptions are supported by historical data including proximity to historical free product and higher dissolved-phase petroleum hydrocarbon concentrations. Additional areas of documented soil contamination occurred beneath a hydraulic hoist, dispensers, and associated product pipelines, particularly the northwestern and southern end of the Site, respectively. An unknown amount of residual petroleum hydrocarbon contamination is presently within the soil matrix in these areas, and dissolved in groundwater beneath the Site. A fluctuating groundwater table has likely caused a contaminant smear zone where the residual hydrocarbon mass remains. However, the trends for the residual petroleum compounds in groundwater indicate that the concentrations in this smear zone have degraded over time and are impacting the groundwater beneath the Site to a far lesser degree than in the past, and will likely continue to degrade over time (Appendix L). The removal and/or replacement of the hydraulic hoist, waste-oil tank, storage, and dispensing system was conducted to stop the potential release. The removal of the	None	NA
		hydraulic hoist activities were documented in the Letter Report of The Results of Soil Sampling Associated with Hydraulic Hoist Removal, ARCO Service Station 2111 (GSI, 1993). The removal of the waste-oil tank activities were documented in the Report for Waste-Oil Tank Removal Activities at ARCO Station 2111. The UST removal activities were documented in the Tank Basin, Product Line, and Dispenser Island Sampling Results, ARCO Station No. 2111 (Delta Environmental Consultants, Inc., 2001).		

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Potential Sources (continued)	Offsite	An offsite potential petroleum source has not been identified near the Site. However, several chlorinated solvent sites are present in the area, most notably a Caterpillar, Inc. Site located at 800 Davis Street, to the east and upgradient of the Site. This upgradient solvent site is likely source of chlorinated solvents and various other contaminants to the Site and offsite receptors. The Caterpillar site is also likely the source of detected PCE and chloroform concentrations in Site well MW-3.	None	NA
Nature and Extent of Environmental Impacts	Extent in Soil	Soil appears defined at the Site. Downgradient soil borings MW-1 and MW-5, installed by EMCON in 1995 and 1996, respectively, had no detections of petroleum hydrocarbons. Crossgradient soil borings MW-3 and MW-4, installed by EMCON in 1995, had no detections of petroleum hydrocarbons. Upgradient soil boring MW-6, performed by EMCON in 1996, had no detections of petroleum hydrocarbons. Based on historical data, the highest concentrations of GRO and benzene were detected at the southern portion of the Site, near the southern dispenser island and the northern end of the former UST complex. The highest concentrations were generally reported at approximately 15 ft bgs, which is consistent with the capillary fringe zone at the Site. A DPE system operated on Site between 2007 and 2009. Additional soil borings have not been advanced in the areas of historical high petroleum hydrocarbon concentrations to evaluate the effect of the remediation system. The highest GRO concentration (1,100 mg/kg) in soil was detected on the northern end of the former UST complex. Soil was defined laterally to non-detect for all petroleum compounds to the north (MW-3 and MW-4), northeast (MW-6), northwest (MW-8), and southwest (MW-5). Soil been defined laterally to the south and southeast. Lowest GRO concentrations to the south and southeast are 230 mg/kg and 76 mg/kg, respectively. However, the most recent onsite, source area petroleum soil concentrations indicate no remaining impacts. Considering the south and southeast directions are upgradient	None	NA

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Nature and	Extent in Soil	and all other impacts have almost completely degraded, the extent of hydrocarbon		
Extent of	(continued)	concentrations in soil is defined. In addition, the Site petroleum hydrocarbon plume		
Environmental		has decreased significantly over time and will continue to degrade; therefore,		
Impacts (continued)		migration upgradient (south and southeast) of the Site is not anticipated.		
		The source areas have been removed and these concentrations were representative		
		of overall soil concentrations at the time of sampling, it is likely that these		
		concentrations have further attenuated over the last 15 years. Current groundwater		
		sampling data from the CPT investigation confirms that the majority of hydrocarbons		
		have degraded to near non-detectable concentrations.		
	Extent in	The groundwater monitoring network at the Site includes source area wells (MW-2,	No	None
	Shallow	MW-7, and MW-8); an upgradient well (MW-6); crossgradient wells (MW-3 and		
	Groundwater	MW-4); and downgradient wells (MW-1 and MW-5). Isoconcentration maps for the		
		most recent groundwater monitoring and sampling event (1Q14) for GRO, benzene,		
		and MTBE are included as Drawings 8 through 10, respectively. Concentrations of		
		petroleum hydrocarbon have decreased significantly in all monitoring wells since their		
		initial sampling (Tables 4 and 5, and Appendix L). In addition, monitoring wells MW-1		
		and MW-3 through MW-6 did not contain any petroleum hydrocarbon compounds		
		over the last four groundwater monitoring events, with the exception of minor		
		detections (<0.9 μg/L) of MTBE in MW-5 and one detection of GRO in well MW-4		
		slightly above reporting limits. Based on these data, the extent of petroleum		
		compounds is well defined to the north (MW-3 and MW-4), northeast (MW-6),		
		northwest (MW-1 and MW-8), and southwest (MW-5), and is predominately limited		
		to onsite. However, based on the observed decreasing trends, the extent of		
		petroleum compounds is small and the plume appears to be shrinking and will		

CONCEPTUAL SITE MODEL

Atlantic Richfield Company Station No. 2111 1156 Davis Street San Leandro, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Nature and Extent of Environmental Impacts (continued)	Extent in Shallow Groundwater (continued)	continue to degrade (Appendix L). In addition, historic and current groundwater gradient has predominately been to the west; therefore, migration upgradient (south and southeast) of the Site is not anticipated. Offsite borings to the north and northwest were advanced in 2013 and no significant petroleum impacts are currently present in these locations, with the exception of one minor, isolated GRO concentration. Therefore, the extent of petroleum compound shallow groundwater has been delineated in the downgradient direction. Free product was last observed at the Site in 2006 and dissolved petroleum concentrations are decreasing.		
	Extent in Deeper Groundwater	The extent of environmental impact in deeper groundwater was investigated offsite in downgradient borings (H-4 and H-5) performed in 2004 (URS, 2004). Five discrete grab-groundwater samples were collected from each boring at depths ranging between 27 and 40 ft bgs. Hydrocarbon concentrations were not detected at any depth, with the exception of one GRO detection of 53 μ g/L in H-5-40 and one total xylenes detection of 0.72 μ g/L in H-4-27. Based on the low to no concentrations of petroleum hydrocarbons in the deep zone borings, it appears that the migration from the Site to deeper zone aquifers has not occurred. Additionally, onsite boring SB-9 was advanced to 50 feet bgs to determine if any deeper water-bearing zones were present in the former source area that may have been historically impacted. Clay was noted from 42 to 50 feet bgs, indicating that any previous downward migration of hydrocarbons would have been limited by this low permeability clay.	None	NA

CONCEPTUAL SITE MODEL

Atlantic Richfield Company Station No. 2111 1156 Davis Street San Leandro, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Nature and Extent of Environmental Impacts (continued)	Extent in Soil Vapor	The 2013 offsite investigation indicated that no soil or groundwater impacts for benzene above cleanup levels (ESLs) were detected in any offsite location. Impacts are present in boring SB-10 near the property edge, but these concentrations are only slightly above cleanup levels and are very unlikely to extend offsite. Since the Site is an active gasoline service station, no onsite soil vapor investigation is necessary, as the LTCP assumes that the risks from service station operations exceeds any potential soil vapor intrusion risk. The risk to the offsite building occupants is insignificant due to the offsite soil and groundwater containing almost no concentrations of petroleum compounds, and the concentrations near the property boundary being only slightly above cleanup levels. Furthermore, the high occurrence of clays in the subsurface lithology makes the possibility of any minor petroleum present in vapors less likely to percolate to the ground surface due to the inherent low permeability of the soils. Therefore, a soil vapor investigation is not warranted based on the Site data.	None	NA
Migration Pathways	Potential Conduits	A potential transmissive conduit study has not been performed on Site. Thus, there is a potential for sewer and/or storm drains to be located along Preda and Davis Street. However, sewer and storm drains generally tend to be shallow (above 10 ft bgs), and depth to groundwater at the Site is between 10.56 and 24.10 ft bgs. Therefore, migration through the utility trenches is unlikely to occur. Furthermore, current and historic groundwater gradient is predominately to the west, denoting that groundwater flow is moving away from Preda and Davis Street. In addition, groundwater monitoring data from well MW-6, located upgradient of the Site and across Preda Street, has not contained any hydrocarbon concentrations since its installation, with the exception of detections of GRO and TBA in July 2010 and MTBE in April 2002, indicating migration through the utility trenches have not likely	None	NA

CONCEPTUAL SITE MODEL

Atlantic Richfield Company Station No. 2111 1156 Davis Street San Leandro, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
		occurred. Furthermore, the 2013 onsite investigation indicated that petroleum compounds in soil and groundwater at the Site have almost completely degraded. Due to the lack of current petroleum impacts and the current groundwater levels (approximately 18 feet bgs), the potential for migration of petroleum compounds through utility trenches is minimal.		
Potential Receptors	Onsite	No onsite water supply wells or surface water exists. The only potential onsite receptor would be onsite workers exposed to gasoline vapors. However, the exposure from current fueling operations represents a greater risk than any associated with potential groundwater or soil vapor exposure.	None	NA
	Offsite	As discussed above, the nearest surface water body is the San Leandro Creek, located approximately 1,600 ft north and crossgradient of the Site. Results of receptor surveys noted above indicate two wells were identified within 1,000 ft from the Site. Review of available satellite images (Google Maps or equivalent) was conducted to identify any sensitive land uses such as schools, day care facilities, hospitals, or elder care facilities within 500 ft of the Site. Two facilities were identified: Davis Street Children Center; and WellBound of San Leandro. Davis Street Children Center is located at 1190 Davis Street, San Leandro, California, adjacent to and west of the Site. Additional offsite soil borings were advanced and are not considered a risk to the building occupants. WellBound of San Leandro, a Satellite Healthcare which provides personalized training and support for dialysis patients, is located at 1040 Davis Street, Suite 101, San Leandro, California approximately 450 ft east (up-gradient) of the Site. Monitoring well MW-6, located east of the Site, has not contained concentrations of	None	NA

CONCEPTUAL SITE MODEL

Atlantic Richfield Company Station No. 2111 1156 Davis Street San Leandro, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Potential	Offsite	sporadic GRO, MTBE, and TBA concentrations. Which indicates plume migrations to		
Receptors	(continued)	the east (upgradient) has not occurred. In addition, the Site petroleum hydrocarbon		
(continued)		plume has decreased significantly over time and will continue to degrade; therefore,		
		migration up-gradient of the Site is not anticipated.		
		One downgradient domestic well was identified during both the DWR and ACPWA		
		well records search as being approximately 820 feet northwest of (downgradient) of		
		the Site. However, due to the small extent of the residual hydrocarbon plume, and		
		the presence of a data point (boring SB-4; Drawing 2) with no petroleum impacts in		
		groundwater between the Site and the domestic well, this well is not considered		
		threatened by the residual petroleum impacts associated with the Site.		

All report references are included in Section 7 of the preceding report

Notes:

ARCO = Atlantic Richfield Company

bgs = below ground surface

BTEX = benzene, toluene, ethylbenzene, xylenes

CSM = Conceptual Site Model

DPE = Dual-phase extraction

ft = foot

GRO = Gasoline Range Organics

GSI = GeoStrategies, Inc.

LNAPL = Light-Non Aqueous Phase Liquid

mg/kg = milligrams per kilogram

MTBE = Methyl tert-butyl Ether

No. = Number

PCE = tetrachloroethylene

ppmv = parts per million by volume

SFRWQCB = California Regional Water Quality Control Board – San Francisco Bay Region.

TBA = tert-butyl alcohol

TCE = trichloroethylene

UST = Underground Storage Tank

μg/L = micrograms per liter

Page 12 of 12

Table 2

Soil Analytical Results

November 2013 CPT Investigation ARCO Station No. 2111 1156 Davis Street, San Leandro, California

Boring Identification	Soil Sample Depth (feet bgs)	Date Collected	GRO (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes* (mg/kg)	MTBE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)	Ethanol (mg/kg)	Naphthalene (mg/kg)
SB-3	11.5	11/23/2013	ND<0.40	ND<0.00098	ND<0.00098	ND<0.00098	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.049	ND<0.0020	ND<0.00098	ND<0.00098	ND<0.20	NA
SB-3	12	11/23/2013	ND<0.39	ND<0.00098	ND<0.00098	ND<0.00098	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.049	ND<0.0020	ND<0.00098	ND<0.00098	ND<0.20	NA
SB-3	16	11/23/2013	1.6	ND<0.00098	ND<0.00098	ND<0.00098	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.049	ND<0.0020	ND<0.00098	ND<0.00098	ND<0.20	NA
SB-3	16.5	11/23/2013	1.8	ND<0.00098	ND<0.00098	ND<0.00098	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.049	ND<0.0020	ND<0.00098	ND<0.00098	ND<0.20	NA
SB-4	12	11/21/2013	ND<0.40	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	ND<0.0020
SB-4	12.5	11/21/2013	ND<0.40	ND<0.00099	ND<0.00099	ND<0.00099	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.00099	ND<0.00099	ND<0.20	ND<0.0020
SB-4	16	11/21/2013	ND<0.39	ND<0.00099	ND<0.00099	ND<0.00099	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.00099	ND<0.00099	ND<0.20	ND<0.0020
SB-4	16.5	11/21/2013	ND<0.38	ND<0.00099	ND<0.00099	ND<0.00099	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.00099	ND<0.00099	ND<0.20	ND<0.0020
SB-6	11.5	11/23/2013	ND<0.38	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	NA
SB-6	12	11/23/2013	ND<0.40	ND<0.00099	ND<0.00099	ND<0.00099	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.00099	ND<0.00099	ND<0.20	NA
SB-6	16	11/23/2013	0.96	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	NA
SB-6	16.5	11/23/2013	1.6	ND<0.00099	ND<0.00099	ND<0.00099	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.00099	ND<0.00099	ND<0.20	NA
SB-7	11.5	11/23/2013	ND<0.39	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.051	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	NA
SB-7	12	11/23/2013	ND<0.40	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	NA
SB-7	16	11/23/2013	ND<0.39	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.051	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	NA
SB-7	16.5	11/23/2013	ND<0.40	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.051	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	NA
SB-8	11.5	11/23/2013	ND<0.39	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.051	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	NA
SB-8	12	11/23/2013	ND<0.40	ND<0.00098	ND<0.00098	ND<0.00098	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.049	ND<0.0020	ND<0.00098	ND<0.00098	ND<0.20	NA
SB-8*	16	11/23/2013	ND<0.39	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	NA
SB-8*	16.5	11/23/2013	ND<0.39	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	NA
SB-9	3	11/18/2013	ND<0.40	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	ND<0.0020
SB-9	7	11/18/2013	ND<0.38	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	ND<0.0020
SB-9	12	11/20/2013	ND<0.39	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	0.0031	ND<0.0020	ND<0.0020	0.066	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	ND<0.0020
SB-9	12.5	11/20/2013	ND<0.39	ND<0.00099	ND<0.00099	ND<0.00099	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	0.17	ND<0.0020	ND<0.00099	ND<0.00099	ND<0.20	ND<0.0020
SB-9	16.5	11/20/2013	0.59	ND<0.00099	ND<0.00099	0.0012	ND<0.0020	0.020	ND<0.0020	ND<0.0020	0.069	ND<0.0020	ND<0.00099	ND<0.00099	ND<0.20	0.11
SB-9	17	11/20/2013	13	ND<0.00097	ND<0.00097	0.065	0.0044	0.022	ND<0.0019	ND<0.0019	ND<0.049	ND<0.0019	ND<0.00097	ND<0.00097	ND<0.19	0.26
SB-10	12	11/20/2013	ND<0.39	ND<0.00099	ND<0.00099	ND<0.00099	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.00099	ND<0.00099	ND<0.20	ND<0.0020
SB-10	12.5	11/20/2013	ND<0.39	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	ND<0.0020
SB-10	16.5	11/20/2013	ND<0.39	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	0.26	ND<0.0020	ND<0.0010	ND<0.0010	ND<0.20	ND<0.0020
SB-10	17.5	11/20/2013	ND<0.40	ND<0.00099	ND<0.00099	ND<0.000999	ND<0.0020	0.0056	ND<0.0020	ND<0.0020	0.49	ND<0.0020	ND<0.00099	ND<0.00099	ND<0.20	ND<0.0020
LTCP Criteria - 0 to 5 feet	bgs		NA	8.2	NA	89	NA	NA	NA	NA	NA	NA	NA	NA	NA	45
LTCP Criteria - 5 to 10 fee	et bgs		NA	12	NA	134	NA	NA	NA	NA	NA	NA	NA	NA	NA	45
LTCP Criteria - Utiliity Wo	rker		NA	14	NA	314	NA	NA	NA	NA	NA	NA	NA	NA	NA	219

Notes:

feet bgs = feet below ground surface
mg/kg = milligrams per kilogram
GRO = gasoline range organics (C6-C12)
MTBE = methyl tert-butyl ether
ETBE = ethyl tert-butyl ether
TAME = tert-amyl methyl ether
TBA = tert butyl alcohol
DIPE = di isopropyl ether
1,2-DCA = 1,2-dichloroethane

EDB = 1,2-dibromomethane

ND<X.XX = not detected above reporting limit of X.XX

NA = not analyzed

LTCP = Low Threat UST Closure Policy, California State Water Resources Control Board (SWRCB), August 17, 2012

LTCP Criteria listed in Table 1, page 8 of the LTCP for a commercial/industrial exposure scenario

Table 3

Grab-Groundwater Analytical Results

November 2013 CPT Investigation ARC Station No. 2111 1156 Davis Street, San Leandro, California

Boring Identification	Grab-Groundwater Sample Depth (feet bgs)	Date Collected	GRO (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes* (μg/L)	MTBE (μg/L)	ETBE (μg/L)	TAME (μg/L)	TBA (μg/L)	DIPE (μg/L)	1,2-DCA (μg/L)	EDB (µg/L)	Ethanol (μg/L)	Naphthalene (µg/L)
SB-3	23	11/23/2013	55	ND<0.50	ND<0.50	ND<0.50	ND<1.0	1.4	ND<0.50	ND<0.50	ND<10	ND<0.50	ND<0.50	ND<0.50	ND<150	NA
SB-4	Open Hole	11/21/2013	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<10	ND<0.50	ND<0.50	ND<0.50	ND<150	ND<1.0
SB-6	Open Hole	11/23/2013	270	ND<0.50	ND<0.50	ND<0.50	ND<1.0	2.1	ND<0.50	ND<0.50	10	ND<0.50	ND<0.50	ND<0.50	ND<150	NA
SB-8	23	11/23/2013	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	1.2	ND<0.50	ND<0.50	ND<10	ND<0.50	ND<0.50	ND<0.50	ND<150	NA
SB-9	22	11/20/2013	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<10	ND<0.50	ND<0.50	ND<0.50	ND<150	ND<1.0
SB-10	24	11/20/2013	120	1.3	ND<0.50	ND<0.50	ND<1.0	10	ND<0.50	ND<0.50	270	ND<0.50	ND<0.50	ND<0.50	ND<150	2.5
ESLs				1.0	40	30	20	5	NA	NA	NA	NA	0.5	0.5	5000	17

Notes:

feet bgs = feet below ground surface

µg/L = micrograms per liter

GRO = gasoline range organics (C6-C12)

MTBE = methyl tert-butyl ether

ETBE = ethyl tert-butyl ether

TAME = tert-amyl methyl ether

TBA = tert butyl alcohol

DIPE = di isopropyl ether

1,2-DCA = 1,2-dichloroethane

EDB = 1,2-dibromomethane

ND<X.XX = not detected above reporting limit of X.XX μ g/L

NA = not analyzed

ESLs = Environmental Screening Levels as presented in *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater - Interim Final December 2013* assuming a commercial/industrial exposure scenrio where groundwater is a potential drinking water resource

Table 4. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #2111, 1156 Davis St, San Leandro, CA

			Top of	Bottom of		Water Level			Concentr	ations in µg	;/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-1															
6/26/2000		39.60	12.50	26.00	16.46	23.14									
7/20/2000			12.50	26.00	16.89	22.71	360	110	<0.5	<0.5	2.7	2,100			
9/19/2000			12.50	26.00	17.62	21.98	290	76	<0.5	<0.5	2.3	1,500			
12/21/2000			12.50	26.00	17.39	22.21	257	64	2.89	1.31	4.57	1,080/1,060			
3/13/2001			12.50	26.00	15.70	23.90	<500	52.5	<5.0	<5.0	<5.0	1,430/1,370			
9/18/2001			12.50	26.00	18.24	21.36	<500	64	7.3	<5.0	52	810/1,100			
12/28/2001			12.50	26.00	15.95	23.65	<500	<5.0	<5.0	5	22	1,200/1,100			
3/14/2002			12.50	26.00	16.01	23.59	<50	<0.5	<0.5	<0.5	<0.5	34/40			
4/23/2002			12.50	26.00	15.43	24.17	<50	<0.5	<0.5	<0.5	<0.5	30			
7/17/2002	NP		12.50	26.00	17.50	22.10	<50	1.2	<0.50	<0.50	<0.50	29	6.9	6.9	
10/9/2002			12.50	26.00	18.27	21.33	240	4.9	<1.0	4.1	7.0	290	6.5	6.5	С
1/13/2003			12.50	26.00	15.37	24.23	760	34	11	17	56	300	6.8	6.8	С
04/07/03			12.50	26.00	16.61	22.99	<50	<0.50	<0.50	<0.50	<0.50	22	6.8	6.8	
7/9/2003			12.50	26.00	17.27	22.33	<2,500	<25	<25	<25	<25	690	6.7	6.7	
02/05/2004	NP	39.49	12.50	26.00	16.28	23.21	2,800	31	<25	<25	<25	1,100	0.9	6.5	m
04/05/2004	NP		12.50	26.00	16.25	23.24	5,800	46	<25	<25	<25	1,700	1.0		
07/13/2004	NP		12.50	26.00	17.57	21.92	<1,000	<10	<10	<10	<10	730	0.5	6.6	
11/04/2004	NP		12.50	26.00	17.78	21.71	560	<5.0	<5.0	<5.0	<5.0	380	0.8	6.5	
01/20/2005	NP		12.50	26.00	15.50	23.99	670	<5.0	<5.0	<5.0	<5.0	570	0.6	6.0	
04/11/2005	NP		12.50	26.00	14.82	24.67	<2,500	<25	<25	<25	25	1,100	0.9	6.9	
08/01/2005	NP		12.50	26.00	16.77	22.72	2,200	33	<10	110	<10	1,400	1.27	7.3	
10/21/2005	NP		12.50	26.00	17.71	21.78	<2,500	<25	<25	<25	<25	970	1.17	6.6	
01/18/2006	NP		12.50	26.00	14.70	24.79	300	<2.5	<2.5	<2.5	<2.5	330	1.07	6.6	n
04/14/2006	NP		12.50	26.00	13.41	26.08	330	<2.5	<2.5	<2.5	<2.5	310	0.79	6.6	
7/19/2006	NP		12.50	26.00	15.86	23.63	<250	<2.5	<2.5	<2.5	<2.5	180	1.2	6.7	q
10/24/2006	Р		12.50	26.00	17.15	22.34	710	4.2	<2.5	19	13	360		6.68	
1/15/2007	Р		12.50	26.00	16.81	22.68	470	2.8	<2.5	14	8.4	220	1.14	7.12	
4/18/2007	NP		12.50	26.00	16.69	22.80	100	<2.5	<2.5	<2.5	<2.5	150	1.20	6.85	
7/17/2007	NP		12.50	26.00	20.85	18.64	<50	<1.0	<1.0	<1.0	<1.0	94	1.91	6.98	
10/11/2007	NP		12.50	26.00	18.10	21.39	66	<0.50	<0.50	<0.50	<0.50	62	1.60	7.00	

			Top of	Bottom of		Water Level			Concentr	ations in με	;/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-1 Cont.															
1/8/2008	NP	39.49	12.50	26.00	15.97	23.52	140	<0.50	<0.50	<0.50	<0.50	90	1.19	5.60	n
4/8/2008	NP		12.50	26.00	16.53	22.96	88	<0.50	<0.50	<0.50	<0.50	110	1.73	6.89	
8/20/2008	NP		12.50	26.00	18.32	21.17	<50	<0.50	<0.50	<0.50	<0.50	3.3	2.37	6.95	
11/17/2008	NP		12.50	26.00	18.38	21.11	<50	<0.50	<0.50	<0.50	<0.50	21	0.94	6.96	
2/3/2009	NP		12.50	26.00	18.08	21.41	<50	<0.50	<0.50	<0.50	<0.50	16	1.66	6.95	
5/12/2009	NP		12.50	26.00	17.05	22.44	<50	<0.50	<0.50	<0.50	<0.50	9.3	0.88	6.88	
8/13/2009	NP		12.50	26.00	18.01	21.48	<50	<0.50	<0.50	<0.50	<0.50	5.5	0.14	7.02	u
2/18/2010	NP		12.50	26.00	16.14	23.35	<50	<0.50	<0.50	<0.50	<0.50	1.4	2.22	6.69	
7/23/2010	NP		12.50	26.00	17.11	22.38	<50	<0.50	<0.50	<0.50	<0.50	1.3	0.77	6.7	
2/10/2011	NP		12.50	26.00	16.42	23.07	<50	<0.50	<0.50	<0.50	<0.50	1.1	1.19	7.2	
8/30/2011	NP		12.50	26.00	17.13	22.36	<50	<0.50	<0.50	<0.50	<0.50	2.1	0.98	6.9	
2/17/2012	Р		12.50	26.00	17.41	22.08	<50	<0.50	<0.50	<0.50	<0.50	0.85	1.39	7.05	
8/30/2012	Р		12.50	26.00	17.92	21.57	<50	<0.50	<0.50	<0.50	<1.0	0.74	1.71	7.04	
2/7/2013	Р		12.50	26.00	16.44	23.05	<50	<0.50	<0.50	<0.50	<1.0	0.87	1.89	7.33	
8/15/2013	Р		12.50	26.00	18.49	21.00	<50	<0.50	<0.50	<0.50	<1.0	<0.50	4.65	6.87	
1/9/2014	Р		12.50	26.00	18.82	20.67	<50	<0.50	<0.50	<0.50	<1.0	0.59	3.64	5.41	
MW-2															
6/26/2000		37.99	12.00	26.00	14.60	23.39									a
7/20/2000			12.00	26.00	15.14	22.85	95,000	2,300	18,000	2,500	19,000	13,000			
9/19/2000			12.00	26.00	15.95	22.04	63,000	1,200	6,300	2,000	14,000	19,000			
12/21/2000			12.00	26.00	15.60	22.39	5,010	360	189	213	626	54,300/89,200			b
12/21/2000			12.00	26.00	15.60	22.39	45,900		2,130	1,160	9,460	22,400/24,700			
3/13/2001			12.00	26.00	13.77	24.22	<20,000	525	466	408	1,460	91,700/76,000			b
3/13/2001			12.00	26.00	13.77	24.22	3,650	98.1	<5.0	<5.0	6.42	3,590/3,260			
9/18/2001			12.00	26.00	16.86	21.13									a
12/28/2001			12.00	26.00	14.28	23.71	31,000	1,500	3,800	1,300	4,800	9,300/8,800			
3/14/2002			12.00	26.00	14.15	23.84	1,800	25	43	43	270	990/960			
4/23/2002			12.00	26.00	13.60	24.39	9,000	220	110	470	2,500	8,500			
7/17/2002	NP		12.00	26.00	15.75	22.24	74,000	280	290	820	10,000	19,000/0.4	6.8	6.8	a, c
10/9/02	NP		12.00	26.00	16.69	21.30									g

Table 4. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #2111, 1156 Davis St, San Leandro, CA

			Top of	Bottom of		Water Level			Concentra	ations in μg	;/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-2 Cont.															
1/13/03		37.99	12.00	26.00	13.59	24.40									g, h
04/07/03			12.00	26.00	14.70	23.29									g, h
07/09/03			12.00	26.00	15.48	22.51									g, h
02/05/2004	NP	37.86	12.00	26.00	14.43	23.43									g,m
04/05/2004	NP		12.00	26.00	14.35	23.51	2,300	33	<5.0	<5.0	200	750	0.6		
07/13/2004	NP		12.00	26.00	15.79	22.07	59,000	380	<50	2,100	7,900	5,800	0.3	6.4	
08/31/2004			12.00	26.00	15.89	21.97									
11/04/2004			12.00	26.00	15.92	21.94									g, h
01/20/2005	NP		12.00	26.00	13.71	24.15	30,000	450	<50	1,300	3,300	7,000	0.7	6.2	0
04/11/2005	NP		12.00	26.00	12.70	25.16	11,000	170	<50	580	630	2,700	0.9	6.8	
08/01/2005	NP		12.00	26.00	14.89	22.97	24,000	170	<50	1,100	2,700	2,700	0.64	6.9	
10/21/2005			12.00	26.00	16.05	21.81									a
01/18/2006	NP		12.00	26.00	12.81	25.05	21,000	71	<50	470	1,400	1,600	1.18	6.6	a
04/14/2006	NP		12.00	26.00	12.24	25.62	7,800	78	<50	94	130	2,100	0.81	6.7	a
7/19/2006	NP		12.00	26.00	14.00	23.86	4,900	31	<10	98	75	930	1.1	6.5	q
10/24/2006			12.00	26.00	15.38	22.48								6.45	g
1/15/2007	Р		12.00	26.00	15.00	22.86	5,000	51	<10	49	34	1,400	1.85	7.13	
4/18/2007	NP		12.00	26.00	14.82	23.04	3,000	39	<10	32	22	1,100	1.95	7.10	
7/17/2007	NP		12.00	26.00	18.00	19.86	1,100	53	<10	28	<10	1,300	4.84	7.09	n
10/11/2007	NP		12.00	26.00	16.38	21.48	1,800	17	<10	<10	11	1,000	1.52	7.05	
1/8/2008	NP		12.00	26.00	14.10	23.76	1,900	65	<10	37	28	1,300	1.06	4.22	n
4/8/2008	NP		12.00	26.00	14.70	23.16	200	34	<0.50	<0.50	<0.50	690	3.24	6.95	
8/20/2008	NP		12.00	26.00	16.66	21.20	990	21	<10	<10	<10	190	1.54	6.91	
11/17/2008	NP		12.00	26.00	19.28	18.58	290	9.3	<5.0	<5.0	<5.0	89	0.71	6.75	
2/3/2009	NP		12.00	26.00	16.45	21.41	86	3.5	<2.5	<2.5	<2.5	31	2.71	6.96	
5/12/2009	NP		12.00	26.00	15.30	22.56	390	1.3	<0.50	<0.50	0.82	25	0.82	6.96	
8/13/2009	NP		12.00	26.00	16.88	20.98	330	<10	<10	<10	<10	39	0.81	7.12	u
2/18/2010	NP		12.00	26.00	14.20	23.66	950	<5.0	<5.0	<5.0	<5.0	<5.0	1.18	6.94	
7/23/2010	NP		12.00	26.00	15.37	22.49	330	<2.0	<2.0	<2.0	<2.0	6.5	1.70	6.7	v (GRO)
2/10/2011	NP		12.00	26.00	14.53	23.33	960	<4.0	<4.0	<4.0	<4.0	12	0.58	6.8	v (GRO)

Table 4. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #2111, 1156 Davis St, San Leandro, CA

			Top of	Bottom of		Water Level			Concentr	ations in μg	;/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-2 Cont.															
8/30/2011	NP	37.86	12.00	26.00	15.35	22.51	200	<0.50	<0.50	<0.50	<0.50	4.5	0.67	6.7	w (GRO)
2/17/2012	Р		12.00	26.00	15.63	22.23	190	<2.5	<2.5	<2.5	<2.5	2.9	0.80	7.00	w (GRO)
8/30/2012	Р		12.00	26.00	16.18	21.68	67	<0.50	<0.50	<0.50	<1.0	2.4	1.23	6.92	
2/7/2013	Р		12.00	26.00	14.60	23.26	53	<0.50	<0.50	<0.50	<1.0	2.7	1.35	7.25	
8/15/2013	Р		12.00	26.00	16.80	21.06	94	0.69	<0.50	<0.50	<1.0	1.6	3.92	6.77	
1/9/2014	Р		12.00	26.00	17.18	20.68	73	0.58	<0.50	<0.50	<1.0	1.1	2.26	5.30	
MW-3															
6/26/2000		39.32	12.00	26.00	15.96	23.36									
7/20/2000			12.00	26.00	16.42	22.90	<50	<0.5	<0.5	<0.5	<1.0	130			
9/19/2000			12.00	26.00	17.18	22.14	190	17	<0.5	1.4	2.4	160			
12/21/2000			12.00	26.00	16.97	22.35	187	17.8	<0.5	2.47	2.5	143/125			
3/13/2001			12.00	26.00	15.17	24.15	72.4	2.83	<0.5	<0.5	<0.5	126/122			
9/18/2001			12.00	26.00	17.81	21.51	140	6.4	<0.5	3.5	1.6	110/75			
12/28/2001			12.00	26.00	15.44	23.88	130	5.9	<0.5	0.99	0.55	90/63			
3/14/2002			12.00	26.00	15.50	23.82	<50	<0.5	<0.5	<0.5	<0.5	100/88			
4/23/2002			12.00	26.00	14.96	24.36	<50	<0.5	<0.5	<0.5	<0.5	77			
7/17/2002	NP		12.00	26.00	17.09	22.23	<50	<0.50	<0.50	<0.50	<0.50	47	7.2	7.2	
10/9/2002	NP		12.00	26.00	17.87	21.45	<50	<0.50	<0.50	<0.50	<0.50	26/29	7.2	7.2	
1/13/2003	NP		12.00	26.00	14.78	24.54	<50	<0.50	<0.50	<0.50	<0.50	59	6.8	6.8	1
04/07/03	NP		12.00	26.00	16.15	23.17	88	<0.50	<0.50	<0.50	<0.50	75	7.0	7.0	
7/9/2003			12.00	26.00	16.79	22.53	100	<0.50	<0.50	<0.50	<0.50	52	6.5	6.5	
02/05/2004	NP	39.19	12.00	26.00	15.66	23.53	240	<0.50	<0.50	<0.50	<0.50	37	0.5		m
04/05/2004	NP		12.00	26.00	15.78	23.41	140	<0.50	<0.50	<0.50	0.60	53	1.0	6.6	
07/13/2004	NP		12.00	26.00	17.20	21.99	120	<0.50	<0.50	<0.50	<0.50	35	0.8	6.7	
11/04/2004	NP		12.00	26.00	17.32	21.87	160	<0.50	<0.50	<0.50	<0.50	25	0.8	6.5	
01/20/2005	NP		12.00	26.00	15.07	24.12	160	<0.50	<0.50	<0.50	<0.50	27	0.6	6.1	
04/11/2005	NP		12.00	26.00	14.24	24.95	<50	<0.50	<0.50	<0.50	<0.50	21	0.6	6.1	
08/01/2005	NP		12.00	26.00	16.29	22.90	<50	<0.50	<0.50	<0.50	<0.50	23	1.04	7.2	
10/21/2005	NP		12.00	26.00	17.41	21.78	88	<0.50	<0.50	<0.50	<0.50	19	1.9	6.6	
01/18/2006	NP		12.00	26.00	13.80	25.39	73	<0.50	<0.50	<0.50	<0.50	13	1.13	6.6	

Table 4. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #2111, 1156 Davis St, San Leandro, CA

							r Level Concentrations in μg/L								
Mall ID and		тос	Top of	Bottom of	DTW	Water Level	CDO/		Concentr				D		
Well ID and Date Monitored	P/NP	(feet)	Screen	Screen	(feet)	Elevation (feet)	GRO/	Bantana	Toluene	Ethyl- Benzene	Total	МТВЕ	DO (mg/L)		Footnote
Date Monitored	P/NP	(leet)	(ft bgs)	(ft bgs)	(leet)	(leet)	TPHg	Benzene	Toluene	Беплепе	Xylenes	IVIIDE	(mg/L)	рН	Foothote
MW-3 Cont.															
04/14/2006	NP	39.19	12.00	26.00	12.55	26.64	<50	<0.50	<0.50	<0.50	<0.50	6.7	0.71	6.6	
7/19/2006	NP		12.00	26.00	15.04	24.15	<50	<0.50	<0.50	<0.50	<0.50	11	2.0	6.6	q
10/24/2006	Р		12.00	26.00	16.45	22.74	<50	<0.50	<0.50	<0.50	<0.50	33		6.77	
1/15/2007	Р		12.00	26.00	16.00	23.19	<50	<0.50	<0.50	0.61	<0.50	29	1.11	7.03	
4/18/2007	NP		12.00	26.00	15.87	23.32	<50	<0.50	<0.50	<0.50	<0.50	9.5	1.67	7.07	
7/17/2007	NP		12.00	26.00	19.40	19.79	<50	<0.50	<0.50	<0.50	<0.50	19	4.25	7.27	
10/11/2007	NP		12.00	26.00	17.43	21.76	<50	<0.50	<0.50	<0.50	<0.50	5.3	1.62	7.10	
1/8/2008	NP		12.00	26.00	15.16	24.03	<50	<0.50	<0.50	<0.50	<0.50	8.9	2.02	6.94	
4/8/2008	NP		12.00	26.00	15.75	23.44	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.98	6.80	
8/20/2008	NP		12.00	26.00	17.65	21.54	<50	<0.50	<0.50	<0.50	<0.50	<0.50	2.85	7.62	
11/17/2008	NP		12.00	26.00	17.76	21.43	<50	<0.50	<0.50	<0.50	<0.50	3.6	1.36	6.90	
2/3/2009	NP		12.00	26.00	17.36	21.83	<50	<0.50	<0.50	<0.50	<0.50	2.1	2.55	7.04	
5/12/2009	NP		12.00	26.00	16.30	22.89	<50	<0.50	<0.50	<0.50	<0.50	2.1	1.68	6.98	
8/13/2009	NP		12.00	26.00	18.75	20.44	<50	<0.50	<0.50	<0.50	<0.50	2.7	0.15	7.03	
2/18/2010	NP		12.00	26.00	15.31	23.88	<50	<0.50	<0.50	<0.50	<0.50	0.59	2.07	6.83	v (GRO)
7/23/2010	NP		12.00	26.00	16.34	22.85	<50	<0.50	<0.50	<0.50	<0.50	0.85	1.23	7.4	
2/10/2011	NP		12.00	26.00	15.63	23.56	<50	<0.50	<0.50	<0.50	<0.50	0.51	2.11	6.9	
8/30/2011	NP		12.00	26.00	16.45	22.74	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.83	6.9	
2/17/2012	Р		12.00	26.00	16.70	22.49	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.85	7.12	
8/30/2012	Р		12.00	26.00	17.15	22.04	<50	<0.50	<0.50	<0.50	<1.0	0.56	1.69	7.11	
2/7/2013	Р		12.00	26.00	15.68	23.51	<50	<0.50	<0.50	<0.50	<1.0	<0.50	1.78	7.39	
8/15/2013	Р		12.00	26.00	17.81	21.38	<50	<0.50	<0.50	<0.50	<1.0	<0.50	5.20	6.71	
1/9/2014	P		12.00	26.00	18.17	21.02	<50	<0.50	<0.50	<0.50	<1.0	<0.50	3.83	5.66	
MW-4															
6/26/2000		38.10	10.00	24.00	14.59	23.51									
7/20/2000			10.00	24.00	15.04	23.06	97	7.9	<0.5	<0.5	1.1	51			
9/19/2000			10.00	24.00	15.83	22.27	110	7	<0.5	<0.5	<1.0	60			
12/21/2000			10.00	24.00	15.59	22.51	120	5.6	<0.5	1.72	<0.5	46.3/48.6			
3/13/2001			10.00	24.00	13.73	24.37	76	0.796	<0.5	<0.5	<0.5	53.7/50			
9/18/2001			10.00	24.00	16.50	21.60	<50	<0.5	<0.5	<0.5	<0.5	25/26			

Table 4. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #2111, 1156 Davis St, San Leandro, CA

			Top of	Bottom of		Water Level			Concentra	ations in με	g/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-4 Cont.															
12/28/2001		38.10	10.00	24.00	14.03	24.07	<50	<0.5	<0.5	<0.5	<0.5	15/11			
3/14/2002			10.00	24.00	14.10	24.00	<50	<0.5	<0.5	<0.5	<0.5	31/28			
4/23/2002			10.00	24.00	13.57	24.53	<50	2.8	<0.5	<0.5	<0.5	42			
7/17/2002	NP		10.00	24.00	15.76	22.34	<50	<0.50	<0.50	<0.50	<0.50	16	7.1	7.1	
10/9/2002	NP		10.00	24.00	16.59	21.51	<50	2.2	<0.50	<0.50	<0.50	20/23	7.1	7.1	
1/13/2003	NP		10.00	24.00	13.43	24.67	52	<0.50	1.6	<0.50	<0.50	22	6.6	6.6	d
04/07/03	NP		10.00	24.00	14.74	23.36	65	<0.50	<0.50	<0.50	<0.50	24	6.6	6.6	
7/9/2003			10.00	24.00	15.44	22.66	120	<0.50	<0.50	<0.50	<0.50	34	6.6	6.6	
02/05/2004	NP	37.99	10.00	24.00	14.39	23.60	120	<0.50	<0.50	<0.50	<0.50	22	0.5	6.6	m
04/05/2004	NP		10.00	24.00	14.37	23.62	110	<0.50	<0.50	<0.50	<0.50	27	1.1	6.5	
07/13/2004	NP		10.00	24.00	15.96	22.03	77	<0.50	<0.50	<0.50	<0.50	27	0.6	6.6	
11/04/2004	NP		10.00	24.00	16.02	21.97	<50	<0.50	<0.50	<0.50	<0.50	19	1.2	6.7	
01/20/2005	NP		10.00	24.00	13.72	24.27	65	<0.50	<0.50	<0.50	<0.50	18	0.6	6.1	
04/11/2005	NP		10.00	24.00	12.80	25.19	51	<0.50	<0.50	<0.50	<0.50	14	0.7	6.2	
08/01/2005	NP		10.00	24.00	14.88	23.11	<50	<0.50	<0.50	<0.50	<0.50	18	1.46	7.3	
10/21/2005	NP		10.00	24.00	15.01	22.98	<50	<0.50	<0.50	<0.50	<0.50	15	1.24	7.6	
01/18/2006	NP		10.00	24.00	12.92	25.07	<50	<0.50	<0.50	<0.50	<0.50	8.9	0.77	6.5	
04/14/2006	NP		10.00	24.00	11.41	26.58	<50	<0.50	<0.50	<0.50	<0.50	4.2	0.84	6.6	
7/19/2006	NP		10.00	24.00	13.86	24.13	<50	<0.50	<0.50	<0.50	<0.50	3.4	1.0	6.7	
10/24/2006	Р		10.00	24.00	15.35	22.64	<50	<0.50	<0.50	2.0	<0.50	3.5		6.90	
1/15/2007	Р		10.00	24.00	14.96	23.03	<50	<0.50	<0.50	0.96	<0.50	3.8		7.04	
4/18/2007	NP		10.00	24.00	14.80	23.19	<50	<0.50	<0.50	<0.50	<0.50	5.6	5.33	6.93	
7/17/2007	NP		10.00	24.00	16.10	21.89	<50	<0.50	<0.50	<0.50	<0.50	6.6	3.73	6.87	
10/11/2007	NP		10.00	24.00	16.45	21.54	<50	<0.50	<0.50	<0.50	<0.50	0.81	2.68	7.07	
1/8/2008	NP		10.00	24.00	14.10	23.89	<50	<0.50	<0.50	<0.50	<0.50	1.2	3.50	6.74	
4/8/2008	NP		10.00	24.00	14.68	23.31	<50	<0.50	<0.50	<0.50	<0.50	1.7	2.54	6.80	
8/20/2008	NP		10.00	24.00	16.65	21.34	<50	<0.50	<0.50	<0.50	<0.50	0.70	2.36	6.90	
11/17/2008	NP		10.00	24.00	16.73	21.26	<50	<0.50	<0.50	<0.50	<0.50	0.73	1.07	6.83	
2/3/2009	NP		10.00	24.00	16.36	21.63	<50	<0.50	<0.50	<0.50	<0.50	0.67	3.92	7.34	
5/12/2009	NP		10.00	24.00	15.26	22.73	<50	<0.50	<0.50	<0.50	<0.50	0.62	0.81	6.98	

Table 4. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #2111, 1156 Davis St, San Leandro, CA

			Top of	Bottom of		Water Level			Concentr	ations in μg	;/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		•
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-4 Cont.															
8/13/2009	NP	37.99	10.00	24.00	16.87	21.12	<50	<0.50	<0.50	<0.50	<0.50	0.65	0.94	7.12	u
2/18/2010	NP		10.00	24.00	14.22	23.77	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.20	6.25	
7/23/2010	NP		10.00	24.00	15.36	22.63	<50	<0.50	<0.50	<0.50	<0.50	0.52	0.68	7.0	
2/10/2011	NP		10.00	24.00	14.54	23.45	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.52	6.8	
8/30/2011	NP		10.00	24.00	15.38	22.61	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.03	7.0	
2/17/2012	Р		10.00	24.00	15.66	22.33	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.96	7.06	
8/30/2012	Р		10.00	24.00	16.18	21.81	<50	<0.50	<0.50	<0.50	<1.0	<0.50	1.54	7.02	
2/7/2013	Р		10.00	24.00	14.57	23.42	<50	<0.50	<0.50	<0.50	<1.0	<0.50	1.44	7.33	
8/15/2013	Р		10.00	24.00	16.82	21.17	<50	<0.50	<0.50	<0.50	<1.0	<0.50	4.58	6.52	
1/9/2014	P		10.00	24.00	17.17	20.82	52	<0.50	<0.50	<0.50	<1.0	<0.50	2.35	5.45	
MW-5															
6/26/2000		37.21	9.50	23.50	14.27	22.94									1
7/20/2000			9.50	23.50	14.69	22.52	55	<0.5	<0.5	<0.5	<1.0	14,000			
9/19/2000			9.50	23.50	15.36	21.85	54	<0.5	<0.5	<0.5	<1.0	13,000			
12/21/2000			9.50	23.50	15.15	22.06	72.9	2.51	<0.5	<0.5	0.961	19,200/21,200			
3/13/2001			9.50	23.50	13.50	23.71	<500	<5	<5	<5	<5	15,900/20,000			
9/18/2001			9.50	23.50	15.94	21.27	<10,000	<100	<100	<100	<1,000	22,000/20,000			
12/28/2001			9.50	23.50	13.45	23.76	<10,000	<100	<100	<100	<100	10,000/10,000			
3/14/2002			9.50	23.50	13.82	23.39	<5,000	<50	<50	<50	<50	7,100/7,700			
4/23/2002			9.50	23.50	13.25	23.96	<5,000	<50	<50	<50	<50	8,900			
7/17/2002	NP		9.50	23.50	15.27	21.94	7,900	<50	<50	<50	<50	13,000	7.5	7.5	d
10/9/2002	NP		9.50	23.50	16.02	21.19	2,400	<20	<20	<20	<20	7,300/7,500	6.7	6.7	е
1/13/2003	NP		9.50	23.50	13.20	24.01	6,400	<50	<50	<50	<50	8,900	6.8	6.8	e, k, j
04/07/03	NP		9.50	23.50	14.42	22.79	<10,000	<100	<100	<100	<100	3,700	6.8	6.8	
7/9/2003			9.50	23.50	15.01	22.20	11,000	<50	<50	<50	<50	6,500	6.9	6.9	
02/05/2004	NP	37.12	9.50	23.50	14.10	23.02	8,100	<50	<50	<50	<50	7,900	1.5		m
04/05/2004	NP		9.50	23.50	14.14	22.98	4,000	<25	<25	<25	<25	2,000	1.0	6.6	
07/13/2004	NP		9.50	23.50	15.37	21.75	<5,000	<50	<50	<50	<50	4,000	0.8	6.7	
11/04/2004	NP		9.50	23.50	15.53	21.59	7,400	<50	<50	<50	<50	6,300	3.5	6.7	
01/20/2005	NP		9.50	23.50	13.51	23.61	6,500	<50	<50	<50	<50	6,900	0.7	6.5	n

Table 4. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #2111, 1156 Davis St, San Leandro, CA

			Top of	Bottom of		Water Level			Concentr	ations in με					
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-5 Cont.															
04/11/2005	NP	37.12	9.50	23.50	12.75	24.37	<5,000	<50	<50	<50	<50	2,600	0.5	7.0	
08/01/2005	NP		9.50	23.50	14.59	22.53	110	<1.0	<1.0	<1.0	<1.0	130	1.36	7.5	
10/21/2005	NP		9.50	23.50	15.57	21.55	<250	<2.5	<2.5	<2.5	<2.5	86	1.53	6.8	
01/18/2006	NP		9.50	23.50	12.60	24.52	<250	<2.5	<2.5	<2.5	<2.5	100	1.2	6.7	
04/14/2006	NP		9.50	23.50	11.74	25.38	310	<2.5	<2.5	<2.5	<2.5	240	0.93	6.6	
7/19/2006	NP		9.50	23.50	13.78	23.34	<50	<2.5	<2.5	<2.5	<2.5	84	1.2	6.6	
10/24/2006	Р		9.50	23.50	14.95	22.17	61	<0.50	<0.50	<0.50	<0.50	17		6.69	
1/15/2007	Р		9.50	23.50	14.63	22.49	73	<0.50	<0.50	<0.50	<0.50	36	2.8	6.73	
4/18/2007	NP		9.50	23.50	14.50	22.62	93	<2.5	<2.5	<2.5	<2.5	16	1.66	6.84	n, EBZ present in method blank
7/17/2007	NP		9.50	23.50	15.55	21.57	53	<2.5	<2.5	<2.5	<2.5	6.6	5.02	7.02	n
10/11/2007	NP		9.50	23.50	15.83	21.29	<50	<0.50	<0.50	<0.50	<0.50	4.8	2.92	7.23	
1/8/2008	NP		9.50	23.50	13.82	23.30	<50	<0.50	<0.50	<0.50	<0.50	5.6	1.80	6.91	
4/8/2008	NP		9.50	23.50	14.38	22.74	<50	<0.50	<0.50	<0.50	<0.50	8.0	1.14	6.76	
8/20/2008	NP		9.50	23.50	16.11	21.01	<50	<1.0	<1.0	<1.0	<1.0	3.6	1.65	6.86	
11/17/2008	NP		9.50	23.50	16.15	20.97	<50	<0.50	<0.50	<0.50	<0.50	1.3	0.66	6.93	
2/3/2009	NP		9.50	23.50	15.83	21.29	<50	<0.50	<0.50	<0.50	<0.50	<0.50	2.38	6.77	
5/12/2009	NP		9.50	23.50	14.48	22.64	<50	<0.50	<0.50	<0.50	<0.50	2.5	0.41	6.83	
8/13/2009	NP		9.50	23.50	16.30	20.82	<50	<1.0	<1.0	<1.0	<1.0	1.3	0.78	7.06	u
2/18/2010	NP		9.50	23.50	13.95	23.17	<50	<0.50	<0.50	<0.50	<0.50	2.2	1.36	6.40	
7/23/2010	NP		9.50	23.50	14.98	22.14	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.75	7.2	
2/10/2011	NP		9.50	23.50	14.24	22.88	<50	<0.50	<0.50	<0.50	<0.50	0.73	0.83	6.7	
8/30/2011	NP		9.50	23.50	14.99	22.13	<50	<0.50	<0.50	<0.50	<0.50	1.9	1.64	8.2	
2/17/2012	Р		9.50	23.50	15.16	21.96	<50	<0.50	<0.50	<0.50	<0.50	0.98	0.85	7.05	
8/30/2012	Р		9.50	23.50	15.69	21.43	<50	<0.50	<0.50	<0.50	<1.0	1.5	1.60	7.10	
2/7/2013	Р		9.50	23.50	14.27	22.85	<50	<0.50	<0.50	<0.50	<1.0	1.5	1.95	7.26	
8/15/2013	Р		9.50	23.50	16.21	20.91	<50	<0.50	<0.50	<0.50	<1.0	1.0	5.17	6.91	
1/9/2014	P		9.50	23.50	16.54	20.58	<50	<0.50	<0.50	<0.50	<1.0	0.66	3.02	5.69	
MW-6							_				_				
6/26/2000		37.11	10.00	25.00	13.46	23.65									
7/20/2000			10.00	25.00	13.94	23.17	<50	<0.5	<0.5	<0.5	<1.0	<3.0			

Table 4. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #2111, 1156 Davis St, San Leandro, CA

			Top of	Bottom of		Water Level			Concentr	ations in μg	;/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
MW-6 Cont.															
9/19/2000		37.11	10.00	25.00	14.41	22.70	<50	<0.5	<0.5	<0.5	<1.0	<3.0			
12/21/2000			10.00	25.00	14.53	22.58	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
3/13/2001			10.00	25.00	12.67	24.44	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
9/18/2001			10.00	25.00	15.42	21.69	<50	<0.5	<0.5	<0.5	<0.5	<2.5/<2.0			
12/28/2001			10.00	25.00	12.96	24.15	<50	<0.5	<0.5	<0.5	<0.5	12/<0.5			
3/14/2002			10.00	25.00	12.98	24.13	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
4/23/2002			10.00	25.00	12.44	24.67	<50	<0.5	<0.5	<0.5	<0.5	3.1			
7/17/2002	NP		10.00	25.00	14.65	22.46	<50	<0.50	<0.50	<0.50	<0.50	<2.5	7.3	7.3	
10/9/2002	NP		10.00	25.00	15.51	21.60	<50	<0.50	<0.50	<0.50	<0.50	<2.5	7.1	7.1	
1/13/2003	NP		10.00	25.00	12.27	24.84	<50	<0.50	<0.50	<0.50	<0.50	<2.5	6.8	6.8	
04/07/03	NP		10.00	25.00	13.61	23.50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	6.6	6.6	
7/9/2003			10.00	25.00	14.34	22.77	<50	<0.50	<0.50	<0.50	<0.50	<0.50	7	7.0	
02/05/2004			10.00	25.00	13.38	23.73									m
04/05/2004			10.00	25.00	13.31	23.80									
07/13/2004	NP		10.00	25.00	14.65	22.46	<50	<0.50	<0.50	<0.50	<0.50	<0.50	2.7	6.8	
11/04/2004			10.00	25.00	14.95	22.16									
01/20/2005			10.00	25.00	12.57	24.54									
04/11/2005			10.00	25.00	12.05	25.06									
08/01/2005	NP		10.00	25.00	13.79	23.32	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.15	7.6	
10/21/2005			10.00	25.00	14.60	22.51									
01/18/2006			10.00	25.00	11.80	25.31									
04/14/2006			10.00	25.00	10.92	26.19									
7/19/2006	NP		10.00	25.00	12.92	24.19	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.3	6.9	
10/24/2006			10.00	25.00	14.23	22.88									
1/15/2007			10.00	25.00	13.80	23.31									
4/18/2007			10.00	25.00	13.67	23.44									
7/17/2007	NP		10.00	25.00	14.08	23.03	<50	<0.50	<0.50	<0.50	<0.50	<0.50	4.40	7.02	
10/11/2007			10.00	25.00	15.28	21.83									
1/8/2008			10.00	25.00	13.08	24.03									
4/8/2008			10.00	25.00	13.52	23.59									

			Top of	Bottom of		Water Level			Concentr	ations in με	1				
Well ID and		TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-6 Cont.															
8/20/2008	NP	37.11	10.00	25.00	15.59	21.52	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.66	6.83	
11/17/2008			10.00	25.00	15.61	21.50									
2/3/2009			10.00	25.00	15.23	21.88									
5/12/2009			10.00	25.00	14.09	23.02									
8/13/2009	NP		10.00	25.00	15.80	21.31	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.85	7.02	u
2/18/2010			10.00	25.00	12.96	24.15									
7/23/2010	NP		10.00	25.00	13.91	23.20	210	<0.50	<0.50	<0.50	<0.50	<0.50	0.65	6.73	
2/10/2011			10.00	25.00	13.15	23.96									
8/30/2011	NP		10.00	25.00	13.10	24.01	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.60	7.2	
2/17/2012			10.00	25.00	14.46	22.65									
8/30/2012	Р		10.00	25.00	14.22	22.89	<50	<0.50	<0.50	<0.50	<1.0	<0.50	1.54	6.97	
2/7/2013			10.00	25.00	13.44	23.67									
8/15/2013	Р		10.00	25.00	15.72	21.39	<50	<0.50	<0.50	<0.50	<1.0	<0.50	3.95	7.03	
1/9/2014			10.00	25.00	16.15	20.96									
MW-7															
6/26/2000		38.68	12.00	27.00	14.34	24.34									
7/20/2000			12.00	27.00	15.26	23.42	14,000	5.4	<0.5	2.8	5.9	71,000			
9/19/2000			12.00	27.00	15.70	22.98	8,400	420	38	470	220	5,600			
12/21/2000			12.00	27.00	16.02	22.66									
3/13/2001			12.00	27.00	14.18	24.50	<2,000	154	63	46.3	127	75,000/160,00			
9/18/2001			12.00	27.00	17.02	21.66	<100,000	1,900	<1,000	<1,000	2,800	90,000/370,00			
12/28/2001			12.00	27.00	14.81	23.87	<20,000	<200	<200	<200	<200	84,000/72,000			
3/14/2002			12.00	27.00	14.60	24.08	<50,000	<500	<500	<500	<500	85,000/85,000			
4/23/2002			12.00	27.00	13.94	24.74	<20,000	530	200	220	800	67,000			
7/17/2002	NP		12.00	27.00	16.27	22.41	26,000	720	<250	<250	860	120,000	6.9	6.9	d
10/9/2002	NP		12.00	27.00	17.16	21.52	110,000	1,500	4,400	820	5,400	7,000/120,000	6.8	6.8	d
1/13/2003	NP		12.00	27.00	13.82	24.86	<50,000	<500	<500	<500	2,200	33,000	6.6	6.6	f
04/07/03	NP		12.00	27.00	14.52	24.16	<2,500	30	<25	<25	<25	710	7.0	7.0	
7/9/2003			12.00	27.00	15.97	22.71	66,000	<500	<500	<500	<500	36,000	6.7	6.7	
02/05/2004	NP	38.54	12.00	27.00	14.75	23.79	55,000	300	<250	<250	<250	34,000	1.0	6.7	m

Table 4. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #2111, 1156 Davis St, San Leandro, CA

			Top of	Bottom of		Water Level			Concentr	ations in μg	;/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
MW-7 Cont.															
04/05/2004	NP	38.54	12.00	27.00	14.63	23.91	62,000	520	<250	<250	380	37,000	1.0	6.7	
07/13/2004	NP		12.00	27.00	16.31	22.23	<100,000	<1,000	<1,000	<1,000	<1,000	56,000	0.7	6.7	
11/04/2004			12.00	27.00	16.46	22.08	70,000	<500	<500	<500	<500	71,000	2.0	6.6	
01/20/2005	NP		12.00	27.00	14.05	24.49	34,000	<250	<250	<250	<250	36,000	0.6	6.3	n
04/11/2005	NP		12.00	27.00	12.55	25.99	<2,500	46	<25	<25	<25	1,200	0.7	6.8	
08/01/2005	NP		12.00	27.00	15.11	23.43	<25,000	<250	<250	<250	<250	4,800	1.78	7.3	
10/21/2005	NP		12.00	27.00	15.65	22.89	14,000	350	<100	<100	110	12,000	1.41	6.6	р
01/18/2006	NP		12.00	27.00	12.60	25.94	16,000	310	<100	<100	110	13,000	0.87	6.7	
04/14/2006	NP		12.00	27.00	12.09	26.45	<10,000	<100	<100	<100	<100	4,700	0.88	6.9	
7/19/2006	NP		12.00	27.00	13.58	24.96	1,300	23	<10	18	26	1,600	1.1	6.8	q
10/24/2006	Р		12.00	27.00	15.13	23.41	6,800	100	<5.0	16	15	14,000		6.93	
1/15/2007	Р		12.00	27.00	14.43	24.11	2,500	<100	<100	<100	<100	3,900	2.12	7.44	n
4/18/2007	NP		12.00	27.00	14.30	24.24	3,000	50	<50	<50	<50	2,700	4.47	7.22	n
7/17/2007	NP		12.00	27.00	23.75	14.79	560	<25	<25	<25	<25	890	4.23	7.41	n
10/11/2007	NP		12.00	27.00	16.18	22.36	210	<2.5	<2.5	<2.5	<2.5	370	2.99	7.33	t (GRO)
1/8/2008	NP		12.00	27.00	13.90	24.64	5,100	45	<25	<25	<25	6,100	2.50	7.23	n
4/8/2008	NP		12.00	27.00	14.22	24.32	270	0.50	<0.50	1.2	0.66	1,200	1.67	7.17	
8/20/2008	NP		12.00	27.00	16.57	21.97	<50	<0.50	<0.50	<0.50	<0.50	39	2.12	7.04	
11/17/2008	NP		12.00	27.00	22.91	15.63	68	1.8	1.9	0.54	2.0	28	1.14	6.95	
2/3/2009	NP		12.00	27.00	17.86	20.68	<50	<0.50	<0.50	<0.50	<0.50	18	2.58	6.97	
5/12/2009	NP		12.00	27.00	15.36	23.18	110	2.0	<0.50	<0.50	2.9	390	0.72	7.14	
8/13/2009	NP		12.00	27.00	24.10	14.44	<50	<0.50	<0.50	<0.50	<0.50	21	0.84	7.11	u
2/18/2010	NP		12.00	27.00	14.21	24.33	190	<25	<25	<25	<25	1,300	1.52	7.06	v (GRO)
7/23/2010	NP		12.00	27.00	15.50	23.04	<50	<0.50	<0.50	<0.50	<0.50	1,000	0.57	6.89	v (GRO)
2/10/2011	Р		12.00	27.00	14.44	24.10	440	<25	<25	<25	<25	310	0.76	7.0	v (GRO)
8/30/2011	NP		12.00	27.00	15.10	23.44	480	<25	<25	<25	<25	180	0.80	6.9	w (GRO)
2/17/2012	Р		12.00	27.00	15.46	23.08	220	0.84	<0.50	<0.50	<0.50	110	1.99	7.50	w (GRO)
8/30/2012	Р		12.00	27.00	15.94	22.60	230	<10	<10	<10	<20	210	1.15	7.15	
2/7/2013	Р		12.00	27.00	14.19	24.35	310	8.9	<0.50	<0.50	<1.0	98	1.30	7.65	
8/15/2013	Р		12.00	27.00	16.66	21.88	280	<10	<10	<10	<20	85	3.61	7.10	

			Top of	Bottom of		Water Level			Concentr	ations in μg	;/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-7 Cont.															
1/9/2014	Р	38.54	12.00	27.00	17.03	21.51	500	<20	<20	<20	<40	100	1.39	6.61	
MW-8															
02/05/2004	Р	38.91			15.61	23.30	3,600	<25	<25	<25	<25	1,900	6.9	6.8	m
04/05/2004	Р				15.64	23.27	1,900	<10	<10	<10	<10	1,200	3.2	6.7	
07/13/2004	Р				17.22	21.69	<1,000	<10	<10	<10	<10	760	1.6	6.7	
11/04/2004	Р				17.19	21.72	960	<5.0	<5.0	<5.0	<5.0	820	1.8	6.7	
01/20/2005	Р				15.25	23.66	<2,500	<25	<25	<25	<25	1,400	1.5	6.4	
04/11/2005	Р				14.17	24.74	700	<5.0	<5.0	<5.0	<5.0	610	1.1	7.1	
08/01/2005	Р				16.10	22.81	<1,000	<10	<10	<10	<10	900	2.58	7.7	
10/21/2005	Р				17.18	21.73	530	<5.0	<5.0	<5.0	<5.0	490	1.4	6.7	n
01/18/2006	Р				13.60	25.31	<500	<5.0	<5.0	<5.0	<5.0	500	2.28	6.6	
04/14/2006	Р				12.36	26.55	<500	<5.0	<5.0	<5.0	<5.0	300	1.97	6.6	
7/19/2006	Р				14.75	24.16	4,500	<25	<25	<25	<25	4,200	1.2	6.6	
10/24/2006															S
1/15/2007	Р				15.67	23.24	<50	<0.50	<0.50	<0.50	<0.50	67	1.35	6.68	
4/18/2007	Р				15.53	23.38	100	0.51	<0.50	<0.50	<0.50	130	1.49	6.86	n
7/17/2007	NP				16.76	22.15	63	<0.50	<0.50	<0.50	<0.50	96	1.85	6.97	n
10/11/2007	Р				16.99	21.92	100	0.52	<0.50	<0.50	<0.50	130	1.67	7.18	
1/8/2008	Р				14.83	24.08	51	<0.50	<0.50	<0.50	<0.50	49	1.30	6.88	n
4/8/2008	Р				15.38	23.53	<50	<0.50	<0.50	<0.50	<0.50	32	1.60	6.77	
8/20/2008	Р				17.80	21.11	<50	<0.50	<0.50	<0.50	<0.50	13	1.18	6.94	
11/17/2008	Р				17.47	21.44	<50	<0.50	<0.50	<0.50	<0.50	14	3.74	6.63	
2/3/2009	Р				16.96	21.95	<50	<0.50	<0.50	<0.50	<0.50	16	0.83	6.9	
5/12/2009	Р				15.93	22.98	<50	<0.50	<0.50	<0.50	<0.50	30	0.31	6.90	
8/13/2009	Р				17.50	21.41	<50	<0.50	<0.50	<0.50	<0.50	7.5	0.65	7.44	
2/18/2010	Р				14.93	23.98	<50	<0.50	<0.50	<0.50	<0.50	12	0.64	6.62	
7/23/2010	Р				16.02	22.89	<50	<0.50	<0.50	<0.50	<0.50	8.2	0.94	6.7	
2/10/2011	Р				15.28	23.63	<50	<0.50	<0.50	<0.50	<0.50	4.5	1.08	6.8	
8/30/2011	Р				16.08	22.83	<50	<0.50	<0.50	<0.50	<0.50	3.6	0.86	6.8	
2/17/2012	Р				16.34	22.57	<50	<0.50	<0.50	<0.50	<0.50	1.8	0.83	7.10	

			Top of	Bottom of		Water Level			Concentr	ations in με	g/L				
Well ID and Date Monitored	P/NP	TOC (feet)	Screen	Screen	DTW (feet)	Elevation (feet)	GRO/	Benzene	Toluene	Ethyl-	Total Xylenes	MTBE	DO	Hq	Footnote
Date Monitored	P/NP	(reet)	(ft bgs)	(ft bgs)	(reet)	(reet)	TPHg	benzene	roidene	Benzene	Aylenes	IVIIDE	(mg/L)	рп	rootnote
MW-8 Cont.															
8/30/2012	Р	38.91			16.84	22.07	<50	<0.50	<0.50	<0.50	<1.0	1.9	1.58	7.02	
2/7/2013	Р				15.31	23.60	<50	<0.50	<0.50	<0.50	<1.0	3.6	1.56	7.36	
8/15/2013	Р				17.45	21.46	<50	<0.50	<0.50	<0.50	<1.0	0.65	4.39	6.97	
1/9/2014	Р				17.80	21.11	<50	<0.50	<0.50	<0.50	<1.0	0.50	2.09	5.63	

Symbols & Abbreviations:

- -- = Not analyzed/applicable/measured/available
- < = Not detected at or above specified laboratory reporting limit

DO = Dissolved oxygen

DTW = Depth to water in ft bgs

ft bgs = feet below ground surface

ft MSL = feet above mean sea level

GRO = Gasoline range organics

GWE = Groundwater elevation in ft MSL

mg/L = Milligrams per liter

MTBE = Methyl tert-butyl ether

NP = Well not purged prior to sampling

P = Well purged prior to sampling

TOC = Top of casing elevation in ft MSL

TPH-g = Total petroleum hydrocarbons as gasoline

μg/L = Micrograms per liter

Footnotes:

- a = Product sheen noted
- b = Well was sampled after batch extraction event
- c = Chromatogram Pattern: Gasoline C6-C10 for GRO/TPH-g
- d = Hydrocarbon pattern was present in the requested fuel quantitation range but did not resemble the pattern of the requested fuel for GRO/TPH-g
- e = Discrete peak @C6-C7 for GRO/TPH-g
- f = This sample was analyzed beyond the EPA recommended holding time for TPH-g, benzene, toluene, ethylbenzene, and total xylenes (BTEX), and MTBE. The results may still be useful for their intended purpose
- g = Well not sampled due to the detection of free product (FP)
- h = GWE adjusted for FP: (thickness of FP x 0.8) + measured GWE
- j = The closing calibration for benzene and total xylenes was outside acceptance limits by 1%. This should be considered in evaluating the result. The average % difference for all analytes met the 15% requirement and the QC suggested that calibration linearity was not a factor
- k = The closing calibration was outside acceptance limits by 6%. This should be considered in evaluating the result. The average % difference for all analytes met the 15% requirement and the QC suggested that calibration linearity was not a factor
- I = Toluene and MTBE were not confirmed using a secondary column in accordance to client contract
- m = TOC elevations re-surveyed to NAVD '88 on February 23, 2004
- n = Hydrocarbon result for GRO partly due to indiv. peak(s) in quantitative range
- o = Light to moderate sheen
- p = Result for MTBE partly due to individual peak(s) in quant. range
- q = Gauged with tubing in well
- r = Calib. verif. is within method limits but outside contract limits
- s = Well inaccessible
- t = Initial analysis within holding time but required dilution
- u = Sample taken from VOA vial with air bubble > 6mm diameter
- v = Quantitation of unknown hydrocarbon(s) in sample based on gasoline
- w = Quantitated against gasoline

Notes:

Beginning with the second quarter 2003 sampling event (04/07/03), TPH-g, BTEX, and MTBE analyzed by EPA method 8260B. Prior to 04/07/03, TPH-g was analyzed by EPA methods 8020/ 8260B was analyzed by EPA methods 8020/ 8260B

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12

Values for DO and pH were obtained through field measurements

GRO analysis was completed by EPA method 8260B (C4-C12) for samples collected from the time period April 2006 through February 4, 2008. The analysis for GRO was changed to EPA method 8015B (C6-C12) for samples collected from the time period February 5, 2008 through the present

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

			concentrat	ions in μg/L				
Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
		2.400						
		29						
		290						
		300						
<100	<20	22	<0.50	<0.50	<0.50			
<5,000	<1,000	690	<25	<25	<25			
<5,000	<1,000	1,100	<25	<25	32	<25	<25	
<5,000	<1,000	1,700	<25	<25	38	<25	<25	a
<2,000	780	730	<10	<10	19	<10	<10	a
<1,000	<200	380	<5.0	<5.0	12	<5.0	<5.0	
<1,000	<200	570	<5.0	<5.0	17	<5.0	<5.0	a
<5,000	<1,000	1,100	<25	<25	34	<25	<25	
<2,000	<400	1,400	<10	<10	40	<10	<10	
<5,000	<1,000	970	<25	<25	<25	<25	<25	
<1,500	<100	330	<2.5	<2.5	9.7	<2.5	<2.5	
<1,500	<100	310	<2.5	<2.5	9.3	<2.5	<2.5	
<1,500	<100	180	<2.5	<2.5	3.2	<2.5	<2.5	
<1,500	<100	360	<2.5	<2.5	10	<2.5	<2.5	
<1,500	<100	220	<2.5	<2.5	6.8	<2.5	<2.5	
	<100	150	<2.5	<2.5	<2.5	<2.5	<2.5	
<600	<40	94	<1.0	<1.0		<1.0	<1.0	
<300	<20	62			<0.50	<0.50		
								a
								-
			1,500 1,080/1,060 1,080/1,060 1,430/1,370 1,430/1,370 1,200/1,100 1,200/1,100 34/40 30 29 29 290 290 300 <1,000 <20 22 <5,000 <1,000 690 <5,000 <1,000 690 <5,000 <1,000 1,100 <5,000 <1,000 1,700 <2,000 780 730 <1,000 <200 380 <1,000 <200 380 <1,000 <200 380 <1,000 <1,000 1,100 <2,000 <400 1,400 <5,000 <1,000 1,400 <5,000 <1,000 1,400 <1,000 330 <1,500 <100 330 <1,500 <100 330 <1,500 <100 310 <1,500 <100 310 <1,500 <100 360 <1,500 <100 360 <1,500 <100 220 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 360 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 360 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 <100 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 320 <1,500 32					1,500 <td< td=""></td<>

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-1 Cont.									
11/17/2008	<300	<10	21	<0.50	<0.50	0.52	<0.50	<0.50	
2/3/2009	<300	<10	16	<0.50	<0.50	<0.50	<0.50	<0.50	
5/12/2009	<300	<10	9.3	<0.50	<0.50	<0.50	<0.50	<0.50	
8/13/2009	<300	<10	5.5	<0.50	<0.50	<0.50	<0.50	<0.50	b
2/18/2010	<300	<10	1.4	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	1.3	<0.50	<0.50	<0.50	<0.50	<0.50	
2/10/2011	<300	<10	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	
8/30/2011	<300	<10	2.1	<0.50	<0.50	<0.50	<0.50	<0.50	
2/17/2012	<300	<10	0.85	<0.50	<0.50	<0.50	<0.50	<0.50	
8/30/2012	<150	<10	0.74	<0.50	<0.50	<0.50	<0.50	<0.50	
2/7/2013	<150	<10	0.87	<0.50	<0.50	<0.50	<0.50	<0.50	
8/15/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1/9/2014	<150	<10	0.59	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-2									
7/20/2000			13,000						
9/19/2000			19,000						
12/21/2000			54,300/89,200						
12/21/2000			22,400/24,700						
3/13/2001			1,700/76,000						
3/13/2001			3,590/3,260						
12/28/2001			9,300/8,800						
3/14/2002			990/960						
4/23/2002			8,500						
7/17/2002			19,000/0.4						
04/05/2004	<1,000	<200	750	<5.0	<5.0	<5.0	<5.0	<5.0	
07/13/2004	<10,000	12,000	5,800	<50	<50	<50	<50	<50	a
08/31/2004									a
01/20/2005	<10,000	<2,000	7,000	<50	<50	<50	<50	<50	a
04/11/2005	<10,000	<2,000	2,700	<50	<50	<50	<50	<50	
08/01/2005	<10,000	<2,000	2,700	<50	<50	<50	<50	<50	
01/18/2006	<30,000	<2,000	1,600	<50	<50	<50	<50	<50	

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-2 Cont.									
04/14/2006	<30,000	<2,000	2,100	<50	<50	<50	<50	<50	
7/19/2006	<6,000	<400	930	<10	<10	<10	<10	<10	
1/15/2007	<6,000	1,900	1,400	<10	<10	<10	<10	<10	
4/18/2007	<6,000	1,200	1,100	<10	<10	<10	<10	<10	
7/17/2007	<6,000	1,000	1,300	<10	<10	<10	<10	<10	
10/11/2007	<6,000	1,300	1,000	<10	<10	<10	<10	<10	
1/8/2008	<6,000	2,600	1,300	<10	<10	<10	<10	<10	a
4/8/2008	<300	970	690	<0.50	<0.50	3.3	<0.50	<0.50	
8/20/2008	<6,000	470	190	<10	<10	<10	<10	<10	
11/17/2008	<3,000	740	89	<5.0	<5.0	<5.0	<5.0	<5.0	
2/3/2009	<1,500	230	31	<2.5	<2.5	<2.5	<2.5	<2.5	
5/12/2009	<300	590	25	<0.50	<0.50	<0.50	<0.50	<0.50	
8/13/2009	<6,000	2,300	39	<10	<10	<10	<10	<10	b
2/18/2010	<3,000	1,000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
7/23/2010	<1,200	410	6.5	<2.0	<2.0	<2.0	<2.0	<2.0	
2/10/2011	<2400	2800	12	<4.0	<4.0	<4.0	<4.0	<4.0	
8/30/2011	<300	340	4.5	<0.50	<0.50	<0.50	<0.50	<0.50	
2/17/2012	<1,500	920	2.9	<2.5	<2.5	<2.5	<2.5	<2.5	
8/30/2012	<150	190	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	
2/7/2013	<150	230	2.7	<0.50	<0.50	<0.50	<0.50	<0.50	
8/15/2013	<150	180	1.6	<0.50	<0.50	<0.50	<0.50	<0.50	
1/9/2014	<150	230	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-3									
7/20/2000			130						
9/19/2000			160						
12/21/2000			143/125						
3/13/2001			126/122						
9/18/2001			110/75						
12/28/2001			90/63						
3/14/2002			100/88						
4/23/2002			77						

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-3 Cont.									
7/17/2002			47						
10/9/2002			26/29						
1/13/2003			59						
04/07/03	<100	<20	75	<0.50	<0.50	6.5			
7/9/2003	<100	<20	52	<0.50	<0.50	4.2			
02/05/2004	<100	<20	37	<0.50	<0.50	3.1	<0.50	<0.50	
04/05/2004	<100	<20	53	<0.50	<0.50	3.7	<0.50	<0.50	a
07/13/2004	<100	44	35	<0.50	<0.50	3.2	<0.50	<0.50	
11/04/2004	<100	<20	25	<0.50	<0.50	2.2	<0.50	<0.50	
01/20/2005	<100	<20	27	<0.50	<0.50	2.6	<0.50	<0.50	
04/11/2005	<100	<20	21	<0.50	<0.50	2.0	<0.50	<0.50	
08/01/2005	<100	<20	23	<0.50	<0.50	1.9	<0.50	<0.50	
10/21/2005	<100	<20	19	<0.50	<0.50	2.0	<0.50	<0.50	
01/18/2006	<300	<20	13	<0.50	<0.50	1.3	<0.50	<0.50	
04/14/2006	<300	<20	6.7	<0.50	<0.50	0.61	<0.50	<0.50	
7/19/2006	<300	<20	11	<0.50	<0.50	0.72	<0.50	<0.50	r
10/24/2006	<300	<20	33	<0.50	<0.50	2.8	<0.50	<0.50	
1/15/2007	<300	<20	29	<0.50	<0.50	2.9	<0.50	<0.50	
4/18/2007	<300	<20	9.5	<0.50	<0.50	0.90	<0.50	<0.50	
7/17/2007	<300	<20	19	<0.50	<0.50	1.5	<0.50	<0.50	
10/11/2007	<300	<20	5.3	<0.50	<0.50	<0.50	<0.50	<0.50	
1/8/2008	<300	<20	8.9	<0.50	<0.50	0.84	<0.50	<0.50	a
4/8/2008	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/20/2008	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
11/17/2008	<300	<10	3.6	<0.50	<0.50	<0.50	<0.50	<0.50	
2/3/2009	<300	<10	2.1	<0.50	<0.50	<0.50	<0.50	<0.50	
5/12/2009	<300	<10	2.1	<0.50	<0.50	<0.50	<0.50	<0.50	
8/13/2009	<300	<10	2.7	<0.50	<0.50	<0.50	<0.50	<0.50	
2/18/2010	<300	<10	0.59	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	14	0.85	<0.50	<0.50	<0.50	<0.50	<0.50	
2/10/2011	<300	<10	0.51	<0.50	<0.50	<0.50	<0.50	<0.50	
8/30/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-3 Cont.									
2/17/2012	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/30/2012	<150	<10	0.56	<0.50	<0.50	<0.50	<0.50	<0.50	
2/7/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/15/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1/9/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-4									
7/20/2000			51						
9/19/2000			60						
12/21/2000			46.3/48.6						
3/13/2001			53.7/50						
9/18/2001			25/26						
12/28/2001			15/11						
3/14/2002			31/28						
4/23/2002			42						
7/17/2002			16						
10/9/2002			20/23						
1/13/2003			22						
04/07/03	<100	<20	24	<0.50	<0.50	7.3			
7/9/2003	<100	<20	34	<0.50	<0.50	9.8			
02/05/2004	<100	<20	22	<0.50	<0.50	6.2	<0.50	<0.50	
04/05/2004	<100	<20	27	<0.50	<0.50	7.2	<0.50	<0.50	a
07/13/2004	<100	26	27	<0.50	<0.50	7.4	<0.50	<0.50	a
11/04/2004	<100	<20	19	<0.50	<0.50	5.1	<0.50	<0.50	
01/20/2005	<100	<20	18	<0.50	<0.50	5.2	<0.50	<0.50	
04/11/2005	<100	<20	14	<0.50	<0.50	4.0	<0.50	<0.50	
08/01/2005	<100	<20	18	<0.50	<0.50	3.9	<0.50	<0.50	
10/21/2005	<100	<20	15	<0.50	<0.50	4.6	<0.50	<0.50	
01/18/2006	<300	<20	8.9	<0.50	<0.50	2.5	<0.50	<0.50	
04/14/2006	<300	<20	4.2	<0.50	<0.50	1.3	<0.50	<0.50	
7/19/2006	<300	<20	3.4	<0.50	<0.50	0.69	<0.50	<0.50	r
10/24/2006	<300	<20	3.5	<0.50	<0.50	0.91	<0.50	<0.50	

Well ID and									
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-4 Cont.									
1/15/2007	<300	<20	3.8	<0.50	<0.50	0.98	<0.50	<0.50	
4/18/2007	<300	<20	5.6	<0.50	<0.50	1.1	<0.50	<0.50	
7/17/2007	<300	<20	6.6	<0.50	<0.50	1.7	<0.50	<0.50	
10/11/2007	<300	<20	0.81	<0.50	<0.50	<0.50	<0.50	<0.50	
1/8/2008	<300	<20	1.2	<0.50	<0.50	<0.50	<0.50	<0.50	a
4/8/2008	<300	<10	1.7	<0.50	<0.50	<0.50	<0.50	<0.50	
8/20/2008	<300	<10	0.70	<0.50	<0.50	<0.50	<0.50	<0.50	
11/17/2008	<300	<10	0.73	<0.50	<0.50	<0.50	<0.50	<0.50	
2/3/2009	<300	<10	0.67	<0.50	<0.50	<0.50	<0.50	<0.50	
5/12/2009	<300	<10	0.62	<0.50	<0.50	<0.50	<0.50	<0.50	
8/13/2009	<300	<10	0.65	<0.50	<0.50	<0.50	<0.50	<0.50	b
2/18/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	0.52	<0.50	<0.50	<0.50	<0.50	<0.50	
2/10/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/30/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/17/2012	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/30/2012	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/7/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/15/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1/9/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-5									
7/20/2000			14,000						
9/19/2000			13,000						
12/21/2000			19,200/21,200						
3/13/2001			15,900/20,000						
9/18/2001			22,000/20,000						
12/28/2001			10,000/10,000						
3/14/2002			7,100/7,700						
4/23/2002			8,900						
7/17/2002			13,000						
10/9/2002			7,300/7,500						

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-5 Cont.									
1/13/2003			8,900						
04/07/03	<20,000	<4,000	3,700	<100	<100	<100			
7/9/2003	<10,000	<2,000	6,500	<50	<50	<50			
02/05/2004	<10,000	<2,000	7,900	<50	<50	<50	<50	<50	a
04/05/2004	<5,000	<1,000	2,000	<25	<25	<25	<25	<25	a
07/13/2004	<10,000	3,200	4,000	<50	<50	<50	<50	<50	a
11/04/2004	<10,000	<2,000	6,300	<50	<50	<50	<50	<50	·
01/20/2005	<10,000	<2,000	6,900	<50	<50	<50	<50	<50	a
04/11/2005	<10,000	3,600	2,600	<50	<50	<50	<50	<50	
08/01/2005	<200	1,600	130	<1.0	<1.0	<1.0	<1.0	<1.0	
10/21/2005	<500	1,400	86	<2.5	<2.5	<2.5	<2.5	<2.5	
01/18/2006	<1,500	2,200	100	<2.5	<2.5	<2.5	<2.5	<2.5	
04/14/2006	<1,500	2,100	240	<2.5	<2.5	<2.5	<2.5	<2.5	
7/19/2006	<1,500	2,800	84	<2.5	<2.5	<2.5	<2.5	<2.5	r
10/24/2006	<300	1,200	17	<0.50	<0.50	<0.50	<0.50	<0.50	a
1/15/2007	<300	990	36	<0.50	<0.50	<0.50	<0.50	<0.50	
4/18/2007	<1,500	2,000	16	<2.5	<2.5	<2.5	<2.5	<2.5	
7/17/2007	<1,500	1,100	6.6	<2.5	<2.5	<2.5	<2.5	<2.5	
10/11/2007	<300	750	4.8	<0.50	<0.50	<0.50	<0.50	<0.50	
1/8/2008	<300	220	5.6	<0.50	<0.50	<0.50	<0.50	<0.50	a
4/8/2008	<300	300	8.0	<0.50	<0.50	<0.50	<0.50	<0.50	
8/20/2008	<600	520	3.6	<1.0	<1.0	<1.0	<1.0	<1.0	
11/17/2008	<300	160	1.3	<0.50	<0.50	<0.50	<0.50	<0.50	
2/3/2009	<300	94	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
5/12/2009	<300	29	2.5	<0.50	<0.50	<0.50	<0.50	<0.50	
8/13/2009	<600	180	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	b
2/18/2010	<300	17	2.2	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/10/2011	<300	<10	0.73	<0.50	<0.50	<0.50	<0.50	<0.50	
8/30/2011	<300	<10	1.9	<0.50	<0.50	<0.50	<0.50	<0.50	
2/17/2012	<300	<10	0.98	<0.50	<0.50	<0.50	<0.50	<0.50	
8/30/2012	<150	<10	1.5	<0.50	<0.50	<0.50	<0.50	<0.50	

Well ID and									
Date Monitored	Ethanol	TBA	MTBE	DIPE	ions in μg/L ETBE	TAME	1,2-DCA	EDB	Footnote
MW-5 Cont.									
2/7/2012	-150	F-7	1.5	40 F0	10.50	10.50	10.50	10.50	
2/7/2013	<150	57	1.5	<0.50	<0.50	<0.50	<0.50	<0.50	
8/15/2013	<150	<10	1.0	<0.50	<0.50	<0.50	<0.50	<0.50	
1/9/2014	<150	<10	0.66	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-6									
7/20/2000			<3.0						
9/19/2000			<3.0						
12/21/2000			<2.5						
3/13/2001			<2.5						
9/18/2001			<2.5/<2.0						
12/28/2001			12/<0.5						
3/14/2002			<2.5						
4/23/2002			3.1						
7/17/2002			<2.5						
10/9/2002			<2.5						
1/13/2003			<2.5						
04/07/03	<100	<20	<0.50	<0.50	<0.50	<0.50			
7/9/2003	<100	<20	<0.50	<0.50	<0.50	<0.50			
07/13/2004	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	a
08/01/2005	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
7/19/2006	<300	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	r
7/17/2007	<300	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/20/2008	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/13/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	b
7/23/2010	<300	15	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/30/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/30/2012	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/15/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-7									
7/20/2000			71,000						
9/19/2000			5,600						

Well ID and									
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-7 Cont.									
2/12/2001			75 000/160 00						
3/13/2001			75,000/160,00						
9/18/2001			90,000/370,00						
12/28/2001			34,000/72,000						
3/14/2002			35,000/85,000						
4/23/2002			67,000						
7/17/2002			120,000						
10/9/2002			7,000/120,000						
1/13/2003			33,000						
04/07/03	<5,000	<1,000	710	<25	<25	<25			
7/9/2003	<100,000	<20,000	36,000	<500	<500	<500			
02/05/2004	<50,000	<10,000	34,000	<250	<250	<250	<250	<250	
04/05/2004	<50,000	<10,000	37,000	<250	<250	<250	<250	<250	
07/13/2004	<200,000	<40,000	56,000	<1,000	<1,000	1,300	<1,000	<1,000	
11/04/2004	<100,000	<20,000	71,000	<500	<500	<500	<500	<500	
01/20/2005	<50,000	<10,000	36,000	<250	<250	<250	<250	<250	a
04/11/2005	<5,000	<1,000	1,200	<25	<25	<25	<25	<25	
08/01/2005	<50,000	<10,000	4,800	<250	<250	<250	<250	<250	
10/21/2005	<20,000	24,000	12,000	<100	<100	<100	<100	<100	
01/18/2006	<60,000	15,000	13,000	<100	<100	<100	<100	<100	
04/14/2006	<60,000	<4,000	4,700	<100	<100	<100	<100	<100	
7/19/2006	<6,000	720	1,600	<10	<10	<10	<10	<10	
10/24/2006	<3,000	10,000	14,000	<5.0	<5.0	31	<5.0	<5.0	a
1/15/2007	<60,000	9,300	3,900	<100	<100	<100	<100	<100	
4/18/2007	<30,000	<2,000	2,700	<50	<50	<50	<50	<50	
7/17/2007	<15,000	<1,000	890	<25	<25	<25	<25	<25	
10/11/2007	<1,500	150	370	<2.5	<2.5	<2.5	<2.5	<2.5	
1/8/2008	<15,000	1,400	6,100	<25	<25	32	<25	<25	
4/8/2008	<300	700	1,200	<0.50	<0.50	5.1	<0.50	<0.50	
8/20/2008	<300	34	39	<0.50	<0.50	<0.50	<0.50	<0.50	
11/17/2008	<300	44	28	<0.50	<0.50	<0.50	<0.50	<0.50	
2/3/2009	<300	66	18	<0.50	<0.50	<0.50	<0.50	<0.50	
5/12/2009	<300	75	390	<0.50	<0.50	1.2	<0.50	<0.50	

Well ID and				Concentrat					
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-7 Cont.									
8/13/2009	<300	19	21	<0.50	<0.50	<0.50	<0.50	<0.50	b
2/18/2010	<15,000	2,300	1,300	<25	<25	<25	<25	<25	
7/23/2010	<300	7,800	1,000	<0.50	<0.50	3.6	<0.50	<0.50	
2/10/2011	<15,000	9900	310	<25	<25	<25	<25	<25	
8/30/2011	<15,000	9,500	180	<25	<25	<25	<25	<25	
2/17/2012	<300	12,000	110	<0.50	<0.50	<0.50	<0.50	<0.50	
8/30/2012	<3,000	14,000	210	<10	<10	<10	<10	<10	
2/7/2013	<150	7,700	98	<0.50	<0.50	<0.50	<0.50	<0.50	
8/15/2013	<3,000	18,000	85	<10	<10	<10	<10	<10	
1/9/2014	<6,000	27,000	100	<20	<20	<20	<20	<20	
MW-8									
02/05/2004	<5,000	<1,000	1,900	<25	<25	<25	<25	<25	
04/05/2004	<2,000	<400	1,200	<10	<10	12	<10	<10	a
07/13/2004	<2,000	770	760	<10	<10	<10	<10	<10	a
11/04/2004	<1,000	<200	820	<5.0	<5.0	9.6	<5.0	<5.0	
01/20/2005	<5,000	<1,000	1,400	<25	<25	<25	<25	<25	a
04/11/2005	<1,000	<200	610	<5.0	<5.0	8.1	<5.0	<5.0	
08/01/2005	<2,000	<400	900	<10	<10	<10	<10	<10	
10/21/2005	<1,000	<200	490	<5.0	<5.0	<5.0	<5.0	<5.0	
01/18/2006	<3,000	<200	500	<5.0	<5.0	5.2	<5.0	<5.0	
04/14/2006	<3,000	<200	300	<5.0	<5.0	<5.0	<5.0	<5.0	
7/19/2006	<15,000	<1,000	4,200	<25	<25	45	<25	<25	
1/15/2007	<300	52	67	<0.50	<0.50	0.88	<0.50	<0.50	
4/18/2007	<300	120	130	<0.50	<0.50	1.9	<0.50	<0.50	
7/17/2007	<300	110	96	<0.50	<0.50	1.2	<0.50	<0.50	
10/11/2007	<300	350	130	<0.50	<0.50	1.7	<0.50	<0.50	
1/8/2008	<300	59	49	<0.50	<0.50	0.80	<0.50	<0.50	
4/8/2008	<300	110	32	<0.50	<0.50	<0.50	<0.50	<0.50	
8/20/2008	<300	62	13	<0.50	<0.50	<0.50	<0.50	<0.50	
11/17/2008	<300	24	14	<0.50	<0.50	<0.50	<0.50	<0.50	
2/3/2009	<300	17	16	<0.50	<0.50	<0.50	<0.50	<0.50	

Well ID and				Concentrati					
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-8 Cont.									
5/12/2009	<300	18	30	<0.50	<0.50	<0.50	<0.50	<0.50	
8/13/2009	<300	28	7.5	<0.50	<0.50	<0.50	<0.50	<0.50	
2/18/2010	<300	37	12	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	53	8.2	<0.50	<0.50	<0.50	<0.50	<0.50	
2/10/2011	<300	23	4.5	<0.50	<0.50	<0.50	<0.50	<0.50	
8/30/2011	<300	<10	3.6	<0.50	<0.50	<0.50	<0.50	<0.50	
2/17/2012	<300	<10	1.8	<0.50	<0.50	<0.50	<0.50	<0.50	
8/30/2012	<150	<10	1.9	<0.50	<0.50	<0.50	<0.50	<0.50	
2/7/2013	<150	<10	3.6	<0.50	<0.50	<0.50	<0.50	<0.50	
8/15/2013	<150	<10	0.65	<0.50	<0.50	<0.50	<0.50	<0.50	
1/9/2014	<150	<10	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	

Symbols & Abbreviations:

-- = Not analyzed/applicable/measured/available

< = Not detected at or above specified laboratory reporting limit

1,2-DCA = 1,2-Dichloroethane

DIPE = Diisopropyl ether

EDB = 1,2-Dibromoethane

ETBE = Ethyl tert-butyl ether

MTBE = Methyl tert-butyl ether

TAME = tert-Amyl methyl ether

TBA = tert-Butyl alcohol

μg/L = Micrograms per Liter

Footnotes:

a = The continuing calibration verification for ethanol was outside of client contractual acceptance limits. However, it was within method acceptance limits. The data should still be considered useful for its intended purpose

b = Sample taken from VOA vial with air bubble > 6mm diameter

Notes:

All volatile organic compounds analyzed using EPA Method 8260B

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

Table 6. Summary of Groundwater Gradient - Direction and Magnitude ARCO Service Station #2111, 1156 Davis St, San Leandro, CA

Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
7/20/2000	West-Northwest	0.006
9/19/2000	West-Northwest	0.004
12/21/2000	West-Northwest	0.004
3/13/2001	West-Northwest	0.005
5/30/2001	West-Northwest	0.004
9/18/2001	West-Northwest	0.003
12/28/2001	West-Northwest	0.003
3/14/2002	West	0.004
4/23/2002	West	0.006
7/17/2002	West	0.003
10/9/2002	West	0.002
1/13/2003	Southwest	0.0043
4/7/2003	West-Northwest	0.009 to 0.011
7/9/2003	West-Northwest	0.004
10/1/2003	West	0.002
2/5/2004	West	0.004
4/5/2004	West-Southwest	0.004
7/13/2004	West-Southwest	0.003
11/4/2004	West	0.003
1/20/2005	West	0.009
4/11/2005	North to West	0.009 to 0.01
8/1/2005	West to Northwest	0.006 to 0.004
10/21/2005	West	0.008
1/18/2006	North and West	0.01
4/14/2006	South	0.008
7/19/2006	Northwest to Southwest	0.004 to 0.008
10/24/2006	West	0.003
1/15/2007	Southwest	0.004
4/18/2007	West	0.009
7/17/2007	Southeast	0.05
10/11/2007	West	0.01
1/8/2008	West	0.008
4/8/2008	West	0.006
8/20/2008	West	0.006
11/17/2008	South-Southeast	0.05
2/3/2009	South-Southeast	0.01
5/12/2009	North to West	0.004
8/13/2009	South	0.006
2/18/2010	West-Southwest	0.001
7/23/2010	West-Southwest	0.002
2/10/2011	West	0.002
8/30/2011	West	0.01
2/17/2012	North to West	0.008
8/30/2012	West	0.005
2/7/2013	West	0.004

Table 6. Summary of Groundwater Gradient - Direction and Magnitude ARCO Service Station #2111, 1156 Davis St, San Leandro, CA

Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
8/15/2013	Northwest	0.005
1/9/2014	Northwest	0.006

Notes:

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

Table 7 Summary of Detected Additional Analytes in Well MW-3 – January 2014

November 2013 CPT Investigation ARC Station No. 2111 1156 Davis Street, San Leandro, California

Date Collected	Concentration (μg/L)	Well Identification	
1/9/2014	25	MW-3	
1/9/2014	8.6	MW-3	
1/9/2014*	0.24	MW-3	
	1/9/2014	Date Collected (μg/L) 1/9/2014 25 1/9/2014 8.6	

Notes:

μg/L = micrograms per liter

PCE = tetrachloroethylene

All other poly aromatic hydrocarbons (PAHs by 8270) and volatile organic compounds (VOCs by 8260) were not detected above reporting limits

*Well MW-3 was resampled on January 16, 2014 due to sample breakage for 8270 only

APPENDIX A

Recent Regulatory Correspondence

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

August 9, 2013

Chuck Carmel (Sent via E-mail to: charles.carmel@bp.com)
Operations Project Manager
Atlantic Richfield Company
(A BP Affiliated Company)
P.O. Box 1257
San Ramon, CA 94583

Subject: Fuel Leak Case No. RO0000494 and GeoTracker Global ID T0600101764, ARCO #2111, 1156 Davis Street, San Leandro, CA 94577

Dear Mr. Carmel:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above-referenced site including the following documents prepared by Broadbent & Associates (Broadbent) on your behalf entitled *Addendum to the Revised Soil & Groundwater Investigation Plan*, dated June 19, 2013 and the *Revised Soil & Groundwater Investigation Work Plan*, dated February 28, 2013 (collectively referred to herein as the Work Plans). The Work Plans propose to implement the scope of work in a phased approach. The first phase of the investigation consists of advancement of six offsite borings to further characterize groundwater downgradient of the site, advancement of two onsite borings to evaluate the effectiveness of the dual phase extraction system in remediating the soil and groundwater adjacent to the USTs and to evaluate potentially suspect data collected from well MW-8; and contacting owners of wells located within 1,000 feet of the site to determine the status of the wells and use. The second phase of the investigation is proposed to be implemented if warranted based the results of the first phase of the investigation and will consist of installing offsite soil vapor borings to evaluate vapor intrusion to indoor air on parcels downgradient and potentially impacted by site contaminants, and conducting a preferential pathway study to evaluate migration from the site plume via utility trenches.

ACEH has evaluated the data and recommendations presented in the above-mentioned reports, in conjunction with the case files, and the State Water Resources Control Board's (SWRCBs) Low Threat Underground Storage Tank Case Closure Policy (LTCP). Based on ACEH staff review, we have determined that the site fails to meet the LTCP General Criteria e (Site Conceptual Model), f (Secondary Source Removal), and h (Nuisance), and the Media-Specific Criteria for Groundwater, and Vapor Intrusion to Indoor Air.

ACEH generally concurs that the proposed scope of work presented in the Work Plans will address the remaining data gaps at the site and therefore requests that you implement the work and submit the requested reports in accordance with the Technical Comments and Technical Work/Report sections below.

TECHNICAL COMMENTS

1. Investigation Report and Updated Site Conceptual Model – Please implement the soil and groundwater investigation and submit a Soil and Groundwater Investigation Report documenting the results. The report should include at a minimum a narrative description of field operations, analytical methods used, deviations from the approved work plan, data inconsistencies, QA/QC procedures, analytical results, data validation, analysis and updated SCM based on data obtained from the soil and groundwater investigation, and conclusions and recommendations regarding implementation of the Phase 2 investigation activities.

Please include tables and diagrams including a site plan and sample location maps, boring logs, summary tables for soil and groundwater analytical data, legible copies of field and laboratory notes or logs, analytical results and QA/QC information, corrective actions and effect on the data, and raw data including chromatograms and calibration data.

In order to expedite review, ACEH requests the tabular SCM presented in the June 19, 2013 Work Plan be updated with data collected in the investigation and remaining data gaps identified which need to be addressed to progress the site to case closure under the LTCP. Please see Attachment A "Site Conceptual Model Requisite Elements".

Please implement the work and submit the report in accordance with the schedule provided in the Technical Work/Report section.

2. Semi-Annual Groundwater Monitoring – Please continue to conduct semi-annual groundwater monitoring activities at the site including groundwater level gauging in monitoring wells MW-1 through MW 8 and groundwater sample collection in wells MW-1 through MW-5, MW-7 and MW-8 (1st and 3rd quarters), and annual groundwater sample collection in well MW-6 (3rd quarter). Please perform the work and submit the results in Semi-Annual Groundwater Monitoring Reports in accordance with the schedule provided in the Technical Work/Report section.

NOTIFICATION OF FIELDWORK ACTIVITIES

Please schedule and complete the fieldwork activities by the date specified below and provide ACEH with at least three (3) business days notification prior to conducting the fieldwork, including routine groundwater sampling.

TECHNICAL WORK/REPORT REQUEST

Please submit technical reports to ACEH (Attention: Dilan Roe), according to Attachment 1 and the following naming convention and schedule:

• October 11, 2013 – Implementation of Phase 1 Soil and Groundwater Investigation

Mr. Carmel RO0000494 August 9, 2009, Page 3

> October 31, 2013 – 3rd Quarter 2013 Groundwater Monitoring Report (File to be named: RO494_GWM_R_yyyy-mm-dd)

 November 8, 2013 – Soil and Groundwater Investigation Report and Updated SCM (File to be named: RO_494_SWI_SCM_R_yyyy-mm-dd)

Date to be Determined – Implementation of Phase 2 Investigation

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

If you have any questions, please call me at (510) 567-6767 or send me an electronic mail message at dilan.roe@acgov.org.

Sincerely,

Dilan Roe Program Manager – Local Oversight Program

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Kristine Tidwell, Broadbent & Associates, 1324 Mangrove Avenue, Suite 212, Chico, CA 95926 (Sent via E-mail to: Ktidwell@broadbentinc.com)

Dilan Roe, ACEH (Sent via E-mail to: dilan.roe@acgov.org)
GeoTracker
File

ATTACHMENT A

Site Conceptual Model Requisite Elements

ATTACHMENT A

Site Conceptual Model

The site conceptual model (SCM) is an essential decision-making and communication tool for all interested parties during the site characterization, remediation planning and implementation, and closure process. A SCM is a set of working hypotheses pertaining to all aspects of the contaminant release, including site geology, hydrogeology, release history, residual and dissolved contamination, attenuation mechanisms, pathways to nearby receptors, and likely magnitude of potential impacts to receptors.

The SCM is initially used to characterize the site and identify data gaps. As the investigation proceeds and the data gaps are filled, the working hypotheses are modified, and the overall SCM is refined and strengthened until it is said to be "validated". At this point, the focus of the SCM shifts from site characterization towards remedial technology evaluation and selection, and later remedy optimization, and forms the foundation for developing the most cost-effective corrective action plan to protect existing and potential receptors.

For ease of review, Alameda County Environmental Health (ACEH) requests utilization of tabular formats to (1) highlight the major SCM elements and their associated data gaps which need to be addressed to progress the site to case closure (see Table 1 of attached example), and (2) highlight the identified data gaps and proposed investigation activities (see Table 2 of the attached example). ACEH requests that the tables presenting the SCM elements, data gaps, and proposed investigation activities be updated as appropriate at each stage of the project and submitted with work plans, feasibility studies, corrective action plans, and requests for closures to support proposed work, conclusions, and/or recommendations.

The SCM should incorporate, but is not limited to, the topics listed below. Please support the SCM with the use of large-scaled maps and graphics, tables, and conceptual diagrams to illustrate key points. Please include an extended site map(s) utilizing an aerial photographic base map with sufficient resolution to show the facility, delineation of streets and property boundaries within the adjacent neighborhood, downgradient irrigation wells, and proposed locations of transects, monitoring wells, and soil vapor probes.

- a. Regional and local (on-site and off-site) geology and hydrogeology. Include a discussion of the surface geology (e.g., soil types, soil parameters, outcrops, faulting), subsurface geology (e.g., stratigraphy, continuity, and connectivity), and hydrogeology (e.g., water-bearing zones, hydrologic parameters, impermeable strata). Please include a structural contour map (top of unit) and isopach map for the aquitard that is presumed to separate your release from the deeper aquifer(s), cross sections, soil boring and monitoring well logs and locations, and copies of regional geologic maps.
- b. Analysis of the hydraulic flow system in the vicinity of the site. Include rose diagrams for depicting groundwater gradients. The rose diagram shall be plotted on groundwater elevation contour maps and updated in all future reports submitted for your site. Please address changes due to seasonal precipitation and groundwater pumping, and evaluate the potential interconnection between shallow and deep aquifers. Please include an analysis of vertical hydraulic gradients, and effects of pumping rates on hydraulic head from nearby water supply wells, if appropriate. Include hydraulic head in the different water bearing zones and hydrographs of all monitoring wells.
- c. Release history, including potential source(s) of releases, potential contaminants of concern (COC) associated with each potential release, confirmed source locations, confirmed release locations, and existing delineation of release areas. Address primary leak source(s) (e.g., a tank, sump, pipeline, etc.) and secondary sources (e.g., high-

ATTACHMENT A

Site Conceptual Model (continued)

concentration contaminants in low-permeability lithologic soil units that sustain groundwater or vapor plumes). Include local and regional plan view maps that illustrate the location of sources (former facilities, piping, tanks, etc.).

- d. Plume (soil gas and groundwater) development and dynamics including aging of source(s), phase distribution (NAPL, dissolved, vapor, residual), diving plumes, attenuation mechanisms, migration routes, preferential pathways (geologic and anthropogenic), magnitude of chemicals of concern and spatial and temporal changes in concentrations, and contaminant fate and transport. Please include three-dimensional plume maps for groundwater and two-dimensional soil vapor plume plan view maps to provide an accurate depiction of the contaminant distribution of each COC.
- e. Summary tables of chemical concentrations in different media (i.e., soil, groundwater, and soil vapor). Please include applicable environmental screening levels on all tables. Include graphs of contaminant concentrations versus time.
- f. Current and historic facility structures (e.g., buildings, drain systems, sewer systems, underground utilities, etc.) and physical features including topographical features (e.g., hills, gradients, surface vegetation, or pavement) and surface water features (e.g. routes of drainage ditches, links to water bodies). Please include current and historic site maps.
- g. Current and historic site operations/processes (e.g., parts cleaning, chemical storage areas, manufacturing, etc.).
- h. Other contaminant release sites in the vicinity of the site. Hydrogeologic and contaminant data from those sites may prove helpful in testing certain hypotheses for the SCM. Include a summary of work and technical findings from nearby release sites, including the two adjacent closed LUFT sites, (i.e., Montgomery Ward site and the Quest Laboratory site).
- i. Land uses and exposure scenarios on the facility and adjacent properties. Include beneficial resources (e.g., groundwater classification, wetlands, natural resources, etc.), resource use locations (e.g., water supply wells, surface water intakes), subpopulation types and locations (e.g., schools, hospitals, day care centers, etc.), exposure scenarios (e.g. residential, industrial, recreational, farming), and exposure pathways, and potential threat to sensitive receptors. Include an analysis of the contaminant volatilization from the subsurface to indoor/outdoor air exposure route (i.e., vapor pathway). Please include copies of Sanborn maps and aerial photographs, as appropriate.
- j. Identification and listing of specific data gaps that require further investigation during subsequent phases of work. Proposed activities to investigate and fill data gaps identified.

TABLE 1
INITIAL SITE CONCEPTUAL MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Geology and Hydrogeology	Regional	The site is in the northwest portion of the Livermore Valley, which consists of a structural trough within the Diablo Range and contains the Livermore Valley Groundwater Basin (referred to as "the Basin") (DWR, 2006). Several faults traverse the Basin, which act as barriers to groundwater flow, as evidenced by large differences in water levels between the upgradient and downgradient sides of these faults (DWR, 2006). The Basin is divided into 12 groundwater basins, which are defined by faults and non-water-bearing geologic units (DWR, 1974). The hydrogeology of the Basin consists of a thick sequence of fresh-water-bearing continental deposits from alluvial fans, outwash plains, and lacustrine environments to up to approximately 5,000 feet bgs (DWR, 2006). Three defined fresh-water bearing geologic units exist within the Basin: Holocene Valley Fill (up to approximately 400 feet bgs in the central portion of the Basin), the Plio-Pleistocene Livermore Formation (generally between approximately 400 and 4,000 feet bgs in the central portion of the Basin), and the Pliocene Tassajara Formation (generally between approximately 250 and 5,000 or more feet bgs) (DWR,		NA NA
	Site	deposits (clay, sandy clay, silt and sandy silt) with interbedded sand lenses to 20 feet below ground surface (bgs), the approximate depth to which these borings were advanced. The documented lithology for one on-site boring that was logged to approximately 45 feet bgs indicates that beyond approximately 20 feet bgs, fine-grained soils are present to approximately 45 feet bgs. A cone penetrometer technology test indicated	As noted, most borings at the site have been advanced to approximately 20 feet bgs, and one boring has been advanced and logged to 45 feet bgs; CPT data was collected to 75 feet bgs at one location. Lithologic data will be obtained from additional borings that will be advanced on site to further the understanding of the subsurface, especially with respect to deeper lithology.	
		The lithology documented at the site is similar to that reported at other nearby sites, specifically the Montgomery Ward site (7575 Dublin Boulevard), the Quest laboratory site (6511 Golden Gate Drive), the Shell-branded Service Station site (11989 Dublin Boulevard), and the Chevron site (7007 San Ramon Road). **Hydrogeology:** Shallow groundwater has been encountered at depths of approximately 9 to 15 feet bgs. The hydraulic gradient and groundwater flow direction have not been specifically evaluated at the site.	The on-site shallow groundwater horizontal gradient has not been confirmed. Additionally, it is not known if there may be a vertical component to the hydraulic gradient.	Shallow and deeper groundwater monitoring wells will be installed to provide information on lateral and vertical gradients. See Items 2 and 5 on Table 2.
Surface Water Bodies		The closest surface water bodies are culverted creeks. Martin Canyon Creek flows from a gully west of the site, enters a culvert north of the site, and then bends to the south, passing approximately 1,000 feet east of the site before flowing into the Alamo Canal. Dublin Creek flows from a gully west of the site, enters a culvert approximately 750 feet south of the site, and then joins Martin Canyon Creek approximately 750 feet southeast of the site.	None	NA NA
Nearby Wells			A formal well survey is needed to identify water-producing, monitoring, cathodic protection, and dewatering wells.	Obtain data regarding nearby, permitted wells from the California Department of Water Resources and Zone 7 Water Agency (Item 11 on Table 2).

TABLE 2

DATA GAPS AND PROPOSED INVESTIGATION

Item	Data Gap	Proposed Investigation	Rationale	Analysis
5	impacts to deeper groundwater.	monitoring wells (aka multi-port wells) to approximately 65 feet bgs in the northern parking lot with ports at three depths (monitoring well locations may be adjusted pending results of shallow grab groundwater samples; we will discuss any potential changes with ACEH before proceeding). Groundwater monitoring frequency to be determined. Soil samples will be collected only if there are field	there are no deeper groundwater impacts from upgradient. Two wells are proposed	Groundwater: VOCs by EPA Method 8260, dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance.
6	the downgradient direction (east).	8 feet bgs along the eastern property boundary. Based on the results of the sampling, two sets of nested probes will be converted to vapor monitoring wells to allow for evaluation of VOC concentration trends over time.	Available data indicate that PCE and TCE are present in soil vapor in the eastern portion of the northern parking lot. Samples are proposed on approximately 50-foot intervals along the eastern property boundary to provide a transect of concentrations through the vapor plume. The depths of 4 and 8 feet bgs are chosen to provide data closest to the source (i.e., groundwater) while avoiding saturated soil, and also provide shallower data to help evaluate potential attenuation within the soil column. Two sets of nested vapor probes will be converted into vapor monitoring wells (by installing well boxes at ground surface); the locations of the permanent wells will be chosen based on the results of samples from the temporary probes.	Soil vapor: VOCs by EPA Method TO-15.
7	Evaluate potential for off-site migration of impacted groundwater in the downgradient direction (east).			Groundwater: VOCs by EPA Method 8260, dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance.
8	north of the highest concentration area.	A for collection of soil and grab groundwater samples. Soil samples will be collected at two depths in the vadose zone. Soil samples will be collected based on field indications of impacts (PID readings, odor, staining) or, in the absence of field indications of impacts, at 5 and 10 feet bgs.	32, just north of Building A. The nearest available data to the north are approximately 75 feet away. One of the borings will be advanced approximately 20 feet north of NM-B-32 to provide data close to the highest concentration area. A second boring will be advanced approximately halfway between the first boring and former boring NM-B-33 to provide additional spatial data for contouring purposes. These borings will be	
9	Evaluate VOC concentrations in soil vapor in the south parcel of the site.	around boring SV-25, where PCE was detected in soil vapor at a low concentration.	PCE was detected in soil vapor sample SV-25 in the southern parcel, although was not detected in groundwater in that area. Three probes will be installed approximately 30 feet from of boring SV-25 to attempt to delineate the extent of impacts. A fourth probe is proposed west of the original sample, close to the property boundary and the location of mapped utility lines, which may be a potential conduit, to evaluate potential impacts from the west.	Soil vapor: VOCs by EPA Method TO-15.
10	Obtain additional information regarding subsurface structures and utilities to further evaluate migration pathways and sources.	methodologies will be used, as appropriate, to further evaluate the presence of unknown utilities and structures at the site.	Utilities have been identified at the site that include an on-site sewer lateral and drain line, and shallow water, electric, and gas lines. Given the current understanding of the distribution of PCE in groundwater at the site, it is possible that other subsurface utilities, and specifically sewer laterals, exist that may act as a source or migration pathway for distribution of VOCs in the subsurface.	NA

ATTACHMENT 1

Responsible Party(ies) Legal Requirements/Obligations
& ACEH Electronic Report Upload (ftp) Instructions

Attachment 1

Responsible Party(ies) Legal Requirements/Obligations

REPORT/DATA REQUESTS

These reports/data are being requested pursuant to Division 7 of the California Water Code (Water Quality), Chapter 6.7 of Division 20 of the California Health and Safety Code (Underground Storage of Hazardous Substances), and Chapter 16 of Division 3 of Title 23 of the California Code of Regulations (Underground Storage Tank Regulations).

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (Local Oversight Program [LOP] for unauthorized releases from petroleum Underground Storage Tanks [USTs], and Site Cleanup Program [SCP] for unauthorized releases of non-petroleum hazardous substances) require submission of reports in electronic format pursuant to Chapter 3 of Division 7, Sections 13195 and 13197.5 of the California Water Code, and Chapter 30, Articles 1 and 2, Sections 3890 to 3895 of Division 3 of Title 23 of the California Code of Regulations (23 CCR). Instructions for submission of electronic documents to the ACEH FTP site are provided on the attached "Electronic Report Upload Instructions."

Submission of reports to the ACEH FTP site is in addition to requirements for electronic submittal of information (ESI) to the State Water Resources Control Board's (SWRCB) Geotracker website. In April 2001, the SWRCB adopted 23 CCR, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1 (Electronic Submission of Laboratory Data for UST Reports). Article 12 required electronic submittal of analytical laboratory data submitted in a report to a regulatory agency (effective September 1, 2001), and surveyed locations (latitude, longitude and elevation) of groundwater monitoring wells (effective January 1, 2002) in Electronic Deliverable Format (EDF) to Geotracker. Article 12 was subsequently repealed in 2004 and replaced with Article 30 (Electronic Submittal of Information) which expanded the ESI requirements to include electronic submittal of any report or data required by a regulatory agency from a cleanup site. The expanded ESI submittal requirements for petroleum UST sites subject to the requirements of 23 CCR, Division, 3, Chapter 16, Article 11, became effective December 16, 2004. All other electronic submittals required pursuant to Chapter 30 became effective January 1, 2005. Please visit the SWRCB website for more information on these requirements. (https://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/)

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 7835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, late reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SCP)

REVISION DATE: July 25, 2012

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (petroleum UST and SCP) require submission of all reports in electronic form to the county's FTP site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single Portable Document Format (PDF) with no password protection.
- It is **preferable** that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the
 document will be secured in compliance with the County's current security standards and a password.
 <u>Documents with password protection will not be accepted.</u>
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to .loptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to .loptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B

Site History

Previous Environmental Activities at Site

On August 30, 1993 GeoStrategies, Inc. (GSI) observed the removal of a hydraulic hoist and underlying material. GSI collected four soil samples from the excavation pit S-7-HL (7.0 feet below ground surface, ft bgs), S-7½-HL (7.5 ft bgs), S-8-HL (8 ft bgs), and S-9-HL (9 ft bgs). The concentrations of total extractable petroleum hydrocarbons (TEPH) as hydraulic oil ranged from 9,200 milligrams per kilogram (mg/kg) to 27,000 mg/kg in samples S-9-HL and S-7-HL, respectively (GSI, 10/4/1993). Historical analytical results are tabulated within Appendix C.

On March 4, 1994 GSI observed the advancement of two soil borings (B-1 and B-2) to find the extent of the hydraulic oil contamination. Both borings were advanced to a depth of approximately 20.0 ft bgs in the vicinity of the former hydraulic hoist. During the investigation eight soil samples were collected with concentrations ranging from non-detect (less than or equal to 1.0 mg/kg) to 11 parts per million (ppm) in samples B1-4.5 and B2-20 respectively. GSI concluded that the hydraulic oil had not significantly impacted the surrounding area. However, GSI also concluded that unidentified hydrocarbons had impacted the capillary fringe beneath the northwestern corner of the service station building (GSI, 4/13/1994).

On August 15, 1994 GSI observed the removal of a 280 gallon waste-oil tank and over excavation of the surrounding area. Seven soil samples were collected during the excavation, four of which (soil samples WO-N, WO-1, WO-B and WO-B2) contained petroleum hydrocarbon at maximum concentrations of: 310 ppm total petroleum hydrocarbons as gasoline (TPH-g); 780 mg/kg total petroleum hydrocarbons as diesel (TPH-d); 2,000 ppm total petroleum hydrocarbons as motor oil range (TPH-mo); 7,900 mg/kg total recoverable petroleum hydrocarbons (TRPH) (GSI, 9/27/1994). On September 12, 1994, GSI observed the installation of a 600 gallon waste-oil tank in the same area as the former waste-oil tank.

On July 12 and 13, 1995, EMCON observed the installation of onsite monitoring wells MW-1 through MW-4. The total depths for the monitoring well borings ranged between 27.5 ft bgs and 40 ft bgs. Soil samples collected from borings for wells MW-1, MW-3, and MW-4 did not contain any petroleum hydrocarbon contamination. However, soil samples collected from the boring for well MW-2 contained maximum concentrations of TPH-g at 320 mg/kg, benzene at 0.26 mg/kg, ethylbenzene at 3.4 mg/kg, and Total Xylenes at 1.5 mg/kg (EMCON, 11/8/1995). Historical boring locations are depicted in Drawing 2. Tabulated historic soil and groundwater analytical results are provided within Appendix C.

Between February 28 and March 1, 1996, EMCON observed the installation of offsite monitoring wells MW-5 and MW-6, onsite monitoring well MW-7, and onsite vapor extraction wells VW-1 through VW-4. Soil samples collected from offsite wells MW-5 and MW-6 did not contain petroleum hydrocarbons. Soil samples from onsite well MW-7 adjacent to the corner of the underground storage tanks (UST) pit contained up to 55 mg/kg of TPH-g, up to 0.11 mg/kg of benzene, up to 0.80 mg/kg of ethylbenzene, and up to 1.5 mg/kg of total xylenes. Soil samples from each of vapor extraction wells VW-1 through VW-4 contained petroleum hydrocarbons, with the most significant concentrations being in VW-2 and VW-4: up to 1,100 mg/kg of TPH-g (VW-4), up to 0.30 mg/kg of benzene (VW-2), up to 0.50 mg/kg of ethylbenzene (VW-1), and up to 3 mg/kg of total xylenes (VW-4) (EMCON, 9/19/1996).

In October 2000, Petcon Technologies, Inc. removed the three 12,000-gallon former USTs, product lines and dispensers from the Site. Approximately 930 cubic yards (yd³) of soil was excavated from under the former gasoline USTs (to a depth of 17 ft bgs), product lines and dispenser islands. A representative of

Delta Environmental Consultants, Inc. (Delta) collected soil samples from former USTs, product lines and dispenser islands. In the area of the former gasoline USTs, soil samples T1-S, T1-N, T2-S, T2-N, T2-M, T3-S, and T3-N contained maximum concentrations of TPH-g at 4,400 mg/kg (T2-N), methyl tertiary butyl ether (MTBE) at 89 mg/kg, benzene, toluene, ethylbenzene, and total xylenes (BTEX) at 7.7 mg/kg, 190 mg/kg, 58 mg/kg, and 300 mg/kg, respectively. Soil samples collected under the product lines contained at 430 mg/kg of TPH-g (PL-1), MTBE at 4.7 mg/kg, and BTEX at 0.16 mg/kg, 0.02 mg/kg, 2.1 mg/kg, and 3.6 mg/kg, respectively. Soil samples collected under the dispenser islands contained 2,100 mg/kg of TPH-g, 13 mg/kg of MTBE, and BTEX at 2.0 mg/kg, 20 mg/kg, 30 mg/kg, and 170 mg/kg, respectively. The highest product line (PL-1) and dispenser island soil confirmation sample concentrations (DP-1) were from the southeast dispenser pump area. This area was over-excavated up to 10 ft bgs, with confirmation samples still containing 19 mg/kg of TPH-g, 7.7 mg/kg of MTBE, and BTEX at 0.4 mg/kg, 0.81 mg/kg, 0.42 mg/kg, and 2.6 mg/kg, respectively. The excavations were reportedly backfilled with clean pea gravel (Delta, 2/2/2001).

On May 5, 2001, Delta conducted soil sampling during the removal and upgrade of a sump within the service station building. A Delta representative collected one soil core sample at two feet (ft) below the bottom of the sump following its removal. Laboratory analysis of the soil sample reported 305 mg/kg of TPH-g, 465 mg/kg of TPH-d, and 543 mg/kg of TRPH. No concentrations of benzene, toluene, or MTBE were detected above the laboratory reporting limits. Minor to trace concentrations of ethylbenzene, total xylenes, sec-butylbenzene, p-isopropyltoluene, naphthalene, 2-methylnaphthalene, n-propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene (Delta, 8/9/2001).

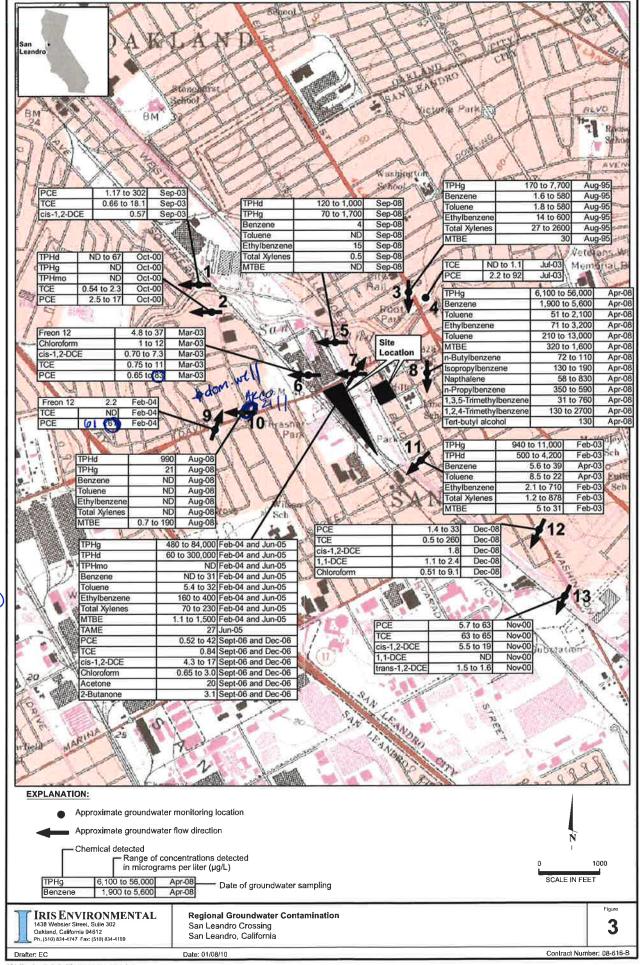
In January 2002, Delta conducted a three-day dual-phase soil vapor and groundwater extraction (DPE) pilot test from the vapor extraction well VW-2, and then limited DPE pilot tests from monitoring wells MW-2 and MW-7. Water levels typically decreased several feet in the extraction wells and exhibited varied responses in the observation wells. Estimated average vapor-phase removal rates were 11.6 pounds of TPH-g per day from well VW-2 and 7.32 pounds of TPH-g per day from well MW-7. Grab groundwater samples collected showed a decreasing trend in petroleum hydrocarbon concentrations from well VW-2 during the short-term pilot test. Concentrations of petroleum hydrocarbons in soil vapor before and after the pilot tests remained approximately the same order of magnitude. A total of 14,900 gallons of water was extracted during the DPE pilot test. Delta concluded that limited DPE was possible at the Site. Even though in the short term they admitted that DPE was limited in its ability to quickly lower groundwater levels to expose impacted soils for soil vapor extraction (SVE), they hypothesized that given enough time of system operation it was reasonable to expect that the groundwater levels could be adequately lowered. Furthermore, Delta noted that even though significant hydrocarbon vapor recovery rates might not be reasonably expected from DPE due to the fine-grained soils, the overall effect of reducing the groundwater levels in itself might allow the soils to be exposed to atmospheric oxygen from SVE, which in turn might enhance the natural attenuation of the impacted soils and groundwater. The test also indicated that just those wells completed in finer-grained materials onsite would be effective in a DPE system, whereas monitoring well MW-2 would not serve as a practical DPE well due to its excessive groundwater production rates (Delta, 7/16/2002).

On November 26, 2003, URS observed the installation of onsite monitoring well MW-8. Eight soil samples were collected from the borehole advanced prior to the installation of well MW-8 with a maximum concentration of 150 mg/kg of TPH-g at 16.5 ft bgs. On March 20 and 21, 2004, URS observed the drilling of six off-site borings (H-1 through H-5 and SB-1) and one on-site boring (SB-2) using direct-push technology. Five of the seven borings (H-1 through H-5) had sufficient groundwater for grab samples. Grab groundwater samples were collected from H-1, H-2, and H-3 while multiple

depth-discrete groundwater samples were collected from borings H-4 and H-5. Borings SB-1 and SB-2 were advanced for lithologic logging purposes and were not sampled. Groundwater samples H-1, H-2, and H-5 at 40 ft bgs contained gasoline range organics (GRO) at 820 micrograms per liter (μ g/L), 260,000 μ g/L, and 53 μ g/L, respectively. Grab groundwater sample H-2 also contained ethylbenzene at 5,800 μ g/L, total xylenes at 11,000 μ g/L, and MTBE at 7,600 μ g/L. Depth-discrete groundwater sample H-4 at 27 ft bgs also contained 0.72 μ g/L of total xylenes. Benzene, toluene, ethanol, tert-butyl alcohol (TBA), di-isopropyl alcohol (DIPE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), 1,2-dichloroethane (1,2-DCA), and 1,2-dibromomethane (EDB) were not detected above the various laboratory reporting limits (URS, 5/6/2004).

During the First Quarter of 2007, a DPE system was started up at the Site that extracted soil vapor and groundwater from wells V-1, V-2, V-3, MW-1, MW-2 (groundwater extraction only), MW-3, and MW-7. The DP system operated until September 2009, when it was shut down due to asymptotic mass removal rates (Broadbent, 2009). In July 2012 the DPE system, which had been sitting idle since 2009, was removed. All equipment was removed and properly disposed of by Belshire Environmental.

.


References

- Broadbent & Associates, Inc., 30 October 2009. Third Quarter 2009 Ground-Water Monitoring and Remediation System Status Report, Atlantic Richfield Company Station #2111, 1156 Davis Street, San Leandro, California; ACEH Case #RO0000494
- Delta Environmental Consultants, Inc., 2 February 2001. *Tank Basin, Product Line and Dispenser Island Sampling Results, ARCO Station No.2111, 1156 Davis Street, San Leandro, California*.
- Delta Environmental Consultants, Inc., 9 August 2001. Sump Sampling Results, ARCO Service Station No.2111, 1156 Davis Street, San Leandro, California.
- Delta Environmental Consultants, Inc., 16 July 2002. Results of a Dual Phase Extraction Pilot Test, ARCO Service Station No.2111, 1156 Davis Street, San Leandro, California.
- EMCON, 8 November 1995. Site Characterization, ARCO Service Station 2111, 1156 Davis Street, San Leandro, California.
- EMCON, 19 September 1996. Soil and Groundwater Assessment Report, ARCO Service Station 2111, San Leandro, California.
- GeoStrategies, Inc., 4 October 1993. Letter Report of The Results of Soil Sampling Associated with Hydraulic Hoist Removal at ARCO Station 2111, 1156 Davis Street in San Leandro, California.
- GeoStrategies, Inc., 13 April 1994. Report of Initial Subsurface Investigation, ARCO Station 2111, 1156

 Davis Street, San Leandro, California.
- GeoStrategies, Inc., 27 September 1994. Report for Waste-Oil Tank Removal Activities at ARCO Station 2111, 1156 Davis Street, San Leandro, California.
- URS Consultants, Inc., 6 May 2004. Additional Subsurface Investigation Report, ARCO Service Station #2111, 1156 Davis Street, Hayward [sic], California.

APPENDIX C

Historic Site Data

N 1300 Ket and

California Environmental Protection Agency Department of Toxic Substances Control

CATERPILLAR FACT SHEET NO. 1

Caterpillar has been conducting soil and groundwater testing mand around the former Caterpillar facility near Davis and Alvarado streets in San Leandro, California. This testing has been conducted as part of an overall study of the area (known as a Remedial Investigation) and indicates that shallow groundwater is affected with volatile organic common and the street of the stree pounds (VOCs). The site is designated as that area encompassed by the limits of VOCs that have been found in the groundwater downgradient of the former Caterpillar facility. As directed by the Department of Caterpillar facility. As directed by the Department Toxic Substances Control (DTSC), the lead regulatory agency overseeing work at the site, Caterpillar has developed an Interim Remedial Measures Plan (IRM Plan) and hasperformed a Public Health Evaluation (PHE) for the study area.

This fact sheet provides:

- Site description and history;
- Summary of soil and groundwater investigations;
- Summary of internm remediat actions;
- Health and environmental issues;
- Puture site activities; and
- Public involvement information.

Throughout this fact sheet, words or phrases in stalicized type are defined in the Glossary.

SITE DESCRIPTION AND HISTORY

The Site was developed in the 1920s by Caterpillar and manufacturing operations in California ceased in 1980. Former Site uses include the administrative headquarters and manufacturing of parts for earth moving equipment.

Several structures have been constructed at the location of the former Caterpillar facility, including a three-story office building and a two-story office com-plex at the comer of Davis and Alvaradostreets. Other portions of the former Caterpillar site may be developed in the future.

SOIL AND GROUNDWATER INVESTIGATIONS

Concurrent with the sale of the Caterpillar properly to local developers, soil and groundwater investigations were conducted on the property, and groundwater monitoring wells were constructed. Analyses of water samples from the monitoring wells indicated that concentrations of several VOCs exceeded. the Maximum Contaminant Levels (MCLs) for drinking water sources established by the State of California. In the summer of 1988, soil remediation was

conducted at the Site. Approximately 16,000 cubic yards of soll containing motor oil, diesel fuel, and VOCs was excayated, remediated, and hauled to a permitted landfill.

Caterpillar subsequently prepared a series of studies, including a Phase 1 Hydrogeologic and Groundwater Quality Investigation, and Phase II Parts Groundwater Quality Investigation, and Phase II Parts A, B, C and D reports. These studies examined site stratigraphy, hydrogeology and concentrations of VOCs in the groundwater at the Site and surrounding area using a variety of subsurface exploratory techniques. These studies also evaluated the subsurface characteristics that may affect applications of groundwater extraction in controlling the migration of groundwater containing VOCs. Caterpillar has also prepared and implemented a groundwater monitoring plan. The reports discussed in this Fact Sheet are available for public review in the information repository located in the San Leandro Public Library. in the Sari Leandro Public Library.

INTERIM REMEDIAL MEASURES

Caterpillar evaluated different methods of remediation in a report entitled "Remedial Alternatives Evaluation. Subsequently, an IRM Plan was prepared for the mitial phase of groundwater remediation. This plan describes the installation of three groundwater extraction and treatment systems. System one will extract and treat the groundwater with the highest

Former Caterpillar Manufacturing Site

concentration of VOCs within the plume, while sys tems 2 & 3 will hydraulically control migration of groundwater containing VOCs. These systems will extract groundwater from wells and remove VOCs from the water by passing it through activated carbon prior to discharge into the storm sewer. The first extraction and treatment system, located near the intersection of Datner and Lucille streets, is in place and start-up is scheduled for June 1993. Two addi. tional systems are plauned for installation in late 1993 near the intersection of Davis Street and Interstate 880 in San Leandro and on 105th Avenue near San Leandro Creek in Oakland.

HEALTH AND ENVIRONMENTAL ISSUES

East Bay Municipal Utility District provides the public water supply to the area. Such water supply is typically used for drinking, cooking, showering and bathing "domestic use"). Residents who are using itus system are not exposed to any contaminants.

Private wells are sometimes used for landscape urigation and for gardening ("iringation"). DTSC does not believe there is a spriftent treally risk associated.

irrigation and for gardening (Tringation). DTSC does not believe there is a significant health risk associated with using groundwater for irrigation.

However, as previously stated in DTSC's publication entitled "Well Testing Information FactSheet" (dated October, 1991). DTSC believes that a polential health risk may exist for San Leandro residents who regularly use their private wells for dranking, cooking, the property of th showering or bathing purposes. DTSC has previously issued a public health advisory to the users of private wells in the area. The advisory recommends that private wells not be used for drinking, cooking, showering or bathing purposes unless the wells have

been tested for common chemical contaminants.

No soil contamination or air pollution problem exists in connection with this site.

FUTURE ACTIVITIES

Cateroillar has evaluated the extent of the VOCs in soil and groundwater on- and off-site, as well as prepared an interim remedial measure plan. Anticipated future work includes the following activities:

Implementation of the IRM Plan:

Quarterly sampling of the groundwater monitoring wells; and

Preparation of a Remedial Action Plan (RAP) after the three groundwater extraction and treatment systems are in operation.

PUBLIC INVOLVEMENT

Throughout the site mitigation process, Caterpillar will elicit comments from community members on the remedial activities and progress with remediation. Caterpillar implemented a Public Par-ticipation Program in 1991, under guidance from the DTSC, to facilitate community involvement in this project. Caterpillar provided copies of reports to the San Leandro Public Library for public review. In ad-dition, community representatives have been inter-viewed and their comments have been incorporated

where and their considers have been incorporated into the Public Participation Plan (PPP).

A public meeting will be held, and a 30-day public comment period will be open, at the completion of the draft RAP. This meeting is anticipated to occur in 1994. Community members are encouraged to review site-related documents and contact DTSC repre sentatives with any questions concerning the informa-tion in this fact sheet and or other site-related issues.

FOR MORE INFORMATION

Copies of site-related documents are available for public review at the information repository located at:

San Leandro Community Library Center, Reference Desk 300 Estudillo Avenue, San Leandro, California 94577 (510) 577-3490

Hours: Monday - Thursday: 10a.m. - 5p.m. Friday: 10a.m. - 5:30p.m., Saturday: 10a.m. - 5p.m.

If you would like more information about the Site, please contact the DTSC Public Participation Coordi-nator or Project Manager by telephone or write:

Mr. Stan Giorgi Public Participation Coordinator 510-540-3920

> Mr. Ted K. Park, P E. Project Manager 510-540-3845

California Environmental Protection Agency Department of Toxic Substances Control Building F, Second Floor 700 Henrz Avenue Berkeley, California 94710-2737

GLOSSARY

Activated Carbon — Highly absorbent carbon, obtained by neating granulated charcoal, which is a reliable technology used to absorb volatile organic compounds and e them from water

Groundwater - Water beneath the earth's surface that flows through soil and rock openings and often serves as a primary source of drinking water.

Hydrogeology — The interrelationships of geologic materials with water.

Interim Remedial Measures Plan (JRM Plan) — A plan to begin implementation of site clean up while the RAP is being developed; also known as "Interim Remedial Action Plan".

Maximum Contaminant Levels (MCLs) -- If well water contains concentrations of a substance greater than the MCL for that substance, the water can not be used for domestic purposes, according to State Law Domestic purposes include drinking, showering or bathing, and cooking.

Monitoring Wells — Specially constructed wells used exclusively for testing water quality.

Public Health Evaluation (PHE) — A study whose purpose is to assess human health risks due to potential exposure to hazardous substances; also known as "Baseline Risk Assessment".

Public Participation Plan - A plan to keep community members informed about progress being made at the

Remedial Action Plan (RAP) — A pian, approved by DTSC, that outlines a specific program leading to the remediation of a site. Once the Draft RAP is prepared, a public meetings is teld and comments from the public are solicited for a period of no less than 30 days. After the public comment period has ended, DTSC approves the final remedy for the site (final RAP) and responds in writing to comments received.

Remedial Alternatives Evaluation --- An evaluation to assess the most technically sound and cost effective alternatives for remediation

Remedial Investigation (RD-An environmental study to determine the type, extent, and source of contamu

Remediation — Action taken at a site to reduce potential risks to human health or the environment.

Stratigraphy — The study of the layering of rocks or sediment deposits and their characteristics in terms of mode or origin and geologic history.

Volatile Organic Compounds (VOCs) - An organic (carbon containing) compound that evaporates (becomes a gas) readily at room temperature. Common forms of VOCs include industrial solvents such as Trichloroethylene and Tetrachloroethylene.

Table 2
Groundwater Analytical Results
ARCO #2111
1156 Davis St., San Leandro, CA

			· · · · · ·		Ethyl-	Total								
Well	Date	GRO	Benzene	Toluene	benzene	Xylenes	Ethanol	1BA	MTBE	DIE	ETBE	TAME	1,2-DCA	1,2-DBA
Number	Sampled	(µg/L)	(µg/L)	(hæ/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(mg/L)	(mg/L)
H-1	03/21/04	820	ND<5	ND<5	ND<5	ND<5	ND<1000	ND<200	550	ND<5	ND<5	ND<5	ND<5	ND<5
H-2	03/21/04	260,000 -	ND<500	ND<500	5,800	11,000	ND<100,000	NID<500	7,600	ND<500	ND<500	ND<500	ND<500	ND<500
H-3	03/2]/04	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<100	ND<20	ND<0.50	ND<0,50	NID<0.50	ND<0.50	ND<0.50	ND<0.50
H-4-27	03/20/04	ND<50	ND<0.50	ND<0.50	ND<0.50	0.72	ND<100	ND<20	ND<0.50	ND<0,50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
H-4-35	03/20/04	MD<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<100	ND<20	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
H-5-27	03/20/04	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<100	ND<20	ND<0.50	NID<0,50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
H-5-32	03/20/04	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<100	ND<20	ND<0.50	NID<0.50	NID<0.50	ND<0.50	ND<0.50	ND<0.50
H-5-40	03/21/04	53	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<100	ND<20	ND<0.50	ND<0.50	NID<0,50	ND<0.50	ND<0.50	ND<0.50

Notes:

GRO = Gasoline Range Organics

BTEX = Benzene, Toluene, Ethyl-benzene, and Total Xylenes analyzed by EPA method 8260B.

MTBE = Methyl tertiary butyl other analyzed by EPA Method 8260B.

TBA = tert-Butyl alcohol DIE = Di-isopropyl ether ETBE = Ethyl tert-butyl ether TAME = tert-Amyl methyl ether 1,2-DCA = 1,2-Dichloroethane 1.2-DBA = 1,2 Dibromoethane (EDB) $\mu e/L$ = Micrograms per liter MSL = Mean sea level

ND< = Not detected at or above specified laboratory method detection limit

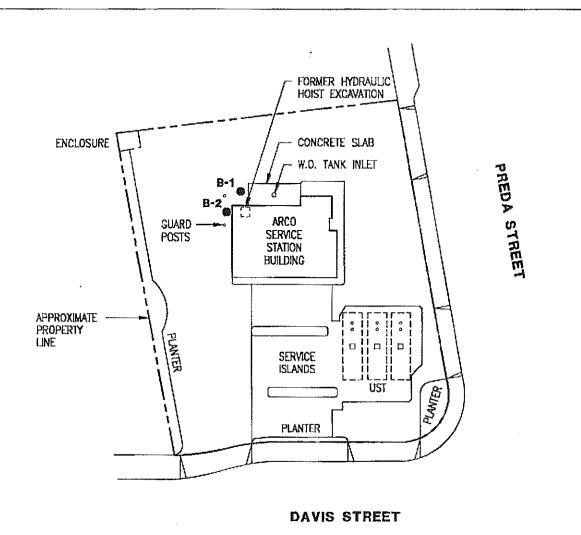
* = Groundwater elevation measurments are from first encountered groundwater during drilling.

Source: The data within this table collected prior to July 2002 was provided to URS by Group Environmental Management Company and their previous consultants.

URS has not verified the accuracy of this information.

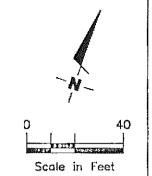
April 13, 1994

TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS FORMER HYDRAULIC HOIST EXCAVATION PIT ARCO Station 2111 San Leandro, California


Sample ID	TEPH as Hydraulic Oi
August 30, 1993	
S-7-HL	27,000
S-7 1/4-HL	22,900
S-8-HL	11,000
S-9-HL	9,200

All results shown in parts per million (ppm).

TEPH: Total extractable petroleum hydrocarbons as hydraulic oil by EPA methods 3550/8015.


Sample Identification:

<u>Ş-7</u> -HL	
	Hydraulic Lift
L	Soil Sample and Depth in Feet

EXPLANATION

Soil boring

Base Map:

ARCO Petroleum Products Company conversion to MP & G tune-up dwg. dated 6/6/85 sht. 1 of 1

GeoStrategies Inc.

SITE PLAN ARCO Service Station #2111 1156 Davis Street San Leandro, California

DATE

REVISED DATE

JOB NUMBER 7940

REVIEWED BY

3/94

2

PLATE

TABLE 2 RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES - Fuel Fingerprint as Hydraulic Oil ARCO Station 2111 San Leandro, California

Sample ID	Fuel Fingerprint as Hydraulic Oil	TPH-G	BTEX	TCLP BTEX	TCLP TPH-G	STLC Lead	RC
March 4, 1	994						
B1-4.5	3,0*	NA	NA	NA	NA	NA	N/
B1-10	<1.0	NA	NA	NA	NA	NA	N/
B1-15	<1.0	NA	NA	NA	NA	NA	N/
B1-20	1.7**	NA	NA	NA	NA	NA	N/
B2-5	1.7	NA	NA	NA	NA	NA	N/
B2-10	< 1.0	NA	NA	NA	NA	NA	N/
B2-15	2.0***	N A	NA	NA	NA	NA	N/
B2-20	11****	NA	NA	NA	NA	NA	N
CSS-1A-1E) NA	<0.0050	<1.0	<50	<0.5	0.18	N

All results shown in parts per million (ppm), except TCLP TPH-G and BTEX are shown in parts per billion (ppb). Fuel fingerprint as hydraulic oil was performed using EPA Methods 3550/8015.

TPH-G = Total petroleum hydrocarbone as gasoline using EPA modified Method 8015.

BTEX == Benzene, toluene, ethylbenzene, and total xylenes using EPA Method 8020.

TCLP = Toxicity Characteristic Leaching Procedure

STLC = Soluble Threshold Limit Concentration RCI = Reactivity, ignitability, and corrosivity

NH = Non hazardous. Composited Sample indicated non-reactivity with sulfide, cyanide, and water, a pH of 7.0 and ignitability of greater than 100 degrees centigrade.

- Unidentified hydrocarbons greater than C9.
- ** = Unidentified hydrocerbons greater ranging from C11 to C15.
- *** = Discrete peaks unidentified.
- **** = Unidentified hydrocarbone ranging from C11 to C24.

Sample Identification:

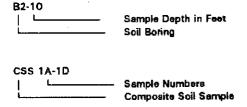


Table 1

Well Details

ARCO Service Station 2111

Well ID	Installation Date	Total Depth of Well (feet)	Casing Diameter (inches)	Screened Interval (feet)
MW-1	7/12/95	27.0	4.0	12.5 - 26.2
MW-2	7/12/95	27.0	4.0	12.0 - 26.2
MW-3	7/13/95	27.0	4.0	11.9 - 26.2
MW-4	7/13/95	25.0	4.0	10.0 - 24.0
MW-5	3/1/96	25.0	2.0	9.4 - 23.4
MW-6	3/1/96	25.0	2.0	10.0 - 25.0
MW-7	2/29/96	27.0	4.0	12.0 - 27.0
V-1	2/29/96	20.0	4.0	5.0 - 20.0
V-2	2/29/96	20.0	4.0	5.0 - 20.0
V-3	2/28/96	20.0	4.0	5.0 - 20.0
V-4	2/28/96	20.0	4.0	6.5 - 19.5

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents

ARCO Service Station 2111
1156 Davis Street, San Leandro, California

Date: 09-17-96

Well Designation	Water Level Field Date	The of Casing Islevation	हैं Depth to Water	Groundwater	Floating Product	S Groundwater Flow Direction	Hydrausic	Water Sample Field Date	TPHG	EPA 8020	т Toluene % BPA 8020	Ethyfbenzene	Total Xylenes	n MTBE P EPA 8020	та Т КРН ў ЕРА 418.1	TPHD
MW-1	08-01-95	39.60	17.45	22.15	ND	NR	NR	08-01-95	<50	<0.5	<0.5	<0.5	<0.5			
MW-I	12-14-95	39.60	17,09	22.51	ND	w	0.002	12-14-95	<50	<0.5	<0.5	<0.5	<0.5	<3		
MW-1	03-21-96	39.60	14.72	24.88	ND	wsw	0.005	03-21-96	<50	<0.5	<0.5	<0,5	<0.5	<3		
MW-1	05-24-96	39.60	15.94	23.66	ND	W	0.003	05-24-96	<50	<0.5	<0.5	<0.5	<0.5	<3		* *
MW-1	08-09-96	39.60	17.89	21.71	ND	WNW	0.01	08-09-96	<50	< 0.5	<0.5	<0.5	<0.5	<3		
MW-2	08-01-95	37. 9 9	15.67	22.32	ND	NR	NR	08-01-95	23000	1300	310	500	3500			* *
MW-2	12-14-95	37.99	15,36	22.63	ND	W	0.002	12-14-95	7300	900	25	180	1000	<200*		~ *
MW-2	03-21-96	37.99	12.84	25,15	ND	wsw	0.005	03-21-96	9600	850	30	280	1400	250		
MW-2	05-24-96	37.99	14.03	23.96	ND	W	0.003	05-24-96	2300	300	<5*	73	310	<25*		
MW-2	08-09-96	37.99	16.10	21.89	ND	WNW	0.01	08-09-96	2800	290	6	75	320	50		
MW-3	08-01-95	39.32	17.00	22.32	ND	NR	NR	08-01-95	<50	< 0.5	<0.5	<0.5	<0.5		600	76^
MW-3	12-14-95	39.32	16.70	22,62	ND	W	0.002	12-14-95	<50	<0.5	<0.5	< 0.5	<0.5	<3	<500	<50
MW-3	03-21-96	39.32	14.17	25.15	ND	wsw	0.005	03-21-96	<50	< 0.5	< 0.5	< 0.5	<0.5	3	<500	<50
MW-3	05-24-96	39.32	15.30	24.02	ND	W	0.003	05-24-96	<50	<0.5	<0.5	<0.5	<0.5	<3	<500	<50
MW-3	08-09-96	39.32	17.58	21.74	ND	WNW	0.01	08-09-96	<50	<0.5	<0.5	<0.5	< 0.5	<3	< 0.5	
MW-4	08-01-95	38.10	15.65	22.45	ND	NR	NR	08-01-95	<50	<0.5	< 0.5	<0.5	<0.5	••		
MW-4	12-34-95	38.10	15.35	22.75	ND	w	0.002	12-14-95	<50	<0.5	<0.5	<0.5	<0.5	<3		
MW-4	03-21-96	38.10	12.74	25.36	ND	wsw	0.005	03-21-96	<50	< 0.5	< 0.5	<0.5	< 0.5	<3	^ -	
MW-4	05-24-96	38.10	14.03	24.07	ND	W	0.003	05-24-96	<50	<0.5	<0.5	<0.5	<0.5	<3		4 4
MW-4	08-09-96	38.10	16.10	22.00	ND	WNW	0.01	08-09-96	<50	<0.5	<0.5	<0.5	<0.5	<3		
MW-5	03-21-96	37.21	12.60	24.61	ND	wsw	0.005	03-22-96	<50	<0.5	<0.5	<0.5	<0.5	82		(* P
MW-5	05-24-96	37.21	13.71	23.50	ND	w	0.003	05-24-96	<50	< 0.5	<0.5	<0.5	<0.5	7	• •	. b
MW-5	08-09-96	37.21	15.60	21.61	ND	WNW	10.0	08-09-96	<50	<0.5	<0.5	< 0.5	< 0.5	8	••	+-

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents

ARCO Service Station 2111
1156 Davis Street, San Leandro, California

Date: 09-17-96

Well Designation	Water Level Field Date	Top of Casing TS Elevation	ಣ್ಣ Depth to Water	Groundwaler SE Elevation	Floating Product	Groundwater Groundwater Flow Direction	Hydravlic Gradient	Water Sample Field Date	声 TPHG 語 LUFT Method	표 Benzene 역 EPA 8020	Toluene 译 EPA 8020	H Ethylbenzene G EPA 8020	Total Xylenes	파 MTBE 참 EPA 8020	் TRPH ரீ EPA 418.1	TPHD
MW-6	03-21-96	37.11	11.55	25.56	ND	wsw	0.005	03-22-96	<50	<0.5	1.9	<0.5	<0.5	<3		
MW-6	05-24-96	37.11	12.80	24.31	ND	W	0.003	05-24-96	<50	< 0.5	< 0.5	< 0.5	< 0.5	6	* *	
MW-6	08-09-96	37.11 No	ot surveyed:	Car parked or	ı well			08-09-96	Not sampled: C	ar parked on	well					
MW-7	03-21-96	38.68	13,32	25,36	ND	WSW	0.005	03-22-96	32000	870	450	970 42	4900	280		
MW-7	05-24-96	38.68	14.58	24,10	ND	W	0,003	05-24-96	22000	570	40		1900	<200*		
MW-7	08-0 9 -96	38.68	15.33	23.35	ND	WNW	10.0	08-09-96	14000	390	<10*	180	470	<200*		

ft-MSL: elevation in feet, relative to mean sea level

MWN; ground-water flow direction and gradient apply to the entire monitoring well network

fuft: foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

µg/L: micrograms per liter

EPA: United States Environmental Protection Agency

MTBE: Methyl-tert-butyl ether

TRPH; total recoverable petroleum hydrocarbons

TPHD: total petroleum hydrocarbons as diesel, California DHS LUFT Method

NR: not reported; data not available or not measurable

ND: none detected

W: west

WSW: west-southwest

NW: northwest

^: chromatogram fingerprint is not characteristic of diesel

*: method reporting limit was raised due to: (1) high analyte concentration requiring sample dilution, or (2) matrix interference

- -: not available

Table 3

Soil Analytical Data

ARCO Service Station 2111

Sample	Date	Depth							
Identification	Sampled	(fe et)	TPHG ²	Benzene	Toluene	Ethylbenzene	Xylenes	TRPH	TPHD
MW-1	7/12/95	6.5	ND	ND	ND	ND	ND	NA	NA
MW-1	7/12/95	11.5	ND	ND	ND	ND	ND	NA	NA
MW-1	7/12/95	16.5	ND	ND	ND	ND	ND	NA	NA
MW-1	7/12/95	21.5	ND	ND	ND	ND	ND	NA	NA
MW-1	7/12/95	26	ND	ND	ND	ND	ND	NA	NA
MW-2	7/12/95	6.5	ND	ND	ND	ND	ND	NA	NA
MW-2	7/12/95	11.5	ND	ND	ND	ND	ND	NA	NA
MW-2	7/12/95	16.5	2	0.045	ND	0.027	0.04	NA	NA
MW-2	7/12/95	19	29	0.26	ND	0.3	1.5	NA	NA
MW-2	7/12/95	21	320	<0.5**	**</td <td>3.4</td> <td>1.4</td> <td>NA</td> <td>NA</td>	3.4	1.4	NA	NA
MW-3	7/13/95	6.5	ND	ND	ND	ND	ND	10	ND
MW-3	7/13/95	11	ND	ND	ND	ND	ND	ND	ND
MW-3	7/13/95	14	ND	ND	ND	ND	ND	ND	ND
MW-3	7/13/95	17	ND	ND	ИD	ND	ND	ND	ND
MW-3	7/13/95	19.5	ND	ND	ND	ND	ND	ND	ND
MW-3	7/13/95	22.5	ND	ND	ND	ND	ND	ND	ND
MW-3	7/13/95	27 .5	ND	ND	ND	ND	ND	ND	ND
MW-3	7/13/95	36	ND	ND	ND	ND	ND	ND	ND
MW-3	7/13/95	40	ND	ND	ND	ND	ND	ND	ND
MW-4	7/13/95	6.5	ND	ND	ND	ND	ND	NA	NA
MW-4	7/13/95	11.5	ND	ND	ND	ND	ND	NA	NA
MW-4	7/13/95	16.5	ND	ND	ND	ND	ND	NA	NA
MW-4	7/13/95	21.5	ND	ND	ND	ND	ND	NA	NA
MW-5	3/1/96	5	ND	ND	ND	ND	ND	NA	NA
MW-5	3/1/96	10	ND	ND	ND	ND	ND	NA	NA
MW-5	3/1/96	15	ND	ND	ND	ND	ND	NA	NA
MW-5	3/1/96	30	ND	ND	ND	ND	ND	NA	NA
MW-6	3/1/96	5	ND	ND	ND	ND	ND	NA	NA
MW-6	3/1/96	10	ND	ND	ND	ND	ND	NA	NA
MW -6	3/1/96	15	ND	ND	ND	ND	ND	NA	NA
MW-6	3/1/96	27	ND	ND	ND	ND	ND	NA	NA

Table 3 Soil Analytical Data **ARCO Service Station 2111**

(continued)

Sample Identification	Date Sampled	Depth (feet)	TPHG ²	Benzene	Toluene	Ethylbenzene	Xylenes	TRPH	TPHD
MW-7	2/29/96	5.5	ND	ND	ND	ND	ND	NA	NA
MW-7	2/29/96	10	ND	0.01	ND	ND	ND	NA	NA
MW-7	2/29/96	15	1	0.11	ND	0.080	0.90	NA	NA
MW-7	2/29/96	21	55	<0.1*	<0.2*	0.80	1.5	NA	NA
MW-7	2/29/96	33	ND	ND	ND	ND	0.006	NA	NA
VW-1	2/29/96	5.5	ND	ND	ND	ND	ND	NA	NA
VW-1	2/29/96	10.5	ND	ND	ND	ND	ND	NA	NA
VW-1	2/29/96	13	1	0.020	ND	ND	ND	NA	NA
VW-1	2/29/96	19.5	40	0.10	ND	0.50	0.80	NA	NA
VW-2	2/29/96	5.5	ND	ND	ND	ND	ND	NA	NA
VW-2	2/29/96	10.5	ND	ND	ND	ND	ND	NA	NA
VW-2	2 /29/9 6	13	4	0.20	<0.025*	0.080	0.080	NA	NA
VW-2	2/29/9 6	15.5	18	0.30	<0.05*	0.30	0.40	NA	NA
VW-2	2 /29 /96	19.5	230	<0.5*	<1*	<1*	2	NA	NA
VW-3	2/28/96	5	ND	ND	ND	ND	ND	NA	NA
VW-3	2/28/9 6	10	ND	0.020	ND	ND	0.005	NA	NA
VW-3	2 /28/9 6	15	ND	ND	ND	ND	ND	NA	NA
VW-3	2 /28/9 6	19.5	76	<0.1*	<0.2*	0.4	0.8	NA	NA
VW-4	2 /28/9 6	5	ND	ND	ND	ND	ND	NA	NA
VW-4	2/28/96	10.5	12	<0.05*	<0.1*	<0.1*	<0.1*	NA	NA
VW-4	2/28/96	15	1,100	*</td <td><2</td> <td><2*</td> <td>3</td> <td>NA</td> <td>NA</td>	<2	<2*	3	NA	NA
VW-4	2/28/96	19.5	420	<0 .5*	<1*	<1*	3	NA	NA

mg/kg = milligrams per kilogram

TPHG = total petroleum hydrocarbons as gasoline

TRPH = total recoverable petroleum hydrocarbons

TPHD = total petroleum hydrocarbons as diesel

NA = not analyzed

indicates laboratory minimum reporting limit raised MRL due to high analyte concentration requiring sample dilution

TABLE 1

ANALYTICAL RESULTS OF SOIL SAMPLES COLLECTED FROM BENEATH THE FORMER WASTE-OIL TANK AT ARCO STATION 2111

1155 Davis Street San Leanciro, California

Sample ID		Depth feet	(Plima (ppm)	TP 12	TPHg (ppm)	THEH.	ing by the second	PCBs/6NAs (ppm)	Cadmium (ppm)	Chromium (ppm)	Nicket (ppm)	Lead (ppm)	Zinc (ppm)
WO-E	8/15/94	10	<10	<1.0	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
wo-w	8/15/94	10.5	<10	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
WO-N	8/15/94	14	12	2.8	ÑA	NA	NA	NA	NA	NΑ	NA	NΑ	NA
wo-s	8/15/94	12.5	<10	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
WO-1	8/15/94	9.5	NA	780	310	7,900	50.5	< წ.0	0.79	38	34	56	50
WO-B	8/15/94	14.5	800	660	NA	NA	NA	NA	NA.	NA	NA	NA	NA
WO-82	8/16/94	18.5	2,000	400	190	2,800	<2.5	< 5.0	0.90	46	8.6	55	53
CCS-1A-1D	9/14/94	ése	840	NA	5.7	960	<0.5	< 0.5	<0.01	0.13	0.81	0.27	4.4
CCS-2A-2D	9/14/94	***	1,400	NA	6.1	2,300	< 0.5	<0.5	0.011	0.11	0.96	1.4	0.63

TPHmo = Total petroleum hydrocarbens reported as motor oil by Standard Method (SM) 5520EAF.

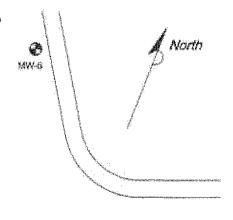
TPHd - Total petroleum hydrocarbons reported as diesel by Environmental Protection Agency (EPA) Methods 5030/8015 (modified).

TPHg - Total potroleum hydrocarbons reported as gasoline by EPA Methods 5030/8015 (modified).

TRPH = Total recoverable petrolsum hydrocarbons by SM 5520E&F.

VOCs ... Veletile organic compounds by EPA Method 8240.

PCBs/BNAs = Polychlorinated biphensis and base/acid neutrals by EPA Method 8270.


ppm = Parts per million.

Metals were analyzed using EPA Methods 6010/7010 series.

Notes: 1.All data listed as <x indicates a not detected concentration.

DISPENSER PUMP & PRODUCT LINES

SAMPLE LO.	SAMPLE DEPTH
DP-1	5.0 FEET
OP-2	8.0 FEET
OP-3	4.0 FEET
DP-4	4.5 FEET
DP-5	4.0 FEET
DP-6	4.0 FEET
DP-7	50 FEET
DP-8	5.0 FEET
PL-1	4 O FEET
PL-2	6.0 FEET
PL-3	5.0 FEET
PL-4	5.0 FEET
OX-1	10.0 FEET
OX-2	9.5 FEET

DAVIS STREET

LEGEND:

(6) V-1

MW-1 MONITORING WELL LOCATION

VAPOR EXTRACTION WELL LOCATION

B-1 SOIL BORING LOCATION

V-4 DESTROYED WELL LOCATION

T-1N TANK BASHN SOIL SAMPLE LOCATIONS

▼ PL-1 FORMER PRODUCT LINE/ DISPENSER PUMP SOIL SAMPLE LOCATIONS

FORMER TANK BASIN

SAMPLEID	SAMPLE DEPTH
T1-N	17 FEET
T2-N	17 FEET
T3-N	16 FEET
T2-M	18 FEET
T1-S	16 FEET
T2-S	16 FEET
T3-S	16 FEET

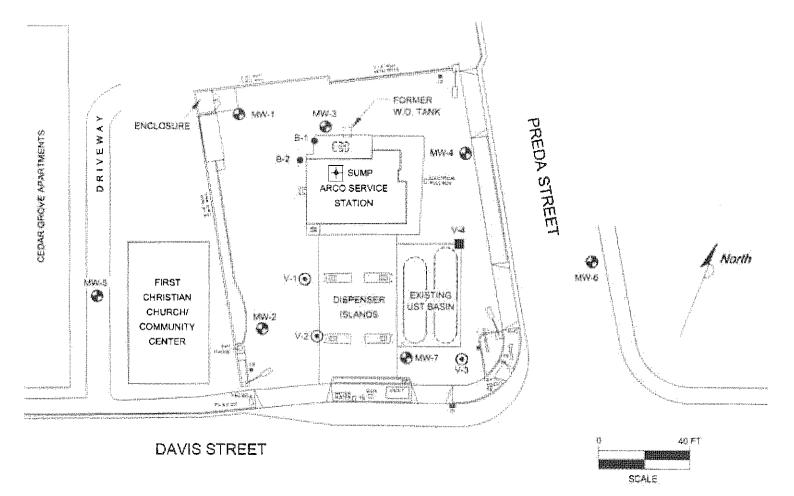
FIGURE 3 SOIL SAMPLE LOCATION MAP

ARCO SERVICE STATION NO. 2111 1156 DAVIS STREET SAN LEANDRO, CALIFORNIA

PROJECT NO DOOLSOE	DRAWN BY TLA 11/02/00	
FILENO	PAEPARED BY TLA	
REVISION NO	REVIEWED BY	

TABLE 1

SOIL SAMPLE LABORATORY ANALYTICAL RESULTS


ARCO Service Station No. 2111 1156 Davis Street San Leandro California

Sample ID	Date	Depth (ft)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	TPH as Gasoline (mg/kg)	MTBE (mg/kg)	Lead (mg/kg)
Dispenser Işl	and Samples	(Bertan)							
DP-1	10/17/00	5.0	2	20	30	170	2,100	13	15
DP-2	10/17/00	8.0	0.77	0.84	7.4	32	440	4.4	13
DP-3	10/17/00	4.0	0.014	0.12	0.26	1.9	31	2,2	15
DP-4	10/17/00	4.5	0.0056	0.059	0.1	0.68	9.4	0.9	12
DP-5	10/17/00	4.0	0.0061	< 0.005	<0.005	<0.005	<1.0	1.5	14
DP-6	10/17/00	4.0	<0.005	<0.005	<0.005	<0.005	<1.0	0.2	25
DP-7	10/17/00	5.0	<0.005	<0.005	<0.005	<0.005	2.2	2.4	13
DP-8	10/17/00	5.0	<0.005	<0.005	<0.005	0.092	<1.0	0.35	13
Product Line	<u>Samplos</u>								
PL-1	10/17/00	4.0	0.16	<0.05	2.1	3.6	430	0.36	14
PL-2	10/17/00	6.0	<0.005	0.02	0.0077	0.6	14	4.7	12
PL-3	10/17/00	5.0	<0.005	<0.005	<0.005	<0.005	<1.0	0.17	12
PL-4	10/1 7 /0 0	5.0	<0.005	<0.005	<0.005	0.043	1.3	0.86	11
Tank Basin S	amples								
T1-S	10/19/00	17.0	0.21	2.1	1.6	8.5	110	33	8.9
T1-N	10/19/00	16.0	4.7	79	30	170	1,900	89	10
T2-S	10/19/00	16.0	1.1	26	14	77	1,100	18	8.1
T2-M	10/19/00	16.0	1.9	38	11	59	800	59	8.3
T2-N	10/19/00	17.0	7.7	190	58	300	4,400	76	13
T3-S	10/19/00	16.0	1.3	8.4	29	120	340	6.5	12
ТЗ-М	10/19/00	16.0	5.0	76	28	140	1,800	83	12
Soil Overexça	ayatlon Samt) es							
OX-1	10/26/00	10.0	0,4	<0.005	<0.005	0.0091	2.7	1.5	9.7
OX-2	10/26/00	9.5	0.18	0.81	0.42	2.6	19	7.7	11
Soil Stockpile	Results								
STK-1	10/19/00	Composite	0.019	0.017	0.052	0.27	8	NA	11
STK-2	10/26/00	Composite	0.054	0.48	0.64	3.8	86	0.91	9.6

TPH = Total petroleum hydrocarbons.

MTBE = Methyl tertiary butyl ether (analyzed by EPA Method 8260)

NA = Not Analyzed

LEGENO:

MONITORING WELL LOCATION

(a) VAPOR EXTRACTION WELL LOCATION

SDA SORING LOCATION

DESTROYED WELL LOCATION

-- SUMP SUMP SAMPLE LOCATION FIGURE 2 SITE MAP

ARCO SERVICE STATION NO. 2111 1150 DAVIS STREET SAN LEANDRO, CALIFORNIA

PRINTECT NO.	DKAMET	
(5006-106	11,4.832661	
	PREPARED SY	
2433,1	技术	
HEVISKON NO.	REVENED BY	
2		

TABLE 1

SOIL CHEMICAL ANALYTICAL DATA

ARCO Service Station No. 2111 1156 Davis Street San Leandro, California

د میدادید ده D	Lake Collected	~~~~ (te qt)	i ilitati (mo /ka)			Total Xylenus (mg/kg)	i Prig (mg/kg)	TPHd (mg/kg)	/ALBE (mg/kg)	PCB (mg/kg)	TRPH (mg/kg)	VOC 1 (mg/kg)	VOC ⁷ (mg/kg)	SVOC (mg/kg)	Total Motors (mg/kg)
Sump	5/5/2001	2		<0.025	0.0616	0.209	305	465	*0.25	ND	543	ND	0.637°, 1.11°, 4.47°, 0.575°, 9.81°, 3.30′, 0.219°	0.51 ¹ , 0.61 ^c	38 ⁰ , 52 ⁴ , 2.7,60

Explanation	Analytical Methods
BTEX = benzeno, idiushe, othybenzone, and idel xylenes	DHS LUFT
TPMp = Intel peinsieum hydrocarbona as gesoline	DHS LUFT
TFHd = total polypleum hydrocarbons as diesel	DHS LUFT
MTBE = mothyl tentary butyl ather	DHSLUFT
PCB = polychicanated biphonyle	EPA Method 8082
TGPH = total recoverable perioderen hydrocarbons (oil & grease)	APHA/EPA Melhods
VOC = volable organic compounds	
Vec	EPA Mothica 8010
VOC*	EPA Method 8200A
SVOC = semi-volatile organic compounds	EPA Method 82700
Total Matals	EPA 60097000 Series Method

*= sec-burylbenzene, *= p-lsopropylsukiene, *= gaphtilaliena,

w n-propychoczene 1,2,4-trimetinosnicene.

1,3,5-trimethylbenzens m.p-xylena chromlum nicket lead, zinc

a g-methylnaphthalene

ND = Non detact (see laboratory reports for specific detection levels)

TABLE 1
PILOT TEST AIR ANALYTICAL DATA

ARCO Service Station No. 2111 1156 Davis Street San Leandro, California

Sample I.D.	Date Sampled	Time	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Total Xylenes (ppmv)	TPHg (ppmv)	MTBE (8020) (ppmv)	MTBE (8260) (ppmv)
VW-2 (V-2)	01/07/02	10:45	4.1	0.82	1.8	4.5	55ª	84	84
1-7-02 (V-2)	01/07/02	16:00	2.1	0.34	0.68	1.5	25	NA	64
1-8-02 (V-2)	01/08/02	8:00	2.9	1.0	1.3	2.2	97	NA	209
1-9-02 (V-2)	01/09/02	8:00	5.5	2.3	2.1	3.8	210	NA	179
1-10-02 (V-2)	01/10/02	8:00	3.9	1.3	1.9	4.2	190	53	95
1-11 -0 2 (MW-7)	01/11/02	9:00	2.0	2.3	0.85	2.3	80	72	128

^a = Hydrocarbon pattern is present in the requested fuel quantitation but does not resemble the pattern of the requested fuel.

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl tertiary butyl ether analyzed by EPA Method 8021B unless otherwise noted

μg/L = Micrograms per liter

NA = Not analyzed

TABLE 2 PILOT TEST WATER ANALYTICAL DATA

ARCO Service Station No. 2111 1156 Davis Street San Leandro, California

Sample I.D.	Date Sampled	Time	Benzene (μg/L)	Toluene (μg/L	Ethyl- benzene (µg/L)	Total Xylenes (μg/L)	TPH (μ g /L)	MTBE (8020) (μg/L)	MTBE (8260) (μg/L)
VW- 2 (V-2)	01/07/02	10:50	860	<500	<500	1,400	<50,000	160,000	180,000
1-7-02 (V-2)	01/07/02	16:00	240	51	93	280	18,000ª	NA	98,000
1-8-02 (V-2)	01/08/02	8:00	42	11	<0.5	53	1,800	NA	16,000
1-9-02 (V-2)	01/09/02	8:00	46	45	81	360	6,600	NA	8,100
1-10-02 (V-2)	01/10/02	8:00	28	<20	25	71	<2,000	6,300	5,600
1-11-02 (MW-7)	01/11/02	9:00	<20	23	<20	52	<2,000	6,800	5,800

^{* =} Hydrocarbon pattern is present in the requested fuel quantitation but does not resemble the pattern of the requested fuel.

TPH ≈ Total Petroleum Hydrocarbons

MTBE = Methyl tertiary butyl ether analyzed by EPA Method 8021B unless otherwise noted

μg/L = Micrograms per liter

NA = Not analyzed

TABLE 3

DUAL PHASE EXTRACTION PILOT TEST VAPOR RESULTS TABLE

V-2 PILOT TEST VAPOR EXTRACTION RESULTS - 2002

Date & Time Sampled	Influent Flowrate (ft ³ /min)		Influent Non- methane Hydrocarbons by FID (ppmv)	Laboratory Benzene Influent (ppmv)	TPH Extraction Rate (lbs/hour)	Non- Methane Hydrocarbons by FID (lbs/hour)	Benzene Extraction Rate (lbs/hour)	Cumulative Volume of Processed Air (cubic feet)	Cumulative Laboratory TPHg Extraction (lbs)	FID Non- Methane Hydrocarbon Extraction (lbs)	Total Hours Operated	Change in Hours of Operation
1/7/02 9:00	236	NA	260	NA	NG	0.82	NC	0	NÇ	0.0	0.00	0.00
1/7/02 9:30	236	NA	260	NA	NC	0.94	NC	7,080	NC	0.4	0.50	0.50
1/7/02 9:45	226	NA	262	NA	NC	0.91	NC	10,470	NC	0.7	0.75	0.25
1/7/02 10:00	226	NA	216	NA	NC	0.75	NC	13,860	NC	0.9	1.00	0.25
1/7/02 10:30	247	NA	112	NA	NC	0.42	NC	21,270	NC	1.2	1,50	0.50
1/7/02 10:45	247	55	112	4.1	0.18	0.37	0.34	24,975	0.3	1.3	1.75	0.25
1/7/02 12:00	238	NA	197	NA	NC	0.72	NC	42,825	NC	2.0	3.00	1,25
1/7/02 16:00	260	25	884	2.1	0.09	3.06	0.18	105,225	1.0	9.5	7.00	4.00
1/7/02 17:00	263	NA	808	NA	NC	3.26	NC	121,005	NC	12,7	8.00	1.00
1/7/02 18:00	261	NA	1,087	NA	NC	4.36	NC	136,665	NC	16.5	9.00	1.00
1/8/02 8:00	274	97	381	2.9	0.35	1.39	0.27	366,825	4.5	56.7	23.00	14.00
1/9/02 8:00	263	210	417	5.5	0.74	1.46	0.48	745,545	17.6	91,0	47.00	24.00
1/10/02 8:00	224	190	381	3.9	0.57	1.14	0.29	1,068,105	33.3	122.1	71.00	24.00
1/10/02 15:45	261	190*	185	3.9*	0.66	0.64	0.34	1,189,470	38.0	129.0	78.75	7.75

TPHg = Total petroleum hydrocarbons as gasoline.

ppmv = Parts per million by volume.

* = assumed to be same as previous sample results

NC = Not Calculated

NA = Not Analyzed

Gallons of Vapor Equivalent Gasoline Removed: 6.2
Average Vapor Gallons Removed per Minute: 0.001

Cumulative

TABLE 3 DUAL PHASE EXTRACTION PILOT TEST VAPOR RESULTS TABLE

ARCO Service Station No. 2111 1156 Davis Street San Leandro, California

MW-7 PILOT TEST VAPOR EXTRACTION RESULTS - 2002

Date & Time Sampled	Influent Flowrate (ft³/min)	Laboratory TPHg Influent (ppmv)	Influent Non- methane Hydrocarbons by FID (ppmv)	Laboratory Benzene Influent (ppmv)	Laboratory TPHg Extraction Rate (lbs/hour)	Non- Methane Hydrocarbons by FID (lbs/hour)	Benzene Extraction Rate (lbs/hour)	Cumulative Volume of Processed Air (cubic feet)	Cumulative Laboratory TPHg Extraction (lbs)	Cumulative FID Non- Methans Hydrocarbon Extraction (lbs)	Total Hours Operated	Change in Hours of Operation
1/10/02 16:00	NM	NA	NM	NA	NC	NC	NC	0	0.0	NC	0.00	0.00
1/10/02 17:00	NM	NA	NM	NA	NC	NC	NC	15,000	0.3	NC	1.00	0.00 1.00
1/11/02 9:00	250	80	NM	2	0.31	NC	0.17	255,000	5.2	NC	17.00	16.00
1/11/02 10:00	NM	NA	NM	NA	NC	NC	NC	270,000	5.5	NC	18.00	1.00
1/11/02 11:00	NM	NA	NM	NA	NC	NC	NC	285,000	5.8	NC	19.00	1.00
1/11/02 12:00	NM	NA	NM	NA	NC	NC	NC	300,000	6.1	NC	20.00	1.00

TPHg = Total petroleum hydrocarbons as gasoline.

ppmv = Parts per million by volume.

Gallons of Vapor Equivalent Gasoline Removed:

Average Vapor Gallons Removed per Minute:

1.0 0.001

Note: Laboratory results and flow rates are assumed to be consistant for entire event on MW-7. FID did not function properly during test on MW-7 therefore, no recordings were made.

NC = Not Calculated

NA = Not Analyzed

TABLE 3 DUAL PHASE EXTRACTION PILOT TEST VAPOR RESULTS TABLE

ARCO Service Station No. 2111 1156 Davis Street San Leandro, California

MW-2 PILOT TEST VAPOR EXTRACTION RESULTS - 2002

Date & Time Sampled	Influent Flowrate (ft³/min)		Influent Non- methane Hydrocarbons by FID (ppmv)	Laboratory Benzene Influent (ppmv)	Laboratory TPHg Extraction Rate (lbs/hour)	Non- Methane Hydrocarbons by FID (Ibs/hour)	Benzene Extraction Rate (lbs/hour)	Cumulative Volume of Processed Air (cubic feet)	Cumulative Laboratory TPHg Extraction (lbs)	Cumulative FID Non- Methane Hydrocarbon Extraction (lbs)	Total Hours Operated	Change in Hours of Operation
1/11/02 12:00	292	NA	10,176	NA	NC	45.65	NC	0	NC	0.0	0.00	Ö. 0 0
1/11/02 12:15	NM	NA	2,406	NΑ	NC	10.79	NC	4,380	NC	7.1	0.25	0.25
1/11/02 12:30	NM	NA	971	NA	NC	4.36	NC	8,760	NC	8.9	0.50	0.25
1/11/02 13:00	NM	NA	690	NA	NC	3.09	NC	17,520	NC	10.8	1.00	0.50
1/11/02 14:00	NM	NA	300	NA	NC	1.35	NC	35,040	NC	13.0	2.00	1.00
1/11/02 15:00	NM	NA	351	NA	NC	1.58	NC	52,560	NC	14.5	3.00	1.00
1/11/02 17:00	NM	NA	351	NA	NC	1.58	NC	87,600	NC	17.6	5.00	2.00

TPHg = Total petroleum hydrocarbons as gasoline.

ppmv = Parts per million by volume.

NC = Not Calculated
NA = Not Analyzed

Gallons of Vapor Equivalent Gasoline Removed:
Average Vapor Gallons Removed per Minute:

2.9

0.016

TABLE 4

DUAL PHASE EXTRACTION SYSTEM FIELD DATA

Pilot Test on V-2	2			System R	eadings		V	·-2	M\	N-2	MV	V-7	v	-1		-3	MV	W-1
Date	Time	System Vacuum ("Hg)	System Conc (ppmv)	System Flowrate (ft ³ /min)	Waler Meter (gallons)	Total Discharge (gpm)	Vacuum Reading ("H₂O)	Depth to Water (Feet)	Vacuum Reading ("H₂O)	Depth to Water (Feet)	Vacuum Reading ("H ₂ O)	Depth to Water (Feet)	Vacuum Reading ("H ₂ O)	Depth to Water (Feet)	Vacuum Reading ("H _z O)	Depth to Water (Feet)	Vacuum Reading ("H₂O)	Depth to Water (Feet)
1/7/02 9:00	9:00	24	260.3	236	NM	NC	NM	13.48	NM	13.20	NM	13,60	NM	14.14	NM	12,99	NM	15,09
1/7/02 9:30	9:30	24	260.3	236	2,552,890	NC	265	NM	0.10	13.22	0.00	13.62	0.00	14.12	0.00	13.00	0.00	15.12
1/7/02 9:45	9:45	24	261,7	226	NM	NC	265	NM	0.10	13.21	0.00	13.61	0.00	14.14	0.00	13.00	0.00	15.12
1/7/02 10:00	10:00	24	216.4	NM	2,552,980	3.00	NM	NM	0.05	13.24	0.01	13.60	0.00	14.16	0.00	13.01	0.02	15.13
1/7/02 10:30	10:30	24	112.4	247	NM	NC	265	NM	0.05	13.25	0.01	13,60	0.00	14.16	0.00	13.01	0.02	15.14
1/7/02 11:00	11:00	24	60,3	224	NM	NC	NM	NM	0.05	13.24	0.01	13.60	0.00	14.25	0.00	13.00	0.02	15.14
1/7/02 12:00	12:00	20	196,7	238	NM	NC	220	NM	0.05	13,25	0.01	13,60	0.00	14.15	0.00	13.00	0.02	15,14
1/7/02 13:00	13:00	22	320,4	247	2,553,140	0.8 9	230	NM	0.05	13.25	0.01	13.60	0.00	14.16	0.00	13.01	0.02	15.14
1/7/02 14:00	14:00	22	387,4	263	NM	NC	230	NM	0.05	13.25	0.01	13.60	0.00	14.16	0.00	13.01	0.02	15.14
1/7/02 15:00	15:00	NM	System D	OWIT	NM	NC	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
1/7/02 16:00	16:00	NM	883,7	260	NM	NC	NM	NM	0.05	13.24	0.01	13.60	0.00	14.15	0.00	13.00	0.02	15.14
1/7/02 17:00	17:00	22	807.6	263	2,553,250	0.46	230	NM	0.05	13.25	0.01	13.60	0.00	14.15	0.00	13.01	0.02	15.14
1/7/02 18:00	18:00	24	1087	261	NM	NC	265	NM	0.05	13.25	0.01	13.61	0.00	14.15	0.00	13.01	0.02	15.14
1/8/02 8:00	8:00	24	380.7	274	2,554,700	1.61	265	15+	NM	13.31	NM	13.64	NM	14.24	NM	13.04	NM	15,17
1/9/02 8:00	8:00	24	416.6	263	2,557,220	1.75	265	19+	80.0	13.35	0.00	13.68	0.00	14.25	0.00	13.11	0.02	15.25
1/10/02 8:00	8:00	24	3B0,7	224	2,559,570	1.63	240	NM	0.22	13.39	0.00	13.69	0.00	14.29	0.00	13.16	0.03	15.27
1/10/02 15:45	15:45	24	184.7	261	2,560,010	0,95	240	19+	0.22	13.46	0.00	13.70	0.00	14.36	0.00	13.20	0.02	15.30
Totals/Avg:	4725	23.3	388.6	248.2	7,120	1.51	248.3	5,52		0.26		0.10		0.22		0.21		0.21

ppmv = parts per million by volume,

"Hg = inches of Mercury

"H₂O = inches of water collumn

NM = Not Measured

TABLE 4

DUAL PHASE EXTRACTION SYSTEM FIELD DATA

ARCO Service Station No. 2111 1156 Davis Street San Leandro, California

Pilot Test on MV	V-7			System F	Readings		٧	'- 2	Mι	N-2	M	N -7	v	'-1	1.0			
Date	Time	System Vacuum ("Hg)	System Conc (ppmv)	System Flowrate (ft ³ /min)	Water Meter (gallons)	Total Discharge (gpm)	Vacuum Reading ("H₂O)	Depth to Water (Feet)	Vacuum Reading ("H ₂ O)	Depth to Water (Feet)		Depth to Water		Depth to	Vacuum Reading	Water	Vacuum Reading	Water
1/10/02 16:00	16:00	24	NM	250	2,560,010	NC	NM	13.69	NM	13.45	240.00			` '	("H _z O)	(Feet)	("H ₂ O)	(Feet)
1/11/02 12:00	12:00	24	NM	250	2,561,910	1.58	NM	13.67	NM	13,50	240.00	13.77 13.89	NM NM	14.35 14.37	NM NM	13.20 13.20	NM NM	15.32
Totals/Avg:	1200			250	1,900	1.58		-0.02		0,05	240.0	0.12		0.02	11111	0.00	NIVI	15.35 0.03

Pilot Test on MV	V-2			System F	Readings		v	-2	M	N-2	M	V -7	V	'-1	v			
Date	Time	System Vacuum ("Hg)	, , -	System Flowrate (ft ³ /min)	Water Meter (gallons)	Total Discharge (gpm)	Vacuum Reading ("H₂O)	Depth to Water (Feet)	Vacuum Reading ("H₂O)	Depth to Water (Feet)		Depth to Water	Vacuum Reading	-	Vacuum Reading	Water	Vacuum Reading	
1/11/02 12:00 1/11/02 17:00	12:00 17:00	18 18	10,176 351,4	342 292	2,561,910 2,567,870	NC 19.87	NM NM	13.67 13.71	NM 150.00	13.50 13.69	NM	13.80	("H ₂ O)	14.37	("H ₂ O) NM	(Feet) 13,21	("H _z O) NM	(Feet) 15.35
Totals/Avg:	300			317	5,960	19.87		0.04	150.00	0,19	NM	13.87 0.07	NM	0.01	NM	13.20 -0.01	NM	15.35 0.00

pprnv = parts per million by volume.

"Hg = inches of Mercury

"H_zO = inches of water collumn

NM = Not Measured

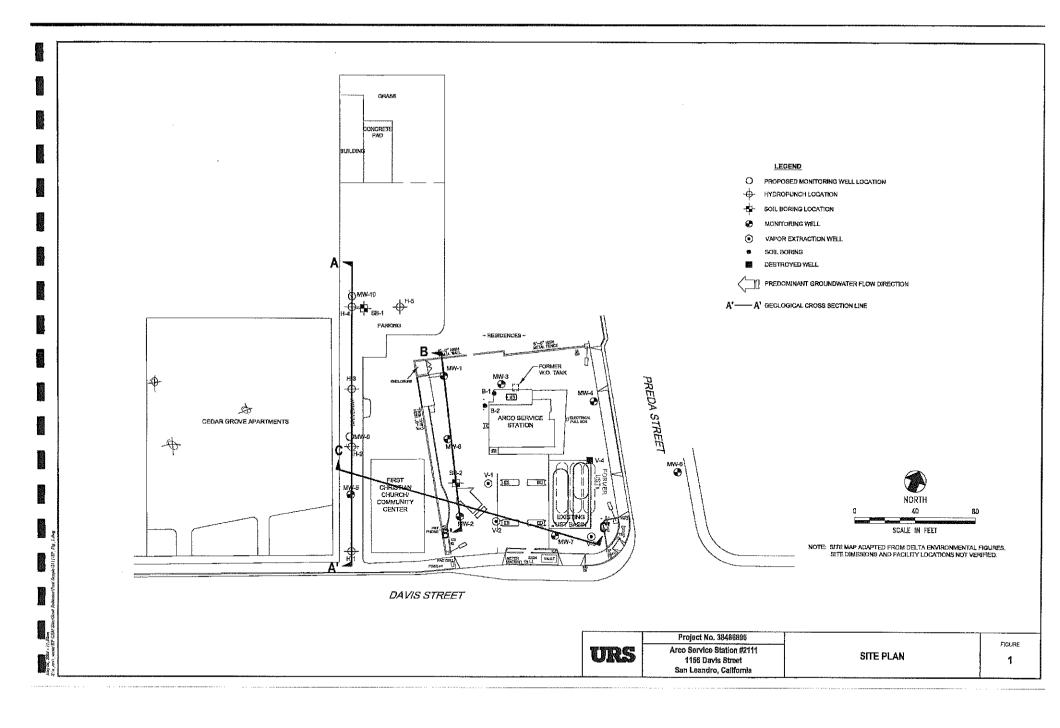


Table 1 Soil Analytical Results ARCO #2111 1156 Davis St., San Leandro, CA

Well Number	Date Sampled	TPH-g (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	TBA (mg/kg)	MTBE (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)
MW-8-5	11/26/04	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0,005	ND<0,010	ND<0.005	NT><0.005
MW-8-10	11/26/04	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.010	NT)<0.005	ND<0.010	ND<0.005	ND×0.005
MW-8-15	11/26/04	2.1	ND<0.005	NI⊃<0.005	ND<0.005	ND<0.005	0.017	0.032	ND<0,010	ND<0.005	ND<0.005
MW-8-16.5	11/26/04	150 ~	ND<0.5	ND<0.5	0.60	0.84	NTD<2.5	ND<0.50	NIX1.0	ND<0.5	25
MW-8-23	11/26/04	ND<5,0	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND<0.050	1.4	ND<0.050	ND<0.025	ND<0.025
MW-8-28	11/26/04	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.010	0.12	ND<0.010	ND<0.005	ND<0.005
MW-8-33	11/26/04	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.010	0.037	ND<0.010	ND<0.005	ND<0.005
MW-8-38	11/26/04	NID<1.0	NID<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.010	0.027	ND<0.010	ND<0.005	ND<0.005

Notes:

TPH-g = Total Petroleum Hydrocarbons analyzed by EPA method 8260B.

BTEX = Benzene, Toluene, Ethyl-benzene, and Total Xylenes analyzed by EPA method 8260B.

MTBE = Methyl tertiary butyl ether analyzed by EPA Method 8260B.

TBA = tert-Butyl alcohol
DIPE = Di-isopropyl ether
ETBE = Ethyl tert-butyl ether
TAME = tert-Arnyl methyl ether
1,2-DCA = 1,2-Dichloroethane
1,2-DBA = 1,2 Dibxomoethane (EDB)

mg/kg = Micrograms per kilogram
MSL = Mean sea level

ND< = Not detected at or above specified laboratory method detection limit

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents

								·									
Well Designation	Water Level Field Date	Top of Casing E Elevation	Depth to	Free Product	Groundwater	Water Sample Field Date	TPHG E LUFT Method	EPA 8021B*	ਜ Toluene ਯੂ EPA 8021B*	Ethylbenzen	Total T Xylenes EPA 8021B*	エ MTBE で EPA 8021B*	TE MTBE E EPA 8260	TRPH	म LUFT ्रि Method	B Dissolved ⊠ Oxygen	र Purged/ न Not Purged
MW-1	08-01-95	39.60	17.45	ND	22.15	08-01-95	<50	<0.5	-0.5	-O 5	: 40.5		•				
MW-1	12-14-95	39.60	17.43	ND	22.13	12-14-95	<50	<0.5 <0.5	< 0.5	<0.5	<0.5						
MW-1	03-21-96	39.60	14.72	ND	24.88	03-21-96	<50	<0.5	< 0.5	<0.5	<0.5	<3					
MW-1	05-24-96	39.60	15.94	ND	23,66	05-21-96	<50	<0.5	<0.5 <0.5	<0.5	< 0.5	<3					
MW-1	08-09-96	39.60	17.89	ND	21.71	08-09-96	<50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<3					
MW-1	11-06-96	39.60	18.66	ND	20.94	11-06-96	<50	<0.5	<0.5	<0,5 <0,5	< 0.5	<3					
MW-1	03-24-97	39.60	16.13	ND	23.47	03-24-97	<50 <50	<0.5	<0.5	<0.5	< 0.5	<3					
MW-1	05-27-97	39.60	17.23	ND	22.37	05-24-97	<50 <50	<0.5	<0.5 <0.5		< 0.5	<3					
MW-1	08-07-97	39.60	18.68	ND	20.92	08-07-97	<50 <50	<0.5	<0.5	<0.5	< 0.5	<3					
MW-1	11-10-97	39.60	19.19	ND	20.41	11-10-97	<50	<0.5	<0.5	< 0.5	< 0.5	<3 -3					
MW-1	02-16-98	39.60	12.61	ND	26.99	02-16-98	<50 <50	<0.5	<0.5	<0.5 <0.5	< 0.5	<3					
MW-1	04-15-98	39.60	14.30	ND	25.30	04-15-98	<50	<0.5	<0.5		< 0.5	<3 <3					
MW-1	07-24-98	39.60	16.40	ND	23.20	07-24-98	<50	<0.5	<0.5	<0.5 <0.5	< 0.5	<3 <3					
MW-1	10-19-98	39.60	17.90	ND	21.70	10-19-98	<50 <50	<0.5	<0.5 <0.5	<0.5	< 0.5	<3 <3					
MW-1	01-28-99	39.60	16.85	ND	22.75	01-28-99	<20,000	580	<200	<200	<0.5 320	_					
MW-1	06-25-99	39.60	17.35	ND	22.73	06-25-99	730	140	√∠00 5	<200 3	320 2	14,000				0.70	NT.
MW-1	08-25-99	39.60	18.20	ND	21.40	08-25-99	730 390	66	8.5	<2.5	8,6	7,700				0.79	NP
MW-1	11-10-99	39.60	17.77	ND	21.83	11-10-99	3 9 0 360	70	a.s 13	2.2		3,700 980				1.56	NP
MW-1	02-09-00	39.60	16.25	ND	23.35	02-09-00	190	4.5	0.9	<0.5	13		~ -			0.30	NP
141.44-1	02-09-00	39.00	10.23	ND	23.33	02-09-00	190	4.5	0.9	\0. 3	12	3,500				0.53	NP
MW-2	08-01-95	37.99	15.67	ND	22.32	08-01-95	23,000	1 200	310	500	2 500						
MW-2	12-14-95	37.99	15.36	ND	22.52	12-14-95	7,300	1,300 900		180	3,500	<200					
MW-2	03-21-96	37.99	12.84	ND	25.15	03-21-96			25 20		1,000	<200					
MW-2 MW-2	05-21-96	37.99 37.99		ND			9,600	850	30	280	1,400	250					
MW-2 MW-2	03-24-96	37.99 37.99	14.03 16.10	ND ND	23.96 21.89	05-24-96 08-09-96	2,300	300	<5 6	73 75	310	<25					
191 44 -7	00-03-90	31.77	10.10	1417	21.89	U8-U7-90	2,800	290	6	75	320	50					

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents

Well Designation	Water Level Field Date	Top of Casing C Elevation	Depth to	Free Product	Groundwater Elevation	Water Sample Field Date	TPHG TE LUFT TE Method	E Benzene	두 Toluene 를 EPA 8021B*	Ethylbenzen E e EPA E 8021B*	Total E Xylenes EPA 8021B*	표 MTBE 편 EPA 8021B*	≖ MTBE EPA 8260	TRPH	F LUFT	B Dissolved © Oxygen	도 Purged/ 국 Not Purged
MW-2	11-06-96	37.99	16.98	ND	21.01	11-06-96	750	7.6		1.6		110					
MW-2	03-24-97	37.99	14.22	ND	23.77	03-24-97		76	<1	15	51	110					
MW-2	05-24-97	37.99	15.42	ND	22.57	05-24-97	790	18	<1	2	6	280					
MW-2	08-07-97	37.99	16.92	ND	22.37	08-07-97	750	14	<1	<1	10	150					
MW-2	11-10-97	37.99	17.52	ND	20.47		360	31	<2.5	<2.5	15	260					
MW-2	02-16-98	37.99 37.99	12.04	ND		11-10-97	1,300	82	<5	14	49	550					
MW-2	04-15-98	37.99 37.99	12.04	ND	25.95	02-16-98	<2,500	<25	<25	<25	<25	4,200					
MW-2	07-24-98	37.99		ND	25.65	04-15-98	<10,000	<100	<100	<100	<100	7,300					
MW-2	10-19-98	37.99 37.99	14.45		23.54	07-24-98	<2,500	<25	<25	<25	<25	1,500					
MW-2 MW-2	01-28-99		16.08	ND	21.91	10-19-98	<1,000	18	<10	<10	<10	1,100					
16	_	37.99	15.59	0.02	22.41 [1]	01-28-99	160,000	3,000	24,000	4,400	31,000	23,000					
MW-2	06-25-99	37.99	19.20	3.73[4]	21.51 [1]	06-25-99	120,000	6,900	21,000	2,600	19,000	18,000	17,000[3]			0.49	NP
MW-2	08-25-99	37.99	16.49	0.02	21.51 [1]	08-25-99	92,000	2,200	16,000	3,200	19,000	11,000	9,400[3]			0.84	NP
MW-2	11-10-99	37.99	16.08	ND	21.91	11-10-99	56,000	2,400	5,900	1,500	10,000	17,000	21,000[3]			0.41	NP
MW-2	02-09-00	37.99	14.85	ND	23.14	02-09-00	1,700	270	14	17	21	70,000	55,000[3]			0.97	NP
MW-3	08-01-95	39.32	17.00	ND	22.32	08-01-95	-50	-0 F	-O. C	-0.5	-0.5						
MW-3	12-14-95	39.32	16.70	ND ND	22.32	12-14-95	<50	< 0.5	<0.5	<0.5	<0.5			600	76[2]		
MW-3	03-21-96					-	<50	< 0.5	<0.5	<0.5	<0.5	<3		<500	<50		
MW-3	05-24-96	39.32	14.17	ND	25.15	03-21-96	<50	<0.5	< 0.5	<0.5	<0.5	<3		<500	<50		
MW-3		39.32	15.30	ND	24.02	05-24-96	<50	<0.5	<0.5	<0.5	<0.5	<3		<500	<50		
\$E	08-09-96	39.32	17.58	ND	21.74	08-09-96	<50	<0.5	<0.5	<0.5	<0.5	<3		<500			
MW-3	11-06-96	39.32	18.33	ND	20.99	11-06-96	<50	<0.5	<0.5	<0.5	<0.5	<3					
MW-3	03-24-97	39.32	15.44	ND	23.88	03-24-97	<50	<0.5	<0.5	<0.5	<0.5	<3					
MW-3	05-27-97	39.32	16.75	ND	22.57	05-28-97	<50	<0.5	<0.5	<0.5	<0.5	<3					
MW-3	08-07-97	39.32	18.35	ND	20.97	08-07-97	<50	<0.5	< 0.5	<0.5	<0.5	<3					
MW-3	11-10-97	39.32	18.83	ND	20.49	11-10-97	<50	<0.5	< 0.5	<0.5	<0.5	<3					

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents

							·										
Well Designation	Water Level Field Date	Top of Casing	Depth to	Free Product	Groundwater	Water Sample Field Date	TPHG	표 Benzene 역 EPA 8021B*	ェ Toluene 은 EPA 8021B*	Ethylbenzen E e EPA e 8021B*	Total T Xylenes EPA 8021B*	는 MTBE 는 EPA 8021B*	⊤ MTB E இ EPA 8260	TRPH F EPA 418.1	五 LUFT 阿 Method	த Dissolved ர Oxygen	ट्र Purged/ ट्र Not Purged
MW-3	02-16-98	39.32	11.99	ND	27.33	02-16-98	~E0	-0.5	40.5	.0.5					· -		
MW-3	04-15-98	39.32	13.75	ND	25.57	04-15-98	<50	< 0.5	<0.5	<0.5	<0.5	<3					
MW-3	07-24-98	39.32	15.90	ND	23.42	07-24-98	<50	< 0.5	< 0.5	<0.5	<0.5	<3					
MW-3	10-19-98	39.32	17.45	ND	23.42	10-19-98	<50	< 0.5	<0.5	<0.5	<0.5	<3					
MW-3	01-28-99	39.32	16.40	ND			<50	< 0.5	< 0.5	<0.5	<0.5	<3					
MW-3	06-25-99	39.32	17.92	ND	22.92 21.40	01-28-99 06-25-99	<100	14	4	<1	6	100					
MW-3	08-25-99	39.32	17.79	ND	21.40		83	9.0	1.4	<0.5	2.5	220			- -	1.11	NP
MW-3	11-10-99	39.32	17.37	ND ON	21.95	08-25-99 11-10-99	240	41	12	3.7	9.9	160				1.13	NP
MW-3	02-09-00	39.32	15.77	ND			620	100	9.7	4.1	21	150			~ -	0.24	NP
147.44-7	02-03-00	39.32	13.77	כואו	23.55	02-09-00	<50	<0.5	0.7	<0.5	<1	180				0.62	NP
MW-4	08-01-95	38.10	15.65	ND	22.45	08-01-95	<50	< 0.5	<0.5	<0.5	<0.5						
MW-4	12-14-95	38.10	15.35	ND	22.75	12-14-95	<50	<0.5	<0.5	<0.5							
MW-4	03-21-96	38.10	12.74	ND	25.36	03-21-96	<50	<0.5	<0.5	<0.5	< 0.5	<3					
MW-4	05-24-96	38.10	14.03	ND	24.07	05-24-96	<50	<0.5	<0.5	<0.5	<0.5	<3					
MW-4	08-09-96	38.10	16.10	ND	22.00	08-09-96	<50	<0.5	<0.5	<0.5	<0.5	<3					
MW-4	11-06-96	38.10	17.00	ND	21.10	11-06-96	<50	<0.5	<0.5	<0.5	<0.5 <0.5	<3					
MW-4	03-24-97	38.10	14.21	ND	23.89	03-24-97	<50	<0.5	<0.5	<0.5	<0.5 <0.5	<3	• •				
MW-4	05-27-97	38.10	15.38	ND	22.72	05-28-97	<50	<0.5	<0.5	<0.5		<3					
MW-4	08-07-97	38.10	16.95	ND	21.15	08-07-97	<50	<0.5	<0.5		<0.5	<3	= +				
MW-4	11-10-97	38.10	17.53	ND	20.57	11-10-97	<50	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	<3					
MW-4	02-16-98	38.10	10.65	ND	27.45	02-16-98	<50	<0.5	<0.5 <0.5	< 0.5	< 0.5	<3					
MW-4	04-15-98	38.10	12.20	ND	25.90	04-15-98	<50	<0.5 <0.5		<0.5	<0.5	<3					
MW-4	07-24-98	38.10	14.47	ND	23.63	07-24-98	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	<3					
MW-4	10-19-98	38.10	16.20	ND	21.90	10-19-98	<50	<0.5	<0.5 <0.5	<0.5	<0.5	<3					
MW-4	01-28-99	38.10	15.02	ND	23.08	01-28-99	340	<0.3 52	<0.5 5.5	<0.5 <0.5	< 0.5	<3 21					
	V. 20 //	20.10	15.02	3 33.2	20.00	G1-20-79	240	34	٥.٥	<0.5	74	31					

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents

F								n, can L									
Well Designation	Water Level Field Date	Top of Gasing Elevation	Depth to	Free Product	Groundwater Groundwater	Water Sample Field Date	TPHG 도 LUFT 는 Method	⊤ Benzene Ç EPA 8021B*	표 Toluene 때 EPA 8021B*	Ethylbenzen E e EPA R 8021B*	Total E Xylenes EPA 8021B*	म MTBE ए EPA 8021B*	E MTBE	TRPH E EPA 418.1	है LUFT है Method	크 Dissolved 본 Oxygen	는 Purged/ 국 Not Purged
MW-4	06-25-99	38,10	15.57	ND	22.53	06-25-99	510	78	4.1	0,5	18	94				0.90	NP
MW-4	08-25-99	38.10	16.43	ND	21.67	08-25-99	660	130	21	6.4	39	110				1.01	
MW-4	11-10-99	38.10	16.02	ND	22.08	11-10-99	510	98	5.1	3.1	15	69				0.28	NP NP
MW-4	02-09-00	38.10	14.30	ND	23,80	02-09-00	<50	< 0.5	0.9	<0.5	<1	55	7.0			0.28	NP NP
											•	33				0.07	NP
MW-5	03-21-96	37.21	12.60	ND	24.61	03-22-96	<50	< 0.5	<0.5	< 0.5	< 0.5	82					
MW-5	05-24-96	37.21	13.71	ND	23.50	05-24-96	<50	< 0.5	<0.5	<0.5	< 0.5	7					
MW-5	08-09- 9 6	37.21	15.60	ND	21.61	08-09-96	<50	<0.5	<0.5	<0.5	<0.5	8					
MW-5	11-06-96	37.21	16.36	ND	20.85	11-06-96	<50	< 0.5	<0.5	<0.5	<0.5	100					
MW-5	03-24-97	37.21	13.87	ND	23.34	03-24-97	<50	< 0.5	< 0.5	<0.5	< 0.5	460					
MW-5	05-27-97	37.21	14.71	ND	22.50	05-28-97	<100	<1	<1	<[<1	120	~ *				
MW-5	08-07-97	37.21	16.90	ND	20.31	08-07-97	<250	<2.5	<2.5	<2.5	<2.5	250					
MW-5	11-10-97	37.21	16.88	ND	20.33	11-10-97	<1,000	<10	<10	<10	<10	770					
MW-5	02-16-98	37.21	10.56	ND	26.65	02-16-98	<200	<2	<2	<2	<2	230					
MW-5	04-15-98	37.21	12.20	ND	25.01	04-15-98	<500	<5	<5	<5	<5	900					
MW-5	07-24-98	37.21	14.20	ND	23.01	07-24-98	<500	<5	<5	<5	<5	570					
MW-5	10-19-98	37.21	15.74	ND	21.47	10-19-98	<250	<2.5	<2.5	<2.5	<2.5	300					
MW-5	01-28-99	37.21	14.60	ND	22.61	01-28-99	<500	8	<5	<5	<5	290					
MW-5	06-25-99	37.21	15.10	ND	22.11	06-25-99	<50	<0.5	<0.5	< 0.5	<0.5	1,300				0.76	NP
MW-5	08-25-99	37.21	15.91	ND	21.30	08-25-99	<50	<0.5	<0.5	< 0.5	<0.5	6,700				0.98	NP
MW-5	11-10-99	37.21	15.52	ND	21.69	11-10-99	130	2.0	7.0	1.3	21	5,000				0.21	NP
MW-5	02-09-00	37.21	14.03	ND	23.18	02-09-00	92	<0.5	8.0	<0.5	1.0	7,900				0.51	NP
MW-6	03-21-96	37.11	11.55	ND	25.56	03-22-96	<50	<0.5	1.9	<0.5	< 0.5	~1					
MW-6	05-24-96	37.11	12.80	ND	24.31	05-24-96	<50 <50	<0.5	<0.5	<0.5	<0.5 <0.5	<3 6					

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents

£																	
Well Designation	Water Level Field Date	Top of Gesing Elevation	Depth to Water	Free Product	H Groundwater	Water Sample Field Date	TPHG T LUFT R Method	ச Benzene e EPA 8021B*	표 Toluene 면 EPA 8021B*	Ethylbenzen E EPA E 8021B*	Total Total Xylenes P EPA 8021B*	+ MTBE 中 EPA 8021B*	ு MTBE ரீ ≘PA 8260	TRPH 中 EPA 418.1	표 LUFT 전 Method	∃ Dissolved ⊖ Oxygen	र Purged/ ट्रे Not Purged
MW-6	08-09-96	37.11	Not surve	eved		08-09-96	Not sar	npled: Car j	and on	11							·····
MW-6	11-06-96	37.11	Not surve			11-06-96	Not sar	npied: Car j npled: Car j	en lead on	WCII							
MW-6	03-24-97	37.11	13.06	ND	24.05	03-24-97	<50				-0.5						
MW-6	05-27-97	37.11	14.30	ND	22.81	05-28-97	<50	<0.5	<0.5	< 0.5	< 0.5	<3					
MW-6	08-07-97	37.11	16.40	ND	20.71	08-07-97		< 0.5	< 0.5	<0.5	< 0.5	<3					
MW-6	11-10-97	37.11	16.53	ND	20.71	11-10-97	<50	< 0.5	<0.5	<0.5	< 0.5	<3					
MW-6	02-16-98	37.11	Not surve		20.58		<50	<0.5	<0.5	<0.5	<0.5	<3	~ -				
MW-6	04-15-98	37.11	10.95	yeu ND	26.16	02-16-98		npled: Car j									
MW-6	07-24-98	37.11			26.16	04-15-98	<50	<0.5	<0.5	<0.5	<0.5	<3					
MW-6	10-19-98		13.30	ND	23.81	07-24-98	<50	<0.5	<0.5	<0.5	<0.5	<3					
MW-6		37.11	Not surve		00.10	10-19-98		npled: Car p									
	01-28-99	37.11	13.92	ND	23.19	01-28-99	<50	<0.5	<0.5	<0.5	<0.5	<3					
MW-6	06-25-99	37.11	15.47	ND	21.64	06-25-99	<50	<0.5	< 0.5	<0.5	<0.5	<3				0.74	NP
MW-6	08-25-99	37.11	15.39	ND	21.72	08 - 25-99	<50	<0.5	3.4	0.6	3.7	<3		- ~		0.92	NP
MW-6	11-10-99	37.11	14.92	ND	22.19	11-10-99	<50	<0.5	< 0.5	<0.5	<1	<3				0.31	NP
MW-6	02-09-00	37.11	13.30	ND	23.81	02-09-00	<50	<0.5	0.9	<0.5	1.3	<3				0.79	NP
MW-7	03-21-96	38.68	13.32	ND	25,36	03-22-96	32,000	870	450	070	4.000	200					
MW-7	05-24-96	38.68	14.58	ND	24.10	05-24-96	22,000		450	970	4,900	280					
MW-7	08-09-96	38.68	15.33	ND	23.35	08-09-96		570	40	42	1,900	<200[2]		• •			
MW-7	11-06-96						14,000	390	<10	180	470	<200[2]					
11		38.68	16.95	ND	21.73	11-06-96	9,500	440	<10	210	150	<100[2]					
MW-7	03-24-97	38.68	14.65	ND	24.03	03-24-97	6,400	420	<10	260	13	480					
MW-7	05-27-97	38.68	15.58	ND	23.10	05-28-97	5,000	420	<5	230	10	460					
MW-7	08-07-97	38.68	17.10	ND	21.58	08-07-97	3,900	350	<5	200	10	330					
MW-7	11-10-97	38.68	18.05	ND	20.63	11-10-97	5,600	590	10	370	43	540					
MW-7	02-16-98	38.68	12.03	ND	26.65	02-16-98	<5,000	390	<50	<50	61	4,300					

Table 1 Historical Groundwater Elevation and Analytical Data Petroleum Hydrocarbons and Their Constituents

ARCO Service Station 2111 1156 Davis Street, San Leandro, California

Well Designation	Water Level Field Date	Top of School Casing	Depth to	Free Product	급 Groundwater 전 Elevation	Water Sample Field Date	TPHG T LUFT P Method	표 Benzene 면 EPA 8021B*	∓ Toluene © EPA 8021B*	Ethylbenzen T e EPA T 8021B*	Total Total Xylenes EPA 8021B*	च MTBE ए EPA 8021B*	= MTBE ខ្លុំ F EPA 8260	TRPH (%) EPA 418.1	E LUFT	ਸ਼ Dissolved ਨ Oxygen	र Purged/ द Not Purged
MW-7	04-15-98	38.68	13.02	ND	25.66	04-15-98	<10,000	<100	<100	<100	<100	8,900		4			
MW-7	07-24-98	38.68	14.18	ND	24.50	07-24-98	5,800	180	< 50	74	<50	4,200					
MW-7	10-19-98	38.68	15.99	ND	22.69	10-19-98	<2,500	54	<25	72	<25	3,000					
MW-7	01-28-99	38.68	15.69	ND	22.99	01-28-99	4,500	560	250	<50	94	6,200	7.7		~		
MW-7	06-25-99	38.68	15.36	ND	23.32	06-25-99	3,900	520	160	46	100	45,000	63,000[3]			0.56	NP
MW-7	08-25-99	38.68	16.71	ИD	21.97	08-25-99	3,400	730	77	51	110	62,000	76,000[3]			0.90	NP
MW-7	11-10-99	38.68	16.76	ND	21.92	11-10-99	15,000	340	19	13	20	55,000	91,000[3]			0.37	NP
MW-7	02-09-00	38.68	14.45	0.03	24.25 [1]	02-09-00		oled: free pr	roduct pre			,0	, -,-00[5]			0,57	1.47

ft-MSL: elevation in feet, relative to mean sea level

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

MTBE: Methyl tert-butyl ether

TRPH: total recoverable petroleum hydrocarbons

TPHD: total petroleum hydrocarbons as diesel, California DHS LUFT Method

*: EPA method 8020 prior to 11/10/99

EPA: United States Environmental Protection Agency

µg/L: micrograms per liter

rng/L: milligrams per liter

ND: none detected

- -: πot available or not analyzed
- !<: less than laboratory detection limit stated to the right</p>
- [1]; [corrected elevation (Z')] = Z + (h * 0.73) where: Z = measured elevation, h = floating product thickness, 0.73 = density ratio of oil to water
- [2]: chromatogram fingerprint is not characteristic of diesel
- [3]: also analyzed for fuel oxygenates
- [4]: this value is suspected to be erroneous based on subsequent check by bailer (following day). See discussion

APPENDIX D

Drilling and Encroachment Permits

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 09/26/2013 By jamesy

Permit Numbers: W2013-0822 Permits Valid from 10/28/2013 to 11/01/2013

Application Id: 1378942123539 City of Project Site:San Leandro

Site Location: 1156 Davis St Project Start Date: 10/28/2013 Completion Date:11/01/2013

Assigned Inspector: Contact Steve Miller at (510) 670-5517 or stevem@acpwa.org

Applicant: Broadbent & Associates - Kristene Tidwell Phone: 707-455-7290

875 Cotting Lane Ste G, Vacaville, CA 95688

Property Owner: BP West Coast Products, LLC PO Box 2015 Buena Park, Buena Park, CA 90622

Client: The ARCO Phone: --

PO Box 1257, San Ramon, CA 94583

Total Due: \$265.00

Receipt Number: WR2013-0371 Total Amount Paid: \$265.00

Payer Name : Broadbent Paid By: CHECK PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 6 Boreholes

Driller: Greg Drilling - Lic #: 485165 - Method: CA Work Total: \$265.00

Specifications

Permit Issued Dt Expire Dt # Hole Diam Max Depth
Number Boreholes

W2013- 09/26/2013 01/26/2014 6 2.00 in. 40.00 ft

0822

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and

Alameda County Public Works Agency - Water Resources Well Permit

coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

City of San Leandro **Engineering and Transportation Department** 835 East 14th Street San Leandro, California 94577 (510) 577-3428

ENCROACHMENT PERMIT

Permit Type

Environmental

JL

Permit Number: ENC2013-00618

Job Address: 1156 Davis St

Issued: 11/15/2013

Project Name: BROADBENT & ASSOCIATES, INC.

Description of Work:

One soil boring will be advance on Douglas Court, A 2-inch Voring diameter will be advanced vertically up to an approximate depth of 40 ft using cone penetration

Customer # 3306

technology (CPT)

Planned Start Date: November 18, 2013 Planned Completion Date: December 18, 2013

USA Tag No.

451776

Emergency Contact

Kristene Tidwell

Contact Phone Number

707-430-7133

Owner:

Applicant:

BROADBENT & ASSOCIATES, INC.

Bp West Co Po Box 5015

Buena Park CA 90622-5015

875 COTTING LANE, SUITE G **VACAVILLE CA 95688**

Contractor:

Agent:

KRISTENE TIDWELL 875 COTTING LANE, SUITE G. VACAVILLE CA 95688

Associated Permits:

PERMIT FEE:

To Acct #3306

Utility /Job Number

Building Permit No.

Oro Loma Permit No.

Cal State Permit No.

Grading Permit No.

PLAN CHECKER

RESTORE/INSPECT DEPOSIT

Ala County Permit No.

3306

STREET CUT FEE

To Acct #3304

TOTAL:

To CN#

Method of Repair

Min Depth of Cover

Backfill Required

Pavement Section Requir

Section 1 Section 2

Section 3 Consent Form

Pre Video

Post Video

All work shall be per City Standard Provisions. Pedestrian safety and access shall be maintained at all times.

Must provide USA # prior to start of work

PLEASE CALL (510) 577-3308 FOR INSPECTIONS 24 HOURS PRIOR TO WORK

By the application and acceptance of this permit, the undersigned intending to be legally bound does hereby agree that all work performed will be in accordance with all applicable provisions of this permit and all regulations, provisions, and specifications as adopted by the City. Further, the undersigned agrees that this permit is to serve as a guaranty for payment for all permit and/or inspection charges as billed by the City. Any misrepresentation of information requested from the applicant on this form shall make this permit null and void.

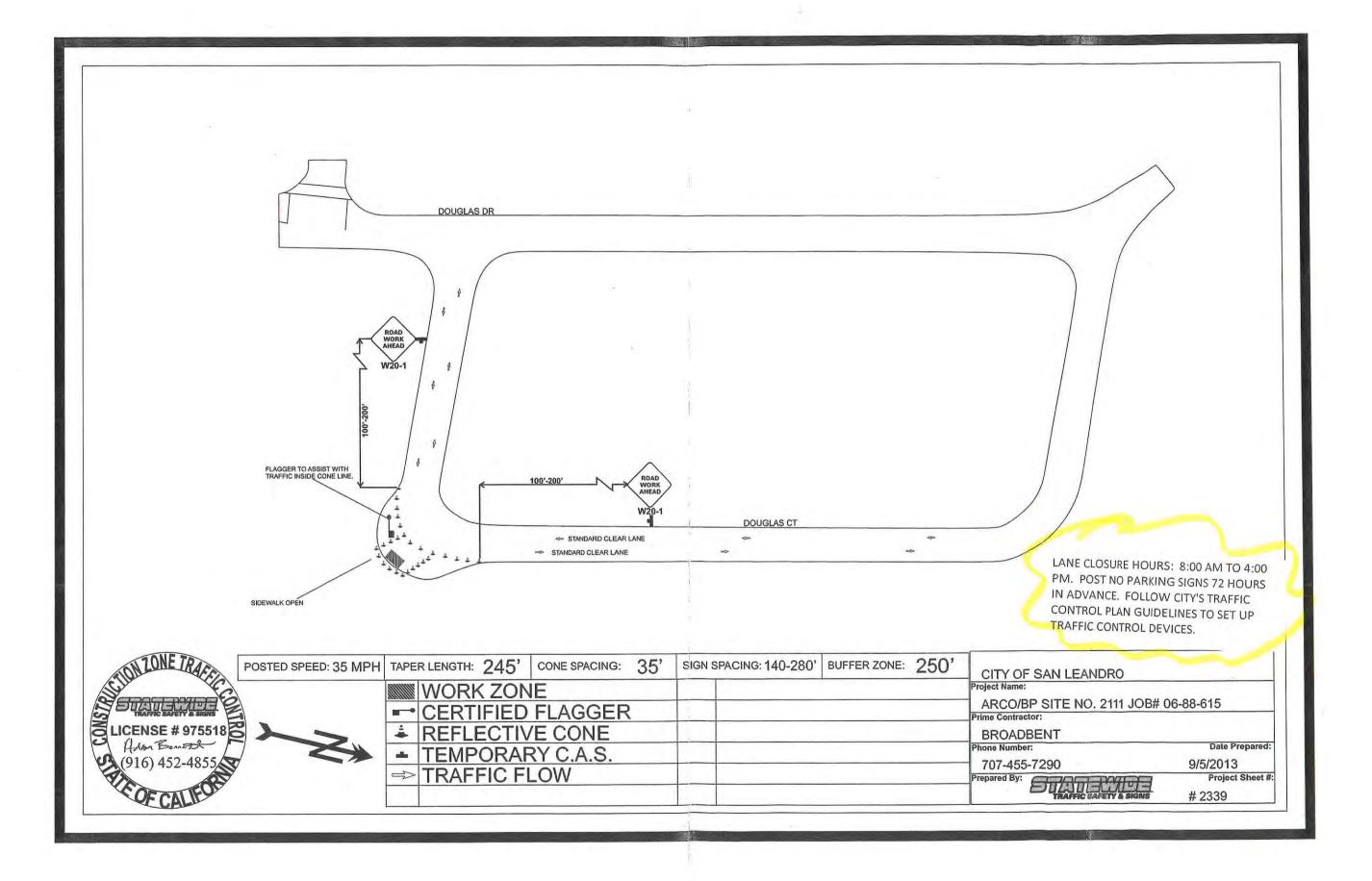
Signature:

James Ramos For Kine

Print Name: KRISTENE TIDWELL

Date: 11/15/2013 9:22:40A

GENERAL PROVISIONS ENC2013-00618


- (a) All work must be performed in accordance with City of San Leandro Standard Plans, Specifications, and Title V Chapter 1 of the Municipal Code.
- (b) Twenty four hours notice required prior to start and/or requests for inspection. All work must be completed between the hours of 8:00AM to 4:00PM. No work is permitted on Saturday, Sunday, City holidays, or Furlough days. The City website has a schedule of holidays and furlough days: http://www.sanleandro.org/holidayschedule.html
- (c) City to be notified next working day (by permit application) of all emergency work performed.
- (d) Permittee shall be responsible for all liability imposed by law for personal injury or property damage proximately caused by failure on permittee's part to perform his obligations under said permit respect to maintenance. If any claim of such liability is made against the City of San Leandro or its officers or employees, permittee shall defend, indemnify and hold each of them harmless from such claim.
- (e) No utility contractor or subcontractor shall park their construction equipment, including personal vehicles, entirely or partially in the sidewalk area. Per Section 5610 of the Streets and Highways Code, the permittee shall be responsible for the repair of any damaged sidewalk where utility contractor's or subcontractor's vehicles or equipment are parked whether or not the damage was preexisting.
- (f) Cost of emergency work required to restore unsatisfactorily construction that becomes hazardous will be charged to permittee.
- (g) Permit void 90 days from issue date unless otherwise noted. Extension time may be granted when requested in writing,
- (h) Permit must be readily available at work site. Permit is not assignable.
- Section 6500 of the Labor Code requires permit from the State Division of Industrial Safety (CAL OSHA) prior to an excavation five feet or deeper.
- (j) Prior to digging or drilling, permittee shall request Undergrounding Service Alert (USA) markings, phone #800-227-2600.
- (k) Trenches are to be inspected prior to backfilling. Backfill compaction tests may be required.
- (I) All tunneling prohibited. Pipe must be bored or jacked or open trenched including under curb, gutter and/or sidewalk.
- (m) Forms for concrete work must be inspected prior to placing concrete.
- (n) All concrete, including concrete pavement (overlayed with A.C. or not), must be sawcut prior to breakout. Concrete sections to be replaced shall be no smaller than 30 inches in either length or width. All sawcuts must be along scorelines, 1.5" minimum depth (special conditions for concrete pavements). If a sawcut falls within 30 inches of a construction joint, expansion joint, or edge, the concrete shall be removed to the joint or edge. Forms for concrete work must be inspected prior to placing concrete.
- (o) Temporary paving is required in all street and sidewalk areas and is to be placed the same day work is performed. Froetober 15 through April 15, only A.C. paving is to be used. Temporary paving is to be maintained by applicant.
- (p) Permanent paving or sidewalk is to be replaced withi 30 days. Permittee shall notify City before placing surfacing.
- (q) Permittee shall provide, erect, and/or maintain such lights, barriers, warning signs, patrols, watchmen and other safeguards as are necessary to protect the traveling public in accordance with the current State "Manual of Warning Signs, Lights, and Devices for Use in Performance of Work Upon Highways".
- (r) Before any work is begun that will interrupt the normal flow of public traffic, proposed lane closures or advanced warning light, sign, and barricade with flashing light details and layout plans shall be submitted to the City. If flagmen are required copies of certifications must be provided prior to issuance of a permit.
- (s) Open trench one lane at a time, with necessary traffic control, to keep traffic moving in both directions during working hours. If at the end of the work day backfilling operations have not been completed, steel bridging shall be required to make the entire traveled way available to the public traffic.
- (t) Pedestrian safety shall be maintained at all times.
- (u) Permittee shall contact City for final inspection and approval of completed work.

 ART Arterial Col Collector

Res - Residential

INSPECTION RECORD

Inspected Date	Comments	Inspector	Hours Charged	Date Charged
		Subtotal		

APPENDIX E

Utility Clearance Report

November 15, 2013

Broadbent & Associates, Inc. 875 Cotting Lane, Suite G Vacaville, CA 95688

Subject: Utility Location Survey

BP-ARCO Gasoline Station No. 2111 1156 Davis Street, San Leandro, California

NORCAL Job No: 13-1034.12

Attention: Ms. Kristine Tidwell

This report presents the findings of a utility locating survey performed by NORCAL Geophysical Consultants, Inc. for Broadbent & Associates at the subject facility. The field survey was conducted on October 29, 2013 by NORCAL California Professional Geophysicist David Bissiri (PGp 1009). Logistical support and site and safety information were provided by Mr. Alex Martinez of Broadbent & Associates.

1.0 SITE DESCRIPTION

The BP-ARCO gasoline station is located on the northwest corner of the intersection of Davis and Preda Streets in San Leandro, California. The site is bounded by Davis Street on the south, Preda Street on the east, a residential neighborhood on the north and the First Christian Church and Community Center on the west. Located farther west of the station is the Cedar Grove Apartment complex and the Douglas Court single-family residential neighborhood.

2.0 SCOPE OF WORK

The scope of work, as outlined by Broadbent & Associates, consisted of locating detectable underground utilities and potential subsurface obstructions to drilling within a 10-foot radius of the following seven (7) proposed boring locations:

- · SB-4 located in a portion of Douglas Court
- SB-3, SB-6, SB-7, and SB-8 located in the driveway between the First Christian Church and the Cedar Grove Apartments
- SB-9 and SB-10 located on the gasoline station property

The utility location survey was performed as part of an ongoing remediation plan currently managed by Broadbent & Associates. The information will be used to aid in avoiding detectable subsurface obstacles during the drilling of the proposed borings.

3.0 GEOPHYSICAL INVESTIGATION

3.1 METHODOLOGY

We investigated the designated survey areas using the electromagnetic line locating (EMLL), metal detection (MD) and ground penetrating radar (GPR) methods. The EMLL method was used in both the electromagnetic conduction and ambient modes. The conduction mode was used to locate metal utilities that are accessible from the surface in at least one location. This is typically done by applying a tracing signal to a line by either directly connecting a radio transmitter to the exposed utility through a vault or a hose bib or by inducing a signal onto the line via an induction clamp or antenna. The alignment of the utility is then determined by operating a receiver to trace the maximum amplitude of the transmitted signal flowing on the line. The ambient mode was used to locate utilities that emit radio signals from electrical currents already flowing on the line (passive signals). The most common passive signals are generated by live electric and telephone lines, water lines acting as electrical grounds, and metal pipes reradiating radio signals.

The MD method was used to locate metal utilities that are not accessible at the surface, and isolated buried objects such as USTs, utility vaults, manways, and other large metallic objects or buried debris. This is done by holding the transmitter-receiver unit above the ground and continuously scanning over the surface. Metallic utilities and isolated objects will typically produce a response indicating when the unit is directly over the metal object.

The GPR method was used to confirm the location of the utilities detected with the EMLL and MD methods, and to attempt to locate possible non-metallic utilities. Since the GPR depth of detection is based on site specific soil conditions, not all subsurface features are detectable. Descriptions of the MD, EMLL, and GPR methods are provided in Appendix A.

3.2 FIELD PROCEDURES

We investigated the proposed boring locations for detectable underground utilities and other buried objects using the procedures outlined below:

- 1. <u>Site Reconnaissance</u>: We visually inspected the immediate area to locate visible utility vaults, valves, clean-outs, meters, hose bibs, etc.
- 2. <u>EMLL Direct Connect and Induction Survey</u>: We traced accessible utilities using the EMLL direct connect and induction methods, as described above.
- EMLL Ambient Survey: We used the EMLL ambient procedure to investigate the survey area for non-accessible utilities emitting a passive signal, as described above.

- 4. EMLL Metal Detection (MD) Survey: We scanned the survey area with the MD to investigate for metal utilities that were not accessible at the surface. Since the specific type of utility (i.e. water, gas, etc.) cannot be determined by this method, they are referred to as undifferentiated utilities. We also used the MD method to investigate the survey area for possible buried metal objects.
- 5. GPR Survey: Where site conditions allowed, we obtained GPR data from two bidirectional traverses approximately 20-feet long centered on each proposed borehole location. We then examined the GPR records for reflection patterns characteristic of underground utilities and other potential subsurface objects, as well as changes in fill material that may be associated with utility corridors or USTs.
- 6. Field Survey Map: Upon completion of the area survey, we drafted a scaled site diagram showing the location of the borehole, structures or above ground cultural features that are in close proximity to the site, and the locations of detected subsurface objects and utility alignments.

3.3 RESULTS

The results of the geophysical investigation are summarized on the borehole clearance log sheets provided in Appendix B. These maps depict the locations of pertinent above-ground site features in the vicinity of the designated survey areas and the locations of interpreted subsurface features. The subsurface features in the vicinity of the borings include the following:

- SB-3: A possible north-south trending storm drain is located 3 feet east of the proposed location. A parallel undifferentiated utility is located 5 feet east of the proposed location.
- SB-4: A north-south trending sanitary sewer main is located 5 feet west of the proposed location. This sewer alignment is one of three sewer lines associated with a manway located 10 feet southwest of the proposed location. The other two sewer lines lead away from the proposed location. A northwest-southeast trending water service lateral is located approximately 5 feet south of the location.
- SB-6: A possible north-south trending storm drain is located 3 feet east of the proposed location.
- SB-7: A possible north-south trending storm drain extending southward from a catch basin is located 10 feet south east of the proposed location.

- SB-8: A north-south trending undifferentiated utility is located 4 feet east of the proposed location. An additional undifferentiated utility parallel to the sidewalk along Davis Street is located 3 feet south of the location.
- SB-9: A north-south trending undifferentiated utility line is located 5 feet east of the proposed location. A localized 2-ft x 2-ft metal detector anomaly (MDA) possibly associated with this utility is located 6 feet southeast of the proposed location. An approximately 2-ft wide utility duct-bank is located along the edge of the walkway underneath the roof of the building 10 feet west of the proposed location.
- SB-10: A north-south trending undifferentiated utility within an apparent suspected trench is located 4 feet west of proposed location. An additional east-west undifferentiated utility is located 8 feet south of the location. A parallel east-west electric line is located 13 feet south of the location. A possible line associated with a small vault located 15 feet southwest of the proposed location may extend eastward from the vault to the station building.

4.0 LIMITATIONS

All of the geophysical methods used for this investigation have limitations that may not allow for the detection of certain subsurface features due to subsurface conditions or the proximity of above ground objects. The specific limitations for each method are described in Appendix A

5.0 STANDARD CARE

The scope of NORCAL's services for this project consisted of using geophysical methods to explore the area of investigation for underground utilities. The accuracy of our findings is subject to specific site conditions and limitations inherent to the techniques used. We performed our services in a manner consistent with the level of skill ordinarily exercised by members of the profession currently employing similar methods. No warranty, with respect to the performance of services or products delivered under this agreement, expressed or implied, is made by NORCAL.

We appreciate having the opportunity to provide our geophysical services to Broadbent & Associates, Inc. If you have any questions, or require additional geophysical services, please do not hesitate to call.

Respectfully,

NORCAL Geophysical Consultants, Inc.

David Bissiri

Professional Geophysicist, PGp 1009

DJB/KGB/tt

Enclosure: Appendix A: GEOPHYSICAL METHODOLOGY

Appendix B: FIELD SURVEY MAPS

Appendix A GEOPHYSICAL METHODOLOGY

Appendix A

ELECTROMAGNETIC LINE LOCATION/METAL DETECTION (EMLL/MD)

METHODOLOGY

Electromagnetic line location techniques (EMLL) are used to locate the magnetic field resulting from an electric current flowing on a line. These magnetic fields can arise from currents already on the line (passive) or currents applied to a line with a transmitter (active). The most common passive signals are generated by live electric lines and re-radiated radio signals. Active signals can be introduced by connecting the transmitter to the line at accessible locations or by induction.

The detection of underground utilities is affected by the composition and construction of the line in question. Utilities detectable with standard line location techniques include any continuously connected metal pipes, cables/wires or utilities with tracer wires. Unless the utilities carry a passive current, they must be exposed at the surface or in accessible utility vaults. These generally include water, electric, natural gas, telephone, and other conduits related to facility operations. Utilities that are not detectable using standard electromagnetic line location techniques include those made of non-electrically conductive materials such as PVC, fiberglass, vitrified clay, and pipes with insulated connections.

Buried objects can also be detected, without direct contact, by using the metal detection technique (MD). This is used to detect buried near surface metal objects such as rebar, manhole covers, USTs, and various metallic debris. The MD transmitter-receiver unit is held above the ground and continuously scanned over the surface. The unit utilizes two orthogonal coils that are separated by a specified distance. One of the coils transmits an electromagnetic signal (primary magnetic field) which in turn produces a secondary magnetic field about the subsurface metal object. Since the receiver coil is orthogonal to the transmitter coil, it is unaffected by the primary field. Therefore, the secondary magnetic fields produced by buried metal object will generate an audible response from the unit. The peak of this response indicates when the unit is directly over the metal object.

The instrumentation we used for the EMLL and MD survey consists of a Radio Detection RD-400 and a Fisher TW-6 inductive pipe and cable locator.

DATA ANALYSIS

The EMLL/MD instrumentation indicates the presence of buried metal by emitting an audible tone; there are no recorded data to analyze. Therefore, the locations of buried objects detected with these methods are marked on the ground surface during the survey.

LIMITATION

The detection of underground utilities is dependent upon the composition and construction of the line of interest, as well as depth. Utilities detectable with standard line location techniques include any continuously connected metal pipes, cables/wires or utilities with tracer wires. Unless carrying a passive current these utilities must be exposed at the surface or accessible in utility vaults. These generally include water, electric, natural gas, telephone, and other conduits related to facility operations. Utilities that may not be detectable using standard electromagnetic line location techniques include certain abandoned utilities, utilities not exposed at the ground surface, or those made of non-electrically conductive materials such as PVC, fiberglass, vitrified clay, and metal pipes with insulating joints. Pipes generally deeper than about five to seven feet may not be detected.

GROUND PENETRATING RADAR (GPR)

METHODOLOGY

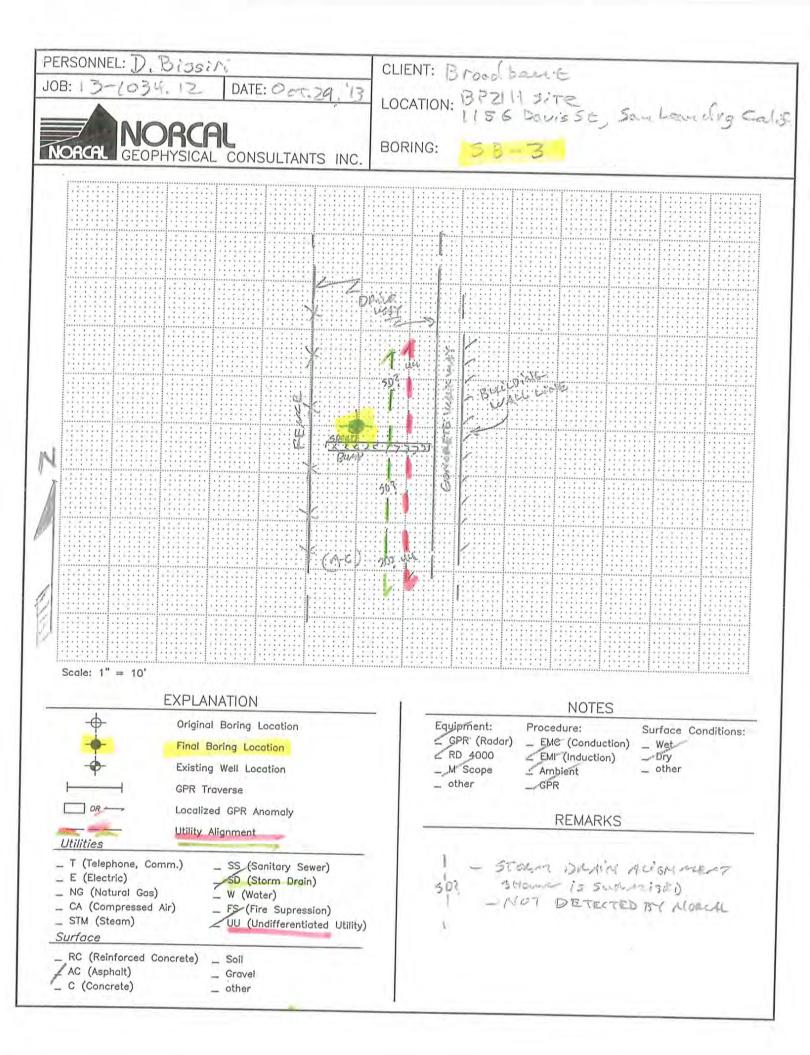
Ground penetrating radar is a method that provides a continuous, high resolution cross-section depicting variations in the electrical properties of the shallow subsurface. The method is particularly sensitive to variations in electrical conductivity and electrical permittivity (the ability of a material to hold a charge when an electrical field is applied).

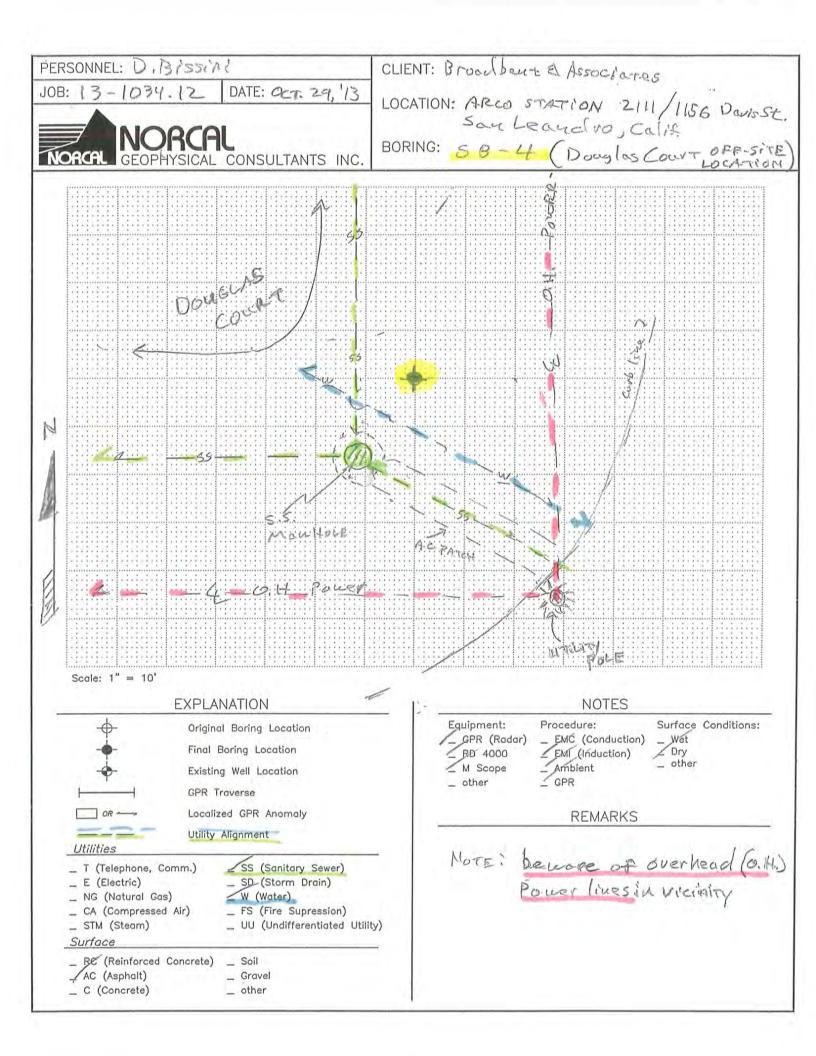
The GPR system operates by radiating electromagnetic pulses into the ground from a transducer (antenna) as it is moved along a traverse. Since most earth materials are transparent to electromagnetic energy, the signal spreads downward into the subsurface. However, when the signal encounters a variation in electrical permittivity, a portion of the electromagnetic energy is reflected back to the surface. When the signal encounters a metal object, all of the incident energy is reflected. The reflected signals are received by the same transducer and are printed in cross-section form on a graphical recorder. Changes in subsurface reflection character on the GPR records can provide information regarding the location of USTs, sumps, buried debris, underground utilities, and variations in the shallow stratigraphy.

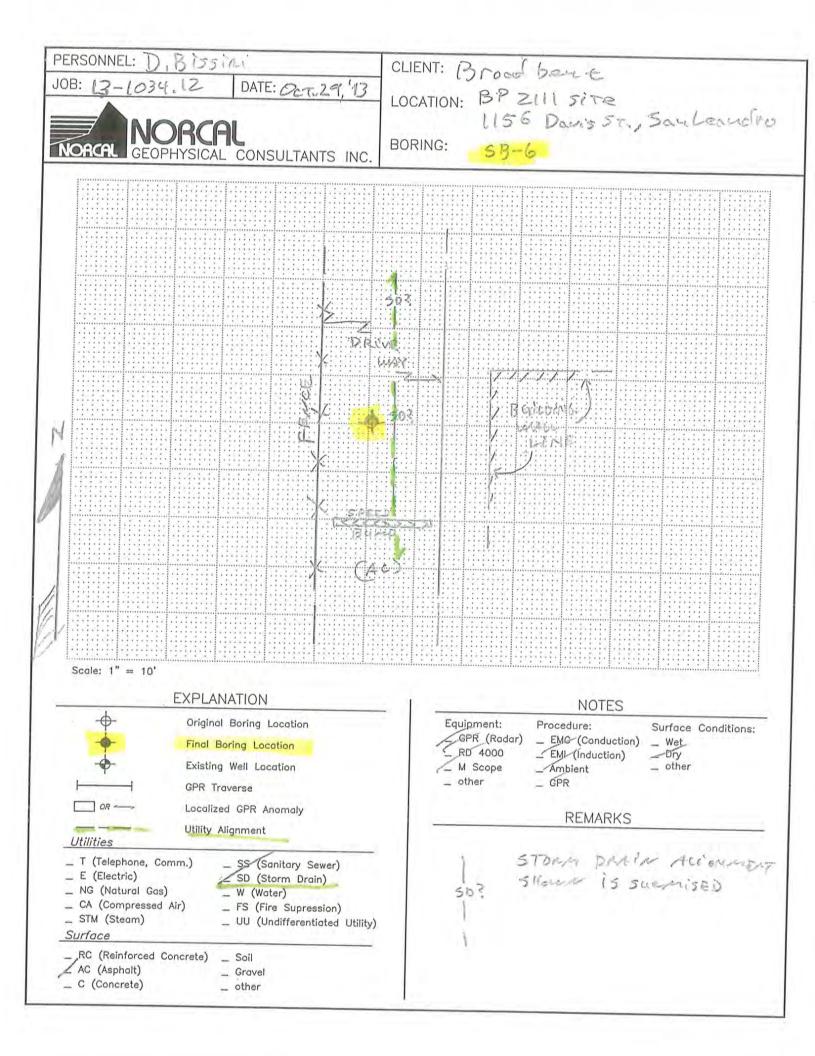
The GPR system used was a Geophysical Survey Systems, Inc. SIR-3000 Subsurface Interface Radar Systems equipped with a 400 megahertz (MHz) transducer, respectively. This transducer is used to provide high resolution at shallow depths.

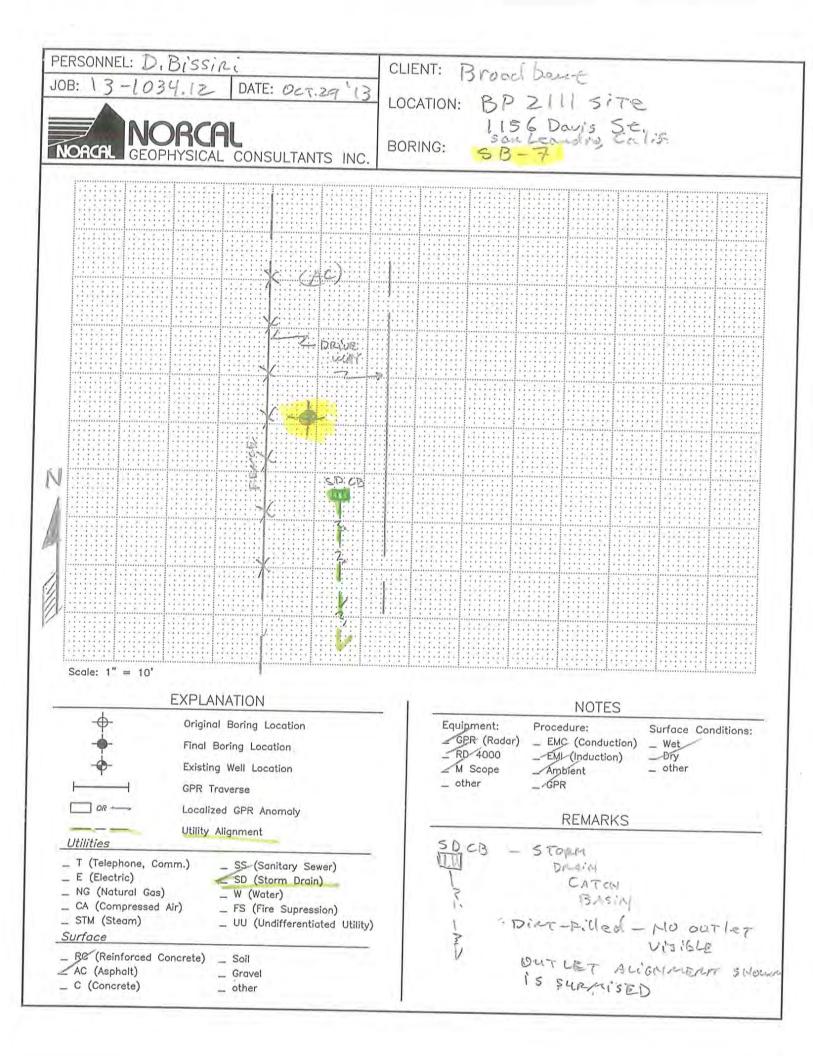
DATA ANALYSIS

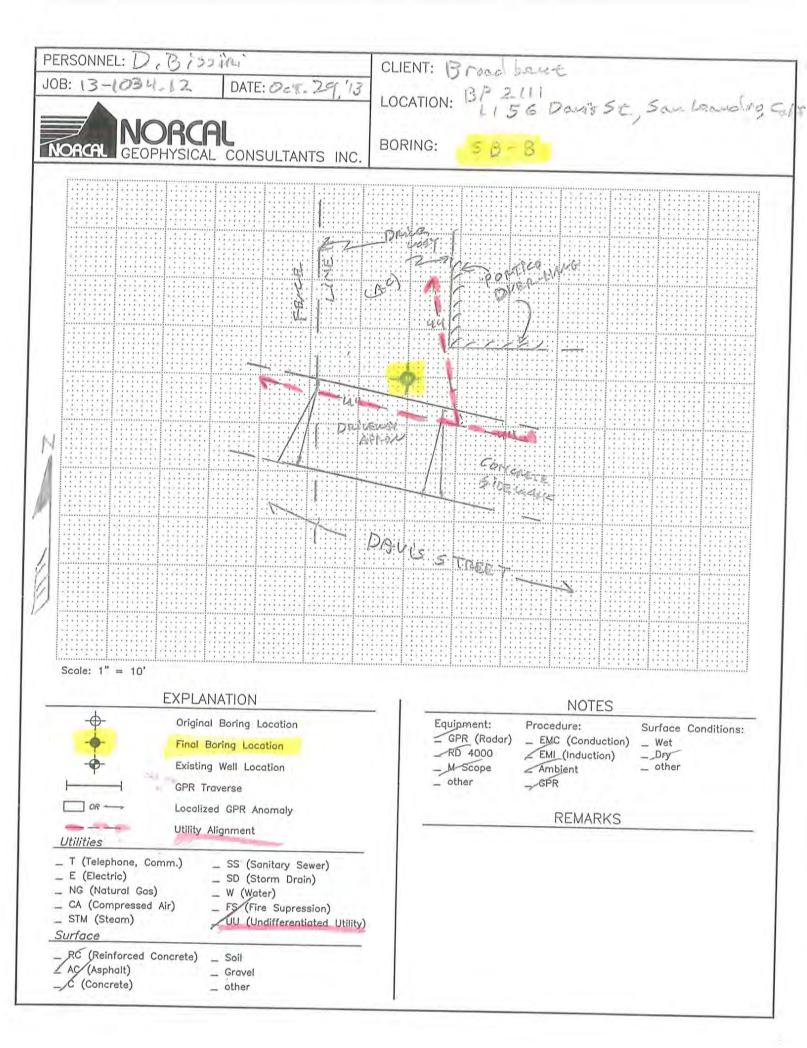
GPR records are examined to identify reflection patterns characteristic of USTs, utilities, septic tanks, and other buried debris. Typically, USTs are manifested by broad localized hyperbolic (upside-down "U" shape) reflection patterns that vary in intensity. The intensity of a reflection pattern is usually dependent upon the condition of the respective UST, its burial depth, and the type of fill over the UST. Utilities and other buried debris are typically manifested by narrow localized hyperbolic reflections that also vary in intensity.

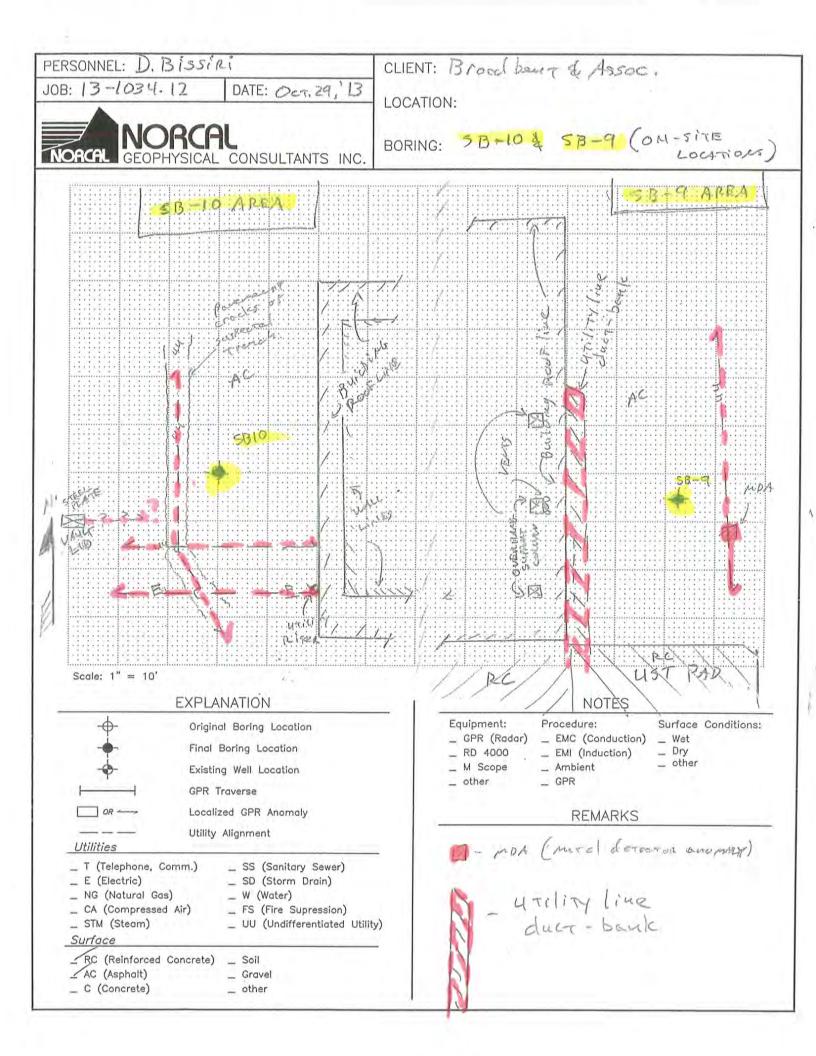



LIMITATIONS


The ability to detect subsurface targets is dependent on site specific conditions. These conditions include depth of burial, the size or diameter of the target, the condition of the specific target in question, the type of backfill material associated with the target, and the surface conditions over the target. Under ideal conditions, the GPR can generally detect objects buried to approximately six feet. However, as the clay content in the subsurface increases, the GPR depth of detection decreases. Therefore, it is possible that on-site soil conditions and target features may limit the depth of detection to the upper one to two feet below ground surface.




Appendix B FIELD SURVEY MAPS



APPENDIX F

CPT Report

GREGG DRILLING & TESTING, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

November 25, 2013

Broadbent & Associates Attn: Kristene Tidwell

Subject: CPT Site Investigation

BP 2111, 1156 Davis St. San Leandro, California

GREGG Project Number: 13-192MA

Dear Ms. Tidwell:

The following report presents the results of GREGG Drilling & Testing's Cone Penetration Test investigation for the above referenced site. The following testing services were performed:

	B 11k		
1	Cone Penetration Tests	(CPTU)	
2	Pore Pressure Dissipation Tests	(PPD)	
3	Seismic Cone Penetration Tests	(SCPTU)	1
4	UVOST Laser Induced Fluorescence	(UVOST)	sa D
5	Groundwater Sampling	(GWS)	
6	Soil Sampling	(SS)	
7	Vapor Sampling	(VS)	
8	Pressuremeter Testing	(PMT)	
9	Vane Shear Testing	(VST)	
10	Dilatometer Testing	(DMT)	

A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact our office at (925) 313-5800.

Sincerely,

GREGG Drilling & Testing, Inc.

Mayabeden

Mary Walden

Operations Manager

GREGG DRILLING & TESTING, INC. GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Cone Penetration Test Sounding Summary

-Table 1-

CPT Sounding	Date	Termination	Depth of Groundwater	Depth of Soil	Depth of Pore
Identification		Depth (feet)	Samples (feet)	Samples (feet)	Pressure Dissipation
					Tests (feet)
SB-3	11/23/13	30	28	12.5, 17	-
SB-4	11/20/13	30	27	12.5, 17	-
SB-6	11/23/13	30	25	12.5, 17	-
SB-7	11/23/13	30	25	12.5, 17	-
SB-8	11/23/13	30	28	12.5, 17	-
SB-9	11/20/13	50	26	12.5, 17	25.6
SB-10	11/20/13	32	28	12.5, 17	-
			_		

GREGG DRILLING & TESTING, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Bibliography

Lunne, T., Robertson, P.K. and Powell, J.J.M., "Cone Penetration Testing in Geotechnical Practice" E & FN Spon. ISBN 0 419 23750, 1997

Roberston, P.K., "Soil Classification using the Cone Penetration Test", Canadian Geotechnical Journal, Vol. 27, 1990 pp. 151-158.

Mayne, P.W., "NHI (2002) Manual on Subsurface Investigations: Geotechnical Site Characterization", available through www.ce.gatech.edu/~geosys/Faculty/Mayne/papers/index.html, Section 5.3, pp. 107-112.

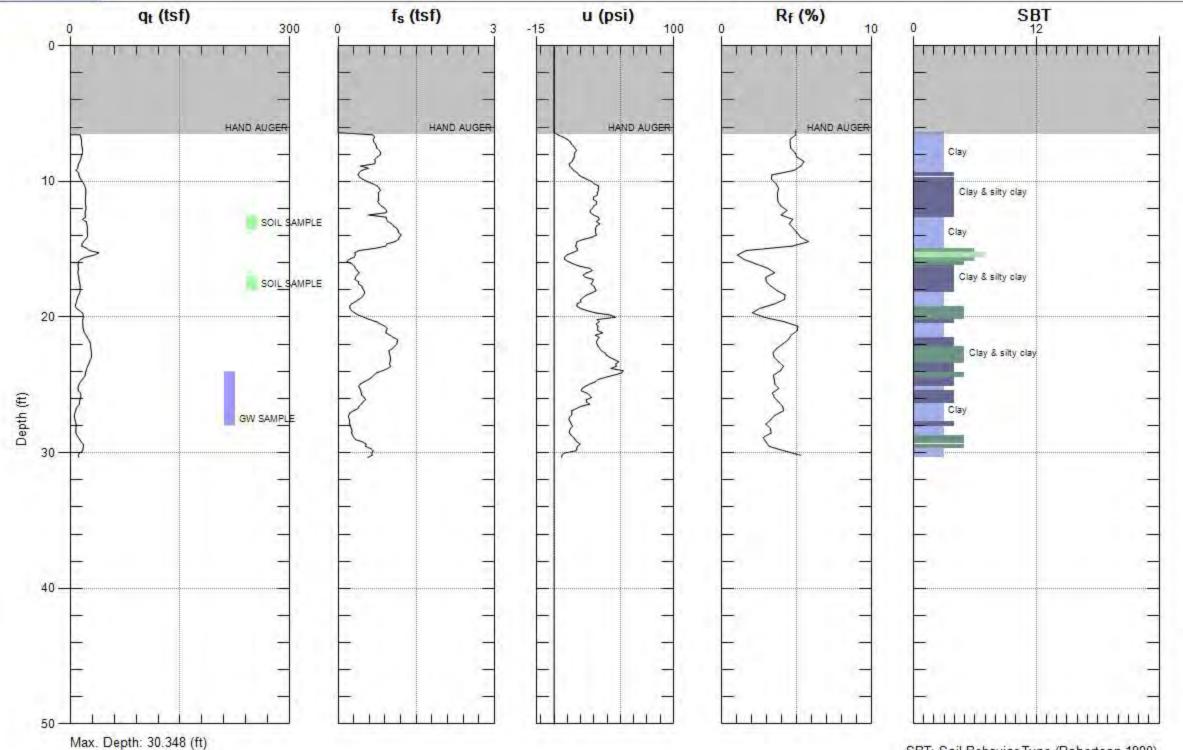
Robertson, P.K., R.G. Campanella, D. Gillespie and A. Rice, "Seismic CPT to Measure In-Situ Shear Wave Velocity", Journal of Geotechnical Engineering ASCE, Vol. 112, No. 8, 1986 pp. 791-803.

Robertson, P.K., Sully, J., Woeller, D.J., Lunne, T., Powell, J.J.M., and Gillespie, D.J., "Guidelines for Estimating Consolidation Parameters in Soils from Piezocone Tests", Canadian Geotechnical Journal, Vol. 29, No. 4, August 1992, pp. 539-550.

Robertson, P.K., T. Lunne and J.J.M. Powell, "Geo-Environmental Application of Penetration Testing", Geotechnical Site Characterization, Robertson & Mayne (editors), 1998 Balkema, Rotterdam, ISBN 9054109394 pp 35-47.

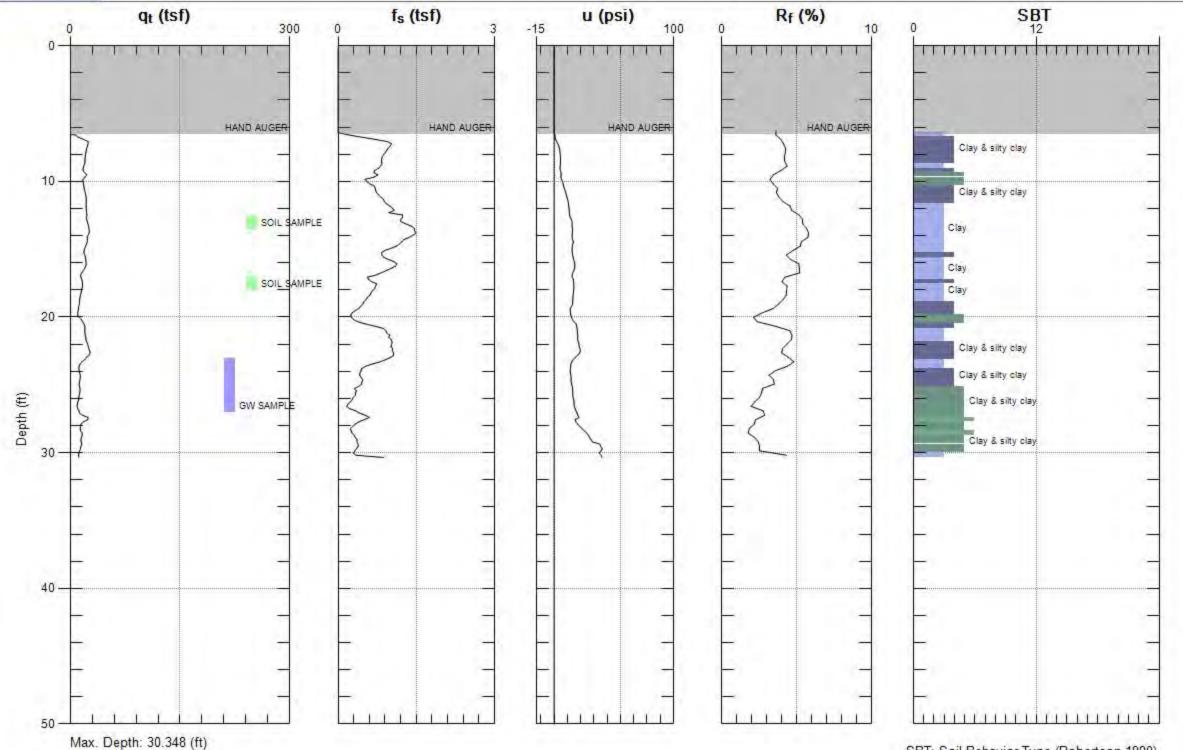
Campanella, R.G. and I. Weemees, "Development and Use of An Electrical Resistivity Cone for Groundwater Contamination Studies", Canadian Geotechnical Journal, Vol. 27 No. 5, 1990 pp. 557-567.

DeGroot, D.J. and A.J. Lutenegger, "Reliability of Soil Gas Sampling and Characterization Techniques", International Site Characterization Conference - Atlanta, 1998.

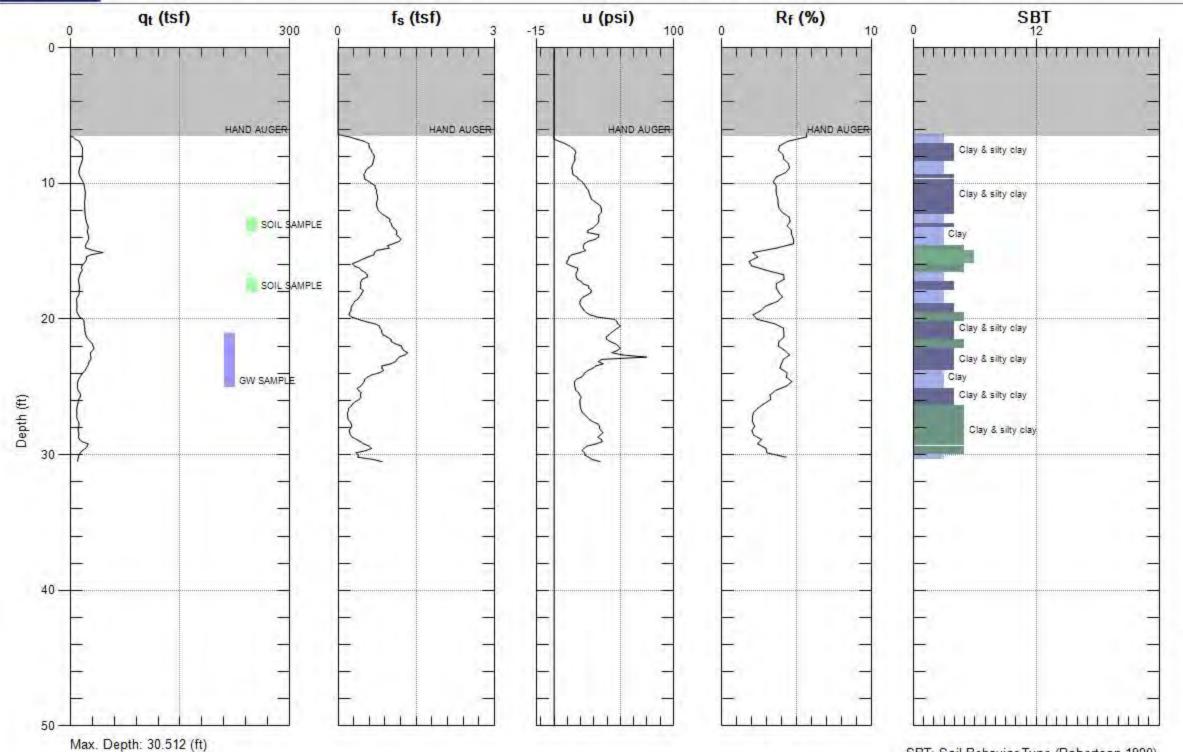

Woeller, D.J., P.K. Robertson, T.J. Boyd and Dave Thomas, "Detection of Polyaromatic Hydrocarbon Contaminants Using the UVIF-CPT", 53rd Canadian Geotechnical Conference Montreal, QC October pp. 733-739, 2000.

Zemo, D.A., T.A. Delfino, J.D. Gallinatti, V.A. Baker and L.R. Hilpert, "Field Comparison of Analytical Results from Discrete-Depth Groundwater Samplers" BAT EnviroProbe and QED HydroPunch, Sixth national Outdoor Action Conference, Las Vegas, Nevada Proceedings, 1992, pp 299-312.

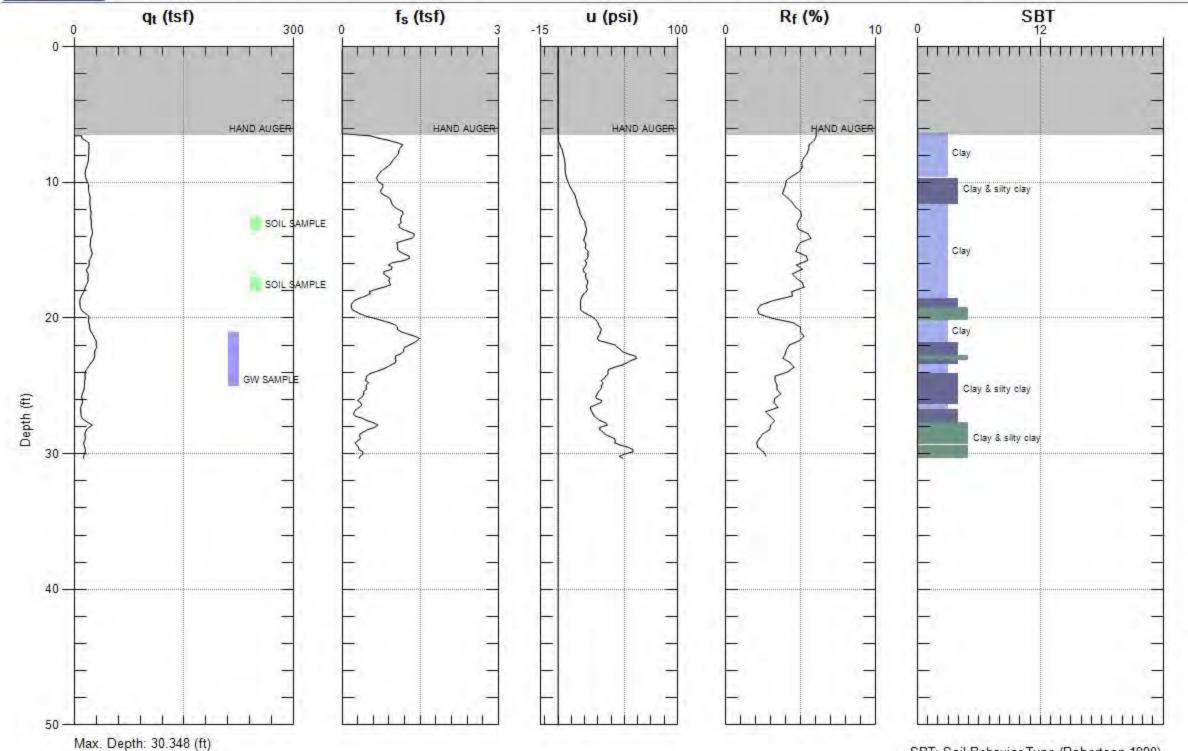
Copies of ASTM Standards are available through www.astm.org


Site: BP 2111 Sounding: SB-3 Engineer: K.TIDWELL Date: 11/23/2013 01:06

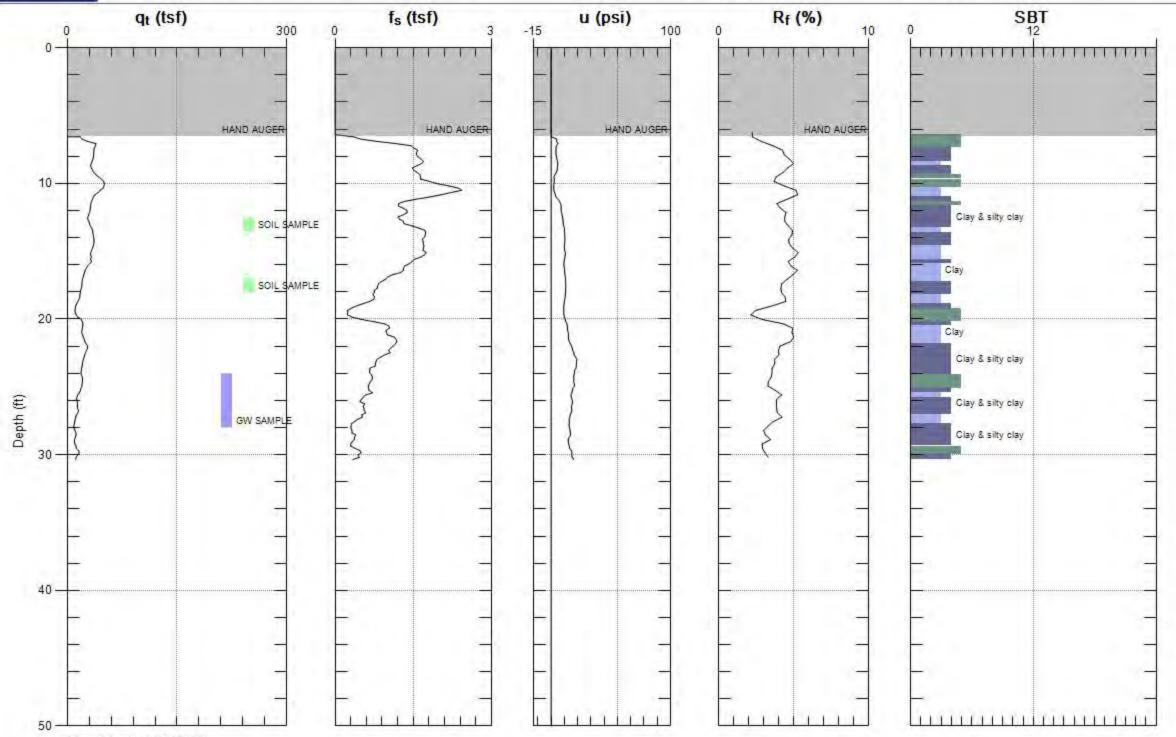
Avg. Interval: 0.328 (ft)


Site: BP 2111 Sounding: SB-4 Engineer: K.TIDWELL Date: 11/21/2013 07:43

Avg. Interval: 0.328 (ft)

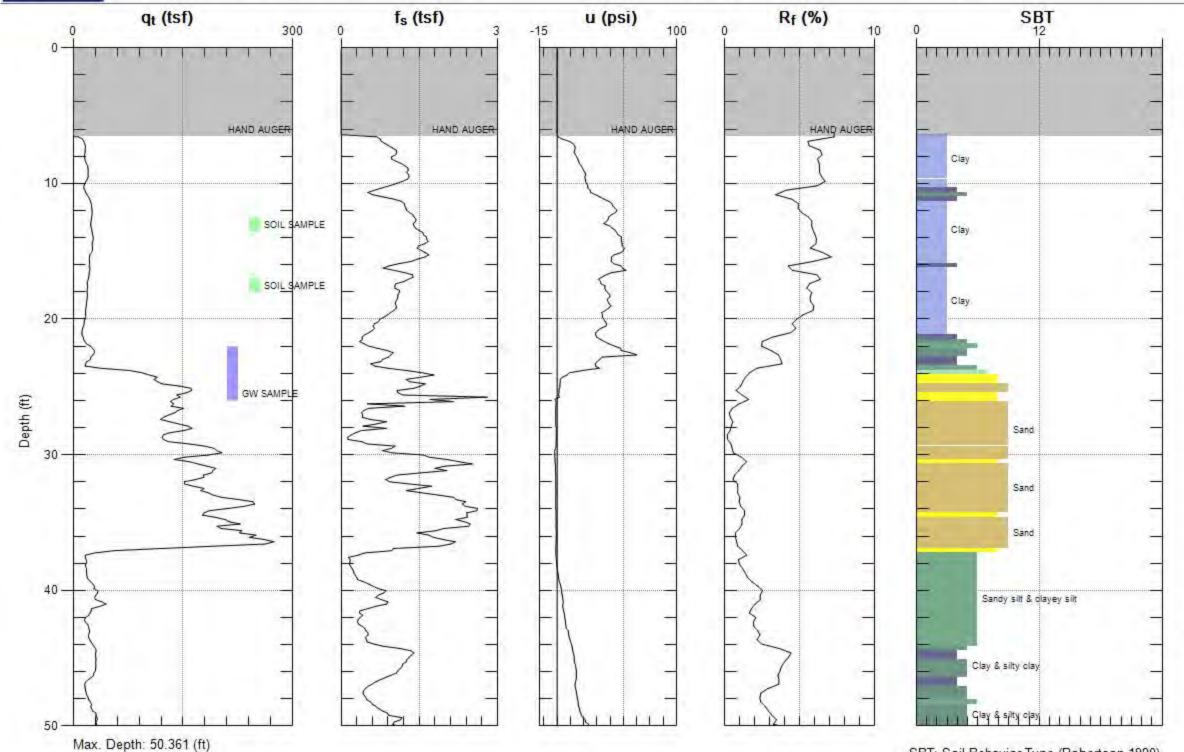

Site: BP 2111 Sounding: SB-6 Engineer: K.TIDWELL Date: 11/23/2013 10:56

Avg. Interval: 0.328 (ft)

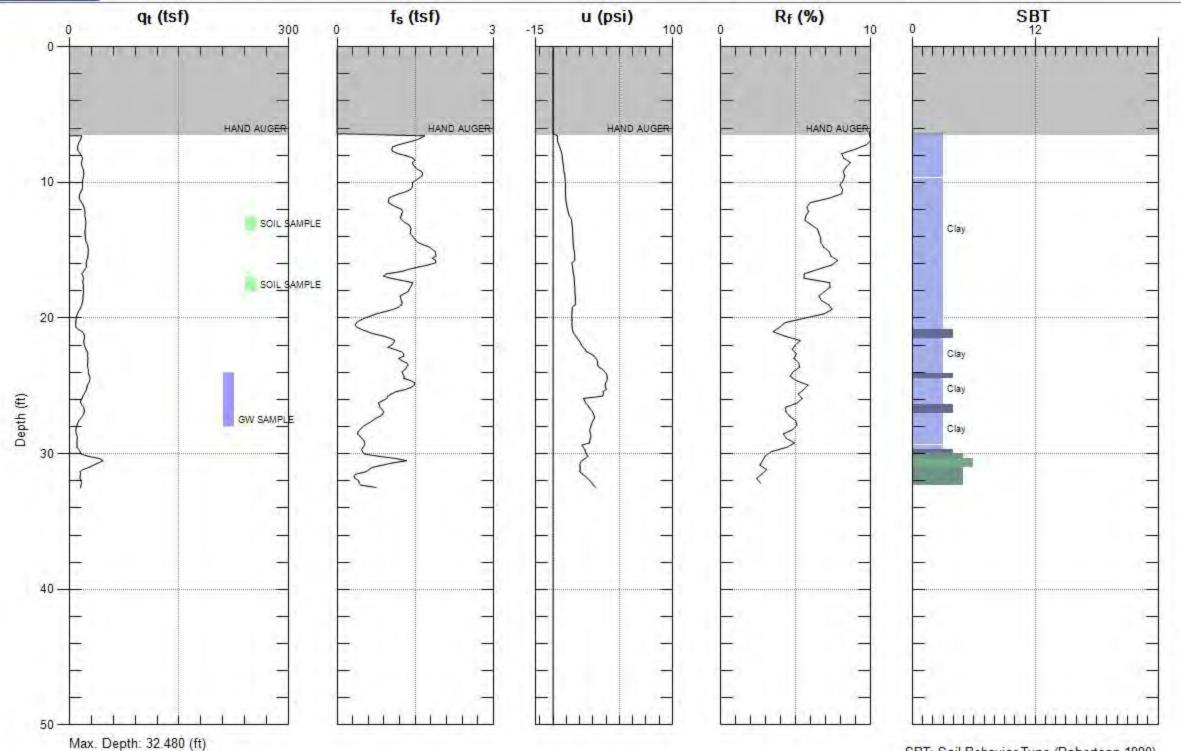

Site: BP 2111 Sounding: SB-7 Engineer: K.TIDWELL Date: 11/23/2013 09:01

Avg. Interval: 0.328 (ft)

Site: BP 2111 Sounding: SB-8 Engineer: K.TIDWELL Date: 11/23/2013 03:06


Max. Depth: 30.348 (ft) Avg. Interval: 0.328 (ft)

Avg. Interval: 0.328 (ft)


BROADBENT & ASSOC.

Site: BP 2111 Sounding: SB-9 Engineer: K.TIDWELL Date: 11/20/2013 11:11

Site: BP 2111 Sounding: SB-10 Engineer: K.TIDWELL Date: 11/20/2013 07:42

Avg. Interval: 0.328 (ft)

APPENDIX G

Laboratory Analytical Reports

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

Tel: (949)261-1022

TestAmerica Job ID: 440-63146-1

Client Project/Site: ARCO 2111, San Leandro

For:

Broadbent & Associates, Inc. 875 Cotting Lane Suite G Vacaville, California 95688

Attn: Kristene Tidwell

Authorized for release by: 12/10/2013 3:47:31 PM

Kathleen Robb, Project Manager II (949)261-1022 kathleen.robb@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	19
Chronicle	20
QC Sample Results	23
QC Association	33
Definitions	35
Certification Summary	36
Chain of Custody	37
Receipt Chacklists	39

Sample Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

	3
ceived	
/13 08:26	
/13 08:26	
/13 08:26	E
/13 08:26	Э
/13 08:26	
/13 08:26	

7

9

11

12

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-63146-1	SB-9-3	Solid	11/18/13 09:30	11/22/13 08:26
440-63146-2	SB-9-7	Solid	11/18/13 09:50	11/22/13 08:26
440-63146-3	SB-9-12	Solid	11/20/13 13:35	11/22/13 08:26
440-63146-4	SB-9-12.5	Solid	11/20/13 13:35	11/22/13 08:26
440-63146-5	SB-9-16.5	Solid	11/20/13 13:40	11/22/13 08:26
440-63146-6	SB-9-17	Solid	11/20/13 13:40	11/22/13 08:26
440-63146-7	SB-10-12	Solid	11/20/13 09:45	11/22/13 08:26
440-63146-8	SB-10-12.5	Solid	11/20/13 09:45	11/22/13 08:26
440-63146-9	SB-10-16.5	Solid	11/20/13 09:50	11/22/13 08:26
440-63146-10	SB-10-17.5	Solid	11/20/13 09:50	11/22/13 08:26
440-63146-11	SB-4-12	Solid	11/21/13 09:45	11/22/13 08:26
440-63146-12	SB-4-12.5	Solid	11/21/13 09:45	11/22/13 08:26
440-63146-13	SB-4-16	Solid	11/21/13 09:55	11/22/13 08:26
440-63146-14	SB-4-16.5	Solid	11/21/13 09:55	11/22/13 08:26

Case Narrative

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

K

4

8

10

12

Job ID: 440-63146-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-63146-1

Comments

No additional comments.

Receipt

The samples were received on 11/22/2013 7:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

Except:

The container label for the following sample(s) did not match the information listed on the Chain-of-Custody (COC): SB-10-17.5 (440-63146-10). The container labels lists "SB-10-17" as the sample ID. The COC lists "SB-10-17.5" as the sample ID was logged in according to the COC per client confirmation.

GC/MS VOA

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 147837 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside the upper control limit: SB-4-16 (440-63146-13), SB-4-16.5 (440-63146-14). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No other analytical or quality issues were noted.

GC VOA

Method(s) 8015B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 147884 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The precision (%RPD) for MS/MSD was within limits.

Method(s) 8015B: Surrogate recovery for the following sample(s) was outside control limits: SB-9-17 (440-63146-6). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No other analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-1

12/02/13 16:37

Matrix: Solid

Date Collected: 11/18/13 09:30 Date Received: 11/22/13 08:26

4-Bromofluorobenzene (Surr)

Client Sample ID: SB-9-3

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/02/13 13:09	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/02/13 13:09	1
Ethanol	ND		0.20	mg/Kg			12/02/13 13:09	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/02/13 13:09	1
Ethylbenzene	ND		0.0010	mg/Kg			12/02/13 13:09	1
m,p-Xylene	ND		0.0020	mg/Kg			12/02/13 13:09	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/02/13 13:09	1
o-Xylene	ND		0.0010	mg/Kg			12/02/13 13:09	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/02/13 13:09	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/02/13 13:09	1
Toluene	ND		0.0010	mg/Kg			12/02/13 13:09	1
Xylenes, Total	ND		0.0020	mg/Kg			12/02/13 13:09	1
Naphthalene	ND		0.0020	mg/Kg			12/02/13 13:09	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/02/13 13:09	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/02/13 13:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		79 - 120		-		12/02/13 13:09	1
Dibromofluoromethane (Surr)	94		60 - 120				12/02/13 13:09	1
Toluene-d8 (Surr)	108		79 - 123				12/02/13 13:09	1
Method: 8015B - Gasoline Rar	nge Organics - (G	C)						
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND ND		0.40	mg/Kg			12/02/13 16:37	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

65 - 140

96

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-2

Matrix: Solid

Client Sample ID: SB-9-7

Date Collected: 11/18/13 09:50 Date Received: 11/22/13 08:26

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/02/13 13:40	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/02/13 13:40	1
Ethanol	ND		0.20	mg/Kg			12/02/13 13:40	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/02/13 13:40	1
Ethylbenzene	ND		0.0010	mg/Kg			12/02/13 13:40	1
m,p-Xylene	ND		0.0020	mg/Kg			12/02/13 13:40	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/02/13 13:40	1
o-Xylene	ND		0.0010	mg/Kg			12/02/13 13:40	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/02/13 13:40	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/02/13 13:40	1
Toluene	ND		0.0010	mg/Kg			12/02/13 13:40	1
Xylenes, Total	ND		0.0020	mg/Kg			12/02/13 13:40	1
Naphthalene	ND		0.0020	mg/Kg			12/02/13 13:40	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/02/13 13:40	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/02/13 13:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		79 - 120		-		12/02/13 13:40	1
Dibromofluoromethane (Surr)	99		60 - 120				12/02/13 13:40	1
Toluene-d8 (Surr)	108		79 - 123				12/02/13 13:40	1
Method: 8015B - Gasoline Ran	ge Organics - (G	C)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.38	mg/Kg			11/29/13 23:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	75		65 - 140		-		11/29/13 23:12	

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-3

Matrix: Solid

Client Sample ID: SB-9-12 Date Collected: 11/20/13 13:35

Date Received: 11/22/13 08:26

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/02/13 15:11	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/02/13 15:11	1
Ethanol	ND		0.20	mg/Kg			12/02/13 15:11	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/02/13 15:11	1
Ethylbenzene	ND		0.0010	mg/Kg			12/02/13 15:11	1
m,p-Xylene	ND		0.0020	mg/Kg			12/02/13 15:11	1
Methyl-t-Butyl Ether (MTBE)	0.0031		0.0020	mg/Kg			12/02/13 15:11	1
o-Xylene	ND		0.0010	mg/Kg			12/02/13 15:11	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/02/13 15:11	1
tert-Butyl alcohol (TBA)	0.066		0.050	mg/Kg			12/02/13 15:11	1
Toluene	ND		0.0010	mg/Kg			12/02/13 15:11	1
Xylenes, Total	ND		0.0020	mg/Kg			12/02/13 15:11	1
Naphthalene	ND		0.0020	mg/Kg			12/02/13 15:11	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/02/13 15:11	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/02/13 15:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		79 - 120		-		12/02/13 15:11	1
Dibromofluoromethane (Surr)	101		60 - 120				12/02/13 15:11	1
Toluene-d8 (Surr)	110		79 - 123				12/02/13 15:11	1
Method: 8015B - Gasoline Ran	ige Organics - (G	C)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.39	mg/Kg			11/29/13 18:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		65 - 140		-		11/29/13 18:29	

TestAmerica Irvine

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-4

Matrix: Solid

Client Sample ID: SB-9-12.5 Date Collected: 11/20/13 13:35

Date Received: 11/22/13 08:26

Analyte

Surrogate

GRO (C6-C12)

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00099	mg/Kg			12/02/13 15:42	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/02/13 15:42	1
Ethanol	ND		0.20	mg/Kg			12/02/13 15:42	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/02/13 15:42	1
Ethylbenzene	ND		0.00099	mg/Kg			12/02/13 15:42	1
m,p-Xylene	ND		0.0020	mg/Kg			12/02/13 15:42	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/02/13 15:42	1
o-Xylene	ND		0.00099	mg/Kg			12/02/13 15:42	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/02/13 15:42	1
tert-Butyl alcohol (TBA)	0.17		0.050	mg/Kg			12/02/13 15:42	1
Toluene	ND		0.00099	mg/Kg			12/02/13 15:42	1
Xylenes, Total	ND		0.0020	mg/Kg			12/02/13 15:42	1
Naphthalene	ND		0.0020	mg/Kg			12/02/13 15:42	1
1,2-Dibromoethane (EDB)	ND		0.00099	mg/Kg			12/02/13 15:42	1
1,2-Dichloroethane	ND		0.00099	mg/Kg			12/02/13 15:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		79 - 120		-		12/02/13 15:42	1
Dibromofluoromethane (Surr)	97		60 - 120				12/02/13 15:42	1
Toluene-d8 (Surr)	107		79 - 123				12/02/13 15:42	1

RL

0.39

Limits

65 - 140

Unit

mg/Kg

Prepared

Prepared

Analyzed

11/29/13 18:57

Analyzed

11/29/13 18:57

Result Qualifier

ND

%Recovery Qualifier

83

5

7

10

11

12

1.

Dil Fac

Dil Fac

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-5

Matrix: Solid

Client Sample ID: SB-9-16.5 Date Collected: 11/20/13 13:40

Date Received: 11/22/13 08:26

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00099	mg/Kg			12/02/13 16:13	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/02/13 16:13	1
Ethanol	ND		0.20	mg/Kg			12/02/13 16:13	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/02/13 16:13	1
Ethylbenzene	0.0012		0.00099	mg/Kg			12/02/13 16:13	1
m,p-Xylene	ND		0.0020	mg/Kg			12/02/13 16:13	1
Methyl-t-Butyl Ether (MTBE)	0.020		0.0020	mg/Kg			12/02/13 16:13	1
o-Xylene	ND		0.00099	mg/Kg			12/02/13 16:13	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/02/13 16:13	1
tert-Butyl alcohol (TBA)	0.069		0.050	mg/Kg			12/02/13 16:13	1
Toluene	ND		0.00099	mg/Kg			12/02/13 16:13	1
Xylenes, Total	ND		0.0020	mg/Kg			12/02/13 16:13	1
Naphthalene	0.11		0.0020	mg/Kg			12/02/13 16:13	1
1,2-Dibromoethane (EDB)	ND		0.00099	mg/Kg			12/02/13 16:13	1
1,2-Dichloroethane	ND		0.00099	mg/Kg			12/02/13 16:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		79 - 120		-		12/02/13 16:13	1
Dibromofluoromethane (Surr)	102		60 - 120				12/02/13 16:13	1
Toluene-d8 (Surr)	109		79 - 123				12/02/13 16:13	1
Method: 8015B - Gasoline Ran	age Organics - (G	C)						
Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	0.59		0.40	mg/Kg			11/29/13 19:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			65 - 140		-		11/29/13 19:25	

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: SB-9-17

Date Collected: 11/20/13 13:40

Date Received: 11/22/13 08:26

TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-6

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00097	mg/Kg			12/04/13 18:17	1
Isopropyl Ether (DIPE)	ND		0.0019	mg/Kg			12/04/13 18:17	1
Ethanol	ND		0.19	mg/Kg			12/04/13 18:17	1
Ethyl-t-butyl ether (ETBE)	ND		0.0019	mg/Kg			12/04/13 18:17	1
Ethylbenzene	0.065		0.00097	mg/Kg			12/04/13 18:17	1
m,p-Xylene	0.0044		0.0019	mg/Kg			12/04/13 18:17	1
Methyl-t-Butyl Ether (MTBE)	0.022		0.0019	mg/Kg			12/04/13 18:17	1
o-Xylene	ND		0.00097	mg/Kg			12/04/13 18:17	1
Tert-amyl-methyl ether (TAME)	ND		0.0019	mg/Kg			12/04/13 18:17	1
tert-Butyl alcohol (TBA)	ND	ID	0.049	mg/Kg			12/04/13 18:17	1
Toluene	ND		0.00097	mg/Kg			12/04/13 18:17	1
Xylenes, Total	0.0044		0.0019	mg/Kg			12/04/13 18:17	1
Naphthalene	0.26		0.0019	mg/Kg			12/04/13 18:17	1
1,2-Dibromoethane (EDB)	ND		0.00097	mg/Kg			12/04/13 18:17	1
1,2-Dichloroethane	ND		0.00097	mg/Kg			12/04/13 18:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		79 - 120		=		12/04/13 18:17	1
Dibromofluoromethane (Surr)	98		60 - 120				12/04/13 18:17	1
Toluene-d8 (Surr)	122		79 - 123				12/04/13 18:17	1
- Method: 8015B - Gasoline Ran	ige Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	13		2.0	mg/Kg			12/04/13 18:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	192	LH	65 - 140		-		12/04/13 18:38	1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-7

11/29/13 20:20

Matrix: Solid

Client Sample ID: SB-10-12 Date Collected: 11/20/13 09:45

Date Received: 11/22/13 08:26

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00099	mg/Kg			12/02/13 16:43	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/02/13 16:43	1
Ethanol	ND		0.20	mg/Kg			12/02/13 16:43	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/02/13 16:43	1
Ethylbenzene	ND		0.00099	mg/Kg			12/02/13 16:43	1
m,p-Xylene	ND		0.0020	mg/Kg			12/02/13 16:43	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/02/13 16:43	1
o-Xylene	ND		0.00099	mg/Kg			12/02/13 16:43	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/02/13 16:43	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/02/13 16:43	1
Toluene	ND		0.00099	mg/Kg			12/02/13 16:43	1
Xylenes, Total	ND		0.0020	mg/Kg			12/02/13 16:43	1
Naphthalene	ND		0.0020	mg/Kg			12/02/13 16:43	1
1,2-Dibromoethane (EDB)	ND		0.00099	mg/Kg			12/02/13 16:43	1
1,2-Dichloroethane	ND		0.00099	mg/Kg			12/02/13 16:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		79 - 120		-		12/02/13 16:43	1
Dibromofluoromethane (Surr)	96		60 - 120				12/02/13 16:43	1
Toluene-d8 (Surr)	109		79 - 123				12/02/13 16:43	1
Method: 8015B - Gasoline Rang	ne Organics - (G	C)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.39	mg/Kg			11/29/13 20:20	1
								Dil Fac

65 - 140

81

TestAmerica Irvine

_

4

7

9

10

12

13

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

Client Sample ID: SB-10-12.5

Date Collected: 11/20/13 09:45 Date Received: 11/22/13 08:26 Lab Sample ID: 440-63146-8

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/02/13 17:14	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/02/13 17:14	•
Ethanol	ND		0.20	mg/Kg			12/02/13 17:14	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/02/13 17:14	1
Ethylbenzene	ND		0.0010	mg/Kg			12/02/13 17:14	1
m,p-Xylene	ND		0.0020	mg/Kg			12/02/13 17:14	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/02/13 17:14	1
o-Xylene	ND		0.0010	mg/Kg			12/02/13 17:14	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/02/13 17:14	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/02/13 17:14	1
Toluene	ND		0.0010	mg/Kg			12/02/13 17:14	1
Xylenes, Total	ND		0.0020	mg/Kg			12/02/13 17:14	1
Naphthalene	ND		0.0020	mg/Kg			12/02/13 17:14	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/02/13 17:14	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/02/13 17:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		79 - 120		-		12/02/13 17:14	1
Dibromofluoromethane (Surr)	101		60 - 120				12/02/13 17:14	1
Toluene-d8 (Surr)	107		79 - 123				12/02/13 17:14	1
Method: 8015B - Gasoline Ran	ge Organics - (G	C)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.39	mg/Kg			11/29/13 21:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		65 - 140		-		11/29/13 21:43	

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: SB-10-16.5

Method: 8015B - Gasoline Range Organics - (GC)

TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-9

Matrix: Solid

Date Collected: 11/20/13 09:50 Date Received: 11/22/13 08:26

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/02/13 17:45	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/02/13 17:45	1
Ethanol	ND		0.20	mg/Kg			12/02/13 17:45	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/02/13 17:45	1
Ethylbenzene	ND		0.0010	mg/Kg			12/02/13 17:45	1
m,p-Xylene	ND		0.0020	mg/Kg			12/02/13 17:45	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/02/13 17:45	1
o-Xylene	ND		0.0010	mg/Kg			12/02/13 17:45	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/02/13 17:45	1
tert-Butyl alcohol (TBA)	0.26		0.050	mg/Kg			12/02/13 17:45	1
Toluene	ND		0.0010	mg/Kg			12/02/13 17:45	1
Xylenes, Total	ND		0.0020	mg/Kg			12/02/13 17:45	1
Naphthalene	ND		0.0020	mg/Kg			12/02/13 17:45	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/02/13 17:45	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/02/13 17:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		79 - 120		-		12/02/13 17:45	1
Dibromofluoromethane (Surr)	96		60 - 120				12/02/13 17:45	1
Toluene-d8 (Surr)	107		79 - 123				12/02/13 17:45	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.39	mg/Kg			11/29/13 22:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		65 - 140		_		11/29/13 22:11	1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: SB-10-17.5

Date Collected: 11/20/13 09:50

Date Received: 11/22/13 08:26

Surrogate

4-Bromofluorobenzene (Surr)

TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-10

Matrix: Solid

d

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00099	mg/Kg			12/02/13 11:37	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/02/13 11:37	1
Ethanol	ND		0.20	mg/Kg			12/02/13 11:37	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/02/13 11:37	1
Ethylbenzene	ND		0.00099	mg/Kg			12/02/13 11:37	1
m,p-Xylene	ND		0.0020	mg/Kg			12/02/13 11:37	1
Methyl-t-Butyl Ether (MTBE)	0.0056		0.0020	mg/Kg			12/02/13 11:37	1
o-Xylene	ND		0.00099	mg/Kg			12/02/13 11:37	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/02/13 11:37	1
tert-Butyl alcohol (TBA)	0.49		0.050	mg/Kg			12/02/13 11:37	1
Toluene	ND		0.00099	mg/Kg			12/02/13 11:37	1
Xylenes, Total	ND		0.0020	mg/Kg			12/02/13 11:37	1
Naphthalene	ND		0.0020	mg/Kg			12/02/13 11:37	1
1,2-Dibromoethane (EDB)	ND		0.00099	mg/Kg			12/02/13 11:37	1
1,2-Dichloroethane	ND		0.00099	mg/Kg			12/02/13 11:37	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		79 - 120		-		12/02/13 11:37	1
Dibromofluoromethane (Surr)	94		60 - 120				12/02/13 11:37	1
Toluene-d8 (Surr)	108		79 - 123				12/02/13 11:37	1
Method: 8015B - Gasoline Ran	ge Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.40	mg/Kg			11/29/13 22:39	1

Limits

65 - 140

%Recovery Qualifier

93

6

8

9

10

12

1

Dil Fac

Analyzed

11/29/13 22:39

Prepared

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-11

Matrix: Solid

Date Collected: 11/21/13 09:45 Date Received: 11/22/13 08:26

Client Sample ID: SB-4-12

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/02/13 18:16	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/02/13 18:16	1
Ethanol	ND		0.20	mg/Kg			12/02/13 18:16	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/02/13 18:16	1
Ethylbenzene	ND		0.0010	mg/Kg			12/02/13 18:16	1
m,p-Xylene	ND		0.0020	mg/Kg			12/02/13 18:16	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/02/13 18:16	1
o-Xylene	ND		0.0010	mg/Kg			12/02/13 18:16	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/02/13 18:16	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/02/13 18:16	1
Toluene	ND		0.0010	mg/Kg			12/02/13 18:16	1
Xylenes, Total	ND		0.0020	mg/Kg			12/02/13 18:16	1
Naphthalene	ND		0.0020	mg/Kg			12/02/13 18:16	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/02/13 18:16	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/02/13 18:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		79 - 120		=		12/02/13 18:16	1
Dibromofluoromethane (Surr)	102		60 - 120				12/02/13 18:16	1
Toluene-d8 (Surr)	107		79 - 123				12/02/13 18:16	1

Method. 00 13D - Gasonine Italige	Organics - (O	ر,						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.40	mg/Kg			11/29/13 23:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		65 - 140		_		11/29/13 23:06	1

TestAmerica Irvine

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-12

Matrix: Solid

Dil Fac

Client Sample ID: SB-4-12.5 Date Collected: 11/21/13 09:45

Date Received: 11/22/13 08:26

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL Unit D Prepared Analyzed Benzene ND 0.00099 12/02/13 18:46 mg/Kg Isopropyl Ether (DIPE) ND 0.0020 mg/Kg 12/02/13 18:46 ND 0.20 mg/Kg 12/02/13 18:46 0.0020 Ethyl-t-butyl ether (ETBE) ND 12/02/13 18:46 mg/Kg Ethylbenzene ND 0.00099 mg/Kg 12/02/13 18:46 m,p-Xylene ND 0.0020 12/02/13 18:46 mg/Kg Methyl-t-Butyl Ether (MTBE) ND 0.0020 mg/Kg 12/02/13 18:46 o-Xylene ND 0.00099 mg/Kg 12/02/13 18:46 Tert-amyl-methyl ether (TAME) ND 0.0020 mg/Kg 12/02/13 18:46 tert-Butyl alcohol (TBA) ND 0.050 mg/Kg 12/02/13 18:46 Toluene ND 0.00099 mg/Kg 12/02/13 18:46 0.0020 Xylenes, Total ND mg/Kg 12/02/13 18:46 Naphthalene ND 0.0020 12/02/13 18:46 mg/Kg 1,2-Dibromoethane (EDB) ND 0.00099 mg/Kg 12/02/13 18:46 0.00099 1,2-Dichloroethane ND 12/02/13 18:46 mg/Kg %Recovery Limits Surrogate Qualifier Prepared Analyzed 4-Bromofluorobenzene (Surr) 99 79 - 120 12/02/13 18:46 Dibromofluoromethane (Surr) 103 60 - 120 12/02/13 18:46 Toluene-d8 (Surr) 79 - 123 12/02/13 18:46 109

Method: 8015B - Gasoline Ra	nge Organics - (GC)						
Analyte	Result Qualifie	r RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND ND	0.40	mg/Kg			11/29/13 23:34	1
Surrogate	%Recovery Qualifie	r Limits			Prepared	Analvzed	Dil Fac
4-Bromofluorobenzene (Surr)	75	65 - 140		-		11/29/13 23:34	

4

5

9

10

12

1.

Dil Fac

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-13

Client Sample ID: SB-4-16 Date Collected: 11/21/13 09:55

Date Received: 11/22/13 08:26

Surrogate

4-Bromofluorobenzene (Surr)

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00099	mg/Kg			12/03/13 01:55	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/03/13 01:55	1
Ethanol	ND		0.20	mg/Kg			12/03/13 01:55	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/03/13 01:55	1
Ethylbenzene	ND		0.00099	mg/Kg			12/03/13 01:55	1
m,p-Xylene	ND		0.0020	mg/Kg			12/03/13 01:55	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/03/13 01:55	1
o-Xylene	ND		0.00099	mg/Kg			12/03/13 01:55	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/03/13 01:55	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/03/13 01:55	1
Toluene	ND		0.00099	mg/Kg			12/03/13 01:55	1
Xylenes, Total	ND		0.0020	mg/Kg			12/03/13 01:55	1
Naphthalene	ND		0.0020	mg/Kg			12/03/13 01:55	1
1,2-Dibromoethane (EDB)	ND		0.00099	mg/Kg			12/03/13 01:55	1
1,2-Dichloroethane	ND		0.00099	mg/Kg			12/03/13 01:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		79 - 120		-		12/03/13 01:55	1
Dibromofluoromethane (Surr)	127	LH	60 - 120				12/03/13 01:55	1
Toluene-d8 (Surr)	117		79 - 123				12/03/13 01:55	1
Method: 8015B - Gasoline Ran	ge Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.39	mg/Kg			11/30/13 00:02	1

Limits

65 - 140

%Recovery Qualifier

73

TestAmerica Irvine

2

5

9

10

4.6

45

Dil Fac

Analyzed 11/30/13 00:02

Prepared

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-14

Matrix: Solid

Client Sample ID: SB-4-16.5 Date Collected: 11/21/13 09:55

Date Received: 11/22/13 08:26

Surrogate

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00099	mg/Kg			12/03/13 02:25	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/03/13 02:25	1
Ethanol	ND		0.20	mg/Kg			12/03/13 02:25	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/03/13 02:25	1
Ethylbenzene	ND		0.00099	mg/Kg			12/03/13 02:25	1
m,p-Xylene	ND		0.0020	mg/Kg			12/03/13 02:25	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/03/13 02:25	1
o-Xylene	ND		0.00099	mg/Kg			12/03/13 02:25	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/03/13 02:25	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/03/13 02:25	1
Toluene	ND		0.00099	mg/Kg			12/03/13 02:25	1
Xylenes, Total	ND		0.0020	mg/Kg			12/03/13 02:25	1
Naphthalene	ND		0.0020	mg/Kg			12/03/13 02:25	1
1,2-Dibromoethane (EDB)	ND		0.00099	mg/Kg			12/03/13 02:25	1
1,2-Dichloroethane	ND		0.00099	mg/Kg			12/03/13 02:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		79 - 120		-		12/03/13 02:25	1
Dibromofluoromethane (Surr)	121	LH	60 - 120				12/03/13 02:25	1
Toluene-d8 (Surr)	116		79 - 123				12/03/13 02:25	1
Method: 8015B - Gasoline Ran	ge Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.38	mg/Kg			11/30/13 00:29	1

Limits

65 - 140

%Recovery Qualifier

75

6

8

10

11

12

13

Dil Fac

Analyzed 11/30/13 00:29

Prepared

Method Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8015B	Gasoline Range Organics - (GC)	SW846	TAL IRV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

G

3

4

<u>5</u>

7

10

11

12

1:

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: SB-9-3

Lab Sample ID: 440-63146-1

Date Collected: 11/18/13 09:30 Matrix: Solid
Date Received: 11/22/13 08:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.02 g	10 mL	147837	12/02/13 13:09	AL	TAL IRV
Total/NA	Analysis	8015B		1	5.03 g	10 mL	147884	12/02/13 16:37	TL	TAL IRV

Client Sample ID: SB-9-7 Lab Sample ID: 440-63146-2

Date Collected: 11/18/13 09:50 Matrix: Solid
Date Received: 11/22/13 08:26

Dil Initial Final Batch Batch Batch Prepared Prep Type Туре Method Factor Amount Amount Number or Analyzed Analyst Run Lab 8260B Total/NA Analysis 5.01 g 10 mL 147837 12/02/13 13:40 AL TAL IRV 1 Total/NA Analysis 8015B 1 5.23 g 10 mL 147569 11/29/13 23:12 PH TAL IRV

Client Sample ID: SB-9-12 Lab Sample ID: 440-63146-3

Date Collected: 11/20/13 13:35 Matrix: Solid

Date Received: 11/22/13 08:26

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Pre	р Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Tota	al/NA	Analysis	8260B		1	5.02 g	10 mL	147837	12/02/13 15:11	AL	TAL IRV
Tota	al/NA	Analysis	8015B		1	5.17 g	10 mL	147564	11/29/13 18:29	TL	TAL IRV

Client Sample ID: SB-9-12.5

Date Collected: 11/20/13 13:35

Lab Sample ID: 440-63146-4

Matrix: Solid

Date Collected: 11/20/13 13:35 Date Received: 11/22/13 08:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.04 g	10 mL	147837	12/02/13 15:42	AL	TAL IRV
Total/NA	Analysis	8015B		1	5.15 g	10 mL	147564	11/29/13 18:57	TL	TAL IRV

Client Sample ID: SB-9-16.5 Lab Sample ID: 440-63146-5

Date Collected: 11/20/13 13:40 Date Received: 11/22/13 08:26

Г										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.03 g	10 mL	147837	12/02/13 16:13	AL	TAL IRV
Total/NA	Analysis	8015B		1	5.01 g	10 mL	147564	11/29/13 19:25	TL	TAL IRV

Client Sample ID: SB-9-17 Lab Sample ID: 440-63146-6

Date Collected: 11/20/13 13:40

Date Received: 11/22/13 08:26

Matrix: Solid

_											
	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B		1	5.14 q	10 mL	148403	12/04/13 18:17	YK	TAL IRV	_

TestAmerica Irvine

Matrix: Solid

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: SB-9-17

Lab Sample ID: 440-63146-6

. Matrix: Solid

Date Collected: 11/20/13 13:40 Date Received: 11/22/13 08:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015B		1	1.01 g	10 mL	148431	12/04/13 18:38	IM	TAL IRV

Client Sample ID: SB-10-12 Lab Sample ID: 440-63146-7

Date Collected: 11/20/13 09:45

Matrix: Solid

Date Received: 11/22/13 08:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.03 g	10 mL	147837	12/02/13 16:43	AL	TAL IRV
Total/NA	Analysis	8015B		1	5.19 g	10 mL	147564	11/29/13 20:20	TL	TAL IRV

Client Sample ID: SB-10-12.5 Lab Sample ID: 440-63146-8

Date Collected: 11/20/13 09:45

Date Received: 11/22/13 08:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 g	10 mL	147837	12/02/13 17:14	AL	TAL IRV
Total/NA	Δnalveis	8015B		1	5 15 a	10 ml	147564	11/20/13 21:43	TI	TAL IRV

Client Sample ID: SB-10-16.5 Lab Sample ID: 440-63146-9

Date Collected: 11/20/13 09:50 Date Received: 11/22/13 08:26 Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.02 g	10 mL	147837	12/02/13 17:45	AL	TAL IRV
Total/NA	Analysis	8015B		1	5.17 g	10 mL	147564	11/29/13 22:11	TL	TAL IRV

Client Sample ID: SB-10-17.5 Lab Sample ID: 440-63146-10

Date Collected: 11/20/13 09:50

Date Received: 11/22/13 08:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.03 g	10 mL	147837	12/02/13 11:37	AL	TAL IRV
Total/NA	Analysis	8015B		1	5.01 g	10 mL	147564	11/29/13 22:39	TL	TAL IRV

Client Sample ID: SB-4-12 Lab Sample ID: 440-63146-11

Date Collected: 11/21/13 09:45

Date Received: 11/22/13 08:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.01 g	10 mL	147837	12/02/13 18:16	AL	TAL IRV
Total/NA	Analysis	8015B		1	5.04 g	10 mL	147564	11/29/13 23:06	TL	TAL IRV

TestAmerica Irvine

Lab Chronicle

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

Lab Sample ID: 440-63146-12

Matrix: Solid

Date Collected: 11/21/13 09:45 Date Received: 11/22/13 08:26

Client Sample ID: SB-4-12.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	· <u></u>	1	5.05 g	10 mL	147837	12/02/13 18:46	AL	TAL IRV
Total/NA	Analysis	8015B		1	5.04 g	10 mL	147564	11/29/13 23:34	TL	TAL IRV

Client Sample ID: SB-4-16 Lab Sample ID: 440-63146-13

Date Collected: 11/21/13 09:55 Matrix: Solid

Date Received: 11/22/13 08:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.04 g	10 mL	148013	12/03/13 01:55	WK	TAL IRV
Total/NA	Analysis	8015B		1	5.18 g	10 mL	147564	11/30/13 00:02	TL	TAL IRV

Client Sample ID: SB-4-16.5 Lab Sample ID: 440-63146-14

Date Collected: 11/21/13 09:55

Date Received: 11/22/13 08:26

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.04 g	10 mL	148013	12/03/13 02:25	WK	TAL IRV
Total/NA	Analysis	8015B		1	5.31 g	10 mL	147564	11/30/13 00:29	TL	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

6

7

R

9

11

12

13

Matrix: Solid

RL

0.0010

0.0020

0.0020

0.0010

0.0020

0.0020

0.0010

0.0020

0.050

0.0010

0.0020

0.0020

0.0010

0.0010

Limits

79 - 120

60 - 120

79 - 123

0.20

Unit

mg/Kg

D

Prepared

Prepared

TestAmerica Job ID: 440-63146-1

Client Sample ID: Method Blank

Analyzed

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

Analyzed

12/02/13 09:26

12/02/13 09:26

12/02/13 09:26

Prep Type: Total/NA

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Lab Sample ID: MB 440-147837/4

Analysis Batch: 147837

Matrix: Solid

Isopropyl Ether (DIPE)

Ethyl-t-butyl ether (ETBE)

Methyl-t-Butyl Ether (MTBE)

Tert-amyl-methyl ether (TAME)

tert-Butyl alcohol (TBA)

1,2-Dibromoethane (EDB)

1,2-Dichloroethane

Analyte

Benzene

Ethanol

Ethylbenzene

m,p-Xylene

o-Xylene

Toluene

Xylenes, Total

Naphthalene

Surrogate

Method: 8260B - Volatile Organic Compounds (GC/MS)

мв мв

ND

102

102

109

%Recovery

MB MB

Qualifier

Result Qualifier

Dil Fac

Dil Fac

Dibromofluoromethane (Surr) Toluene-d8 (Surr)

Lab Sample ID: LCS 440-147837/5

Analysis Batch: 147837

Matrix: Solid

4-Bromofluorobenzene (Surr)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.0500	0.0549		mg/Kg		110	65 - 120	
Isopropyl Ether (DIPE)	0.0500	0.0582		mg/Kg		116	60 _ 140	
Ethanol	0.500	0.418		mg/Kg		84	35 _ 160	
Ethyl-t-butyl ether (ETBE)	0.0500	0.0555		mg/Kg		111	60 - 140	
Ethylbenzene	0.0500	0.0499		mg/Kg		100	70 _ 125	
m,p-Xylene	0.100	0.0942		mg/Kg		94	70 - 125	
Methyl-t-Butyl Ether (MTBE)	0.0500	0.0584		mg/Kg		117	60 - 140	
o-Xylene	0.0500	0.0491		mg/Kg		98	70 _ 125	
Tert-amyl-methyl ether (TAME)	0.0500	0.0598		mg/Kg		120	60 _ 145	
tert-Butyl alcohol (TBA)	0.250	0.273		mg/Kg		109	70 _ 135	
Toluene	0.0500	0.0517		mg/Kg		103	70 - 125	
Naphthalene	0.0500	0.0523		mg/Kg		105	55 _ 135	
1,2-Dibromoethane (EDB)	0.0500	0.0551		mg/Kg		110	70 - 130	
1,2-Dichloroethane	0.0500	0.0578		mg/Kg		116	60 - 140	

S

Surrogate	%Recovery Qu	ıalifier	Limits		
4-Bromofluorobenzene (Surr)	96		79 - 120		
Dibromofluoromethane (Surr)	104		60 - 120		
Toluene-d8 (Surr)	108		79 - 123		

TestAmerica Irvine

TestAmerica Job ID: 440-63146-1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-63146-10 MS Client Sample ID: SB-10-17.5 Matrix: Solid Prep Type: Total/NA

Analysis Batch: 147837

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		0.0498	0.0579		mg/Kg		116	65 - 130	
Isopropyl Ether (DIPE)	ND		0.0498	0.0558		mg/Kg		112	60 _ 150	
Ethanol	ND		0.498	0.481		mg/Kg		97	30 - 165	
Ethyl-t-butyl ether (ETBE)	ND		0.0498	0.0556		mg/Kg		112	60 - 145	
Ethylbenzene	ND		0.0498	0.0596		mg/Kg		120	70 - 135	
m,p-Xylene	ND		0.0996	0.112		mg/Kg		112	70 - 130	
Methyl-t-Butyl Ether (MTBE)	0.0056		0.0498	0.0643		mg/Kg		118	55 - 155	
o-Xylene	ND		0.0498	0.0586		mg/Kg		118	65 _ 130	
Tert-amyl-methyl ether (TAME)	ND		0.0498	0.0603		mg/Kg		121	60 _ 150	
tert-Butyl alcohol (TBA)	0.49		0.249	0.885	LM	mg/Kg		160	65 - 145	
Toluene	ND		0.0498	0.0542		mg/Kg		109	70 - 130	
Naphthalene	ND		0.0498	0.0562		mg/Kg		110	40 - 150	
1,2-Dibromoethane (EDB)	ND		0.0498	0.0634		mg/Kg		127	65 _ 140	
1,2-Dichloroethane	ND		0.0498	0.0569		mg/Kg		114	60 - 150	

MS MS Qualifier Limits Surrogate %Recovery 4-Bromofluorobenzene (Surr) 79 _ 120 103 Dibromofluoromethane (Surr) 96 60 - 120 Toluene-d8 (Surr) 106 79 - 123

Lab Sample ID: 440-63146-10 MSD Client Sample ID: SB-10-17.5 Matrix: Solid Prep Type: Total/NA

Analysis Batch: 147837

MSD MSD %Rec. RPD Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit ND 0.0496 0.0520 Benzene 105 65 - 130 20 mg/Kg 11 Isopropyl Ether (DIPE) ND 0.0496 0.0504 mg/Kg 102 60 - 150 10 25 Ethanol ND 0.496 0.487 mg/Kg 98 30 - 165 40 60 - 145 Ethyl-t-butyl ether (ETBE) ND 0.0496 0.0507 mg/Kg 102 30 ND 0.0496 0.0540 mg/Kg 109 70 - 135 25 Ethylbenzene 10 m,p-Xylene ND 0.0992 0.103 mg/Kg 104 70 - 130 8 25 Methyl-t-Butyl Ether (MTBE) 0.0056 0.0496 0.0586 107 55 - 155 9 mg/Kg 35 o-Xylene ND 0.0496 0.0536 mg/Kg 108 65 - 130 9 25 ND 0.0496 0.0544 Tert-amyl-methyl ether (TAME) mg/Kg 110 60 - 150 10 25 tert-Butyl alcohol (TBA) 0.49 0.248 0.831 139 65 - 145 6 mg/Kg 30 Toluene 0.0496 0.0497 100 20 ND mg/Kg 70 - 130 0.0511 100 Naphthalene ND 0.0496 mg/Kg 40 - 150 10 40 1,2-Dibromoethane (EDB) ND 0.0496 0.0571 115 65 - 140 10 25 mg/Kg 1,2-Dichloroethane ND 0.0496 0.0521 105 60 - 150 25 mg/Kg

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		79 - 120
Dibromofluoromethane (Surr)	96		60 - 120
Toluene-d8 (Surr)	107		79 - 123

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-148013/3 Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

Analysis Batch: 148013

MB MI	В					
Result Qu	ualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
ND	0.0010	mg/Kg			12/02/13 18:55	1
ND	0.0020	mg/Kg			12/02/13 18:55	1
ND	0.20	mg/Kg			12/02/13 18:55	1
ND	0.0020	mg/Kg			12/02/13 18:55	1
ND	0.0010	mg/Kg			12/02/13 18:55	1
ND	0.0020	mg/Kg			12/02/13 18:55	1
ND	0.0020	mg/Kg			12/02/13 18:55	1
ND	0.0010	mg/Kg			12/02/13 18:55	1
ND	0.0020	mg/Kg			12/02/13 18:55	1
ND	0.050	mg/Kg			12/02/13 18:55	1
ND	0.0010	mg/Kg			12/02/13 18:55	1
ND	0.0020	mg/Kg			12/02/13 18:55	1
ND	0.0020	mg/Kg			12/02/13 18:55	1
ND	0.0010	mg/Kg			12/02/13 18:55	1
ND	0.0010	mg/Kg			12/02/13 18:55	1
	Result Q ND	Result Qualifier RL ND 0.0010 ND 0.0020 ND 0.0020 ND 0.0010 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.050 ND 0.0010 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0021	Result Qualifier RL Unit ND 0.0010 mg/Kg ND 0.0020 mg/Kg ND 0.0020 mg/Kg ND 0.0010 mg/Kg ND 0.0020 mg/Kg ND 0.0020 mg/Kg ND 0.0020 mg/Kg ND 0.0010 mg/Kg ND 0.050 mg/Kg ND 0.0010 mg/Kg ND 0.0020 mg/Kg	Result Qualifier RL Unit D ND 0.0010 mg/Kg ng/Kg ND 0.0020 mg/Kg ND 0.0020 mg/Kg ND 0.0010 mg/Kg ND 0.0020 mg/Kg ND 0.0020 mg/Kg ND 0.0010 mg/Kg ND 0.050 mg/Kg ND 0.0010 mg/Kg ND 0.0020 mg/Kg	Result Qualifier RL Unit D Prepared ND 0.0010 mg/Kg Prepared ND 0.0020 mg/Kg ND 0.0020 mg/Kg ND 0.0010 mg/Kg ND 0.0020 mg/Kg ND 0.0020 mg/Kg ND 0.0010 mg/Kg ND 0.0020 mg/Kg ND 0.0010 mg/Kg ND 0.0020 mg/Kg ND 0.0010 mg/Kg	Result Qualifier RL Unit D Prepared Analyzed ND 0.0010 mg/Kg 12/02/13 18:55 ND 0.0020 mg/Kg 12/02/13 18:55 ND 0.0020 mg/Kg 12/02/13 18:55 ND 0.0010 mg/Kg 12/02/13 18:55 ND 0.0020 mg/Kg 12/02/13 18:55 ND 0.0020 mg/Kg 12/02/13 18:55 ND 0.0010 mg/Kg 12/02/13 18:55 ND 0.0020 mg/Kg 12/02/13 18:55 ND 0.050 mg/Kg 12/02/13 18:55 ND 0.0010 mg/Kg 12/02/13 18:55 ND 0.0020 mg/Kg 12/0

MB MB %Recovery Qualifier Dil Fac Limits Surrogate Prepared Analyzed 79 - 120 4-Bromofluorobenzene (Surr) 113 12/02/13 18:55 Dibromofluoromethane (Surr) 109 60 - 120 12/02/13 18:55 Toluene-d8 (Surr) 79 - 123 12/02/13 18:55 117

Lab Sample ID: LCS 440-148013/4 Client Sample ID: Lab Control Sample Matrix: Solid

Analysis Batch: 148013

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.0500	0.0466		mg/Kg		93	65 - 120
Isopropyl Ether (DIPE)	0.0500	0.0475		mg/Kg		95	60 - 140
Ethanol	0.500	0.439		mg/Kg		88	35 _ 160
Ethyl-t-butyl ether (ETBE)	0.0500	0.0501		mg/Kg		100	60 _ 140
Ethylbenzene	0.0500	0.0518		mg/Kg		104	70 - 125
m,p-Xylene	0.100	0.0997		mg/Kg		100	70 - 125
Methyl-t-Butyl Ether (MTBE)	0.0500	0.0528		mg/Kg		106	60 _ 140
o-Xylene	0.0500	0.0503		mg/Kg		101	70 - 125
Tert-amyl-methyl ether (TAME)	0.0500	0.0516		mg/Kg		103	60 _ 145
tert-Butyl alcohol (TBA)	0.250	0.252		mg/Kg		101	70 ₋ 135
Toluene	0.0500	0.0496		mg/Kg		99	70 - 125
Naphthalene	0.0500	0.0586		mg/Kg		117	55 ₋ 135
1,2-Dibromoethane (EDB)	0.0500	0.0525		mg/Kg		105	70 - 130
1,2-Dichloroethane	0.0500	0.0576		mg/Kg		115	60 - 140

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		79 - 120
Dibromofluoromethane (Surr)	113		60 - 120
Toluene-d8 (Surr)	116		79 ₋ 123

TestAmerica Irvine

Prep Type: Total/NA

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Lab Sample ID: 440-63630-A-7 MS

Matrix: Solid

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

%Recovery Qualifier

110

114

116

Client Sample ID: Matrix Spike

Prep Type: Total/NA

		%Rec.	
D	%Rec	Limits	
_	93	65 - 130	
	97	60 - 150	
	99	30 - 165	
	104	60 - 145	
	104	70 - 135	
	99	70 - 130	
	112	EE 1EE	

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		0.0501	0.0467		mg/Kg		93	65 - 130	
Isopropyl Ether (DIPE)	ND		0.0501	0.0485		mg/Kg		97	60 - 150	
Ethanol	ND		0.501	0.497		mg/Kg		99	30 - 165	
Ethyl-t-butyl ether (ETBE)	ND		0.0501	0.0522		mg/Kg		104	60 - 145	
Ethylbenzene	ND		0.0501	0.0520		mg/Kg		104	70 - 135	
m,p-Xylene	ND		0.100	0.0997		mg/Kg		99	70 - 130	
Methyl-t-Butyl Ether (MTBE)	ND		0.0501	0.0566		mg/Kg		113	55 - 155	
o-Xylene	ND		0.0501	0.0505		mg/Kg		101	65 - 130	
Tert-amyl-methyl ether (TAME)	ND		0.0501	0.0544		mg/Kg		109	60 - 150	
tert-Butyl alcohol (TBA)	ND		0.251	0.251		mg/Kg		100	65 - 145	
Toluene	ND		0.0501	0.0501		mg/Kg		100	70 - 130	
Naphthalene	ND		0.0501	0.0599		mg/Kg		120	40 - 150	
1,2-Dibromoethane (EDB)	ND		0.0501	0.0566		mg/Kg		113	65 - 140	
1,2-Dichloroethane	ND		0.0501	0.0607		mg/Kg		121	60 - 150	
	MS	MS								

Limits

79 - 120 60 - 120

79 - 123

Lab Sample ID: 440-63630-A-7 MSD

Matrix: Solid

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 148013

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Alialysis Balcil. 140013												
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	ND		0.0496	0.0476		mg/Kg		96	65 - 130	2	20	
Isopropyl Ether (DIPE)	ND		0.0496	0.0488		mg/Kg		98	60 - 150	0	25	
Ethanol	ND		0.496	0.459		mg/Kg		93	30 - 165	8	40	
Ethyl-t-butyl ether (ETBE)	ND		0.0496	0.0526		mg/Kg		106	60 - 145	1	30	
Ethylbenzene	ND		0.0496	0.0513		mg/Kg		103	70 - 135	1	25	
m,p-Xylene	ND		0.0992	0.100		mg/Kg		101	70 - 130	1	25	
Methyl-t-Butyl Ether (MTBE)	ND		0.0496	0.0564		mg/Kg		114	55 - 155	0	35	
o-Xylene	ND		0.0496	0.0505		mg/Kg		102	65 - 130	0	25	
Tert-amyl-methyl ether (TAME)	ND		0.0496	0.0543		mg/Kg		110	60 - 150	0	25	
tert-Butyl alcohol (TBA)	ND		0.248	0.252		mg/Kg		102	65 - 145	1	30	
Toluene	ND		0.0496	0.0508		mg/Kg		102	70 - 130	1	20	
Naphthalene	ND		0.0496	0.0597		mg/Kg		120	40 - 150	0	40	
1,2-Dibromoethane (EDB)	ND		0.0496	0.0550		mg/Kg		111	65 - 140	3	25	
1,2-Dichloroethane	ND		0.0496	0.0601		mg/Kg		121	60 - 150	1	25	

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		79 - 120
Dibromofluoromethane (Surr)	114		60 - 120
Toluene-d8 (Surr)	116		79 - 123

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Lab Sample ID: MB 440-148403/12

2

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MR MR

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 148403

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/04/13 13:13	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/04/13 13:13	1
Ethanol	ND		0.20	mg/Kg			12/04/13 13:13	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/04/13 13:13	1
Ethylbenzene	ND		0.0010	mg/Kg			12/04/13 13:13	1
m,p-Xylene	ND		0.0020	mg/Kg			12/04/13 13:13	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/04/13 13:13	1
o-Xylene	ND		0.0010	mg/Kg			12/04/13 13:13	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/04/13 13:13	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/04/13 13:13	1
Toluene	ND		0.0010	mg/Kg			12/04/13 13:13	1
Xylenes, Total	ND		0.0020	mg/Kg			12/04/13 13:13	1
Naphthalene	ND		0.0020	mg/Kg			12/04/13 13:13	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/04/13 13:13	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/04/13 13:13	1

MB MB

Surrogate	%Recovery Qual	lifier Limits	Prepared A	nalyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99	79 - 120	12/0	4/13 13:13	1
Dibromofluoromethane (Surr)	91	60 - 120	12/0	4/13 13:13	1
Toluene-d8 (Surr)	121	79 - 123	12/0	4/13 13:13	1

Lab Sample ID: LCS 440-148403/13

Matrix: Solid

Analysis Batch: 148403

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.0500	0.0534		mg/Kg		107	65 - 120	
Isopropyl Ether (DIPE)	0.0500	0.0543		mg/Kg		109	60 - 140	
Ethanol	0.500	0.298		mg/Kg		60	35 - 160	
Ethyl-t-butyl ether (ETBE)	0.0500	0.0525		mg/Kg		105	60 - 140	
Ethylbenzene	0.0500	0.0553		mg/Kg		111	70 - 125	
m,p-Xylene	0.100	0.108		mg/Kg		108	70 - 125	
Methyl-t-Butyl Ether (MTBE)	0.0500	0.0553		mg/Kg		111	60 - 140	
p-Xylene	0.0500	0.0508		mg/Kg		102	70 _ 125	
Tert-amyl-methyl ether (TAME)	0.0500	0.0509		mg/Kg		102	60 - 145	
ert-Butyl alcohol (TBA)	0.250	0.266		mg/Kg		107	70 _ 135	
Foluene	0.0500	0.0572		mg/Kg		114	70 - 125	
Naphthalene	0.0500	0.0637		mg/Kg		127	55 ₋ 135	
1,2-Dibromoethane (EDB)	0.0500	0.0519		mg/Kg		104	70 - 130	
1,2-Dichloroethane	0.0500	0.0432		mg/Kg		86	60 - 140	

LCS LCS

Surrogate	%Recovery Qualif	ier Limits
4-Bromofluorobenzene (Surr)	96	79 - 120
Dibromofluoromethane (Surr)	96	60 - 120
Toluene-d8 (Surr)	115	79 - 123

% Poc

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

2 000 12: 110 00110 1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Sample Sample

Lab Sample ID: 440-63319-A-1 MS

Matrix: Solid

Client Sample ID: Matrix Spike
Prep Type: Total/NA

ме ме

Snika

Analysis Batch: 148403

	Sample	Sample	Spike	IVIS	IVIS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		0.0492	0.0576		mg/Kg		117	65 - 130	
Isopropyl Ether (DIPE)	ND		0.0492	0.0585		mg/Kg		119	60 - 150	
Ethanol	ND		0.492	0.448		mg/Kg		91	30 _ 165	
Ethyl-t-butyl ether (ETBE)	ND		0.0492	0.0566		mg/Kg		115	60 - 145	
Ethylbenzene	ND		0.0492	0.0578		mg/Kg		118	70 - 135	
m,p-Xylene	ND		0.0984	0.116		mg/Kg		118	70 - 130	
Methyl-t-Butyl Ether (MTBE)	ND		0.0492	0.0589		mg/Kg		120	55 - 155	
o-Xylene	ND		0.0492	0.0523		mg/Kg		106	65 - 130	
Tert-amyl-methyl ether (TAME)	ND		0.0492	0.0555		mg/Kg		113	60 _ 150	
tert-Butyl alcohol (TBA)	ND		0.246	0.273		mg/Kg		111	65 - 145	
Toluene	ND		0.0492	0.0601		mg/Kg		122	70 - 130	
Naphthalene	ND		0.0492	0.0662		mg/Kg		135	40 - 150	
1,2-Dibromoethane (EDB)	ND		0.0492	0.0553		mg/Kg		112	65 - 140	
1,2-Dichloroethane	ND		0.0492	0.0470		mg/Kg		95	60 - 150	

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 96
 79 - 120

 Dibromofluoromethane (Surr)
 95
 60 - 120

 Toluene-d8 (Surr)
 116
 79 - 123

Lab Sample ID: 440-63319-A-1 MSD

Matrix: Solid

Client Sample ID: Matrix Spike Duplicate
Prep Type: Total/NA

Analysis Batch: 148403

Alialysis Datell. 170703											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.0493	0.0566		mg/Kg		115	65 - 130	2	20
Isopropyl Ether (DIPE)	ND		0.0493	0.0575		mg/Kg		117	60 - 150	2	25
Ethanol	ND		0.493	0.414		mg/Kg		84	30 - 165	8	40
Ethyl-t-butyl ether (ETBE)	ND		0.0493	0.0569		mg/Kg		115	60 - 145	1	30
Ethylbenzene	ND		0.0493	0.0584		mg/Kg		118	70 - 135	1	25
m,p-Xylene	ND		0.0986	0.116		mg/Kg		118	70 - 130	0	25
Methyl-t-Butyl Ether (MTBE)	ND		0.0493	0.0589		mg/Kg		120	55 - 155	0	35
o-Xylene	ND		0.0493	0.0535		mg/Kg		109	65 - 130	2	25
Tert-amyl-methyl ether (TAME)	ND		0.0493	0.0560		mg/Kg		114	60 - 150	1	25
tert-Butyl alcohol (TBA)	ND		0.247	0.251		mg/Kg		102	65 - 145	8	30
Toluene	ND		0.0493	0.0607		mg/Kg		123	70 - 130	1	20
Naphthalene	ND		0.0493	0.0659		mg/Kg		134	40 - 150	0	40
1,2-Dibromoethane (EDB)	ND		0.0493	0.0546		mg/Kg		111	65 - 140	1	25
1,2-Dichloroethane	ND		0.0493	0.0466		mg/Kg		94	60 - 150	1	25

	MSD I	ИSD	
Surrogate	%Recovery (Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		79 - 120
Dibromofluoromethane (Surr)	96		60 - 120
Toluene-d8 (Surr)	115		79 - 123

TestAmerica Irvine

6

8

9

10

12

TestAmerica Job ID: 440-63146-1

11/29/13 11:07

Method: 8015B - Gasoline Range Organics - (GC)

Lab Sample ID: MB 440-147564/4 Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Analysis Batch: 147564 MB MB

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.40	 mg/Kg			11/29/13 11:07	1
	440	440						
	IVIB	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Lab Sample ID: LCS 440-147564/2 Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 147564 LCS LCS Spike %Rec.

65 - 140

Added Result Qualifier Analyte Limits Unit %Rec GRO (C4-C12) 1.60 91 70 - 135 1.45 mg/Kg LCS LCS

Surrogate %Recovery Qualifier Limits 65 - 140 4-Bromofluorobenzene (Surr) 114

104

Lab Sample ID: LCSD 440-147564/3 Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA

Analysis Batch: 147564

			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)			1.60	1.46		mg/Kg		91	70 - 135	1	20
	LCSD	LCSD									

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 65 - 140

93

Client Sample ID: Matrix Spike Lab Sample ID: 720-54036-B-6 MS Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 147564

Analysis Balcii. 147304	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
GRO (C4-C12)	ND		1.60	1.47		mg/Kg		92	60 - 140	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							

65 - 140 4-Bromofluorobenzene (Surr) Lab Sample ID: 720-54036-B-6 MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 147564											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)	ND		1.59	1.44		mg/Kg		91	60 - 140	1	30
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	98		65 - 140	-							

TestAmerica Irvine

Prep Type: Total/NA

Method: 8015B - Gasoline Range Organics - (GC) (Continued)

Lab Sample ID: MB 440-147569/7 Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

Analysis Batch: 147569

мв мв Result Qualifier RLUnit D Analyzed Dil Fac Analyte Prepared GRO (C6-C12) ND 0.40 mg/Kg 11/29/13 12:30

MB MB

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 11/29/13 12:30 65 - 140 4-Bromofluorobenzene (Surr) 94

Lab Sample ID: LCS 440-147569/5 Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA

Analysis Batch: 147569

LCS LCS Spike %Rec. Added Result Qualifier Limits Analyte Unit %Rec GRO (C4-C12) 1.60 87 70 - 135 1.39 mg/Kg

LCS LCS Surrogate %Recovery Qualifier Limits 65 - 140 4-Bromofluorobenzene (Surr) 96

Lab Sample ID: LCSD 440-147569/6 Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA

Analysis Batch: 147569

LCSD LCSD RPD Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits RPD Limit GRO (C4-C12) 1.60 1.41 88 70 - 135 20 mg/Kg

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 93 65 - 140

Lab Sample ID: 440-63010-A-6 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 147569

MS MS %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits GRO (C4-C12) ND 1.49 1.31 mg/Kg 87 60 - 140

MS MS %Recovery Surrogate Qualifier Limits 4-Bromofluorobenzene (Surr) 94 65 - 140

Lab Sample ID: 440-63010-A-6 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 147569

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)	ND		1.57	1.37		mg/Kg		88	60 _ 140	5	30

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 65 - 140 93

Method: 8015B - Gasoline Range Organics - (GC) (Continued)

Lab Sample ID: MB 440-147884/4 Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

Analysis Batch: 147884

мв мв Result Qualifier RLUnit D Analyzed Dil Fac Analyte Prepared GRO (C6-C12) ND 0.40 mg/Kg 12/02/13 14:40

MB MB

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 65 - 140 12/02/13 14:40 4-Bromofluorobenzene (Surr) 93

Lab Sample ID: LCS 440-147884/2 Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA

Analysis Batch: 147884

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec GRO (C4-C12) 1.60 90 70 - 135 1.44 mg/Kg

LCS LCS Surrogate %Recovery Qualifier Limits 65 - 140 4-Bromofluorobenzene (Surr) 94

Lab Sample ID: LCSD 440-147884/3 Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA

Analysis Batch: 147884

LCSD LCSD Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits RPD GRO (C4-C12) 1.60 1.47 70 - 135 20 mg/Kg

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 94 65 - 140

Lab Sample ID: 440-63065-B-2 MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 147884

MS MS %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits GRO (C4-C12) 2.0 1.58 2.70 LN mg/Kg 60 - 140

MS MS %Recovery Surrogate Qualifier Limits 4-Bromofluorobenzene (Surr) 94 65 - 140

Lab Sample ID: 440-63065-B-2 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 147884

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)	2.0		1.55	2.46	LN	mg/Kg		29	60 - 140	9	30

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 65 - 140 95

TestAmerica Irvine

RPD Limit

Prep Type: Total/NA

Method: 8015B - Gasoline Range Organics - (GC) (Continued)

Lab Sample ID: MB 440-148431/4 Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

Analysis Batch: 148431

мв мв Result Qualifier RLUnit D Analyzed Dil Fac Analyte Prepared GRO (C6-C12) ND 0.40 mg/Kg 12/04/13 09:40

MB MB

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 65 - 140 12/04/13 09:40 4-Bromofluorobenzene (Surr) 102

Lab Sample ID: LCS 440-148431/2 Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA

Analysis Batch: 148431

LCS LCS Spike %Rec. Added Result Qualifier Limits Analyte Unit %Rec GRO (C4-C12) 1.60 91 70 - 135 1.45 mg/Kg

LCS LCS Surrogate %Recovery Qualifier

Limits 65 - 140 4-Bromofluorobenzene (Surr) 100

Lab Sample ID: LCSD 440-148431/3 Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA

Analysis Batch: 148431

LCSD LCSD RPD Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits **RPD** Limit GRO (C4-C12) 1.60 1.47 70 - 135 mg/Kg

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 100 65 - 140

Lab Sample ID: 440-63502-A-10 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 148431

MS MS %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits GRO (C4-C12) 0.97 1.57 2.54 mg/Kg 100 60 - 140

MS MS

%Recovery Surrogate Qualifier Limits 4-Bromofluorobenzene (Surr) 114 65 - 140

Lab Sample ID: 440-63502-A-10 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 148431

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)	0.97		1.58	3.11		mg/Kg		135	60 - 140	20	30
	MSD	MSD									

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 133 65 - 140

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

GC/MS VOA

Analysis Batch: 147837

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63146-1	SB-9-3	Total/NA	Solid	8260B	
440-63146-2	SB-9-7	Total/NA	Solid	8260B	
440-63146-3	SB-9-12	Total/NA	Solid	8260B	
440-63146-4	SB-9-12.5	Total/NA	Solid	8260B	
440-63146-5	SB-9-16.5	Total/NA	Solid	8260B	
440-63146-7	SB-10-12	Total/NA	Solid	8260B	
440-63146-8	SB-10-12.5	Total/NA	Solid	8260B	
440-63146-9	SB-10-16.5	Total/NA	Solid	8260B	
440-63146-10	SB-10-17.5	Total/NA	Solid	8260B	
440-63146-10 MS	SB-10-17.5	Total/NA	Solid	8260B	
440-63146-10 MSD	SB-10-17.5	Total/NA	Solid	8260B	
440-63146-11	SB-4-12	Total/NA	Solid	8260B	
440-63146-12	SB-4-12.5	Total/NA	Solid	8260B	
LCS 440-147837/5	Lab Control Sample	Total/NA	Solid	8260B	
MB 440-147837/4	Method Blank	Total/NA	Solid	8260B	

Analysis Batch: 148013

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63146-13	SB-4-16	Total/NA	Solid	8260B	
440-63146-14	SB-4-16.5	Total/NA	Solid	8260B	
440-63630-A-7 MS	Matrix Spike	Total/NA	Solid	8260B	
440-63630-A-7 MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	
LCS 440-148013/4	Lab Control Sample	Total/NA	Solid	8260B	
MB 440-148013/3	Method Blank	Total/NA	Solid	8260B	

Analysis Batch: 148403

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63146-6	SB-9-17	Total/NA	Solid	8260B	
440-63319-A-1 MS	Matrix Spike	Total/NA	Solid	8260B	
440-63319-A-1 MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	
LCS 440-148403/13	Lab Control Sample	Total/NA	Solid	8260B	
MB 440-148403/12	Method Blank	Total/NA	Solid	8260B	

GC VOA

Analysis Batch: 147564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63146-3	SB-9-12	Total/NA	Solid	8015B	
440-63146-4	SB-9-12.5	Total/NA	Solid	8015B	
440-63146-5	SB-9-16.5	Total/NA	Solid	8015B	
440-63146-7	SB-10-12	Total/NA	Solid	8015B	
440-63146-8	SB-10-12.5	Total/NA	Solid	8015B	
440-63146-9	SB-10-16.5	Total/NA	Solid	8015B	
440-63146-10	SB-10-17.5	Total/NA	Solid	8015B	
440-63146-11	SB-4-12	Total/NA	Solid	8015B	
440-63146-12	SB-4-12.5	Total/NA	Solid	8015B	
440-63146-13	SB-4-16	Total/NA	Solid	8015B	
440-63146-14	SB-4-16.5	Total/NA	Solid	8015B	
720-54036-B-6 MS	Matrix Spike	Total/NA	Solid	8015B	
720-54036-B-6 MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B	

TestAmerica Irvine

Page 33 of 39

3

_

10

11

12

QC Association Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

2

GC VOA (Continued)

Analysis Batch: 147564 (Continued)

L	ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
Ī	.CS 440-147564/2	Lab Control Sample	Total/NA	Solid	8015B	
L	CSD 440-147564/3	Lab Control Sample Dup	Total/NA	Solid	8015B	
N	ИВ 440-147564/4	Method Blank	Total/NA	Solid	8015B	

Analysis Batch: 147569

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63010-A-6 MS	Matrix Spike	Total/NA	Solid	8015B	
440-63010-A-6 MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B	
440-63146-2	SB-9-7	Total/NA	Solid	8015B	
LCS 440-147569/5	Lab Control Sample	Total/NA	Solid	8015B	
LCSD 440-147569/6	Lab Control Sample Dup	Total/NA	Solid	8015B	
MB 440-147569/7	Method Blank	Total/NA	Solid	8015B	

Analysis Batch: 147884

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63065-B-2 MS	Matrix Spike	Total/NA	Solid	8015B	
440-63065-B-2 MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B	
440-63146-1	SB-9-3	Total/NA	Solid	8015B	
LCS 440-147884/2	Lab Control Sample	Total/NA	Solid	8015B	
LCSD 440-147884/3	Lab Control Sample Dup	Total/NA	Solid	8015B	
MB 440-147884/4	Method Blank	Total/NA	Solid	8015B	

Analysis Batch: 148431

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63146-6	SB-9-17	Total/NA	Solid	8015B	
440-63502-A-10 MS	Matrix Spike	Total/NA	Solid	8015B	
440-63502-A-10 MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B	
LCS 440-148431/2	Lab Control Sample	Total/NA	Solid	8015B	
LCSD 440-148431/3	Lab Control Sample Dup	Total/NA	Solid	8015B	
MB 440-148431/4	Method Blank	Total/NA	Solid	8015B	

Definitions/Glossary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63146-1

Qualifiers

GC/MS VOA

LM	MS and/or MSD above acceptance limits. See Blank Spike (LCS)
LH	Surrogate Recoveries were higher than QC limits
ID	Analyte identified by RT & presence of single mass ion

Qualifier Description

GC VOA

Qualifier

Qualifier	Qualifier Description
LN	MS and/or MSD below acceptance limits. See Blank Spike (LCS)
LH	Surrogate Recoveries were higher than QC limits

Glossary

PQL

QC

RER

RL

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)

RPD Relative Percent Difference, a measure of the relative difference between two points
TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Quality Control

Relative error ratio

Practical Quantitation Limit

Reporting Limit or Requested Limit (Radiochemistry)

Certification Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-63146-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-14
Arizona	State Program	9	AZ0671	10-13-14
California	LA Cty Sanitation Districts	9	10256	01-31-14
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	01-23-14 *
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-14
New Mexico	State Program	6	N/A	01-31-14
Northern Mariana Islands	State Program	9	MP0002	01-31-14
Oregon	NELAP	10	4005	09-12-14
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

^{*} Expired certification is currently pending renewal and is considered valid.

Page	
37	
으	
39	

_	
ν.)
_	•
۲	•
0/201)
ί)

bp	r	r	Υ	ì
******************	ı			ł

Laboratory Management Program LaMP Chain of Custody Record

Page	_ of	44 86_
Ruch TAT: Vac	No Y	

3		BP Sit	e Node Path:					06-	88-61	15					Re	q Du	e Da	te (m	m/dd	/yy):_						R	ush TA	AT: Y	'es	_ No.	x	
_		ВІ	P Facility No:					2	111										Num									_				
Lab Na	me: Test America			Fac	ility A	ddres	s:	1156	Davis	Stree	et								Cons	ultant/(Contra	ctor.		Broad	bent and	Assoc	iates, In	nc.				
Lab Ad	dress: 17461 Derlan Avenue Suite #1	00, Irvine, CA	92614	City	, Stat	e, ZIP	Cod	le:		Sant	.ean d i	ro, C/	Α						Cons	ultant/(Contra	ctor P	oject	No:	06-86	8-615						
Lab PM	: Kathleen Robb			Lea	d Re	gulato	ry Ag	ency:		ACE	1								Addre	iss: 8	375 Cd	otting I	ane,	Suite	G, Vacav	ille, C	A					
Lab Ph	one: 949-261-1022		-	Cal	ifomia	Glob	al ID	No,:		T060	01017	764							Cons	ultant/(Contra	tor P	M: F	Criste	ne Tidwel	11						
Lab Shi	pping Accent: 1103-6633-7			Enf	os Pr	oposa	No:												PI	one:	707-45	5-729	0			Fax:	707-45	55-729)5			
Lab Bo	tile Order No:			Acc	ounti	ng Mo	đe:		Prov	vision	<u>x</u>	00	C-BU		000	-RM		. [Email	EDD.	Го:	ktid	well@	broad	dbentinc c	<u>20m</u>	and to	lab.e	nfosdoc	Ф рр со	<u>m</u>	
Other In	nfo:			Sta	ge:	Exec	ute (40)		Activi	ty:	Proje	ect Sp	end (8	10)				Invoid	e To:			BP_	<u>x</u>			Contrac	ator_				
3P Pro	ect Manager (PM): Chuck Carmel				Ma	trix		No	, Coi	ntain	ers/	Pres	ervat	ive			Ī	Requ	estec	Anal	yses		·			Rep	ort Typ	oe & (QC Lev	rel		
3P PM	Phone: 925-275-3804															8											!	Stand	ard _x_	-		
3P PM	Email: chuck.carmel@bp.com	_	-	1)	1 1	Ì	Container]]	y 8260	8]]						F	الد Data	Packa	age			
Lab No.	Sample Description	Date	Time	Soll / Solid	Water / Liquid	Air / Vapor	Is this location a well?	Total Number of Cont	Unpreserved	H2SO4	HNO3	HCI	Methanol		GRO by 8015	BTEX + 5 Fuel Oxys by	EDB & 1,2-DCA by 8260	Ethanol by 8260	Naphthalene by 8260						Note: if sa Sample" in and initial	п сопп	ot collect	d single	dicate "No e-strike ou	ut		
	SB-9-3 	11/18/2013	0930	×	L.		n	1	×			<u> </u>	L		x	×	×	×	×				_								╝	
	\$B-9-7 	11/18/2013	0950	Ľ			_	1	×	'			<u> </u>	<u> </u>	×	×	×	×	×			_		_]							ᆜ	
ŀ	\$B - 9-12	11/20/2013	1335	×			n	1	×						x	×	x	×	×													
	SB-9-12.5	11/20/2013	1335	×			n	1	x				L		x	×	×	×	×												╝	
	SB-9-16.5	11/20/2013	1340	x	<u> </u>		n	1	×				<u> </u>		×	×	x	×	×				_ \									
	SB-9-17 8 an	11/20/2013	1346	x			n	1	x				L		x	x	x	×	×													
	SB-10-12	11/20/2013	0945	x			n	1	x						x	x	x	×	x													
	SB-10-12.5	11/20/2013	0945	x	Į .		п	1	x						х	×	x	×	×			\perp	ļ								┙	
	SB-10-16.5	11/20/2013	02. P0	x			п	1	x						х	×	x	×	x													
	SB-10-17.5	11/20/2013	0950	x			n	1	x						×	×	x	×	×													
	SB-4-12	11/21/2013	0945	x			n	1	x						x	×	x	×	×									LULLU				
	SB-4-12.5	11/21/2013	0945	×			г	1	х						x	х	х	×	×													//////
	5B-4-16	11/21/2013	0955	x			n	1	x						х	×	x	x	×													
	SB-4-16.5	11/21/2013	o955	×			n	1	x						x	×	x	x	×							440)-6314	16 Ch	nain of	Custo	dy	
														<u> </u>																	_	
Sample	r's Name: Alex Martinez					R	elino	quist	ned E	3y / A	ffiliat	tion			Da	te	Tir	me			Ac	cept	ed B	y/A	ffiliation	,		$oxed{oxed}$	Date	Tin	пе	
Sample	r's Company: Broadbent and Ass	sociates			Ü	ب	. <i>9</i>	%		4	<u> </u>	_	BA	Σ	11/2	1/17	170	7 0	ح	A.		7	<u></u>					'n	12/13	670	0	
Shipme	nt Method; Fed Ex	Ship Date:	11/21/2013			•								1							تري		<u> </u>					\perp		1_		
Shipme	nt Tracking No: 8037 1495 6997		<u> </u>																													
Specia	l Instructions:																															
	THIS LINE - LAB USE ONLY: C					етр І	Blank	c Yes	/16		Coo	ler Te	mp or	Rece	eipt: 1.	۱.c	<u>ر</u> .	F/C		Trip Bl	ank Y	es) N	،	М	S/MSD S						\Box	
3P Ren	nediation Management COC - Effective	Dates: August	23, 2011- June	30,	2012				'C nr							1 112	- C1L1				-	_					BP LaM	IP COC	Rev. 7,	Aug 23.	2011	

bp			
	r	M	7

Laboratory Management Program LaMP Chain of Custody Record

Page of	L'H	86.
---------	-----	-----

	£	111	BP Site	e Node Path:	:				06-	88-6	15				_	Re	q Du	e Dat	e (m	m/dd/yy):				Rush TA1	: Yes	_ No_X	_
	THE STATE OF THE S		В	Pacility No:	<u>-</u>				;	211 <u>1</u>						نا	ab We	ork C	rder	Number:							_
Lab	Name: Test Ame	erica.			Fac	ility A	\ddre:	33:	1156	Davis	Stree	at								Consultant/Con	tractor		Broa	adbent and Associates, Inc]
Lab	Address: 17461 De	enan Avenue Suite #1	100, Irvine, CA 9	2614	City	, Sta	te, Zil	Coc	le:		San I	Lean	dro, CA							Consultant/Con	itractor	Proje	ct No:	06-88-615			
Lab	PM: Kathleen	Robb			Lea	d Re	gulate	ory Ag	gency	:	ACE	Н								Address: 875	Cottin	g Lan	e, Sur	te G, Vacaville, CA]
Lab	Phone: 949-261-	1022			Cali	itomi	a Glo	bal ID	No.:		T060	0101	764							Consultant/Con	itractor	PM:	Krist	tene Tidwell]
Lab	Shipping Accent	1103-6633-7		-	Enfo	os Pi	opos.	al No:												Phone: 707	-455-7	290		Fax: 707-455	-7295]
Lab	Bottle Order No:				Acc	ount	ing M	ode:		Pro	vislon	_x	_ 00	C-BU		000	C-RM			Email EDD To:	<u>k</u>	tidwel	l@bro	adbenting.com and to [ab enfosdoc	© bp com]
Oth	er Info:		<u> </u>		Stag	ge:	Exe	cute (40)		Activ	ity:	Proje	ct Sp	end (8	O)				Invoice To:		BF	э <u>х</u>	Contracto	л]
ВР	Project Manager (PM): Chuck Carmel	•			Ma	atrix		No	o. Co	ntain	ers /	Pres	егуа	tive			-	Requ	ested Analys	es			Report Type	& QC Lev	rel]
ВР	PM Phone: 925-275-	3804		 ,													٥							s	andard <u>x</u>	-	1
ВР	PM Email: chuck.o	carmel@bp.com			1				iner								/ 826	8						Full Data P	ackage	_	
La No	i sample	Description	Date	Time	Soil / Solid	Water / Llquid	Air / Vapor	Is this location a well?	Total Number of Container	Unpreserved	H2SO4	HNO3	HCI	Methanol		GRO by 8015	BTEX + 5 Fuel Oxys by 8260	EDB & 1,2-DCA by 8260	Ethanol by 8260	Naphthalene by 8260				Comr Note: If sample not collecte Sample* in comments and and initial any preprinted se	d, indicate "No single-strike ou	ut .	
	SB-9-3		11/18/2013	0930	x			n	1	×				L.,		x	×	×	x	x		$oxed{oxed}$					
) 	SB-9-7		11/18/2013	0950	×			n	1	×						x	×	x	x	x				2			1
2	SB9-12		11/20/2013	1335	×			מ	1	×						x	×	×	x	х	\perp				,		┨
	SB-9-12.5		11/20/2013	1335	×	<u> </u>		п	1	×						x	×	×	x	x	<u> </u>		L	700	·		
	SB-9-16.5		11/20/2013	1340	×			n	1	×					<u> </u>	×	×	×	×	x			Γ	1200	<u>, </u>		
	SB-9-178-07		11/20/2013	1346	x			n	1	×						x	×	×	x	x		<u> </u>		<u> </u>			╛
	\$B-10-12		11/20/2013	0945	×			n	1	×					<u> </u>	x	×	×	x	x	\perp	_	╙				╛
	SB-10-12.5		11/20/2013	0945	x			n	1	×						×	×	×	x	x							
	SB-10-16.5		11/20/2013	0950	×	_		n	1	×			<u> </u>			x	x	×	×	x							_
	SB-10-17.5		11/20/2013	0950	x			n	1	×						x	×	×	×	x		<u> </u>		<u>L</u>			ļ
	SB-4-12		11/21/2013	0945	×			u	1	x						x	x	x	x	х					. [] 		
	SB-4-12.5		11/21/2013	0945	×			n	1	×						x	x	×	x	×							
	SB-4-16		11/21/2013	0955	x			n	1	×						x	x	×	×	x		1	<u>L</u> .	<u> </u>			
	SB-4-16.5		11/21/2013	o95 <i>5</i>	×			п	1	×						×	×	×	×	х				440-63146	Chain of	Custody	
																											_
San	npler's Name:	Alex Martinez					ı	Relin	quis	hed l	3y / A	Affilia	tion			Da	ite	Ti	me		Acce	pted	Ву/	Affiliation	Date	Time	
San	npler's Company:	Broadbent and As	sociates			(Z)	le	19	1/2	-	4	~		B/	Ţ	11/2	ング	17	00	Au.	Z-3	sf.			11/22/13	0700	1
Ship	oment Method:	Fed Ex	Ship Date:	11/21/2013																	1	_					
Ship Ship Ship Spi	oment Tracking No:	8037 1495 6997																									
Sp	ecial Instructions	:																									_]
		- LAB USE ONLY: (Blan	k Ye	s/No) [Со	oler Te	mp o	n Rece	ipt <u>I</u>	-		F/C	Trip Blani	(Yes)	No		MS/MSD Sample Submitte	<u> </u>		
BP	Remediation Manage	ment COC - Effective	e Dates: August	23, 2011- June	30,2	2012	!			•							10	2-64						8P LaMP	COC Rev. 7,	Aug 23, 201	1

Login Sample Receipt Checklist

Client: Broadbent & Associates, Inc. Job Number: 440-63146-1

Login Number: 63146 List Source: TestAmerica Irvine

List Number: 1

Creator: Gonzales, Steve

Question	Answer	Comment
		Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	IDs on containers do not match the COC Logged in per COC.
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

А

E

0

10

12

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

Tel: (949)261-1022

TestAmerica Job ID: 440-63148-1

Client Project/Site: ARCO 2111, San Leandro

For:

Broadbent & Associates, Inc. 875 Cotting Lane Suite G Vacaville, California 95688

Attn: Kristene Tidwell

Authorized for release by: 12/10/2013 3:13:23 PM

Kathleen Robb, Project Manager II (949)261-1022 kathleen.robb@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Job ID: 440-63148-1

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	8
Chronicle	9
QC Sample Results	10
QC Association	14
Definitions	15
Certification Summary	16
Chain of Custody	17
Receipt Checklists	18

Sample Summary

Matrix

Water

Water

Water

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID

SB-9-22

SB-10-24

SB-4

Lab Sample ID

440-63148-1

440-63148-2

440-63148-3

TestAmerica Job ID: 440-63148-1

Colle	cted Received
11/20/1	3 13:55 11/22/13 07:00
11/20/1	3 14:20 11/22/13 07:00

11/21/13 10:20

3

4

11/22/13 07:00

5

9

10

Case Narrative

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63148-1

Job ID: 440-63148-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-63148-1

Comments

No additional comments.

Receipt

The samples were received on 11/22/2013 7:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

Except:

The following sample(s) was listed on the Chain of Custody (COC); however, all of the containers were not received: TB-2111-11212013 (440-63148-4). The COC lists 6 containers, only 2 were received.

One or more containers for the following sample(s) was received broken or leaking: SB-10-24 (440-63148-2). 1 of the 6 VOA vials received was broken. There is sufficient sample volume remaining for all analysis requested.

GC/MS VOA

No analytical or quality issues were noted.

GC VOA

Method(s) 8015B: Surrogate recovery for the following sample(s) was outside control limits: (440-63454-3 MS), (440-63454-3 MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8015B: Due to the high concentration of GRO, the matrix spike / matrix spike duplicate (MS/MSD) for batch 147750 could not be evaluated for accuracy. The associated laboratory control sample (LCS) met acceptance criteria. The MS/MSD precision (%RPD) was within limits.

No other analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

4

-6

4

5

6

7

0

10

1:

Client Sample Results

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63148-1

Lab Sample ID: 440-63148-1

Matrix: Water

Client Sample ID: SB-9-22 Date Collected: 11/20/13 13:55

Date Received: 11/22/13 07:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			12/03/13 04:31	1
1,2-Dichloroethane	ND		0.50	ug/L			12/03/13 04:31	1
Benzene	ND		0.50	ug/L			12/03/13 04:31	1
Ethanol	ND		150	ug/L			12/03/13 04:31	1
Ethylbenzene	ND		0.50	ug/L			12/03/13 04:31	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			12/03/13 04:31	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			12/03/13 04:31	1
m,p-Xylene	ND		1.0	ug/L			12/03/13 04:31	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			12/03/13 04:31	1
o-Xylene	ND		0.50	ug/L			12/03/13 04:31	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			12/03/13 04:31	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			12/03/13 04:31	1
Toluene	ND		0.50	ug/L			12/03/13 04:31	1
Xylenes, Total	ND		1.0	ug/L			12/03/13 04:31	1
Naphthalene	ND		1.0	ug/L			12/03/13 04:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		80 - 120		=		12/03/13 04:31	1
Dibromofluoromethane (Surr)	105		76 - 132				12/03/13 04:31	1
Toluene-d8 (Surr)	103		80 - 128				12/03/13 04:31	1
- Method: 8015B/5030B - Gasoli	ne Range Organi	cs (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			11/30/13 20:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		65 - 140		-		11/30/13 20:43	1

2

5

6

8

46

10

12

Client Sample Results

RL

0.50

0.50

0.50

150

0.50

0.50

0.50

1.0

0.50

0.50

0.50

0.50

1.0

1.0

Limits

80 - 120

76 - 132

80 - 128

10

Unit

ug/L

ug/L ug/L D

Prepared

Prepared

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

1.3

ND

ND

ND

ND

ND

10

ND

ND

270

ND

ND

2.5

101

101

105

Qualifier

%Recovery

TestAmerica Job ID: 440-63148-1

Lab Sample ID: 440-63148-2

12/03/13 04:58

12/03/13 04:58

12/03/13 04:58

Analyzed

12/03/13 04:58

12/03/13 04:58

12/03/13 04:58

Matrix: Water

Client Sample ID: SB-10-24 Date Collected: 11/20/13 14:20

Date Received: 11/22/13 07:00

1,2-Dibromoethane (EDB)

Ethyl-t-butyl ether (ETBE)

Methyl-t-Butyl Ether (MTBE)

Tert-amyl-methyl ether (TAME)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

tert-Butyl alcohol (TBA)

Isopropyl Ether (DIPE)

1,2-Dichloroethane

Analyte

Benzene

Ethylbenzene

m,p-Xylene

o-Xylene

Toluene

Xylenes, Total

Naphthalene

Toluene-d8 (Surr)

Surrogate

Ethanol

Dil Fac	5
1	
1	
1	
1	
1	
1	8
1	
1	Q
1	
1	
1	
1	
	1 1 1 1 1 1 1

Dil Fac

9

Method: 8015B/5030B - Gasoline I	Range Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	120		50	ug/L			11/30/13 21:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		65 - 140		-		11/30/13 21:08	1

Client Sample Results

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63148-1

Lab Sample ID: 440-63148-3

Matrix: Water

Client Sample ID: SB-4
Date Collected: 11/21/13 10:20
Date Received: 11/22/13 07:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			12/03/13 05:25	1
1,2-Dichloroethane	ND		0.50	ug/L			12/03/13 05:25	1
Benzene	ND		0.50	ug/L			12/03/13 05:25	1
Ethanol	ND		150	ug/L			12/03/13 05:25	1
Ethylbenzene	ND		0.50	ug/L			12/03/13 05:25	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			12/03/13 05:25	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			12/03/13 05:25	1
m,p-Xylene	ND		1.0	ug/L			12/03/13 05:25	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			12/03/13 05:25	1
o-Xylene	ND		0.50	ug/L			12/03/13 05:25	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			12/03/13 05:25	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			12/03/13 05:25	1
Toluene	ND		0.50	ug/L			12/03/13 05:25	1
Xylenes, Total	ND		1.0	ug/L			12/03/13 05:25	1
Naphthalene	ND		1.0	ug/L			12/03/13 05:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		80 - 120		·=		12/03/13 05:25	1
Dibromofluoromethane (Surr)	101		76 - 132				12/03/13 05:25	1
Toluene-d8 (Surr)	102		80 - 128				12/03/13 05:25	1

Mietiloa. 00 13D/3030D - Gasolille i	italige Organics ((00)					
Analyte	Result Qua	alifier RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND	50	ug/L			11/30/13 19:03	1
Surrogate	%Recovery Qua	ualifier Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97	65 - 140				11/30/13 19:03	1

TestAmerica Irvine

2

Λ

5

7

q

10

4.6

Method Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63148-1

Method	Method Description	Protocol	Laboratory
8260B/5030B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8015B/5030B	Gasoline Range Organics (GC)	SW846	TAL IRV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

- -

4

G

9

10

Lab Chronicle

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-63148-1

Client Sample ID: SB-9-22 Date Collected: 11/20/13 13:55

Lab Sample ID: 440-63148-1

Matrix: Water

Date Received: 11/22/13 07:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	148001	12/03/13 04:31	GK	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	147750	11/30/13 20:43	TL	TAL IRV

Lab Sample ID: 440-63148-2

Client Sample ID: SB-10-24 Date Collected: 11/20/13 14:20

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	148001	12/03/13 04:58	GK	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	147750	11/30/13 21:08	TL	TAL IRV

Client Sample ID: SB-4 Lab Sample ID: 440-63148-3 Date Collected: 11/21/13 10:20

Matrix: Water

Date Received: 11/22/13 07:00

Date Received: 11/22/13 07:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	148001	12/03/13 05:25	GK	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	147755	11/30/13 19:03	TL	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-148001/3 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 148001

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			12/02/13 19:52	1
1,2-Dichloroethane	ND		0.50	ug/L			12/02/13 19:52	1
Benzene	ND		0.50	ug/L			12/02/13 19:52	1
Ethanol	ND		150	ug/L			12/02/13 19:52	1
Ethylbenzene	ND		0.50	ug/L			12/02/13 19:52	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			12/02/13 19:52	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			12/02/13 19:52	1
m,p-Xylene	ND		1.0	ug/L			12/02/13 19:52	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			12/02/13 19:52	1
o-Xylene	ND		0.50	ug/L			12/02/13 19:52	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			12/02/13 19:52	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			12/02/13 19:52	1
Toluene	ND		0.50	ug/L			12/02/13 19:52	1
Xylenes, Total	ND		1.0	ug/L			12/02/13 19:52	1
Naphthalene	ND		1.0	ug/L			12/02/13 19:52	1

MB MB %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 80 - 120 12/02/13 19:52 4-Bromofluorobenzene (Surr) 101 Dibromofluoromethane (Surr) 98 76 - 132 12/02/13 19:52 Toluene-d8 (Surr) 80 - 128 12/02/13 19:52 104

Lab Sample ID: LCS 440-148001/4 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 148001

Analysis Baton: 140001								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	25.0	25.5		ug/L		102	70 - 130	
1,2-Dichloroethane	25.0	24.6		ug/L		98	57 ₋ 138	
Benzene	25.0	25.1		ug/L		100	68 - 130	
Ethanol	250	305		ug/L		122	50 - 149	
Ethylbenzene	25.0	26.2		ug/L		105	70 - 130	
Ethyl-t-butyl ether (ETBE)	25.0	26.7		ug/L		107	60 - 136	
Isopropyl Ether (DIPE)	25.0	28.2		ug/L		113	58 - 139	
m,p-Xylene	50.0	50.3		ug/L		101	70 - 130	
Methyl-t-Butyl Ether (MTBE)	25.0	26.3		ug/L		105	63 _ 131	
o-Xylene	25.0	25.6		ug/L		102	70 - 130	
Tert-amyl-methyl ether (TAME)	25.0	26.3		ug/L		105	57 - 139	
tert-Butyl alcohol (TBA)	125	139		ug/L		111	70 - 130	
Toluene	25.0	25.7		ug/L		103	70 - 130	,
Naphthalene	25.0	27.1		ug/L		108	60 - 140	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		80 - 120
Dibromofluoromethane (Surr)	101		76 - 132
Toluene-d8 (Surr)	103		80 - 128

TestAmerica Irvine

12/10/2013

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Lab Sample ID: 440-63597-D-1 MS

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 148001

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	ND		50.0	53.3		ug/L		107	70 - 131	
1,2-Dichloroethane	2.3		50.0	55.0		ug/L		105	56 - 146	
Benzene	ND		50.0	50.8		ug/L		102	66 - 130	
Ethanol	ND		500	559		ug/L		112	54 - 150	
Ethylbenzene	ND		50.0	51.3		ug/L		103	70 - 130	
Ethyl-t-butyl ether (ETBE)	3.2		50.0	60.8		ug/L		115	70 - 130	
Isopropyl Ether (DIPE)	ND		50.0	59.7		ug/L		118	64 - 138	
m,p-Xylene	ND		100	100		ug/L		100	70 - 133	
Methyl-t-Butyl Ether (MTBE)	54		50.0	113		ug/L		119	70 - 130	
o-Xylene	ND		50.0	51.6		ug/L		103	70 - 133	
Tert-amyl-methyl ether (TAME)	ND		50.0	58.7		ug/L		117	68 - 133	
tert-Butyl alcohol (TBA)	2100		250	2450	BB	ug/L		121	70 - 130	
Toluene	ND		50.0	52.6		ug/L		105	70 - 130	
Naphthalene	ND		50.0	58.4		ug/L		117	60 - 140	

MS MS

Surrogate	%Recovery Qualif	ier Limits
4-Bromofluorobenzene (Surr)	98	80 - 120
Dibromofluoromethane (Surr)	106	76 - 132
Toluene-d8 (Surr)	105	80 - 128

Lab Sample ID: 440-63597-D-1 MSD

Matrix: Water

Analysis Batch: 148001

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		50.0	52.4		ug/L		105	70 - 131	2	25
1,2-Dichloroethane	2.3		50.0	53.9		ug/L		103	56 - 146	2	20
Benzene	ND		50.0	50.8		ug/L		102	66 - 130	0	20
Ethanol	ND		500	597		ug/L		119	54 - 150	7	30
Ethylbenzene	ND		50.0	51.0		ug/L		102	70 - 130	1	20
Ethyl-t-butyl ether (ETBE)	3.2		50.0	60.0		ug/L		114	70 - 130	1	25
Isopropyl Ether (DIPE)	ND		50.0	59.3		ug/L		117	64 - 138	1	25
m,p-Xylene	ND		100	99.3		ug/L		99	70 - 133	1	25
Methyl-t-Butyl Ether (MTBE)	54		50.0	111		ug/L		114	70 - 130	2	25
o-Xylene	ND		50.0	51.3		ug/L		103	70 - 133	0	20
Tert-amyl-methyl ether (TAME)	ND		50.0	57.3		ug/L		115	68 - 133	2	30
tert-Butyl alcohol (TBA)	2100		250	2510	BB	ug/L		145	70 - 130	2	25
Toluene	ND		50.0	52.3		ug/L		105	70 - 130	1	20
Naphthalene	ND		50.0	57.4		ug/L		115	60 - 140	2	30

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	98	80 - 120
Dibromofluoromethane (Surr)	105	76 - 132
Toluene-d8 (Surr)	105	80 - 128

Method: 8015B/5030B - Gasoline Range Organics (GC)

Lab Sample ID: MB 440-147750/3 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 147750

мв мв Result Qualifier RLUnit D Dil Fac Analyte Prepared Analyzed 50 GRO (C6-C12) ND ug/L 11/30/13 14:43

MB MB

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 11/30/13 14:43 65 - 140 4-Bromofluorobenzene (Surr) 94

Lab Sample ID: LCS 440-147750/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 147750

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec GRO (C4-C12) 800 84 80 - 120 671 ug/L

LCS LCS

Surrogate %Recovery Qualifier Limits 65 - 140 4-Bromofluorobenzene (Surr) 89

Client Sample ID: Matrix Spike Lab Sample ID: 440-63454-A-3 MS Matrix: Water Prep Type: Total/NA

Analysis Batch: 147750

MS MS %Rec. Sample Sample Spike Qualifier Added Analyte Result Result Qualifier Unit %Rec Limits GRO (C4-C12) 1500 800 2030 EY 65 65 - 140 ug/L

MS MS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 225 LH 65 - 140

Lab Sample ID: 440-63454-A-3 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Water

Analysis Batch: 147750

MSD MSD RPD Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit GRO (C4-C12) 1500 800 2010 EY LN ug/L 63 65 - 140

MSD MSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 220 LH 65 - 140

Lab Sample ID: MB 440-147755/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 147755

мв мв

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac GRO (C6-C12) ND 50 ug/L 11/30/13 15:34

MB MB

Surrogate %Recovery Qualifier Limits Dil Fac Prepared Analyzed 4-Bromofluorobenzene (Surr) 97 11/30/13 15:34 65 - 140

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8015B/5030B - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: LCS 440-147755/2			Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 147755	Spike	LCS LCS	%Rec.

Added Analyte Result Qualifier Unit %Rec Limits GRO (C4-C12) 800 804 80 - 120 ug/L 100 LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 65 - 140 101

Lab Sample ID: 440-63195-E-46 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 147755

%Rec. Sample Sample Spike MS MS Result Qualifier Result Qualifier Added Analyte Limits Unit %Rec GRO (C4-C12) ND 800 ug/L 96 65 - 140 769

MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 96 65 - 140

Lab Sample ID: 440-63195-E-46 MSD Client Sample ID: Matrix Spike Duplicate Matrix: Water Prep Type: Total/NA

Analysis Batch: 147755

RPD Spike MSD MSD %Rec. Sample Sample Result Qualifier Added Result Qualifier Limits RPD Limit Unit %Rec GRO (C4-C12) ND 800 752 ug/L 65 - 140 20 MSD MSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 96 65 - 140

QC Association Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63148-1

GC/MS VOA

Analysis Batch: 148001

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63148-1	SB-9-22	Total/NA	Water	8260B/5030B	
440-63148-2	SB-10-24	Total/NA	Water	8260B/5030B	
440-63148-3	SB-4	Total/NA	Water	8260B/5030B	
440-63597-D-1 MS	Matrix Spike	Total/NA	Water	8260B/5030B	
440-63597-D-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/5030B	
LCS 440-148001/4	Lab Control Sample	Total/NA	Water	8260B/5030B	
MB 440-148001/3	Method Blank	Total/NA	Water	8260B/5030B	

GC VOA

Analysis Batch: 147750

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63148-1	SB-9-22	Total/NA	Water	8015B/5030B	
440-63148-2	SB-10-24	Total/NA	Water	8015B/5030B	
440-63454-A-3 MS	Matrix Spike	Total/NA	Water	8015B/5030B	
440-63454-A-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B/5030B	
LCS 440-147750/2	Lab Control Sample	Total/NA	Water	8015B/5030B	
MB 440-147750/3	Method Blank	Total/NA	Water	8015B/5030B	

Analysis Batch: 147755

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63148-3	SB-4	Total/NA	Water	8015B/5030B	
440-63195-E-46 MS	Matrix Spike	Total/NA	Water	8015B/5030B	
440-63195-E-46 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B/5030B	
LCS 440-147755/2	Lab Control Sample	Total/NA	Water	8015B/5030B	
MB 440-147755/3	Method Blank	Total/NA	Water	8015B/5030B	

3

4

1

46

11

12

13

Definitions/Glossary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63148-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description

BB Sample > 4X spike concentration

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Quality Control

Relative error ratio

GC VOA

Qualifier	Qualifier Description	
LH	Surrogate Recoveries were higher than QC limits	
EY	Result exceeds normal dynamic range; reported as a min. est.	
LN	MS and/or MSD below acceptance limits. See Blank Spike (LCS)	

Glossary

ND

PQL

QC

RER

RL RPD

TEF TEQ

Giossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC.	Not Calculated

Certification Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-63148-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-14
Arizona	State Program	9	AZ0671	10-13-14
California	LA Cty Sanitation Districts	9	10256	01-31-14
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	01-23-14 *
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-14
New Mexico	State Program	6	N/A	01-31-14
Northern Mariana Islands	State Program	9	MP0002	01-31-14
Oregon	NELAP	10	4005	09-12-14
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

^{*} Expired certification is currently pending renewal and is considered valid.

bp				
JAM'S	r	r	Y	1
		ı	l	I

Laboratory Management Program LaMP Chain of Custody Record

Page	of
h TAT: Yes	No X

BP Site Node Path BP Facility No	: :			r Number:	Rush IAI: Yes No _X_		
Lab Name: Test America	Facility Address:	1156 Davis Street		Consultanti/Contractor: Broadbent and Associates, Inc.			
Lab Address: 17461 Derian Avenue Suite #100, Irvine, CA 92614	<u> </u>			Consultant/Contractor Project No	Consultant/Contractor Project No: 06-88-615		
Lab PM: Kathleen Robb	<u> </u>			Address: 875 Cotting Lane, Suite G, Vacaville, CA			
Lab Phone: 949-261-1022	 			Consultant/Contractor PM: Kristene Tidwell			
Lab Shipping Accret: 1103-6633-7	Enfos Proposal No):		Phone: 707-455-7290			
Lab Bottle Order No:	Accounting Mode:	Provision X OOC-BU	OOC-RM	Email EDD To: ktidwell@broadbentinc.com and to lab.enfosdoc@bp.com			
Other Info:	Stage: Execute			Invoice To: BP <u>x</u>	Contractor		
BP Project Manager (PM): Chuck Carmel	Matrix	No. Containers / Preservati	ve Requ	uested Analyses	Report Type & QC Level		
BP PM Phone: 925-275-3804					Standardx_		
BP PM Email: chuck.carmel@bp.com	1	l line	82 88		Full Data Package		
Lab Sample Description Date Time	Soil / Soild Water / Liquid Atr / Vapor Is this location a well?	Total Number of Containen Unpreserved H2SO4 HNO3 HCI Methanol	GRO by 8015 BTEX + 5 Fuel Oxys by 8260 EDB & 1,2-DCA by 8260 Ethanol by 8260	Naphthalene by 8260	Comments Note: If sample not collected, indicate "No Sample" in comments and single-strike out and initial any preprinted sample description.		
\$B-9-22 11/20/2013 1355	x n	6 x	x x x x	x			
SB-10-24 11/20/2013 147.0	x n	6 x	x x x x	x			
SB-4 11/21/2013 10 20	x n	6 x	x x x x	х			
TB-2111-11212013 – –	x n	6 x			On Hold		
	<u> </u>			<u> </u>			
				 			
				I I I I I I I I I I I I I I I I I I I			
	\Box						
				440-63148	Chain of Custody		
Sampler's Name: Alex Martinez	ļ	nquished By / Affiliation	Date Time	Accepted By	<i></i>		
Sampler's Company: Broadbent and Associates	alex	MA BA	בסדו צועילוו ב	Auf Th	11/22/13 0700		
Shipment Method: Fed Ex Ship Date: 11/21/2013			+				
Shipment Tracking No: 8037 1495 6997			<u>l</u> _	<u> </u>			
Special Instructions:							

BP Remediation Management COC - Effective Dates: August 23, 2011- June 30, 2012

12/10/2013

2 -

BP LaMP COC Rev. 7, Aug 23, 2011

Login Sample Receipt Checklist

Client: Broadbent & Associates, Inc.

Job Number: 440-63148-1

Login Number: 63148 List Source: TestAmerica Irvine

List Number: 1

Creator: Gonzales, Steve

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	False	Containers recd broken. Sufficient sample in remaining containers for analysis.
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

5

6

Q

4.0

11

12

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

Tel: (949)261-1022

TestAmerica Job ID: 440-63502-1

Client Project/Site: ARCO 2111, San Leandro

For:

Broadbent & Associates, Inc. 875 Cotting Lane Suite G Vacaville, California 95688

Attn: Kristene Tidwell

Authorized for release by: 12/11/2013 10:24:59 PM

Kathleen Robb, Project Manager II (949)261-1022 kathleen.robb@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Job ID: 440-63502-1

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	24
Chronicle	25
QC Sample Results	29
QC Association	40
Definitions	42
Certification Summary	43
Chain of Custody	44
Receipt Checklists	46

4

R

9

11

12

Sample Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63502-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-63502-1	SB-3-23	Water	11/23/13 15:00	11/26/13 07:30
440-63502-2	SB-6	Water	11/23/13 14:50	11/26/13 07:30
440-63502-3	SB-8-23	Water	11/23/13 16:40	11/26/13 07:30
440-63502-4	SB-3-11.5	Solid	11/23/13 14:15	11/26/13 07:30
440-63502-5	SB-3-12	Solid	11/23/13 14:15	11/26/13 07:30
440-63502-6	SB-3-16	Solid	11/23/13 16:20	11/26/13 07:30
440-63502-7	SB-3-16.5	Solid	11/23/13 16:20	11/26/13 07:30
440-63502-8	SB-6-11.5	Solid	11/23/13 11:30	11/26/13 07:30
440-63502-9	SB-6-12	Solid	11/23/13 11:30	11/26/13 07:30
440-63502-10	SB-6-16	Solid	11/23/13 11:35	11/26/13 07:30
440-63502-11	SB-6-16.5	Solid	11/23/13 11:35	11/26/13 07:30
440-63502-12	SB-7-11.5	Solid	11/23/13 10:05	11/26/13 07:30
440-63502-13	SB-7-12	Solid	11/23/13 10:05	11/26/13 07:30
440-63502-14	SB-7-16	Solid	11/23/13 10:10	11/26/13 07:30
440-63502-15	SB-7-16.5	Solid	11/23/13 10:10	11/26/13 07:30
440-63502-16	SB-8-11.5	Solid	11/23/13 16:10	11/26/13 07:30
440-63502-17	SB-8-12	Solid	11/23/13 16:10	11/26/13 07:30
440-63502-18	SB-8-16(a)	Solid	11/23/13 16:15	11/26/13 07:30
440-63502-19	SB-8-16(b)	Solid	11/23/13 16:15	11/26/13 07:30

4

5

7

8

9

10

12

1:

Case Narrative

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63502-1

Job ID: 440-63502-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-63502-1

Comments

No additional comments.

Receipt

The samples were received on 11/26/2013 7:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.4° C.

GC/MS VOA

No analytical or quality issues were noted.

GC VOA

Method(s) 8015B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch _____ were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The precision (%RPD) for MS/MSD was within limits.

Method(s) 8015B: Surrogate recovery for the following sample(s) was outside control limits: SB-6-16.5 (440-63502-11). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8015B: The matrix spike duplicate (MSD) recoveries associated with batch 149031 were outside control limits: (440-63965-4 MSD). Matrix interference is suspected. The associated laboratory control sample (LCS) and laboratory control duplicate (LCD) recovery met acceptance criteria.

No other analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

3

4

E

6

0

4.0

11

12

13

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: SB-3-23

Date Collected: 11/23/13 15:00

Date Received: 11/26/13 07:30

Toluene-d8 (Surr)

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-1

Matrix: Water

12/04/13 22:05

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) Result Qualifier Unit Dil Fac Analyte RL D Prepared Analyzed 1,2-Dibromoethane (EDB) ND 0.50 ug/L 12/04/13 22:05 ND 1,2-Dichloroethane 0.50 ug/L 12/04/13 22:05 ND 0.50 ug/L 12/04/13 22:05 Ethanol ND 150 12/04/13 22:05 ug/L Ethylbenzene ND 0.50 ug/L 12/04/13 22:05 Ethyl-t-butyl ether (ETBE) ND 0.50 ug/L 12/04/13 22:05 Isopropyl Ether (DIPE) ND 0.50 ug/L 12/04/13 22:05 m,p-Xylene ND 1.0 ug/L 12/04/13 22:05 Methyl-t-Butyl Ether (MTBE) 1.4 0.50 ug/L 12/04/13 22:05 0.50 o-Xylene ND ug/L 12/04/13 22:05 Tert-amyl-methyl ether (TAME) ND 0.50 ug/L 12/04/13 22:05 ND ug/L tert-Butyl alcohol (TBA) 10 12/04/13 22:05 Toluene ND 0.50 ug/L 12/04/13 22:05 Xylenes, Total ND 1.0 12/04/13 22:05 ug/L Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 102 80 - 120 12/04/13 22:05 Dibromofluoromethane (Surr) 93 76 - 132 12/04/13 22:05

Method: 8015B/5030B - Gasoline R	ange Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	55		50	ug/L			12/03/13 19:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		65 - 140		-		12/03/13 19:48	1

80 - 128

104

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-2

12/04/13 23:26

Matrix: Water

Dil Fac

Client Sample ID: SB-6
Date Collected: 11/23/13 14:50

Date Received: 11/26/13 07:30

Toluene

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) Result Qualifier Unit Analyte RL D Prepared Analyzed 1,2-Dibromoethane (EDB) ND 0.50 ug/L 12/04/13 23:26 ND 1,2-Dichloroethane 0.50 ug/L 12/04/13 23:26 Benzene ND 0.50 ug/L 12/04/13 23:26 Ethanol ND 150 12/04/13 23:26 ug/L Ethylbenzene ND 0.50 ug/L 12/04/13 23:26 Ethyl-t-butyl ether (ETBE) ND 0.50 ug/L 12/04/13 23:26 Isopropyl Ether (DIPE) ND 0.50 ug/L 12/04/13 23:26 ND m,p-Xylene 1.0 ug/L 12/04/13 23:26 Methyl-t-Butyl Ether (MTBE) 2.1 0.50 ug/L 12/04/13 23:26 ND 0.50 o-Xylene ug/L 12/04/13 23:26 ND Tert-amyl-methyl ether (TAME) 0.50 ug/L 12/04/13 23:26 ug/L 12/04/13 23:26 tert-Butyl alcohol (TBA) 10 10

ND

Xylenes, Total	ND	1.0	ug/L		12/04/13 23:26	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	80 - 120			12/04/13 23:26	1
Dibromofluoromethane (Surr)	96	76 - 132			12/04/13 23:26	1
Toluene-d8 (Surr)	104	80 - 128			12/04/13 23:26	1

0.50

ug/L

Method: 8015B/5030B - Gasoli	ne Range Organi	cs (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	270		50	ug/L			12/03/13 20:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		65 - 140		-		12/03/13 20:16	1

D

9

10

12

1:

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-3

Matrix: Water

Client Sample ID: SB-8-23 Date Collected: 11/23/13 16:40

Method: 8260B/5030B - Volatile Analyte	•	ounds (GC/ Qualifier	MS) RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND	Qualifier	0.50	ug/L		riepaieu	12/04/13 23:53	1
1,2-Dichloroethane	ND		0.50	ug/L			12/04/13 23:53	
Benzene	ND		0.50	ug/L			12/04/13 23:53	1
Ethanol	 ND		150	ug/L			12/04/13 23:53	1
Ethylbenzene	ND		0.50	ug/L			12/04/13 23:53	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			12/04/13 23:53	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			12/04/13 23:53	1
m,p-Xylene	ND		1.0	ug/L			12/04/13 23:53	1
Methyl-t-Butyl Ether (MTBE)	1.2		0.50	ug/L			12/04/13 23:53	1
o-Xylene	ND		0.50	ug/L			12/04/13 23:53	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			12/04/13 23:53	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			12/04/13 23:53	1
Toluene	ND		0.50	ug/L			12/04/13 23:53	1
Xylenes, Total	ND		1.0	ug/L			12/04/13 23:53	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		80 - 120		-		12/04/13 23:53	1
Dibromofluoromethane (Surr)	97		76 - 132				12/04/13 23:53	1
Toluene-d8 (Surr)	104		80 - 128				12/04/13 23:53	1
- Method: 8015B/5030B - Gasoli	ne Range Organi	ics (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			12/03/13 20:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		65 - 140		-		12/03/13 20:43	1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: SB-3-11.5

Date Collected: 11/23/13 14:15

Date Received: 11/26/13 07:30

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-4

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00098	mg/Kg			12/05/13 11:10	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 11:10	1
Ethanol	ND		0.20	mg/Kg			12/05/13 11:10	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 11:10	1
Ethylbenzene	ND		0.00098	mg/Kg			12/05/13 11:10	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 11:10	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 11:10	1
o-Xylene	ND		0.00098	mg/Kg			12/05/13 11:10	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 11:10	1
tert-Butyl alcohol (TBA)	ND		0.049	mg/Kg			12/05/13 11:10	1
Toluene	ND		0.00098	mg/Kg			12/05/13 11:10	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 11:10	1
1,2-Dichloroethane	ND		0.00098	mg/Kg			12/05/13 11:10	1
1,2-Dibromoethane (EDB)	ND		0.00098	mg/Kg			12/05/13 11:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		79 - 120		-		12/05/13 11:10	1
Dibromofluoromethane (Surr)	97		60 - 120				12/05/13 11:10	1
Toluene-d8 (Surr)	104		79 - 123				12/05/13 11:10	1

Method: 8015B - Gasoline Range Organics - (GC)										
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
GRO (C6-C12)	ND		0.40	mg/Kg			12/02/13 22:49	1		
Surrogate	%Recovery	Qualifier	Limits		_	Prepared	Analyzed	Dil Fac		
4-Bromofluorobenzene (Surr)	82		65 - 140				12/02/13 22:49	1		

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: SB-3-12

Date Collected: 11/23/13 14:15

Date Received: 11/26/13 07:30

Analyte

Surrogate

GRO (C6-C12)

4-Bromofluorobenzene (Surr)

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-5

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00098	mg/Kg			12/05/13 13:01	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 13:01	1
Ethanol	ND		0.20	mg/Kg			12/05/13 13:01	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 13:01	1
Ethylbenzene	ND		0.00098	mg/Kg			12/05/13 13:01	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 13:01	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 13:01	1
o-Xylene	ND		0.00098	mg/Kg			12/05/13 13:01	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 13:01	1
tert-Butyl alcohol (TBA)	ND		0.049	mg/Kg			12/05/13 13:01	1
Toluene	ND		0.00098	mg/Kg			12/05/13 13:01	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 13:01	1
1,2-Dichloroethane	ND		0.00098	mg/Kg			12/05/13 13:01	1
1,2-Dibromoethane (EDB)	ND		0.00098	mg/Kg			12/05/13 13:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			79 - 120		-		12/05/13 13:01	1
Dibromofluoromethane (Surr)	96		60 - 120				12/05/13 13:01	1
Toluene-d8 (Surr)	102		79 - 123				12/05/13 13:01	1

RL

0.39

Limits

65 - 140

Unit

mg/Kg

D

Prepared

Prepared

Analyzed

11/30/13 05:03

Analyzed

11/30/13 05:03

Result Qualifier

Qualifier

ND

89

%Recovery

TestAmerica Irvine

Dil Fac

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: SB-3-16

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-6

Matrix: Solid

Date Collected: 11/23/13 16:20 Date Received: 11/26/13 07:30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00098	mg/Kg			12/05/13 13:29	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 13:29	1
Ethanol	ND		0.20	mg/Kg			12/05/13 13:29	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 13:29	1
Ethylbenzene	ND		0.00098	mg/Kg			12/05/13 13:29	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 13:29	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 13:29	1
o-Xylene	ND		0.00098	mg/Kg			12/05/13 13:29	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 13:29	1
tert-Butyl alcohol (TBA)	ND		0.049	mg/Kg			12/05/13 13:29	1
Toluene	ND		0.00098	mg/Kg			12/05/13 13:29	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 13:29	1
1,2-Dichloroethane	ND		0.00098	mg/Kg			12/05/13 13:29	1
1,2-Dibromoethane (EDB)	ND		0.00098	mg/Kg			12/05/13 13:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		79 - 120		-		12/05/13 13:29	1
Dibromofluoromethane (Surr)	100		60 - 120				12/05/13 13:29	1
Toluene-d8 (Surr)	100		79 - 123				12/05/13 13:29	1

Method: 8015B - Gasoline Range Organics - (GC)										
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
	GRO (C6-C12)	1.6		0.96	mg/Kg			12/02/13 23:16	1	
	Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
	4-Bromofluorobenzene (Surr)	91		65 - 140		-		12/02/13 23:16	1	

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: SB-3-16.5

Date Collected: 11/23/13 16:20

Date Received: 11/26/13 07:30

TestAmerica Job ID: 440-63502-1

Lal

Matrix: Solid

b	Sample	ID:	440-63502-7	
			Matrix, Calid	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00098	mg/Kg			12/05/13 13:56	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 13:56	1
Ethanol	ND		0.20	mg/Kg			12/05/13 13:56	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 13:56	1
Ethylbenzene	ND		0.00098	mg/Kg			12/05/13 13:56	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 13:56	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 13:56	1
o-Xylene	ND		0.00098	mg/Kg			12/05/13 13:56	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 13:56	1
tert-Butyl alcohol (TBA)	ND		0.049	mg/Kg			12/05/13 13:56	1
Toluene	ND		0.00098	mg/Kg			12/05/13 13:56	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 13:56	1
1,2-Dichloroethane	ND		0.00098	mg/Kg			12/05/13 13:56	1
1,2-Dibromoethane (EDB)	ND		0.00098	mg/Kg			12/05/13 13:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		79 - 120		-		12/05/13 13:56	1
Dibromofluoromethane (Surr)	100		60 - 120				12/05/13 13:56	1
Toluene-d8 (Surr)	99		79 - 123				12/05/13 13:56	1

Method: 8015B - Gasoline Range	Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	1.8		0.39	mg/Kg			12/02/13 23:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		65 - 140		-	<u> </u>	12/02/13 23:43	

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-8

Prepared

Analyzed

11/30/13 07:32

Matrix: Solid

Client Sample ID: SB-6-11.5 Date Collected: 11/23/13 11:30

Date Received: 11/26/13 07:30

Surrogate

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/05/13 14:23	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 14:23	1
Ethanol	ND		0.20	mg/Kg			12/05/13 14:23	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 14:23	1
Ethylbenzene	ND		0.0010	mg/Kg			12/05/13 14:23	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 14:23	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 14:23	1
o-Xylene	ND		0.0010	mg/Kg			12/05/13 14:23	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 14:23	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/05/13 14:23	1
Toluene	ND		0.0010	mg/Kg			12/05/13 14:23	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 14:23	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/05/13 14:23	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/05/13 14:23	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		79 - 120		-		12/05/13 14:23	1
Dibromofluoromethane (Surr)	98		60 - 120				12/05/13 14:23	1
Toluene-d8 (Surr)	104		79 - 123				12/05/13 14:23	1
Method: 8015B - Gasoline Ran	ge Organics - (G	C)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.38	mg/Kg			11/30/13 07:32	1

Limits

65 - 140

%Recovery Qualifier

84

TestAmerica Irvine

2

6

8

9

10

12

13

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-9

Prepared

Analyzed

11/30/13 08:02

Matrix: Solid

Client Sample ID: SB-6-12

Date Collected: 11/23/13 11:30 Date Received: 11/26/13 07:30

Surrogate

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00099	mg/Kg			12/05/13 14:50	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 14:50	1
Ethanol	ND		0.20	mg/Kg			12/05/13 14:50	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 14:50	1
Ethylbenzene	ND		0.00099	mg/Kg			12/05/13 14:50	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 14:50	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 14:50	1
o-Xylene	ND		0.00099	mg/Kg			12/05/13 14:50	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 14:50	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/05/13 14:50	1
Toluene	ND		0.00099	mg/Kg			12/05/13 14:50	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 14:50	1
1,2-Dichloroethane	ND		0.00099	mg/Kg			12/05/13 14:50	1
1,2-Dibromoethane (EDB)	ND		0.00099	mg/Kg			12/05/13 14:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		79 - 120		-		12/05/13 14:50	1
Dibromofluoromethane (Surr)	101		60 - 120				12/05/13 14:50	1
Toluene-d8 (Surr)	104		79 - 123				12/05/13 14:50	1
Method: 8015B - Gasoline Ran	ge Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.40	mg/Kg			11/30/13 08:02	1

Limits

65 - 140

%Recovery Qualifier

84

TestAmerica Irvine

_

4

6

_

9

10

12

13

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-10

Prepared

Analyzed

12/04/13 11:05

Matrix: Solid

Client Sample ID: SB-6-16

Date Collected: 11/23/13 11:35 Date Received: 11/26/13 07:30

Surrogate

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/05/13 15:18	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 15:18	1
Ethanol	ND		0.20	mg/Kg			12/05/13 15:18	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 15:18	1
Ethylbenzene	ND		0.0010	mg/Kg			12/05/13 15:18	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 15:18	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 15:18	1
o-Xylene	ND		0.0010	mg/Kg			12/05/13 15:18	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 15:18	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/05/13 15:18	1
Toluene	ND		0.0010	mg/Kg			12/05/13 15:18	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 15:18	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/05/13 15:18	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/05/13 15:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		79 - 120		-		12/05/13 15:18	1
Dibromofluoromethane (Surr)	102		60 - 120				12/05/13 15:18	1
Toluene-d8 (Surr)	99		79 - 123				12/05/13 15:18	1
Method: 8015B - Gasoline Ran	ge Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	0.96		0.39	mg/Kg			12/04/13 11:05	1

Limits

65 - 140

%Recovery Qualifier

122

TestAmerica Irvine

12/11/2013

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-11

Matrix: Solid

Client Sample ID: SB-6-16.5 Date Collected: 11/23/13 11:35

Date Received: 11/26/13 07:30

_

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00099	mg/Kg			12/05/13 15:44	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 15:44	1
Ethanol	ND		0.20	mg/Kg			12/05/13 15:44	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 15:44	1
Ethylbenzene	ND		0.00099	mg/Kg			12/05/13 15:44	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 15:44	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 15:44	1
o-Xylene	ND		0.00099	mg/Kg			12/05/13 15:44	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 15:44	1
tert-Butyl alcohol (TBA)	ND	ID	0.050	mg/Kg			12/05/13 15:44	1
Toluene	ND		0.00099	mg/Kg			12/05/13 15:44	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 15:44	1
1,2-Dichloroethane	ND		0.00099	mg/Kg			12/05/13 15:44	1
1,2-Dibromoethane (EDB)	ND		0.00099	mg/Kg			12/05/13 15:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			79 - 120		-		12/05/13 15:44	1
Dibromofluoromethane (Surr)	101		60 - 120				12/05/13 15:44	1
Toluene-d8 (Surr)	99		79 - 123				12/05/13 15:44	1

Method: 8015B - Gasoline Ran	ige Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	1.6		0.39	mg/Kg			12/06/13 15:23	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	143	LH	65 - 140				12/06/13 15:23	1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-12

Prepared

Analyzed

11/30/13 09:31

Matrix: Solid

Client Sample ID: SB-7-11.5 Date Collected: 11/23/13 10:05

Date Received: 11/26/13 07:30

Surrogate

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/05/13 16:12	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 16:12	1
Ethanol	ND		0.20	mg/Kg			12/05/13 16:12	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 16:12	1
Ethylbenzene	ND		0.0010	mg/Kg			12/05/13 16:12	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 16:12	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 16:12	1
o-Xylene	ND		0.0010	mg/Kg			12/05/13 16:12	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 16:12	1
tert-Butyl alcohol (TBA)	ND		0.051	mg/Kg			12/05/13 16:12	1
Toluene	ND		0.0010	mg/Kg			12/05/13 16:12	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 16:12	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/05/13 16:12	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/05/13 16:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		79 - 120		-		12/05/13 16:12	1
Dibromofluoromethane (Surr)	99		60 - 120				12/05/13 16:12	1
Toluene-d8 (Surr)	106		79 - 123				12/05/13 16:12	1
Method: 8015B - Gasoline Ran	ge Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.39	mg/Kg			11/30/13 09:31	1

Limits

65 - 140

%Recovery Qualifier

71

Dil Fac

TestAmerica Irvine

6

8

3

1 4

12

13

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: SB-7-12

Date Collected: 11/23/13 10:05

Date Received: 11/26/13 07:30

Toluene

Xylenes, Total

1,2-Dichloroethane

TestAmerica Job ID: 440-63502-1

Matrix: Solid

Lab Sample ID: 440-63502-13

12/05/13 16:39

12/05/13 16:39

12/05/13 16:39

12/05/13 16:39

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL Unit Dil Fac D Prepared Analyzed Benzene ND 0.0010 mg/Kg 12/05/13 16:39 ND Isopropyl Ether (DIPE) 0.0020 mg/Kg 12/05/13 16:39 ND 0.20 mg/Kg 12/05/13 16:39 Ethyl-t-butyl ether (ETBE) ND 0.0020 12/05/13 16:39 mg/Kg Ethylbenzene ND 0.0010 mg/Kg 12/05/13 16:39 m,p-Xylene ND 0.0020 mg/Kg 12/05/13 16:39 Methyl-t-Butyl Ether (MTBE) ND 0.0020 mg/Kg 12/05/13 16:39 ND o-Xylene 0.0010 12/05/13 16:39 mg/Kg Tert-amyl-methyl ether (TAME) ND 0.0020 mg/Kg 12/05/13 16:39 tert-Butyl alcohol (TBA) ND

0.050

0.0010

0.0020

0.0010

ND

ND

ND

mg/Kg

mg/Kg

mg/Kg

mg/Kg

1,2-Dibromoethane (EDB)	ND	0.0010	mg/Kg		12/05/13 16:39	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99	79 - 120			12/05/13 16:39	1
Dibromofluoromethane (Surr)	101	60 - 120			12/05/13 16:39	1
Toluene-d8 (Surr)	105	79 - 123			12/05/13 16:39	1

Method: 8015B - Gasoline Ran	ge Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.40	mg/Kg			11/30/13 10:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		65 - 140		_		11/30/13 10:01	1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: SB-7-16

Date Collected: 11/23/13 10:10

Date Received: 11/26/13 07:30

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-14

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/05/13 17:06	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 17:06	1
Ethanol	ND		0.20	mg/Kg			12/05/13 17:06	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 17:06	1
Ethylbenzene	ND		0.0010	mg/Kg			12/05/13 17:06	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 17:06	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 17:06	1
o-Xylene	ND		0.0010	mg/Kg			12/05/13 17:06	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 17:06	1
tert-Butyl alcohol (TBA)	ND		0.051	mg/Kg			12/05/13 17:06	1
Toluene	ND		0.0010	mg/Kg			12/05/13 17:06	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 17:06	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/05/13 17:06	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/05/13 17:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		79 - 120		-		12/05/13 17:06	1
Dibromofluoromethane (Surr)	104		60 - 120				12/05/13 17:06	1
Toluene-d8 (Surr)	103		79 - 123				12/05/13 17:06	1

Method: 8015B - Gasoline Ran	ge Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.39	mg/Kg			11/30/13 10:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			65 - 140		_		11/30/13 10:30	

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-15

Matrix: Solid

Client Sample ID: SB-7-16.
Date Collected: 11/23/13 10:10

Date Received: 11/26/13 07:30

Method: 8260B - Volatile Organ	nic Compounds ((GC/MS)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/05/13 17:33	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 17:33	1
Ethanol	ND		0.20	mg/Kg			12/05/13 17:33	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 17:33	1
Ethylbenzene	ND		0.0010	mg/Kg			12/05/13 17:33	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 17:33	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 17:33	1
o-Xylene	ND		0.0010	mg/Kg			12/05/13 17:33	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 17:33	1
tert-Butyl alcohol (TBA)	ND		0.051	mg/Kg			12/05/13 17:33	1
Toluene	ND		0.0010	mg/Kg			12/05/13 17:33	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 17:33	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/05/13 17:33	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/05/13 17:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	100		79 - 120		-		12/05/13 17:33	1
Dibromofluoromethane (Surr)	103		60 - 120				12/05/13 17:33	1
Toluene-d8 (Surr)	104		79 - 123				12/05/13 17:33	1

Method: 8015B - Gasoline Rang	ge Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.40	mg/Kg			11/30/13 11:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		65 - 140		-		11/30/13 11:00	1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-16

Matrix: Solid

Client Sample ID: SB-8-11.5 Date Collected: 11/23/13 16:10

Date Received: 11/26/13 07:30

_ _

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/05/13 18:01	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 18:01	1
Ethanol	ND		0.20	mg/Kg			12/05/13 18:01	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 18:01	1
Ethylbenzene	ND		0.0010	mg/Kg			12/05/13 18:01	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 18:01	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 18:01	1
o-Xylene	ND		0.0010	mg/Kg			12/05/13 18:01	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 18:01	1
tert-Butyl alcohol (TBA)	ND		0.051	mg/Kg			12/05/13 18:01	1
Toluene	ND		0.0010	mg/Kg			12/05/13 18:01	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 18:01	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/05/13 18:01	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/05/13 18:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		79 - 120		-		12/05/13 18:01	1
Dibromofluoromethane (Surr)	112		60 - 120				12/05/13 18:01	1
Toluene-d8 (Surr)	105		79 - 123				12/05/13 18:01	1

Method: 8015B - Gasoline Ran	ge Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.39	mg/Kg			11/30/13 12:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	70		65 - 140		_		11/30/13 12:29	1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-17

Matrix: Solid

Date Collected: 11/23/13 16:10 Date Received: 11/26/13 07:30

Client Sample ID: SB-8-12

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00098	mg/Kg			12/05/13 18:29	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 18:29	1
Ethanol	ND		0.20	mg/Kg			12/05/13 18:29	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 18:29	1
Ethylbenzene	ND		0.00098	mg/Kg			12/05/13 18:29	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 18:29	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 18:29	1
o-Xylene	ND		0.00098	mg/Kg			12/05/13 18:29	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 18:29	1
tert-Butyl alcohol (TBA)	ND		0.049	mg/Kg			12/05/13 18:29	1
Toluene	ND		0.00098	mg/Kg			12/05/13 18:29	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 18:29	1
1,2-Dichloroethane	ND		0.00098	mg/Kg			12/05/13 18:29	1
1,2-Dibromoethane (EDB)	ND		0.00098	mg/Kg			12/05/13 18:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		79 - 120		_		12/05/13 18:29	1
Dibromofluoromethane (Surr)	101		60 - 120				12/05/13 18:29	1
Toluene-d8 (Surr)	106		79 - 123				12/05/13 18:29	1

Method: 8015B - Gasoline Ran	ige Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.40	mg/Kg			11/30/13 12:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		65 - 140		-		11/30/13 12:59	1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-18

Matrix: Solid

Client Sample ID: SB-8-16(a)

Date Collected: 11/23/13 16:15 Date Received: 11/26/13 07:30

GRO (C6-C12)

4-Bromofluorobenzene (Surr)

Surrogate

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00099	mg/Kg			12/06/13 11:22	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/06/13 11:22	1
Ethanol	ND		0.20	mg/Kg			12/06/13 11:22	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/06/13 11:22	1
Ethylbenzene	ND		0.00099	mg/Kg			12/06/13 11:22	1
m,p-Xylene	ND		0.0020	mg/Kg			12/06/13 11:22	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/06/13 11:22	1
o-Xylene	ND		0.00099	mg/Kg			12/06/13 11:22	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/06/13 11:22	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/06/13 11:22	1
Toluene	ND		0.00099	mg/Kg			12/06/13 11:22	1
Xylenes, Total	ND		0.0020	mg/Kg			12/06/13 11:22	1
1,2-Dichloroethane	ND		0.00099	mg/Kg			12/06/13 11:22	1
1,2-Dibromoethane (EDB)	ND		0.00099	mg/Kg			12/06/13 11:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		79 - 120		-		12/06/13 11:22	1
Dibromofluoromethane (Surr)	82		60 - 120				12/06/13 11:22	1
Toluene-d8 (Surr)	106		79 - 123				12/06/13 11:22	1
Method: 8015B - Gasoline Ran	ae Oraanice - (G	C)						
Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

0.39

Limits

65 - 140

mg/Kg

ND

74

Qualifier

%Recovery

Analyzed Dil Fac 12/03/13 00:38 1

12/03/13 00:38

Prepared

TestAmerica Irvine

4

6

8

9

10

12

13

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-63502-1

Client Sample ID: SB-8-16(b) Lab Sample ID: 440-63502-19

Date Collected: 11/23/13 16:15 Matrix: Solid Date Received: 11/26/13 07:30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	MD		0.0010	mg/Kg			12/06/13 13:18	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/06/13 13:18	1
Ethanol	ND		0.20	mg/Kg			12/06/13 13:18	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/06/13 13:18	1
Ethylbenzene	ND		0.0010	mg/Kg			12/06/13 13:18	1
m,p-Xylene	ND		0.0020	mg/Kg			12/06/13 13:18	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/06/13 13:18	1
o-Xylene	ND		0.0010	mg/Kg			12/06/13 13:18	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/06/13 13:18	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/06/13 13:18	1
Toluene	ND		0.0010	mg/Kg			12/06/13 13:18	1
Xylenes, Total	ND		0.0020	mg/Kg			12/06/13 13:18	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/06/13 13:18	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/06/13 13:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		79 - 120		-		12/06/13 13:18	1
Dibromofluoromethane (Surr)	90		60 - 120				12/06/13 13:18	1
Toluene-d8 (Surr)	110		79 - 123				12/06/13 13:18	1
Method: 8015B - Gasoline Ran	ge Organics - (G	C)						
Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.39	mg/Kg			12/03/13 01:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			65 - 140		-		12/03/13 01:05	

Method Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63502-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8260B/5030B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8015B	Gasoline Range Organics - (GC)	SW846	TAL IRV
8015B/5030B	Gasoline Range Organics (GC)	SW846	TAL IRV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

6

9

10

46

13

Client Sample ID: SB-3-23 Lab Sample ID: 440-63502-1 Date Collected: 11/23/13 15:00

Matrix: Water

Date Received: 11/26/13 07:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	148621	12/04/13 22:05	AT	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	148184	12/03/13 19:48	IM	TAL IRV

Client Sample ID: SB-6 Lab Sample ID: 440-63502-2

Date Collected: 11/23/13 14:50 Matrix: Water

Date Received: 11/26/13 07:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	148621	12/04/13 23:26	AT	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	148184	12/03/13 20:16	IM	TAL IRV

Client Sample ID: SB-8-23 Lab Sample ID: 440-63502-3

Date Collected: 11/23/13 16:40 Matrix: Water

Date Received: 11/26/13 07:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	148621	12/04/13 23:53	AT	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	148184	12/03/13 20:43	IM	TAL IRV

Client Sample ID: SB-3-11.5 Lab Sample ID: 440-63502-4 **Matrix: Solid**

Date Collected: 11/23/13 14:15 Date Received: 11/26/13 07:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.1 g	10 mL	148698	12/05/13 11:10	AA	TAL IRV
Total/NA	Analysis	8015B		1	5.01 g	10 mL	147884	12/02/13 22:49	TL	TAL IRV

Client Sample ID: SB-3-12 Lab Sample ID: 440-63502-5

Date Collected: 11/23/13 14:15 Date Received: 11/26/13 07:30

Г										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.08 g	10 mL	148698	12/05/13 13:01	AA	TAL IRV
Total/NA	Analysis	8015B		1	5.18 g	10 mL	147719	11/30/13 05:03	TL	TAL IRV

Client Sample ID: SB-3-16 Lab Sample ID: 440-63502-6

Date Collected: 11/23/13 16:20 Matrix: Solid Date Received: 11/26/13 07:30

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Type Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260B 5.1 g 10 mL 148698 12/05/13 13:29 AA TAL IRV

TestAmerica Irvine

Matrix: Solid

TestAmerica Job ID: 440-63502-1

Lab Sample ID: 440-63502-6

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Collected: 11/23/13 16:20 Date Received: 11/26/13 07:30

Client Sample ID: SB-3-16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015B		1	2.09 g	10 mL	147884	12/02/13 23:16	TL	TAL IRV

Client Sample ID: SB-3-16.5 Lab Sample ID: 440-63502-7

Date Collected: 11/23/13 16:20

Date Received: 11/26/13 07:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.1 g	10 mL	148698	12/05/13 13:56	AA	TAL IRV
Total/NA	Analysis	8015B		1	5.07 g	10 mL	147884	12/02/13 23:43	TL	TAL IRV

Lab Sample ID: 440-63502-8 Client Sample ID: SB-6-11.5 Date Collected: 11/23/13 11:30

Date Received: 11/26/13 07:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 g	10 mL	148698	12/05/13 14:23	AA	TAL IRV
Total/NA	Analysis	8015B		1	5.25 g	10 mL	147719	11/30/13 07:32	TL	TAL IRV

Client Sample ID: SB-6-12 Lab Sample ID: 440-63502-9 Matrix: Solid

Date Collected: 11/23/13 11:30 Date Received: 11/26/13 07:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.04 g	10 mL	148698	12/05/13 14:50	AA	TAL IRV
Total/NA	Analysis	8015B		1	5.06 g	10 mL	147719	11/30/13 08:02	TL	TAL IRV

Client Sample ID: SB-6-16 Lab Sample ID: 440-63502-10

Date Collected: 11/23/13 11:35

Date Received: 11/26/13 07:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.02 g	10 mL	148698	12/05/13 15:18	AA	TAL IRV
Total/NA	Analysis	8015B		1	5.12 g	10 mL	148431	12/04/13 11:05	IM	TAL IRV

Client Sample ID: SB-6-16.5 Lab Sample ID: 440-63502-11

Date Collected: 11/23/13 11:35

Date Received: 11/26/13 07:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.03 g	10 mL	148698	12/05/13 15:44	AA	TAL IRV
Total/NA	Analysis	8015B		1	5.07 g	10 mL	149031	12/06/13 15:23	IM	TAL IRV

Lab Sample ID: 440-63502-12

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample ID: SB-7-11.5 Date Collected: 11/23/13 10:05 Date Received: 11/26/13 07:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	·	1	4.94 g	10 mL	148698	12/05/13 16:12	AA	TAL IRV
Total/NA _	Analysis	8015B		1	5.15 g	10 mL	147719	11/30/13 09:31	TL	TAL IRV

Client Sample ID: SB-7-12 Lab Sample ID: 440-63502-13

Date Collected: 11/23/13 10:05 Matrix: Solid

Date Received: 11/26/13 07:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	4.99 g	10 mL	148698	12/05/13 16:39	AA	TAL IRV
Total/NA	Analysis	8015B		1	5.01 g	10 mL	147719	11/30/13 10:01	TL	TAL IRV

Client Sample ID: SB-7-16 Lab Sample ID: 440-63502-14

Date Collected: 11/23/13 10:10

Date Received: 11/26/13 07:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	4.93 g	10 mL	148698	12/05/13 17:06	AA	TAL IRV
Total/NA	Analysis	8015B		1	5.16 g	10 mL	147719	11/30/13 10:30	TL	TAL IRV

Client Sample ID: SB-7-16.5 Lab Sample ID: 440-63502-15 Matrix: Solid

Date Collected: 11/23/13 10:10 Date Received: 11/26/13 07:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	4.94 g	10 mL	148698	12/05/13 17:33	AA	TAL IRV
Total/NA	Analysis	8015B		1	5.03 g	10 mL	147719	11/30/13 11:00	TL	TAL IRV

Client Sample ID: SB-8-11.5 Lab Sample ID: 440-63502-16

Date Collected: 11/23/13 16:10

Date Received: 11/26/13 07:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	4.93 g	10 mL	148698	12/05/13 18:01	AA	TAL IRV
Total/NA	Analysis	8015B		1	5.07 g	10 mL	147719	11/30/13 12:29	TL	TAL IRV

Client Sample ID: SB-8-12 Lab Sample ID: 440-63502-17

Date Collected: 11/23/13 16:10

Date Received: 11/26/13 07:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.11 g	10 mL	148698	12/05/13 18:29	AA	TAL IRV

Lab Chronicle

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-63502-1

Client Sample ID: SB-8-12

Lab Sample ID: 440-63502-17

Matrix: Solid

Date Collected: 11/23/13 16:10 Date Received: 11/26/13 07:30

Dil Batch Batch Initial Final Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8015B 5.05 g 10 mL 147719 11/30/13 12:59 TL TAL IRV

Lab Sample ID: 440-63502-18

Matrix: Solid

Date Collected: 11/23/13 16:15 Date Received: 11/26/13 07:30

Client Sample ID: SB-8-16(a)

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.03 g	10 mL	148982	12/06/13 11:22	AT	TAL IRV
Total/NA	Analysis	8015B		1	5.14 g	10 mL	147884	12/03/13 00:38	TL	TAL IRV

Client Sample ID: SB-8-16(b) Lab Sample ID: 440-63502-19

Date Collected: 11/23/13 16:15 Matrix: Solid

Date Received: 11/26/13 07:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.01 g	10 mL	148982	12/06/13 13:18	AT	TAL IRV
Total/NA	Analysis	8015B		1	5.07 g	10 mL	147884	12/03/13 01:05	TL	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-148698/6

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 148698

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/05/13 10:02	1
Ethanol	ND		0.20	mg/Kg			12/05/13 10:02	1
Ethylbenzene	ND		0.0010	mg/Kg			12/05/13 10:02	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/05/13 10:02	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/05/13 10:02	1
m,p-Xylene	ND		0.0020	mg/Kg			12/05/13 10:02	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/05/13 10:02	1
o-Xylene	ND		0.0010	mg/Kg			12/05/13 10:02	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/05/13 10:02	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/05/13 10:02	1
Toluene	ND		0.0010	mg/Kg			12/05/13 10:02	1
Xylenes, Total	ND		0.0020	mg/Kg			12/05/13 10:02	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/05/13 10:02	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/05/13 10:02	1

MB MB Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 79 _ 120 12/05/13 10:02 99 12/05/13 10:02 Dibromofluoromethane (Surr) 96 60 - 120 79 - 123 12/05/13 10:02 Toluene-d8 (Surr) 103

Lab Sample ID: LCS 440-148698/7

Matrix: Solid

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 148698

Alialysis Dalcii. 140030							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.0500	0.0530		mg/Kg		106	65 - 120
Ethanol	0.500	0.539		mg/Kg		108	35 - 160
Ethylbenzene	0.0500	0.0536		mg/Kg		107	70 - 125
Ethyl-t-butyl ether (ETBE)	0.0500	0.0539		mg/Kg		108	60 - 140
Isopropyl Ether (DIPE)	0.0500	0.0576		mg/Kg		115	60 - 140
m,p-Xylene	0.100	0.106		mg/Kg		106	70 - 125
Methyl-t-Butyl Ether (MTBE)	0.0500	0.0543		mg/Kg		109	60 - 140
o-Xylene	0.0500	0.0536		mg/Kg		107	70 - 125
Tert-amyl-methyl ether (TAME)	0.0500	0.0527		mg/Kg		105	60 - 145
ert-Butyl alcohol (TBA)	0.250	0.260		mg/Kg		104	70 - 135
Toluene	0.0500	0.0534		mg/Kg		107	70 - 125
1,2-Dichloroethane	0.0500	0.0496		mg/Kg		99	60 - 140
1,2-Dibromoethane (EDB)	0.0500	0.0560		mg/Kg		112	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		79 - 120
Dibromofluoromethane (Surr)	101		60 - 120
Toluene-d8 (Surr)	104		79 - 123

TestAmerica Irvine

3

4

6

8

9

10

12

13

Client Sample ID: SB-3-11.5

Prep Type: Total/NA

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-63502-4 MS

Matrix: Solid

Client Sample ID: SB-3-11.5

Prep Type: Total/NA

Analysis Batch: 148698

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		0.0503	0.0484		mg/Kg		96	65 - 130	
Ethanol	ND		0.503	0.532		mg/Kg		106	30 - 165	
Ethylbenzene	ND		0.0503	0.0494		mg/Kg		98	70 - 135	
Ethyl-t-butyl ether (ETBE)	ND		0.0503	0.0510		mg/Kg		101	60 - 145	
Isopropyl Ether (DIPE)	ND		0.0503	0.0550		mg/Kg		109	60 - 150	
m,p-Xylene	ND		0.101	0.0968		mg/Kg		96	70 - 130	
Methyl-t-Butyl Ether (MTBE)	ND		0.0503	0.0505		mg/Kg		100	55 - 155	
o-Xylene	ND		0.0503	0.0493		mg/Kg		98	65 - 130	
Tert-amyl-methyl ether (TAME)	ND		0.0503	0.0506		mg/Kg		100	60 - 150	
tert-Butyl alcohol (TBA)	ND		0.252	0.243		mg/Kg		97	65 - 145	
Toluene	ND		0.0503	0.0491		mg/Kg		98	70 - 130	
1,2-Dichloroethane	ND		0.0503	0.0456		mg/Kg		91	60 _ 150	
1,2-Dibromoethane (EDB)	ND		0.0503	0.0506		mg/Kg		101	65 - 140	
	MS	MS								

79 - 123

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 95
 79 - 120

 Dibromofluoromethane (Surr)
 102
 60 - 120

106

_____ Lab Sample ID: 440-63502-4 MSD

Matrix: Solid

Toluene-d8 (Surr)

Analysis Batch: 148698

Alialysis Dalcil. 140030											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.0493	0.0445		mg/Kg		90	65 - 130	9	20
Ethanol	ND		0.493	0.495		mg/Kg		100	30 - 165	7	40
Ethylbenzene	ND		0.0493	0.0459		mg/Kg		93	70 - 135	7	25
Ethyl-t-butyl ether (ETBE)	ND		0.0493	0.0476		mg/Kg		96	60 - 145	7	30
Isopropyl Ether (DIPE)	ND		0.0493	0.0506		mg/Kg		103	60 - 150	8	25
m,p-Xylene	ND		0.0986	0.0894		mg/Kg		91	70 - 130	8	25
Methyl-t-Butyl Ether (MTBE)	ND		0.0493	0.0467		mg/Kg		95	55 - 155	8	35
o-Xylene	ND		0.0493	0.0460		mg/Kg		93	65 - 130	7	25
Tert-amyl-methyl ether (TAME)	ND		0.0493	0.0469		mg/Kg		95	60 - 150	7	25
tert-Butyl alcohol (TBA)	ND		0.247	0.229		mg/Kg		93	65 - 145	6	30
Toluene	ND		0.0493	0.0450		mg/Kg		91	70 - 130	9	20
1,2-Dichloroethane	ND		0.0493	0.0419		mg/Kg		85	60 - 150	8	25
1,2-Dibromoethane (EDB)	ND		0.0493	0.0474		mg/Kg		96	65 - 140	6	25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		79 - 120
Dibromofluoromethane (Surr)	99		60 - 120
Toluene-d8 (Surr)	104		79 - 123

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MR MR

Lab Sample ID: MB 440-148982/5 Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

Analysis Batch: 148982

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	mg/Kg			12/06/13 09:18	1
Ethanol	ND		0.20	mg/Kg			12/06/13 09:18	1
Ethylbenzene	ND		0.0010	mg/Kg			12/06/13 09:18	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/06/13 09:18	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/06/13 09:18	1
m,p-Xylene	ND		0.0020	mg/Kg			12/06/13 09:18	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/06/13 09:18	1
o-Xylene	ND		0.0010	mg/Kg			12/06/13 09:18	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/06/13 09:18	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/06/13 09:18	1
Toluene	ND		0.0010	mg/Kg			12/06/13 09:18	1
Xylenes, Total	ND		0.0020	mg/Kg			12/06/13 09:18	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/06/13 09:18	1
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/06/13 09:18	1

MB MB Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 79 _ 120 12/06/13 09:18 108 Dibromofluoromethane (Surr) 105 60 - 120 12/06/13 09:18 79 - 123 12/06/13 09:18 Toluene-d8 (Surr) 112

Lab Sample ID: LCS 440-148982/6 Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA

Analysis Batch: 148982

Alialysis Dalcii. 140302							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.0500	0.0458		mg/Kg		92	65 _ 120
Ethanol	0.500	0.481		mg/Kg		96	35 - 160
Ethylbenzene	0.0500	0.0506		mg/Kg		101	70 _ 125
Ethyl-t-butyl ether (ETBE)	0.0500	0.0482		mg/Kg		96	60 - 140
Isopropyl Ether (DIPE)	0.0500	0.0473		mg/Kg		95	60 _ 140
m,p-Xylene	0.100	0.0992		mg/Kg		99	70 _ 125
Methyl-t-Butyl Ether (MTBE)	0.0500	0.0523		mg/Kg		105	60 - 140
o-Xylene	0.0500	0.0494		mg/Kg		99	70 _ 125
Tert-amyl-methyl ether (TAME)	0.0500	0.0502		mg/Kg		100	60 _ 145
tert-Butyl alcohol (TBA)	0.250	0.255		mg/Kg		102	70 _ 135
Toluene	0.0500	0.0476		mg/Kg		95	70 ₋ 125
1,2-Dichloroethane	0.0500	0.0517		mg/Kg		103	60 - 140
1,2-Dibromoethane (EDB)	0.0500	0.0513		mg/Kg		103	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		79 - 120
Dibromofluoromethane (Surr)	102		60 - 120
Toluene-d8 (Surr)	110		79 - 123

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-63502-18 MS Client Sample ID: SB-8-16(a) Matrix: Solid Prep Type: Total/NA

Analysis Batch: 148982

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		0.0497	0.0479		mg/Kg		96	65 _ 130	
Ethanol	ND		0.497	0.564		mg/Kg		113	30 _ 165	
Ethylbenzene	ND		0.0497	0.0551		mg/Kg		111	70 _ 135	
Ethyl-t-butyl ether (ETBE)	ND		0.0497	0.0452		mg/Kg		91	60 - 145	
Isopropyl Ether (DIPE)	ND		0.0497	0.0438		mg/Kg		88	60 - 150	
m,p-Xylene	ND		0.0994	0.107		mg/Kg		107	70 - 130	
Methyl-t-Butyl Ether (MTBE)	ND		0.0497	0.0474		mg/Kg		95	55 - 155	
o-Xylene	ND		0.0497	0.0534		mg/Kg		107	65 _ 130	
Tert-amyl-methyl ether (TAME)	ND		0.0497	0.0471		mg/Kg		95	60 _ 150	
tert-Butyl alcohol (TBA)	ND		0.249	0.301		mg/Kg		121	65 - 145	
Toluene	ND		0.0497	0.0495		mg/Kg		100	70 _ 130	
1,2-Dichloroethane	ND		0.0497	0.0502		mg/Kg		101	60 _ 150	
1,2-Dibromoethane (EDB)	ND		0.0497	0.0518		mg/Kg		104	65 - 140	

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 100 79 - 120 Dibromofluoromethane (Surr) 89 60 - 120

MS MS

109

Lab Sample ID: 440-63502-18 MSD Client Sample ID: SB-8-16(a) Matrix: Solid Prep Type: Total/NA

79 - 123

Analysis Batch: 148982

Toluene-d8 (Surr)

Allalysis Datoll. 140302											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.0495	0.0500		mg/Kg		101	65 - 130	4	20
Ethanol	ND		0.495	0.477		mg/Kg		96	30 - 165	17	40
Ethylbenzene	ND		0.0495	0.0555		mg/Kg		112	70 - 135	1	25
Ethyl-t-butyl ether (ETBE)	ND		0.0495	0.0497		mg/Kg		100	60 - 145	10	30
Isopropyl Ether (DIPE)	ND		0.0495	0.0474		mg/Kg		96	60 - 150	8	25
m,p-Xylene	ND		0.0990	0.107		mg/Kg		108	70 - 130	0	25
Methyl-t-Butyl Ether (MTBE)	ND		0.0495	0.0540		mg/Kg		109	55 - 155	13	35
o-Xylene	ND		0.0495	0.0521		mg/Kg		105	65 - 130	2	25
Tert-amyl-methyl ether (TAME)	ND		0.0495	0.0531		mg/Kg		107	60 - 150	12	25
tert-Butyl alcohol (TBA)	ND		0.248	0.270		mg/Kg		109	65 - 145	11	30
Toluene	ND		0.0495	0.0520		mg/Kg		105	70 - 130	5	20
1,2-Dichloroethane	ND		0.0495	0.0525		mg/Kg		106	60 - 150	4	25
1.2-Dibromoethane (EDB)	ND		0.0495	0.0553		ma/Ka		112	65 - 140	7	25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		79 - 120
Dibromofluoromethane (Surr)	95		60 - 120
Toluene-d8 (Surr)	108		79 - 123

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-148621/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 148621

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50	ug/L			12/04/13 20:53	1
Ethanol	ND		150	ug/L			12/04/13 20:53	1
Ethylbenzene	ND		0.50	ug/L			12/04/13 20:53	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			12/04/13 20:53	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			12/04/13 20:53	1
m,p-Xylene	ND		1.0	ug/L			12/04/13 20:53	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			12/04/13 20:53	1
o-Xylene	ND		0.50	ug/L			12/04/13 20:53	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			12/04/13 20:53	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			12/04/13 20:53	1
Toluene	ND		0.50	ug/L			12/04/13 20:53	1
Xylenes, Total	ND		1.0	ug/L			12/04/13 20:53	1
1,2-Dichloroethane	ND		0.50	ug/L			12/04/13 20:53	1
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			12/04/13 20:53	1

MB MB

MR MR

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101	80 - 120		12/04/13 20:53	1
Dibromofluoromethane (Surr)	97	76 - 132		12/04/13 20:53	1
Toluene-d8 (Surr)	104	80 - 128		12/04/13 20:53	1

Lab Sample ID: LCS 440-148621/5

Matrix: Water

Analysis Batch: 148621

Client Sample ID: Lab Control Sample Prep Type: Total/NA

7.11a.yolo 2a.o 1 10021	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	25.0	23.9		ug/L		95	68 - 130
Ethanol	250	286		ug/L		114	50 - 149
Ethylbenzene	25.0	24.5		ug/L		98	70 - 130
Ethyl-t-butyl ether (ETBE)	25.0	24.0		ug/L		96	60 - 136
Isopropyl Ether (DIPE)	25.0	25.5		ug/L		102	58 ₋ 139
m,p-Xylene	50.0	48.3		ug/L		97	70 - 130
Methyl-t-Butyl Ether (MTBE)	25.0	23.7		ug/L		95	63 _ 131
o-Xylene	25.0	24.5		ug/L		98	70 _ 130
Tert-amyl-methyl ether (TAME)	25.0	23.7		ug/L		95	57 ₋ 139
tert-Butyl alcohol (TBA)	125	127		ug/L		102	70 _ 130
Toluene	25.0	24.1		ug/L		96	70 _ 130
1,2-Dichloroethane	25.0	21.9		ug/L		88	57 - 138
1,2-Dibromoethane (EDB)	25.0	24.1		ug/L		96	70 _ 130

LCS LCS	LCS	L	cs	L
---------	-----	---	----	---

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	95		80 - 120
Dibromofluoromethane (Surr)	100		76 ₋ 132
Toluene-d8 (Surr)	105		80 - 128

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-63502-1 MS Client Sample ID: SB-3-23 Matrix: Water Prep Type: Total/NA

Analysis Batch: 148621

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		25.0	23.4		ug/L		94	66 - 130	
Ethanol	ND		250	266		ug/L		106	54 - 150	
Ethylbenzene	ND		25.0	24.4		ug/L		98	70 - 130	
Ethyl-t-butyl ether (ETBE)	ND		25.0	24.4		ug/L		97	70 - 130	
Isopropyl Ether (DIPE)	ND		25.0	25.4		ug/L		102	64 - 138	
m,p-Xylene	ND		50.0	48.2		ug/L		96	70 - 133	
Methyl-t-Butyl Ether (MTBE)	1.4		25.0	25.3		ug/L		95	70 - 130	
o-Xylene	ND		25.0	24.4		ug/L		98	70 - 133	
Tert-amyl-methyl ether (TAME)	ND		25.0	24.4		ug/L		98	68 - 133	
tert-Butyl alcohol (TBA)	ND		125	126		ug/L		101	70 - 130	
Toluene	ND		25.0	24.0		ug/L		96	70 - 130	
1,2-Dichloroethane	ND		25.0	21.8		ug/L		87	56 - 146	
1,2-Dibromoethane (EDB)	ND		25.0	24.6		ug/L		98	70 - 131	

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		80 - 120
Dibromofluoromethane (Surr)	96		76 ₋ 132
Toluene-d8 (Surr)	105		80 - 128

Lab Sample ID: 440-63502-1 MSD

Analysis Batch: 148621

Matrix: Water

Alialysis Datell. 140021											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		25.0	24.0		ug/L		96	66 - 130	3	20
Ethanol	ND		250	271		ug/L		108	54 - 150	2	30
Ethylbenzene	ND		25.0	25.0		ug/L		100	70 - 130	2	20
Ethyl-t-butyl ether (ETBE)	ND		25.0	24.6		ug/L		98	70 - 130	1	25
Isopropyl Ether (DIPE)	ND		25.0	25.7		ug/L		103	64 - 138	1	25
m,p-Xylene	ND		50.0	49.2		ug/L		98	70 - 133	2	25
Methyl-t-Butyl Ether (MTBE)	1.4		25.0	25.5		ug/L		96	70 - 130	1	25
o-Xylene	ND		25.0	24.7		ug/L		99	70 - 133	1	20
Tert-amyl-methyl ether (TAME)	ND		25.0	24.9		ug/L		100	68 - 133	2	30
tert-Butyl alcohol (TBA)	ND		125	129		ug/L		103	70 - 130	2	25
Toluene	ND		25.0	24.8		ug/L		99	70 - 130	3	20
1,2-Dichloroethane	ND		25.0	22.0		ug/L		88	56 - 146	1	20
1,2-Dibromoethane (EDB)	ND		25.0	24.9		ug/L		99	70 - 131	1	25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		80 - 120
Dibromofluoromethane (Surr)	99		76 - 132
Toluene-d8 (Surr)	105		80 - 128

TestAmerica Irvine

Client Sample ID: SB-3-23

Prep Type: Total/NA

Page 34 of 46

Lab Sample ID: MB 440-147719/28

Method: 8015B - Gasoline Range Organics - (GC)

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

Prepared

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 147719

Matrix: Solid

Surrogate

мв мв Result Qualifier RLUnit D Analyzed Dil Fac Analyte Prepared 0.40 GRO (C6-C12) ND mg/Kg 11/30/13 00:06 MB MB

Dil Fac

11/30/13 00:06 65 - 140 4-Bromofluorobenzene (Surr) 96 Client Sample ID: Lab Control Sample

Limits

Lab Sample ID: LCS 440-147719/26

Matrix: Solid

Analysis Batch: 147719

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec GRO (C4-C12) 1.60 99 70 - 135 1.58 mg/Kg

LCS LCS

%Recovery Qualifier

%Recovery

Qualifier

Surrogate Limits 65 - 140 4-Bromofluorobenzene (Surr) 94

Lab Sample ID: LCSD 440-147719/27

Matrix: Solid

Analysis Batch: 147719

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)	 1.60	1.63		mg/Kg	_	102	70 - 135	3	20

LCSD LCSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 94 65 - 140

> Client Sample ID: Matrix Spike Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 147719

MS MS %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits GRO (C4-C12) ND 1.60 1.20 mg/Kg 75 60 - 140

MS MS %Recovery Surrogate Qualifier Limits 4-Bromofluorobenzene (Surr) 80 65 - 140

Lab Sample ID: 440-63498-A-2 MSD

Lab Sample ID: 440-63498-A-2 MS

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Analysis Batch: 147719

Matrix: Solid

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)	ND		1.55	1.20		mg/Kg		77	60 - 140	1	30
	MSD	MSD									

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 80 65 - 140

Lab Sample ID: 440-63065-B-2 MSD

Method: 8015B - Gasoline Range Organics - (GC) (Continued)

Lab Sample ID: MB 440-147884/4 Matrix: Solid Analysis Batch: 147884						Client Sa	ample ID: Metho Prep Type: T	
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.40	mg/Kg			12/02/13 14:40	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		65 - 140		-		12/02/13 14:40	1

Lab Sample ID: LCS 440-147 Matrix: Solid		ID: Lab Contr Prep Type	ntroi Sampie pe: Total/NA							
Analysis Batch: 147884									-1- 71-	
-			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
GRO (C4-C12)			1.60	1.44		mg/Kg		90	70 - 135	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	94		65 - 140							

Lab Sample ID: LCSD 440-14 Matrix: Solid Analysis Batch: 147884				Clie	nt Sam	ple ID:	Lab Contro Prep T	I Sampl ype: To			
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)			1.60	1.47		mg/Kg		92	70 - 135	2	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	94		65 - 140								

Matrix: Solid								Cileiit	•	ype: Total/NA
Analysis Batch: 147884										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
GRO (C4-C12)	2.0		1.58	2.70	LN	mg/Kg		44	60 - 140	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	94		65 - 140							

Matrix: Solid									Prep T	ype: Tot	tal/NA
Analysis Batch: 147884											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)	2.0		1.55	2.46	LN	mg/Kg		29	60 - 140	9	30
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	95		65 - 140								

TestAmerica Irvine

Client Sample ID: Matrix Spike Duplicate

Method: 8015B - Gasoline Range Organics - (GC) (Continued)

Lab Sample ID: MB 440-148431/4 Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

Analysis Batch: 148431

мв мв Result Qualifier RLUnit D Analyzed Dil Fac Analyte Prepared 0.40 GRO (C6-C12) ND mg/Kg 12/04/13 09:40

MB MB

Qualifier Dil Fac Surrogate %Recovery Limits Prepared Analyzed 65 - 140 12/04/13 09:40 4-Bromofluorobenzene (Surr) 102

Lab Sample ID: LCS 440-148431/2 Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA

Analysis Batch: 148431

LCS LCS Spike %Rec. Added Result Qualifier Limits Analyte Unit %Rec GRO (C4-C12) 1.60 91 70 - 135 1.45 mg/Kg

LCS LCS

Surrogate %Recovery Qualifier Limits 65 - 140 4-Bromofluorobenzene (Surr) 100

Lab Sample ID: LCSD 440-148431/3 Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA

Analysis Batch: 148431

LCSD LCSD RPD %Rec. Spike Added Analyte Result Qualifier Unit %Rec Limits **RPD** Limit GRO (C4-C12) 1.60 1.47 70 - 135 mg/Kg

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 100 65 - 140

Lab Sample ID: 440-63502-10 MS Client Sample ID: SB-6-16 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 148431

MS MS %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits GRO (C4-C12) 0.97 1.57 2.54 mg/Kg 100 60 - 140

MS MS

%Recovery Surrogate Qualifier Limits 4-Bromofluorobenzene (Surr) 114 65 - 140

Lab Sample ID: 440-63502-10 MSD Client Sample ID: SB-6-16 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 148431

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)	0.97		1.58	3.11		mg/Kg		135	60 - 140	20	30

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 65 - 140 133

Method: 8015B - Gasoline Range Organics - (GC) (Continued)

Lab Sample ID: MB 440-149031/4 Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

Analysis Batch: 149031

Result Qualifier RLUnit D Dil Fac Analyte Prepared Analyzed GRO (C6-C12) ND 0.40 mg/Kg 12/06/13 11:28

MB MB

MB MB

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 65 - 140 12/06/13 11:28 4-Bromofluorobenzene (Surr) 101

Lab Sample ID: LCS 440-149031/2

Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA

Analysis Batch: 149031

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec GRO (C4-C12) 70 - 135 1.60 103 1.65 mg/Kg

LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 102 65 - 140

Lab Sample ID: LCSD 440-149031/3

Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA

Analysis Batch: 149031

LCSD LCSD Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits RPD GRO (C4-C12) 1.60 1.66 104 70 - 135 mg/Kg n

LCSD LCSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 101 65 - 140

Method: 8015B/5030B - Gasoline Range Organics (GC)

Lab Sample ID: MB 440-148184/3 Client Sample ID: Method Blank Matrix: Water

Analysis Batch: 148184

MR MR Result Qualifier RL Unit Prepared Analyzed Dil Fac GRO (C6-C12) ND ug/L 12/03/13 13:12

MB MB

Qualifier Limits Prepared Dil Fac Surrogate %Recovery Analyzed 4-Bromofluorobenzene (Surr) 91 65 - 140 12/03/13 13:12

Lab Sample ID: LCS 440-148184/2

Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 148184

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits GRO (C4-C12) 800 750 ug/L 80 - 120

LCS LCS

%Recovery Surrogate Qualifier Limits 65 - 140 4-Bromofluorobenzene (Surr) 88

TestAmerica Irvine

RPD

Limit 20

Prep Type: Total/NA

QC Sample Results

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

4-Bromofluorobenzene (Surr)

TestAmerica Job ID: 440-63502-1

Method: 8015B/5030B - Gasoline Range Organics (GC) (Continued)

87

Lab Sample ID: 440-62868-C-5 MS Client Sample ID: Matrix Spike Matrix: Water Prep Type: Total/NA Analysis Batch: 148184 Sample Sample Spike MS MS %Rec. Result Qualifier Added Limits Analyte Result Qualifier %Rec Unit GRO (C4-C12) 80000 65 - 140 15000 85700 ug/L 89 MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 65 - 140 90

Lab Sample ID: 440-62868-C-5 MSD Client Sample ID: Matrix Spike Duplicate Matrix: Water Prep Type: Total/NA Analysis Batch: 148184 MSD MSD RPD Sample Sample Spike %Rec. Added Result Qualifier Result Qualifier %Rec Limits RPD Limit Analyte Unit GRO (C4-C12) 80000 88 65 - 140 20 15000 84600 ug/L MSD MSD Surrogate %Recovery Qualifier Limits

65 - 140

TestAmerica Job ID: 440-63502-1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

GC/MS VOA

Analysis Batch: 148621

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63502-1	SB-3-23	Total/NA	Water	8260B/5030B	
440-63502-1 MS	SB-3-23	Total/NA	Water	8260B/5030B	
440-63502-1 MSD	SB-3-23	Total/NA	Water	8260B/5030B	
440-63502-2	SB-6	Total/NA	Water	8260B/5030B	
440-63502-3	SB-8-23	Total/NA	Water	8260B/5030B	
LCS 440-148621/5	Lab Control Sample	Total/NA	Water	8260B/5030B	
MB 440-148621/4	Method Blank	Total/NA	Water	8260B/5030B	

Analysis Batch: 148698

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63502-4	SB-3-11.5	Total/NA	Solid	8260B	
440-63502-4 MS	SB-3-11.5	Total/NA	Solid	8260B	
440-63502-4 MSD	SB-3-11.5	Total/NA	Solid	8260B	
440-63502-5	SB-3-12	Total/NA	Solid	8260B	
440-63502-6	SB-3-16	Total/NA	Solid	8260B	
440-63502-7	SB-3-16.5	Total/NA	Solid	8260B	
440-63502-8	SB-6-11.5	Total/NA	Solid	8260B	
440-63502-9	SB-6-12	Total/NA	Solid	8260B	
440-63502-10	SB-6-16	Total/NA	Solid	8260B	
440-63502-11	SB-6-16.5	Total/NA	Solid	8260B	
440-63502-12	SB-7-11.5	Total/NA	Solid	8260B	
440-63502-13	SB-7-12	Total/NA	Solid	8260B	
440-63502-14	SB-7-16	Total/NA	Solid	8260B	
440-63502-15	SB-7-16.5	Total/NA	Solid	8260B	
440-63502-16	SB-8-11.5	Total/NA	Solid	8260B	
440-63502-17	SB-8-12	Total/NA	Solid	8260B	
LCS 440-148698/7	Lab Control Sample	Total/NA	Solid	8260B	
MB 440-148698/6	Method Blank	Total/NA	Solid	8260B	

Analysis Batch: 148982

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63502-18	SB-8-16(a)	Total/NA	Solid	8260B	
440-63502-18 MS	SB-8-16(a)	Total/NA	Solid	8260B	
440-63502-18 MSD	SB-8-16(a)	Total/NA	Solid	8260B	
440-63502-19	SB-8-16(b)	Total/NA	Solid	8260B	
LCS 440-148982/6	Lab Control Sample	Total/NA	Solid	8260B	
MB 440-148982/5	Method Blank	Total/NA	Solid	8260B	

GC VOA

Analysis Batch: 147719

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63498-A-2 MS	Matrix Spike	Total/NA	Solid	8015B	
440-63498-A-2 MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B	
440-63502-5	SB-3-12	Total/NA	Solid	8015B	
440-63502-8	SB-6-11.5	Total/NA	Solid	8015B	
440-63502-9	SB-6-12	Total/NA	Solid	8015B	
440-63502-12	SB-7-11.5	Total/NA	Solid	8015B	
440-63502-13	SB-7-12	Total/NA	Solid	8015B	
440-63502-14	SB-7-16	Total/NA	Solid	8015B	

TestAmerica Irvine

Page 40 of 46

9

3

6

7

Ŏ

10

11

16

Ш

QC Association Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-63502-1

GC VOA (Continued)

Analysis Batch: 147719 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63502-15	SB-7-16.5	Total/NA	Solid	8015B	
440-63502-16	SB-8-11.5	Total/NA	Solid	8015B	
440-63502-17	SB-8-12	Total/NA	Solid	8015B	
LCS 440-147719/26	Lab Control Sample	Total/NA	Solid	8015B	
LCSD 440-147719/27	Lab Control Sample Dup	Total/NA	Solid	8015B	
MB 440-147719/28	Method Blank	Total/NA	Solid	8015B	

Analysis Batch: 147884

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63065-B-2 MS	Matrix Spike	Total/NA	Solid	8015B	
440-63065-B-2 MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B	
440-63502-4	SB-3-11.5	Total/NA	Solid	8015B	
440-63502-6	SB-3-16	Total/NA	Solid	8015B	
440-63502-7	SB-3-16.5	Total/NA	Solid	8015B	
440-63502-18	SB-8-16(a)	Total/NA	Solid	8015B	
440-63502-19	SB-8-16(b)	Total/NA	Solid	8015B	
LCS 440-147884/2	Lab Control Sample	Total/NA	Solid	8015B	
LCSD 440-147884/3	Lab Control Sample Dup	Total/NA	Solid	8015B	
MB 440-147884/4	Method Blank	Total/NA	Solid	8015B	

Analysis Batch: 148184

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-62868-C-5 MS	Matrix Spike	Total/NA	Water	8015B/5030B	
440-62868-C-5 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B/5030B	
440-63502-1	SB-3-23	Total/NA	Water	8015B/5030B	
440-63502-2	SB-6	Total/NA	Water	8015B/5030B	
440-63502-3	SB-8-23	Total/NA	Water	8015B/5030B	
LCS 440-148184/2	Lab Control Sample	Total/NA	Water	8015B/5030B	
MR 440-148184/3	Method Blank	Total/NA		8015B/5030B	

Analysis Batch: 148431

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
440-63502-10	SB-6-16	Total/NA	Solid	8015B
440-63502-10 MS	SB-6-16	Total/NA	Solid	8015B
440-63502-10 MSD	SB-6-16	Total/NA	Solid	8015B
LCS 440-148431/2	Lab Control Sample	Total/NA	Solid	8015B
LCSD 440-148431/3	Lab Control Sample Dup	Total/NA	Solid	8015B
MB 440-148431/4	Method Blank	Total/NA	Solid	8015B

Analysis Batch: 149031

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-63502-11	SB-6-16.5	Total/NA	Solid	8015B	<u> </u>
LCS 440-149031/2	Lab Control Sample	Total/NA	Solid	8015B	
LCSD 440-149031/3	Lab Control Sample Dup	Total/NA	Solid	8015B	
MB 440-149031/4	Method Blank	Total/NA	Solid	8015B	

TestAmerica Irvine

Page 41 of 46

Definitions/Glossary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-63502-1

Qualifiers		
GC/MS VOA		

 Qualifier
 Qualifier Description

 ID
 Analyte identified by RT & presence of single mass ion

GC VOA

 Qualifier
 Qualifier Description

 LN
 MS and/or MSD below acceptance limits. See Blank Spike (LCS)

 LH
 Surrogate Recoveries were higher than QC limits

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Irvine

2

4

5

6

9

10

Certification Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-63502-1

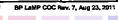
Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-14
Arizona	State Program	9	AZ0671	10-13-14
California	LA Cty Sanitation Districts	9	10256	01-31-14
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	01-23-14 *
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-14
New Mexico	State Program	6	N/A	01-31-14
Northern Mariana Islands	State Program	9	MP0002	01-31-14
Oregon	NELAP	10	4005	09-12-14
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

^{*} Expired certification is currently pending renewal and is considered valid.

bp	r	m	7
	1	1 1	L


Laboratory Management Program LaMP Chain of Custody Record

ooratory manage	mem Frogram Lamir C	main of custouy necord	Page or
BP Site Node Path:	06-88-615	Req Due Date (mm/dd/yy):	Rush TAT: Yes No X
RD Encilles No:	2111	I ah Wark Order Number	į

Lab Price Marinesh Republic September Septembe			-	BR	Facility No:	-	_		_	2	111					-	L	ab W	ork (Order	· Nun	nber:	_								
Application Comments Application Comments Application Comments	Lab N	ame: Test America				Faci	lily A	ddress		1156	Devis	Stree	t _								Cons	ultant	/Contr	actor.		Broe	dbent and A	Ssoci	ates, Inc.		
Ab Prove: 94-261-102 Catalysis (Control No. Tropolished No. Tropolished Control No. Control Prove Tropolished Tropolished Control Prove Tropolished Tropoli	Leb A	kdress: 17461 Derian Avenue	Sulte #10	0, Irvine, CA 92	614	City,	, Stat	, ZIP	Code	a:		San L	eand	dro, CA							Cons	ultant	Contra	actor I	Projec	t No:	06-88-	-615			
28-943	Leb P	it; Kathleen Robb				Lead	d Reg	ulatory	/ Age	ency:		ACE	1								Addre	935;	875 C	otting	Lane	, Sultr	a G, Vacavil	ile, C	4		
According forces According f	Leb P	none: 949-261-1022				Celi	fornia	Globa	ı ID	No.:		T060	0101	764							Cons	ultænt	/Contr	actor l	PM:	Kristr	ene Tidwell	Т			
Depart No. Dep	Leb S	aipping Acent 1103-66	33-7		_	Enfo	s Pro	posal	No:		005X	M-000)1								F	hone:	707-	55-72	290			Faoc	707-455	-7295	
Matrix No. Containing / Preservative Requested Analyses Report Type & CC Level Structure Lab Preservative Requested Analyses Report Type & CC Level Structure Lab Preservative Requested Analyses Report Type & CC Level Structure Lab Report Type & CC Level Lab Report Type & CC Level Structure Lab Report Type & CC Level Lab Report Type & CC L	AD B	ottle Order No:				Acce	centir	g Mod	ie:		Pro	vision	x	_ ∞	C-BU		00	C-RM	_		Emal	EDD	To:	<u>kt</u>	id)well	@ bros	adbentinc co	<u>om'</u>	and to L	Ab enfosdocé	≱bp com
P M Proces \$25-75-304	Other	info:				Stag	je:	Execu	rte (4	(0)		Activ	ty:	Proje	ct Sp	end (8	0)				Imvok	e To			BF	<u>×</u>			Contracto	×	
Lab No. Sample Description Date Time Ti	BP Pr	oject Manager (PM): Chuck C	termet				Ma	trix	ĺ	No	. Co	ntain	ers /	/ Pres	ervat	tive			J	Requ	este	d Ana	ilyse	3				Repo	ort Type	& QC Lev	ai
Lab No. Sample Description Date Time Ti	BP PN	Phone, 925-275-3804					Г										[8	_				-	ŀ				1	S	tandard _x	-
Lab No. Sample Description Date Time Ti	BP PN	i Email: chuck carmel@b	p com]			-	uners							1	14 82	9260E	8								Fı	III Data P	ackage	-
Sa-6		Sample Description	on	Date	Time	Soil / Solid	Water / Llquid	Alr / Vapor	is this location a well?	9	Unpreserved	H2504	HNOS	HC:	Methanol		GRO by 8015M	BTEX, MTBE & TAME	TBA, ETBE & OIPE by	EDB & 1,2-DCA by 826	(<u>A</u>)						Sample' in	comm	ot collected vents and s	d, indicate "No ingle-strike out	: .m.
SB-9-23		SB-3-23		11/23/2013	1500		×		n	6				x			×	×	×	×	×										
SB-3-11.5		\$8-6		11/23/2013	1450		×	П	n	6				×			×	×	x	×	×										
SS-3-12		SB-8-23		11/23/2013	1640		×		n	6				×			×	×	×	×	×		ļ		L^{-}			T			
\$8-3-16		SB-3-11.5		11/23/2013	1415	×			n	1	×						×	×	×	x	×							\Box			
SB-3-16.5 11/23/2013 16 Z.O x n 1 x <td></td> <td>SB-3-12</td> <td></td> <td>11/23/2013</td> <td>1415</td> <td>×</td> <td></td> <td></td> <td>n</td> <td>1</td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ĺ</td> <td></td> <td></td> <td></td>		SB-3-12		11/23/2013	1415	×			n	1	×						×	×	×	×	×							Ĺ			
SB-6-12		SB-3-16		11/23/2013	1620	×			n	1	×			L			×	×	x	×	×	Į									
SB-6-12		SB-3-16.5		11/23/2013	1620	×			n	1	×						×	×	×	×	x							-			
SB-6-16		\$B-6-11,5		11/23/2013	1130	x			n	1	×						×	×	×	x	×			<u> </u>	_						
SB-6-16.5		SB-6-12		11/23/2013	1130	x			'n	1	×		L	L			×	×	×	×	×				_	乚		<u>.</u>			
SB-7-11.5		SB-6-16		11/23/2013	:(35	×			n	1	ĸ			L			×	×	×	×	×		L		L_	L					
Se-7-12		SB-6-16.5		11/23/2013	1135	×	L	Ц	n	1	×			<u> </u>	L		×	×	×	×	×				_	$oxed{oxed}$		<u> </u>			
S8-7-16		SB-7-11_5		11/23/2013	1005	×			n	1	×			<u> </u>			×	x	×	×	×				L			1			
SB-8-11.5		\$B-7-12		11/23/2013	1005	×			n	1	×			⊥_		<u> </u>	×	×	×	×	×				_	L		<u> </u>			
SB-8-11.5		SB-7-16		11/23/2013	1010	×			n (1	×					L	×	x	x	×	×					L					
SB-8-12		SB-7-16.5		11/23/2013	1010	×	Ĺ		n	1	×						×	×	х	×	×				<u> </u>		<u> </u>	:			
SB-6-16		\$B-8-11.5		11/23/2013	1610	×			n	1	×					<u> </u>	×	×	×	×	×	<u> </u>			L						
SB-8-16.5 11/23/2013 i l l S x n 1 x x x x x x x x x x x x x x x x x		\$B-8-12		11/23/2013	1610	×			n	1	×		L			L	×	×	×	x	×				L_	_		<u></u>			
TB-2111-11252013 x n 2 x Date Time Accepted By / Affiliation Date Time Accepted By / Affiliation Date Time Sampler's Company: Broadlent and Associates Shipment Method: Fed Ex Ship Date: 11/25/2013		SB-8-16		11/23/2013	ilis	×			n	1	×				Ĺ		×	×	×	×	×				Ĺ_		<u> </u>				
Sampler's Name: Alejandra Hernandez Relinquished By / Affiliation Date Time Accepted By / Affiliation Date Time Sempler's Company: Broadbent and Associates Shipment Method: Fed Ex Ship Date: 11/25/2013		\$8-8-16.5		11/23/2013	ib15	×			п	1	×	L_					×	×	×	×	×				_		<u> </u>				
Sampler's Company: Broadbent and Associates ###################################		TB-2111-11252013		-		×			n	2				×	L	<u> </u>					<u> </u>				_	Ь.			On I	-Told	
Sempler's Company: Broadbent and Associates ###################################					<u> </u>	L	L		╛		L	<u></u>		<u>L</u> _			L	L_		L_,	<u>Ļ</u>				<u>L_</u>	<u> </u>		<u> </u>		——	
Shipment Method: Fed Ex Ship Data: 11/25/2013	Samp	npler's Name: Alejandra Hernandez														<u> </u>		Date	Time												
	Semp	er's Company: Broadbe	nt and Ass	oclates		18	We,	<i>+-</i> /	N.C	W.	<u>2</u>	fer	HC	Surene Jeino	ĽŽ	G 41	W.	25/13	17	œ	L									↓	<u> </u>
▗▗ ▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	Shipm	<u>'</u>				L											<u> </u>				Щ	λ_								 	<u> </u>
Shipment Tracking No: 9025 2344 1993	Shipm	ent Tracking No: 802	<u> 25 2</u>	344 19	193	L													پِــا		\mathbb{Z}	<u> </u>			4					11/2/hz	97 2/ ?
Special Instructions:	Spec	al Instructions:	_			_												<u>.</u>		-		•									
THIS LINE - LAB USE ONLY: Custody Seals in Place 199/ No Temp Blanic Yes 100 Cooler Temp on Receipt 25/1-1 °FO Trip Blanic Teg/ No MS/MSD Sample Submitted: Yes 100 PRemediation Management COC - Effective Dates: August 23, 2011 - June 30, 2012 BP LaMP COC Rev. 7, Aug 23, 2011 - June 30, 2012	10 D							emp E	Blank	c Yes	160	<u> </u>	Co	oler Te	mp or	n Rece				O	<u>L</u> :	Trip B	anko (1	eg)/N	lo	M	IS/MSD San				Aug 23, 20

II 11-26-13

In-63

BP Remediation Management COC - Effective Dates: August 23, 2011- June 30, 2012

Laboratory Management Program LaMP Chain of Custody Record

actour ricocia		<u> </u>	_
eq Due Date (mm/dd/yy):	Rush TAT: Yes	No_	x

TI 11-26-13

3		/ l	BP Site	te Node Path:	:				06-	88-61	15				_	Re	ag Du	ue D a	.te (m	m/dd	/yy):					_	F	lush T/	AT: Yes		. No	, <u> </u>
•		』 ■ 	BF	P Facility No:	·—			_		2111		_			_	L	ab W	Vork (Order	Num	iber:						<u> </u>				_	
Lab N	ame: Test America				Fac	ility A	Address	3 :	1156	Devis	Stree	ıt								Cons	uitant/	Contra	actor	_	Broad	ibent and	Asso	lates, in	nc.			
Leb Ar	ddress: 17461 Derlan Ave	nue Sulte #10	30, Irvine, CA 92	2614	City	/, Stat	te, ZIP	Cod	Je:		San I	eend	iro, CA	•						Cons	ultent/	Contra	actor P	roject	l No:	06-8	8-615					
Lab Pi	M: Kathleen Robb				Lea	d Rec	gulator	y Ag	jency:		ACE	л								Addre	388:	875 C	ctting	Lane,	, Suite	G, Vaces	ille, C	A				
Lab Pi	hone: 949-261-1022				Cali	ifornie	a Glob	a) ID	No.:	_	T060	01017	784							Cons	ultant/	Contre	actor P	M:	Kriste	ne Tidwe	AI'					
Lab Si	hipping Acont: 1103	6633-7			Enfo	os Pro	roposel	No:		005X	(M-000)1								P	hone:	707-4	55-72	90	_		; Fao	c 707-49	55-7295	_	_	
Leb Br	ottle Order No:				Acc	:ountir	ing Mo	de:		Pro	vision	_x	_ 00	C-BU		001	Ç-RM			Email	EDD	To:	ktır	dwell 4	∂ bтоа	dbenlind	com	and to	o <u>lab enfos</u>	.doc ®	hp co	<u>om</u>
Other	info:				Star	ge:	Exec	ute (40)		Activi	ity:	Proje	ct Spe	end (80	J)				Invok	e Tα			ВР	_ <u>x</u> _		ı	Contra	nctor			
BP Pr	oject Manager (PM): Chuc	k Carmel			L	Ma	atrix		No	. Co	ntain	ers /	Pres	ervat	ive				Requ	estec	I Ana	lyses	3				Rep	ort Ty	pe & QC	Leve	ıl	
BP PM	# Phone: 925-275-3804]										[8	_								l			Standard	<u> </u>		
BP PN	t Email: chuck.carmel	pbp com]	'			Shers								¥	8260	ا چ							<u> </u>		ull Date	a Package	<u>—</u>		
Lab No.	Sample Descrip	ption	Date	Time	Soil / Solid	Water / Liquid	Alr / Vapor	Is this focation a well?	Total Number of Containers	Unpreserved	H2SO4	HMO3	HC!	Methanol		GRO by 8015M	BTEX, MTBE & TAME by 82608	TBA, ETBE & DIPE by 82608	EDB & 12-DCA by 82608	Ethanol by 8260B						Sample i	in com	not collec	mments ded, indicate d single-stri sample des	ke out	n.	
	SB-3-23		11/23/2013	1505_	L	×		С	6			L	×	$oxed{oxed}$	Ш	×	x	×	x	×	Ш	Ш	Ш		Ш	<u> </u>	<u> </u>					
	SB-8		11/23/2013	1450	\perp	x	Ш	n	6				x		Ш	×	x	×	x	x	Ш	lacksquare					i .					
	SB-8-23		11/23/2013	1640	L	x	Ш	n	6				×			×	×	×	х	×			Ш		Ĺ							
	SB-3-11.5		11/23/2013	1415	×			п	1	×.						× .	x	x	×	х												
	SB-3-12		11/23/2013	1415	x ;			ń	1	×						×	×	×	×	x							1				_	
	SB-3-16		11/23/2013	1620	×			п	1	×						ĸ	×	×	×	×							,			_	_	
	SB-3-16.5		11/23/2013	1620	×			п	1	×						×	×	×	×	x										_	_	
	SB-6-11.5		11/23/2013	1130	х			ń	1	×						×	×	×	×	×										_	_	
	\$B-6-12	,	11/23/2013	1130	x			n	1	x						×	×	x	x	×												
	SB-6-16		11/23/2013	:135	×			n	1	×						×	×	x	x	×							:			_	_	
	S B-6- 16.5		11/23/2013	1135	×			n	1	×						×	×	×	x	×												
	SB-7-11.5		11/23/2013	1005	х			n	1	×						×	×	×	x	×												
	SB-7-12		11/23/2013	1005	x			'n	1	×						×	х	×	×	ж							1					
	SB-7-16		11/23/2013	1010	х			n	1	×						×	x	×	×	×							:		I			
	SB-7-16.5		11/23/2013	1010	x			n	1	×						x	x	×	×	х										_		
	\$B-8-11.5		11/23/2013	1610	×			п	1	×						×	×	×	×	х												
_	SB-8-12		11/23/2013	1610	х			u	1	×						×	×	×	×	×							_			_	_	
	SB-8-16		11/23/2013	ili5	х			п	-	×						×	×	×	х	×												
	SB-8-16.5		11/23/2013	ib15	×			n	-	×						×	x	×	x	×												
	TB-2111-11252013			-	×	L'		n	2				x														-	Or	n Hold			
						<u> </u>				$loodsymbol{oxed}$						$oxed{igsqc}$,					
Sampl	ler's Name: Alejan	ndre Hemande	ez		L		R	elin	quisi		3y / A					Ď	rte	TI	me		_	Δ	ссер	ted F	3y / A	Affiliatio	R		Da	te	Ti	ime
Sampl	ier's Company: Broad	dbent and Ass	oclates		8	TH .	1	m	20	<u> </u>	for	ر عالم <u>عط</u>	المال ال	le E	G 41	11/2	/5/1 <u>3</u>	17	00		_	_					-				L.	
Shipm	ent Method: Fed E	±×	Ship Date:	11/25/2013	\perp											<u></u>		匚		<u></u> ĵ	λ								Щ_	_	<u></u>	
Shipm	nent Tracking No: SC	25 2	344 10	793	\perp											<u> </u>		Ļ	لبر	2	<u> </u>		<u>_</u>	丰			'		11/200	וצי	272	%)
Speci	ial Instructions:																		_		<u> </u>			_								
	THIS LINE - LAB U	SEONLY: (Justody Seals In	1 Place/Yes/N	ا 10	7	Temp I	Blani	k: Yes	1/10	٠ L	Coc	der Tei	mp on	Recel	ipt <u>2</u> :	<u> 8/1/</u>	<u>니</u> 야	70	Ī	rio Bi	anto Ý	es/No	。	M	S/MSD Si	ample	Submitt	ted: Yes //	(S)		

8P LaMP COC Rev. 7, Aug 23, 2011

Login Sample Receipt Checklist

Client: Broadbent & Associates, Inc.

Job Number: 440-63502-1

Login Number: 63502 List Source: TestAmerica Irvine

List Number: 1 Creator: King, Ronald

Creator: King, Ronald		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6 mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

6

Q

9

11

12

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

Tel: (949)261-1022

TestAmerica Job ID: 440-67089-1

Client Project/Site: ARCO 2111, San Leandro

For:

Broadbent & Associates, Inc. 875 Cotting Lane Suite G Vacaville, California 95688

Attn: Kristene Tidwell

Authorized for release by: 1/17/2014 2:25:11 PM

Lena Davidkova, Project Manager II lena.davidkova@testamericainc.com

Designee for

Kathleen Robb, Project Manager II (949)261-1022 kathleen.robb@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67089-1

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	13
Lab Chronicle	14
QC Sample Results	16
QC Association Summary	24
Definitions/Glossary	25
Certification Summary	26
Chain of Custody	27
Receipt Checklists	28

6

8

9

10

12

Sample Summary

Matrix

Water

Water

Water

Water

Water

Water

Water

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID

MW-1

MW-2

MW-3

MW-4

MW-5

MW-7

MW-8

Lab Sample ID

440-67089-1

440-67089-2

440-67089-3

440-67089-4

440-67089-5

440-67089-6

440-67089-7

TestAmerica Job ID: 440-67089-1

Collected	Received
01/09/14 10:25	01/10/14 07:40
01/09/14 11:25	01/10/14 07:40
01/09/14 09:45	01/10/14 07:40
 01/09/14 09:15	01/10/14 07:40
01/09/14 08:25	01/10/14 07:40

01/09/14 12:00

01/09/14 10:55

3

4

5

6

01/10/14 07:40

01/10/14 07:40

8

9

11

12

Case Narrative

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67089-1

Job ID: 440-67089-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-67089-1

Comments

Due to insufficient sample volume requested to the COC test 8270-PAH for sample MW-3 was not performed

Receipt

The samples were received on 1/10/2014 7:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

Except:

One or more containers for the following sample(s) was received broken or leaking: .

440-67089-G-3

440-67089-H-3

440-67089-F-6

GC/MS VOA

No analytical or quality issues were noted.

GC VOA

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

3

4

4

6

0

a

10

11

12

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-67089-1

Lab Sample ID: 440-67089-1

Matrix: Water

Client Sample ID: MW-1

Date Collected: 01/09/14 10:25 Date Received: 01/10/14 07:40

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	MD		0.50	ug/L			01/15/14 23:06	1
1,2-Dichloroethane	ND		0.50	ug/L			01/15/14 23:06	1
Benzene	ND		0.50	ug/L			01/15/14 23:06	1
Ethanol	ND		150	ug/L			01/15/14 23:06	1
Ethylbenzene	ND		0.50	ug/L			01/15/14 23:06	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			01/15/14 23:06	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			01/15/14 23:06	1
m,p-Xylene	ND		1.0	ug/L			01/15/14 23:06	1
Methyl-t-Butyl Ether (MTBE)	0.59		0.50	ug/L			01/15/14 23:06	1
o-Xylene	ND		0.50	ug/L			01/15/14 23:06	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			01/15/14 23:06	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			01/15/14 23:06	1
Toluene	ND		0.50	ug/L			01/15/14 23:06	1
Xylenes, Total	ND		1.0	ug/L			01/15/14 23:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		80 - 120		-		01/15/14 23:06	1
Dibromofluoromethane (Surr)	94		76 - 132				01/15/14 23:06	1
Toluene-d8 (Surr)	108		80 - 128				01/15/14 23:06	1
Method: 8015B/5030B - Gasoli	ne Range Organi	cs (GC)						
Analyte	0 0	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			01/16/14 16:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		65 - 140		-		01/16/14 16:35	

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: MW-2 Date Collected: 01/09/14 11:25

Date Received: 01/10/14 07:40

TestAmerica Job ID: 440-67089-1

Lab Sample ID: 440-67089-2

Matrix: Water

003-2	
Water	

5

5

8

10

11

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	MD		0.50	ug/L			01/15/14 23:34	1
1,2-Dichloroethane	ND		0.50	ug/L			01/15/14 23:34	1
Benzene	0.58		0.50	ug/L			01/15/14 23:34	1
Ethanol	ND		150	ug/L			01/15/14 23:34	1
Ethylbenzene	ND		0.50	ug/L			01/15/14 23:34	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			01/15/14 23:34	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			01/15/14 23:34	1
m,p-Xylene	ND		1.0	ug/L			01/15/14 23:34	1
Methyl-t-Butyl Ether (MTBE)	1.1		0.50	ug/L			01/15/14 23:34	1
o-Xylene	ND		0.50	ug/L			01/15/14 23:34	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			01/15/14 23:34	1
tert-Butyl alcohol (TBA)	230		10	ug/L			01/15/14 23:34	1
Toluene	ND		0.50	ug/L			01/15/14 23:34	1
Xylenes, Total	ND		1.0	ug/L			01/15/14 23:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		80 - 120		-		01/15/14 23:34	1
Dibromofluoromethane (Surr)	91		76 - 132				01/15/14 23:34	1
Toluene-d8 (Surr)	111		80 - 128				01/15/14 23:34	1
Method: 8015B/5030B - Gasoli	ne Range Organi	ics (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	73		50	ug/L			01/16/14 17:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		65 - 140				01/16/14 17:01	

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-67089-1

Lab Sample ID: 440-67089-3

Matrix: Water

Client Sample ID: MW-3 Date Collected: 01/09/14 09:45

Date Received: 01/10/14 07:40

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L	`	01/16/14 00:03	
1,1,1-Trichloroethane	ND	0.50	ug/L		01/16/14 00:03	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		01/16/14 00:03	
1,1,2-Trichloroethane	ND	0.50	ug/L		01/16/14 00:03	
1,1-Dichloroethane	ND	0.50	ug/L		01/16/14 00:03	
1,1-Dichloroethene	ND	0.50	ug/L		01/16/14 00:03	
1,1-Dichloropropene	ND	0.50			01/16/14 00:03	
1,2,3-Trichlorobenzene	ND	1.0	ug/L		01/16/14 00:03	
1,2,3-Trichloropropane	ND	0.50	ug/L		01/16/14 00:03	
I,2,4-Trichlorobenzene	ND	1.0	ug/L ug/L		01/16/14 00:03	
1,2,4-Trimethylbenzene	ND	0.50	ug/L		01/16/14 00:03	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		01/16/14 00:03	
1,2-Dibromoethane (EDB)	ND ND	0.50			01/16/14 00:03	
	ND	0.50	ug/L		01/16/14 00:03	
1,2-Dichlorobenzene	ND ND		ug/L			
I,2-Dichloroethane		0.50	ug/L		01/16/14 00:03	
1,2-Dichloropropane	ND	0.50	ug/L		01/16/14 00:03	
1,3,5-Trimethylbenzene	ND	0.50	ug/L		01/16/14 00:03	
1,3-Dichlorobenzene	ND	0.50	ug/L		01/16/14 00:03	
,3-Dichloropropane	ND	0.50	ug/L		01/16/14 00:03	
,4-Dichlorobenzene	ND	0.50	ug/L		01/16/14 00:03	
2,2-Dichloropropane	ND	1.0	ug/L		01/16/14 00:03	
2-Chlorotoluene	ND	0.50	ug/L		01/16/14 00:03	
-Chlorotoluene	ND	0.50	ug/L		01/16/14 00:03	
Benzene	ND	0.50	ug/L		01/16/14 00:03	
Bromobenzene	ND	0.50	ug/L		01/16/14 00:03	
Bromochloromethane	ND	0.50	ug/L		01/16/14 00:03	
Bromodichloromethane	ND	0.50	ug/L		01/16/14 00:03	
Bromoform	ND	1.0	ug/L		01/16/14 00:03	
Bromomethane	ND	0.50	ug/L		01/16/14 00:03	
Carbon tetrachloride	ND	0.50	ug/L		01/16/14 00:03	
Chlorobenzene	ND	0.50	ug/L		01/16/14 00:03	
Chloroethane	ND	0.50	ug/L		01/16/14 00:03	
Chloroform	8.5	0.50	ug/L		01/16/14 00:03	
Chloromethane	ND	0.50	ug/L		01/16/14 00:03	
cis-1,2-Dichloroethene	ND	0.50	ug/L		01/16/14 00:03	
sis-1,3-Dichloropropene	ND	0.50	ug/L		01/16/14 00:03	
Dibromochloromethane	ND	0.50	ug/L		01/16/14 00:03	
Dibromomethane	ND	0.50	ug/L		01/16/14 00:03	
Dichlorodifluoromethane	ND	0.50	ug/L		01/16/14 00:03	
Ethanol	ND	150	ug/L		01/16/14 00:03	
Ethylbenzene	ND	0.50	ug/L		01/16/14 00:03	
Ethyl-t-butyl ether (ETBE)	ND	0.50	ug/L		01/16/14 00:03	
Hexachlorobutadiene	ND	0.50	ug/L ug/L		01/16/14 00:03	
sopropyl Ether (DIPE)	ND	0.50	ug/L ug/L		01/16/14 00:03	
sopropylbenzene	ND	0.50	ug/L ug/L		01/16/14 00:03	
n,p-Xylene	ND ND	1.0	ug/L		01/16/14 00:03	
Methylene Chloride	ND	2.0	ug/L		01/16/14 00:03	
Methyl-t-Butyl Ether (MTBE) Naphthalene	ND ND	0.50	ug/L 		01/16/14 00:03	

TestAmerica Irvine

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: MW-3

Date Collected: 01/09/14 09:45

Date Received: 01/10/14 07:40

Surrogate

4-Bromofluorobenzene (Surr)

TestAmerica Job ID: 440-67089-1

Lab Sample ID: 440-67089-3

Prepared

Analyzed

01/16/14 17:27

Dil Fac

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butylbenzene	ND		1.0	ug/L			01/16/14 00:03	1
N-Propylbenzene	ND		0.50	ug/L			01/16/14 00:03	1
o-Xylene	ND		0.50	ug/L			01/16/14 00:03	1
p-Isopropyltoluene	ND		0.50	ug/L			01/16/14 00:03	1
sec-Butylbenzene	ND		0.50	ug/L			01/16/14 00:03	1
Styrene	ND		0.50	ug/L			01/16/14 00:03	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			01/16/14 00:03	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			01/16/14 00:03	1
tert-Butylbenzene	ND		0.50	ug/L			01/16/14 00:03	1
Tetrachloroethene	25		0.50	ug/L			01/16/14 00:03	1
Toluene	ND		0.50	ug/L			01/16/14 00:03	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			01/16/14 00:03	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			01/16/14 00:03	1
Trichloroethene	ND		0.50	ug/L			01/16/14 00:03	1
Trichlorofluoromethane	ND		0.50	ug/L			01/16/14 00:03	1
Vinyl chloride	ND		0.50	ug/L			01/16/14 00:03	1
Xylenes, Total	ND		1.0	ug/L			01/16/14 00:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		80 - 120		=		01/16/14 00:03	1
Dibromofluoromethane (Surr)	103		76 - 132				01/16/14 00:03	1
Toluene-d8 (Surr)	108		80 - 128				01/16/14 00:03	1
Method: 8015B/5030B - Gasolin	e Range Organi	ics (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			01/16/14 17:27	

Limits

65 - 140

%Recovery Qualifier

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67089-1

Lab Sample ID: 440-67089-4

Matrix: Water

Client Sample ID: MW-4
Date Collected: 01/09/14 09:15

Date Received: 01/10/14 07:40

Method: 8260B/5030B - Volatil Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			01/16/14 00:31	1
1,2-Dichloroethane	ND		0.50	ug/L			01/16/14 00:31	1
Benzene	ND		0.50	ug/L			01/16/14 00:31	1
Ethanol	ND		150	ug/L			01/16/14 00:31	1
Ethylbenzene	ND		0.50	ug/L			01/16/14 00:31	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			01/16/14 00:31	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			01/16/14 00:31	1
m,p-Xylene	ND		1.0	ug/L			01/16/14 00:31	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			01/16/14 00:31	1
o-Xylene	ND		0.50	ug/L			01/16/14 00:31	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			01/16/14 00:31	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			01/16/14 00:31	1
Toluene	ND		0.50	ug/L			01/16/14 00:31	1
Xylenes, Total	ND		1.0	ug/L			01/16/14 00:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		80 - 120		-		01/16/14 00:31	1
Dibromofluoromethane (Surr)	96		76 - 132				01/16/14 00:31	1
Toluene-d8 (Surr)	111		80 - 128				01/16/14 00:31	1
Method: 8015B/5030B - Gasoli	ne Range Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	52		50	ug/L			01/16/14 17:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		65 - 140		-		01/16/14 17:52	1

_

4

5

7

8

10

11

12

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Client Sample ID: MW-5

Date Collected: 01/09/14 08:25

Date Received: 01/10/14 07:40

TestAmerica Job ID: 440-67089-1

Lab Sample ID: 440-67089-5

Matrix: Water

v: Water

5

5

8

9

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			01/16/14 01:00	1
1,2-Dichloroethane	ND		0.50	ug/L			01/16/14 01:00	1
Benzene	ND		0.50	ug/L			01/16/14 01:00	1
Ethanol	ND		150	ug/L			01/16/14 01:00	1
Ethylbenzene	ND		0.50	ug/L			01/16/14 01:00	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			01/16/14 01:00	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			01/16/14 01:00	1
m,p-Xylene	ND		1.0	ug/L			01/16/14 01:00	1
Methyl-t-Butyl Ether (MTBE)	0.66		0.50	ug/L			01/16/14 01:00	1
o-Xylene	ND		0.50	ug/L			01/16/14 01:00	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			01/16/14 01:00	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			01/16/14 01:00	1
Toluene	ND		0.50	ug/L			01/16/14 01:00	1
Xylenes, Total	ND		1.0	ug/L			01/16/14 01:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		80 - 120		-		01/16/14 01:00	1
Dibromofluoromethane (Surr)	96		76 - 132				01/16/14 01:00	1
Toluene-d8 (Surr)	109		80 - 128				01/16/14 01:00	1
Method: 8015B/5030B - Gasoli	ne Range Organi	cs (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			01/16/14 19:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		65 - 140		-		01/16/14 19:09	

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67089-1

Lab Sample ID: 440-67089-6

Matrix: Water

Client Sample ID: MW-7

Date Collected: 01/09/14 12:00 Date Received: 01/10/14 07:40

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		20	ug/L			01/16/14 01:28	40
1,2-Dichloroethane	ND		20	ug/L			01/16/14 01:28	40
Benzene	ND		20	ug/L			01/16/14 01:28	40
Ethanol	ND		6000	ug/L			01/16/14 01:28	40
Ethylbenzene	ND		20	ug/L			01/16/14 01:28	40
Ethyl-t-butyl ether (ETBE)	ND		20	ug/L			01/16/14 01:28	40
Isopropyl Ether (DIPE)	ND		20	ug/L			01/16/14 01:28	40
m,p-Xylene	ND		40	ug/L			01/16/14 01:28	40
Methyl-t-Butyl Ether (MTBE)	100		20	ug/L			01/16/14 01:28	40
o-Xylene	ND		20	ug/L			01/16/14 01:28	40
Tert-amyl-methyl ether (TAME)	ND		20	ug/L			01/16/14 01:28	40
tert-Butyl alcohol (TBA)	27000		400	ug/L			01/16/14 01:28	40
Toluene	ND		20	ug/L			01/16/14 01:28	40
Xylenes, Total	ND		40	ug/L			01/16/14 01:28	40
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		80 - 120		-		01/16/14 01:28	40
Dibromofluoromethane (Surr)	102		76 - 132				01/16/14 01:28	40
Toluene-d8 (Surr)	110		80 - 128				01/16/14 01:28	40
Method: 8015B/5030B - Gasoli	ne Range Organi	cs (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	500		500	ug/L			01/17/14 08:32	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		65 - 140		-		01/17/14 08:32	10

6

8

46

11

12

L

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-67089-1

Lab Sample ID: 440-67089-7

Matrix: Water

Prepared

Analyzed

01/16/14 20:01

Date Collected: 01/09/14 10:55 Date Received: 01/10/14 07:40

Surrogate

4-Bromofluorobenzene (Surr)

Client Sample ID: MW-8

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			01/16/14 01:57	1
1,2-Dichloroethane	ND		0.50	ug/L			01/16/14 01:57	1
Benzene	ND		0.50	ug/L			01/16/14 01:57	1
Ethanol	ND		150	ug/L			01/16/14 01:57	1
Ethylbenzene	ND		0.50	ug/L			01/16/14 01:57	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			01/16/14 01:57	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			01/16/14 01:57	1
m,p-Xylene	ND		1.0	ug/L			01/16/14 01:57	1
Methyl-t-Butyl Ether (MTBE)	0.50		0.50	ug/L			01/16/14 01:57	1
o-Xylene	ND		0.50	ug/L			01/16/14 01:57	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			01/16/14 01:57	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			01/16/14 01:57	1
Toluene	ND		0.50	ug/L			01/16/14 01:57	1
Xylenes, Total	ND		1.0	ug/L			01/16/14 01:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		80 - 120		-		01/16/14 01:57	1
Dibromofluoromethane (Surr)	102		76 - 132				01/16/14 01:57	1
Toluene-d8 (Surr)	109		80 - 128				01/16/14 01:57	1
Method: 8015B/5030B - Gasoliı	ne Range Organi	ics (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			01/16/14 20:01	

Limits

65 - 140

%Recovery Qualifier

96

TestAmerica Irvine

Dil Fac

Method Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67089-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8260B/5030B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8015B/5030B	Gasoline Range Organics (GC)	SW846	TAL IRV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

4

6

_

9

41

12

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Lab Sample ID: 440-67089-1

Matrix: Water

Date Collected: 01/09/14 10:25 Date Received: 01/10/14 07:40

Client Sample ID: MW-2

Client Sample ID: MW-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	156272	01/15/14 23:06	AA	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	156179	01/16/14 16:35	TL	TAL IRV

Lab Sample ID: 440-67089-2

Matrix: Water

Date Collected: 01/09/14 11:25 Date Received: 01/10/14 07:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	156272	01/15/14 23:34	AA	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	156179	01/16/14 17:01	TL	TAL IRV

Client Sample ID: MW-3 Lab Sample ID: 440-67089-3 Date Collected: 01/09/14 09:45

Matrix: Water

Date Received: 01/10/14 07:40

Batch Batch Dil Initial Final Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260B 10 mL 01/16/14 00:03 AA TAL IRV 10 mL 156272 Total/NA Analysis 8015B/5030B 10 mL 10 mL 156179 01/16/14 17:27 TAL IRV

Client Sample ID: MW-4 Lab Sample ID: 440-67089-4 Date Collected: 01/09/14 09:15 Matrix: Water

Date Received: 01/10/14 07:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	156272	01/16/14 00:31	AA	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	156179	01/16/14 17:52	TL	TAL IRV

Client Sample ID: MW-5 Lab Sample ID: 440-67089-5

Date Collected: 01/09/14 08:25 Date Received: 01/10/14 07:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	156272	01/16/14 01:00	AA	TAL IRV
Total/NA	Analyeis	8015B/5030B		1	10 ml	10 ml	156170	01/16/14 10:00	TI	TAL IRV

Client Sample ID: MW-7 Lab Sample ID: 440-67089-6

Date Collected: 01/09/14 12:00 Matrix: Water Date Received: 01/10/14 07:40

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		40	10 mL	10 mL	156272	01/16/14 01:28	AA	TAL IRV

TestAmerica Irvine

Matrix: Water

Lab Chronicle

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-67089-1

Lab Sample ID: 440-67089-6

Matrix: Water

Date Collected: 01/09/14 12:00

Date Received: 01/10/14 07:40

Client Sample ID: MW-7

Dil Batch Batch Initial Final Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8015B/5030B 10 10 mL 10 mL 156179 01/17/14 08:32 TL TAL IRV

Client Sample ID: MW-8 Lab Sample ID: 440-67089-7

Date Collected: 01/09/14 10:55 Matrix: Water

Date Received: 01/10/14 07:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	156272	01/16/14 01:57	AA	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	156179	01/16/14 20:01	TL	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-156272/5 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

	MB MB					
Analyte	Result Qualifier	RL	Unit	D Prep	ared Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	0.50	ug/L		01/15/14 20:14	
1,1,1-Trichloroethane	ND	0.50	ug/L		01/15/14 20:14	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		01/15/14 20:14	
1,1,2-Trichloroethane	ND	0.50	ug/L		01/15/14 20:14	
1,1-Dichloroethane	ND	0.50	ug/L		01/15/14 20:14	
1,1-Dichloroethene	ND	0.50	ug/L		01/15/14 20:14	
1,1-Dichloropropene	ND	0.50			01/15/14 20:14	,
1,2,3-Trichlorobenzene	ND	1.0	ug/L		01/15/14 20:14	
1,2,3-Trichloropropane	ND	0.50	ug/L		01/15/14 20:14	
1,2,4-Trichlorobenzene	ND	1.0	ug/L		01/15/14 20:14	,
1,2,4-Trimethylbenzene	ND	0.50	ug/L		01/15/14 20:14	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		01/15/14 20:14	,
1,2-Dibromoethane (EDB)	ND	0.50	ug/L ug/L		01/15/14 20:14	,
1,2-Dichlorobenzene	ND	0.50	ug/L		01/15/14 20:14	,
	ND	0.50	=		01/15/14 20:14	
1,2-Dichloroethane			ug/L			
1,2-Dichloropropane	ND	0.50	ug/L		01/15/14 20:14	•
1,3,5-Trimethylbenzene	ND	0.50	ug/L		01/15/14 20:14	•
1,3-Dichlorobenzene	ND	0.50	ug/L		01/15/14 20:14	
1,3-Dichloropropane	ND	0.50	ug/L		01/15/14 20:14	,
1,4-Dichlorobenzene	ND	0.50	ug/L		01/15/14 20:14	•
2,2-Dichloropropane	ND	1.0	ug/L		01/15/14 20:14	
2-Chlorotoluene	ND	0.50	ug/L		01/15/14 20:14	•
4-Chlorotoluene	ND	0.50	ug/L		01/15/14 20:14	,
Benzene	ND	0.50	ug/L		01/15/14 20:14	•
Bromobenzene	ND	0.50	ug/L		01/15/14 20:14	
Bromochloromethane	ND	0.50	ug/L		01/15/14 20:14	•
Bromodichloromethane	ND	0.50	ug/L		01/15/14 20:14	•
Bromoform	ND	1.0	ug/L		01/15/14 20:14	
Bromomethane	ND	0.50	ug/L		01/15/14 20:14	•
Carbon tetrachloride	ND	0.50	ug/L		01/15/14 20:14	
Chlorobenzene	ND	0.50	ug/L		01/15/14 20:14	
Chloroethane	ND	0.50	ug/L		01/15/14 20:14	
Chloroform	ND	0.50	ug/L		01/15/14 20:14	
Chloromethane	ND	0.50	ug/L		01/15/14 20:14	,
cis-1,2-Dichloroethene	ND	0.50	ug/L		01/15/14 20:14	
cis-1,3-Dichloropropene	ND	0.50	ug/L		01/15/14 20:14	
Dibromochloromethane	ND	0.50	ug/L		01/15/14 20:14	,
Dibromomethane	ND	0.50	ug/L		01/15/14 20:14	
Dichlorodifluoromethane	ND	0.50	ug/L		01/15/14 20:14	
Ethanol	ND ND	150			01/15/14 20:14	,
Ethylbenzene	ND	0.50	ug/L		01/15/14 20:14	
•			ug/L			
Ethyl-t-butyl ether (ETBE)	ND ND	0.50	ug/L		01/15/14 20:14	
Hexachlorobutadiene	ND	0.50	ug/L		01/15/14 20:14	,
Isopropyl Ether (DIPE)	ND	0.50	ug/L		01/15/14 20:14	
Isopropylbenzene	ND	0.50	ug/L		01/15/14 20:14	
m,p-Xylene	ND	1.0	ug/L		01/15/14 20:14	•
Methylene Chloride	ND	2.0	ug/L		01/15/14 20:14	,
Methyl-t-Butyl Ether (MTBE)	ND	0.50	ug/L		01/15/14 20:14	•

TestAmerica Irvine

Page 16 of 28

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-156272/5 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 156272

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		1.0	ug/L			01/15/14 20:14	1
n-Butylbenzene	ND		1.0	ug/L			01/15/14 20:14	1
N-Propylbenzene	ND		0.50	ug/L			01/15/14 20:14	1
o-Xylene	ND		0.50	ug/L			01/15/14 20:14	1
p-Isopropyltoluene	ND		0.50	ug/L			01/15/14 20:14	1
sec-Butylbenzene	ND		0.50	ug/L			01/15/14 20:14	1
Styrene	ND		0.50	ug/L			01/15/14 20:14	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			01/15/14 20:14	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			01/15/14 20:14	1
tert-Butylbenzene	ND		0.50	ug/L			01/15/14 20:14	1
Tetrachloroethene	ND		0.50	ug/L			01/15/14 20:14	1
Toluene	ND		0.50	ug/L			01/15/14 20:14	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			01/15/14 20:14	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			01/15/14 20:14	1
Trichloroethene	ND		0.50	ug/L			01/15/14 20:14	1
Trichlorofluoromethane	ND		0.50	ug/L			01/15/14 20:14	1
Vinyl chloride	ND		0.50	ug/L			01/15/14 20:14	1
Xylenes, Total	ND		1.0	ug/L			01/15/14 20:14	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 98 80 - 120 01/15/14 20:14 Dibromofluoromethane (Surr) 98 76 - 132 01/15/14 20:14 Toluene-d8 (Surr) 109 80 - 128 01/15/14 20:14

Lab Sample ID: LCS 440-156272/6 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 156272								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	25.0	27.5		ug/L		110	60 - 141	
1,1,1-Trichloroethane	25.0	26.8		ug/L		107	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	27.1		ug/L		109	63 - 130	
1,1,2-Trichloroethane	25.0	27.1		ug/L		108	70 - 130	
1,1-Dichloroethane	25.0	25.4		ug/L		102	64 - 130	
1,1-Dichloroethene	25.0	30.7		ug/L		123	70 - 130	
1,1-Dichloropropene	25.0	27.8		ug/L		111	70 - 130	
1,2,3-Trichlorobenzene	25.0	28.7		ug/L		115	60 - 140	
1,2,3-Trichloropropane	25.0	27.6		ug/L		110	63 - 130	
1,2,4-Trichlorobenzene	25.0	30.2		ug/L		121	60 - 140	
1,2,4-Trimethylbenzene	25.0	30.8		ug/L		123	70 - 135	
1,2-Dibromo-3-Chloropropane	25.0	26.7		ug/L		107	52 - 140	
1,2-Dibromoethane (EDB)	25.0	28.0		ug/L		112	70 - 130	
1,2-Dichlorobenzene	25.0	27.7		ug/L		111	70 - 130	
1,2-Dichloroethane	25.0	25.6		ug/L		102	57 - 138	
1,2-Dichloropropane	25.0	27.5		ug/L		110	67 - 130	
1,3,5-Trimethylbenzene	25.0	29.9		ug/L		120	70 - 136	
1,3-Dichlorobenzene	25.0	27.2		ug/L		109	70 - 130	
1,3-Dichloropropane	25.0	27.9		ug/L		111	70 - 130	

TestAmerica Irvine

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Trichloroethene

Vinyl chloride

Trichlorofluoromethane

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-156272/6 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 156272	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,4-Dichlorobenzene	25.0	26.8		ug/L		107	70 - 130
2,2-Dichloropropane	25.0	26.0		ug/L		104	68 ₋ 141
2-Chlorotoluene	25.0	26.9		ug/L		107	70 - 130
4-Chlorotoluene	25.0	28.9		ug/L		116	70 - 130
Benzene	25.0	25.9		ug/L		104	68 - 130
Bromobenzene	25.0	27.9		ug/L		112	70 - 130
Bromochloromethane	25.0	27.6		ug/L		110	70 - 130
Bromodichloromethane	25.0	26.8		ug/L		107	70 - 132
Bromoform	25.0	24.8		ug/L		99	60 - 148
Bromomethane	25.0	30.3		ug/L		121	64 ₋ 139
Carbon tetrachloride	25.0	26.5		ug/L		106	60 - 150
Chlorobenzene	25.0	26.6		ug/L		106	70 - 130
Chloroethane	25.0	28.3		ug/L		113	64 ₋ 135
Chloroform	25.0	26.5		ug/L		106	70 - 130
Chloromethane	25.0	29.4		ug/L		118	47 - 140
cis-1,2-Dichloroethene	25.0	29.4		ug/L		118	70 - 133
cis-1,3-Dichloropropene	25.0	28.3		ug/L		113	70 ₋ 133
Dibromochloromethane	25.0	26.5		ug/L		106	69 - 145
Dibromomethane	25.0	26.6		ug/L		106	70 - 130
Dichlorodifluoromethane	25.0	32.4		ug/L		130	29 - 150
Ethanol	250	254		ug/L		102	50 - 149
Ethylbenzene	25.0	30.0		ug/L		120	70 - 130
Ethyl-t-butyl ether (ETBE)	25.0	27.4		ug/L		109	60 - 136
Hexachlorobutadiene	25.0	27.7		ug/L		111	10 - 150
Isopropyl Ether (DIPE)	25.0	28.3		ug/L		113	58 ₋ 139
Isopropylbenzene	25.0	29.5		ug/L		118	70 - 136
m,p-Xylene	50.0	59.9		ug/L		120	70 - 130
Methylene Chloride	25.0	27.4		ug/L		109	52 - 130
Methyl-t-Butyl Ether (MTBE)	25.0	27.1		ug/L		109	63 - 131
Naphthalene	25.0	32.9		ug/L		131	60 - 140
n-Butylbenzene	25.0	30.7		ug/L		123	65 - 150
N-Propylbenzene	25.0	30.2		ug/L		121	67 _ 139
o-Xylene	25.0	30.1		ug/L		120	70 - 130
p-Isopropyltoluene	25.0	29.9		ug/L		120	70 - 132
sec-Butylbenzene	25.0	30.6		ug/L		123	70 ₋ 138
Styrene	25.0	28.1		ug/L		112	70 - 134
Tert-amyl-methyl ether (TAME)	25.0	28.5		ug/L		114	57 ₋ 139
tert-Butyl alcohol (TBA)	125	133		ug/L		106	70 - 130
tert-Butylbenzene	25.0	29.3		ug/L		117	70 - 130
Tetrachloroethene	25.0	27.4		ug/L		110	70 - 130
Toluene	25.0	27.1		ug/L		109	70 - 130
trans-1,2-Dichloroethene	25.0	27.7		ug/L		111	70 - 130
trans-1,3-Dichloropropene	25.0	30.2		ug/L		121	70 - 132
	20.0			3			

TestAmerica Irvine

25.0

25.0

25.0

28.3

31.0

28.8

ug/L

ug/L

ug/L

113

124

115

70 - 130

60 - 150

59 - 133

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-156272/6

Matrix: Water

Analysis Batch: 156272

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

ND

ND

ND

ND

ND

ND

ND

ND

Surrogate	%Recovery Qualif	ier Limits
4-Bromofluorobenzene (Surr)	107	80 - 120
Dibromofluoromethane (Surr)	101	76 - 132
Toluene-d8 (Surr)	107	80 - 128

Lab Sample ID: 440-67002-A-1 MS

Matrix: Water

Chloroethane

Chloromethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Dichlorodifluoromethane

Dibromomethane

Chloroform

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	ND		25.0	27.3		ug/L		109	60 - 149
1,1,1-Trichloroethane	ND		25.0	26.0		ug/L		104	70 _ 130
1,1,2,2-Tetrachloroethane	ND		25.0	27.6		ug/L		110	63 _ 130
1,1,2-Trichloroethane	ND		25.0	27.4		ug/L		109	70 - 130
1,1-Dichloroethane	ND		25.0	24.3		ug/L		97	65 ₋ 130
1,1-Dichloroethene	ND		25.0	29.7		ug/L		119	70 ₋ 130
1,1-Dichloropropene	ND		25.0	28.4		ug/L		113	64 _ 130
1,2,3-Trichlorobenzene	ND		25.0	28.7		ug/L		115	60 _ 140
1,2,3-Trichloropropane	ND		25.0	27.1		ug/L		108	60 - 130
1,2,4-Trichlorobenzene	ND		25.0	30.4		ug/L		122	60 - 140
1,2,4-Trimethylbenzene	ND		25.0	29.7		ug/L		119	70 ₋ 130
1,2-Dibromo-3-Chloropropane	ND		25.0	25.3		ug/L		101	48 - 140
1,2-Dibromoethane (EDB)	ND		25.0	27.8		ug/L		111	70 ₋ 131
1,2-Dichlorobenzene	ND		25.0	27.0		ug/L		108	70 - 130
1,2-Dichloroethane	ND		25.0	25.6		ug/L		103	56 ₋ 146
1,2-Dichloropropane	ND		25.0	27.4		ug/L		110	69 - 130
1,3,5-Trimethylbenzene	ND		25.0	28.7		ug/L		115	70 ₋ 130
1,3-Dichlorobenzene	ND		25.0	26.2		ug/L		105	70 ₋ 130
1,3-Dichloropropane	ND		25.0	27.6		ug/L		110	70 - 130
1,4-Dichlorobenzene	ND		25.0	25.9		ug/L		104	70 ₋ 130
2,2-Dichloropropane	ND		25.0	26.2		ug/L		105	69 _ 138
2-Chlorotoluene	ND		25.0	26.2		ug/L		105	70 ₋ 130
4-Chlorotoluene	ND		25.0	27.7		ug/L		111	70 ₋ 130
Benzene	ND		25.0	25.5		ug/L		102	66 - 130
Bromobenzene	ND		25.0	26.7		ug/L		107	70 ₋ 130
Bromochloromethane	ND		25.0	26.1		ug/L		104	70 ₋ 130
Bromodichloromethane	ND		25.0	26.3		ug/L		105	70 ₋ 138
Bromoform	ND		25.0	24.7		ug/L		99	59 - 150
Bromomethane	ND		25.0	28.7		ug/L		115	62 - 131
Carbon tetrachloride	ND		25.0	26.7		ug/L		107	60 - 150
Chlorobenzene	ND		25.0	26.2		ug/L		105	70 - 130

TestAmerica Irvine

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

26.3

25.6

29.8

27.2

28.3

25.9

26.9

30.6

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

105

102

119

109

113

104

108

122

68 - 130

70 - 130

39 - 144

70 - 130

70 - 133

70 - 148

70 - 130

25 - 142

3

6

8

11

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-67002-A-1 MS Client Sample ID: Matrix Spike Matrix: Water Prep Type: Total/NA

Analysis Batch: 156272

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	ND		250	247		ug/L		99	54 - 150	
Ethylbenzene	ND		25.0	29.7		ug/L		119	70 - 130	
Ethyl-t-butyl ether (ETBE)	ND		25.0	25.9		ug/L		103	70 - 130	
Hexachlorobutadiene	ND		25.0	27.2		ug/L		109	10 _ 150	
Isopropyl Ether (DIPE)	ND		25.0	27.0		ug/L		108	64 - 138	
Isopropylbenzene	ND		25.0	28.8		ug/L		115	70 - 132	
m,p-Xylene	ND		50.0	59.5		ug/L		119	70 - 133	
Methylene Chloride	ND		25.0	25.8		ug/L		103	52 _ 130	
Methyl-t-Butyl Ether (MTBE)	3.3		25.0	29.6		ug/L		105	70 - 130	
Naphthalene	ND		25.0	32.8		ug/L		131	60 - 140	
n-Butylbenzene	ND		25.0	30.3		ug/L		121	61 - 149	
N-Propylbenzene	ND		25.0	29.5		ug/L		118	66 - 135	
o-Xylene	ND		25.0	29.7		ug/L		119	70 - 133	
p-Isopropyltoluene	ND		25.0	29.0		ug/L		116	70 - 130	
sec-Butylbenzene	ND		25.0	29.4		ug/L		117	67 - 134	
Styrene	ND		25.0	27.7		ug/L		111	29 - 150	
Tert-amyl-methyl ether (TAME)	ND		25.0	27.6		ug/L		110	68 _ 133	
tert-Butyl alcohol (TBA)	ND		125	129		ug/L		97	70 - 130	
tert-Butylbenzene	ND		25.0	28.1		ug/L		112	70 - 130	
Tetrachloroethene	ND		25.0	27.5		ug/L		110	70 - 137	
Toluene	ND		25.0	27.1		ug/L		109	70 - 130	
trans-1,2-Dichloroethene	ND		25.0	27.3		ug/L		109	70 - 130	
trans-1,3-Dichloropropene	ND		25.0	30.9		ug/L		123	70 - 138	
Trichloroethene	ND		25.0	28.0		ug/L		112	70 - 130	
Trichlorofluoromethane	ND		25.0	30.8		ug/L		123	60 _ 150	
Vinyl chloride	ND		25.0	28.5		ug/L		114	50 - 137	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		80 - 120
Dibromofluoromethane (Surr)	98		76 - 132
Toluene-d8 (Surr)	108		80 128

Lab Sample ID: 440-67002-A-1 MSD Client Sample ID: Matrix Spike Duplicate Matrix: Water Prep Type: Total/NA

Analysis Batch: 156272

Alialysis Dalcii. 130212											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		25.0	26.5		ug/L		106	60 - 149	3	20
1,1,1-Trichloroethane	ND		25.0	25.3		ug/L		101	70 - 130	3	20
1,1,2,2-Tetrachloroethane	ND		25.0	29.1		ug/L		116	63 - 130	5	30
1,1,2-Trichloroethane	ND		25.0	27.7		ug/L		111	70 - 130	1	25
1,1-Dichloroethane	ND		25.0	23.5		ug/L		94	65 - 130	3	20
1,1-Dichloroethene	ND		25.0	29.1		ug/L		117	70 - 130	2	20
1,1-Dichloropropene	ND		25.0	28.2		ug/L		113	64 - 130	1	20
1,2,3-Trichlorobenzene	ND		25.0	28.9		ug/L		116	60 - 140	1	20
1,2,3-Trichloropropane	ND		25.0	28.6		ug/L		114	60 - 130	5	30
1,2,4-Trichlorobenzene	ND		25.0	30.0		ug/L		120	60 - 140	1	20
1,2,4-Trimethylbenzene	ND		25.0	28.9		ug/L		115	70 - 130	3	25

TestAmerica Irvine

Page 20 of 28

1/17/2014

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Ethanol

Ethylbenzene

Ethyl-t-butyl ether (ETBE)

Methyl-t-Butyl Ether (MTBE)

Tert-amyl-methyl ether (TAME)

tert-Butyl alcohol (TBA)

tert-Butylbenzene

Tetrachloroethene

Hexachlorobutadiene

Isopropyl Ether (DIPE)

Isopropylbenzene

m,p-Xylene Methylene Chloride

Naphthalene

o-Xylene

Styrene

n-Butylbenzene

N-Propylbenzene

p-Isopropyltoluene sec-Butylbenzene

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

ND

ND

ND

ND

ND

ND

ND

ND

3.3

ND

ND

ND

ND

NΠ

ND

ND

ND

NΩ

ND

ND

Lab Sample ID: 440-67002-A-1 MSD Client Sample ID: Matrix Spike Duplicate Matrix: Water Prep Type: Total/NA Analysis Batch: 156272 Sample Sample Spike MSD MSD %Rec. **RPD** Qualifier Limits RPD Limit Analyte Result Added Result Qualifier Unit D %Rec 1,2-Dibromo-3-Chloropropane ND 25.0 28.3 48 - 140 ug/L 113 11 30 1,2-Dibromoethane (EDB) ND 25.0 28.3 ug/L 113 70 - 131 2 25 1,2-Dichlorobenzene ND 26.6 25.0 ug/L 106 70 - 13020 1,2-Dichloroethane ND 25.0 24.9 ug/L 100 56 - 146 20 ND 25.0 26.9 107 69 - 130 2 20 1,2-Dichloropropane ug/L 1,3,5-Trimethylbenzene ND 25.0 20 28.0 ug/L 112 70 - 130 3 1,3-Dichlorobenzene ND 25.9 103 70 - 13025.0 ug/L 20 1,3-Dichloropropane ND 25.0 28.4 ug/L 113 70 - 130 3 25 1 4-Dichlorobenzene ND 25.0 25.2 ug/L 101 70 - 130 3 20 2,2-Dichloropropane ND 25.0 25.0 ug/L 100 69 - 138 25 2-Chlorotoluene ND 25.0 25.6 ug/L 102 70 - 130 2 20 4-Chlorotoluene ND 25.0 27.3 ug/L 109 70 - 130 20 Benzene ND 25.0 25.2 ug/L 101 66 - 130 20 ND 26.2 105 70 - 130 Bromobenzene 25.0 ug/L 20 25 Bromochloromethane ND 25.0 26.1 ug/L 104 70 - 1300 Bromodichloromethane NΠ 25.0 26.2 105 70 - 13820 ug/L Bromoform ND 25.0 26.1 104 59 - 150 25 ug/L 25.0 Bromomethane NΩ 28.5 ug/L 114 62 - 131 O 25 Carbon tetrachloride ND 25.0 25.9 103 60 - 150 25 ug/L ND ż Chlorobenzene 25.0 25.6 102 70 - 130 20 ug/L Chloroethane ND 25.0 26.6 106 68 - 130 25 ug/L Chloroform ND 25.0 24.6 98 70 - 130 20 ug/L Chloromethane ND 25.0 29.2 ug/L 117 39 - 144 2 25 cis-1,2-Dichloroethene ND 25.0 26.9 108 ug/L 70 - 13020 cis-1,3-Dichloropropene ND 25.0 28.3 ug/L 113 70 - 13320 Dibromochloromethane ND 25.0 26.5 ug/L 106 70 - 148 2 25 Dibromomethane ND 25.0 26.5 ug/L 106 70 - 130 2 25 Dichlorodifluoromethane ND 25.0 29.8 ug/L 119 25 - 14230

250

25.0

25.0

25.0

25.0

25.0

50.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

125

25.0

25.0

217

28.9

26.0

26.3

27.0

27.9

57.9

25.7

30.1

34.9

29.5

28.6

28.5

28 2

29.1

27.5

27.7

125

27.7

27.2

ug/L

TestAmerica Irvine

1/17/2014

87

115

104

105

108

111

116

103

107

140

118

115

114

113

116

110

111

94

111

109

54 - 150

70 - 130

70 - 130

10 - 150

64 - 138

70 - 132

70 - 133

52 - 130

70 - 130

60 - 140

61 - 149

66 - 135

70 - 133

70 - 130

67 - 134

29 _ 150

68 - 133

70 - 130

70 - 130

70 - 137

13

3

0

ġ

6

3

3

3

0

30

20

25

20

25

20

25

20

25

30

20

20

20

20

20

35

30

25

20

20

6

8

10

11

12

Ц

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

4-Bromofluorobenzene (Surr)

4-Bromofluorobenzene (Surr)

TestAmerica Job ID: 440-67089-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water	ix: Water							Prep Type: Total/N.				
Analysis Batch: 156272	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Toluene	ND		25.0	27.0	-	ug/L	 _	108	70 - 130	1	20	
trans-1,2-Dichloroethene	ND		25.0	26.7		ug/L		107	70 - 130	2	20	
trans-1,3-Dichloropropene	ND		25.0	31.3		ug/L		125	70 - 138	2	25	
Trichloroethene	ND		25.0	27.7		ug/L		111	70 - 130	1	20	
Trichlorofluoromethane	ND		25.0	29.7		ug/L		119	60 - 150	4	25	
Vinyl chloride	ND		25.0	27.8		ug/L		111	50 - 137	2	30	
	MSD	MSD										

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		80 - 120
Dibromofluoromethane (Surr)	98		76 - 132
Toluene-d8 (Surr)	109		80 - 128

Method: 8015B/5030B - Gasoline Range Organics (GC)

105

Lab Sample ID: MB 440-156179/3	•					Client Sample ID: Method Blank					
Matrix: Water							Prep Type: T	otal/NA			
Analysis Batch: 156179											
	MB	MB									
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
GRO (C6-C12)	ND		50	ug/L			01/16/14 11:01	1			
	МВ	МВ									
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac			
4-Bromofluorobenzene (Surr)	101		65 - 140		_		01/16/14 11:01				

Lab Sample ID: LCS 440-15617 Matrix: Water Analysis Batch: 156179	79/2						Client	Sample		ontrol Sample ype: Total/NA
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
GRO (C4-C12)			800	835		ug/L		104	80 - 120	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							

65 - 140

65 - 140

Lab Sample ID: 440-67089-1 MS Matrix: Water Analysis Batch: 156179									•	ple ID: MW-1 pe: Total/NA
Analysis Batch. 130179	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
GRO (C4-C12)	ND		800	812		ug/L		102	65 - 140	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							

TestAmerica Irvine

QC Sample Results

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67089-1

Method: 8015B/5030B - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: 440-67089-1 MS Matrix: Water Analysis Batch: 156179	D								Client Sar Prep T	nple ID: ype: Tot	
7 maryore Batem 100170	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)	ND		800	801		ug/L		100	65 - 140	1	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	97		65 - 140								

5

5

6

8

9

11

12

QC Association Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67089-1

GC/MS VOA

Analysis Batch: 156272

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-67002-A-1 MS	Matrix Spike	Total/NA	Water	8260B	
440-67002-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	
440-67089-1	MW-1	Total/NA	Water	8260B/5030B	
440-67089-2	MW-2	Total/NA	Water	8260B/5030B	
440-67089-3	MW-3	Total/NA	Water	8260B	
440-67089-4	MW-4	Total/NA	Water	8260B/5030B	
440-67089-5	MW-5	Total/NA	Water	8260B/5030B	
440-67089-6	MW-7	Total/NA	Water	8260B/5030B	
440-67089-7	MW-8	Total/NA	Water	8260B/5030B	
LCS 440-156272/6	Lab Control Sample	Total/NA	Water	8260B	
MB 440-156272/5	Method Blank	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 156179

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-67089-1	MW-1	Total/NA	Water	8015B/5030B	
440-67089-1 MS	MW-1	Total/NA	Water	8015B/5030B	
440-67089-1 MSD	MW-1	Total/NA	Water	8015B/5030B	
440-67089-2	MW-2	Total/NA	Water	8015B/5030B	
440-67089-3	MW-3	Total/NA	Water	8015B/5030B	
440-67089-4	MW-4	Total/NA	Water	8015B/5030B	
440-67089-5	MW-5	Total/NA	Water	8015B/5030B	
440-67089-6	MW-7	Total/NA	Water	8015B/5030B	
440-67089-7	MW-8	Total/NA	Water	8015B/5030B	
LCS 440-156179/2	Lab Control Sample	Total/NA	Water	8015B/5030B	
MB 440-156179/3	Method Blank	Total/NA	Water	8015B/5030B	

3

5

9

10

44

12

Definitions/Glossary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 440-67089-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Certification Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67089-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-14
Arizona	State Program	9	AZ0671	10-13-14
California	LA Cty Sanitation Districts	9	10256	01-31-15
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	01-23-14 *
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-14
New Mexico	State Program	6	N/A	01-31-14
Northern Mariana Islands	State Program	9	MP0002	01-31-14
Oregon	NELAP	10	4005	09-12-14
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

100 000 12. 110 07000 1

-

4

5

7

10

11

12

 $^{^{\}star}$ Expired certification is currently pending renewal and is considered valid.

TestAmerica Irvine

bp			
JAME.	r	n	
\$			

Laboratory Management Program LaMP Chain of Custody Record

BP Site Node Path: 06-88-615

	Pag	ge	<u>. </u>	of _	Д.
_					

7		В	P Facility No					2	111							Lab \	Work	Order	Num	per: _	CLL	大の	Broadd oject No: ane, Sutte W: Krister O well@broad BPx		<u>1989 </u>			_
Lab Name: Test America						Facility Address: 1156 Davis Street										Consultant/Contractor: Broadbert and Associates, Inc.												
Lab Address: 17461 Derian Avenue Suite #100, Irvine, CA 92614						City, State, ZIP Code: San Leandro, CA										Consultant/Contractor Project No: 06-88-615												
Lab Pi	M: Kathleen Robb			Lea	d Reg	julato	ory Ag	ency:		ACE	1								Addre	ess: 6	375 Cd	otting!	Lane,	, Sutte	G, Vacaville, CA 95	688		
Lab Pi	none: 949-261-1022		-	Cali	fomia	Glob	oal ID	No.:		T0600	01017	64							Cons	ultant/C	Contra	ctor P	M:	Kriste	ne Tidwell			
Lab Shipping Acont: 1103-6633-7					Enfos Proposal No: 005XM-0009										Phone: 707-455-7290 Fax: 707-455-7295													
Lab Bottle Order No:						Accounting Mode: Provision x OOC-BU								000	C-RM		-	Email EDD To: ktidwell@broadbentinc.com and to lab.enfosdoc@bo.com										
Other Info:					Stage: Exectute (40) Activity: GWM											Invoice To: BP x Contractor												
BP Project Manager (PM): Chuck Carmel					Matrix					No. Containers / Preservative					Reque				ested Analyses					Report Type & QC Level				
BP PM Phone: 925-275-3804																	_					-			Standard _x_			
BP PM Email: chuck.carmel@bp.com							ا ا	ainen				ŀ				8260	956	S F							Full Data Package			
Lab No.	Sample Description	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor	ls this location a well?	Total Number of Container	Unpreserved	H2SO4	HNO3	HCI	Methanol		GRO by 8015M	BTEX/5 FO & EDB by	1,2-DCA & Ethanol by 8260	GRO and Full List VOCs by 8260	PAH's by 8270						Comments Note: If sample not collected, Indicate "No sample" in comments and single-strike out and initial any preprinted sample description.			
	MW-1	1/9/2014	1025		x		у	6				×			×	x	x								<u></u>			
	MW-2	1/9/2014	1125		x		У	6				×			×	x	×	I					⋧					
	MW-3	1/9/2014	0945		×		У	8				x						×	x				nstoc					_
	MW-4	1/9/2014	0915		x		у	6				x			x	x	x							_				
	MW-5	1/9/2014	0825		x		у	6				x			×	×	×						Jain	_				
	MW-7	1/9/2014	1200		x		у	6				x	<u>L</u> .		×	×	×	<u>L</u>		_			၁၉					
	MW-8	1/9/2014	1055		×		у	6				×			×	×	×			_	67089 Chain c							
	TB-2111-01092014	-			×		n	2				x								_			4			On Hold	<u> </u>	
					<u> </u>									<u></u>	L	_	<u> </u>						_	<u> </u>				
	<u>-</u> .			┸	┖																			ļ				
			ļ	_								_			_	<u>L</u>	<u> </u>	<u> </u>										
Sampler's Name: Alex Martinez					Relinquished By / Affiliation							Date Time			īme	Accepted By / A				By / A	Affiliation		Date	Time				
Sampler's Company: Broadbent and Associates				aly made BAI							1700			00	,						-							
Shipment Method: Fed Ex Ship Date: 1/9/2014					<u> </u>								_				1 1			٨			1.	, , 	, ,			
Shipment Tracking No: 8025 2344 1916															4	1/10/14				10/14	0740							
Spec	ial Instructions: Please provide a											-				1 1	11 -			-			A 40-67089 Chain of Custody					
THIS LINE - LAB USE ONLY: Custody Seals in Place Yes No Temp Blank, Yes No Cooler Temp on Receipt 2.2/1.0 °F/C Trip Blank Yes Yes No MS/MSD Sample Submitted: Yes / No											23 2011																	

Req Due Date (mm/dd/yy):_

Login Sample Receipt Checklist

Client: Broadbent & Associates, Inc.

Job Number: 440-67089-1

Login Number: 67089 List Source: TestAmerica Irvine

List Number: 1

Creator: Chy, Jonathan

Creator: Chy, Jonathan		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

J

4

5

7

9

10

12

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

Tel: (949)261-1022

TestAmerica Job ID: 440-67732-1

Client Project/Site: ARCO 2111, San Leandro

For:

Broadbent & Associates, Inc. 875 Cotting Lane Suite G Vacaville, California 95688

Attn: Kristene Tidwell

Authorized for release by: 1/24/2014 4:40:34 PM

Kathleen Robb, Project Manager II (949)261-1022 kathleen.robb@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Client: Broadbent & Associates, Inc.
Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67732-1

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	6
Lab Chronicle	7
QC Sample Results	8
QC Association Summary	10
Definitions/Glossary	11
Certification Summary	12
Chain of Custody	13
Receipt Checklists	14

8

9

11

12

Sample Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67732-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-67732-1	MW-3	Water	01/16/14 14:25	01/17/14 07:10

3

4

5

7

10

11

12

1:

Case Narrative

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67732-1

Job ID: 440-67732-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-67732-1

Comments

No additional comments.

Receipt

The samples were received on 1/17/2014 7:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.9° C.

GC/MS Semi VOA

Method(s) 8270C SIM: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 157840.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

4

6

0

10

14

Client Sample Results

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67732-1

Lab Sample ID: 440-67732-1

Matrix: Water

Client Sample ID: MW-3 Date Collected: 01/16/14 14:25

Date Received: 01/17/14 07:10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Acenaphthylene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Anthracene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Benzo[a]anthracene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Benzo[a]pyrene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Benzo[b]fluoranthene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Benzo[g,h,i]perylene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Benzo[k]fluoranthene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Chrysene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Dibenz(a,h)anthracene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Fluoranthene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Fluorene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Indeno[1,2,3-cd]pyrene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Naphthalene	0.24		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Phenanthrene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Pyrene	ND		0.21	ug/L		01/23/14 10:24	01/24/14 11:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	75		50 - 120			01/23/14 10:24	01/24/14 11:25	1
Nitrobenzene-d5	86		45 - 120			01/23/14 10:24	01/24/14 11:25	1
Terphenyl-d14	55		17 - 100			01/23/14 10:24	01/24/14 11:25	1

TestAmerica Irvine

_

6

Ω

9

10

12

Method Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67732-1

Method	Method Description	Protocol	Laboratory
8270C SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL IRV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

G

3

4

_

9

4 4

Lab Chronicle

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-67732-1

Client Sample ID: MW-3 Lab Sample ID: 440-67732-1 Date Collected: 01/16/14 14:25

Matrix: Water

Date Received: 01/17/14 07:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			970 mL	1 mL	157840	01/23/14 10:24	BB	TAL IRV
Total/NA	Analysis	8270C SIM		1	970 mL	1 mL	158085	01/24/14 11:25	Al	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TestAmerica Job ID: 440-67732-1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Naphthalene

Phenanthrene

Pyrene

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

ND

ND

ND

Lab Sample ID: MB 440-157840/1-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 158085 Prep Batch: 157840 мв мв RL Result Qualifier Unit D Prepared Dil Fac Analyte Analyzed 0.20 Acenaphthene ND ug/L 01/23/14 10:24 01/24/14 10:24 ug/L Acenaphthylene ND 0.20 01/23/14 10:24 01/24/14 10:24 ND Anthracene 0.20 ug/L 01/23/14 10:24 01/24/14 10:24 Benzo[a]anthracene ND 0.20 ug/L 01/23/14 10:24 01/24/14 10:24 Benzo[a]pyrene ND 0.20 ug/L 01/23/14 10:24 01/24/14 10:24 Benzo[b]fluoranthene ND 0.20 ug/L 01/23/14 10:24 01/24/14 10:24 ND 0.20 01/23/14 10:24 01/24/14 10:24 Benzo[g,h,i]perylene ug/L Benzo[k]fluoranthene ND 0.20 ug/L 01/23/14 10:24 01/24/14 10:24 ND 0.20 ug/L 01/23/14 10:24 Chrysene 01/24/14 10:24 Dibenz(a,h)anthracene ND 0.20 ug/L 01/23/14 10:24 01/24/14 10:24 Fluoranthene ND 0.20 ug/L 01/23/14 10:24 01/24/14 10:24 Fluorene ND 0.20 ug/L 01/23/14 10:24 01/24/14 10:24 Indeno[1,2,3-cd]pyrene ND 0.20 ug/L 01/23/14 10:24 01/24/14 10:24

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Fluorobiphenyl (Surr) 71 50 - 120 01/23/14 10:24 01/24/14 10:24 Nitrobenzene-d5 77 45 - 120 01/23/14 10:24 01/24/14 10:24 Terphenyl-d14 17 - 100 01/23/14 10:24 01/24/14 10:24 56

0.20

0.20

0.20

ug/L

ug/L

ug/L

01/23/14 10:24

01/23/14 10:24

01/23/14 10:24

Lab Sample ID: LCS 440-157840/2-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 158085 Prep Batch: 157840

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Acenaphthene 1.00 0.844 84 60 - 120 ug/L Acenaphthylene 1.00 0.861 ug/L 86 60 - 120 0.918 92 Anthracene 1 00 ug/L 65 - 12098 Benzo[a]anthracene 1.00 0.977 ug/L 65 - 120 ug/L 94 Benzo[a]pyrene 1.00 0.938 55 _ 130 Benzo[b]fluoranthene 1.00 0.976 ug/L 98 55 - 125ug/L Benzo[g,h,i]perylene 1.00 1.10 110 45 - 135 Benzo[k]fluoranthene 1.00 0.966 ug/L 97 50 - 1250.988 Chrysene 1.00 ug/L 99 65 - 120Dibenz(a,h)anthracene 1.00 1.01 ug/L 101 50 - 135 Fluoranthene 1.00 0.946 ug/L 95 60 - 120 Fluorene 0.915 91 65 - 120 1.00 ug/L Indeno[1,2,3-cd]pyrene 1.00 1.03 ug/L 103 45 - 135 Naphthalene 1.00 0.797 ug/L 80 55 _ 120 Phenanthrene 1.00 0.918 92 65 - 120 ug/L 1.00 0.836 ug/L 84 55 - 125 Pyrene

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	80		50 - 120
Nitrobenzene-d5	93		45 - 120

TestAmerica Irvine

01/24/14 10:24

01/24/14 10:24

01/24/14 10:24

QC Sample Results

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro TestAmerica Job ID: 440-67732-1

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 440-157840/2-A

Matrix: Water

Analysis Batch: 158085

Surrogate

Terphenyl-d14

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 157840

LCS LCS

%Recovery Qualifier Limits 17 - 100 62

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 157840

Matrix: Water Analysis Batch: 158085

Lab Sample ID: LCSD 440-157840/3-A

						ор .	Jaicii. I	
Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1.00	0.857		ug/L		86	60 - 120	1	20
1.00	0.862		ug/L		86	60 - 120	0	20
1.00	0.908		ug/L		91	65 - 120	1	20
1.00	0.957		ug/L		96	65 - 120	2	20
1.00	0.900		ug/L		90	55 - 130	4	25
1.00	0.953		ug/L		95	55 - 125	2	25
1.00	1.08		ug/L		108	45 - 135	2	25
1.00	0.939		ug/L		94	50 - 125	3	20
1.00	0.965		ug/L		96	65 - 120	2	20
1.00	1.00		ug/L		100	50 - 135	0	25
1.00	0.951		ug/L		95	60 - 120	0	20
1.00	0.898		ug/L		90	65 - 120	2	20
1.00	1.00		ug/L		100	45 - 135	3	25
1.00	0.799		ug/L		80	55 - 120	0	20
1.00	0.917		ug/L		92	65 - 120	0	20
1.00	0.798		ug/L		80	55 _ 125	5	25
	Added 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Added Result 1.00 0.857 1.00 0.862 1.00 0.908 1.00 0.957 1.00 0.900 1.00 0.953 1.00 1.08 1.00 0.939 1.00 0.965 1.00 0.951 1.00 0.898 1.00 1.00 1.00 0.799 1.00 0.917	Added Result Qualifier 1.00 0.857 Qualifier 1.00 0.862 Qualifier 1.00 0.908 Qualifier 1.00 0.908 Qualifier 1.00 0.957 Qualifier 1.00 0.957 Qualifier 1.00 0.957 Qualifier 1.00 0.990 Qualifier 1.00 0.993 Qualifier 1.00 0.939 Qualifier 1.00 0.939 Qualifier 1.00 0.965 Qualifier 1.00 0.951 Qualifier 1.00 0.898 Qualifier 1.00 0.799 Qualifier	Added Result Qualifier Unit 1.00 0.857 ug/L 1.00 0.862 ug/L 1.00 0.908 ug/L 1.00 0.957 ug/L 1.00 0.900 ug/L 1.00 0.953 ug/L 1.00 1.08 ug/L 1.00 0.939 ug/L 1.00 0.965 ug/L 1.00 1.00 ug/L 1.00 0.898 ug/L 1.00 1.00 ug/L 1.00 0.799 ug/L 1.00 0.917 ug/L	Added Result Qualifier Unit D 1.00 0.857 ug/L ug/L 1.00 0.862 ug/L ug/L 1.00 0.908 ug/L ug/L 1.00 0.957 ug/L ug/L 1.00 0.900 ug/L ug/L 1.00 0.953 ug/L ug/L 1.00 0.939 ug/L ug/L 1.00 0.965 ug/L ug/L 1.00 0.951 ug/L ug/L 1.00 0.898 ug/L 1.00 0.799 ug/L 1.00 0.917 ug/L	Added Result Qualifier Unit D %Rec 1.00 0.857 ug/L 86 1.00 0.862 ug/L 86 1.00 0.908 ug/L 91 1.00 0.957 ug/L 96 1.00 0.900 ug/L 90 1.00 0.953 ug/L 95 1.00 1.08 ug/L 94 1.00 0.939 ug/L 94 1.00 0.965 ug/L 96 1.00 0.951 ug/L 95 1.00 0.898 ug/L 90 1.00 1.00 ug/L 90 1.00 0.799 ug/L 80 1.00 0.917 ug/L 92	Spike LCSD LCSD Unit D %Rec. Limits 1.00 0.857 ug/L 86 60 - 120 1.00 0.862 ug/L 86 60 - 120 1.00 0.908 ug/L 91 65 - 120 1.00 0.957 ug/L 96 65 - 120 1.00 0.900 ug/L 90 55 - 130 1.00 0.953 ug/L 95 55 - 125 1.00 1.08 ug/L 94 50 - 125 1.00 0.939 ug/L 94 50 - 125 1.00 0.965 ug/L 96 65 - 120 1.00 1.00 ug/L 96 65 - 120 1.00 0.951 ug/L 95 60 - 120 1.00 0.898 ug/L 90 65 - 120 1.00 1.00 ug/L 90 65 - 120 1.00 0.799 ug/L 80 55 - 120 1.00	Spike LCSD LCSD Unit D %Rec. Limits RPD 1.00 0.857 ug/L 86 60 - 120 1 1.00 0.862 ug/L 86 60 - 120 0 1.00 0.908 ug/L 91 65 - 120 1 1.00 0.957 ug/L 96 65 - 120 2 1.00 0.900 ug/L 90 55 - 130 4 1.00 0.953 ug/L 95 55 - 125 2 1.00 1.08 ug/L 94 50 - 125 3 1.00 0.939 ug/L 94 50 - 125 3 1.00 0.965 ug/L 96 65 - 120 2 1.00 1.00 ug/L 95 60 - 120 0 1.00 0.951 ug/L 95 60 - 120 0 1.00 0.898 ug/L 90 65 - 120 2 1.00

Surrogate	%Recovery Qua	lifier Limits	
2-Fluorobiphenyl (Surr)	81	50 - 120	-
Nitrobenzene-d5	93	45 - 120	
Terphenyl-d14	59	17 - 100	

TestAmerica Irvine

QC Association Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67732-1

GC/MS Semi VOA

Prep	Batch:	157840
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
440-67732-1	MW-3	Total/NA	Water	3520C
LCS 440-157840/2-A	Lab Control Sample	Total/NA	Water	3520C
LCSD 440-157840/3-A	Lab Control Sample Dup	Total/NA	Water	3520C
MB 440-157840/1-A	Method Blank	Total/NA	Water	3520C

Analysis Batch: 158085

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-67732-1	MW-3	Total/NA	Water	8270C SIM	157840
LCS 440-157840/2-A	Lab Control Sample	Total/NA	Water	8270C SIM	157840
LCSD 440-157840/3-A	Lab Control Sample Dup	Total/NA	Water	8270C SIM	157840
MB 440-157840/1-A	Method Blank	Total/NA	Water	8270C SIM	157840

3

5

0

3

10

1:

Definitions/Glossary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 440-67732-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Certification Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 2111, San Leandro

TestAmerica Job ID: 440-67732-1

4

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-14
Arizona	State Program	9	AZ0671	10-13-14
California	LA Cty Sanitation Districts	9	10256	01-31-15
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	01-23-14 *
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-14
New Mexico	State Program	6	N/A	01-31-14
Northern Mariana Islands	State Program	9	MP0002	01-31-14
Oregon	NELAP	10	4005	09-12-14
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

6

g

10

11

12

^{*} Expired certification is currently pending renewal and is considered valid.

bp			
* "\$		Y	

Laboratory Management Program LaMP Chain of Custody Record

06-88-615

BP Site Node Path:

Page <u> </u>		of _	
Rush TAT: Yes	人	No	1

	BP Facility No:	·—				2	111					-		Lab v	ork Orde	rNum	per:										
Lab Name: Test America		Facil	ity Ad	ddres	s:	1156	Davis	Stree	et							Cons	ultant/	Contra	actor:	В	Broadl	ent and	l Associ	ates, Inc			
Lab Address: 17461 Derian Avenue Suite #100, Irvine	, CA 92614	City,	City, State, ZIP Code: San Leandro, CA									Consultant/Contractor Project N				No:	06-8	8-615									
Lab PM; Kathleen Robb		Lead	i Reg	julato	ry Ag	јелсу:		ACE	Н							Address: 875 Cotting Lane, Suite G, Vacaville, CA 95688											
Lab Phone: 949-261-1022		Calif	omia	Glob	al ID	No.:		T060	0101	764						Cons	ultant/	Contra	actor I	PM: K	Crister	ne Tidwe	¥II	•			
Lab Shipping Acent: 1103-6633-7		Enfo	sΡπ	posa	ıl No:		005X	M-000	9							Pi	none:	707-4	55-72	90			Fax:	707-455	-7295		
Lab Bottle Order No:		Acco	ountin	g Mo	de:		Pro	vision	<u>x</u>	_ 00	C-BU		000	-RM		Emai	EDD	To:	<u>kti</u>	dwell@	broac	bentinc.	com	and to !	ab.enfo	sdoc@	bo.com
Other Info:		Stag	Stage: Exectute (40) Activity: GWM Invoice To: BP x Contractor																								
BP Project Manager (PM): Chuck Carmel			Ma	trix		No	. Co	ntain	ers/	Pres	ervat	tive			Requ	ested	Anal	yses			_		Repo	ort Type	& QC	Leve	
BP PM Phone: 925-275-3804		1				2.															1			SI	tandard	_×_	
BP PM Email: chuck.carmel@bp.com		4			3	ntairie															Ļ		FL	ill Data P	ackage	_	
Lab Sample Description Da No.	te Time	Soil / Solid	Water / Liquid	Air / Vapor	Is this tocation a well?	Total Number of Container	Unpreserved	H2SO4	HNO3	HCI	Methanol		PAHs by 8270									Sample*	in comr	Comr not collect ments and reprinted s	l single-s	trike out	t on.
MW-3 1/16/	2014 1425		х		у	2	×						x								_				, ,		
																								\	<u>a :</u>	θС)
· ·								,														J.	S	1-	17	May.	£
																		140-6	7732	Chai	in of	Custod	lly.				
Sampler's Name: Alex Martinez				F	lelin	quis	hed &	By / A	Affilia	ation	<u> </u>		Dá	ate	Time				/ccel	oted B	 By <i>/ p</i>	ffiliatio	n		D	ate	Time
Sampler's Company: Broadberit and Associates Shipment Method: Fed Ex Ship Da	ite: 1/16/2014		æ.	ز عرد	<u>W</u>		4		=	81	L		1/1	b/iy	1700	-	2	J.	Z-	8/					1/1	7/14	0710
Shipment Tracking No: 8025 2344 1880												•															
Special Instructions: Please provide a 48 hour T	······		nail pi	rovide	ed an	d the	given	instru	ctions	s with	this Cl	hain-ol	-Custo		1											<u> </u>	
THIS LINE - LAB USE ONLY: Custody	Seals In Place. Yes	No		Tem	p Bla	ŋk. Ye	s) No	,	Co	ooler 1	Гетр	on Red	eipt: _	38			Γrip Β	ank: Y	es/N	19)	M	S/MSD S		Submitte			00 0011
BP Remediation Management COC - Effective Dates: A	August 23, 2011- June	e 30, 2	012			(m)	-							1	54									BP LAMP	COCA	e√: 7, A	wg 23, 2011

<u></u>

Req Due Date (mm/dd/yy):

<u>ئے</u> ۔۔

Login Sample Receipt Checklist

Client: Broadbent & Associates, Inc. Job Number: 440-67732-1

Login Number: 67732 List Source: TestAmerica Irvine

List Number: 1

Creator: Gonzales, Steve

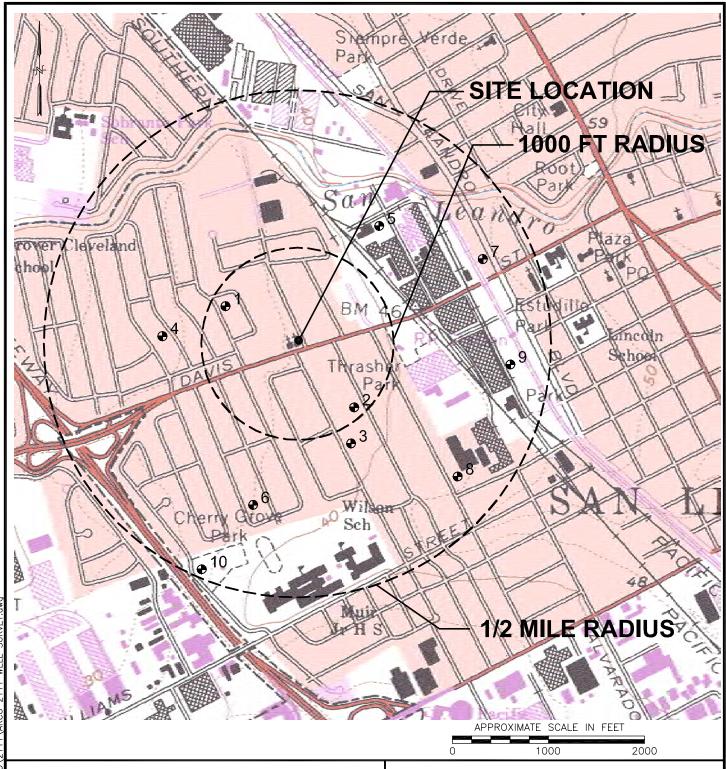
ordatori dorizatodi ditato		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

•

Λ

9

_ _


0

10

4.6

APPENDIX H

Well Survey Results

LEGEND:

◆ WATER SUPPLY WELL LOCATION

FIGURE 1 WELL SURVEY MAP

ARCO STATION #2111 1156 DAVIS STREET SAN LEANDRO, CALIFORNIA

4600 Northgate Boulevard • Suite 230 Sacramento • California • 95834 Phone: (800) 988-7880

REFERENCE:
USGS 7.5 MIN QUAD MAP TITLED: SAN LEANDRO, CALIFORNIA DATED: 1959 REVISED 1980

Table 1 - Wells Located Within a 1/2-Mile Radius of the Site

ARCO Station No. 2111 1156 Davis Street Alameda, California

Map ID No.	DWR Log No.	Approximate Distance from Site	Well Type	Installation Date	Screen Interval	Total Depth
1	32661	850 ft WNW	dom	May-77	20-30 ft bgs	30 ft bgs
2	01-1339	950 ft SE	unk	Aug-39	unk	68 ft bgs
3	120465	1,200 ft SE	dom	Aug-75	17-31 ft bgs	32 ft bgs
4	33129	1,450 ft W	ind	Apr-77	32-64 ft bgs	68 ft bgs
5	01-1436	1,450 ft NE	dom	Aug-49	117-126 ft bgs	132 ft bgs
6	106385	1,800 ft SSW	irr	unk	8-21 ft bgs	21 ft bgs
7	106480	2,100 ft NE	irr	Jun-77	18-40.5 ft bgs	41 ft bgs
8	32910	2,150 ft SE	dom	unk	20-40 ft bgs	40 ft bgs
9	24537	2,250 ft ESE	ind	Jun-55	intervals from 50-694 ft bgs	704 ft bgs
10	01-1334	2,550 ft SSW	mun	1954	intervals from 25-143 ft bgs	224 ft bgs

Abbreviations:

ft = feet

N = North

S = South

E = East

W = West

dom = domestic well
irr = irrigation well
mun = municipal well
pub = public well

unk = unknown

bgs = below ground surface

APPENDIX I

Groundwater Monitoring and Sampling Field Methods

QUALITY ASSURANCE/QUALITY CONTROL FIELD METHODS

Field methods discussed herein were implemented to provide for accuracy and reliability of field activities, data collection, sample collection, and handling. Discussion of these methods is provided below.

1.0 Equipment Calibration

Equipment calibration was performed per equipment manufacturer specifications before use.

2.0 Depth to Groundwater and Light Non-Aqueous Phase Liquid Measurement

Depth to groundwater was measured in wells identified for gauging in the scope of work using a decontaminated water level indicator. The depth to water measurement was taken from a cut notch or permanent mark at the top of the well casing to which the well head elevation was originally surveyed.

Once depth to water was measured, an oil/water interface meter or a new disposable bailer was utilized to evaluate the presence and, if present, to measure the "apparent" thickness of light non-aqueous phase liquid (LNAPL) in the well. If LNAPL was present in the well, groundwater purging and sampling were not performed, unless sampling procedures in the scope of work specified collection of samples in the presence of LNAPL. Otherwise, time allowing, LNAPL was bailed from the well using either a new disposable bailer, or the disposal bailer previously used for initial LNAPL assessment. Bailing of LNAPL continued until the thickness of LNAPL (or volume) stabilized in each bailer pulled from the well, or LNAPL was no longer present. After LNAPL thickness either stabilized or was eliminated, periodic depth to water and depth to LNAPL measurements were collected as product came back into the well to evaluate product recovery rate and to aid in further assessment of LNAPL in the subsurface. LNAPL thickness measurements were recorded as "apparent." If a bailer was used for LNAPL thickness measurement, the field sampler noted the bailer entry diameter and chamber diameter to enable correction of thickness measurements. Recovered LNAPL was stored on-site in a labeled steel drum(s) or other appropriate container(s) prior to disposal.

3.0 Well Purging and Groundwater Sample Collection

Well purging and groundwater sampling were performed in wells specified in the scope of work after measuring depth to groundwater and evaluating the presence of LNAPL. Purging and sampling were performed using one of the methods detailed below. The method used was noted in the field records. Purge water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal or on-site treatment (in cases where treatment using an on-site system is authorized).

3.1 Purging a Predetermined Well Volume

Purging a predetermined well volume is performed per ASTM International (ASTM) D4448-01. This purging method has the objective of removing a predetermined volume of stagnant water from the well prior to sampling. The volume of stagnant water is defined as either the volume of water contained within the well casing, or the volume within the well casing and sand/gravel in the annulus if natural flow through these is deemed insufficient to keep them flushed out.

This purging method involves removal of a minimum of three stagnant water volumes from the well using a decontaminated pump with new disposable plastic discharge or suction tubing, dedicated well tubing, or using a new disposable or decontaminated reusable bailer. If a new disposable bailer was used for assessment of LNAPL, that bailer may be used for purging. The withdrawal rate used is one that minimizes drawdown while satisfying time constraints.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. Parameters are considered stable when two (2) consecutive readings recorded three (3) minutes apart fall within ranges provided below in Table 1. In the event that the parameters have not stabilized and five (5) well casing volumes have been removed, purging activities will cease and be considered complete. Once the well is purged, a groundwater sample(s) is collected from the well using a new disposable bailer. If a new disposable bailer was used for purging, that bailer may be used to collect the sample(s). A sample is not collected if the well is inadvertently purged dry.

Table 1. Criteria for Defining Stabilization of Water-Quality Indicator Parameters

Parameter	Stabilization Criterion
Temperature	± 0.2°C (± 0.36°F)
рН	± 0.1 standard units
Conductivity	± 3%
Dissolved oxygen	± 10%
Oxidation reduction potential	± 10 mV
Turbidity ¹	± 10% or 1.0 NTU (whichever is greater)

3.2 Low-Flow Purging and Sampling

"Low-Flow", "Minimal Drawdown", or "Low-Stress" purging is performed per ASTM D6771-02. It is a method of groundwater removal from within a well's screened interval that is intended to minimize drawdown and mixing of the water column in the well casing. This is accomplished by pumping the well using a decontaminated pump with new disposable plastic discharge or

As stated in ASTM D6771-02, turbidity is not a chemical parameter and not indicative of when formation-quality water is being purged; however, turbidity may be helpful in evaluating stress on the formation during purging. Turbidity measurements are taken at the same time that stabilization parameter measurements are made, or, at a minimum, once when purging is initiated and again just prior to sample collection, after stabilization parameters have stabilized. To avoid artifacts in sample analysis, turbidity should be as low as possible when samples are collected. If turbidity values are persistently high, the withdrawal rate is lowered until turbidity decreases. If high turbidity persists even after lowering the withdrawal rate, the purging is stopped for a period of time until turbidity settles, and the purging process is then restarted. If this fails to solve the problem, the purging/sampling process for the well is ceased, and well maintenance or redevelopment is considered.

suction tubing or dedicated well tubing at a low flow rate while evaluating the groundwater elevation during pumping.

The low flow pumping rate is well specific and is generally established at a volume that is less than or equal to the natural recovery rate of the well. A pump with adjustable flow rate control is positioned with the intake at or near the mid-point of the submerged well screen. The pumping rate used during low-flow purging is low enough to minimize mobilization of particulate matter and drawdown (stress) of the water column. Low-flow purging rates will vary based on the individual well characteristics; however, the purge rate should not exceed 1.0 Liter per minute (L/min) or 0.25 gallon per minute (gal/min). Low-flow purging should begin at a rate of approximately 0.1 L/min (0.03 gal/min)², or the lowest rate possible, and be adjusted based on an evaluation of drawdown. Water level measurements should be recorded at approximate one (1) to two (2) minute intervals until the low-flow rate has been established, and drawdown is minimized. As a general rule, drawdown should not exceed 25% of the distance between the top of the water column and the pump in-take.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. The frequency between measurements will be at an interval of one (1) to three (3) minutes; however, if a flow cell is used, the frequency will be determined based on the time required to evacuate one cell volume. Stabilization is defined as three (3) consecutive readings recorded several minutes apart falling within ranges provided in Table 1. Samples will be collected by filling appropriate containers from the pump discharge tubing at a rate not to exceed the established pumping rate.

3.3 Minimal Purge, Discrete Depth, and Passive Sampling

Per ASTM D4448-01, sampling techniques that do not rely on purging, or require only minimal purging, may be used if a particular zone within a screened interval is to be sampled or if a well is not capable of yielding sufficient groundwater for purging. To properly use these sampling techniques, a water sample is collected within the screened interval with little or no mixing of the water column within the casing. These techniques include minimal purge sampling which uses a dedicated sampling pump capable of pumping rates of less than 0.1 L/min (0.03 gal/min)², discrete depth sampling using a bailer that allows groundwater entry at a controlled depth (e.g. differential pressure bailer), or passive (diffusion) sampling. These techniques are based on certain studies referenced in ASTM D4448-01 that indicate that under certain conditions, natural groundwater flow is laminar and horizontal with little or no mixing within the well screen.

² According to ASTM D4448-01, studies have indicated that at flow rates of 0.1 L/min, low-density polyethylene (LDPE) and plasticized polypropylene tubing materials are prone to sorption. Therefore, TFE-fluorocarbon or other appropriate tubing material is used, particularly when tubing lengths of 50 feet or longer are used.

4.0 Decontamination

Reusable groundwater sampling equipment were cleaned using a solution of Alconox or other acceptable detergent, rinsed with tap water, and finally rinsed with distilled water prior to use in each well. Decontamination water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal.

5.0 Sample Containers, Labeling, and Storage

Samples were collected in laboratory prepared containers with appropriate preservative (if preservative was required). Samples were properly labeled (site name, sample I.D., sampler initials, date, and time of collection) and stored chilled (refrigerator or ice chest with ice) until delivery to a certified laboratory, under chain of custody procedures.

6.0 Chain of Custody Record and Procedure

The field sampler was personally responsible for care and custody of the samples collected until they were properly transferred to another party. To document custody and transfer of samples, a Chain of Custody Record was prepared. The Chain of Custody Record provided identification of the samples corresponding to sample labels and specified analyses to be performed by the laboratory. The original Chain of Custody Record accompanied the shipment, and a copy of the record was stored in the project file. When the samples were transferred, the individuals relinquishing and receiving them signed, dated, and noted the time of transfer on the record.

7.0 Field Records

Daily Report and data forms were completed by staff personnel to provide daily record of significant events, observations, and measurements. Field records were signed, dated, and stored in the project file.

APPENDIX J

Well Sampling Field Data Sheets

GROUNDWATER MONITORING SITE SHEET Page 1 of 3

roject: ield Represe	ntative:	57	1/22	1			Proje Ele	ct No.:	06-0	0-615	Date: 1/9/14
ormation red				-	High	Low	(circle or	10 00 00 00 00 00 00 00 00 00 00 00 00 0			
/. L. Indicat		_		C		Interfac	ce ID #:	-		List #s of	all equip used.)
-	WELL ID	RECOR	D		V	ELL GA	UGING	RECOR	D		NOTES
Well ID	Well Sampling Order	As-Built Well Diameter (inches)	As-Built Well Screen Interval (ft)	Previous Depth to Water (ft)	Time (24:00)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)*	Depth to Water (ft)	Well Total Depth (ft)		
NW-I	4				1009	MA	NA	16.54	26.29		
Mw-2	6				1105	NIA	NIA	17.18	34.65		
MW-3	3				0926	MA	NA	18.17	26.46		-
Mw4	2				0852	NA	NA		89.15		
Mw-5					752	MA	NA	16.54	23,82		
Mw-6	8				1213	NA	NA	16.15	19.63		
MW-7	1				1142	MA	N/4	17.03	26,53		
MW-8	2				1038	NA	MA	17.00	26.01		
		8 8 7									
										14.	
					1		<u> </u>	1			
								-			
							1				

Signature:

Revision: 8/19/11

Signature: alex made

GROUNDWATER SAMPLING DATA SHEET

Page 2 _ of _8

Project: Bi	2111		и	Project No.:	66-36	-615	Date:	1/9/14
Field Representativ	ve:	TIAL	1	2000				/ /
Well ID:	W-1	Start Time:	1025	End Time:	1030	Total Time	e (minutes):	15
PURGE EQUIPME	NT	Disp. Bailer		120V Pump	~	Flow Cell		
Disp. Tu		12V Pump	Y	Peristaltic Pump	Other/ID#:	Tion con		
	EGRITY (cap, lock, vai		Comments:	1 cristante 1 timp	Olici/ID#.			
11		circle one)	comments.	-				
PURGING/SAMPL	,	Predetermined Wel	I Volume Lo	w-Flow Other;			(circle o	one)
PRED	ETERMINED WEI	L VOLUME		13.57		LOV	W-FLOW	
	Unit Volume (gal/ft) (ci				Previous Low-l	Flow Purge Rate:		(lpm)
	(0.08) 2" (0.17)	Contract to the Contract to th	Other:		Total Well Dep	th (a):		26.29 (ft)
4" (0.66) 6"	(1.50) 8" (2.60)	12" (5.81)	" ()	a b	Initial Depth to	Water (b):		18.82(ft)
Total Well Depth (a):			(ft)		Pump In-take I	Depth = b + (a-b)/2	2:	11.75 (ft)
Initial Depth to Water (b)	:	_	(ft)	*	Maximum Allo	wable Drawdown	= (a-b)/8:	0,93 (ft)
Water Column Height (V	/CH) = (a - b):	_	(ft)		Low-Flow Purg	ge Rate:		0.25 (Lpm)*
Water Column Volume ($WCV) = WCH \times Unit Vo$	lume:	(gal)		Comments:			
Three Casing Volumes			(gal)					
Five Casing Volumes =		0	(gal)	★ 目	*Low-flow purge r	ate should be within i	range of instruments	used but should not
Pump Depth (if pump us			(ft)				t exceed Maximum A	Allowable Drawdown.
		7		IZATION PAR				
445 465 C	tive Vol. Temperature	pН	Conductivity	DO	ORP	Turbidity	T	NOTES
25 2	or L °C	5111	μS or mS	mg/L	mV	NTU	Odor, col	or, sheen or other
1013	5 19:52	5.66	-500	2 03	300	0.0		
	0 19.02	035	491	3000	307	0.0		
1021	5 6.85	5.35	1495	3:26	300	0.8		
1023 7	A 20.03	5.41	.495	3,64	295	0.0		
			. 1					
					-			
					hi a			
Previous Stabilized Paran								
PURGE COMPLET	TION RECORD 2		rameters Stable	3 Casing V	olumes & Parame	eters Stable	5 Casing Volum	es
	GALLEY E COLL	Other:	IODD		1	ano arm ac		EWED C
	SAMPLE COLI		ORD			GEOCHEMIC	AL PARAM	ETERS
Depth to Water at Sampli	ng: 16002 (ft)			Para	ımeter	Time	Measurement
Sample Collected Via:	Disp. Bailer	Dedicated Pump T	Γubing		DO (mg/L)			
Disp. Pump Tubing	Other:				Ferrous Iron (n	ng/L)		1
Sample ID:	-1	Sample Collection	on Time: 107	(24:00)	Redox Potentia	al (mV)		
Containers (#): 6 VO	/	unpreserved)	, -		Alkalinity (mg	/L)		
Oth			Other:	7.1	Other:			
Oth		_	Other:		Other:			
Ott	CI		_ Other		Jones.			

GROUNDWATER SAMPLING DATA SHEET Page 3 of 8

Project:	88 1	111			Project No.	186-8	8-615	Date:	10/11
Field Repre	ecentative:	111	15		_ I Toject Ivo.	00 0	0-012	Date.	1/9/19
	A / 1 A \ -	- 2	To The	IIIA			40.00		
Well ID:	Mr.		Start Time:	1110	End Time	1150	Total Time	e (minutes):	20
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump	X	Flow Cell		
X	Disp. Tubing		12V Pump	X	Peristaltic Pump	Other/ID#:	7070 2532		
WELL HEA	AD INTEGRITY	Y (cap, lock, vau	ılt, etc.)	Comments:					
Good	Improvement Ne	eded (d	circle one)						
PURGING/	SAMPLING M	ETHOD 1	Predetermined We	ell Volume Lo	w Flow Other:			(circle	one)
\	PREDETER	MINED WEL	L VOLUME		7-2-3		LOY	W-FLOW	
Casing I	Diameter Unit Vol	ume (gal/ft) (ci	rcle one)		1 101	Previous Low-F	Flow Purge Rate:		(lpn
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dep			34.650
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	" ()	$\begin{vmatrix} a \end{vmatrix} \begin{vmatrix} b \end{vmatrix}$	Initial Depth to	Water (b):		17.18 (
Total Well Dep				(ft)		Pump In-take D	0 = b + (a-b)/2	<u>:</u>	25.19 (
Initial Depth to			_	(ft)			wable Drawdown	= (a-b)/8:	2.18 (f
	Height (WCH) = (a		_	(ft)		Low-Flow Purg	e Rate:		0.25 (Lpm)
	Volume (WCV) = V		lume:	(gal)		Comments:			
The second secon	Volumes = WCV		_	(gal)					
	Volumes = WCV x :):	-	(gal)	▼ 目				s used but should not
Pump Depth (in	pump usea):			(ft)				exceed Maximum	Allowable Drawdown.
Time	Cumulative Vol.	Temperature	pH		IZATION PAR DO		7		Nomes .
(24:00)	gal or L	°C	pri	Conductivity μS ormS	mg/L	ORP mV	Turbidity NTU	Odor co	NOTES lor, sheen or other
1110	0.0	20.35	5 40	1620	3 0 1	222	(A) (A)	Odor, co	ior, sheen or other
1112	0.5	20.54	5.29	658	2.69	12-6	0:0		
1114	1.0.	20 64	5.20	628	2.38	157	0.0		
1116	165	20,69	5.18	0627	2.51	141	0.0		
HIP	2.0	26.72	5.20	622	2.41	128	0.8		
1150	9 5	20.73	636	. (02 i	226	117	(h) (h)		
1100	600	20:70	200	000	2020	112	0.0		
				/					
				1			, and the state of		
Previous Stabiliz				The Table					
PURGE CO	MPLETION RE	ECORD /	_ Low Flow & Pa	rameters Stable	3 Casing Vo	olumes & Paramet	ters Stable	5 Casing Volun	nes
			Other:						
	SAN	APLE COLL	ECTION REC	CORD			GEOCHEMIC	AL PARAM	ETERS
Depth to Water	at Sampling:	-18 (f	t)			Parai		Time	Measurement
Sample Collecte	ed Via: Disp	. Bailer	Dedicated Pump	Tubing		DO (mg/L)			THE WATER TO THE PARTY OF THE P
Disp. Pum						Ferrous Iron (mg	α/Ι.)		
Sample ID:	MW-2		Sample Collection	on Time: 112	5 (24-00)				
Containers (#):	n	mmonomic d			(24:00)	Redox Potential			
Comamers (#):		preserved or	unpreserved)		ber	Alkalinity (mg/I	۵)		
	Other:		-	_ Other:	-	Other:			
	Other:			Other:		Other:			

Signature:

GROUNDWATER SAMPLING PATA SHEET Page 4 of 8

Field Representative: Well ID: Start Time Disp. Bailer Disp. Tubing WELL HEAD INTEGRITY (cap, lock, wall, etc.) Good Improvement Needed (cleck one) PERGING/SAMPLING METHOD Pedetermined Well Volume Casing Dismberg (Jun't Volume (galff) (cricle one) PERGING/SAMPLING METHOD Pedetermined Well Volume Casing Dismberg (Jun't Volume (galff) (cricle one) PERGING/SAMPLING METHOD Pedetermined Well Volume Casing Dismberg (Jun't Volume (galff) (cricle one) PERGING/SAMPLING METHOD Pedetermined Well Volume Casing Dismberg (Jun't Volume (galff) (cricle one) PERGING/SAMPLING METHOD Pedetermined Well Volume Casing Dismberg (Jun't Volume (galff) (cricle one) PERGING/SAMPLING METHOD Pedetermined Well Volume Casing Dismberg (Jun't Volume (galff) (cricle one) Previous Well Depth to Water (b): Water Column Wolume (WCV) = WCI1 x Unit Volume (galf) Water Column Wolume (WCV) = WCI1 x Unit Volume (galf) Water Column Wolume (WCV) = WCI1 x Unit Volume (galf) Water Column Wolume (WCV) = WCI1 x Unit Volume (galf) Water Column Wolume (wCV) = WCI1 x Unit Volume (galf) Water Column Wolume (wCV) = WCI1 x Unit Volume (galf) Water Column Wolume (wCV) = WCI1 x Unit Volume (galf) Water Column Wolume (wCV) = WCI1 x Unit Volume (galf) Water Column Wolume (wCV) = WCI1 x Unit Volume (galf) Water Column Wolume (wCV) = WCI1 x Unit Volume (galf) Water Column Wolume (wCV) = WCI1 x Unit Volume (galf) Water Column Wolume (wCV) = WCI1 x Unit Volume (galf) Water Column Wolume (wCV) = WCI1 x Unit Volume (galf) Water Column Wolume (wCV) = WCI1 x Unit Volume (galf) Water Column Wolume (wCV) = WCI1 x Unit Volume (galf) Water Column Wolume (wCV) = WCI1 x Unit Volume (galf) Water Column Wolume	Project: BR 7111	Project No	11 .00	615	Date:	1/6/10
Well ID: Start Time (12	3 1 - 1	_ 110,0001110	00.00) (10)	Date.	1/1/19
PURGE BOLIPMENT				55 5655	Territoria de la constitución de	
Disp. Tubing Part	Well ID: Start Time 1926	End Time:	0950	Total Tim	e (minutes):	29
MELL HEAD INTEGRITY (cap, lock, valt, etc.) Comments	PURGE EQUIPMENT Disp. Bailer	1-20V Pump	V	Flow Cell		
PREDITERMINED WELL VOLUME	Disp. Tubing 12V Pump	Peristaltic Pump	Other/ID#:			
PREDITERMINED WELL VOLUME	WELL HEAD INTEGRITY (cap, lock, vault, etc.) Comments:					
PREDETERMINED WELL VOLUME						
PREDETERMINED WELL VOLUME	PURGING/SAMPLING METHOD Predetermined Well Volume L	ow-Flow Other:			(circle	one)
Casing Dainbest Unit Volume (galff) (circle one)	PREDETERMINED WELL VOLUME			LO		
		7 181	Previous Low-F			(lpm)
# (10.66) 6" [1.50] 8" [2.50] 12" [5.81] " [1]	1" (0.04) 1.25" (0.08) 2" (0.17) 3" (0.38) Other:	7 111				
Total Well Depth (a):	4" (0.66) 6" (1.50) 8" (2.60) 12" (5.81)" ($\mathbf{a} \mid \mathbf{b}$	Initial Depth to	Water (b):		. (4 . 19
Water Column Height (WCH) = (a - b): Water Column Volume (WCV) = WCH x Unit Volume: (gab) Five Casing Volumes = WCV x 3: Pump Depth (if pump used): GROUNDWATER STABILIZATION PARAMETER RECORD Time Cumulative Vol. (2400) (2400) (2400) (2400) (2400) (2500) (2600) Column Volume (WCV) (2600) (2600) Column Volume (WCV) (2600) Column Volume (WCV) (2600) (2600) Column Volume (WCV) (2600) Column Volume	Total Well Depth (a):(fi		Pump In-take D	epth = b + (a-b)/2	2:	22.28 (ft)
Water Column Volume (WCV) = WCH x Unit Volume: (gal) (gal) Pump Depth (if pump used): GROUNDWATER STABILIZATION PARAMETER RECORD Time (2400) (29 all or L. C. Conductivity) (29 all or L. C.		t) — **	Maximum Allo	wable Drawdown	= (a-b)/8:	<u>1-07</u> (ft)
Three Casing Volumes = WCV x 3: Five Casing Volumes = WCV x 5: Gall		t)	Low-Flow Purg	e Rate:		0.45 (Lpm)*
Pump Depth (if pump used): GROUNDWATER STABILIZATION PARAMETER RECORD Time (24:00) (2,0 gal or L		D	Comments:			
Pump Depth (if pump used): GROUNDWATER STABILIZATION PARAMETER RECORD Time (24:00) (2,0 gal or L		D				
GROUNDWATER STABILIZATION PARAMETER RECORD Time (24:00)						
Time Cumulative Vol. Temperature pH Conductivity DO MP Turbidity NOTES		-			t exceed Maximum 1	Allowable Drawdown.
(24:00) (**Qal or L						
Previous Stabilized Parameters PURGE COMPLETION RECORD SAMPLE COLLECTION RECORD Cother: Sample Collected Via: Disp. Pump Tubing A Disp. Pump Tubing Disp. Pump Tubing A Disp. Pump Tubing Do (mg/L) Sample Collection Time: Pervious Stabilized Parameters Sample Collection Time: Do (mg/L) Sample Collection Time: Pervious Stabilized Parameters SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS Parameter Time Measurement Do (mg/L) Ferrous Iron (mg/L) Sample Collection Time: Pervious Stabilized Parameters Stable — Other: Sample Collection Time: Other: O		The same of the sa			0.56	7.7.
Previous Stabilized Parameters PURGE COMPLETION RECORD Low Flow & Parameters Stable Other: SAMPLE COLLECTION RECORD Depth to Water at Sampling: Disp. Pump Tubing Disp. Pump		U 7 4	24.7	(°) ()	Odor, co	or, sneen or other
Previous Stabilized Parameters PURGE COMPLETION RECORD Low Flow & Parameters Stable Other: SAMPLE COLLECTION RECORD Depth to Water at Sampling: Disp. Pump Tubing Disp. Pump	0935 05 19.22 5 70 14.3	3070	304	0.0		
Previous Stabilized Parameters PURGE COMPLETION RECORD Low Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes SAMPLE COLLECTION RECORD Depth to Water at Sampling:		3.61	303			
PURGE COMPLETION RECORDLow Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS	0939 1.5 19.48 5.68 .463	3.88		0.0		
PURGE COMPLETION RECORDLow Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS	0441 2.6 19.53 5,66 ,462	3.83	299	0.0		
PURGE COMPLETION RECORDLow Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS		3.00				
PURGE COMPLETION RECORDLow Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS						
PURGE COMPLETION RECORDLow Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS						
PURGE COMPLETION RECORDLow Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS						
PURGE COMPLETION RECORDLow Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS						
PURGE COMPLETION RECORDLow Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS						
PURGE COMPLETION RECORDLow Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS				1		
PURGE COMPLETION RECORDLow Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS				1		
PURGE COMPLETION RECORDLow Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS						
PURGE COMPLETION RECORDLow Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS						
Other: SAMPLE COLLECTION RECORD Depth to Water at Sampling: 6	Previous Stabilized Parameters					
Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS Depth to Water at Sampling: C C (ft) Parameter Time Measurement Sample Collected Via:Disp. BailerDedicated Pump Tubing DO (mg/L) Lambda		3 Casing Vo	olumes & Paramei	ters Stable	5 Casing Volum	es
SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS Depth to Water at Sampling: 6						
Depth to Water at Sampling: 6 6 (ft) Parameter Time Measurement Sample Collected Via: Disp. Bailer Dedicated Pump Tubing DO (mg/L) Sample Tubing Other: Ferrous Iron (mg/L) Sample ID: Sample Collection Time: 07 15 (24:00) Redox Potential (mV) Containers (#): VOA (SEOCHEMIC	'AI DADAM	ETEDS
Sample Collected Via: Disp. Bailer Dedicated Pump Tubing DO (mg/L) X_Disp. Pump Tubing Other: Ferrous Iron (mg/L) Sample ID: X_ Sample Collection Time: 07 15 (24:00) Redox Potential (mV) Containers (#): VOA (X preserved or unpreserved) Liter Amber						
Disp. Pump Tubing Other: Sample ID: VOA (preserved or unpreserved) Other: Other: Other: Other: Other: Other: Other: Other:	1 9		V. T. P. S. C. S.	neter	Time	ivieasurement
Sample ID:						
Containers (#): VOA (X preserved orunpreserved)Liter Amber Alkalinity (mg/L) Other: Other: Other:		Li ~				
Other: Other: Other:		1.2000	Redox Potential	(mV)		
2	Containers (#): VOA (preserved or unpreserved) Liter A	mber	Alkalinity (mg/l	L)		
Other:Other:Other:Other:	Other:Other:Other:Other:		Other:			
	Other:Other:Other:		Other:			

GROUNDWATER SAMPLING DATA SHEET Page 5 of 8

Project:	BP	2111			Project No.:	06-88-	US	Date:	1/9/14
Field Repre	sentative:	AMIS	7						
Well ID:	Mn		Start Time:	902	End Time:	0970	Total Tim	e (minutes):	18
PURGE EQ	UIPMENT		Disp. Bailer	_	120V Pump	×	Flow Cell		
×	Disp. Tubing		12V Pump	×	Peristaltic Pump	Other/ID#:			
	D INTEGRIT	Y (cap, lock, vau	lt, etc.)	Comments:					
Good	Improvement Ne		circle one)						
PURGING/	SAMPLING M	ETHOD P	redetermined We	ll Volume (Lov	w-Flow Other:			(circle d	one)
	PREDETERI	MINED WEL	L VOLUME				LO	W-FLOW	
Casing I	iameter Unit Vol	ume (gal/ft) (cir	cle one)		ПП	Previous Low-I	Flow Purge Rate:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dep		21	100 100
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	"1()	a b	Initial Depth to	Water (b):		17.12 (ft)
Total Well Dep	th (a):			(ft)	"	The second secon	Depth = b + (a-b)/2	2:	19.42 (ft)
Initial Depth to	Water (b):			(ft)	▼	Maximum Allo	wable Drawdown	a = (a-b)/8:	0.56 (ft)
The contract and a contract of	Height (WCH) = (a			(ft)	▼ E	Low-Flow Purg	ge Rate:		0.25 (Lpm)*
	Volume $(WCV) = V$		ume:	(gal)	18	Comments:			
	Volumes = WCV		_	(gal)					THE R. P. LEWIS CO., LANSING, MICH.
200 (200 200 200 200)	olumes = WCV x	5:	15	(gal)	▼ 目	*Low-flow purge re	ate should be within	range of instruments	used but should not
Pump Depth (if	pump used):			(ft)			The second of the second second second	t exceed Maximum A	llowable Drawdown.
					IZATION PAR	AMETER RE	CORD		
Time	Cumulative Vol.	A STATE OF THE PARTY OF	pН	Conductivity	DO	ORP	Turbidity	the state of the s	NOTES
(24:00)	gal or L	°C 12-62	p-05	μS or mS	mg/L 6-ti	mV	NTU	Odor, cole	or, sheen or other
904	0.0	20.09	5.63	0505	0.0	268	0.0		
906	0-1	20.59	2:48	0491	3085	200	0.0		
908	1.5	26.83	Zill	482	7.65	298	0.0		
910	2.0	26.94	5.46	0480	2047	296	0.0		
912	2.5	20097	5.45	479	2.35	295	0.0		
		-					-		
	4								
Previous Stabiliz	red Parameters							_	
	MPLETION R	ECORD &	I F 0.D					22.2	
FORGE CO.	WIF LETTON KI	ECORD -		rameters Stable	3 Casing Vo	lumes & Parame	ters Stable	5 Casing Volume	es
	16.74		Other:						
			ECTION REC	ORD			GEOCHEMIC	AL PARAMI	ETERS
	at Sampling: 1					Para	meter	Time	Measurement
Sample Collecte	ed Via: Disp	o. Bailer1	Dedicated Pump T	ubing		DO (mg/L)			
🚣 Disp. Pum	p Tubing Othe	er:				Ferrous Iron (m	g/L)		
Sample ID:	mm 4		Sample Collection	on Time: 915	(24:00)	Redox Potentia			
	6_ VOA (Alkalinity (mg/			
		_preder red er		Other:		Other:	-,		
				Other:		Other:			
	Outer			_ Julei		Oner.			

GROUNDWATER SAMPLING DATA SHEET Page _______ of ________

Project:	BP 2	111			Project No.	: 06-88	-615	Date:	14/14
Field Repr	esentative:	AM	155		-				
Well ID:	Mw-			812	End Time	: 0830	Total Tin	ne (minutes):	18
PURGE EC	QUIPMENT		_ Disp. Bailer		120V Pump	1	_ Flow Cell		
X	_ Disp. Tubing		_ 12V Pump		Peristaltic Pump	Other/ID#			
	AD INTEGRIT	Y (cap. lock, va		Comments:	r cristante i ump	Other/ID#			
Good	Improvement N		circle one)	Comments:				_	
PURGING	/SAMPLING M		The Collection of the Collecti		1				
101101110	PREDETER	MINIED WE	LL VOLUME	ell Volume Lo	ow-Flow Other:			(circle	one)
Casing	Diameter Unit Vol				101			W-FLOW	
1" (0.04)	1,25" (0.08)	2" (0.17)	3" (0.38)	Orlean	1 1111		Flow Purge Rate:		(lp
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	Other:	b	Total Well De	and the same of th		23.82
Total Well Dep		0 1(2.00)	12 (3.01)	" () (ft)	2	Initial Depth to			16-54
Initial Depth to			_	(ft)	H		Depth = b + (a-b)/		0.17
	Height (WCH) = (a	a - b):	_	(ft)	= =		owable Drawdowi	a = (a-b)/8;	0,91
	Volume (WCV) =		lume	(gal)	1 I H	Low-Flow Pur	ge Rate:		(Lpn
Three Casing	Volumes = WCV	x 3:		(gal)		Comments:	_		
	Volumes = WCV x			(gal)					
Pump Depth (in				(ft)	▼ 日				s used but should not
		(ROUNDWA		IZATION PAR	exceed 0.25 gpm.	Drawdown should no	t exceed Maximum	Allowable Drawdown.
Time	Cumulative Vol.	Temperature	pH	Conductivity	DO DO				
(24:00)	gal or L	°C	P	μS or mS	mg/L	ORP mV	Turbidity		NOTES
812	0.0	1519	7.33	, 210	9 23	125	NTU O: O	Odor, col	lor, sheen or other
814	0.5	1525	6.54	v 690	4.99	200	0.0		
316	1.0	16.20	6.08	662	3.98	2/3	0.0		
818	1-5	16.53	5.00	644	3 43	226	0.0		
820	2.5	16.78	5.27	648	3.22	234	0.0		
277	600	16097	5.69	0644	3.02	239	0.0		
La									
				II = W					
revious Stabiliz	and Danamatan								
		10000							
ONGE COL	MPLETION RE	CORD _	Low Flow & Par	rameters Stable	3 Casing Vo	lumes & Paramet	ters Stable	5 Casing Volume	es
			Other:						
	SAM	IPLE COLLI	ECTION REC	ORD		(GEOCHEMIC.	AL PARAMI	TERS
Depth to Water a	at Sampling: 🖊 💪	157 (ft)			Parar			
ample Collecte	d Via: Disp.	Bailer I	Dedicated Pump T	uhing		Visit and the second	ncter	Time	Measurement
Disp. Pum			raneated I ump I	donig		DO (mg/L)	20		
ample ID:	_		C1 O	(2)	4	Ferrous Iron (mg			
	-		Sample Collection		(24:00)	Redox Potential	(mV)		
omainers (#): _	VOA (X	preserved or	_ unpreserved)	Liter Amb	per	Alkalinity (mg/L	.)		
	Other:			Other:		Other:			
-									

GROUNDWATER SAMPLING DATA SHEET Page _____ of ______

Project:	700	2111			Design M	AC 60	7-612		4 1 2 1 2
Field Repr	Ocentative.	11	1/-	1	- Project No	:06-8	6012	Date	1/9/1
1000	esentative:	21/1	1/2)	4				
Well ID:	MW	+	Start Time	:1147	End Time	1205	Total Tim	ne (minutes)	18
PURGE EC	QUIPMENT		Disp. Bailer		120V Pump	1	Floor Call	LIC GILLING	
	Disp. Tubing		12V Pump		Peristaltic Pump	,	Flow Cell		
	AD INTEGRIT	Y (can lock ya		-	renstance rump	Other/ID#:			
Good	Improvement N		circle one)	Comments:	-				
1	SAMPLING M								
LOKOING			Predetermined W	ell Volume Lo	W Flow Other:	1		(circle	one)
Casing	Diameter Unit Vol		L VOLUME		I TI I			W-FLOW	
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Outron	4 1111		Flow Purge Rate:		(lpm)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	Other:	b	Total Well Dep		19 65	26.53(ft)
Total Well Der		(2.00)	12 ((3.81)	(ft)	a	Initial Depth to		17.03	m 1 -1 -1
Initial Depth to			_	(ft)	H V v		Depth = $b + (a-b)/$		21.79 (ft)
and the second of the second o	Height (WCH) = (a	ı - b):		(ft)	H =	Low-Flow Purg	wable Drawdowi	1 = (a-D)/8:	(ft) 0.75 (I pm)*
	Volume (WCV) =		ume:	(gal)		Comments:	se Nate.		(Lpm)*
	Volumes = WCV			(gal)		Comments.	-		
Five Casing '	Volumes = WCV x	5:	_	(gal)	↓	*Low-flow purge r	ate should be within	range of instrumen	ts used but should not
Pump Depth (i	f pump used):			(ft)	, V., L.				Allowable Drawdown.
		C	ROUNDWA	TER STABIL	IZATION PAR	AMETER RE	CORD		The name of an about
Time	Cumulative Vol.	Temperature	pН	Conductivity	DO	ORP	Turbidity		NOTES
(24:00)	gal or L	℃		μS or mS	mg/L	mV	NTU	Odor, co	lor, sheen or other
1144	0.0	20.58	5.72	-863	3.48	-23	0.0	Mode	nate
1199	0.5	26,72	5.99	1864	2.03	~48	0.0	H	ydio Carbon
1123	1.8	20.99	641	865	156	-63	0.0		ODOR
1155	2.0	21.01	6.6	864	129	1-36	0.0		
*** 3 0			0.0	0001	1651	76	0.0		
				4					
Drouious Ct-1-11	and Dans								
Previous Stabiliz		OODE :							
PUKGE CO	MPLETION RE	ECORD 💃	Low Flow & Pa	rameters Stable	3 Casing V	olumes & Paramet	ters Stable	5 Casing Volum	nes
			Other:						
	SAN	APLE COLLI	ECTION REC	ORD			GEOCHEMIC	AL PARAM	ETERS
Depth to Water	at Sampling:	7.66 (ft)				neter	Time	Measurement
Sample Collecte	d Via: Disp	. Bailer [Dedicated Pump T	Tubing		DO (mg/L)		2 1,010	171CUSUICHICH
	p Tubing Other			- Carrie		Ferrous Iron (mg	α/I)		
Sample ID:			Sample Collection	on Time: 120	(24:00)				
	6 VOA (X					Redox Potential		-	
- Situation (II).					ber	Alkalinity (mg/I	.)		
1.9			_	Other:	_	Other:			
-	Other:			Other:		Other:			

151

Signature: ally mod

GROUNDWATER SAMPLING DATA SHEET

Page 8 of 8

Project:	BP 2	111	. ,		Project No.	06-0	8-61	Date:	1/9/14
Field Represe	entative:	AF	1/55	104	5				/ /
Well ID:	MW-	8	Start Time:	1055	End Time	1100	Total Tim	e (minutes):	15
PURGE EQU		_	Disp. Bailer	~	120V Pump	X	Flow Cell		
	Disp. Tubing		12V Pump		Peristaltic Pump	Other/ID#:			
) INTEGRITY	Contract Contract Contract	lt, etc.)	Comments:					
Good	Improvement Ne	eded (a	ircle one)						
PURGING/S	AMPLING M	ETHOD F	redetermined We	Il Volume Lo	w-How Other:			(circle o	one)
	PREDETERN	MINED WEL	L VOLUME		/		LO	W-FLOW	
	ameter Unit Volu				1 171	Previous Low-	Flow Purge Rate:		(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:	1 1111	Total Well Der			26.64 (ft)
4" (0.66)	6" ((1.50)	8" (2.60)	12" (5.81)	" ()	a b	Initial Depth to			77.81 (ft
Total Well Depth				(ft)			Depth = b + (a-b)/	2:	22-27 (ft)
Initial Depth to W	Vater (b):			(ft)			wable Drawdowi		1.10 (ft)
Water Column He	eight (WCH) = (a	- b):	_	(ft)	=	Low-Flow Purg			0.25 (Lpm)*
	olume (WCV) = 1		ome:	(gal)	■	Comments:	A CONTRACT		
	olumes = WCV		_	(gal)					
Five Casing Vo	olumes = WCV x	5:		(gal)	1 1 1	*Low-flow purge i	ate should be within	range of instruments	used but should not
Pump Depth (if p				(ft)	V D				Allowable Drawdown.
		C	ROUNDWA	TER STABIL	IZATION PAR				
Time	Cumulative Vol.	Temperature	рН	Conductivity	DO	ORP	Turbidity		NOTES
(24:00)	gal or L	°C		µS or (mS)	mg/L	mV	NTU		or, sheen or other
1045	0.0	24.03	<. SH	0523	4.00	291	0.0		
1047	0.5	26 24	2 25	1573	2.63	596	0.0		
1049	1.0	20.29	3- 20	1523	2.33	596	0.0		
1051	1.5		- F 13			00-	- 2		
1053	2.0	20,33	5.65	0523	2:09	295	0.0		
	-								
			-				k		
						-	-		
							-		
					1				
					1				
						h Tai			
Previous Stabilize	ed Parameters								
PURGE COM	APLETION R	ECORD 7	Low Flow & Pa	arameters Stable	3 Casing V	olumes & Paramo	eters Stable	_5 Casing Volum	es
	ÇAI	MPI E COL I	ECTION REC	CORD			GEOCHEMI	CAL PARAM	ETERS
~		2 0		LOND					5 5 3 No. 10 10 10 10 10 10 10 10 10 10 10 10 10
Depth to Water at		7.8 (1		3.53		Concession Concession	ameter	Time	Measurement
Sample Collected	l Via: Disp	o. Bailer	Dedicated Pump	Tubing		DO (mg/L)			
Disp. Pump	Tubing Other	er:				Ferrous Iron (n	ng/L)		
Sample ID:	1/W-8		Sample Collecti	on Time: 108	5 (24:00)	Redox Potentia	al (mV)		
Containers (#): (D VOA (>	preserved or	unpreserved)	Liter An	nber	Alkalinity (mg			
A STATE OF THE STA	Other:			_ Other:		Other:	_/		
1 3-			-	LUST / Y C					
-	Other:			_ Other:		Other:			

Signature: all that

GROUNDWATER MONITORING SITE SHEET

Page 1 of 2

oject:	BF	2111					Proj	ect No.:	06-8	8-615	Date: 1/16/14
eld Represe							El	evation:			
ormation re					High	Low					
. L. Indicat	tor ID#:				il/Water	Interfa	ce ID #:			List #s of	all equip used.)
	WELL ID	RECOR	D		W		AUGINO	RECOR	D		NOTES
Well ID	Well Sampling Order	As-Built Well Diameter (inches)	As-Built Well Screen Interval (ft)	Previous Depth to Water (ft)	Time (24:00)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)*	Depth to Water (ft)	Well Total Depth (ft)		
Mw-3					1405		-	18.10	26.40		
-											
		-		-							
			-	-					-		,

Signature: Alex Press

Revision: 8/19/11

GROUNDWATER SAMPLING DATA SHEET Page 2 of 2

Project:	BP- 2	11)			Project No.:	06-28-	615	Date:	1/11/14
Field Repre	esentative:	AM							
Well ID:	Mw-3		Start Time:		End Time:	_	Total Tin	ne (minutes):	-
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump	>	Flow Cell		
*	Disp. Tubing		12V Pump	>	Peristaltic Pump	Other/ID#	:		
WELL HEA	D INTEGRITY		lt, etc.)	Comments:	A				
Good	Improvement Nee		ircle one)		The state of the s				
PURGING/	SAMPLING MI		redetermined Wel	ll Volume Lo	w-Flow Other:			(circle	one)
	PREDETERM				101			W-FLOW	
	Diameter Unit Volu					OUT COUNTY AND	-Flow Purge Rate:		(lpm
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)		b	Total Well De	•		24.40 (fi
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	" ()	a	Initial Depth t			18,16 (ft
Total Well Dep			-	(ft)		March Control Control	Depth = $b + (a-b)a$		22.30 (ft
Initial Depth to	water (b): Height (WCH) = (a	LV.	-	(ft)		Section of the sectio	lowable Drawdow	n = (a-b)/8:	0. 25 (Lpm)
	Volume (WCV) = (a			(ft)		Low-Flow Pur	rge Kate:		(Lpm)
	Volumes = WCV x			(gal) (gal)		Comments:	_		
	$Volumes = WCV \times 5$		-	(gal)		kI ou flour numer	note about I have the		s used but should not
Pump Depth (it				(ft)		The Section of the con-			Allowable Drawdown.
	panip accept	G	ROUNDWAT		IZATION PAR			н елсеви махітит і	Anowable Drawabwn.
Time	Cumulative Vol.	Temperature	pH	Conductivity	DO	ORP	Turbidity		NOTES
(24:00)	gal or 🖒	°C	P11	μS or (nS)	mg/L	mV	NTU	100000000000000000000000000000000000000	or, sheen or other
1412	0.0	70.70	7.79	0.469	3.57	27	0.0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1414	0.5	20.64	6.95	0-464	2-96	67	0.0		
1416	1.0	80-66	6.77	0.463	2-81	7)	0.0		
1418	1.5	20.66	6.58	0.462	2-75	79	0.0		
1420	20	20.66	6.37	0 161	2.70	73	0.0		
			-						
						V			
							1		
						1			
Previous Stabili	zed Parameters						1 1 1		
PURGE CO	MPLETION RE	CORD 🗶		rameters Stable	3 Casing Vo	olumes & Param	neters Stable	_5 Casing Volum	nes
	0.43	MI E COLT	Other:	ODD			ODOG****	241 242	FORES O
N		The state of the s	ECTION REC	ORD			GEOCHEMIC		5.5
	at Sampling:l			0.00			rameter	Time	Measurement
Sample Collecte	ed Via: Disp.	Bailer I	Dedicated Pump T	Cubing		DO (mg/L)			
X Disp. Pun						Ferrous Iron (mg/L)		
Sample ID:	Mw-3		Sample Collection	on Time: 142	(24:00)	Redox Potenti	ial (mV)		
Containers (#):	VOA (Alkalinity (mg	z/L)		
	2 Other: 1 L		The second process	Other:		Other:			
	Other:		,	Other:		Other:			

Signature: Alex March

APPENDIX K

Surrounding Site Data

Table 4. Summary of Groundwater Analytical Results - Detected Halogenated VOCs Former Caterpillar Facility - San Leandro, California

Well No.	Sample Date	TCE (µg/L)	PCE (µg/L)	1,1- DCA (µg/L)	1,2- DCA (μg/L)	1,1- DCE (µg/L)	cis-1,2- DCE (µg/L)	1,1,1- TCA (μg/L)	Freon 113 (µg/L)	Freon 123a ¹ (µg/L)	Freon 12 (µg/L)	Freon 22 (µg/L)	Chloro- form (µg/L)	Carbon Tet (µg/L)	Vinyl Chloride (µg/L)
State MCL ^a		5	5	5	0.5	6	6°	200	1200	150	NA	NA	NA	0.5	0.5
Federal MCL ^b MW-121	10/26/1989	5 1	5 ND	NA ND	5 ND	7 ND	70° ND	200 ND	NA ND	NA ND	NA ND	NA 	100 ^d ND	NA ND	2 ND
	10/9/1990 2/26/1992	7	ND ND	ND	ND ND	ND ND	ND ND	1.6 0.8	ND ND	ND ND	ND(1)		ND ND	ND ND	ND(1) ND(1)
	5/19/1992	15 17	ND	ND ND	ND	1.7	ND	0.9	ND	ND	ND(1) ND(1)		ND	ND	ND(1)
	9/1/1992 12/8/1992	20 4.1	ND ND	ND ND	ND ND	ND ND	ND ND	0.7 ND	ND ND	ND ND	ND(1) ND		ND ND	ND ND	ND(1) ND
	12/28/1993	25	1.1	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	3/29/1994 6/21/1994	20 20	1.4 0.7	ND ND	ND ND	ND 0.6	ND ND	ND 0.6	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
	9/29/1994	26	ND	ND	ND	0.58	ND	0.5	ND	ND	ND		ND	ND	ND
	12/9/1994 3/28/1995	23 15	ND ND	ND ND	ND ND	0.53 ND	ND ND	0.63 ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
	6/20/1995	24	ND	ND	ND	ND	ND	0.57	ND	ND	ND		ND	ND	ND
	9/26/1995 12/21/1995	29 21	ND ND	ND ND	ND ND	ND 0.53	ND ND	0.51 ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
	3/15/1996	18	0.89	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	6/20/1996 9/12/1996	15 28	ND ND	ND ND	ND ND	ND 0.59	ND ND	ND 0.5	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
	11/25/1996	24	0.62	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	2/12/1997 5/27/1997	27 40	0.52	ND ND	ND ND	ND 0.83	ND ND	0.51 0.61	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
	9/24/1997	46	0.76	ND	ND	0.77	ND	0.67	ND	ND	ND ND		ND	ND	ND
	11/11/1997 3/24/1998	47 43	1.3	ND ND	ND ND	ND ND	ND ND	0.90 ND	ND ND	ND ND	ND		ND ND	ND ND	ND ND
	10/21/1998 3/24/1999	69	0.8	ND ND	ND ND	ND ND	ND ND	0.850 0.66	ND ND	ND ND	ND 4.5		ND ND	ND ND	ND ND
	11/4/1999	64 55	1.3 1.2	ND	ND	ND	ND	ND	ND	ND	9.2		ND	ND	ND
	3/28/2000 11/21/2000	30 28	0.59 1.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	6.2 ND		ND ND	ND ND	ND ND
	3/22/2001	22	1.5	ND	ND	ND	ND	ND	ND	ND	10		ND	ND	ND
	3/19/2002 12/12/2002	14 5.4	ND 0.7	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		0.89 ND		ND ND	ND ND	ND ND
	3/26/2003	8.2	0.66	ND	ND	ND	ND	ND	ND	-	1.2	<50	ND	ND	ND
	12/17/2003	2.6	ND	ND	ND	ND	ND	ND	ND		1.2	<50	ND	ND	ND
	3/10/2004 11/23/2004	9 13	1.2 0.99	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND 1.0	<50 ND	ND ND	ND ND	ND ND
	3/28/2005	14	1.8	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND
	11/2/2005 4/7/2006	7.9 30	0.93 3.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND 3.6	ND ND	ND ND	ND ND	ND ND
	12/13/2006	19	2.5	ND	ND	ND	ND	ND	ND	ND	3.2	ND	ND	ND	ND
	3/13/2007	23	4.7 4.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7.2	ND ND	ND ND	ND ND	ND ND
	12/19/2007 3/27/2008	16 12	6.9	ND	ND	ND	ND	ND	ND	ND	3.7 7	ND	ND	ND	ND
	12/4/2008	11	6.0	ND	ND	ND	ND	ND	ND		6.1		ND	ND	ND
	3/19/2009 12/3/2009	9.0 11	4.4 5.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	 ND	5.9 4.7	 ND	ND ND	ND ND	ND ND
	3/3/2010	9.2	5.2	ND	ND	ND	ND	ND	ND	ND	4.4	ND	ND	ND	ND
	11/30/2010 3/15/2011	6.7 7.7	2.8 3.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.2 ND	ND ND	ND ND	ND ND	ND ND
MW-122	11/27/1989	13	56	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	2/26/1992 5/19/1992	12 19	ND 50	ND ND(5)	ND ND(5)	ND ND(5)	ND ND(5)	ND ND(5)	ND ND(5)	ND ND(5)	ND(1) ND(10)		ND ND(5)	ND ND	ND(1) ND(10)
	9/1/1992	14	33	ND	ND	ND	ND	ND	ND	ND	ND(1)		ND	ND	ND(1)
	12/8/1992 3/30/1993	9 14	5.6 12	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
	6/24/1993	31	62	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)		ND(10)	ND	ND(10)
	9/30/1993 12/28/1993	29 29	53 44	ND ND	ND ND	ND ND	ND ND	0.6	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
	3/29/1994	27	48	ND	ND	ND	ND	0.6	ND	ND	ND		ND	ND	ND
	6/21/1994 9/29/1994	26 31	50 48	ND ND	ND ND	ND ND	ND ND	0.5 ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
	12/8/1994	32	49	ND	ND	ND	ND	ND	ND	ND	0.54 ND		ND	ND	ND
	3/28/1995 6/20/1995	35 33	51 54	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.1		ND ND	ND ND	ND ND
	9/26/1995 6/20/1996	28 31	45 48	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.5 10		ND ND	ND ND	ND ND
	11/25/1996	26	41	ND	ND	ND	ND	ND	ND	ND	6		ND	ND	ND
	5/27/1997 11/10/1997	28 30	40 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3.8 1.2		ND ND	ND ND	ND ND
	3/24/1998	35	45	ND	ND	ND	ND	ND	ND	ND	25		ND	ND	ND
	10/21/1998 3/24/1999	27 21	35 32	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	20 41		ND ND	ND ND	ND ND
	11/4/1999	21	33	ND	ND	ND	ND	ND	ND	ND	91		ND	ND	ND
	3/28/2000 11/21/2000	25 24	32 31	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	56 26		ND ND	ND ND	ND ND
	3/22/2001	19	31	ND	ND	ND	ND	ND	ND	ND	48		ND	ND	ND
	3/19/2002 12/12/2002	21 10	29 10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		18 9.3		ND ND	ND ND	ND ND
	3/26/2003 12/17/2003	2.4	4.2	ND	ND	ND ND	ND	ND	ND		1.3	<50	ND	ND	ND
	3/10/2004	2.8 5.6	4.3 9.7	ND ND	ND ND	ND	ND ND	ND ND	ND ND		ND 1.7	<50 <50	ND 0.56	ND ND	ND ND
	11/23/2004 3/28/2005	8.5	15	ND	ND	ND ND	ND	ND	ND		1.8	ND	0.95	ND	ND
	11/2/2005	9.4 9.3	15 14	ND ND	ND ND	ND	ND ND	ND ND	ND ND		1.8	ND ND	1.1 ND	ND ND	ND ND
	4/7/2006 12/13/2006	12 9.5	23 18	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3.2 2.9	ND ND	0.93 ND	ND ND	ND ND
	3/13/2007	10	17	ND	ND	ND	ND	ND	ND	ND	3.5	ND	ND	ND	ND
	12/19/2007 3/27/2008	10 6.9	15 15	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.9 1.2	ND ND	ND ND	ND ND	ND ND
	12/4/2008	8.4	16	ND	ND	ND	ND	ND	ND		2.2	ND	ND	ND	ND
	3/19/2009 12/3/2009	7.6 3.6	11 5.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	 ND	1.0 ND	 ND	0.76 ND	ND ND	ND ND
	3/3/2010				ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
	11/30/2010	0.58 2.2	0.84 3.0	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND

G:\1383.010\March 2011 Tables_rev.xls

Table 4. Summary of Groundwater Analytical Results - Detected Halogenated VOCs Former Caterpillar Facility - San Leandro, California

Well	Sample			1,1-	1,2-	1,1-	cis-1,2-	1,1,1-	Freon	Freon	Freon	Freon	Chloro-	Carbon	Vinyl
No.	Date	TCE	PCE	DCA	DCA	DCE	DCE	TCA	113	123a ¹	12	22	form	Tet	Chloride
	24.0	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
State MCL ^a		5	ξ μg/L)	ξ 5	0.5	6	6°	200	1200	150	NA	NA	NA	0.5	0.5
ederal MCL ^b		5	5	NA NA	5	7	70°	200	NA	NA	NA	NA	100 ^d	NA	2
MW-131	12/28/1993	46	28.0	ND	ND	, ND	ND	0.7	ND	ND	ND		ND	ND	ND
10177 101	3/28/1994	52	33.0	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	6/20/1994	40	27.0	ND	ND	ND	ND	0.7	ND	ND	ND		ND	ND	ND
	9/29/1994	51	29.0	ND	ND	ND	ND	0.62	ND	ND	ND		ND	ND	ND
	12/7/1994	51 51	31.0 32.0	ND ND	ND	ND ND	ND ND	0.68	ND ND	ND ND	ND 1		ND ND	ND ND	ND ND
	3/28/1995 6/20/1995	53	34	ND	ND ND	ND	ND	0.78 ND	ND	ND	1.6		ND	ND	ND
	9/26/1995	52	29	ND	ND	ND	ND	ND	ND	ND	3.8		ND	ND	ND
	6/20/1996	42	33	ND	ND	ND	ND	ND	ND	ND	16		ND	ND	ND
	9/12/1996	39	35 4.9	ND	ND	ND	ND	ND	ND	ND	18 1.9		ND	ND	ND
	11/25/1996 2/12/1997	5.7 5.8	5.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3.1		ND ND	ND ND	ND ND
	5/27/1997	1.8	2.0	ND	ND	ND	ND	ND	ND	ND	0.82		ND	ND	ND
	11/10/1997	31	33	ND	ND	ND	ND	ND	ND	ND	18		ND	ND	ND
	3/23/1998	29	12	ND	ND	ND	ND	ND	ND	ND	12 19		ND	ND	ND
	10/21/1998 3/24/1999	28 23	30 27	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	28		ND ND	ND ND	ND ND
	11/4/1999	19	25	ND	ND	ND	ND	ND	ND	ND	64		ND	ND	ND
	3/29/2000	25	22	ND	ND	ND	ND	ND	ND	ND	55		ND	ND	ND
	11/21/2000	26	27	ND	ND	ND	ND	ND	ND	ND	39		ND	ND	ND
	3/20/2002 3/26/2003	11 11	7.4 8.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		7.3 3.1	<50	ND ND	ND ND	ND ND
	12/16/2003	7.7	5.1	ND	ND	ND	ND	ND	ND		ND	<50	ND	ND	ND
	3/10/2004	8.5	6.7	ND	ND	ND	ND	ND	ND		1.3	<50	ND	ND	ND
	11/23/2004	8.8	6.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/28/2005 11/2/2005	14 19	11 13	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.5 5.2	ND ND	0.56 ND	ND ND	ND ND
	4/5/2006	21	19	ND	ND	ND	ND	ND	ND	ND	2.2	ND	0.61	ND	ND
	12/12/2006	16	12	ND	ND	ND	ND	ND	ND	ND	3	ND	ND	ND	ND
	3/13/2007	18	13	ND	ND	ND	ND	ND	ND	ND	2.1	ND	ND	ND	ND
	12/19/2007	14	11	ND	ND	ND	ND	ND	ND	ND	1.7	ND	ND	ND	ND
	3/27/2008 12/4/2008	14 15	13 12	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 	1.4 2.3	ND 	ND ND	ND ND	ND ND
	3/18/2009	13	7.5	ND	ND	ND	ND	ND	ND		1.1		0.58	ND	ND
	12/3/2009	14	8.3	ND	ND	ND	ND	ND	ND		0.89		ND	ND	ND
	3/3/2010	14	8.4	ND	ND	ND	ND	ND	ND	ND	0.69	ND	ND	ND	ND
	11/30/2010 3/16/2011	9.1 2.5	5.6 1.4	ND ND	ND ND	ND ND	ND 13.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MW-150	11/15/2005	11	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND
	4/5/2006	16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/12/2006 3/14/2007	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/19/2007	14 16	ND ND	ND ND	ND ND	ND ND	ND 0.64	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	3/27/2008	17	ND	ND	ND	ND	0.57	ND	ND	ND	ND	ND	ND	ND	ND
	12/4/2008	18	ND	ND	ND	ND	ND	ND	ND		ND		ND	ND	ND
	3/18/2009	20 21	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND		ND ND	ND ND	ND ND
	12/3/2009 3/3/2010	28	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
	11/30/2010	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/16/2011	23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
P-4	12/21/1995 3/15/1996	23	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	6/21/1996	26 28	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
	9/13/1996	29	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	11/25/1996	27	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	2/12/1997	29	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	5/28/1997	26	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	11/11/1997 3/23/1998	33 34	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
	10/21/1998	28	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	3/24/1999	22	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	11/2/1999	24	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	3/29/2000	25	ND	ND	ND	ND	ND	ND	ND	ND	3.3		ND	ND	ND
	11/20/2000	20	ND	ND	ND	ND	ND	ND	ND	ND	2.2		ND	ND	ND
	3/31/2004	7.8	ND	ND	ND	ND	ND	ND	ND		ND	<50	ND	ND	ND
	11/23/2004 3/28/2005	3.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND
	11/2/2005	12	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND
	4/4/2006	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
-	12/12/2006	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/13/2007 12/19/2007	12 4.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	3/28/2008	13	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
	12/4/2008	16	ND	ND	ND	ND	ND	ND	ND		ND		ND	ND	ND
	3/18/2009	17	ND	ND	ND	ND	ND	ND	ND		ND		ND	ND	ND
	12/3/2009	2.6	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND
						INI)	ND	ND	ND	ND	ND	INI)	ND	ND	I IVI)
	3/3/2010 11/30/2010	2.5 3.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 4. Summary of Groundwater Analytical Results - Detected Halogenated VOCs Former Caterpillar Facility - San Leandro, California

Well	Sample			1,1-	1,2-	1,1-	cis-1,2-	1,1,1-	Freon	Freon	Freon	Freon	Chloro-	Carbon	Vinyl
No.	Date	TCE	PCE	DCA	DCA	DCE	DCE	TCA	113	123a ¹	12	22	form	Tet	Chloride
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
State MCL ^a		5	5	5	0.5	6	6°	200	1200	150	NA	NA	NA	0.5	0.5
Federal MCL ^b		5	5	NA	5	7	70°	200	NA	NA	NA	NA	100 ^d	NA	2
EX-2B	2/12/1997	150	ND	ND	ND	0.55	ND	0.51	ND	ND(1.0)	ND(2.0)	ND(1.0)	ND	ND	ND
	5/27/1997	110	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	3/18/1998	70	0.71	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	6/10/1998	67	3.6	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	10/20/1998	55	5.8	ND	ND	ND	ND	ND	ND	ND	3.4		ND	ND	ND
	3/23/1999	41	6.1	ND ND	ND ND	ND	ND	ND	ND	ND	7.4		ND	ND	ND
	11/2/1999 3/27/2000	49 44	6.0 5.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	15 17		ND ND	ND ND	ND ND
	11/20/2000	47	4.7	ND	ND	ND	ND	ND	ND	ND	19		ND	ND	ND
	11/13/2001	41	3.9	ND	ND	ND	ND	ND	ND	ND	22		ND	ND	ND
	3/28/2003	34	3.4	ND	ND	ND	ND	ND	ND	-	9.6	<50	ND	ND	ND
	12/16/2003	29	2.9	ND	ND	ND	ND	ND	ND		ND	<50	ND	ND	ND
	4/15/2004	29	2.9	ND	ND	ND	ND	ND	ND	ND	11	<0.5	ND	ND	ND
	5/18/2004	30	7.7	ND	ND	ND	ND	ND	ND	ND	17	<0.5	ND	ND	ND
	6/15/2004 7/15/2004	37 28	10 9.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7.1 3.7	<0.5 <0.5	ND 1.52	ND ND	ND ND
	8/13/2004	31	9.2	ND	ND	ND	ND	ND	ND	ND	5.9	<0.5	ND	ND	ND
	9/15/2004	33	8	ND	ND	ND	ND	ND	ND	ND	4.4	<0.5	ND	ND	ND
	3/29/2005	27	3.2	ND	ND	ND	ND	ND	ND	ND	5.4	ND	ND	ND	ND
	11/1/2005	27	3.2	ND	ND	ND	ND	ND	ND	-	7.7	ND	ND	ND	ND
	4/5/2006	38	10	ND	ND	ND	ND	ND	ND	ND	3.4	ND	ND	ND	ND
	12/12/2006 3/12/2007	31 35	6.5 6.6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.5 1.3	ND ND	ND ND	ND ND	ND ND
	12/20/2007	33	4.7	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	1.3	ND ND	ND ND	ND	ND
	3/27/2008	22	2.9	ND	ND	ND	ND	ND	ND	ND	0.96	ND	ND	ND	ND
	12/4/2008	4.2	0.75	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND
	3/18/2009	3.7	0.51	ND	ND	ND	ND	ND	ND	1	ND		ND	ND	ND
	12/3/2009	4.1	0.51	ND	ND	ND	ND	ND	ND		ND		ND	ND	ND
	3/3/2010	5.4	0.56	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
	11/30/2010 3/15/2011	6.9 8.5	0.63	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
EX-2C	2/12/1997	260	ND	ND	ND	2.2	1.1	2.1	ND	ND(1.0)	ND(1.0)	ND(1.0)	ND	ND	ND
	5/27/1997	290	ND	ND	ND	1.8	0.93	2.2	ND	ND	ND		ND	ND	ND
	3/18/1998	240	ND(2.5)	ND(2.5)	ND(2.5)	ND(2.5)	ND(2.5)	ND(2.5)	ND(2.5)	ND(2.5)	ND(2.5)		ND(2.5)	ND	ND(2.5)
	6/10/1998	250	ND	ND	ND	1.6	ND	1.4	ND	ND	ND		ND	ND	ND
	10/20/1998 3/22/1999	150	ND	ND ND	ND ND	0.52	ND	0.74	ND ND	ND ND	ND		ND ND	ND ND	ND ND
	11/2/1999	130 120	0.79 ND	ND ND	ND ND	0.57 ND	ND ND	0.79 ND	ND ND	ND ND	1.9		ND ND	ND ND	ND ND
	3/27/2000	110	ND	ND	ND	ND	ND	ND	ND	ND	1.8		ND	ND	ND
	11/20/2000	100	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	11/13/2001	91	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
	3/28/2003	85	ND	ND	ND	ND	ND	ND	ND		ND	<50	ND	ND	ND
	12/16/2003 4/15/2004	69 91	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	 ND	ND ND	<50 ND	ND ND	ND ND	ND ND
	5/18/2004	110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/15/2004	110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/15/2004	95	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND
	8/13/2004	94	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/15/2004	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/29/2005 11/1/2005	83	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND
	4/5/2006	83 98	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
	12/13/2006	96 87	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
	3/12/2007	71	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/21/2007	85	ND	ND	ND	ND	0.97	ND	ND	ND	ND	ND	ND	ND	ND
			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/27/2008	77							ND		ND	ı			ND
	12/5/2008	4.1	ND	ND	ND	ND	ND	ND					1.5	ND	
	12/5/2008 3/18/2009	4.1 2.2	ND ND	ND	ND	ND	ND	ND	ND	-	ND		ND	ND	ND
	12/5/2008 3/18/2009 12/3/2009	4.1 2.2 0.63	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	 ND	ND ND	 ND	ND ND	ND ND	ND ND
	12/5/2008 3/18/2009	4.1 2.2	ND ND	ND	ND	ND	ND	ND	ND	-	ND		ND	ND	ND

Notes:

(7)

TCE = Trichloroethene PCE = Tetrachloroethene 1,1,1-TCA = 1,1,1-Trichloroethane 1,1,2-TCA = 1,1,2-Trichloroethane = State of California MCL for drinking water = Federal MCL = Value is for cis-1,2-dichloroethene isomer, the more toxic of the cis- and trans-isomers 1,1-DCA 1,2-DCA = 1,1-Dichloroethane = 1,2-Dichloroethane Freon 113 Freon 11 = 1,1,2-Trichloro-1,2,2-trifluoroethane = Trichlorofluoromethane 1.1-DCE = 1.1-Dichloroethene Freon 12 = Dichlorodifluoromethane (d) = State MCL for trans-isomer is 10. Federal MCL is 100 1,2-DCE = 1,2-Dichloroethene, total Freon 22 = Chlorodifluoromethane Value is for total trihalomethanes Carbon Tet = Carbon Tetrachloride Freon 123a = 1,2-Dichlorotrifluoroethane = Freon values confirmed by EPA Test Method 624 = Not available

= Micrograms per liter μg/L

= Freon 123a, based on historical results, all Freon 11 detections are assumed to

be Freon 123a when analyzed by EPA Test Method 601

(2) 1,1,2,2-Tetrachloroethane was detected in this sample at 17 $\mu\text{g/l}$ on 12/8/1992

MCL for 1,1,2,2-Tetrachloroethane is 1 µg/l

(3) Chlorobenzene was detected in this sample at 0.55 μ g/l on 09/30/94

MCL for Chlorobenzene is 70 µg/l

(4) Chlorobenzene was detected in this sample at $0.53 \,\mu\text{g/l}$ on 12/09/94(5)

Chlorobenzene was detected in these samples at 0.85 µg/l and 1,2-dichlorobenzene at 0.85 µg/l on 12/20/95 (6) 1,2-dichlorobenzene was detected in this sample at 0.73 μ g/l on 09/27/95

MCL for 1,2-dichlorobenzene is 600 µg/l

Methylene chloride was detected in this sample at 0.52 µg/l on 3/24/98

MCL for methylene chloride is 5 µg/l

(8) Methylene chloride was detected in this sample at 1.1 µg/l on 3/24/98

Reported 33 $\mu g/l$ Freon 12 but based on historical 624 results interpreted as Freon 22 (9) ND

= Not detected above the reporting limit of 0.5 $\mu g/L$, unless otherwise indicated in () parenthesis = Highest concentration found within Project Site

=Tested by EPA Method 624 ***

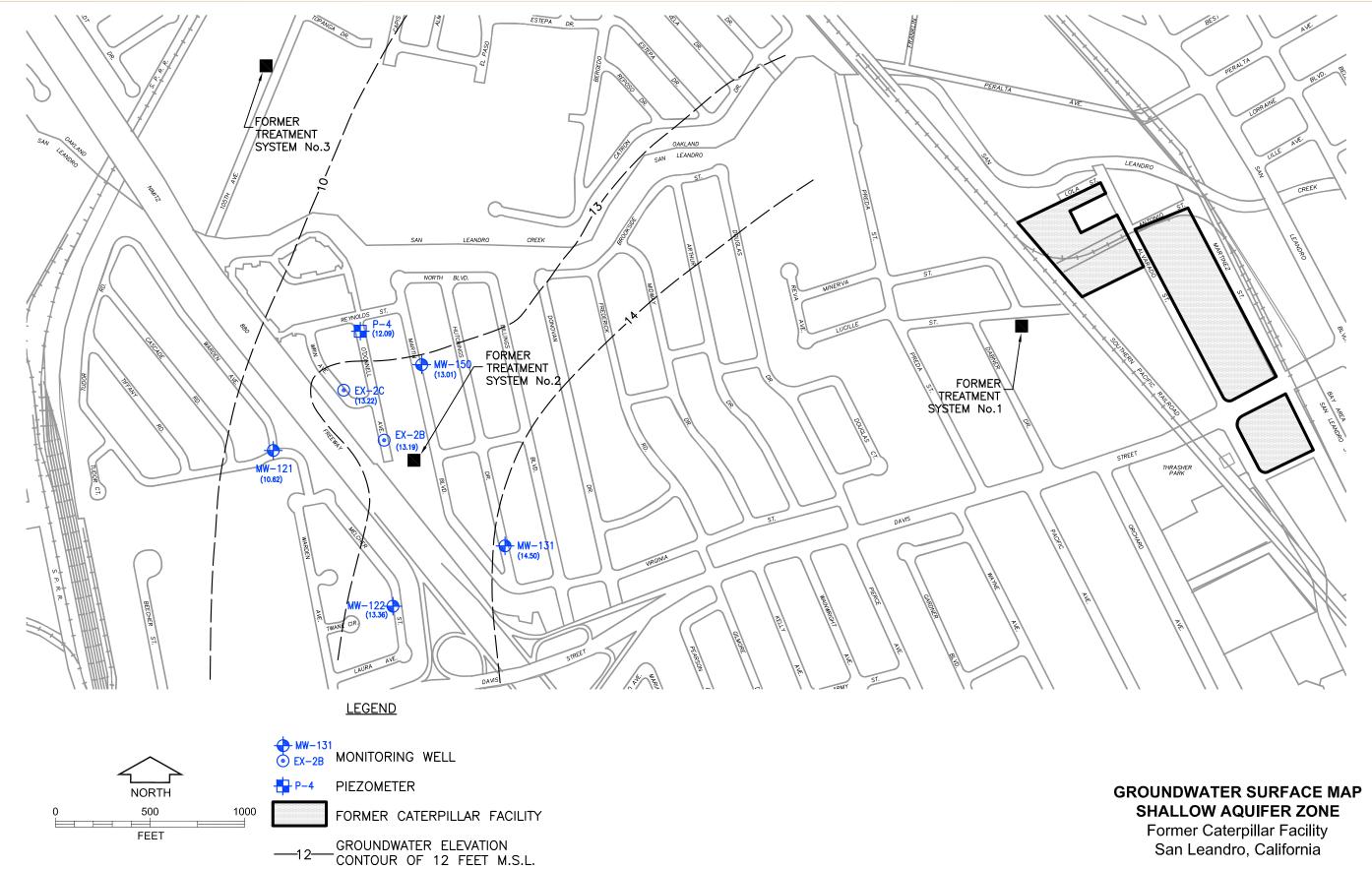
= Freon 11 detected at 1.1 ug/L on3/20/02

= Bromodichloromethane detected at 1.4 ug/L *****

Bromodichloromethane detected at 1.2 ug/L and Dibromochloromethane at 0.57 ug/L
 Concentration exceeds either California or Federal Maximum Contaminant Level (MCL)

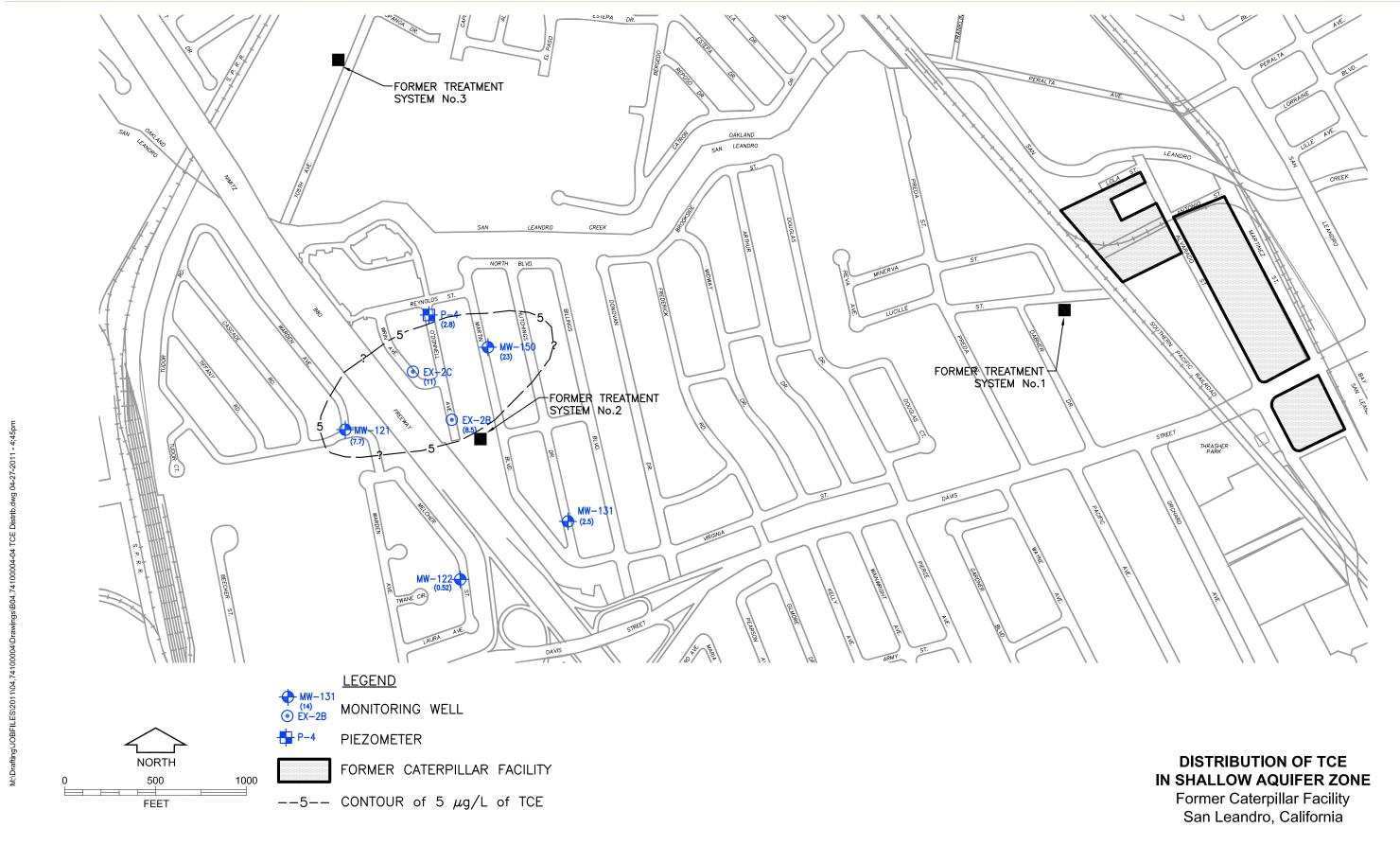
G:\1383.010\March 2011 Tables_rev.xls

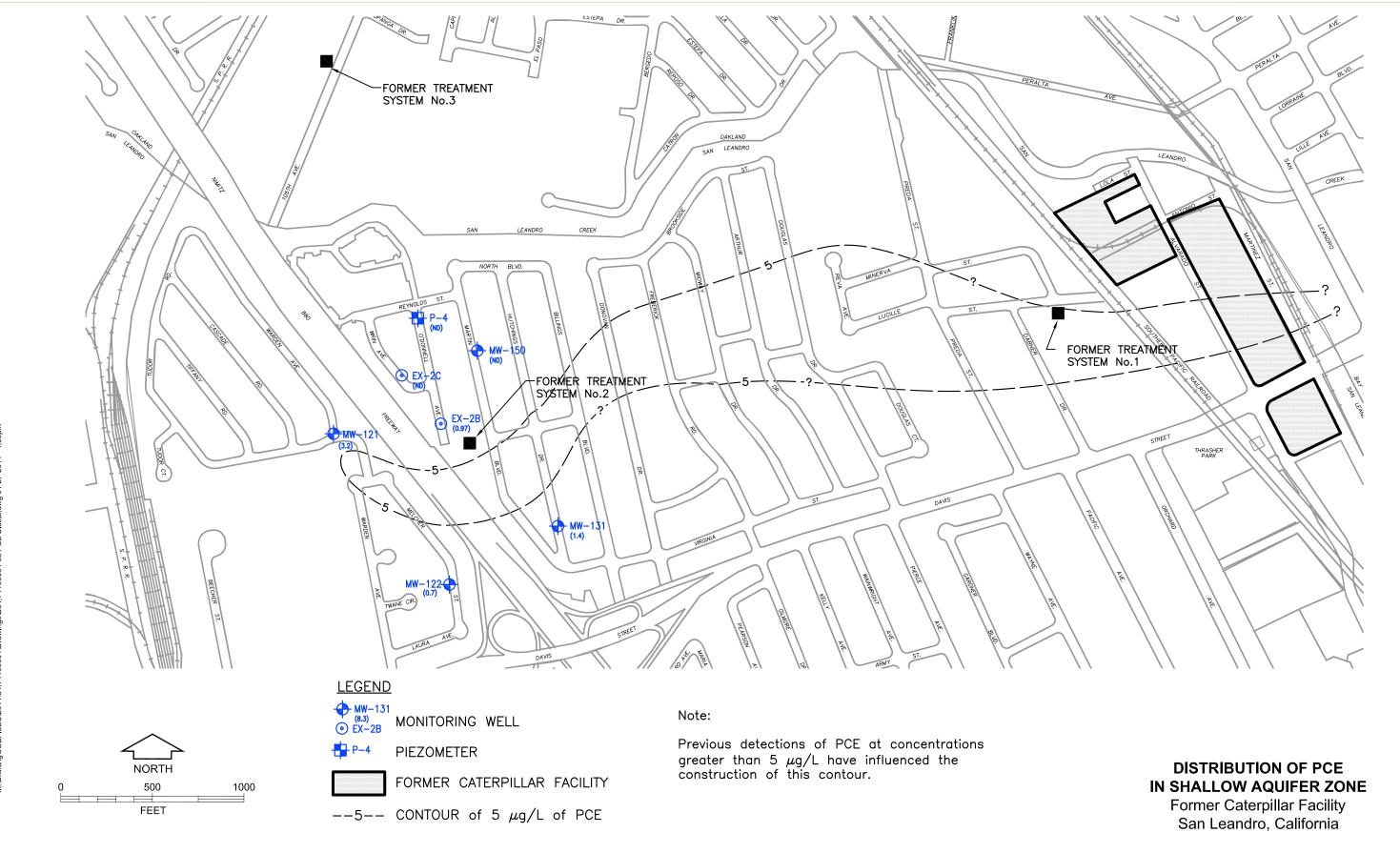
Table 4. Groundwater Summary Page 3 of 3

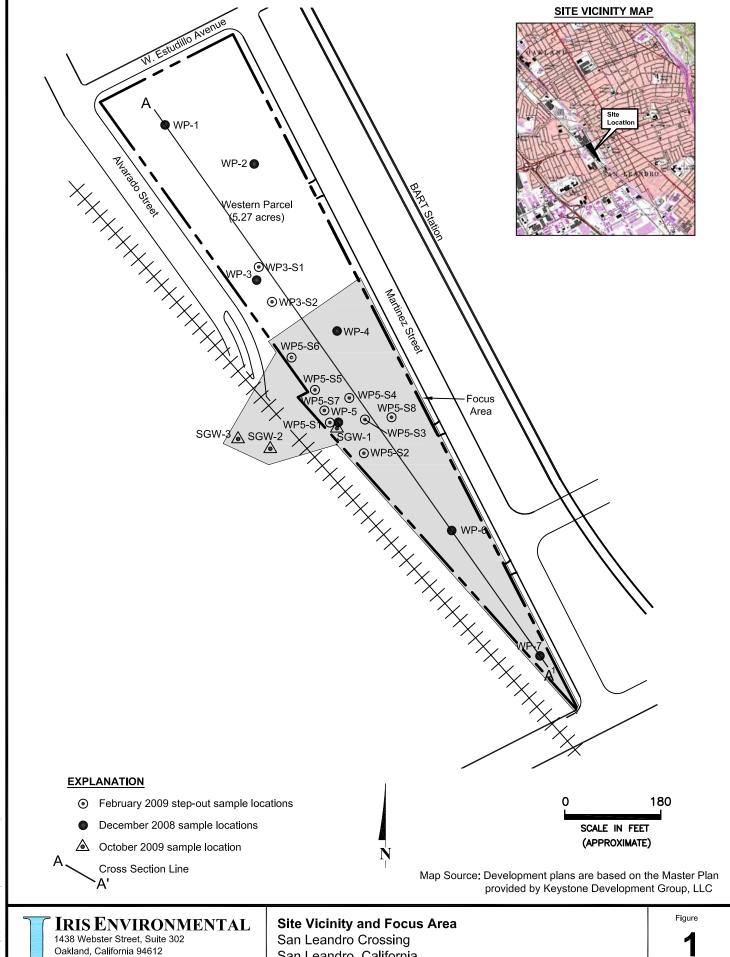

Reference: THIS SITE PLAN IS ADAPTED FROM A DRAWING TITLED "SITE PLAN WITH MONITORING WELL LOCATIONS," BY HARDING ESE, DRAWING NO.52283009.DWG, DATED 5/01.

FEET

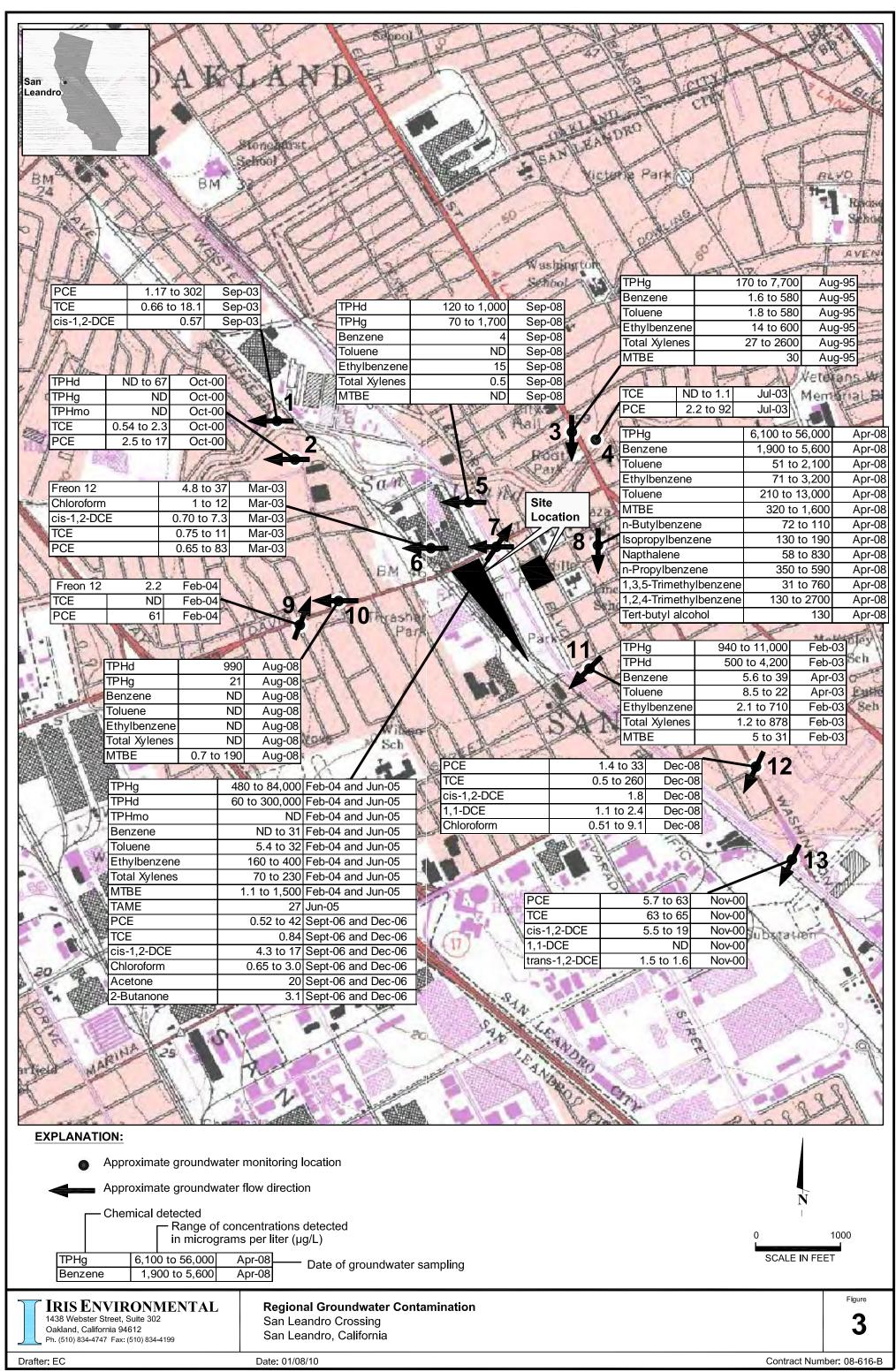
Former Caterpillar Facility


San Leandro, California


Reference: THIS SITE PLAN IS ADAPTED FROM A DRAWING TITLED "SITE PLAN WITH MONITORING WELL LOCATIONS," BY HARDING ESE, DRAWING NO.52283009.DWG, DATED 5/01.

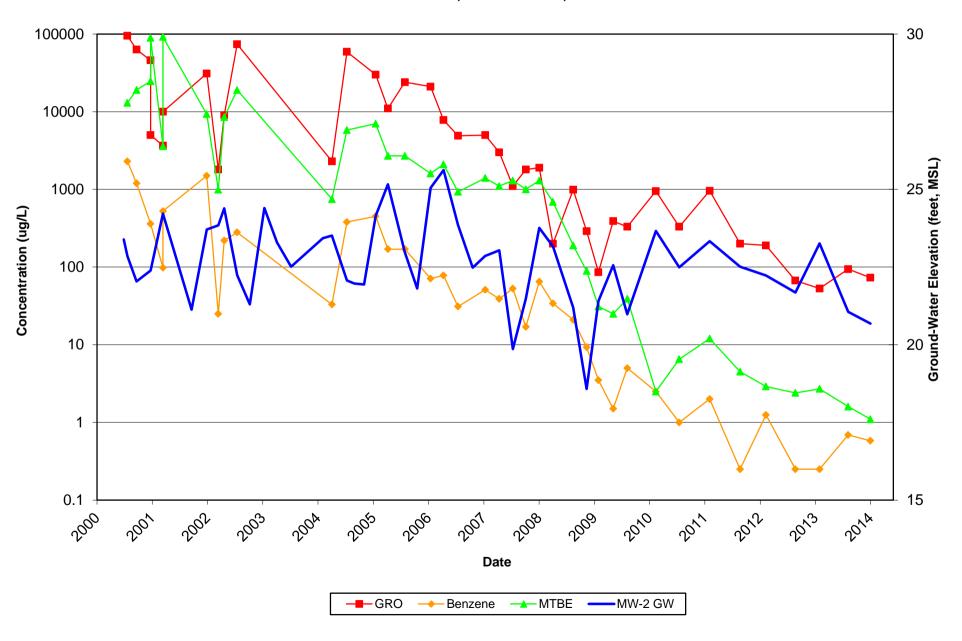


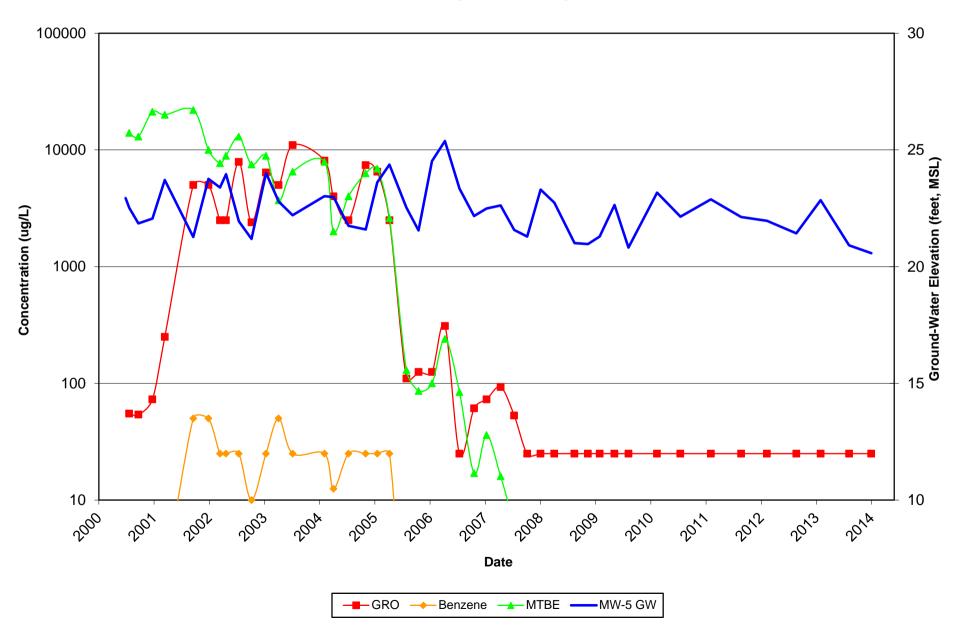
Reference: THIS SITE PLAN IS ADAPTED FROM A DRAWING TITLED "SITE PLAN WITH MONITORING WELL LOCATIONS," BY HARDING ESE, DRAWING NO.52283009.DWG, DATED 5/01.



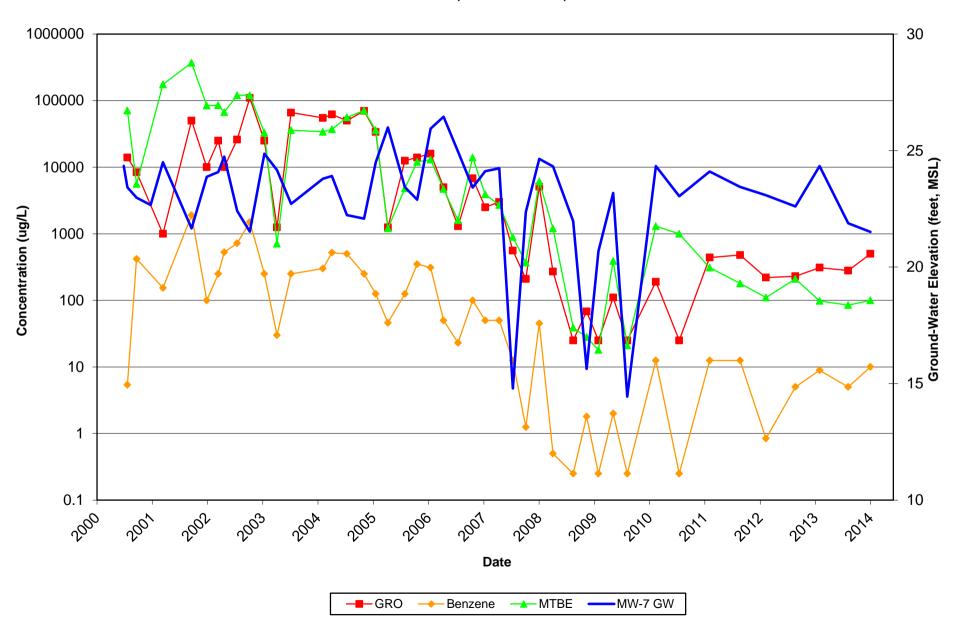
San Leandro, California

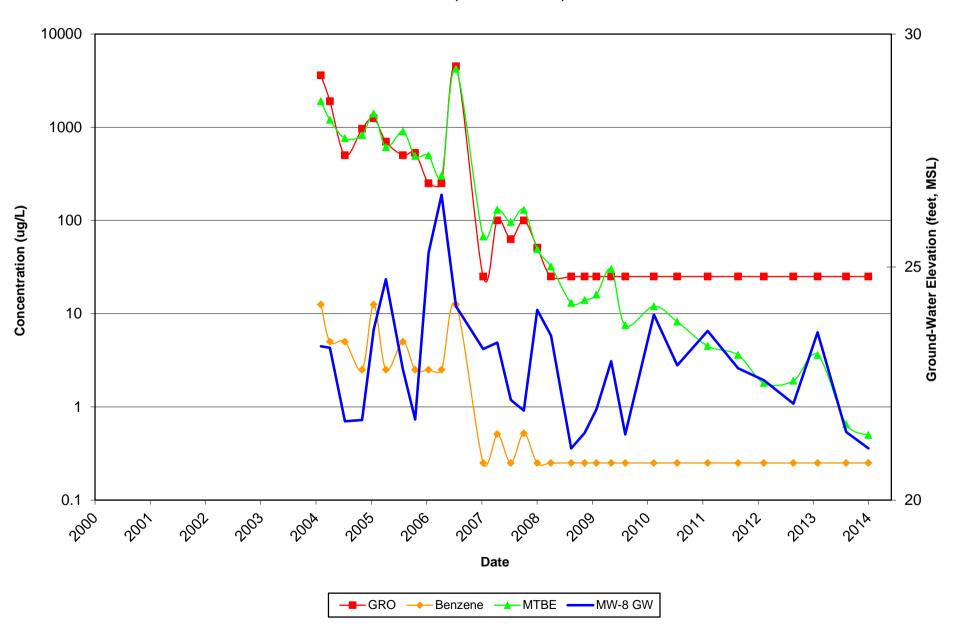
Date: 01/11/10 Drafter: EC


Ph. (510) 834-4747 Fax: (510) 834-4199


Appendix L

Analytical Concentration Trend Graphs


MW-2 Concentrations vs. Time
ARCO Station #2111
1156 Davis Street, San Leandro, California


MW-5 Concentrations vs. Time
ARCO Station #2111
1156 Davis Street, San Leandro, California

MW-7 Concentrations vs. Time
ARCO Station #2111
1156 Davis Street, San Leandro, California

MW-8 Concentrations vs. Time
ARCO Station #2111
1156 Davis Street, San Leandro, California

