

Filing:

Correspondence File

5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: www.CRAworld.com

(510) 420-0700 Fax: (510) 420-9170

	Property of Mo.	240504							
mber 14, 2012		240594							
	PROJECT NAME:	610 Market Street, Oakland							
Wickham	With the thirt with the high the second of t	DEOFWED							
eda County Environmen	tal Health	RECEIVED							
Harbor Bay Parkway, Sui	ite 250	4:00 pm, Nov 20, 2012							
eda, California 94502-657	77	Alameda County							
		Environmental Health							
Originals	Final Other								
Mail	Same Day Courier Souther Geo	Courier GeoTracker and Alameda County FTP							
T	DESCRIPT	ION							
Updated Site Concept	rual Model and Closure Request								
L									
	For Review and Comment								
questions regarding the c	contents of this document.	please call Peter Schaefer at							
Roger Schmidt (adjacen	at property owner), 1224 Co								
`		Efer Schafe							
	eda, California 94502-657 ed: Draft Originals Prints Mail Overnight Cou Updated Site Concept d e Draft Draft Augustions regarding the county Denis Brown, Shell Oil Roger Schmidt (adjacer	PROJECT NAME: Wickham eda County Environmental Health Harbor Bay Parkway, Suite 250 eda, California 94502-6577 ed: Draft Final Originals Other Prints Mail Same Day Cou Overnight Courier Other Geo' DESCRIPT Updated Site Conceptual Model and Closure Re d For Review and Comment e questions regarding the contents of this document, Denis Brown, Shell Oil Products US (electronic co Roger Schmidt (adjacent property owner), 1224 Co SF Data Room (electronic copy)							

Denis L. Brown Shell Oil Products US

HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.l.brown@shell.com

Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re:

Shell-branded Service Station

610 Market Street Oakland, California SAP Code 135692 Incident No. 98995750 ACEH Case No. RO0000493

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown

Senior Program Manager

UPDATED SITE CONCEPTUAL MODEL AND CLOSURE REQUEST

SHELL-BRANDED SERVICE STATION 610 MARKET STREET OAKLAND, CALIFORNIA

SAP CODE

135692

INCIDENT NO.

98995750

AGENCY NO.

RO0000493

NOVEMBER 14, 2012 REF. NO. 240594 (11) This report is printed on recycled paper. Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California

U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

TABLE OF CONTENTS

EXEC	CUTIVE S	UMMARY	i
1.0	INTRO	DUCTION1	Ĺ
2.0	UPDAT	TED SITE CONCEPTUAL MODEL (SCM)	l
3.0	LOW-T	HREAT CLOSURE EVALUATION	7
	3.1	GENERAL CRITERIA	3
	3.1.1	THE UNAUTHORIZED RELEASE IS LOCATED WITHIN	
		THE SERVICE AREA OF A PUBLIC WATER SYSTEM	3
	3.1.2	THE UNAUTHORIZED RELEASE CONSISTS ONLY OF PETROLEUM 8	3
	3.1.3	THE UNAUTHORIZED ("PRIMARY") RELEASE	
		FROM THE UST SYSTEM HAS BEEN STOPPED	3
	3.1.4	FREE PRODUCT HAS BEEN REMOVED TO	
		THE MAXIMUM EXTENT PRACTICABLE	3
	3.1.5	A CONCEPTUAL SITE MODEL THAT ASSESSES THE NATURE, EXTER	NT
		AND MOBILITY OF THE RELEASE HAS BEEN DEVELOPED 8	3
	3.1.6	SECONDARY SOURCE HAS BEEN	
		REMOVED TO THE EXTENT PRACTICABLE	
	3.1.7	SOIL OR GROUNDWATER HAS BEEN TESTED FOR MTBE)
	3.1.8	NUISANCE AS DEFINED BY WATER CODE	
		SECTION 13050 DOES NOT EXIST AT THE SITE	9
	3.2	MEDIA-SPECIFIC CRITERIA10	
	3.2.1	GROUNDWATER10	
	3.2.2	VAPOR	
	3.2.3	DIRECT CONTACT AND OUTDOOR AIR EXPOSURE10)

<u>Page</u>

LIST OF FIGURES (Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 SITE PLAN

FIGURE 3 GROUNDWATER CONTOUR AND CHEMICAL CONCENTRATION MAP

FIGURE 4 MW-8: TPHG AND BENZENE CONCENTRATIONS AND GROUNDWATER ELEVATIONS VERSUS TIME

LIST OF TABLES (Following Text)

TABLE 1 HISTORICAL SOIL ANALYTICAL DATA

TABLE 2 GROUNDWATER DATA

TABLE 3 HISTORICAL GRAB GROUNDWATER ANALYTICAL DATA

LIST OF APPENDICES

APPENDIX A SITE HISTORY

APPENDIX B BORING LOGS

APPENDIX C MASS REMOVAL DATA

APPENDIX D WELL SURVEY RESULTS

EXECUTIVE SUMMARY

- This evaluation and other information included in this report are intended to demonstrate that this site meets the requirements of the SWRCB's *Low-Threat Underground Storage Tank Case Closure Policy*.
- Historical groundwater monitoring data adequately define TPHg, BTEX, MTBE, and TBA impacts horizontally and vertically in groundwater to below applicable RWQCB ESLs and demonstrate that the plume is not migrating.
- Vadose zone soil analytical results are all below ESLs, with the exception of three soil samples collected from beneath the dispensers in 1995. Since no vadose zone soil concentrations exceeded ESLs in other borings, soil impacts have been adequately delineated.
- The site is likely to remain in use as a service station.
- This site meets SWRCB criteria for a low-threat fuel site. Therefore, on behalf of Shell, we respectfully request closure of this case. CRA requests that ACEH suspend the groundwater monitoring program during the closure review.

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell). This evaluation and other information included in this report are intended to a demonstrate that this site meets the requirements of the State Water Resources Control Board's (SWRCB's) Low-Threat Underground Storage Tank Case Closure Policy.

The site is an active Shell-branded service station located on the east side of Market Street between 6th and 7th Streets in a mixed commercial and residential area of Oakland, California (Figure 1). The site layout includes a station kiosk, three gasoline underground storage tanks (USTs), two dispenser islands, and a car wash (Figure 2).

A summary of previous work performed at the site is contained in Appendix A.

2.0 <u>UPDATED SITE CONCEPTUAL MODEL (SCM)</u>

ITEM	EVALUATION CRITERIA	COMMENTS/DISCUSSION
2.1	Hydrocarbon Source	
2.1.1	Identify/Describe Release Source and Volume (if known)	Unknown.
2.1.2	Discuss Steps Taken to Stop Release	The dispensers and product piping were upgraded in August 1995, and secondary containment was added to the turbine sumps in March 1998.
2.2	Site Characterization	
2.2.1	Current Site Use/Status	The site is a Shell-branded service station.
2.2.2	Soil Definition Status	All detections of total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and total xylenes (BTEX), and methyl tertiary-butyl ether (MTBE) in the 36 vadose zone (less than 10 feet below grade [fbg]) soil samples analyzed from the site are below the San Francisco Bay Regional Water Quality Control Board (RWQCB) environmental screening levels (ESLs)¹ for soils at sites with commercial land use, where groundwater is

Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, Interim Final – November 2007 [Revised May 2008]

ITEM	EVALUATION CRITERIA	COMMENTS/DISCUSSION						
		not a potential source of drinking water, with the exceptions of:						
		 2,700 milligrams per kilogram (mg/kg) TPHg, 130 mg/kg toluene, 46 mg/kg ethylbenzene, and 320 mg/kg total xylenes in soil sample D-1 at 2.5 fbg; 						
		• 1,400 mg/kg TPHg in soil sample D-6 at 2.5 fbg; and						
		• 1,600 mg/kg TPHg in soil sample D-7 at 2.5 fbg.						
		It should be noted that the RWQCB advises that ESLs must be used in conjunction with ESLs for related chemicals (e.g. BTEX, polynuclear aromatic hydrocarbons, oxidizers, etc.)." In this case, BTEX and MTBE are the appropriate related chemicals. Since the detections of toluene, ethylbenzene, and total xylenes which exceed the ESLs are in the area of the dispensers and no vadose zone soil concentrations exceeded ESLs in other borings, soil impacts have been adequately delineated. In addition, these samples were collected in August 1995, so these concentrations have likely attenuated in the 17 years since the samples were collected.						
2.2.3	SPH Definition Status	Table 1 presents historical soil data. Separate-phase hydrocarbons (SPHs) have not been observed at the site.						
2.2.4	Groundwater Definition Status (TPHg/BTEX)	Groundwater has been monitored at the site since the fourth quarter of 1998.						
		During the first quarter 2012 groundwater monitoring event, TPHg and BTEX concentrations were below ESLs for groundwater where groundwater is not a potential source of drinking water with the exception of up to 700 micrograms per liter (µg/L) TPHg and 160 µg/L benzene detected in well MW-8. As noted above, the RWQCB advises that TPH ESLs must be used in conjunction with ESLs for related chemicals.						

ITEM	EVALUATION CRITERIA	COMMENTS/DISCUSSION
		BTEX concentrations in the shallow zone are defined to below ESLs down gradient by wells MW-2 through MW-7.
		Historical monitoring well groundwater data are included in Table 2, and grab groundwater sampling data are presented in Table 3. The first quarter 2012 groundwater chemical concentration and contour map is included as Figure 3.
2.2.5	TPHg/BTEX Plume Stability and Concentration Trends	Quarterly groundwater monitoring data indicate that TPHg and BTEX concentrations are declining. Figure 4 shows TPHg and benzene concentrations in well MW-8, the only well where any TPHg or BTEX detections exceed ESLs.
2.2.6	Groundwater Definition Status (Oxygenates)	Fuel oxygenate concentrations in all wells are below ESLs, with the exception of 39,000 μg/L tertiary-butyl alcohol (TBA) detected in well MW-7 during the second quarter of 2012, so the extent of fuel oxygenates in groundwater is adequately defined.
		Historical monitoring-well groundwater data are included in Table 2, and grab groundwater sampling data are presented in Table 3.
2.2.7	Oxygenate Plume Stability and Concentration Trends	All MTBE concentrations were below ESLs during the first quarter 2012 groundwater monitoring event. TBA concentrations in MW-7 are stable. It should be noted that TBA is a degradation product of MTBE. As seen in historical data from well MW-6, TBA concentrations will likely decline as MTBE concentrations continue to decline.
2.2.8	Groundwater Flow Direction, Depth Trends and Gradient	Static groundwater depth has ranged from 9.20 to 15.61 fbg. Groundwater flow direction is generally southwesterly with a variable but generally shallow groundwater gradient. Groundwater depths are presented in the historical groundwater monitoring table (Table 2). The first quarter 2012 groundwater contour map is included as

ITEM	EVALUATION CRITERIA	COMMENTS/DISCUSSION
		Figure 3.
2.2.9	Stratigraphy and Hydrogeology	Based on 15 site borings, the site is underlain by sand and silty sand to the total depth explored of approximately 26 fbg. Boring logs are presented in Appendix B.
2.2.10	Preferential Pathways Analysis	Cambria Environmental Technology, Inc.'s (Cambria's) August 29, 2001 Site Conceptual Model and Pilot Test Report identified one utility trench down gradient of the site, which typically encounters groundwater, a southwestward-flowing, 10-inch-diameter sanitary sewer line.
		Cambria concluded that, due to the range of historical groundwater depths, the potential exists for the water table to rise into the sanitary sewer trench and stated that there is a potential that the identified utility may act occasionally as preferential pathways for groundwater flow; however, Cambria did not identify any significant sensitive receptors in the vicinity of the site.
2.2.11	Other Pertinent Issues	None.
2.3	Remediation Status	
2.3.1	Remedial Actions Taken	From March 2000 to January 2003, Cambria coordinated mobile dual-phase extraction (DPE) and groundwater extraction (GWE) from wells MW-2, MW-3, and T-1. Approximately 45,421 gallons of water were removed containing an estimated 3.4 pounds of TPHg, 0.087 pounds of benzene, and 71 pounds of MTBE. Vapor extraction removed an estimated 53 pounds of TPHg, 1.5 pounds of benzene, and 43 pounds of MTBE.
		In March 2001, Cambria performed a short-term (1 day) DPE test on well MW-3 and a short-term (1 day) soil vapor extraction (SVE) test on tank backfill well T-1. The tests were conducted using an internal combustion engine for vapor abatement. The cumulative mass removal (liquid and vapor) during the pilot tests was approximately 2.0 pounds of TPHg and 3.3 pounds of

ITEM	EVALUATION CRITERIA	COMMENTS/DISCUSSION
		MTBE.
		In October 2001, Cambria conducted a long-term (5 day) SVE pilot test on tank backfill well T-1. Based on the pilot test data, Cambria calculated a radius of influence of 15.0 to 30.3 feet. Approximately 16 pounds of TPHg, 1.3 pounds of benzene, and 36 pounds of MTBE were removed during the pilot test.
		From February 2003 to November 2006, Cambria operated a GWE system which extracted groundwater from wells MW-2, MW-3, MW-6 through MW-8, and tank backfill well T-1. The GWE system removed approximately 2,228,010 gallons of water containing an estimated 48 pounds of TPHg, 0.38 pounds of benzene, and 140 pounds of MTBE.
		In addition, dispensers and product piping were upgraded in August 1995, and secondary containment was added to the turbine sumps in March 1998.
		Appendix C presents mass removal data.
2.3.2	Area Remediated	The area down gradient from the dispensers and the UST.
2.3.3	Remediation Effectiveness	The plume is stable to declining following remedial activities.
2.4	Well and Sensitive Receptor Survey	
2.4.1	Designated Beneficial Water Use	The RWQCB Groundwater Committee's June 1999 East Bay Plain Groundwater Basin Beneficial Use Evaluation Report for Alameda and Contra Costa Counties, CA states that the City of Oakland (among other cities) "does not have plans to develop local groundwater resources for drinking water purposes, because of existing or potential saltwater intrusion, contamination, or poor or limited quantity." Although groundwater in this area cannot be precluded from being a potential future source of drinking water, it is not currently a source of drinking water, and given the shallow depth and proximity to

ITEM	EVALUATION CRITERIA	COMMENTS/DISCUSSION
		San Francisco Bay, it is unlikely that shallow groundwater would be used as a source of drinking water. Thus, RWQCB non-drinking water ESLs are the appropriate screening levels for this site.
2.4.2	Well Survey Results	In August 2001, Cambria performed a search of California Department of Water Resources (DWR) records for water-producing wells within one-half mile of the site. No public water supply wells were identified from DWR records. Cambria identified one well of unknown use located approximately 2,600 feet southeast of the site and one destroyed well located approximately 1,700 feet northeast of the site.
		The locations of the identified wells are shown on Figure 1, and well details are presented in Appendix D.
2.4.3	Likelihood of Impact to Wells	Due to the distance and direction to the possible water-producing well and declining trends observed for constituents of concern (COCs), it is unlikely it would be impacted.
2.4.4	Likelihood of Impact to Surface Water	The Oakland inner harbor of San Francisco Bay is located approximately 2,400 feet south. Due to the distance to the bay, it is unlikely that surface water would be impacted.
2.5	Risk Assessment	
2.5.1	Site Conceptual Exposure Model (current and future uses)	The site is an active Shell-branded service station and is likely to remain in use as a service station. The site is surrounded by mixed residential and commercial properties. There is no indication that the land use in the site vicinity will change from commercial and residential land use in the near future.
2.5.2	Exposure Pathways	Potential exposure pathways include ingestion of impacted groundwater, exposure of on-site workers to impacted shallow soils, and intrusion of vapor to indoor air. Groundwater ingestion does not appear to be a complete pathway because there are no down-gradient water-producing wells or surface water in close proximity to the site.

ITEM	EVALUATION CRITERIA	COMMENTS/DISCUSSION
		As discussed above, impacted soil is limited on site. Any worker doing trenching or excavating at an active gasoline station would be properly trained and prepared for encountering potentially impacted soil, and would wear personal protective equipment, as necessary. Therefore, the residual impacted soils do not appear to pose a significant threat to construction workers who may occasionally come in contact with the potentially impacted soils on site, and any work at this site would require contractors to have appropriate health and safety training. At this time, no further investigation associated with the residual soil impact is recommended.
		Furthermore, the site is an active fueling facility, and there is no reasonable concern that subsurface contamination poses unacceptable indoor inhalation health risk.
2.5.3	Risk Assessment Status	No formal risk assessment has been completed.
2.5.4	Identified Human Exceedances	NA
2.5.5	Identified Ecological Exceedances	NA
2.6	Additional Recommended Data or Tasks	
2.6.1	Well Destructions Following Case Closure	

3.0 LOW-THREAT CLOSURE EVALUATION

Site data demonstrate that the site conditions meet the low-threat UST case closure criteria outlined in the SWRCB's *Low-Threat Underground Storage Tank Case Closure Policy*. These criteria are addressed below.

3.1 GENERAL CRITERIA

3.1.1 THE UNAUTHORIZED RELEASE IS LOCATED WITHIN THE SERVICE AREA OF A PUBLIC WATER SYSTEM

East Bay Municipal Utility District is the public water system for the site and the surrounding area.

3.1.2 THE UNAUTHORIZED RELEASE CONSISTS ONLY OF PETROLEUM

The site is Shell-branded service station. Soil and groundwater impacts identified in site investigations since 1998 consist only of petroleum hydrocarbons and fuel additives.

3.1.3 THE UNAUTHORIZED ("PRIMARY") RELEASE FROM THE UST SYSTEM HAS BEEN STOPPED

No specific releases have been identified. The dispensers and product piping were upgraded in August 1995, and secondary containment was added to the turbine sumps in March 1998.

3.1.4 FREE PRODUCT HAS BEEN REMOVED TO THE MAXIMUM EXTENT PRACTICABLE

No free product has been measured in site groundwater monitoring wells.

3.1.5 A CONCEPTUAL SITE MODEL THAT ASSESSES THE NATURE, EXTENT, AND MOBILITY OF THE RELEASE HAS BEEN DEVELOPED

An updated SCM is presented in Section 2 above.

3.1.6 SECONDARY SOURCE HAS BEEN REMOVED TO THE EXTENT PRACTICABLE

As stated above, from March 2000 to January 2003, Cambria coordinated mobile DPE and GWE from wells MW-2, MW-3, and T-1. Approximately 45,421 gallons of water were removed containing an estimated 3.4 pounds of TPHg, 0.087 pounds of benzene,

and 71 pounds of MTBE. Vapor extraction removed an estimated 53 pounds of TPHg, 1.5 pounds of benzene, and 43 pounds of MTBE.

In March 2001, Cambria performed a short-term (1 day) DPE test on well MW-3 and a short-term (1 day) SVE test on tank backfill well T-1. The tests were conducted using an internal combustion engine for vapor abatement. The cumulative mass removal (liquid and vapor) during the pilot tests was approximately 2.0 pounds of TPHg and 3.3 pounds of MTBE.

In October 2001, Cambria conducted a long-term (5 day) SVE pilot test on tank backfill well T-1. Based on the pilot test data, Cambria calculated a radius of influence of 15.0 to 30.3 feet. Approximately 16 pounds of TPHg, 1.3 pounds of benzene, and 36 pounds of MTBE were removed during the pilot test.

From February 2003 to November 2006, Cambria operated a GWE system which extracted groundwater from wells MW-2, MW-3, MW-6 through MW-8, and tank backfill well T-1. The GWE system removed approximately 2,228,010 gallons of water containing an estimated 48 pounds of TPHg, 0.38 pounds of benzene, and 140 pounds of MTBE.

Appendix C presents mass removal data.

3.1.7 SOIL OR GROUNDWATER HAS BEEN TESTED FOR MTBE

Soil samples have been analyzed for MTBE in all investigations from March 1998 to the present. Groundwater samples have been analyzed for MTBE since December 1998. Analytical data has been reported to Alameda County Environmental Health (ACEH) in investigation reports and periodic groundwater monitoring reports.

3.1.8 NUISANCE AS DEFINED BY WATER CODE SECTION 13050 DOES NOT EXIST AT THE SITE

Site conditions do not interfere with enjoyment of life or property, affect an entire community or neighborhood, or present a nuisance during or as a result of, the treatment or disposal of wastes.

3.2 MEDIA-SPECIFIC CRITERIA

3.2.1 GROUNDWATER

The contaminant plume that exceeds water quality objectives is stable or decreasing in aerial extent, and this site meets the groundwater requirements specified for class 1 in the low-threat document:

- The plume is less than 100 feet long: The length of the plume exceeding ESLs is less than 70 feet.
- There is no free product: As stated above, no free product has been detected in site groundwater monitoring wells.
- The nearest existing water supply well or surface water body is greater than 250 feet from the defined plume boundary: As stated above, the nearest potential water supply well is approximately 2,600 feet southeast of the site. The Oakland inner harbor of San Francisco Bay is located approximately 2,400 feet south.

3.2.2 VAPOR

The site is an active fueling facility, and there is no reasonable concern that subsurface contamination poses unacceptable indoor inhalation health risk.

3.2.3 DIRECT CONTACT AND OUTDOOR AIR EXPOSURE

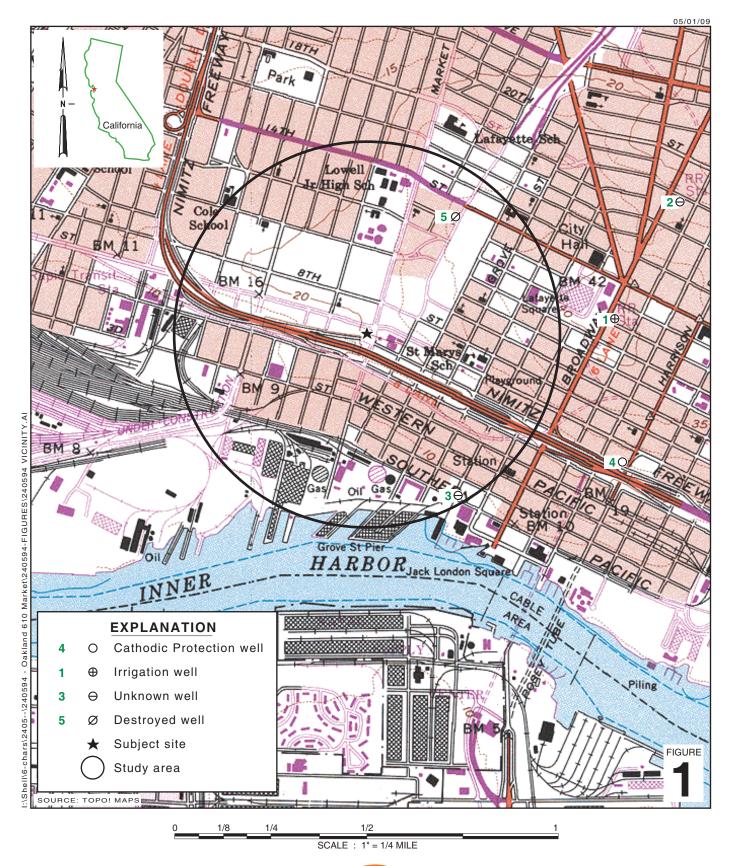
This site meets the residential direct contact and outdoor air requirements for benzene and ethylbenzene in commercial soil specified in scenario 1 in the low-threat document:

- Benzene and ethylbenzene concentrations at 0 to 5 fbg are less than 8.2 mg/kg and 89 mg/kg, respectively: Soil samples collected from 0 to 5 fbg have contained up to 0.70 mg/kg benzene and 46 mg/kg ethylbenzene.
- Benzene and ethylbenzene concentrations at 5 to 10 fbg are less than 12 mg/kg kg and 134 mg/kg, respectively: Soil samples collected from 5 to 10 fbg have contained up to 0.034 mg/kg ethylbenzene, and benzene has not been detected in soil samples collected from 5 to 10 fbg.

4.0 CLOSURE REQUEST

The site is likely to remain in use as a service station. Given the concentrations of COCs in site soil and groundwater compared to the ESLs as presented above, CRA concludes that the residual petroleum and fuel oxygenate impacts at this site pose very little or no risk to human health or the environment.

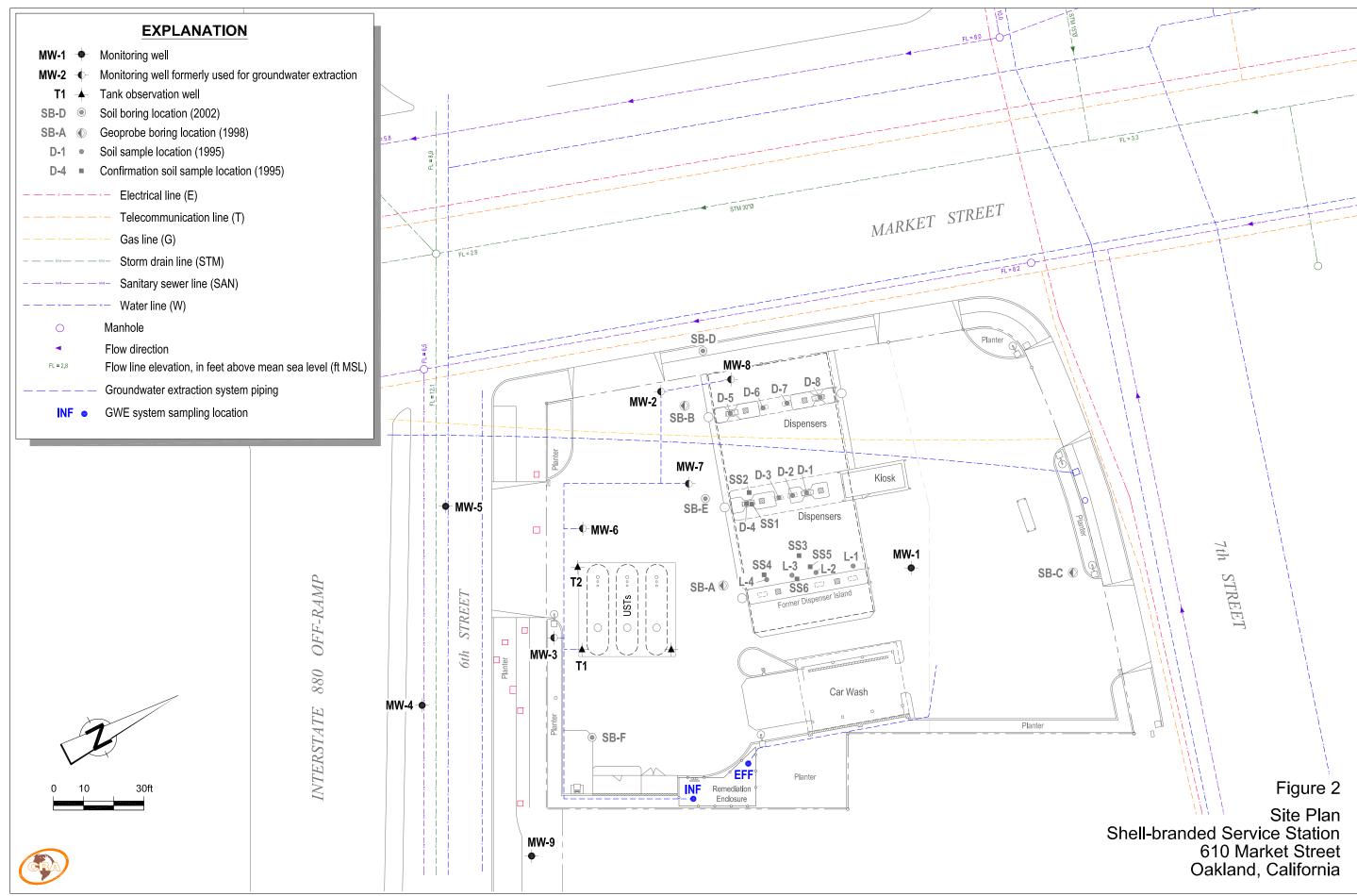
This site meets the SWRCB's low-threat UST closure policy requirements. Therefore, on behalf of Shell, we respectfully request closure of this case. CRA requests that ACEH suspend the groundwater monitoring program during the closure review.


All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Peter Schaefer, CEG, CHG

Aubrey K. Cool, PG

FIGURES



Shell-branded Service Station

610 Market Street Oakland, California

Vicinity Map

Predicted Time to Reach Water Quality Objectives (WQO) in Well MW-8

Shell-Branded Service Station, 610 Market Street, Oakland, California

 $y = b e^{ax}$ ===> x = ln(y/b) / awhere: $y = concentration in \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

Constituent

Total Petroleum Hydrocarbons as Gasoline (TPHg)

Benzene

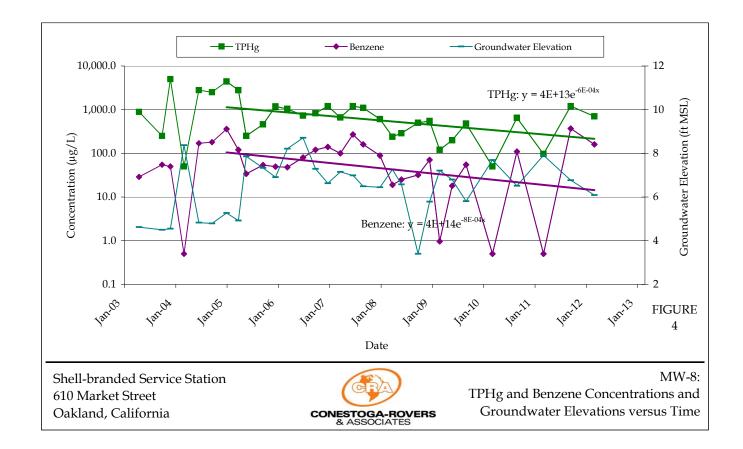
Given

WQO: y
Constant: b
Constant: a

Starting date for current trend:

210 46 4.32E+13 4.41E+14 -6.35E-04 -7.58E-04 12/29/2004 12/29/2004

Calculate


Attenuation Half Life (years):

 $(-\ln(2)/a)/365.25$

2.99 2.50

Estimated Date to Reach WQO: (x = ln(y/b) / a)

Apr 2012 Dec 2007

TABLES

TABLE 1 Page 1 of 4

HISTORICAL SOIL ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 610 MARKET STREET, OAKLAND, CALIFORNIA

Sample ID	Date	Depth (fbg)	POG (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	VOCs (mg/kg)	SVOCs (mg/kg)	Cd (mg/kg)	Cr (mg/kg)	Pb (mg/kg)	Ni (mg/kg)	Zn (mg/kg)
D-1	8/3/1995	2.5		2,700	< 5.0	130	46	320								
D-2	8/3/1995	2.5		66	< 0.050	0.11	0.36	1.9								
D-3	8/3/1995	2.5		76	0.70	4.7	0.79	8.7								
D-4	8/3/1995	2.5		7.7	< 0.010	0.017	0.043	0.082								
D-5	8/3/1995	2.5		33	< 0.025	0.16	0.10	3.0								
D-6	8/3/1995	2.5		1,400	< 5.0	< 5.0	< 5.0	4.2								
D-7	8/3/1995	2.5		1,600	<2.0	<2.0	3.4	25								
D-8	8/3/1995	2.5		<1.0	<0.005	<0.0072	<0.005	<0.025								
L-1	8/3/1995	2.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.005								
L-2	8/3/1995	2.5		2.2	< 0.005	0.036	0.0068	0.064								
L-3	8/3/1995	2.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.005								
L-4	8/3/1995	2.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.005								
SS-1	8/7/1995	5	< 50	<1.0	< 0.005	< 0.005	< 0.005	< 0.005		ND	ND	< 0.050	52	< 5.0	39	26
SS-2	8/7/1995	4	< 50	<1.0	< 0.005	< 0.005	< 0.005	< 0.005		ND	ND	< 0.050	36	< 5.0	16	11
SS-3	8/7/1995	4	< 50	<1.0	< 0.005	< 0.005	< 0.005	< 0.005		ND	ND	< 0.050	36	10	24	31
SS-4	8/7/1995	5	220	2.0	< 0.005	0.0057	0.0076	0.019		ND	ND	< 0.050	34	110	21	110
SS-5	8/7/1995	5	260	10	< 0.005	< 0.005	0.034	0.086		ND	ND	2.9	38	290	25	320
SS-6	8/7/1995	4	170	28	< 0.012	< 0.012	< 0.029	< 0.084		ND	ND	0.86	35	400	22	260
SB-A-5.0'	3/31/1998	5		<1.0												
SB-A-10.0'	3/31/1998	10		<1.0												
SB-A-13.5'	3/31/1998	13.5		1.3	0.063	< 0.0050	< 0.0050	< 0.0050	1.8							
CD D F O	2 /21 /1000	_		~1 0												
SB-B-5.0'	3/31/1998	5		<1.0		0.0054										
SB-B-10.0'	3/31/1998	10		<1.0	< 0.0050	0.0051	< 0.0050	< 0.0050	1.3							
CD C F O	2 /21 /1000	_		~1 0												
SB-C-5.0'	3/31/1998	5		<1.0		 <0.0050	 <0.00E0	 -0.00 5 0	 <0.0 2 5							
SB-C-6.5'	3/31/1998	6.5		<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.025							
SB-C-10.0'	3/31/1998	10		<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025							

CRA 240594 (11)

TABLE 1 Page 2 of 4

HISTORICAL SOIL ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 610 MARKET STREET, OAKLAND, CALIFORNIA

Sample ID	Date	Depth (fbg)	POG (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)		SVOCs (mg/kg)	Cd (mg/kg)	Cr (mg/kg)	Pb (mg/kg)	Ni (mg/kg)	Zn (mg/kg)
			0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0			0 0	0 0
MW-1 5.5	11/17/1998	5.5		<1.0	< 0.0050	< 0.0050		< 0.0050	< 0.025							
MW-1 9.5	11/17/1998	9.5		<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025							
MW-2 5.5	11/17/1998	5.5		8.3	< 0.0050	0.016	0.010	0.14	2.9							
MW-2 10.5	11/17/1998	10.5		<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	2.0							
) (III) F F	11 /17 /1000			-1.0	40.00 5 0	10.0050	40.00 5 0	10.0050	0.000							
MW-3 5.5	11/17/1998	5.5		<1.0	<0.0050	< 0.0050	<0.0050	<0.0050 19	0.032							
MW-3 10.5	11/17/1998	10.5		1,700	8.3	11	<1.2	19	16							
CD D F 0	4 /17 /2002	_		~1 0	<0.00F	<0.00 T	<0.00F	<0.00 □	۶0 F							
SB-D-5.0	4/16/2002	5		<1.0	<0.005	< 0.005	< 0.005	<0.005	<0.5							
SB-D-10.0	4/16/2002	10		<1.0	<0.005	<0.005	<0.005	<0.005	<0.5							
SB-D-11.5	4/16/2002	11.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.5							
CREFO	4/16/2002	F		∠E 0	<0.02E	<0.02F	<0.02E	<0.00E	(1							
SB-E-5.0	4/16/2002	5		<5.0	<0.025	<0.025	<0.025	<0.025	6.1							
SB-E-10.0	4/16/2002	10		<1.0	<0.005	< 0.005	< 0.005	<0.010	2.7							
SB-E-12.5	4/16/2002	12.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.010	4.8							
SB-F-5.0	4/16/2002	5		<1.0	< 0.005	< 0.005	< 0.005	<0.005	<0.5							
SB-F-3.0 SB-F-10.0	4/16/2002	10		<1.0 <1.0	< 0.005	< 0.005	<0.005	<0.005	<0.5							
						< 0.005	< 0.005									
SB-F-11.2	4/16/2002	11.2		<1.0	< 0.005	<0.005	<0.005	< 0.005	< 0.5							
MW4-6.5	4/17/2002	6.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.5							
MW-4-9.5	4/17/2002	9.5		<1.0	<0.005	< 0.005	<0.005	<0.005	<0.5							
MW-4-14.5		9.5 14.5		<1.0	<0.005	< 0.005	<0.005	<0.005	<0.5							
MW-4-19.0	, ,	14.5		<1.0	<0.005	<0.005	<0.005	<0.005	<0.5							
10100-4-19.0	4/17/2002	19		\1.0	\0.003	\0.003	\0.003	\0.003	\0. 3							
MW-5-6.5	4/17/2002	6.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.025	<0.5							
MW-5-9.5	4/17/2002	9.5		<1.0	< 0.005	<0.005	< 0.005	< 0.005	<0.5							
MW-5-14.5	, ,	14.5		<1.0	<0.005	< 0.005	<0.005	<0.005	<0.5							
MW-5-19.5	, ,	19.5		<1.0	< 0.005	< 0.005	< 0.005	<0.005	3.0							

TABLE 1 Page 3 of 4

HISTORICAL SOIL ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 610 MARKET STREET, OAKLAND, CALIFORNIA

Sample ID	Date	Depth (fbg)	POG (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)		SVOCs (mg/kg)	Cd (mg/kg)	Cr (mg/kg)	Pb (mg/kg)	Ni (mg/kg)	Zn (mg/kg)
MW-5-24.5	4/17/2002	24.5		<1.0	<0.005	<0.005	<0.005	<0.005	<0.5							
MW-6-5.5	11/15/2002	5.5		<1.0	<0.005	<0.005	<0.005	<0.005	<0.5							
MW-6-10.5	11/15/2002	10.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.5							
MW-6-15.5	11/15/2002	15.5		6,000	7.4	180	88	520	<1.0							
MW-6-19.0	11/15/2002	19		<1.0	0.017	< 0.005	< 0.005	0.0079	< 0.5							
MW-7-10.5	11/15/2002	10.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.005	0.7							
MW-7-15.5	11/15/2002	15.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.5							
MW-7-19.0	11/15/2002	19		<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.5							
MW-8-6	11/14/2002	6		<1.0	< 0.005	< 0.005	< 0.005	< 0.005	4.1							
MW-8-11	11/14/2002	11		<1.0	< 0.005	< 0.005	< 0.005	< 0.005	4.3							
MW-8-16	11/14/2002	16		<1.0	< 0.005	< 0.005	< 0.005	< 0.005	10							
MW-8-19.5	11/14/2002	19.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.5							
	, ,															
MW-9-5.5	01/28/2003	5.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.5							
	01/28/2003	10.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.025	< 0.5							
	01/28/2003	15.5		<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.5							
	01/28/2003	19		<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.5							
	, -,															
Shallow So	il (≤10 fbg) ES	6L a:	NA	180	0.27	9.3	4.7	11	8.4	Various	Various	7.4	750	750	150	600
	>10 fbg) ESL ^a		NA	180	2.0	9.3	4.7	11	8.4	Various	Various	39	5,000	750	260	1,500

Notes:

POG = Non-polar petroleum oil and grease analyzed by EPA Method 5520 E&F

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B; before April 16, 2002, analyzed by EPA Method 8015.

Benzene, toluene, ethylbenzene, and xylenes analyzed by EPA Method 8260B; before April 16, 2002, analyzed by EPA Method 8020.

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8260B; before April 16, 2002, analyzed by EPA Method 8020

VOCs = Volatile organic compounds analyzed by EPA Method 8240

SVOCs = Semi-volatile organic compounds analyzed by EPA Method 8240

TABLE 1 Page 4 of 4

HISTORICAL SOIL ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 610 MARKET STREET, OAKLAND, CALIFORNIA

Sample ID Ε PbNiDepth POG T MTBE VOCs SVOCs CrZnDate **TPHg** В \boldsymbol{X} Cd(fbg) (mg/kg) (mg/kg)

Cd = Cadmium analyzed by EPA Method 6010

Cr = Chromium analyzed by EPA Method 6010

Pb = Lead analyzed by EPA Method 6010

Ni = Nickel analyzed by EPA Method 6010

Zn = Zinc analyzed by EPA Method 6010

fbg = Feet below grade

mg/kg = Milligrams per kilogram

ND = Not detected; see laboratory report for specific detection limits.

x =Not detected at reporting limit x =

--- = Not analyzed

ESL = Environmental screening level

NA = No applicable ESLs

Results in **bold** equal or exceed applicable ESL

Shading indicates that soil sample location was subsequently excavated; results are not representative of residual soil.

a = San Francisco Bay Regional Water Quality Control Board commercial/industrial ESL for soil where groundwater is not a source of drinking water (Tables B and D of *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater*, California Regional Water Quality Control Board, Interim Final - November 2007 [Revised May 2008]).

Well ID	Date	TPHg (µg/L)	B (µg/L)	T (μg/L)	E (μg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)
MW-1	12/17/1998	2,200	20	<10	110	420	< 50						21.70	13.71	7.99
MW-1	03/09/1999	4,320	25.8	<10.0	338	474	<100						21.70	13.03	8.67
MW-1	06/16/1999	6,150	107	84.0	615	1,050	<250						21.70	13.82	7.88
MW-1	09/29/1999	3,440	97.3	58.7	433	578	89.1						21.70	14.45	7.25
MW-1	12/22/1999	1,370	34.5	4.38	196	49	29.3						21.70	15.39	6.31
MW-1	03/21/2000	2,550	10.3	3.36	164	312	65.6						21.70	11.94	9.76
MW-1	06/20/2000	4,770	64.3	18.6	387	732	51.3						21.70	13.15	8.55
MW-1	09/21/2000	7,490	350	229	690	1,490	160						21.70	13.65	8.05
MW-1	11/30/2000	5,410	420	168	494	1,170	167						21.70	14.20	7.50
MW-1	03/06/2001	965	25.7	9.14	13.3	9.12	<25.0				<u>`</u>		21.70	12.99	8.71
MW-1	06/28/2001	5,900	190	<i>7</i> 1	360	910		110					21.70	13.98	7.72
MW-1	09/12/2001	7,400	240	110	460	1,300		130					21.70	14.15	7.55
MW-1	12/12/2001	1,700	100	30	120	300		98					21.70	13.75	7.95
MW-1	03/08/2002	1,100	63	12	74	83		50					21.70	13.22	8.48
MW-1	06/06/2002	2,300	95	31	130	290		49					21.70	13.57	8.13
MW-1	09/09/2002	3,600	150	44	200	590		54					21.70	14.05	7.65
MW-1	12/12/2002	2,200	130	14	120	310		46					21.70	14.20	7.50
MW-1	02/26/2003	580	30	2.9	25	48		27					21.70	13.57	8.13
MW-1	04/15/2003						`				,		21.70	13.67	8.03
MW-1	06/13/2003	440	18	6.1	33	88		24					21.70	13.85	7.85
MW-1	09/26/2003	54	3.8	0.51	4.7	7.5		11					21.70	14.63	7.07
MW-1	11/24/2003	120	5.6	0.87	8.4	20		17					21.70	14.86	6.84
MW-1	03/01/2004	350	20	3.8	38	100		18					21.70	12.85	8.85
MW-1	06/15/2004	100	1.8	< 0.50	2.6	6.1		15					21.70	14.27	7.43
MW-1	09/16/2004	200	20	0.75	7.8	16		27	< 5.0	< 2.0	<2.0	<2.0	21.70	14.60	7.10
MW-1	12/29/2004	67	1.8	< 0.50	1.8	3.5		15	400 ACT 100				21.70	14.27	7.43
MW-1	02/28/2005	60	1.8	< 0.50	1.9	3.6		22					21.70	12.45	9.25
MW-1	03/23/2005												21.70	12.50	9.20
MW-1	05/18/2005	92	5.3	< 0.50	5.4	12		9.7					21.70	12.22	9.48
MW-1	08/16/2005												21.70	13.51	8.19

Well ID	Date	TPHg (µg/L)	Β (μg/L)	Τ (μg/L)	E (μg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (μg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)
MW-1	09/15/2005	210	16	< 0.50	4.3	19		19	320	<2.0	<2.0	<2.0	21.70	14.00	7.70
MW-1	10/26/2005												21.70	14.30	7.40
MW-1	12/13/2005	< 50.0	7.55	2.14	2.39	2.73		18.6					21.70	14.27	7.43
MW-1	03/08/2006	< 50.0	1.95	< 0.500	1.29	2.42		13.6					21.70	12.10	9.60
MW-1	06/27/2006	180	22	1.9	8.0	25		34					21.70	12.70	9.00
MW-1	09/25/2006	160	16	< 0.50	2.1	11		23	<10	<1.0	<1.0	<1.0	21.70	14.07	7.63
MW-1	12/21/2006	120	3.2	< 0.50	< 0.50	<1.0		27					21.70	14.27	7.43
MW-1	03/20/2007	< 50	1.8	< 0.50	< 0.50	<1.0		15					21.70	13.61	8.09
MW-1	06/18/2007	98	7.5	0.271	0.52 1	1.4		19					21.70	14.42	7.28
MW-1	08/30/2007	94 n	6.6	<1.0	<1.0	0.82 1		19	<10	<2.0	<2.0	<2.0	21.70	14.84	6.86
MW-1	12/28/2007	67 n	4.8	<1.0	<1.0	<1.0		23					21.70	15.01	6.69
MW-1	03/26/2008	< 50	3.7	<1.0	<1.0	<1.0		12					21.70	14.16	7.54
MW-1	05/29/2008	310	20	1.3	13	39		22					21.70	14.76	6.94
MW-1	09/25/2008	66	3.8	<1.0	<1.0	<1.0		14	<10	<2.0	<2.0	<2.0	21.70	15.31	6.39
MW-1	12/16/2008	< 50	2.6	<1.0	<1.0	<1.0		17	~~~				21.70	14.30	7.40
MW-1	02/26/2009	79	5.9	<1.0	<1.0	<1.0		20					21.70	14.51	7.19
MW-1	05/26/2009	160	15	<1.0	6.2	15		28					21.70	14.74	6.96
MW-1	09/02/2009	220	28	<1.0	<1.0	22		28	<10	<2.0	<2.0	<2.0	21.70	15.61	6.09
MW-1	03/10/2010	99	12	<1.0	<1.0	<1.0		- 27					21.70	13.85	7.85
MW-1	08/31/2010	170	23	<1.0	<1.0	18		20	13	<2.0	<2.0	<2.0	21.70	15.08	6.62
MW-1	03/08/2011	120	15	0.60	1.2	1.5		17					21.70	13.35	8.35
MW-1	09/19/2011	290	46	1.4	0.60	14		45	<10	<1.0	<1.0	1.8	21.70	14.71	6.99
MW-1	03/05/2012	15 0	22	0.61	<0.50	1.0		29				- 	21.70	15.32	6.38
MW-2	12/17/1998	<5,000	<50	<50	<50	<50	11,000						19.61	12.07	7.54
MW-2	03/09/1999	<250	5.20	< 2.50	< 2.50	< 2.50	9,870						19.61	11.46	8.15
MW-2	06/16/1999	< 50.0	0.569	< 0.500	< 0.500	< 0.500	3,440						19.61	12.26	7.35
MW-2	09/29/1999	58.6	2.51	0.978	< 0.500	< 0.500	3,930						19.61	12.51	7.10
MW-2	12/22/1999	<2,000	50.4	<20.0	<20.0	<20.0	15,000						19.61	13.40	6.21
MW-2	03/21/2000	<5,000	94.7	<50.0	<50.0	<50.0	13,900						19.61	10.36	9.25

Well ID	Date	TPHg (µg/L)	Β (μg/L)	Τ (μg/L)	Ε (μg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)
MW-2	06/20/2000	101	5.95	< 0.500	< 0.500	0.552	7,670						19.61	11.12	8.49
MW-2	09/21/2000	<2,000	<20.0	<20.0	<20.0	<20.0	4,460						19.61	11.95	7.66
MW-2	11/30/2000	81.1	4.46	0.924	0.841	3.23	3,450				-		19.61	12.48	7.13
MW-2	03/06/2001	< 500	183	< 5.00	< 5.00	< 5.00	14,000						19.61	11.10	8.51
MW-2	06/28/2001	<1,000	<10	<10	<10	<10		4,200					19.61	12.40	7.21
MW-2	09/12/2001	<2,000	120	<20	<20	<20		17,000					19.61	12.45	7.16
MW-2	12/12/2001	<1,000	<10	<10	<10	<10		3,000					19.61	12.14	7.47
MW-2	03/08/2002	<250	<2.5	<2.5	<2.5	<2.5		1,100			***		19.61	11.68	7.93
MW-2	06/06/2002	< 500	< 5.0	< 5.0	< 5.0	< 5.0		2,000					19.61	11.95	7.66
MW-2	09/09/2002	<200	< 2.0	<2.0	<2.0	<2.0		740					19.62	12.38	7.24
MW-2	12/12/2002	<200	< 2.0	<2.0	<2.0	<2.0		1,000					19.62	12.40	7.22
MW-2	02/26/2003	< 500	< 5.0	< 5.0	< 5.0	< 5.0		1,600					19.62	12.69	6.93
MW-2	04/15/2003												19.62	12.81	6.81
MW-2	06/13/2003	< 500	< 5.0	< 5.0	< 5.0	<10		790					19.62	12.65	6.97
MW-2	09/26/2003	<250	< 2.5	<2.5	<2.5	< 5.0		250					18.20	12.95	5.25
MW-2	11/24/2003	< 50	< 0.50	< 0.50	< 0.50	<1.0		87	400 MM 400				18.20	12.89	5.31
MW-2	03/01/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		35					18.20	10.08	8.12
MW-2	06/15/2004	66 b	< 0.50	< 0.50	< 0.50	<1.0		110					18.20	12.85	5.35
MW-2	09/16/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		26	< 5.0	<2.0	< 2.0	< 2.0	18.20	12.00	6.20
MW-2	12/29/2004	< 50	< 0.50	0.73	< 0.50	<1.0		43					18.20	11.60	6.60
MW-2	02/28/2005												18.20	9.71	8.49
MW-2	03/23/2005	340 f	3.9	<2.0	<2.0	<4.0		370		,			18.20	10.10	8.10
MW-2	05/18/2005	<100	4.6	<1.0	<1.0	3.3		160					18.20	10.21	7.99
MW-2	08/16/2005							***					18.20	10.53	7.67
MW-2	09/15/2005	< 50	< 0.50	< 0.50	< 0.50	<1.0		11	520	<2.0	< 2.0	< 2.0	18.20	11.98	6.22
MW-2	10/26/2005												18.20	11.38	6.82
MW-2	12/13/2005	< 50.0	< 0.500	1.66	< 0.500	< 0.500		2.11					18.20	10.71	7.49
MW-2	03/08/2006	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500		< 0.500					18.20	9.50	8.70
MW-2	06/27/2006	<100 i	<1.0 i	<1.0 i	<1.0 i	<1.0 i		9.1 i		·			18.20	9.73	8.47
MW-2	09/25/2006	83 j	<2.5	<2.5	< 2.5	< 5.0		< 5.0	4,500	< 5.0	< 5.0	< 5.0	18.20	11.08	7.12

Well ID	Date	TPHg (µg/L)	B (μg/L)	T (μg/L)	E (µg/L)	X (µg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)
MW-2	12/21/2006	160	< 0.50	< 0.50	< 0.50	<1.0		1.6					18.20	11.30	6.90
MW-2	03/20/2007	< 50	0.98	< 0.50	< 0.50	<1.0		18					18.20	10.76	7.44
MW-2	06/18/2007	86 m	< 0.50	<1.0	<1.0	<1.0		2.4					18.20	11.35	6.85
MW-2	08/30/2007	110 n	< 0.50	<1.0	<1.0	<1.0		2.2	2,700	6.3	0.301	<2.0	18.20	11.80	6.40
MW-2	12/28/2007	<50 n	<2.5	< 5.0	<5.0	< 5.0		2.11					18.20	11.69	6.51
MW-2	03/26/2008	< 50	< 0.50	<1.0	<1.0	<1.0		<1.0					18.20	11.23	6.97
MW-2	05/29/2008	130	< 0.50	<1.0	<1.0	<1.0		3.0					18.20	11.83	6.37
MW-2	09/25/2008	380	< 0.50	<1.0	<1.0	<1.0		3.7	4,200	7.9	<2.0	<2.0	18.20	13.21	4.99
MW-2	12/16/2008	220	<1.0	<2.0	<2.0	< 2.0		2.1					18.20	12.40	5.80
MW-2	02/26/2009	< 50	< 0.50	<1.0	<1.0	<1.0		1.9					18.20	10.56	7.64
MW-2	05/26/2009	140	< 0.50	<1.0	<1.0	<1.0		2.6					18.20	11.03	7.17
MW-2	09/02/2009	270	< 0.50	<1.0	<1.0	<1.0		2.2	4,600	4.9	<2.0	<2.0	18.20	12.01	6.19
MW-2	03/10/2010	< 50	< 0.50	<1.0	<1.0	<1.0		37		·			18.20	9.96	8.24
MW-2	08/31/2010	110	< 0.50	<1.0	<1.0	<1.0		6.2	3,300	2.8	<2.0	<2.0	18.20	11.30	6.90
MW-2	03/08/2011	< 50	0.66	< 0.50	< 0.50	<1.0		28					18.20	9.86	8.34
MW-2	09/19/2011	<250	<5.0 o	<5.0 o	<5.0 o	<10 o	****	15 o	5,700 o	<10 o	<10 o	<10 o	18.20	11.22	6.98
MW-2	03/05/2012	100	<0.50	<0.50	<0.50	<1.0		1.2					18.2 0	11.65	6.55
													•		
MW-3	12/17/1998	30,000	890	110	2,100	4,300	42,000	43,000					19.05	11.65	7.40
MW-3	03/09/1999	22,700	536	<200	1,030	1,510	35,400	38,500					19.05	11.03	8.02
MW-3	06/16/1999	19,300	625	129	805	1,210	42,400	51,600					19.05	11.89	7.16
MW-3	09/29/1999	20,200	727	155	1,000	1,180	84,100	136,000 a					19.05	12.35	6.70
MW-3	12/22/1999	44,500 ⁻	767	64.4	1,810	2,090	191,000	186,000 a					19.05	13.45	5.60
MW-3	03/21/2000	<25,000	466	<250	727	2,280	126,000	155,000					19.05	10.00	9.05
MW-3	06/20/2000	16,200	1,140	98.8	1,140	1,410	579,000	376,000 a					19.05	11.15	7.90
MW-3	09/21/2000	<50,000	712	< 500	520	795	293,000	298,000					19.05	11.58	7.47
MW-3	11/30/2000	18,000	1,050	124	1,120	2,010	543,000 a	403,000 a					19.05	12.10	6.95
MW-3	03/06/2001	19,900	1,290	115	1,450	1,760	706,000	149,000					19.05	11.00	8.05
MW-3	06/28/2001	<50,000	1,200	<250	1,100	1,300		610,000					19.05	11.96	7.09
MW-3	09/12/2001	<20,000	430	<200	230	480		390,000					19.05	12.05	7.00

Well ID	Date	TPHg (μg/L)	B (μg/L)	Τ (μg/L)	E (μg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (μg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)
MW-3	10/23/2001	11,000	350	<100	210	440		290,000					19.05	12.62	6.43
MW-3	12/12/2001	<20,000	280	<200	<200	<200		160,000					19.05	11.83	7.22
MW-3	03/08/2002	<20,000	270	<200	<200	<200		340,000					19.05	11.26	7.79
MW-3	06/06/2002	<50,000	290	<250	<250	<250		290,000					19.05	11.50	7.55
MW-3	09/09/2002	<20,000	<200	<200	<200	<200		230,000					19.06	11.92	7.14
MW-3	12/12/2002	<50,000	<200	<200	<200	< 500	·	190,000					19.06	10.95	8.11
MW-3	02/26/2003	<25,000	<250	<250	<250	<250		210,000					19.06	15.01	4.05
MW-3	04/15/2003												19.06	15.12	3.94
MW-3	06/13/2003	<25,000	<250	<250	<250	< 500		27,000					19.06	15.25	3.81
MW-3	09/26/2003	<10,000	<100	<100	<100	<200		15,000					18.08	С	
MW-3	11/24/2003	<10,000	<100	<100	<100	<200		9,900					18.08	15.13	2.95
MW-3	03/01/2004	<10,000	<100	<100	<100	<200		8,000					18.08	9.97	8.11
MW-3	06/15/2004	<10,000	<100	<100	<100	<200		6,900		-			18.08	15.05	3.03
MW-3	09/16/2004	< 500	< 5.0	< 5.0	< 5.0	<10		1,000	<i>7</i> 5	<20	<20	<20	18.08	14.70	3.38
MW-3	12/29/2004	<250	2.8	<2.5	<2.5	< 5.0		580					18.08	14.83	3.25
MW-3	02/28/2005	arr and aga											18.08	9.60	8.48
MW-3	03/23/2005	<1,000	<10	<10	<10	<20	~~~	1500					18.08	12.68	5.40
MW-3	05/18/2005	1200	49	<10	47	<20		3400					18.08	10.60	7.48
MW-3	08/16/2005							330					18.08	15.22	2.86
MW-3	09/15/2005	<1,000	<10	<10	<10	<20		140	180	<40	<40	<40	18.08	15.30	2.78
MW-3	10/26/2005							48					18.08	15.00	3.08
MW-3	12/13/2005	482	4.56	1.64 h	< 0.500	< 0.500	·	72.5	273				18.08	11.18	6.90
MW-3	03/08/2006	627	2.62	< 0.500	1.71	1.25		175	483				18.08	14.95	3.13
MW-3	06/27/2006	530	8.3	<2.5	9.5	3.5		100					18.08	14.63	3.45
MW-3	09/25/2006	520	12	<2.5	6.5	< 5.0		110	2,900	< 5.0	< 5.0	< 5.0	18.08	11.23	6.85
MW-3	12/21/2006	120	2.2	< 0.50	< 0.50	<1.0		1.7	120				18.08	11.22	6.86
MW-3	03/20/2007	150	0.96	1.2	< 0.50	<1.0		19	300				18.08	11.35	6.73
MW-3	06/18/2007	180	2.2	<1.0	<1.0	<1.0		14	780				18.08	11.22	6.86
MW-3	08/30/2007	200 n	3.5	<1.0	<1.0	0.291		29	1,500	<2.0	<2.0	<2.0	18.08	13.59	4.49
MW-3	12/28/2007	140 n	2.7	0.34 l	<1.0	<1.0		<1.0	98				18.08	11.79	6.29

Well ID	Date	TPHg (µg/L)	Β (μg/L)	T (μg/L)	E (μg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)
MW-3	03/26/2008	120	1.3	1.6	<1.0	<1.0		3.4	150				18.08	11.05	7.03
MW-3	05/29/2008	130	2.4	<1.0	<1.0	<1.0		6.0	250				18.08	11.69	6.39
MW-3	09/25/2008	410	9.3	<1.0	<1.0	<1.0		13	1,200	< 2.0	<2.0	<2.0	18.08	12.00	6.08
MW-3	12/16/2008	410	14	<1.0	<1.0	<1.0		5.5	560				18.08	11.71	6.37
MW-3	02/26/2009	640	3.1	<1.0	<1.0	<1.0		1.3	10				18.08	10.71	7.37
MW-3	05/26/2009	250	1.8	<1.0	<1.0	<1.0		2.2	59				18.08	11.53	6.55
MW-3	09/02/2009	260	5.3	<1.0	<1.0	<1.0		7.0	350	<2.0	<2.0	<2.0	18.08	12.34	5.74
MW-3	03/10/2010	89	< 0.50	<1.0	<1.0	1.0		<1.0	<10				18.08	10.29	7.79
MW-3	08/31/2010	81	1.1	<1.0	<1.0	<1.0		5.5	230	<2.0	<2.0	<2.0	18.08	11.80	6.28
MW-3	03/08/2011	< 50	< 0.50	< 0.50	< 0.50	<1.0		<1.0	<10				18.08	10.37	7.71
MW-3	09/19/2011	100	< 0.50	< 0.50	< 0.50	<1.0		6.4	490	<1.0	<1.0	<1.0	18.08	11.51	6.57
MW-3	03/05/2012	64	<0.50	<0.50	<0.50	<1.0		1.6	34 0				18.08	12.12	5.96
MW-4	05/13/2002												and and and	10.64	
MW-4	05/20/2002	<1,000	<10	<10	<10	<10		4,600						10.64	
MW-4	06/06/2002	<1,000	<10	<10	<10	<10		4,800						10.61	
MW-4		Unable to	-										18.03	11.07	6.96
MW-4	09/18/2002	<250	<2.5	<2.5	<2.5	<2.5		1,000	200 AD 200				18.03	11.15	6.88
MW-4	12/12/2002	<100	<1.0	<1.0	<1.0	<1.0		370		~~~			18.03	11.13	6.90
MW-4	02/26/2003	<50	< 0.50	< 0.50	< 0.50	< 0.50		< 5.0					18.03	10.61	7.42
MW-4	04/15/2003												18.03	10.73	7.30
MW-4	06/13/2003	180 b	< 0.50	110	< 0.50	<1.0		2.3					18.03	10.88	7.15
MW-4	09/26/2003	<5,000	< 50	<50	< 50	<100		13,000					18.03	11.58	6.45
MW-4	11/24/2003	<13,000	<130	<130	<130	<250		11,000					18.03	11.78	6.25
MW-4	03/01/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					18.03	9.47	8.56
MW-4	06/15/2004	<500	<5.0	< 5.0	< 5.0	<10		630					18.03	11.38	6.65
MW-4	09/16/2004	<100	<1.0	12	<1.0	<2.0		280	280	<4.0	<4.0	<4.0	18.03	11.80	6.23
MW-4	12/29/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					18.03	10.63	7.40
MW-4	02/28/2005	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					18.03	9.20	8.83
MW-4	03/23/2005												18.03	9.43	8.60

Well ID	Date	TPHg (μg/L)	Β (μg/L)	Τ (μg/L)	E (µg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (μg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)
MW-4	05/18/2005	1,900	< 5.0	< 5.0	16	97	·	910					18.03	9.75	8.28
MW-4	08/16/2005												18.03	10.85	7.18
MW-4	09/15/2005	<2,500	<25	<25	<25	85		5,100	400	<100	<100	<100	18.03	11.30	6.73
MW-4	10/26/2005												18.03	11.45	6.58
MW-4	12/13/2005	3,480	< 0.500	1.54 h	< 0.500	< 0.500		2,490 a	201				18.03	11.70	6.33
MW-4	03/08/2006	1,560	< 0.500	0.910	< 0.500	3.39		0.870	<10.0				18.03	9.25	8.78
MW-4	06/27/2006	<i>7</i> 5	< 0.50	18	< 0.50	< 0.50		63	<20				18.03	10.12	7.91
MW-4	09/25/2006	670 j	<10	<10	<10	<20		1,400	430	<20	<20	<20	18.03	11.23	6.80
MW-4	12/21/2006	< 50	< 0.50	< 0.50	< 0.50	<1.0		2.0	6.8				18.03	10.37	7.66
MW-4	03/20/2007	< 50	< 0.50	< 0.50	< 0.50	<1.0	'	<1.0	<10		·		18.03	9.84	8.19
MW-4	06/18/2007	< 50	< 0.50	<1.0	<1.0	<1.0		<1.0	7.1 l				18.03	10.62	7.41
MW-4	08/30/2007	<50 n	< 0.50	<1.0	<1.0	<1.0		<1.0	<10	< 2.0	<2.0	<2.0	18.03	11.93	6.10
MW-4	12/28/2007	160 n,m	< 0.50	130	<1.0	<1.0		<1.0	<10				18.03	11.97	6.06
MW-4	03/26/2008	< 50	< 0.50	<1.0	<1.0	<1.0		<1.0	<10				18.03	11.34	6.69
MW-4	05/29/2008	< 50	< 0.50	<1.0	<1.0	<1.0		3.4	<10				18.03	11.87	6.16
MW-4	09/25/2008	< 50	< 0.50	1.3	<1.0	<1.0		4.5	<10	< 2.0	< 2.0	< 2.0	18.03	12.35	5.68
MW-4	12/16/2008	630	< 0.50	360	<1.0	<1.0		<1.0	<10				18.03	12.47	5.56
MW-4	02/26/2009	< 50	< 0.50	<1.0	<1.0	<1.0		<1.0	<10	·			18.03	10.29	7.74
MW-4	05/26/2009	< 50	< 0.50	3.6	<1.0	<1.0		<1.0	<10				18.03	11.74	6.29
MW-4	09/02/2009	< 50	< 0.50	<1.0	<1.0	<1.0		5.9	<10	< 2.0	<2.0	<2.0	18.03	12.60	5.43
MW-4	03/10/2010	< 50	< 0.50	1.6	<1.0	<1.0		<1.0	<10				18.03	9.95	8.08
MW-4	08/31/2010	400	< 0.50	<1.0	<1.0	<1.0		1.1	30	< 2.0	<2.0	<2.0	18.03	12.12	5.91
MW-4	03/08/2011	73 j	< 0.50	44	< 0.50	<1.0		<1.0	<10				18.03	10.66	7.37
MW-4	09/19/2011	< 50	< 0.50	< 0.50	< 0.50	<1.0		<1.0	<10	<1.0	<1.0	<1.0	18.03	11.71	6.32
MW-4	03/05/2012	<50	<0.50	<0.50	< 0.50	<1.0		<0.50	<10				18.03	12.5 0	5.53
MW-5	05/13/2002								***					10.40	
MW-5	05/20/2002	<2,500	<25	<25	<25	<25		17,000						10.41	
MW-5	06/06/2002	<5,000	< 50	< 50	< 50	< 50	·	15,000						10.36	
MW-5	09/09/2002	Unable to	sample						·				17.78	10.82	6.96

Well ID	Date	TPHg (μg/L)	B (μg/L)	T (µg/L)	E (μg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (μg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)
MW-5	09/18/2002	<2,500	<25	<25	<25	<25		16,000					17.78	10.81	6.97
MW-5	12/12/2002	<2,500	<25	<25	<25	<25		13,000					17.78	10.83	6.95
MW-5	02/26/2003	<2,000	<20	<20	<20	<20		7,500					17.78	10.57	7.21
MW-5	04/15/2003												17.78	10.69	7.09
MW-5	06/13/2003	<2,500	<25	<25	<25	< 50		4,400					17.78	10.82	6.96
MW-5	09/26/2003	<2,500	<25	<25	<25	< 50		4,700					17.78	11.49	6.29
MW-5	11/24/2003	<10,000	<100	<100	<100	<200		7,100					17.78	11.70	6.08
MW-5	03/01/2004	<2,000	<20	<20	<20	<40		2,800					17.78	9.68	8.10
MW-5	06/15/2004	<2,000	<20	<20	<20	<40		2,100					17.78	11.28	6.50
MW-5	09/16/2004	<2,000	<20	<20	<20	<40		2,200	2,800	<80	<80	<80	17.78	11.62	6.16
MW-5	12/29/2004	<2,000	<20	<20	<20	<40		3,700					17.78	11.11	6.67
MW-5	02/28/2005	<200	<2.0	<2.0	<2.0	<4.0		74 0					17.78	9.50	8.28
MW-5	03/23/2005												17.78	9.70	8.08
MW-5	05/18/2005	<50 g	< 0.50	< 0.50	< 0.50	<1.0		180					17.78	9.49	8.29
MW-5	06/17/2005							270					17.78	9.89	7.89
MW-5	07/15/2005							350					17.78	10.20	7.58
MW-5	08/16/2005							270					17.78	10.50	7.28
MW-5	09/15/2005	<250	<2.5	<2.5	<2.5	< 5.0		500	670	<10	<10	<10	17.78	10.96	6.82
MW-5	10/26/2005							260					17.78	11.22	6.56
MW-5	12/13/2005	438	< 0.500	1.49 h	< 0.500	< 0.500		167	452				17.78	11.05	6.73
MW-5	03/08/2006	330	< 0.500	< 0.500	< 0.500	< 0.500		169	206				17.78	9.30	8.48
MW-5	06/27/2006	< 50	< 0.50	< 0.50	< 0.50	< 0.50		60	<i>7</i> 5				17.78	9.83	7.95
MW-5	09/25/2006	< 50	< 0.50	< 0.50	< 0.50	<1.0		22	<10	<1.0	<1.0	<1.0	17.78	10.96	6.82
MW-5	12/21/2006	< 50	< 0.50	< 0.50	< 0.50	<1.0		2.4	< 5.0				17.78	11.00	6.78
MW-5	03/20/2007	< 50	< 0.50	< 0.50	< 0.50	<1.0		1.7	<10			*****	17.78	10.51	7.27
MW-5	06/18/2007	< 50	< 0.50	<1.0	<1.0	<1.0		2.0	61				17.78	11.18	6.60
MW-5	08/30/2007	<50 n	< 0.50	<1.0	<1.0	<1.0		2.3	170	<2.0	<2.0	< 2.0	17.78	11.65	6.13
MW-5	12/28/2007	<50 n	< 0.50	<1.0	<1.0	<1.0		3.0	830				17.78	11.90	5.88
MW-5	03/26/2008	< 50	< 0.50	<1.0	<1.0	<1.0		1.7	55				17.78	11.11	6.67
MW-5	05/29/2008	65	< 0.50	<1.0	<1.0	<1.0		3.9	940				17.78	11.52	6.26

Well ID	Date	TPHg (µg/L)	B (μg/L)	Τ (μg/L)	Ε (μg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)
MW-5	09/25/2008	64	< 0.50	<1.0	<1.0	<1.0		3.3	560	<2.0	<2.0	<2.0	17.78	12.00	5.78
MW-5	12/16/2008	63	< 0.50	<1.0	<1.0	<1.0		3.3	850				17.78	12.30	5.48
MW-5	02/26/2009	< 50	< 0.50	<1.0	<1.0	<1.0		2.1	850				17.78	11.08	6.70
·MW-5	05/26/2009	< 50	< 0.50	<1.0	<1.0	<1.0		1.2	19				17.78	11.43	6.35
MW-5	09/02/2009	< 50	< 0.50	<1.0	<1.0	<1.0		1.6	180	<2.0	<2.0	<2.0	17.78	12.24	5.54
MW-5	03/10/2010	< 50	< 0.50	<1.0	<1.0	<1.0		1.3	170			·	17.78	10.59	7.19
MW-5	08/31/2010	< 50	< 0.50	<1.0	<1.0	<1.0		1.8	490	<2.0	<2.0	<2.0	17.78	11.75	6.03
MW-5	03/08/2011	< 50	< 0.50	< 0.50	< 0.50	<1.0		1.0	270				17.78	10.44	7.34
MW-5	09/19/2011	< 50	< 0.50	< 0.50	< 0.50	<1.0		1.2	240	<1.0	<1.0	<1.0	17.78	11.50	6.28
MW-5	03/05/2012	< 50	<0.50	<0.50	< 0.50	<1.0		0.68	12 0		200 to 100		17.78	12.09	5.69
MW-6	03/28/2003	Well inacc	essible				****	***					18.10		
MW-6	04/07/2003												18.10	13.80	4.30
MW-6	04/15/2003	14,000	<250	<250	<250	< 500		41,000					18.10	15.05	3.05
MW-6	06/13/2003	<10,000	<100	<100	<100	<200		27,000					18.10	14.42	3.68
MW-6	09/26/2003	<5,000	< 50	< 50	<50	<100		11,000					18.05	С	-
MW-6	11/24/2003	<10,000	<100	<100	<100	<200		5,000					18.05	14.68	3.37
MW-6	03/01/2004	<1,000	<10	<10	<10	<20		2,500					18.05	9.84	8.21
MW-6	06/15/2004	<1,000	<10	<10	<10	<20		2,800					18.05	14.82	3.23
MW-6	09/16/2004	<1,000	<10	<10	<10	<20		830	610	<40	<40	<40	18.05	14.20	3.85
MW-6	12/29/2004	<200	<2.0	<2.0	<2.0	<4.0		530					18.05	14.78	3.27
MW-6	02/28/2005												18.05	9.58	8.47
MW-6	03/23/2005	290 f	<2.0	<2.0	<2.0	<4.0		590					18.05	14.22	3.83
MW-6	05/18/2005	390	8.7	< 0.50	0.93	9.0		68					18.05	9.79	8.26
MW-6	08/16/2005	, 						34					18.05	10.64	7.41
MW-6	09/15/2005	< 500	< 5.0	< 5.0	< 5.0	<10		45	21,000 e	<20	<20	<20	18.05	11.83	6.22
MW-6	10/26/2005							31					18.05	11.31	6.74
MW-6	12/13/2005	982	< 0.500	1.36 h	< 0.500	< 0.500		35.1	11,300 e				18.05	11.22	6.83
MW-6	03/08/2006	2,110	< 0.500	< 0.500	< 0.500	< 0.500		29.6	21,800				18.05	9.50	8.55
MW-6	06/27/2006	510	< 0.50	< 0.50	< 0.50	< 0.50		94	<20				18.05	9.84	8.21

Well ID	Date	TPHg (µg/L)	Β (μg/L)	Τ (μg/L)	E (μg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)
MW-6	09/25/2006	730 j	<25	<25	<25	< 50		< 50	16,000	< 50	< 50	< 50	18.05	11.08	6.97
MW-6	12/21/2006	890	< 0.50	< 0.50	< 0.50	<1.0		30	33,000				18.05	11.12	6.93
MW-6	03/20/2007	<1,200 k	<12	<12	<12	<25		30	33,000				18.05	10.66	7.39
MW-6	06/18/2007	400	< 0.50	<1.0	<1.0	<1.0		34	82,000				18.05	11.30	6.75
MW-6	08/30/2007	650 n	< 50	<100	<100	<100		381	32,000	<200	<200	<200	18.05	11.81	6.24
MW-6	12/28/2007	170 n	<25	<50	< 50	< 50		28 1	36,000				18.05	11.97	6.08
MW-6	03/26/2008	1,300	< 5.0	<10	<10	<10		26	36,000				18.05	10.83	7.22
MW-6	05/29/2008	2,500	<25	< 50	<50	< 50		< 50	41,000				18.05	11.80	6.25
MW-6	09/25/2008	4,100	<25	< 50	<50	< 50		< 50	44,000	<100	<100	<100	18.05	12.23	5.82
MW-6	12/16/2008	1,900	<10	<20	<20	<20		<20	28,000				18.05	12.40	5.65
MW-6	02/26/2009	1,500	<10	<20	<20	<20		<20	27,000				18.05	11.05	7.00
MW-6	05/26/2009	1,500	<10	<20	<20	<20		<20	29,000				18.05	11.52	6.53
MW-6	09/02/2009	1,800	<10	<20	<20	<20		<20	35,000	<40	<40	<40	18.05	12.25	5.80
MW-6	03/10/2010	<1,000	<10	<20	<20	<20		<20	25,000				18.05	10.94	7.11
MW-6	08/31/2010	610	< 5.0	<10	<10	<10		15	20,000	<20	<20	<20	18.05	11.90	6.15
MW-6	12/21/2010	<1,000	<10	<20	<20	<20		<20	19,000				18.05	11.01	7.04
MW-6	03/08/2011	<1,200	<12	<12	<12	<25		<25	8,200				18.05	10.59	7.46
MW-6	06/01/2011	< 500	< 5.0	< 5.0	< 5.0	<10		<10	11,000				18.05	10.65	7.40
MW-6	09/19/2011	1,000 j	<10	<10	<10	<20		<20	16,000	<20	<20	<20	18.05	11.56	6.49
MW-6	12/02/2011	15 0	<0.500	<0.500	<0.500	< 0.500	***	6.91	4,17 0				18.05	11.95	6.10
MW-6	03/05/2012	<1,000	<10	<10	<10	<20		<10	9,600				18.05	12.02	6.03
MW-7	03/28/2003	Well inacco	essible				AND 1820-1820						19.16		
MW-7	04/07/2003												19.16	13.85	5.31
MW-7	04/15/2003	6,000	<100	<100	<100	<200		19,000					19.16	13.95	5.21
MW-7	06/13/2003	<5,000	< 50	< 50	< 50	<100		5 <i>,</i> 700					19.16	13.92	5.24
MW-7	09/26/2003	<250	<2.5	<2.5	<2.5	< 5.0		110					19.13	13.85	5.28
MW-7	11/24/2003	< 50	< 0.50	0.59	< 0.50	1.7		7.6					19.13	13.99	5.14
MW-7	03/01/2004	67 b	< 0.50	< 0.50	< 0.50	<1.0		120					19.13	10.85	8.28
MW-7	06/15/2004	120 b	< 0.50	< 0.50	< 0.50	<1.0		89					19.13	13.27	5.86

Well ID	Date	TPHg (µg/L)	B (μg/L)	T (µg/L)	E (µg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)
MW-7	09/16/2004	< 500	< 5.0	< 5.0	< 5.0	<10		130	4,700	<20	<20	<20	19.13	12.83	6.30
MW-7	12/29/2004	< 500	< 5.0	< 5.0	< 5.0	<10		130					19.13	11.82	7.31
MW-7	02/28/2005												19.13	10.59	8.54
MW-7	03/23/2005	<1,000	<10	<10	<10	<20		16	,				19.13	11.16	7.97
MW-7	05/18/2005	67 g	< 0.50	< 0.50	< 0.50	<1.0		12					19.13	10.42	8.71
MW-7	08/16/2005												19.13	11.52	7.61
MW-7	09/15/2005	< 500	< 5.0	< 5.0	< 5.0	<10		<i>7</i> 5	16,000	<20	<20	<20	19.13	11.95	7.18
MW-7	10/26/2005												19.13	12.23	6.90
MW-7	12/13/2005	1,210	< 0.500	< 0.500	< 0.500	< 0.500		19.1	14,600 e				19.13	12.15	6.98
MW-7	03/08/2006	989	< 0.500	< 0.500	< 0.500	< 0.500		7.29	14,000				19.13	10.70	8.43
MW-7	06/27/2006	370	< 0.50	< 0.50	< 0.50	< 0.50		16	20,000 a				19.13	10.77	8.36
MW-7	09/25/2006	840 j	<10	<10	<10	<20		<20	22,000	<20	<20	<20	19.13	12.04	7.09
MW-7	12/21/2006	740	< 0.50	< 0.50	< 0.50	<1.0		7.5	27,000				19.13	12.18	6.95
MW-7	03/20/2007	460 j	< 50	< 50	< 50	<100		<100	24,000				19.13	11.67	7.46
MW-7	06/18/2007	310 m	< 5.0	<10	<10	<10		2.71	32,000				19.13	12.31	6.82
MW-7	08/30/2007	560 n	<25	< 50	< 50	< 50		< 50	28,000	<100	<100	<100	19.13	12.76	6.37
MW-7	12/28/2007	74 n	<25	< 50	< 50	< 50		< 50	26,000				19.13	12.85	6.28
MW-7	03/26/2008	1,400	< 5.0	<10	<10	<10		<10	32,000				19.13	12.04	7.09
MW-7	05/29/2008	3,000	<25	< 50	< 50	< 50		< 50	44,000				19.13	12.80	6.33
MW-7	09/25/2008	3,600	<25	< 50	< 50	< 50		< 50	36,000	<100	<100	<100	19.13	13.14	5.99
MW-7	12/16/2008	1,700	<10	<20	<20	<20		<20	29,000				19.13	13.34	5. <i>7</i> 9
MW-7	02/26/2009	1,300	<10	<20	<20	<20		<20	19,000				19.13	12.16	6.97
MW-7	05/26/2009	1,600	<10	<20	<20	<20		<20	32,000				19.13	12.56	6.57
MW-7	09/02/2009	1,800	<10	<20	<20	<20		<20	33,000	<40	<40	<40	19.13	13.44	5.69
MW-7	03/10/2010	<1,000	<10	<20	<20	<20		<20	25,000				19.13	11.62	7.51
MW-7	08/31/2010	<1,000	<10	<20	<20	<20		<20	27,000	<40	<40	<40	19.13	12.90	6.23
MW-7	12/21/2010	<2,500	<25	< 50	< 50	< 50		< 50	22,000				19.13	12.11	7.02
MW-7	03/08/2011	<2,000	<20	<20	<20	<40		<40	9,600				19.13	11.51	7.62
MW-7	06/01/2011	620	<20	<20	<20	<40		<40	35,000				19.13	11.56	7.57
MW-7	09/19/2011	2,700	<25	<25	<25	<50		<50	48,000	<50	<50	< 50	19.13	12.58	6.55

Well ID	Date	ТРНд	В	T	E	X	MTBE 8020	MTBE 8260	TBA	DIPE	ЕТВЕ	TAME	тос	Depth to Water	GW Elevation
		(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(ft MSL)	(ft TOC)	(ft MSL)
MW-7	12/02/2011	370	<0.500	<0.500	<0.500	<0.500		4.21	14,300				19.13	12.90	6.23
MW-7	03/05/2012	<2,500	<25	<25	<25	<50		<25	42,000				19.13	13.22	5.91
MW-8	03/28/2003	Well inacc	essible	au ao ao									18.72		
MW-8	04/07/2003												18.72	14.13	4.59
MW-8	04/15/2003	890	29	22	15	71		430					18.72	14.10	4.62
MW-8	06/13/2003												18.72	13.94	4.78
MW-8	09/26/2003	<250	55	51	33	140		330					18.71	14.21	4.50
MW-8	11/24/2003	<5,000	< 50	< 50	< 50	<100		5,600					18.71	14.16	4.55
MW-8	03/01/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		12					18.71	10.34	8.37
MW-8	06/15/2004	2,800	170	240	140	560		440					18.71	13.88	4.83
MW-8	09/16/2004	2,500	180	200	120	490		480	260	<10	<10	<10	18.71	13.92	4.79
MW-8	12/29/2004	4,400	360	600	280	1,400		690					18.71	13.44	5.27
MW-8	02/28/2005												18.71	10.15	. 8.56
MW-8	03/23/2005	2,800	120	190	110	420		300					18.71	13.79	4.92
MW-8	05/18/2005	250	34	3.4	6.6	27		110					18.71	10.85	7.86
MW-8	08/16/2005				-								18.71	10.95	7.76
MW-8	09/15/2005	460 f	54	21	24	92		250	130	<4.0	<4.0	<4.0	18.71	11.38	7.33
MW-8	10/26/2005												18.71	11.75	6.96
MW-8	12/13/2005	1,180	49.6	4.89 h	15.2	76.0		320 a	1,870				18.71	11.80	6.91
MW-8	03/08/2006	1,040	48.0	1.82	5.07	19.9		271	190				18.71	10.50	8.21
MW-8	06/27/2006	730	80	<2.5	8.6	28		360	500 a				18.71	10.00	8.71
MW-8	09/25/2006	830	120	4.1	3.0	15		260	420	3.7	<2.5	<2.5	18.71	11.42	7.29
MW-8	12/21/2006	1,200	140	3.8	2.3	12		190	1,100				18.71	12.08	6.63
MW-8	03/20/2007	660	100	2.3	1.3	2.9		280	660				18.71	11.56	7.15
MW-8	06/18/2007	1,200	270	4.9	2.0	6.21		230	1,300				18.71	11.72	6.99
MW-8	08/30/2007	1,100 n	160	3.8	2.3	7.64 l		150	840	5.2	<2.0	<2.0	18.71	12.22	6.49
MW-8	12/28/2007	610 n	89	1.8	0.58 1	2.33 1		140	820				18.71	12.26	6.45
MW-8	03/26/2008	240	19	<1.0	<1.0	<1.0		58	390				18.71	11.45	7.26
MW-8	05/29/2008	290	25	<1.0	<1.0	<1.0		99	800				18.71	12.13	6.58

Well ID	Date	TPHg (μg/L)	B (μg/L)	Τ (μg/L)	E (μg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (μg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)
MW-8	09/25/2008	500	32	<1.0	<1.0	1.3		63	930	2.5	<2.0	<2.0	18.71	15.31	3.40
MW-8	12/16/2008	550	71	1.4	<1.0	1.8		46	1,400				18.71	12.92	5. <i>7</i> 9
MW-8	02/26/2009	120	0.97	<1.0	<1.0	<1.0		4.9	62				18.71	11.50	7.21
MW-8	05/26/2009	200	18	<1.0	<1.0	<1.0		39	710				18.71	11.91	6.80
MW-8	09/02/2009	480	55	1.6	<1.0	3.4		48	1,200	2.6	<2.0	<2.0	18.71	12.90	5.81
MW-8	03/10/2010	< 50	< 0.50	<1.0	<1.0	<1.0		1.6	14				18.71	11.02	7.69
MW-8	08/31/2010	650	110	11	6.5	25		48	1,200	2.2	<2.0	<2.0	18.71	12.20	6.51
MW-8	03/08/2011	97	< 0.50	< 0.50	< 0.50	<1.0		3.7	23				18.71	10.80	7.91
MW-8	09/19/2011	1,200	370 o	13 o	3.3 o	30 o		53 o	2,500 o	<5.0 o	<5.0 o	<5.0 o	18.71	11.94	6.77
MW-8	03/05/2012	700	160	<2.5	<2.5	<5.0		23	2,8 00				18.71	12.62	6.09
MW-9	03/28/2003												18.78	11.19	7.59
MW-9	04/15/2003	420	<2.5	<2.5	<2.5	6.3		37					18.78	11.24	7.54
MW-9	06/13/2003	290 b	< 0.50	< 0.50	< 0.50	2.6		34					18.78	11.39	7.39
MW-9	09/26/2003	540 b	< 0.50	< 0.50	< 0.50	9.2		21					18.78	12.12	6.66
MW-9	11/24/2003	650 d	< 0.50	< 0.50	< 0.50	6.3		14					18.78	12.30	6.48
MW-9	03/01/2004	230 d	< 0.50	< 0.50	< 0.50	1.7		7.7					18.78	10.45	8.33
MW-9	06/15/2004	280	< 0.50	< 0.50	< 0.50	1.9		8.3					18.78	11.88	6.90
MW-9	09/16/2004	260	< 0.50	< 0.50	< 0.50	1.5		3.9	< 5.0	< 2.0	<2.0	<2.0	18.78	12.26	6.52
MW-9	12/29/2004	220	< 0.50	< 0.50	< 0.50	1.2	-	3.5					18.78	11.76	7.02
MW-9	02/28/2005	140 g	< 0.50	< 0.50	< 0.50	<1.0		1.5					18.78	10.21	8.57
MW-9	03/23/2005												18.78	10.14	8.64
MW-9	05/18/2005	210 g	< 0.50	< 0.50	< 0.50	<1.0		2.8					18.78	10.21	8.57
MW-9	08/16/2005												18.78	11.25	7.53
MW-9	09/15/2005	230 g	< 0.50	< 0.50	< 0.50	1.1		2.6	< 5.0	< 2.0	<2.0	<2.0	18.78	11.75	7.03
MW-9	10/26/2005												18.78	11.97	6.81
MW-9	12/13/2005	504	< 0.500	< 0.500	< 0.500	2.53		2.88					18.78	11.92	6.86
MW-9	03/08/2006	205	< 0.500	< 0.500	< 0.500	< 0.500		1.45					18.78	10.05	8.73
MW-9	06/27/2006	260	< 0.50	< 0.50	< 0.50	< 0.50		1.9					18.78	10.64	8.14
MW-9	09/25/2006	160	< 0.50	< 0.50	< 0.50	<1.0		1.6	<10	<1.0	<1.0	<1.0	18.78	11.78	7.00

							MTBE	MTBE						Depth to	GW
Well ID	Date	ТРНд	В	T	E	\boldsymbol{X}	8020	<i>8</i> 260	TBA	DIPE	ETBE	TAME	TOC	Water	Elevation
		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(ft MSL)	(ft TOC)	(ft MSL)
MW-9	12/21/2006	300	< 0.50	< 0.50	< 0.50	<1.0		1.4					18.78	11.86	6.92
MW-9	03/20/2007	150 j	< 0.50	< 0.50	< 0.50	<1.0		1.2					18.78	11.34	7.44
MW-9	06/18/2007	81	0.18 1	<1.0	<1.0	0.27 1		1.2					18.78	12.01	6.77
MW-9	08/30/2007	52 n	< 0.50	<1.0	<1.0	0.31 l		1.6	<10	< 2.0	<2.0	<2.0	18.78	12.49	6.29
MW-9	12/28/2007	61 n	< 0.50	<1.0	<1.0	0.27 1		1.9					18.78	12.84	5.94
MW-9	03/26/2008	89	< 0.50	<1.0	<1.0	<1.0		1.6					18.78	12.30	6.48
MW-9	05/29/2008	130	< 0.50	<1.0	<1.0	<1.0		7.4					18.78	12.61	6.17
MW-9	09/25/2008	63	< 0.50	<1.0	<1.0	<1.0		17	<10	< 2.0	<2.0	<2.0	18.78	12.92	5.86
MW-9	12/16/2008	74	< 0.50	<1.0	<1.0	<1.0		13					18.78	13.03	5.75
MW-9	02/26/2009	81	< 0.50	<1.0	<1.0	<1.0		14					18.78	11.94	6.84
MW-9	05/26/2009	140	< 0.50	<1.0	<1.0	<1.0		5.8					18.78	12.47	6.31
MW-9	09/02/2009	54	< 0.50	<1.0	<1.0	<1.0		16	<10	< 2.0	<2.0	<2.0	18.42	13.00	5.42
MW-9	03/10/2010	< 50	< 0.50	<1.0	<1.0	<1.0		1.4					18.42	11.05	7.37
MW-9	08/31/2010	< 50	< 0.50	<1.0	<1.0	<1.0		12	<10	<2.0	<2.0	< 2.0	18.42	12.35	6.07

Notes:

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B; prior to June 28, 2001, analyzed by EPA Method 8015 unless otherwise noted.

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; prior to June 28, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary-butyl ether analyzed by method noted

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

TOC = Top of casing elevation, in feet relative to mean sea level

GW = Groundwater

 μ g/L = Micrograms per liter

ft = Feet

MSL = Mean sea level

< x =Not detected at reporting limit x

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPHg	\boldsymbol{B}	T	\boldsymbol{E}	\boldsymbol{X}	8020	<i>8260</i>	TBA	DIPE	ETBE	TAME	TOC	Water	Elevation
		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(ft MSL)	(ft TOC)	(ft MSL)

- --- = Not analyzed or not available
- a = Sample was analyzed outside the EPA recommended holding time.
- b = Hydrocarbon reported does not match the laboratory standard.
- c = Unable to gauge
- d = Sample contains discrete peaks in addition to gasoline.
- e = Estimated value. The concentration exceeded the calibration of analysis.
- f = Quantity of unknown hydrocarbon(s) in sample based on gasoline.
- g = The concentration reported reflects individual or discrete unidentified peaks not matching a typical fuel pattern.
- h = Analyte was detected in the associated Method Blank.
- i = Sample was diluted due to the presence of high levels of non-target analytes resulting in elevated reporting limits.
- j = Hydrocarbon result partly due to individual peak(s) in quantitation range.
- k = Reporting limit raised due to high concentrations of non-target analytes.
- 1 = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
- m = Sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- n = Analyzed by the EPA method 8015B(M)
- o = Sample container contained headspace

Wells MW-1, MW-2, and MW-3 surveyed December 9, 1998 by Virgil Chavez Land Surveying

Wells MW-6 through MW-9 surveyed April 10, 2003 by Virgil Chavez Land Surveying

Wells MW-2, MW-3, MW-6, MW-7, and MW-8 surveyed September 23, 2003 by Virgil Chavez Land Surveying

Well MW-9 surveyed October 20, 2009 by Virgil Chavez Land Surveying

HISTORICAL GRAB GROUNDWATER ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 610 MARKET STREET, OAKLAND, CALIFORNIA

Sample ID	Date	TPHg (μg/L)	B (µg/L)	T (µg/L)	E (μg/L)	X (µg/L)	MTBE (μg/L)
SB-A	3/31/1998	2,100	490	<10	<10	19	11,000 a/ 14,000
SB-B	3/31/1998	120	5.8	<0.50	<0.50	<0.50	5,300 a/6,200
SB-C	3/31/1998	<50	<0.50	<0.50	<0.50	<0.50	<2.5 a
SB-D	4/16/2002	68,000	<250	340	44	3,200	10,000
SB-E	4/16/2002	<2,500	19,000	34	<25	<25	<25
SB-F	4/16/2002	<500	3,300	<5.0	<5.0	<5.0	<5.0
MW-4	5/20/2002	<1,000	4,600	<10	<10	<10	<10
MW-5	5/20/2002	<2,500	17,000	<25	<25	<25	<25
Groundwater ES	L ^b :	210	46	130	43	100	1,800

Notes:

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B; before April 16, 2002 analyzed by EPA Method 8015B (M).

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; before April 16, 2002 analyzed by EPA Method 8020.

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8260B unless otherwise noted $\mu g/L$ = Micrograms per liter

<x = Not detected at reporting limit x

ESL = Environmental screening level

Results in bold equal or exceed applicable ESL

a = Analyzed by EPA Method 8020

b = San Francisco Bay Regional Water Quality Control Board ESL for groundwater where groundwater is not a potential source of drinking water (Tables B and D of *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater*, California Regional Water Quality Control Board, Interim Final - November 2007 [Revised May 2008]).

APPENDIX A

SITE HISTORY

SITE HISTORY

1995 Site Renovation: In August 1995, Paradiso Mechanical (Paradiso) of San Leandro, California replaced the central and western-most gasoline dispensers and removed the eastern-most dispensers and associated piping. Weiss Associates (Weiss) of Emeryville, California collected 18 soil samples from beneath the gasoline dispensers and product piping locations, which contained up to 2,700 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPHg) and 0.70 mg/kg benzene. Approximately 33 cubic yards of soil were removed during dispenser upgrades, and an additional 15 cubic yards were removed during over-excavation of the southern end of the middle dispenser island and the piping of the eastern-most dispenser islands. Investigation results are summarized in Weiss' November 2, 1995 Dispenser Replacement Sampling report.

1998 Station Upgrades: In March 1998, Paradiso added secondary containment to the turbine sumps in the underground storage tanks (USTs). Cambria inspected the turbine sumps and UST area, and no field indications of petroleum hydrocarbons, such as staining or odor, were observed during the site visit. Based on the field observations, no soil sampling was performed during the site upgrade activities. The details of these activities are summarized in Cambria's 1998 Site Upgrade Inspection Report dated March 30, 1998.

1998 Site Investigation: In March 1998, Cambria drilled three soil borings (S-A through S-C). Soil samples from the borings contained up to 1.3 mg/kg TPHg, 0.063 mg/kg benzene, and 1.8 mg/kg methyl tertiary-butyl ether (MTBE). Grab groundwater samples from the borings contained up to 2,100 micrograms per liter (μ g/L) TPHg, 490 μ g/L benzene, and 14,000 μ g/L MTBE. Cambria's July 1, 1998 Subsurface Investigation Report provides investigation details.

1998 Subsurface Investigation: In November 1998, Cambria installed three on-site groundwater monitoring wells (MW-1, MW-2, and MW-3). No TPHg, benzene, toluene, ethylbenzene, total xylenes, or MTBE was reported in analyzed soil samples collected from well MW-1. Soil samples from well borings MW-2 and MW-3 contained up to 1,700 mg/kg TPHg, 8.3 mg/kg benzene, and 16 mg/kg MTBE. Investigation details are presented in Cambria's April 20, 1999 Well Installation Report.

2000-2003 Mobile Dual-Phase Extraction (DPE) and Groundwater Extraction (GWE): From March 2000 to January 2003, Cambria coordinated mobile DPE and GWE from wells MW-2, MW-3, and T-1. Approximately 45,421 gallons of water were removed containing an estimated 3.4 pounds of TPHg, 0.087 pounds of benzene, and 71 pounds

of MTBE. Vapor extraction removed an estimated 53 pounds of TPHg, 1.5 pounds of benzene, and 43 pounds of MTBE.

2001 DPE and Soil Vapor Extraction (SVE) Pilot Test: In March 2001, Cambria performed a short-term (1 day) DPE test on well MW-3 and a short-term (1 day) SVE test on tank backfill well T-1. The tests were conducted using an internal combustion engine for vapor abatement. The cumulative mass removal (liquid and vapor) during the pilot tests was approximately 2.0 pounds of TPHg and 3.3 pounds of MTBE. Cambria's August 29, 2001 Site Conceptual Model and Pilot Test Report provides pilot test details.

2001 Site Conceptual Model (SCM), Conduit Study, and Sensitive Receptor Survey (SRS): Cambria's SRS identified one well of unknown use located approximately one-half mile southeast of the site. The only surface water body identified is the Inner Harbor, located approximately one-half mile south of the site. The only conduit identified down gradient of the site, which typically encounters groundwater, is a southwestward-flowing, 10-inch diameter sanitary sewer line. Based on the SCM developed for the site using this information, there are no significant sensitive receptors in the vicinity of the site. Cambria's August 29, 2001 Site Conceptual Model and Pilot Test Report presents the SCM, conduit study, and SRS.

2001 SVE Pilot Test: In October 2001, Cambria conducted a long-term (5 day) SVE pilot test on tank backfill well T-1. Based on the pilot test data, Cambria calculated a radius of influence of 15.0 to 30.3 feet. Approximately 16 pounds of TPHg, 1.3 pounds of benzene, and 36 pounds of MTBE were removed during the pilot test. Cambria's December 19, 2001 Soil Vapor Extraction Pilot Test Report and Investigation Work Plan provides pilot test details.

2001-2002 Monthly Vapor Sampling: From November 2001 to November 2002, Cambria coordinated monthly vapor measurements in the tank backfill wells using a photo-ionization detector (PID). Due to a PID measurement of 63,930 parts per million by volume (ppmv) in well T-2 on February 7, 2002, Cambria began collecting monthly samples from well T-2 for laboratory analysis in addition to taking the PID readings. Vapor samples contained up to 5,400 ppmv TPHg, 24 ppmv benzene, and 2,200 ppmv MTBE. Cambria's January 13, 2012 Fourth Quarter 2002 Self-Monitoring Report summarizes the vapor sampling results.

2002 Subsurface Investigation: In April 2002, Cambria drilled three soil borings (SB-D through SB-F) and installed two groundwater monitoring wells (MW-4 and MW-5). Soil samples from the borings contained up to 6.1 mg/kg MTBE. No TPHg or benzene was

detected in the soil samples. Grab groundwater samples from the soil borings contained up to $68,000~\mu g/L$ TPHg, $340~\mu g/L$ benzene, and $19,000~\mu g/L$ MTBE. Cambria's August 12, 2002 Subsurface Investigation Report presents investigation details.

2002-2003 Subsurface Investigation: In November 2002 and January 2003, Cambria installed four groundwater monitoring wells (MW-6 through MW-9). Soil samples from the well borings contained up to 6,000 mg/kg TPHg, 7.4 mg/kg benzene, and 10 mg/kg MTBE. Investigation results are presented in Cambria's May 28, 2003 Well Installation Report.

2003-2006 *GWE*: From February 2003 to November 2006, Cambria operated a GWE system which extracted groundwater from wells MW-2, MW-3, MW-6 through MW-8, and tank backfill well T-1. The GWE system removed approximately 2,228,010 gallons of water containing an estimated 48 pounds of TPHg, 0.38 pounds of benzene, and 140 pounds of MTBE.

Groundwater Monitoring: Groundwater monitoring has been conducted since the fourth quarter of 1998. Groundwater flow direction is generally southwesterly.

APPENDIX B

BORING LOGS

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

CLIENT NAME Equilon Enterprises LLC BORING/WELL NAME MW-1 JOB/SITE NAME Shell-Branded Service Station **DRILLING STARTED** 17-Nov-98 LOCATION 610 Market, Oakland CA DRILLING COMPLETED 17-Nov-98 WELL DEVELOPMENT DATE (YIELD) NA PROJECT NUMBER 240-0594 21.70 ft DRILLER Gregg Drilling **GROUND SURFACE ELEVATION** DRILLING METHOD Hollow-stem auger TOP OF CASING ELEVATION NA 10.25" BORING DIAMETER SCREENED INTERVAL 5 to 25 ft bgs B. Busch 10.0 ft (17-Nov-98) **LOGGED BY** DEPTH TO WATER (First Encountered) _ REVIEWED BY NA **DEPTH TO WATER (Static)**

REMARKS Hand augered to 5' bgs. CONTACT DEPTH (ft bgs) RECOVERY GRAPHIC LOG BLOW PiD (ppm) EXTENT U.S.C.S. DEPTH (ft bgs) SAMPLE WELL DIAGRAM LITHOLOGIC DESCRIPTION 0.5 **ASPHALT** SAND; (SW); brown; medium dense; damp; 10% silt, Portland Type 90% sand; no plasticity; moderate estimated permeability. I/II Cement Bentonite Seal SW Monterey Sand #2/16 MW1 Ð - 5.5 7.5 Silty SAND; (SM); brown, grey; medium dense; damp; 20% silt, 80% sand; no plasticity; moderate estimated permeability. 11/17/98 🗸 1.6 MW1 - 9.5 SM 15.0 4"-diam.. @ 15' - 15% silt, 85% sand. 0.010" Slotted Schedule 40 MW1 58 PVC - 16.0 NT MW₁ 20-SM - 19.5 WELL LOSS (PHOLIGE CANALIDATION LICEPAULE) ADDITIONAL MW1 0.3 25.0 - 24.0 -25 Bottom of Boring @ 25 ft PAGE I OF

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	Equilon Enterprises LLC	BORING/WELL NAME	MW-2
JOB/SITE NAME	Shell-Branded Service Station	DRILLING STARTED	17-Ngv-98
LOCATION	610 Market, Oakland CA	DRILLING COMPLETED	17-Nov-98
PROJECT NUMBER	240-0594	WELL DEVELOPMENT DA	TE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEV	ATION 19.61 ft
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATI	ON <u>NA</u>
BORING DIAMETER	10.25*	SCREENED INTERVAL	5 to 20.5 ft bgs
LOGGED BY	B. Busch	DEPTH TO WATER (First I	Encountered)10.0 ft (17-Nov-98)
REVIEWED BY		DEPTH TO WATER (Statio) <u>NA</u>
REVIEWED BY		DEPTH TO WATER (Statio) <u>NA</u>

REMARKS Hand augered to 5' bgs. CONTACT DEPTH (ft bgs) RECOVERY SAMPLE ID GRAPHIC LOG BLOW COUNTS PID (ppm) EXTENT U.S.C.S. DEPTH (ft bgs) WELL DIAGRAM LITHOLOGIC DESCRIPTION 0.5 ASPHALT SAND; (SW); brown to grey; loose; damp; 5% silt, 95% sand; no plasticity; high estimated permeability. Portland Type I/II Cement ■ Bentonite Seal sw ■ Monterey Sand #2/16 1.0 MW2 - 5.5 7.5 Silty SAND; (SM); grey; loose; moist; 15% silt, 85% fine grained sand; no plasticity; moderate estimated permeability. 11/17/98 🗸 MW2 11.0 SM - 10.5 4"-diam.,
0.010" Slotted Schedule 40 PVC 15.0 15 @ 15' - 15% silt, 85% fine to medium grained sand. 3.0 MW2 SM - 15.5 17.5 SAND; (SW); brown; loose; wet; 10% silt, 90% sand; no plasticity; high estimated permeability. SW 1.0 MW2 20.5 - 19.5 Bottom of WELLICKS PROF G COAKBINGSKYNDAKBINGOP, DEKALLIGDT 18/21/108 Boring @ 20.5 PAGE I OF

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

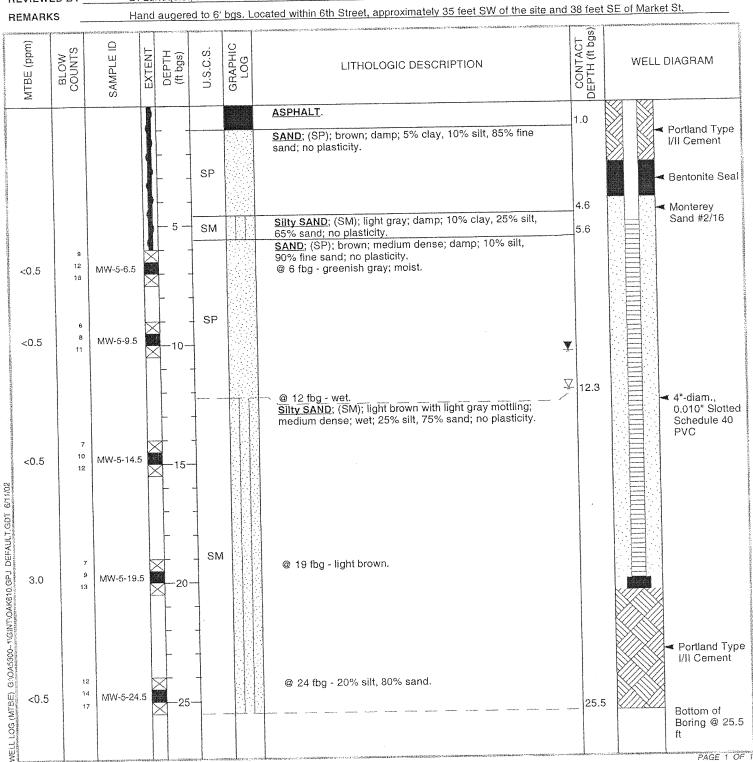
CLIENT NAME	Equilon Enterprises LLC	BORING/WELL NAME MW-3	
JOB/SITE NAME	Shell-Branded Service Station	DRILLING STARTED 17-Nov	v-98
LOCATION	610 Market, Oakland CA	DRILLING COMPLETED 17-Not	<u>v-98</u>
PROJECT NUMBER	240-0594	WELL DEVELOPMENT DATE (YIE	LD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	19.05 ft
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION NA	
BORING DIAMETER	10.25"	SCREENED INTERVAL 5.1	to 20.5 ft bgs
LOGGED BY	B. Busch	DEPTH TO WATER (First Encount	ered)10.0 ft (17-Nov-98)
REVIEWED BY		DEPTH TO WATER (Static)	NA

REMARKS Hand augered to 5' bgs. CONTACT DEPTH (# bgs) SAMPLE ID RECOVERY GRAPHIC LOG BLOW PID (ppm) EXTENT U.S.C.S. DEPTH (ft bgs) LITHOLOGIC DESCRIPTION **WELL DIAGRAM** TOPSOIL. 1.0 Portland Type Silty SAND; (SM); grey; loose; damp; 15% silt, 85% I/II Cement sand; no plasticity; moderate estimated permeability. ■ Bentonite Seal Monterey Sand #2/16 12.0 KWM - 5.5 SM 11/17/98 🗸 204 MW3 - 10.5 4"-diam., 0.010" Slotted Schedule 40 **PVC** 15.0 @ 15' - wet. EWM 15.0 - 15.5 SM 20.0 17.0 мwз 20 - 19.5 Bottom of WELL LOS JADI G OAKBROUNTVAKBIOGPI DEFALLTODT 1021108 Boring @ 20.5 PAGE 1 OF

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

CLIENT NAME Shell Oil Products US						BORING/WELL NAME MW-4						
JOB/SITE	NAME	Shell-Branded Service Station					ion	DRILLING STARTED	<u>17-Apr-02</u>			
LOCATIO	N	610	Mark	et, O	akland C)A		DRILLING COMPLETED			***************************************	
PROJEC [*]	T NUMBER	R244	-0594					WELL DEVELOPMENT	DATE (YIELD)			
DRILLER		Gre	gg Dri	illing				GROUND SURFACE ELE		Not Su	ırveyed	
DRILLING	3 METHOD	Hol Hol	low-st	em a	uger			TOP OF CASING ELEVA				***************************************
BORING	DIAMETE							SCREENED INTERVAL				
LOGGED	-		Gerke					DEPTH TO WATER (Firs				********
REVIEW	ED BY								,		61 ft (20-Ma	
REMARK	(S	Hai	nd auc	gered	to 5' bg	s. Lo	cated within 6th Street,	approximately 43 feet SV	V of the site and		t SE of Mar	ket St.
MTBE (ppm)	BLOW	SAMPLEID	DEPTH	(ft bgs)	U.S.C.S.	507	LITHO	DLOGIC DESCRIPTION	n-min de approprieta en 14 maio de 20 maio 20	CONTACT DEPTH (ft bgs)	WELL	DIAGRAM
Z	Ü	Ś			_ 0							
							ASPHALT. Silty SAND; (SM); butrace medium graine	own; damp; 20% silt, 80% d sand; no plasticity.	s fine with	1.7		Portland Type I/II Cement
ordered the state of the state					To the second se		•				grade 1994	■ Bentonite Seal ■ Monterey Sand #2/16
	7	1W-4-6.5 1W-4-9.5		0			oxidization staining.	n with light gray mottling a	nd ∑ Y			ордина да и и и и и и и и неменальний и и и и и и и и и и и и и и и и и и
	7 7 9	1W-4-14.5		15	SM		@ 10.2 fbg - wet. @ 14.0 fbg - light bi	own with light gray mottlin				■ 4"-diam., 0.010" Slotted Schedule 40 PVC
WELL LUG (M DE) G. OANGOO-NIN TANK	6 3 10	/IW-4-19.0	× - 2	20-						20.0		Bottom of Boring @ 20 ft


BORING/WELL LOG

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700

Fax: (510) 420-9170

	Di B O'i Braducta LiC	BORING/WELL NAME MW-5		
CLIENT NAME	Shell Oil Products US	D 0111110111		
JOB/SITE NAME	Shell-Branded Service Station	DIELECTION OF THE PARTY OF THE		
LOCATION	610 Market, Oakland CA	DRILLING COMPLETED17-Apr-02		
PROJECT NUMBER	244-0594	WELL DEVELOPMENT DATE (YIELD)	NA	
		GROUND SURFACE ELEVATION	Not Surveyed	
DRILLER	Gregg Drilling			
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION NA		
BORING DIAMETER	10"	SCREENED INTERVAL 5 to 2	20 ft bgs	
	J. Gerke	DEPTH TO WATER (First Encountered	ed) 12.0 ft (17-Apr-02)	
LOGGED BY		DEPTH TO WATER (Static)	10.41 ft (20-May-02)	
REVIEWED BY	D. Lundquist, PE		100 () OF - 111-ulant Ct	

Campha chivironmental rechnology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

CLIENT NAME Shell Oil Products US BORING/WELL NAME MW-6 JOB/SITE NAME Shell-Branded Service Station DRILLING STARTED 15-Nov-02 LOCATION 610 Market, Oakland CA DRILLING COMPLETED 15-Nov-02 PROJECT NUMBER 244-0594 WELL DEVELOPMENT DATE (YIELD) NA DRILLER Gregg Drilling **GROUND SURFACE ELEVATION** Not Surveyed DRILLING METHOD Hollow-stem auger TOP OF CASING ELEVATION NA SCREENED INTERVAL BORING DIAMETER 10" 5 to 20.01 ft bgs LOGGED BY J. Gerke DEPTH TO WATER (First Encountered) 15.0 ft (15-Nov-02) **REVIEWED BY** M. Derby, PE# 55475 DEPTH TO WATER (Static)

REMARKS Hand augered to 5' bgs. BLOW COUNTS COUNTS COUNTS CONTACT CON	
TACT (
	ELL DIAGRAM
MW-6- 5.5 SP Brown with gray mottling. Sility SAND: (SM), Gray; 20% Silt, 80% Sand.	Monterey Sand #2/16 4"-diam., 0.010" Slotted Schedule 40 PVC Bottom of Boring @ 20 ft

Campria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: (510) 420-0700

BORING/WELL LOG

Fax: (510) 420-9170 **CLIENT NAME** Shell Oil Products US MW-7 BORING/WELL NAME JOB/SITE NAME Shell-Branded Service Station DRILLING STARTED 14-Nov-02 LOCATION 610 Market, Oakland CA DRILLING COMPLETED 15-Nov-02 244-0594 WELL DEVELOPMENT DATE (YIELD) NA PROJECT NUMBER DRILLER Gregg Drilling **GROUND SURFACE ELEVATION** Not Surveyed DRILLING METHOD Hollow-stem auger TOP OF CASING ELEVATION NA BORING DIAMETER 10" SCREENED INTERVAL 5 to 20.01 ft bgs

J. Gerke LOGGED BY **DEPTH TO WATER (First Encountered)** 15.0 ft (14-Nov-02)

	LOGGEL	***	M D. L. DEGERATE					DEPTH TO WATER (First Encountered) 15.0 ft (14-Nov-02) DEPTH TO WATER (Static) NA						
	REVIEW REMARK				erby, Pi Laugere			DEPTH TO WATER (Static)	N/	\	(Mar.			
1	1100000		J 1	7	augere	SU 10 0	1093.			·				
	PID (ppm)	BLOW COUNTS SAMPLE ID EXTENT DEPTH (fbg) U.S.C.S.				U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT CONTACT DEPTH (fbg) WELL DIAGRAM					
	The second secon							Asphalt Silty SAND; (SM); Grayish brown to brown with gray; damp; 5% Clay, 15% Silt, 80% Sand; low plasticity.	0.6		Portland Type //II Cement Bentonite Seal			
					- 5 	SM		Silty SAND; (SM); Brown; damp; 5% Clay, 15%Silt ,80% Sand.						
			MW-7- 9.0 MW-7- 10.5		10 			Silty SAND; (SM); Brown with gray streaking; moist.			Monterey Sand #2/16 4"-diam.,			
			MW-7- 15.5	X	15-			Poorly Graded SAND; (SP); Gray; wet; 5% Silt, 95% Sand.	16.0		0.010" Slotted Schedule 40 PVC			
JLT.GDT 3/12/03			MW-7- 19.0	XX	- 20-	SP		Brown.	20.0		Bottom of Boring @ 20 ft			
DAK610.GPJ DEFAL									And to stress the stress of th					
WELL LOG (PID) GJOAKLAND 610 MARKETIGINTIOAK619.GPJ DEFAULT.GDT 3/12/03				***************************************										
WELL LOG (PID) GAO														

5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BUKING/WELL LUG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME MW-8	
JOB/SITE NAME	Shell-Branded Service Station	DRILLING STARTED 14-Nov-02	
LOCATION	610 Market, Oakland CA	DRILLING COMPLETED 14-Nov-02	
PROJECT NUMBER _	244-0594	WELL DEVELOPMENT DATE (YIELD)	NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	Not Surveyed
DRILLING METHOD _	Hollow-stem auger	TOP OF CASING ELEVATION NA	
BORING DIAMETER	10"	SCREENED INTERVAL 5 to 20.0	01 ft bgs
LOGGED BY	J. Gerke	DEPTH TO WATER (First Encountered)	10.0 ft (14-Nov-02)
REVIEWED BY	M. Derby, PE# 55475	DEPTH TO WATER (Static)	NA
DEMADICO	114	, ,	***************************************

REMARKS Hand augered to 5' bgs. CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG PID (ppm) BLOW DEPTH (fbg) U.S.C.S. EXTENT LITHOLOGIC DESCRIPTION WELL DIAGRAM <u>Asphalt</u> 0.6 Silty SAND; (SM); Grayish brown to gray; damp; 15% Silt, 85% Sand. Portland Type I/II Cement Bentonite Seal Silty SAND; (SM); grayish brown; damp; Silt 20%, Sand MW-8- 6 SM Σ Silty SAND; (SM); gray; moist to wet; 20% Silt, 80% Sand. MW-8- 11 Monterey Sand #2/16 4"-diam., 0.010" Slotted Schedule 40 PVC Silty SAND; (SM); gray; wet; 15% Silt, 85% Sand. MW-8-16 WELL LOG (PID), G: OAKLAND 610 MARKETIGINTIOAK610.GPJ DEFAULT GDT 3/12/03 19.0 SP Poorly Graded SAND; (SP); Grayish brown; wet; 10% 20.0 MW-8-Bottom of Boring @ 20 ft 19.5

Cambria Environmentai Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME MW-9		
JOB/SITE NAME	Shell-Branded Service Station	DRILLING STARTED 28-Jan-03		
LOCATION	610 Market, Oakland CA	DRILLING COMPLETED 28-Jan-03		
PROJECT NUMBER	244-0594	WELL DEVELOPMENT DATE (YIELD)	NA	
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	Not Surveyed	***
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION NA		
BORING DIAMETER	10"	SCREENED INTERVAL 5 to 20.0	1 ft bgs	
LOGGED BY	J. Gerke	DEPTH TO WATER (First Encountered)	12.5 ft (18-Jan-03)	V
REVIEWED BY	M. Derby, PE# 55475	DEPTH TO WATER (Static)	NA	y
DEBLADICO	11	, ,		**************************************

REMARKS Hand augered to 5' bgs. CONTACT DEPTH (fbg) GRAPHIC LOG PID (ppm) BLOW DEPTH (fbg) EXTENT U.S.C.S. SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM Surface Planter with debris.; Dark brown; damp; 25% Clay, 40% Sllt, 35% Sand.
Silty SAND; (SM); Reddish brown to gray; damp; 5% 0.4 Portland Type I/II Cement Clay, 40% Silt, 55% Sand. Bentonite Seal Silty SAND; (SM); 5% Clay, 35% Silt, 60% Sand. MW-9-5.5 10 SM Silty SAND; (SM); Brown with 35% gray mottling; moist; MW-9-5% Clay, 45% Silt, 50% Sand. 10.5 Monterey $\mathbf{\tilde{X}}$ Sand #2/16 4"-diam., 0.010" Slotted Schedule 40 PVC Silty SAND; (SM); Wet; 35% Silt, 65% Sand. MW-9-15.5 WELL LOG (PID) G-LOAKLAND 6:10 MARKETIGINTNOAK610,GPJ DEFAULT.GDT 3/12/03 MW-9-Silty SAND; (SM); Wet; 20% Silt, 80% Sand. 20.0 19.0 20 Bottom of Boring @ 20 ft PAGE 1 OF 1

Clier	nt: Shell C	il P	ro		RING LOG Company			Locatio	on 610	Bori	ng ID et, Oakl	SB-A and	
Proje	oct No: 240	-05	9	4	Phase	Tasi	k 2		e Elev. N			Page 1 of 1	
Depth (feet)	Blow Coun	t	Sample	Interval		ithologic escription		TPHg (ppm)	Graphic Log	Boring Completion Graphics	Depth (feet)	Additional Comments	
5 5 10	Ground Su	face	×××		Asphalt Silty SAND; (SI 15% silt, 85% moderate estimate estimate) grey; damp; 18						10	Water encountered @ 14 ft. Bottom of boring @ 16 ft.	
25											25		
Г	Driller Gregg Drilling				Drilling Started 3/31/98					Notes: See site map.			
					Drilling Compl				_				
	Oriller Gregg Drilling Origed By Aubrey Cool Water-Bearing Zones NA						Portland		1/11				

a	. Chall Oil	D		PRING LOG				Boring		SB-B		
	nt: Shell Oil ect No: 240- 0			• •	ask 2		on 610 e Elev. N	Market Street, A ft,	Oakla	and Page 1	of	1
Depth (feet)		Sample		Lithologic Description		TPHg (ppm)	Graphic Log	Boring Completion Graphics	Depth (feet)	Addition Comm	onal	
deQ 0 5 5 10	Ground Surfa		Inter	Asphalt SAND: (SW); brown to grey moist; 5% silt, 95% fine to sand; high estimated permeaborous; damp; 10% silt, 90% medium sand; moderate estipermeability. Silty SAND: (SM); grey; loss 15% silt, 85% fine sand; mestimated permeability. brown to grey; 15% silt, 85 medium sand.	% fine to imated se; wet; oderate	Idd)	Grap	Completion Graphics	de() 0 15 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	Water encou 10.5 ft.	ntered	
30	riller Gregg	Dri	lling	Drilling Start	ad 3/31/6	38		Notes: Se	25 30	man		
				·					, JIL o (-	
Logged By Aubrey Cool Drilling Completed 3/31/98									·			-
V	Vater-Bearing Zo	nes	NA	Grout Type	Portland	Type	1/11					

				RING LOG						Boring	ID	SB-C
	ent: Shell Oil			•						ket Street,	Oakla	
Pro	ject No: 240-0			Phase	Task 2		Surfac	e Elev. N	Απ			Page 1 of 1
Ę	Blow	eja	Interval	Li	ithologic		무급	Graphic Log	~	Boring	Depth (feet)	A alalista al
Depth	Count	San	nte	De	escription	l	TPHg (ppm)	ira Lo	G	Boring mpletion iraphics	Dej (fe	Additional Comments
	<u> </u>		-		-			-				
0	Ground Surface	P								<i>````````````</i>	0	
	1			Asphalt	raum lagas dama	-1			>>		1	
				10% silt, 90% moderate to hig permeability.	rown; loose; damp; fine to medium sand gh estimated	d;					, , 1 ,	
	-				* * * * * * * * * * * * * * * * * * * *						- -	
5				CTALL CAND. (C)							5	
				moist; 15% silt	M); brown; loose; t, 85% fine to medic o to high estimated	ım						
				permeability. wet.	to nign estimated						-	
	-			wat.							_	Water encountered @ 7 ft.
						ļ					-	
10	-				00% 5				N.		10	
				moist; 20% sin	t, 80% fine sand; nated permeability.						_	
											ŀ	
	_										L	
]					I					_	
15	-										15_	·
	7										_	
	1											
	7					Į					Ŀ	
]										-	
20	, -]			no recovery.							20	
	_											
]											
	-					•					-	
]										E	
25	; -										25	
Г	-										Ŀ	
ı	1										-	Bottom of boring @ 26 ft.
	-										<u>-</u>	
	-										[
30	,]							,			30	
	Driller Gregg	Dr	illing		Drilling Started 3/	31/9	8			Notes: Se	e site	map.
	Logged By Au	<u>br</u>	ey Cool		Drilling Completed	3/3	1/98			#*************************************		
11	Water-Bearing Zo				Grout Type Por			s [/]]				
I L	אימימי-הפמוווא ער	410	, ,11/1		arour 13ha T.OI	H411H	- 100					

BORING/WELL LOG

PAGE 1 OF T

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NA JOB/SITE I LOCATION PROJECT DRILLER DRILLING BORING D LOGGED I REVIEWEI	NAME NUMBE METHO DIAMETE BY D BY	Show 610 R 244 Ground Hy RR 2" J. D.	ell-E O Ma 4-05 egg drau Ger Lur	arket, O 594 Drilling ulic pusl ke ndquist,	Servi akland h	ce Stati	ocated approximately 2	DRILLING COMPLETED WELL DEVELOPMENT DA GROUND SURFACE ELEN TOP OF CASING ELEVAT SCREENED INTERVAL DEPTH TO WATER (First	16-Apr-02 16-Apr-02 ATE (YIELD) VATION TON NA NA Encountered)	NA Not S	urveyed .7 ft (16-Apr-0	
MTBE (ppm)	BLOW	SAMPLEID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG		DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WELL I	DIAGRAM
LOG (MTPE) G:00,5300 - 1/GiNT)OAK510,GPJ DEFAULT.GOT 6/11/02 O O O O O O O O O O O O O O O O O O O		SB-D-10.0 SB-D-11.5			SM		fine grained sand; n @ 11.1 fbg - brown 25% silt, 70% fine	n with gray mottling; moist; s grained sand. h gray; wet; 7% clay, 28% s	5% clay,	0.9		Portland Type
OG (MTBE) G:\OA530(20-	SF		SAND; (SP); bluis fine grained sand	h gray; wet; 3% clay, 7% si no plasticity; odor.	lt, 90%	20.	0	Bottom of Boring @ 20 ft

BORING/WELL LOG

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700

Fax: (510) 420-9170

			00 5		
CLIENT NAME	Shell Oil Products US	BORING/WELL NAME _	SB-E		-
JOB/SITE NAME	Shell-Branded Service Station	DRILLING STARTED	16-Apr-02		
		DRILLING COMPLETED	16-Apr-02		
LOCATION	610 Market, Oakland CA	WELL DEVELOPMENT DA	ATE (VIELD)	1A	
PROJECT NUMBER _	244-0594			Not Surveyed	
DRILLER	Gregg Drilling	GROUND SURFACE ELEV	4711O11	tor surveyed	
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVAT	TON NA NOT		
	O.E.	SCREENED INTERVAL	NA		
BORING DIAMETER _		DEPTH TO WATER (First	Encountered)	13.0 ft (16-Apr-02)	Ž
LOGGED BY	J. Gerke	DEPTH TO WATER (Stati		NA	Y

D. Lundquist, PE REVIEWED BY ___ Hand augered to 5' bgs. Located approximately 5 feet southwest of dispenser D1/D2. REMARKS CONTACT DEPTH (ft bgs) GRAPHIC LOG MTBE (ppm) SAMPLE ID BLOW COUNTS DEPTH (ft bgs) U.S.C.S. EXTENT WELL DIAGRAM LITHOLOGIC DESCRIPTION ASPHALT. 0.4 SAND; (SP); bluish gray; damp; 5% clay, 10% silt, 80% fine grained sand; no plasticity. SP 3.5 Silty SAND; (SM); brown; damp; 10% clay, 15% silt, 75% fine grained sand; no plasticity; odor. SM SB-E-5.0 6.1 6.5 SAND; (SP); bluish gray; moist; 3% clay, 7% silt, 90% fine grained sand; no plasticity; odor. Portland TypeI/II Cement SP SB-E-10.0 2.7 WELL LOG (MTBE) GNOA5300-NGINTNOAK610.GPJ DEFAULT.GDT 6/11/02 12.0 Silty SAND; (SM); brown; moist; 3% clay, 17% silt, 80% fine grained sand; no plasticity; odor. SB-E-12.5 ∇ 4.8 @ 13 fbg - wet. SM 16.0 Bottom of Boring @ 16 ft PAGE 1 OF 1

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME	SB-F		
JOB/SITE NAME	Shell-Branded Service Station	DRILLING STARTED	16-Apr-02		
LOCATION	610 Market, Oakland CA	DRILLING COMPLETED	16-Apr-02		
PROJECT NUMBER	244-0594	WELL DEVELOPMENT DATE	E (YIELD)	NA	
DRILLER	Gregg Drilling	GROUND SURFACE ELEVA	TION	Not Surveyed	
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION	N NA		
BORING DIAMETER	2"	SCREENED INTERVAL	NA		
LOGGED BY	J. Gerke	DEPTH TO WATER (First En	countered)	11.7 ft (16-Apr-02)	
REVIEWED BY	D. Lundquist, PE	DEPTH TO WATER (Static)		NA	

GGED BY	J. Gerke			DEPTH TO WATER (First Encountered)			<u> </u>
EVIEWED BY_	D. Lur	ndquist,	PE	DEPTH TO WATER (Static)	NA		
EMARKS _	Hand	augered	d to 5' bgs.	ocated approximately 27 feet south of well MW-3, near the south o	orner o	t the site.	
MTBE (ppm) BLOW COUNTS	SAMPLE ID	DEPTH (ft bgs)	U.S.C.S. GRAPHIC	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL	DIAGRAM
				ASPHALT. Silty SAND; (SM); brown; damp; 5% clay, 15% silt, 80% fine grained sand.	0.6		
<0.5	SB-F-5.0	5	SM	@ 5.0 fbg - brown with light gray mottling.			✓ Portland Typ I/II Cement
				@ 8.0 fbg - moist, odor.			
<0.5	SB-F-10,0	10-		@ 9.8 fbg - bluish gray; 5% clay, 15% silt, 80% sand.			
<0.5	SB-F-11.2			@ 11.7 fbg - wet; 15% silt, 85% sand.	12.0		Bottom of Boring @ 12
no doppositivo de ref. p. c. n.	Aggree 1 ag a s o that concentration and the native and account of the second		400400		agost en grand de la companie de la		PAGE 1

APPENDIX C MASS REMOVAL DATA

Table 2: Groundwater Extraction - Operation and Mass Removal Data Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

												<u> </u>	· mpr	
				Period			TPHg		ъ.	Benzene	C1-4'	MTDE	MTBE Period	Completion
Site	Hour	Flow Meter	Period	Operational	Cumulative	TPHg	Period	Cumulative	Benzene	Period	Cumulative Removal	MTBE	Removal	Cumulative Removal
Visit	Meter	Reading	Volume	Flow Rate	Volume	Conc.	Removal	Removal (pounds)	Conc. (ppb)	Removal (pounds)	(pounds)	Conc. (ppb)	(pounds)	(pounds)
(mm/dd/yy)	(hours	(gal)	(gal)	(gpm)	(gal)	(ppb)	(pounds)	(pounds)	(рри)	(pourids)	(pounds)	(рри)	(pounds)	(pourius)
02/18/03	0.0	100	0	0.00	0	<20,000	0.000	0.000	270	0.0000	0.000	93,000	0.000	0.00
02/18/03	3.5	1,024	924	4.40	924	·	0.077	0.077		0.0021	0.002		0.717	0.72
02/25/03	140.2	30,312	29,288	3.57	30,212	<20,000	2.444	2.52	<200	0.0244	0.027	74,000	18.1	18.80
03/11/03	475.8	84,666	54,354	2.70	84,566	<10,000	2.268	4.79	<100	0.0227	0.049	47,000	21.3	40.12
03/13/03	524.0	92,030	7,364	2.55	91,930		0.307	5.10		0.0031	0.052		2.89	43.01
03/25/03	527.0	92,840	810	4.50	92,740	<10,000	0.034	5.13	<100	0.0003	0.053	38,000	0.257	43.26
04/07/03	838.6	142,754	49,914	2.67	142,654	30,000	12.495	17.6	<250	0.0521	0.105	33,000	13.7	57.01
04/14/03	985.4	165,205	22,451	2.55	165,105		5.620	23.2		0.0234	0.128	-	6.18	63.19
04/22/03	1,184.1	197,360	32,155	2.70	197,260	<25,000	3.354	26.6	<250	0.0335	0.162	26,000	6.98	70.17
04/29/03	1,305.4	216,450	19,090	2.62	216,350		1.991	28.6		0.0199	0.182		4.14	74.31
05/01/03	1,351.3	223,850	7,400	2.69	223,750	<10,000	0.309	28.9	<100	0.0031	0.185	25,000	1.54	75.85
05/20/03	1,783.0	291,620	67,770	2.62	291,520	<10,000	2.827	31.7	<100	0.0283	0.213	17,000	9.61	85.47
06/03/03	2,122.1	341,643	50,023	2.46	341,543	<10,000	2.087	33.8	<100	0.0209	0.234	15,000	6.26	91.73
06/17/03	2,456.1	388,001	46,358	2.31	387,901	<10,000	1.934	35.7	<100	0.0193	0.253	17,000	6.58	98.30
06/30/03	2,766.0	429,880	41,879	2.25	429,780		1.747	37.5		0.0175	0.271		5.94	104.24
07/14/03	3,095.9	473,549	43,669	2.21	473,449		1.822	39.3		0.0182	0.289		6.19	110.44
07/28/03	3,423.7	514,826	41,277	2.10	514,726	<5,000	0.861	40.2	<50	0.0086	0.297	7,100	2.45	112.88
08/11/03	3,761.9	545,750	30,924	1.52	545,650	<2,500	0.323	40.5	<25	0.0032	0.301	4,900	1.26	114.15
08/28/03	4,171.0	595,525	49,775	2.03	595,425	<2,500	0.519	41.0	<25	0.0052	0.306	7,700	3.20	117.35
09/08/03	4,435.4	626,720	31,195	1.97	626,620	<2,500	0.325	41.3	<25	0.0033	0.309	6,600	1.72	119.06
09/22/03	4,769.9	665,449	38,729	1.93	665,349	<5,000	0.808	42.2	<50	0.0081	0.317	5,700	1.84	120.91
10/08/03	5,084.6	701,104	35,655	1.89	701,004	<2,500	0.372	42.5	<25	0.0037	0.321	3,100	0.922	121.83
10/21/03	5,396.7	735,644	34,540	1.84	735,544	<5,000	0.721	43.2	<50	0.0072	0.328	3,800	1.10	122.92
11/06/03	5,785.7	778,218	42,574	1.82	778,118	<1,000	0.178	43.4	<10	0.0018	0.330	3,500	1.24	124.17
11/19/03	6,097.1	810,223	32,005	1.71	810,123		0.134	43.6		0.0013	0.331		0.935	125.10
12/05/03	6,481.6	849,610	39,387	1.71	849,510	<2,000	0.329	43.9	<20	0.0033	0.334	3,400	1.12	126.22
12/23/03	6,909.0	898,595	48,985	1.91	898,495		0.409	44.3		0.0041	0.339		1.390	127.61
01/02/04	7,057.2	917,835	19,240	2.16	917,735		0.161	44.5		0.0016	0.340		0.546	128.15
01/09/04	7,170.7	941,766	23,931	3.51	941,666	<2,000	0.200	44.7	<20	0.0020	0.342	2,700	0.539	128.69
01/21/04	7,461.1	986,590	44,824	2.57	986,490		0.374	45.0		0.0037	0.346		1.010	129.70
02/09/04	7,492.3	991,309	4,719	2.52	991,209	<250	0.005	45.0	7.8	0.0003	0.346	250	0.010	129.71
02/25/04	7,872.5	1,048,823	57,514	2.52	1,048,723		0.060	45.1		0.0037	0.350		0.120	129.83
03/09/04	7,952.6	1,062,912	14,089	2.93	1,062,812	<250	0.015	45.1	8.6	0.0010	0.351	700	0.082	129.92
03/23/04	8,285.6	1,117,340	54,428	2.72	1,117,240		0.057	45.2		0.0039	0.355		0.318	130.23
04/13/04	8,792.3	1,191,229	73,889	2.43	1,191,129	<1,000	0.308	45.5	<10	0.0031	0.358	1,900	1.17	131.40

Page 1 of 4

Table 2: Groundwater Extraction - Operation and Mass Removal Data Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

				Period			TPHg			Benzene			<u>MTBE</u>	
Site	Hour	Flow Meter	Period	Operational	Cumulative	TPHg	Period	Cumulative	Benzene	Period	Cumulative	MTBE	Period	Cumulative
Visit	Meter	Reading	Volume	Flow Rate	Volume	Conc.	Removal	Removal	Conc.	Removal	Removal	Conc.	Removal	Removal
(mm/dd/yy)	(hours	(gal)	(gal)	(gpm)	(gal)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)
04/29/04	9,010.2	1,221,189	29,960	2.29	1,221,089		0.125	45.6		0.0012	0.359		0.475	131.88
05/10/04	9,273.9	1,256,838	35,649	2.25	1,256,738	<1,000	0.149	45.7	<10	0.0015	0.361	1,600	0.476	132.36
05/25/04	9,633.5	1,299,232	42,394	1.96	1,299,132		0.177	45.9		0.0018	0.362		0.566	132.92
05/28/04	9,633.5	1,299,232	0	0.00	1,299,132	3,400	0.000	45.9	170	0.0000	0.362	1,200	0.000	132.92
06/09/04	9,784.0	1,317,792	18,560	2.06	1,317,692	<1,000	0.077	46.0	<10	0.0008	0.363	1,100	0.170	133.09
06/22/04	10,092.7	1,353,124	35,332	1.91	1,353,024		0.147	46.1		0.0015	0.365		0.324	133.42
07/07/04	10,452.9	1,392,516	39,392	1.82	1,392,416	<1,000	0.164	46.3	<10	0.0016	0.366	1,100	0.362	133.78
07/22/04	10,815.9	1,431,329	38,813	1.78	1,431,229		0.162	46.5		0.0016	0.368		0.356	134.13
08/03/04	11,101.8	1,458,993	27,664	1.61	1,458,893	<1,000	0.115	46.6	<10	0.0012	0.369	850	0.196	134.33
08/18/04	11,462.6	1,489,829	30,836	1.42	1,489,729		0.129	46.7		0.0013	0.370		0.219	134.55
08/31/04	11,774.4	1,509,195	19,366	1.04	1,509,095		0.081	46.8		0.0008	0.371		0.137	134.69
09/16/04	12,158.3	1,544,659	35,464	1.54	1,544,559	<250	0.037	46.8	<2.5	0.0004	0.372	480	0.142	134.83
09/29/04	12,454.1	1,570,554	25,895	1.46	1,570,454		0.027	46.9		0.0003	0.372		0.104	134.93
10/12/04	12,764.9	1,596,571	26,017	1.40	1,596,471	<50	0.005	46.9	<0.50	0.0001	0.372	320	0.069	135.00
10/29/04	13,155.1	1,629,213	32,642	1.39	1,629,113		0.007	46.9		0.0001	0.372		0.087	135.09
11/08/04	13,396.0	1,650,078	20,865	1.44	1,649,978	<200	0.017	46.9	<2.0	0.0002	0.372	400	0.070	135.16
11/23/04	13,753.4	1,681,329	31,251	1.46	1,681,229		0.026	46.9		0.0003	0.372		0.104	135.26
12/02/04	13,970.7	1,699,369	18,040	1.38	1,699,269	<250	0.019	46.9	<2.5	0.0002	0.373	530	0.080	135.34
12/13/04	14,232.5	1,722,500	23,131	1.47	1,722,400		0.024	47.0		0.0002	0.373		0.102	135.45
12/27/04	14,569.0	1,753,347	30,847	1.53	1,753,247		0.032	47.0		0.0003	0.373		0.136	135.58
01/10/05	14,908.0	1,791,516	38,169	1.88	1,791,416	<250	0.040	47.0	<2.5	0.0004	0.374	350	0.111	135.69
01/24/05	15250.0 a	1,833,667	42,151	2.05	1,833,567		0.044	47.1		0.0004	0.374		0.123	135.82
02/08/05	15610.0 a	1,877,563	43,896	2.03	1,877,463	<250	0.046	47.1	<2.5	0.0005	0.374	460	0.168	135.98
02/22/05	977.7 b	1,905,770	28,207	1.41	1,905,670		0.029	47.2		0.0003	0.375		0.108	136.09
03/07/05	981.5	1,906,415	645	2.83	1,906,315	310	0.002	47.2	8.9	0.0000	0.375	120	0.001	136.09
03/21/05	1313.8	1,955,583	49,168	2.47	1,955,483		0.127	47.3		0.0037	0.378		0.049	136.14
04/13/05	1868.6	2,040,301	84,718	2.55	2,040,201	<250	0.088	47.4	<2.5	0.0009	0.379	350	0.247	136.39
04/26/05	2178.9	2,075,269	34,968	1.88	2,075,169		0.036	47.4		0.0004	0.380		0.102	136.49
07/22/05	2255.0	2,086,544	11,275	2.47	2,086,444		0.009	47.4		0.0003	0.380		0.051	136.54
07/29/05	2419.6	2,088,327	1,783	0.18	2,088,227	<200	0.001	47.4	3.2	0.0000	0.380	540	0.008	136.55
08/04/05	2562.3	2,090,240	1,913	0.22	2,090,140	86 c	0.001	47.4	1.8	0.0000	0.380	140	0.002	136.55
08/23/05	3020.5	2,095,197	4,957	0.18	2,095,097		0.004	47.4		0.0001	0.380		0.006	136.56
09/16/05	3596.9	2,101,199	6,003	0.17	2,101,099	77 c	0.004	47.4	1.1	0.0001	0.380	55	0.003	136.56
09/30/05	3932.7	2,104,244	3,045	0.15	2,104,144		0.002	47.4		0.0000	0.380		0.001	136.56

Table 2: Groundwater Extraction - Operation and Mass Removal Data Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

				Period			TPHg			<u>Benzene</u>			<u>MTBE</u>	
Site	Hour	Flow Meter	Period	Operational	Cumulative	TPHg	Period	Cumulative	Benzene	Period	Cumulative	MTBE	Period	Cumulative
Visit	Meter	Reading	Volume	Flow Rate	Volume	Conc.	Removal	Removal	Conc.	Removal	Removal	Conc.	Removal	Removal
(mm/dd/yy)	(hours	(gal)	(gal)	(gpm)	(gal)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)
10/13/05	4247.0	2,107,078	2,834	0.15	2,106,978	140	0.003	47.4	0.68	0.0000	0.380	26	0.001	136.56
10/28/05	4603.6	2,109,993	2,915	0.14	2,109,893		0.003	47.4		0.0000	0.380		0.001	136.56
11/11/05	4941.6	2,112,924	2,931	0.14	2,112,824	100 c	0.002	47.4	0.86	0.0000	0.380	26	0.001	136.57
11/23/05	5227.2	2,115,278	2,354	0.14	2,115,178		0.002	47.4		0.0000	0.380		0.001	136.57
12/16/05	5779.7	2,120,371	5,093	0.15	2,120,271	92	0.004	47.4	1.0	0.0000	0.380	36	0.002	136.57
12/30/05	6115.8	2,125,465	5,094	0.25	2,125,365		0.004	47.4		0.0000	0.380		0.002	136.57
01/09/06	6358.4	2,129,968	4,503	0.31	2,129,868	240	0.009	47.5	2.8	0.0001	0.381	180	0.007	136.58
01/20/06	6620.0	2,134,437	4,469	0.28	2,134,337		0.009	47.5		0.0001	0.381		0.007	136.58
02/02/06	6930.2	2,139,637	5,200	0.28	2,139,537	150	0.007	47.5	2.0	0.0001	0.381	140	0.006	136.59
02/17/06	7289.0	2,145,122	5,485	0.25	2,145,022		0.007	47.5		0.0001	0.381		0.006	136.59
03/03/06	7626.1	2,150,516	5,394	0.27	2,150,416	190	0.009	47.5	1.4	0.0001	0.381	91	0.004	136.60
03/17/06	7963.7	2,153,262	2,746	0.14	2,153,162		0.004	47.5		0.0000	0.381		0.002	136.60
03/31/06	8299.5	2,160,188	6,926	0.34	2,160,088		0.011	47.5		0.0001	0.381		0.005	136.61
04/13/06	8614.7	2,168,040	7,852	0.42	2,167,940	150	0.010	47.5	3.1	0.0002	0.381	250	0.016	136.62
04/27/06	8949.0	2,175,853	7,813	0.39	2,175,753		0.010	47.5		0.0002	0.381		0.016	136.64
05/11/06	9282.4	2,182,492	6,639	0.33	2,182,392	120	0.007	47.5	1.7	0.0001	0.381	120	0.007	136.65
05/26/06	9642.0	2,189,098	6,606	0.31	2,188,998		0.007	47.5		0.0001	0.382		0.007	136.65
06/08/06	9953.6	2,194,105	5,007	0.27	2,194,005	190	0.008	47.5	0.96	0.0000	0.382	63	0.003	136.65
06/22/06	10289.9	2,199,001	4,896	0.24	2,198,901		0.008	47.6		0.0000	0.382		0.003	136.66
07/07/06	10650.1	2,200,780	1,779	0.08	2,200,680	120	0.002	47.6	1.6	0.0000	0.382	9.9	0.000	136.66
07/18/06	10762.0	2,202,272	1,492	0.22	2,202,172		0.001	47.6		0.0000	0.382		0.000	136.66
08/01/06	11105.1	2,206,401	4,129	0.20	2,206,301	170	0.006	47.6	0.93	0.0000	0.382	20	0.001	136.66
08/16/06	11461.9	2,210,312	3,911	0.18	2,210,212		0.006	47.6		0.0000	0.382		0.001	136.66
09/05/06	11941.8	2,215,160	4,848	0.17	2,215,060	660	0.027	47.6	23	0.0009	0.383	55	0.002	136.66
09/19/06	12274.3	2,218,242	3,082	0.15	2,218,142		0.017	47.6		0.0006	0.383		0.001	136.66
10/02/06	12,590.4	2,221,040	2,798	0.15	2,220,940	<50	0.001	47.6	<0.5	0.000006	0.383	9.8	0.000	136.66
10/16/06	12,928.2	2,224,000	2,960	0.15	2,223,900		0.001	47.6		0.0000	0.383		0.000	136.66
10/30/06	13,264.0	2,226,651	2,651	0.13	2,226,551		0.001	47.6		0.0000	0.383		0.000	136.66
11/07/06	13,455.2	2,228,110	1,459	0.13	2,228,010		0.000	47.6		0.0000	0.383		0.000	136.66
			Total Extr	acted Volume:	2,228,010	Total Pounds	Removed:	47.6	Total Pounds	Removed:	0.383	Total Pounds	Removed:	- 137
		Avera		nal Flow Rate:		Total Gallons	Removed:	7.82	Total Gallons	Removed:	0,052	Total Gallons	Removed:	22.1

Table 2: Groundwater Extraction - Operation and Mass Removal Data, Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

				Period			TPHg			Benzene			MTBE	
Site	Hour	Flow Meter	Period	Operational	Cumulative	TPHg	Period	Cumulative	Benzene	Period	Cumulative	MTBE	Period	Cumulative
Visit	Meter	Reading	Volume	Flow Rate	Volume	Conc.	Removal	Removal	Conc.	Removal	Removal	Conc.	Removal	Removal
(mm/dd/yy)	(hours	(gal)	(gal)	(gpm)	(gal)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)

Abbreviations & Notes:

TPHg = Total purgeable hydrocarbons as gasoline

MTBE = Methyl tert-butyl ether

Conc. = Concentration

ppb = Parts per billion, equivalent to µg/L

μg/L = Micrograms per liter

L = Liter

gal = Gallon

g = Gram

Mass removed based on the formula: volume extracted (gal) x Concentration (µg/L) x (g/106 µg) x (pound/453.6g) x (3.785 L/gal)

When constituents are not detected, the concentration is assumed to be equal to half the detection limit in subsequent calculations.

Volume removal data based on the formula: mass (pounds) x (density) (cc/g) x 453.6 (g/pound) x (L/1000 cc) * (gal/3.785 L)

Density inputs: TPHg = 0.73 g/cc, benzene = 0.88 g/cc, MTBE = 0.74 g/cc

TPHg, BTEX, and MTBE analyzed by EPA Method 8260B

a. Hour meter value is calculated due to hour meter failure

- b. Hour meter replaced on 2/8/05. Initial reading 645.2 hours.
- c. Quantity of unknown hydrocarbon(s) in sample is based on gasoline

As of February 1, 2006, gasoline range organics reported as TPHg include MTBE, tertiary-butyl alcohol, and di-isopropyl ether concentrations. TPHg concentrations reported prior to February 1, 2006 may not include one or more of these constituents.

Table 1: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

						TPPH			Benzene			MTBE	
			Cumulative				TPPH			Benzene			MTBE
		Volume	Volume		ТРРН	TPPH	Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
Date	Well	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	to Date	Concentration	Removed	To Date
Purged	ID	(gal)	(gal)	Sampled	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)
				00/01/00	.5.000	0.00000	0.00000	04.7	0.00000	0.00000	13,900	0.00000	0.00000
03/15/00	MW-2	0	0	03/21/00	<5,000	0.00000	0.00000	94.7	0.00000	0.00008	13,900	0.00000	0.00000
03/22/00	MW-2	100	100	03/21/00	<5,000	0.00209	0.00209	94.7	0.00008	0.00008	13,900	0.01100	0.01100
03/27/00	MW-2	75	175	03/21/00	<5,000	0.00156	0.00365	94.7	0.00006		1	0.00870	0.02030
04/03/00	MW-2	100	275	03/21/00	<5,000	0.00209	0.00574	94.7	0.00008	0.00022	13,900		0.05190
04/17/00	MW-2	200	475	03/21/00	<5,000	0.00417	0.00991	94.7	0.00016	0.00038	13,900	0.02320	
04/24/00	MW-2	125	600	03/21/00	<5,000	0.00261	0.01252	94.7	0.00010	0.00047	13,900	0.01450	0.06959
05/01/00	MW-2	50	650	03/21/00	<5,000	0.00104	0.01356	94.7	0.00004	0.00051	13,900	0.00580	0.07539
05/15/00	MW-2	75	725	03/21/00	<5,000	0.00156	0.01512	94.7	0.00006	0.00057	13,900	0.00870	0.08409
05/22/00	MW-2	100	825	03/21/00	<5,000	0.00209	0.01721	94.7	0.00008	0.00065	13,900	0.01160	0.09569
05/29/00	MW-2	75	900	03/21/00	<5,000	0.00156	0.01877	94.7	0.00006	0.00071	13,900	0.00870	0.10439
06/05/00	MW-2	- 617	1,517	03/21/00	<5,000	0.01287	0.03165	94.7	0.00049	0.00120	13,900	0.07156	0.17595
07/07/00	MW-2	460	1,977	06/20/00	101	0.00039	0.03203	5.95	0.00002	0.00122	7,670	0.02944	0.20539
08/17/00	MW-2	665	2,642	06/20/00	101	0.00056	0.03259	5.95	0.00003	0.00123	7,670	0.04256	0.21851
09/13/00	MW-2	429	3,071	06/20/00	101	0.00036	0.03296	5.95	0.00002	0.00125	7,670	0.02746	0.24597
10/27/00*	MW-2	75	3,146	06/20/00	101	0.00006	0.03302	5.95	0.00000	0.00126	7,670	0.00480	0.25077
01/16/02*	MW-2	230	3,376	12/12/01	<1,000	0.00096	0.03398	<10	0.00001	0.00127	3,000	0.00576	0.25653
01/23/02	MW-2	535	3,911	12/12/01	<1,000	0.00223	0.03621	<10	0.00002	0.00129	3,000	0.01339	0.26992
01/30/02	MW-2	300	4,211	12/12/01	<1,000	0.00125	0.03746	<10	0.00001	0.00130	3,000	0.00751	0.27743
02/05/02	MW-2	175	4,386	12/12/01	<1,000	0.00073	0.03819	<10	0.00001	0.00131	3,000	0.00438	0.28181
02/12/02	MW-2	289	4,675	12/12/01	<1,000	0.00121	0.03940	<10	0.00001	0.00132	3,000	0.00723	0.28904
02/19/02	MW-2	461	5,136	03/08/02	<250	0.00048	0.03988	<2.5	0.00000	0.00133	1,100	0.00423	0.29328
02/26/02	MW-2	250	5,386	03/08/02	<250	0.00026	0.04014	<2.5	0.00000	0.00133	1,100	0.00229	0.29557
03/05/02	MW-2	250	5,636	03/08/02	<250	0.00026	0.04040	<2.5	0.00000	0.00133	1,100	0.00229	0.29787
03/12/02	MW-2	300	5,936	03/08/02	<250	0.00031	0.04071	<2.5	0.00000	0.00133	1,100	0.00275	0.30062
03/19/02	MW-2	400	6,336	03/08/02	<250	0.00042	0.04113	<2.5	0.00000	0.00134	1,100	0.00367	0.30429

Table 1: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

Date Well Pumped Pumped Date Concentration Removed ID (gal) Sampled Concentration Removed (lb)												·	A	
Date Well Pumped Pumped Date Concentration Removed (lpb) (lb)							TPPH			Benzene			MTBE	
Date Well Pumped Pumped Date Concentration Removed To Date Concentration To Date To				Cumulative				TPPH			Benzene			MTBE
Purged ID (gal) (gal) Sampled (ppb) (lb) (lb) (ppb) (lb)			Volume	Volume		ТРРН	TPPH	Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
03/26/02 MW-2 100 6,436 03/08/02 <250 0.00010 0.04123 <2.5 0.00000 0.00134 1,100 0.00092 0.3052 0.402020 MW-2 200 6,636 03/08/02 <250 0.00011 0.04144 <2.5 0.00000 0.00134 1,100 0.00184 0.30700 0.409/02 MW-2 179 6,815 03/08/02 <250 0.00019 0.04163 <2.5 0.00000 0.00134 1,100 0.00164 0.3086 0.40/17/02 MW-2 250 7,065 03/08/02 <250 0.00026 0.04189 <2.5 0.00000 0.00135 1,100 0.00229 0.31090 0.40130 0.40130 0.40140 0.40240 0.40300 0.40135 1,100 0.00229 0.31090 0.40130 0.40130 0.40140 0.40240 0.40300 0.40135 1,100 0.00229 0.31550 0.40214 0.40300 0.4030	Date	Well	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	to Date	Concentration		To Date
04/02/02 MW-2 200 6,636 03/08/02 <250 0.00021 0.04144 <2.5 0.00000 0.00134 1,100 0.00184 0.30700 04/09/02 MW-2 179 6,815 03/08/02 <250 0.00019 0.04163 <2.5 0.00000 0.00134 1,100 0.00164 0.30860 04/17/02 MW-2 250 7,065 03/08/02 <250 0.00026 0.04189 <2.5 0.00000 0.00135 1,100 0.00229 0.31090 04/23/02 MW-2 242 7,307 03/08/02 <250 0.00025 0.04214 <2.5 0.00000 0.00135 1,100 0.00229 0.31320 04/30/02 MW-2 250 7,557 03/08/02 <250 0.00026 0.04240 <2.5 0.00000 0.00135 1,100 0.00229 0.31550 05/17/02 MW-2 150 7,707 03/08/02 <250 0.00026 0.04284 <2.5 0.00000 0.00135	Purged	ID	(gal)	(gal)	Sampled	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)
04/02/02 MW-2 200 6,636 03/08/02 <250 0.00021 0.04144 <2.5 0.00000 0.00134 1,100 0.00184 0.30700 04/09/02 MW-2 179 6,815 03/08/02 <250 0.00019 0.04163 <2.5 0.00000 0.00134 1,100 0.00164 0.30869 04/17/02 MW-2 250 7,065 03/08/02 <250 0.00026 0.04189 <2.5 0.00000 0.00135 1,100 0.00229 0.31090 04/23/02 MW-2 242 7,307 03/08/02 <250 0.00025 0.04214 <2.5 0.00000 0.00135 1,100 0.00229 0.31320 04/30/02 MW-2 250 7,557 03/08/02 <250 0.00026 0.04240 <2.5 0.00000 0.00135 1,100 0.00229 0.31550 05/19/02 MW-2 150 7,707 03/08/02 <250 0.00016 0.04256 <2.5 0.00000 0.00135	02/26/02) (W 0	100	(12(02/08/02	-250	0.00010	0.04122	-25	0.00000	0.00134	1 100	0.00002	0.30521
04/09/02 MW-2 179 6,815 03/08/02 <250 0.00019 0.04163 <2.5 0.00000 0.00134 1,100 0.00164 0.3866 04/17/02 MW-2 250 7,065 03/08/02 <250 0.00026 0.04189 <2.5 0.00000 0.00135 1,100 0.00229 0.31090 04/23/02 MW-2 242 7,307 03/08/02 <250 0.00025 0.04214 <2.5 0.00000 0.00135 1,100 0.00229 0.31320 04/30/02 MW-2 250 7,557 03/08/02 <250 0.00026 0.04240 <2.5 0.00000 0.00135 1,100 0.00229 0.31550 05/07/02 MW-2 150 7,707 03/08/02 <250 0.00016 0.04256 <2.5 0.00000 0.00135 1,100 0.00229 0.31580 05/19/02 MW-2 400 8,379 03/08/02 <250 0.00028 0.04284 <2.5 0.00000 0.00136														
04/17/02 MW-2 250 7,065 03/08/02 <250 0.00026 0.04189 <2.5 0.00000 0.00135 1,100 0.00229 0.31090 04/23/02 MW-2 242 7,307 03/08/02 <250 0.00025 0.04214 <2.5 0.00000 0.00135 1,100 0.00229 0.31090 04/30/02 MW-2 250 7,557 03/08/02 <250 0.00026 0.04240 <2.5 0.00000 0.00135 1,100 0.00229 0.31550 05/07/02 MW-2 150 7,707 03/08/02 <250 0.00016 0.04256 <2.5 0.00000 0.00135 1,100 0.00229 0.31560 05/19/02 MW-2 272 7,979 03/08/02 <250 0.00028 0.04284 <2.5 0.00000 0.00136 1,100 0.00250 0.3193 05/21/02 MW-2 400 8,379 03/08/02 <250 0.00026 0.04326 <2.5 0.00000 0.00136				-										
04/23/02 MW-2 242 7,307 03/08/02 <250 0.00025 0.04214 <2.5 0.00000 0.00135 1,100 0.00222 0.31320 04/30/02 MW-2 250 7,557 03/08/02 <250														
04/30/02 MW-2 250 7,557 03/08/02 <250 0.00026 0.04240 <2.5 0.00000 0.00135 1,100 0.00229 0.3156 05/07/02 MW-2 150 7,707 03/08/02 <250 0.00016 0.04256 <2.5 0.00000 0.00135 1,100 0.00229 0.3156 05/19/02 MW-2 272 7,979 03/08/02 <250 0.00028 0.04284 <2.5 0.00000 0.00136 1,100 0.00250 0.3193 05/21/02 MW-2 400 8,379 03/08/02 <250 0.00042 0.04326 <2.5 0.00000 0.00136 1,100 0.00367 0.32300 05/28/02 MW-2 250 8,629 03/08/02 <250 0.00026 0.04352 <2.5 0.00000 0.00136 1,100 0.00250 0.32530 06/03/02 MW-2 250 8,879 03/08/02 <250 0.00026 0.04378 <2.5 0.00000 0.00136				•		l								
05/07/02 MW-2 150 7,707 03/08/02 <250 0.00016 0.04256 <2.5 0.00000 0.00135 1,100 0.00138 0.3168* 05/19/02 MW-2 272 7,979 03/08/02 <250 0.00028 0.04284 <2.5 0.00000 0.00136 1,100 0.00250 0.3193* 05/21/02 MW-2 400 8,379 03/08/02 <250 0.00042 0.04326 <2.5 0.00000 0.00136 1,100 0.00367 0.3230* 05/28/02 MW-2 250 8,629 03/08/02 <250 0.00026 0.04352 <2.5 0.00000 0.00136 1,100 0.00367 0.3230* 06/03/02 MW-2 250 8,879 03/08/02 <250 0.00026 0.04378 <2.5 0.00000 0.00136 1,100 0.00229 0.3276* 06/11/02 MW-2 189 9,068 06/06/02 <500 0.00039 0.04418 <5.0 0.00000 0.00137				•		Ì								
05/19/02 MW-2 272 7,979 03/08/02 <250 0.00028 0.04284 <2.5 0.00000 0.00136 1,100 0.00250 0.31937 05/21/02 MW-2 400 8,379 03/08/02 <250 0.00042 0.04326 <2.5 0.00000 0.00136 1,100 0.00367 0.32304 05/28/02 MW-2 250 8,629 03/08/02 <250 0.00026 0.04352 <2.5 0.00000 0.00136 1,100 0.00229 0.32534 06/03/02 MW-2 250 8,879 03/08/02 <250 0.00026 0.04378 <2.5 0.00000 0.00136 1,100 0.00229 0.32534 06/11/02 MW-2 189 9,068 06/06/02 <500 0.00039 0.04418 <5.0 0.00000 0.00137 2,000 0.00315 0.33079 06/18/02 MW-2 200 9,268 06/06/02 <500 0.00042 0.04459 <5.0 0.00000 0.00137	04/30/02			•		•			i			1		
05/21/02 MW-2 400 8,379 03/08/02 <250 0.00042 0.04326 <2.5 0.00000 0.00136 1,100 0.00367 0.32304 05/28/02 MW-2 250 8,629 03/08/02 <250 0.00026 0.04352 <2.5 0.00000 0.00136 1,100 0.00229 0.32534 06/03/02 MW-2 250 8,879 03/08/02 <250 0.00026 0.04378 <2.5 0.00000 0.00136 1,100 0.00229 0.32763 06/11/02 MW-2 189 9,068 06/06/02 <500 0.00039 0.04418 <5.0 0.00000 0.00137 2,000 0.00315 0.33076 06/18/02 MW-2 200 9,268 06/06/02 <500 0.00042 0.04459 <5.0 0.00000 0.00137 2,000 0.00334 0.33412 06/25/02 MW-2 241 9,509 06/06/02 <500 0.0050 0.04510 <5.0 0.00001 0.00138	05/07/02	MW-2	150	7,707	03/08/02	:				0.00000				
05/28/02 MW-2 250 8,629 03/08/02 <250 0.00026 0.04352 <2.5 0.00000 0.00136 1,100 0.00229 0.32534 06/03/02 MW-2 250 8,879 03/08/02 <250 0.00026 0.04378 <2.5 0.00000 0.00136 1,100 0.00229 0.32534 06/11/02 MW-2 189 9,068 06/06/02 <500 0.00039 0.04418 <5.0 0.00000 0.00137 2,000 0.00315 0.33079 06/18/02 MW-2 200 9,268 06/06/02 <500 0.00042 0.04459 <5.0 0.00000 0.00137 2,000 0.00334 0.33412 06/25/02 MW-2 241 9,509 06/06/02 <500 0.00050 0.04510 <5.0 0.00001 0.00138 2,000 0.00402 0.33815 07/02/02 MW-2 250 9,759 06/06/02 <500 0.00052 0.04562 <5.0 0.00001 0.00138	05/19/02	MW-2	272	7,979	03/08/02	<250	0.00028	0.04284	<2.5	0.00000	0.00136	1,100		
06/03/02 MW-2 250 8,879 03/08/02 <250 0.00026 0.04378 <2.5 0.00000 0.00136 1,100 0.00229 0.32763 06/11/02 MW-2 189 9,068 06/06/02 <500 0.00039 0.04418 <5.0 0.00000 0.00137 2,000 0.00315 0.33079 06/18/02 MW-2 200 9,268 06/06/02 <500 0.00042 0.04459 <5.0 0.00000 0.00137 2,000 0.00334 0.33412 06/25/02 MW-2 241 9,509 06/06/02 <500 0.00050 0.04510 <5.0 0.00001 0.00138 2,000 0.00402 0.33815 07/02/02 MW-2 250 9,759 06/06/02 <500 0.00052 0.04562 <5.0 0.00001 0.00138 2,000 0.00417 0.34232 07/09/02 MW-2 200 9,959 06/06/02 <500 0.00042 0.04604 <5.0 0.00000 0.00139	05/21/02	MW-2	400	8,379	03/08/02	<250	0.00042	0.04326	<2.5	0.00000	0.00136	1,100	0.00367	0.32304
06/11/02 MW-2 189 9,068 06/06/02 <500 0.00039 0.04418 <5.0 0.00000 0.00137 2,000 0.00315 0.33079 06/18/02 MW-2 200 9,268 06/06/02 <500	05/28/02	MW-2	250	8,629	03/08/02	<250	0.00026	0.04352	<2.5	0.00000	0.00136	1,100	0.00229	0.32534
06/18/02 MW-2 200 9,268 06/06/02 <500 0.00042 0.04459 <5.0 0.00000 0.00137 2,000 0.00334 0.33412 06/25/02 MW-2 241 9,509 06/06/02 <500	06/03/02	MW-2	250	8,879	03/08/02	<250	0.00026	0.04378	<2.5	0.00000	0.00136	1,100	0.00229	0.32763
06/25/02 MW-2 241 9,509 06/06/02 <500 0.00050 0.04510 <5.0 0.00001 0.00138 2,000 0.00402 0.33813 07/02/02 MW-2 250 9,759 06/06/02 <500	06/11/02	MW-2	189	9,068	06/06/02	<500	0.00039	0.04418	<5.0	0.00000	0.00137	2,000	0.00315	0.33079
07/02/02 MW-2 250 9,759 06/06/02 <500 0.00052 0.04562 <5.0 0.00001 0.00138 2,000 0.00417 0.34232 07/09/02 MW-2 200 9,959 06/06/02 <500	06/18/02	MW-2	200	9,268	06/06/02	<500	0.00042	0.04459	<5.0	0.00000	0.00137	2,000	0.00334	0.33412
07/09/02 MW-2 200 9,959 06/06/02 <500	06/25/02	MW-2	241	9,509	06/06/02	<500	0.00050	0.04510	<5.0	0.00001	0.00138	2,000	0.00402	0.33815
07/16/02 MW-2 225 10,184 06/06/02 <500	07/02/02	MW-2	250	9,759	06/06/02	<500	0.00052	0.04562	<5.0	0.00001	0.00138	2,000	0.00417	0.34232
07/23/02 MW-2 256 10,440 06/06/02 < 500 0.00053 0.04704 < 5.0 0.00001 0.00140 2,000 0.00427 0.35368	07/09/02	MW-2	200	9,959	06/06/02	<500	0.00042	0.04604	<5.0	0.00000	0.00139	2,000	0.00334	0.34566
0,725,02	07/16/02	MW-2	225	10,184	06/06/02	<500	0.00047	0.04651	<5.0	0.00000	0.00139	2,000	0.00375	0.34941
0.07/3.0/02 MW-2 182 10.622 $0.6/0.6/02$ < 500 0.00038 0.04742 < 5.0 0.00000 0.00140 2.000 0.00304 0.35672	07/23/02	MW-2	256	10,440	06/06/02	<500	0.00053	0.04704	<5.0	0.00001	0.00140	2,000	0.00427	0.35368
01130102 11111-2 102 10,022 0010002 1 300 0.00030 0.01112 510 0.00030 0.01112	07/30/02	MW-2	182	10,622	06/06/02	<500	0.00038	0.04742	<5.0	0.00000	0.00140	2,000	0.00304	0.35672
08/06/02 MW-2 300 10,922 06/06/02 < 500 0.00063 0.04804 < 5.0 0.00001 0.00141 2,000 0.00501 0.36173	08/06/02	MW-2	300	10,922	06/06/02	<500	0.00063	0.04804	<5.0	0.00001	0.00141	2,000	0.00501	0.36173
		MW-2	300		06/06/02	<500	0.00063	0.04867	<5.0	0.00001	0.00141	2,000	0.00501	0.36673
		MW-2					0.00063	0.04930	<5.0	0.00001	0.00142	2,000	0.00501	0.37174
,									<5.0	0.00001	0.00143	2,000	0.00574	0.37748
, and the second										0.00000	0.00143	740	0.00112	0.37860
				-						0.00000	0.00143	740	0.00185	0.38045

Table 1: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

						TDDII			Ronzono			MTBE	
						<u>TPPH</u>	TDDII		<u>Benzene</u>	Benzene		MIIDE	MTBE
		X7 - 1	Cumulative		ТРРН	ТРРН	TPPH Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
Date	Well	Volume Pumped	Volume Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	to Date	Concentration	Removed	To Date
Purged	ID	(gal)	(gal)	Sampled	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)
Turgou	110	(gui)	(801)	Sampro	(PP °)	(55)	(-3)				1		
09/24/02	MW-2	149	12,496	09/09/02	<200	0.00012	0.05054	<2.0	0.00000	0.00143	740	0.00092	0.38137
10/02/02	MW-2	150	12,646	09/09/02	<200	0.00013	0.05067	<2.0	0.00000	0.00143	740	0.00093	0.38230
10/09/02	MW-2	200	12,846	09/09/02	<200	0.00017	0.05083	<2.0	0.00000	0.00143	740	0.00123	0.38353
10/16/02	MW-2	290	13,136	09/09/02	<200	0.00024	0.05107	<2.0	0.00000	0.00144	740	0.00179	0.38532
10/23/02	MW-2	150	13,286	09/09/02	<200	0.00013	0.05120	<2.0	0.00000	0.00144	740	0.00093	0.38625
10/30/02	MW-2	250	13,536	09/09/02	<200	0.00021	0.05141	<2.0	0.00000	0.00144	740	0.00154	0.38779
11/08/02	MW-2	100	13,636	09/09/02	<200	0.00008	0.05149	<2.0	0.00000	0.00144	740	0.00062	0.38841
11/15/02	MW-2	326	13,962	09/09/02	<200	0.00027	0.05176	<2.0	0.00000	0.00144	740	0.00201	0.39042
11/22/02	MW-2	260	14,222	09/09/02	<200	0.00022	0.05198	<2.0	0.00000	0.00145	740	0.00161	0.39203
11/30/02	MW-2	250	14,472	09/09/02	<200	0.00021	0.05219	<2.0	0.00000	0.00145	740	0.00154	0.39357
12/03/02	MW-2	361	14,833	09/09/02	<200	0.00030	0.05249	<2.0	0.00000	0.00145	740	0.00223	0.39580
12/10/02	MW-2	420	15,253	09/09/02	<200	0.00035	0.05284	<2.0	0.00000	0.00146	740	0.00259	0.39840
12/21/02	MW-2	395	15,648	12/12/02	<200	0.00033	0.05317	<2.0	0.00000	0.00146	1,000	0.00330	0.40169
12/23/02	MW-2	470	16,118	12/12/02	<200	0.00039	0.05356	<2.0	0.00000	0.00146	1,000	0.00392	0.40561
12/31/02	MW-2	500	16,618	12/12/02	<200	0.00042	0.05398	<2.0	0.00000	0.00147	1,000	0.00417	0.40979
01/02/03	MW-2	400	17,018	12/12/02	<200	0.00033	0.05431	<2.0	0.00000	0.00147	1,000	0.00334	0.41312
01/07/03	MW-2	0	17,018	12/12/02	<200	0.00000	0.05431	<2.0	0.00000	0.00147	1,000	0.00000	0.41312
01/14/03	MW-2	225	17,243	12/12/02	<200	0.00019	0.05450	<2.0	0.00000	0.00147	1,000	0.00188	0.41500
01/21/03	MW-2	200	17,443	12/12/02	<200	0.00017	0.05467	<2.0	0.00000	0.00147	1,000	0.00167	0.41667
01/28/03	MW-2	224	17,667	12/12/02	<200	0.00019	0.05485	<2.0	0.00000	0.00148	1,000	0.00187	0.41854
03/15/00	MW-3	500	500	03/21/00	<25,000	0.01043	0.01043	466	0.00194	0.00194	155,000	0.64669	0.64669
03/22/00	MW-3	100	600	03/21/00	<25,000	0.00782	0.01825	466	0.00039	0.00233	155,000	0.12934	0.77603
03/27/00	MW-3	75	675	03/21/00	<25,000	0.01043	0.02868	466	0.00029	0.00262	155,000	0.09700	0.87303
04/03/00	MW-3	100	775	03/21/00	<25,000	0.02086	0.04954	466	0.00039	0.00301	155,000	0.12934	1.00237

Table 1: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

					1			<u> </u>			T		
						TPPH			Benzene			MTBE	
			Cumulative				TPPH			Benzene			MTBE
		Volume	Volume		TPPH	TPPH	Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
Date	Well	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	to Date	Concentration	Removed	To Date
Purged	ID	(gal)	(gal)	Sampled	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)
04/17/00	MW-3	200	975	03/21/00	<25,000	0.01304	0.06258	466	0.00078	0.00379	155,000	0.25868	1.26104
04/24/00	MW-3	125	1,100	03/21/00	<25,000	0.01043	0.07301	466	0.00049	0.00428	155,000	0.16167	1.42271
05/01/00	MW-3	100	1,200	03/21/00	<25,000	0.00782	0.08084	466	0.00039	0.00467	155,000	0.12934	1.55205
05/15/00	MW-3	75	1,275	03/21/00	<25,000	0.00522	0.08605	466	0.00029	0.00496	155,000	0.09700	1.64905
05/22/00	MW-3	50	1,325	03/21/00	<25,000	0.00782	0.09387	466	0.00019	0.00515	155,000	0.06467	1.71372
05/29/00	MW-3	75	1,400	03/21/00	<25,000	0.07041	0.16428	466	0.00029	0.00544	155,000	0.09700	1.81073
06/05/00	MW-3	675	2,075	03/21/00	<25,000	0.03744	0.20172	466	0.00262	0.00807	155,000	0.87303	2.68375
07/07/00	MW-3	68	2,143	06/20/00	16,200	0.09679	0.29851	1,140	0.00065	0.00872	579,000	0.32853	3.01229
08/17/00	MW-3	554	2,697	06/20/00	16,200	0.07489	0.37340	1,140	0.00527	0.01399	579,000	2.67659	5.68887
09/13/00	MW-3	716	3,413	06/20/00	16,200	0.09679	0.47019	1,140	0.00681	0.02080	579,000	3.45927	9.14814
10/27/00*	MW-3	250	3,663	06/20/00	16,200	0.03379	0.50398	1,140	0.00238	0.02317	579,000	1.20785	10.35599
03/22/01	MW-3	383	4,046	03/22/01	<20,000	0.03196	0.53594	<200	0.00032	0.02349	390,000	1.24640	11.60239
08/22/01	MW-3	90	4,136	06/28/01	<50,000	0.01877	0.55472	1,200	0.00090	0.02440	610,000	0.45811	12.06049
08/28/01	MW-3	600	4,736	06/28/01	<50,000	0.12517	0.67988	1,200	0.00601	0.03040	610,000	3.05403	15.11452
09/05/01	MW-3	750	5,486	06/28/01	<50,000	0.15646	0.83634	1,200	0.00751	0.03791	610,000	3.81754	18.93207
09/18/01	MW-3	1,900	7,386	09/12/01	<20,000	0.15854	0.99488	430	0.00682	0.04473	390,000	6.18317	25.11524
10/10/01	MW-3	500	7,886	09/12/01	<20,000	0.04172	1.03660	430	0.00179	0.04652	390,000	1.62715	26.74239
10/16/01	MW-3	200	8,086	09/12/01	<20,000	0.01669	1.05329	430	0.00072	0.04724	390,000	0.65086	27.39324
10/26/01	MW-3	1,300	9,386	10/23/01	11,000	0.11932	1.17262	350	0.00380	0.05104	290,000	3.14582	30.53907
10/31/01	MW-3	150	9,536	10/23/01	11,000	0.01377	1.18638	350	0.00044	0.05148	290,000	0.36298	30.90205
11/07/01	MW-3	280	9,816	10/23/01	11,000	0.02570	1.21209	350	0.00082	0.05229	290,000	0.67756	31.57961
11/17/01	MW-3	100	9,916	10/23/01	11,000	0.00918	1.22126	350	0.00029	0.05259	290,000	0.24199	31.82159
11/21/01	MW-3	400	10,316	10/23/01	11,000	0.03672	1.25798	350	0.00117	0.05375	290,000	0.96795	32.78954
12/01/01	MW-3	300	10,616	10/23/01	11,000	0.02754	1.28552	350	0.00088	0.05463	290,000	0.72596	33.51550
12/05/01	MW-3	350	10,966	10/23/01	11,000	0.03213	1.31764	350	0.00102	0.05565	290,000	0.84695	34.36245

Table 1: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

						ТРРН			Benzene			MTBE	
			Cumulative			11111	TPPH			Benzene			MTBE
		Volume	Volume		ТРРН	TPPH	Removed	Benzene	Benzene	Removed	МТВЕ	MTBE	Removed
Date	Well	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	to Date	Concentration	Removed	To Date
Purged	ID	(gal)	(gal)	Sampled	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)
12/12/01	MW-3	500	11,466	12/12/01	<20,000	0.04172	1.35936	280	0.00117	0.05682	160,000	0.66755	35.03000
12/19/01	MW-3	450	11,916	12/12/01	<20,000	0.03755	1.39691	280	0.00105	0.05787	160,000	0.60079	35.63079
01/09/02	MW-3	190	12,106	12/12/01	<20,000	0.01585	1.41277	280	0.00044	0.05832	160,000	0.25367	35.88446
01/16/02*	MW-3	450	12,556	12/12/01	<20,000	0.03755	1.45032	280	0.00105	0.05937	160,000	0.60079	36.48526
01/23/02	MW-3	300	12,856	12/12/01	<20,000	0.02503	1.47535	280	0.00070	0.06007	160,000	0.40053	36.88578
01/30/02	MW-3	278	13,134	12/12/01	<20,000	0.02320	1.49855	280	0.00065	0.06072	160,000	0.37116	37.25694
02/05/02	MW-3	347	13,481	12/12/01	<20,000	0.02895	1.52750	280	0.00081	0.06153	160,000	0.46328	37.72022
02/12/02	MW-3	300	13,781	12/12/01	<20,000	0.02503	1.55254	280	0.00070	0.06223	160,000	0.40053	38.12075
02/19/02	MW-3	250	14,031	03/08/02	<20,000	0.02086	1.57340	270	0.00056	0.06279	340,000	0.70927	38.83002
02/26/02	MW-3	299	14,330	03/08/02	<20,000	0.02495	1.59835	270	0.00067	0.06347	340,000	0.84829	39.67831
03/05/02	MW-3	462	14,792	03/08/02	<20,000	0.03855	1.63690	270	0.00104	0.06451	340,000	1.31073	40.98904
03/12/02	MW-3	194	14,986	03/08/02	<20,000	0.01619	1.65308	270	0.00044	0.06495	340,000	0.55039	41.53943
03/19/02	MW-3	213	15,199	03/08/02	<20,000	0.01777	1.67086	270	0.00048	0.06543	340,000	0.60430	42.14373
03/26/02	MW-3	447	15,646	03/08/02	<20,000	0.03730	1.70816	270	0.00101	0.06643	340,000	1.26818	43.41191
04/02/02	MW-3	437	16,083	03/08/02	<20,000	0.03646	1.74462	270	0.00098	0.06742	340,000	1.23980	44.65171
04/09/02	MW-3	358	16,441	03/08/02	<20,000	0.02987	1.77449	270	0.00081	0.06822	340,000	1.01568	45.66739
04/17/02	MW-3	352	16,793	03/08/02	<20,000	0.02937	1.80387	270	0.00079	0.06902	340,000	0.99865	46.66604
04/23/02	MW-3	300	17,093	03/08/02	<20,000	0.02503	1.82890	270	0.00068	0.06969	340,000	0.85112	47.51716
04/30/02	MW-3	309	17,402	03/08/02	<20,000	0.02578	1.85468	270	0.00070	0.07039	340,000	0.87666	48.39382
05/07/02	MW-3	198	17,600	03/08/02	<20,000	0.01652	1.87121	270	0.00045	0.07083	340,000	0.56174	48.95556
05/19/02	- MW-3	200	17,800	03/08/02	<20,000	0.01669	1.88789	270	0.00045	0.07129	340,000	0.56742	49.52298
05/21/02	MW-3	400	18,200	03/08/02	<20,000	0.03338	1.92127	270	0.00090	0.07219	340,000	1.13483	50.65781
05/28/02	MW-3	237	18,437	03/08/02	<20,000	0.01978	1.94105	270	0.00053	0.07272	340,000	0.67239	51.33020
	MW-3	270	18,707	03/08/02	<20,000	0.02253	1.96358	270	0.00061	0.07333	340,000	0.76601	52.09621
06/03/02	IVI VV -3												

Table 1: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

						TPPH			Benzene			MTBE	
			Cumulative				TPPH			Benzene			MTBE
		Volume	Volume		ТРРН	TPPH	Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
Date	Well	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	to Date	Concentration	Removed	To Date
Purged	ID	(gal)	(gal)	Sampled	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)
0.6/1.0/00		150	10.107	06/06/03	-50 000	0.03734	2.06350	290	0.00043	0.07449	290,000	0.43316	53.25533
06/18/02	MW-3	179	19,186	06/06/02	<50,000		2.10522	290	0.00043	0.07497	290,000	0.48397	53.73930
06/25/02	MW-3	200	19,386	06/06/02	<50,000	0.04172	2.16155	290	0.00048	0.07562	290,000	0.65336	54.39266
07/02/02	MW-3	270	19,656	06/06/02	<50,000	0.05632	2.16133	290	0.00069	0.07632	290,000	0.69450	55.08716
07/09/02	MW-3	287	19,943	06/06/02	<50,000	0.05987	2.27002	290	0.00056	0.07688	290,000	0.56383	55.65099
07/16/02	MW-3	233	20,176	06/06/02	<50,000	0.04861		290	0.00030	0.07661	290,000	0.72596	56.37695
07/23/02	MW-3	300	20,476	06/06/02	<50,000	0.06258	2.33261	290	0.00073	0.07761	290,000	0.72370	56.91174
07/30/02	MW-3	221	20,697	06/06/02	<50,000	0.04610	2.37871				290,000	0.57351	57.48525
08/06/02	MW-3	237	20,934	06/06/02	<50,000	0.04944	2.42815	290	0.00057	0.07872	290,000	0.35330	57.83855
08/13/02	MW-3	146	21,080	06/06/02	<50,000	0.03046	2.45861	290	0.00035	0.07907	1		58.50643
08/20/02	MW-3	276	21,356	06/06/02	<50,000	0.05758	2.51618	290	0.00067	0.07974	290,000	0.66788	
08/27/02	MW-3	150	21,506	06/06/02	<50,000	0.03129	2.54747	290	0.00036	0.08010	290,000	0.36298	58.86941
09/09/02	MW-3	200	21,706	09/09/02	<20,000	0.01669	2.56416	<200	0.00017	0.08027	230,000	0.38384	59.25325
09/11/02	MW-3	256	21,962	09/09/02	<20,000	0.02136	2.58552	<200	0.00021	0.08048	230,000	0.49132	59.74456
09/24/02	MW-3	400	22,362	09/09/02	<20,000	0.03338	2.61890	<200	0.00033	0.08082	230,000	0.76768	60.51225
10/02/02	MW-3	311	22,673	09/09/02	<20,000	0.02595	2.64485	<200	0.00026	0.08108	230,000	0.59687	61.10912
10/09/02	MW-3	656	23,329	09/09/02	<20,000	0.05474	2.69959	<200	0.00055	0.08162	230,000	1.25900	62.36811
10/16/02	MW-3	208	23,537	09/09/02	<20,000	0.01736	2.71695	<200	0.00017	0.08180	230,000	0.39919	62.76731
10/23/02	MW-3	246	23,783	09/09/02	<20,000	0.02053	2.73748	<200	0.00021	0.08200	230,000	0.47212	63.23943
10/30/02	MW-3	315	24,098	09/09/02	<20,000	0.02628	2.76376	<200	0.00026	0.08226	230,000	0.60455	63.84398
11/08/02	MW-3	358	24,456	09/09/02	<20,000	0.02987	2.79363	<200	0.00030	0.08256	230,000	0.68707	64.53105
11/15/02	MW-3	300	24,756	09/09/02	<20,000	0.02503	2.81867	<200	0.00025	0.08281	230,000	0.57576	65.10681
11/22/02	MW-3	100	24,856	09/09/02	<20,000	0.00834	2.82701	<200	0.00008	0.08290	230,000	0.19192	65.29873
11/30/02	MW-3	447	25,303	09/09/02	<20,000	0.03730	2.86431	<200	0.00037	0.08327	230,000	0.85788	66.15662
12/03/02	MW-3	200	25,503	09/09/02	<20,000	0.01669	2.88100	<200	0.00017	0.08344	230,000	0.38384	66.54046
12/10/02	MW-3	227	25,730	09/09/02	<20,000	0.01894	2.89994	<200	0.00019	0.08363	230,000	0.43566	66.97612

Table 1: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

						<u>TPPH</u>			Benzene			<u>MTBE</u>	
			Cumulative				TPPH			Benzene			MTBE
		Volume	Volume		ТРРН	TPPH	Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
Date	Well	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	to Date	Concentration	Removed	To Date
Purged	ID	(gal)	(gal)	Sampled	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)
12/21/02	MW-3	10	25,740	12/12/02	<50,000	0.00209	2.90203	<200	0.00001	0.08363	190,000	0.01585	66.99197
12/23/02	MW-3	278	26,018	12/12/02	<50,000	0.05799	2.96002	<200	0.00023	0.08387	190,000	0.44075	67.43272
12/31/02	MW-3	239	26,257	12/12/02	<50,000	0.04986	3.00988	<200	0.00020	0.08407	190,000	0.37892	67.81164
01/02/03	MW-3	235	26,492	12/12/02	<50,000	0.04902	3.05890	<200	0.00020	0.08426	190,000	0.37258	68.18421
01/07/03	MW-3	245	26,737	12/12/02	<50,000	0.05111	3.11001	<200	0.00020	0.08447	190,000	0.38843	68.57264
01/14/03	MW-3	317	27,054	12/12/02	<50,000	0.06613	3.17614	<200	0.00026	0.08473	190,000	0.50258	69.07522
01/21/03	MW-3	500	27,554	12/12/02	<50,000	0.10430	3.28044	<200	0.00042	0.08515	190,000	0.79271	69.86794
01/28/03	MW-3	200	27,754	12/12/02	<50,000	0.04172	3.32216	<200	0.00017	0.08532	190,000	0.31709	70.18502
							227-602			0.00601			70.63300
Total Gallo	tal Gallons Extracted: 45,421		Total Pounds R Total Gallons R	HAROTEC LANDEN	3.37702 0.55361			0.08681 - 0.01189			11.39242		

Abbreviations & Notes:

TPPH = Total purgeable hydrocarbons as gasoline

MtBE = Methyl tert-butyl ether

ppb = Parts per billion

lb = Pound

gal = Gallon

Details of mass removal estimates reported in Cambria's August 29, 2001 Site Conceptual Model and Pilot Test Report, Table 2.

Mass removed based on the formula: volume extracted (gal) x Concentration (tg/L) x (g/10⁶ µg) x (pound/453.6g) x (3.785 L/gal)

Volume removal data based on the formula: density (in gms/cc) x 9.339 (ccxlbs/gmsxgals)

TPPH and benzene analyzed by EPA Method 8015/8020

Data in bold font analyzed by EPA Method 8260, all others analyzed by EPA Method 8020

Concentrations based on most recent groundwater monitoring results

If concentration is less than the laboratory detection limit, one half of the detection limit concentration is used in the mass removal calculation.

^{* =} Groundwater volume pumped estimated; data not available

a = Dual-phase Vacuum Extraction (DVE) Pilot test using a RSI V3 Internal Combustion Engine with Bioslurp Tank on well MW-3 on March 22, 2001.

Table 1: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

						<u>TPPH</u>			<u>Benzene</u>			MTBE	
			Cumulative				TPPH			Benzene			MTBE
		Volume	Volume		TPPH	TPPH	Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
Date	Well	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	to Date	Concentration	Removed	To Date
Purged	ID	(gal)	(gal)	Sampled	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)

Groundwater extracted by vacuum trucks provided by Onyx Industrial; water disposed of at a Martinez refinery

Table 2: Vapor Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

							TI	Нg	<u>Ber</u>	ızene	<u>M</u>	TBE	
		Interval	System				TPHg	Cumulative	Benzene	Cumulative	MTBE	Cumulative	
		Hours of	Flow	Hydroca	arbon Concer	ntrations	Removal	TPHg	Removal	Benzene	Removal	MTBE	
	Well	Operation	Rate	TPHg	Benzene	MTBE	Rate	Removed	Rate	Removed	Rate	Removed	
Date	ID	(hours)	(CFM)	(Conc	entrations in	ppmv)	(#/hour)	(#)	(#/hour)	(#)	(#/hour)	(#)	Notes:
										2 222	2 222	0.000	
03/15/00	MW-2	0	0	NA	NA	NA	0.000	0.000	0.000	0.000	0.000	0.000	
04/17/00	MW-2	1.25	0.86	15.9	0.340	519	0.000	0.000	0.000	0.000	0.006	0.008	
06/05/00	MW-2	4.00	9.8	1,910	62.7	363	0.250	1.001	0.007	0.030	0.049	0.202	
07/07/00	MW-2	4.00	13.7	473	<3.1	42	0.087	1.348	0.000	0.031	0.008	0.234	
08/17/00	MW-2	4.00	17	1,799	61	149	0.409	2.983	0.013	0.081	0.035	0.372	
09/13/00	MW-2	1.20	38	3,300	<15.7	631	1.676	4.995	0.004	0.085	0.328	0.766	
10/27/00	MW-2	1.75	5.8	16.8	0.229	9.29	0.001	4.997	0.000	0.085	0.001	0.767	
03/15/00	MW-3	0.22	0.87	3,400	50	410	0.040	0.009	0.001	0.000	0.005	0.001	
03/15/00	MW-3	2.75	0.74	3,700	47	410	0.037	0.109	0.000	0.001	0.004	0.012	
04/17/00	MW-3	1.25	7.8	246	8.05	2,850	0.026	0.141	0.001	0.002	0.304	0.393	
06/05/00	MW-3	4.00	5	2,130	23.0	529	0.142	0.711	0.001	0.008	0.036	0.537	
07/07/00	MW-3	4.00	0.8	<2,833	57	3,861	0.015	0.771	0.001	0.010	0.042	0.706	
08/17/00	MW-3	4.00	2.8	22,833	346	4,222	0.855	4.190	0.012	0.057	0.162	1.353	
09/13/00	MW-3	3.75	34	15,200	<31.4	1,670	6.909	30.097	0.006	0.081	0.777	4.266	
10/27/00	MW-3	1.50	6.4	11.7	0.215	9.27	0.001	30.098	0.000	0.081	0.001	4.267	
03/22/01	MW-3	0.583	3.0	.2,800	10	2,100	0.112	30.164	0.000	0.082	0.086	4.317	a
03/22/01	MW-3	3.333	8.9	3,000	10	2,600	0.357	31.354	0.001	0.085	0.317	5.372	a
03/22/01	1.1.1. 5	2.222	0.5	-,		,							
03/22/01	T-1	1.000	3	6,300	42	4,400	0.253	0.253	0.002	0.002	0.181	0.181	a
03/22/01	T-1	1.667	4.04	5,000	39	8,700	0.270	0.703	0.002	0.005	0.481	0.982	a
10/08/01	T-1	2.000	2	1,100	11	340	0.029	0.762	0.000	0.005	0.009	1.001	b
10/08/01	T-1	2.800	2	15,000	140	2,600	0.401	1.885	0.003	0.015	0.071	1.200	b
10/08/01	T-1	12.800	70.8	900	90	2,300	0.852	12.788	0.077	1.004	2.227	29.711	b
10/09/01	T-1	8.300	22	550	55	2,200	0.162	14.130	0.015	1.125	0.662	35.206	b

Table 2: Vapor Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

							<u>T</u>	PHg	<u>Bei</u>	<u>ızene</u>	<u>M</u>	<u>TBE</u>	
		Interval	System				TPHg	Cumulative	Benzene	Cumulative	MTBE	Cumulative	
		Hours of	Flow	Hydroc	arbon Concer	ntrations	Removal	TPHg	Removal	Benzene	Removal	MTBE	
	Well	Operation	Rate	TPHg	Benzene	MTBE	Rate	Removed	Rate	Removed	Rate	Removed	
Date	ID	(hours)	(CFM)	(Conc	entrations in	ppmv)	(#/hour)	(#)	(#/hour)	(#)	(#/hour)	(#)	Notes:
10/11/01	T-1	6.900	22	630	63	82	0.185	15.409	0.017	1.241	0.025	35.376	b
10/12/01	T-1	4.200	2	510	51	610	0.014	15.466	0.001	1.247	0.017	35.447	b
10/12/01	T-1	5.000	80	140	14	270	0.150	16.214	0.014	1.314	0.295	36.924	b
Fotal Pound	ls Remove	d:					TPHg=	52.565	Benzene –	1.485	MTBE =	43.063	

Abbreviations and Notes:

CFM = Cubic feet per minute

TPHg = Total petroleum hydrocarbons as gasoline (C6-C12) by modified EPA Method 8015 in 1 liter tedlar bag samples

ppmv = Parts per million by volume

= Pounds

NA = Not available

TPHG, Benzene, and MTBE analyzed by EPA Method 8015/8020 in 1 liter tedlar bag samples

TPHg / Benzene / MTBE removal rate = Rate based on Bay Area Air Quality Management District's Manual of Procedures for Soil Vapor Extraction dated July 17, 1991.

(Rate = Concentration (ppmv) x system flow rate (cfm) x (1lb-mole/386ft3) x molecular weight (86 lb/lb-mole for TPHg, 78 lb/lb-mole for benzene, 88 lb/lb-mole for MTBE)

x 60 min/hour x 1/1,000,000)

Cumulative TPHg / Benzene / MTBE removal = Previous removal rate multiplied by the hour-interval of operation plus the previous total

If concentration is less than the laboratory detection limit, one half of the detection limit concentration is used in the mass removal calculation.

a = Dual-phase Vacuum Extraction (DVE) Pilot test using a RSI V3 Internal Combustion Engine with Bioslurp Tank on wells MW-3 and T-1 on March 22, 2001;

details of mass removal estimates reported in Cambria's August 29, 2001 Site Conceptual Model and Pilot Test Report, Table 3; daily averages included herein.

b = 5-day SVE test on well T-1; details of mass removal estimates reported in Cambria's Soil Vapor Extraction Pilot Test Report and Investigation Work Plan, Table 1; daily averages included herein.

Table 1: Vapor Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

								PHg	Bei	ızene	<u>M</u> '	ГВЕ
			System				TPHg	Cumulative	Benzene	Cumulative	MTBE	Cumulative
	Hour	Cumulative	Flow	Hydroc	arbon Conce	ntrations	Removal	TPHg	Removal	Benzene	Removal	MTBE
	Meter	Opertion	Rate	TPHg	Benzene	MTBE	Rate	Removed	Rate	Removed	Rate	Removed
Date	(hours)	(hours)	(CFM)	(Conc	entrations in	ppmv)	(#/hour)	(#)	(#/hour)	(#)	(#/hour)	(#)
10/08/01												-
10:30	96.2	0.00					0.000	0.000	0.000	0.000	0.000	0.000
10:45	96.5	0.30	2	1,100	11	340	0.029	0.009	0.000	0.000	0.009	0.003
11:00	96.7	0.50	2	12,870			0.029	0.015	0.000	0.000	0.009	0.005
11:15	96.9	0.70	2	19,460			0.029	0.021	0.000	0.000	0.009	0.007
11:30	97.2	1.00	2	18,790			0.029	0.029	0.000	0.000	0.009	0.009
11:45	97.5	1.30	2	17,540			0.029	0.038	0.000	0.000	0.009	0.012
12:00	97.7	1.50	2	17,190	•		0.029	0.044	0.000	0.000	0.009	0.014
12:15	98	1.80	2	16,850			0.029	0.053	0.000	0.000	0.009	0.017
12:30	98.2	2.00	2	14,170			0.029	0.059	0.000	0.001	0.009	0.019
12:45	98.5	2.30	2	14,020			0.401	0.179	0.003	0.002	0.071	0.040
13:15	98.9	2.70	2	12,880			0.401	0.340	0.003	0.003	0.071	0.068
13:45	99.4	3.20	2	12,650			0.401	0.540	0.003	0.005	0.071	0.104
14:15	99.9	3.70	2	74,000			0.401	0.741	0.003	0.006	0.071	0.140
14:45	100.5	4.30	2	76,680			0.401	0.981	0.003	0.008	0.071	0.182
15:15	101	4.80	2	15,000	140	2,600	0.401	1.18	0.003	0.010	0.071	0.218
10/9/2001												
8:45	112.8	16.60	71	11,600			0.854	11.3	0.077	0.924	2.23	26.6
9:00	113.2	17.00	72	9,740			0.866	11.6	0.079	0.956	2.27	27.5
9:15	113.5	17.30	71	9,270			0.854	11.9	0.077	0.979	2.23	28.2
9:30	113.6	17.40	61	900	90	2,300	0.734	11.9	0.067	0.986	1.92	28.3
9:45	113.8	17.60	58	8,850			0.698	12.1	0.063	0.998	1.82	28.7
10/10/2001												
8:45	119.2	23.00	0	8,980			0.000	12.1	0.000	0.998	0.000	28.7

Table 1: Vapor Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

							<u>T</u>]	PHg	Bei	ızene	<u>M</u>	ГВЕ
			System				TPHg	Cumulative	Benzene	Cumulative	MTBE	Cumulative
	Hour	Cumulative	Flow	Hydroc	arbon Concer	ntrations	Removal	TPHg	Removal	Benzene	Removal	MTBE
	Meter	Opertion	Rate	TPHg	Benzene	MTBE	Rate	Removed	Rate	Removed	Rate	Removed
Date	(hours)	(hours)	(CFM)	(Conc	centrations in	ppmv)	(#/hour)	(#)	(#/hour)	(#)	(#/hour)	(#)
9:00	119.4	23.20	1	9,370			0.007	12.1	0.001	0.998	0.030	28.7
9:15	119.6	23.40	12	8,520			0.088	12.1	0.008	1.00	0.361	28.8
9:30	119.8	23.60	42	6,790			0.309	12.2	0.028	1.01	1.26	29.0
9:45	120.1	23.90	45	5,840			0.331	12.3	0.030	1.01	1.35	29.4
12:00	120.7	24.50	79	550	55	2,200	0.581	12.6	0.053	1.05	2.38	30.9
12:15	120.9	24.70	80				0.588	12.7	0.053	1.06	2.41	31.4
16:00	122.1	25.90	80				0.588	13.4	0.053	1.12	2.41	34.2
10/11/2001												
8:15	126.1	29.90	0	6,560			0.000	13.4	0.000	1.12	0.000	34.2
8:30	126.3	30.10	2	6,200			0.017	13.4	0.002	1.12	0.002	34.2
8:45	126.5	30.30	5	5,510			0.042	13.4	0.004	1.12	0.006	34.2
9:00	126.7	30.50	72	5,220			0.606	13.6	0.055	1.13	0.081	34.3
9:15	126.9	30.70	41	5,270			0.345	13.6	0.031	1.14	0.046	34.3
9:30	127.2	31.00	60	630	63	82	0.505	13.8	0.046	1.15	0.067	34.3
9:45	127.4	31.20	61	4,770			0.514	13.9	0.047	1.16	0.068	34.3
13:30	128.1	31.90	62	4,340			0.522	14.3	0.047	1.20	0.070	34.4
13:45	128.3	32.10	59	5,590			0.497	14.4	0.045	1.20	0.066	34.4
14:00	128.6	32.40	64	5,210			0.539	14.5	0.049	1.22	0.072	34.4
14:15	128.9	32.70	61	3,670			0.514	14.7	0.047	1.23	0.068	34.4
15:30	129	32.80	60				0.505	14.7	0.046	1.24	0.067	34.4
10/12/2001			•									
7:30	132.8	36.60	0	4,910			0.000	14.7	0.000	1.24	0.000	34.4
7:45	133	36.80	2	4,980			0.014	14.7	0.001	1.24	0.017	34.4
8:00	133.2	37.00	22	510	51	610	0.150	14.7	0.014	1.24	0.184	34.5
8:15	133.4	37.20	30	5,200			0.205	14.8	0.019	1.24	0.250	34.5

Table 1: Vapor Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

							<u>T</u>	PHg	Bei	<u>ızene</u>	<u>M</u> T	ГВЕ
			System				TPHg	Cumulative	Benzene	Cumulative	MTBE	Cumulative
	Hour	Cumulative	Flow	Hydroc	arbon Conce	entrations	Removal	TPHg	Removal	Benzene	Removal	MTBE
	Meter	Opertion	Rate	TPHg	Benzene	MTBE	Rate	Removed	Rate	Removed	Rate	Removed
Date	(hours)	(hours)	(CFM)	(Conc	entrations in	ppmv)	(#/hour)	(#)	(#/hour)	(#)	(#/hour)	(#)
8:30	133.6	37.40	41	4,490			0.280	14.8	0.025	1.25	0.342	34.6
8:45	133.8	37.60	53	4,310			0.361	14.9	0.033	1.26	0.442	34.7
9:00	134.1	37.90	58	3,770			0.395	15.0	0.036	1.27	0.484	34.8
9:15	134.3	38.10	58	3,330			0.395	15.1	0.036	1.27	0.484	34.9
9:30	134.5	38.30	62	2,940			0.423	15.2	0.038	1.28	0.517	35.0
10:00	135	38.80	51	2,350			0.348	15.4	0.032	1.30	0.426	35.2
10:30	135.5	39.30	47	1,907			0.320	15.5	0.029	1.31	0.392	35.4
11:00	136	39.80	45	2,130			0.084	15.6	0.008	1.32	0.166	35.5
11:30	136.5	40.30	45	1,093			0.084	15.6	0.008	1.32	0.166	35.6
12:00	137	40.80	44	1,116			0.082	15.7	0.007	1.32	0.163	35.7
12:30	137.5	41.30	45	983			0.084	15.7	0.008	1.33	0.166	35.7
12:45	137.8	41.60	45	140	14	270	0.084	15.7	0.008	1.33	0.166	35.8
13:00	138	41.80	45	956			0.084	15.7	0.008	1.33	0.166	35.8
13:10	138.2	42.00	45				0.084	15.8	0.008	1.33	0.166	35.9
Total Pound	ls Removed:						TPHg-	15.8	Benzene =	1.33	MTBE =	35.9

Abbreviations and Notes:

CFM = Cubic feet per minute

ppmv = Parts per million by volume

= Pounds

First day well concentrations didnnot allow automated well valve to open much casuing flow to be below measuring capability.

Flow estimated at 2 cfm based on measured well vacuum and well valve position.

Bold = Sample concentrations from Lab analysis; Non-Bold= field measured concentrations by a Horiba OVA

TPHG, Benzene, and MTBE analyzed by EPA Method 8015/8020/8260 respectively from 1 liter tedlar bag samples

Second through fifth day benzene concetrations assumed to be 10% of the TPHg concentration.

TPHg / Benzene / MTBE removal rate = Rate based on Bay Area Air Quality Management District's Manual of Procedures for Soil Vapor Extraction dated July 17, 1991.

Table 1: Vapor Extraction - Mass Removal Data - Shell-branded Service Station. Incident #98995750, 610 Market Street, Oakland, California

							<u>T</u>	PHg	Bei	<u>ızene</u>	<u>M</u>	<u>rbe</u>
			System				TPHg	Cumulative	Benzene	Cumulative	MTBE	Cumulative
	Hour	Cumulative	Flow	Hydroc	arbon Conce	ntrations	Removal	TPHg	Removal	Benzene	Removal	MTBE
	Meter	Opertion	Rate	TPHg	Benzene	MTBE	Rate	Removed	Rate	Removed	Rate	Removed
Date	(hours)	(hours)	(CFM)	(Conc	entrations in	ppmv)	(#/hour)	(#)	(#/hour)	(#)	(#/hour)	(#)
		-										

(Rate = Concentration (ppmv) x system flow rate (cfm) x (11b-mole/386ft3) x molecular weight (86 lb/lb-mole for TPHg, 78 lb/lb-mole for benzene, 88 lb/lb-mole for MTBE) x 60 min/hour x 1/1,000,000)

Cumulative TPHg / Benzene / MTBE removal = Previous removal rate multiplied by the hour-interval of operation plus the previous total

Table 3: Vapor Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

							<u>TI</u>	PHg	<u>Ber</u>	<u>izene</u>	<u>M</u>	<u>rbe</u>
		Interval	System				TPHg	Cumulative	Benzene	Cumulative	MTBE	Cumulative
		Hours of	Flow	Hydroc	arbon Concei	ntrations	Removal	TPHg	Removal	Benzene	Removal	MTBE
	Well	Operation	Rate	TPHg	Benzene	MTBE	Rate	Removed	Rate	Removed	Rate	Removed
Date	ID	(hours)	(CFM)	(Conc	entrations in	ppmv)	(#/hour)	(#)	(#/hour)	(#)	(#/hour)	(#)
03/22/01	MW-3	Dual-phase \	Vacuum Ext	raction (DV	E) Pilot Tes	t using a RS	 SI V3 Interna	ا al Combustior	 Engine with	h Bioslurp Tai	l nk	
9:05	(RPM=2,000)	0.000	3				0.112	0.000	0.000	0.000	0.086	0.000
9:10	, ,	0.083	3	1,642			0.112	0.009	0.000	0.000	0.086	0.007
9:15		0.083	3	18,600			0.112	0.019	0.000	0.000	0.086	0.014
9:20		0.083	3	14,120			0.112	0.028	0.000	0.000	0.086	0.021
9:35		0.250	3	2,800	10	2,100	0.112	0.056	0.000	0.000	0.086	0.043
9:50		0.250	4	9,350			0.150	0.093	0.000	0.000	0.115	0.072
10:05		0.250	3	12,820			0.112	0.122	0.000	0.000	0.086	0.093
10:35		0.500	2	7,160			0.075	0.159	0.000	0.001	0.057	0.122
10:45	(RPM=1,500)	0.167	12	3,000	10	2,600	0.481	0.239	0.001	0.001	0.427	0.193
10:50	,	0.830	12	8,470			0.481	0.639	0.001	0.002	0.427	0.547
11:00		0.167	13	6,150			0.521	0.726	0.002	0.002	0.462	0.625
11:15		0.250	14	10,240			0.561	0.866	0.002	0.003	0.498	0.749
11:30		0.250	8	1,745			0.321	0.946	0.001	0.003	0.285	0.820
11:45		0.250	9	18,270			0.361	1.04	0.001	0.003	0.320	0.900
12:00		0.250	22	6,410			0.882	1.26	0.003	0.004	0.782	1.096
2.00.						was-						
03/22/01	T-1	Soil Vapor E	Extraction (S	VE) Pilot T	est using a F	RSI V3 Inter		I				
13:00	(RPM=1,750)	0.000	3				0.253	0.000	0.002	0.000	0.181	0.000
13:05		0.083	3	6,300	42	4,400	0.253	0.021	0.002	0.000	0.181	0.015
13:10		0.083	3	36,620			0.253	0.042	0.002	0.000	0.181	0.030
13:15		0.083	3	34,870			0.253	0.063	0.002	0.000	0.181	0.045
13:30		0.250	3	35,250			0.253	0.126	0.002	0.001	0.181	0.090
13:45		0.250	3	35,820			0.253	0.189	0.002	0.001	0.181	0.135
14:00		0.250	3	34,480			0.253	0.252	0.002	0.002	0.181	0.180

Table 3: Vapor Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

							<u>T</u>]	PHg	<u>Bei</u>	<u>ızene</u>	<u>M</u> 7	TBE
		Interval	System				TPHg	Cumulative	Benzene	Cumulative	MTBE	Cumulative
		Hours of	Flow	Hydroc	arbon Conce	ntrations	Removal	TPHg	Removal	Benzene	Removal	MTBE
	Well	Operation	Rate	TPHg	Benzene	MTBE	Rate	Removed	Rate	Removed	Rate	Removed
Date	ID	(hours)	(CFM)	(Conc	entrations in	ppmv)	(#/hour)	(#)	(#/hour)	(#)	(#/hour)	(#)
14:15	(RPM=2,500)	0.250	3	35,150			0.201	0.303	0.001	0.002	0.357	0.270
14:20		0.083	3	33,340			0.201	0.319	0.001	0.002	0.357	0.299
14:25		0.083	3	35,010			0.201	0.336	0.001	0.002	0.357	0.329
14:40		0.250	3	32,670			0.201	0.386	0.001	0.002	0.357	0.418
14:55		0.250	3	31,060			0.201	0.436	0.001	0.003	0.357	0.507
15:10		0.250	3	31,390			0.201	0.486	0.001	0.003	0.357	0.597
15:25		0.250	3	5,000	39	8,700	0.201	0.536	0.001	0.004	0.357	0.686
15:40		0.250	10	32,000			0.668	0.703	0.005	0.005	1.190	0.983
Total Pou	nds Removed:				Financial Principal		TPHg=	1.961	Benzene =	0.009	MTBE =	2.079

Abbreviations and Notes:

CFM = Cubic feet per minute

TPHg = Total petroleum hydrocarbons as gasoline (C6-C12) by modified EPA Method 8015 in 1 liter tedlar bag samples

ppmv = Parts per million by volume

= Pounds

Bold = Sample concentrations from Lab analysis; Grayscale = field measured concentrations by a Horiba OVA

TPHG, Benzene, and MTBE analyzed by EPA Method 8015/8020 in 1 liter tedlar bag samples

TPHg / Benzene / MTBE removal rate = Rate based on Bay Area Air Quality Management District's Manual of Procedures for Soil Vapor Extraction dated July 17, 1991.

(Rate = Concentration (ppmv) x system flow rate (cfm) x (1lb-mole/386ft3) x molecular weight (86 lb/lb-mole for TPHg, 78 lb/lb-mole for benzene, 88 lb/lb-mole for MTBE) x 60 min/hour x 1/1,000,000)

Cumulative TPHg / Benzene / MTBE removal = Previous removal rate multiplied by the hour-interval of operation plus the previous total

Table 2: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

						<u>TPPH</u>			Benzene			<u>MTBE</u>	
			Cumulative				TPPH			Benzene			MTBE
		Volume	Volume	Flow	ТРРН	TPPH	Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
Date	Well	Pumped	Pumped	Rate	Conc.	Removed	To Date	Conc.	Removed	to Date	Conc.	Removed	To Date
Purged	ID	(gal)	(gal)	(gpm)	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)	(ppb)	(lb)	(lb)
03/22/01	MW-3	Dual phase	Vocuum Extr	action (DVF)	Pilot test usi	ng a RSI V3 In	iternal Comb	ustion Engi	ne with Rios	lurn Tank			
9:05	(RPM=2,000)	Ouai-phase	0	action (DVE)		0.000	0.000	distront Engr	0.000	0.000		0.000	0.000
9:10	(Id W 2,000)	13	13	2.60		0.001	0.001		0.000	0.000		0.042	0.042
9:15		13	26	2.60		0.001	0.002		0.000	0.000		0.042	0.085
9:20		29	55	5.80		0.002	0.005		0.000	0.000		0.094	0.179
9:35		18	73	1.20	<20,000	0.002	0.006	<200	0.000	0.000	390,000	0.059	0.238
9:50		37	110	2.47	ĺ	0.003	0.009		0.000	0.000		0.120	0.358
10:05		36	146	2.40		0.003	0.012		0.000	0.000		0.117	0.475
10:35		55	201	1.83		0.005	0.017		0.000	0.000		0.179	0.654
10:45	(RPM=1,5000)	0	201	0.00		0.000	0.017		0.000	0.000		0.000	0.654
10:50		36	237	7.20		0.003	0.020		0.000	0.000		0.117	0.771
11:00		19	256	1.90		0.002	0.021		0.000	0.000		0.062	0.833
11:15		36	292	2.40		0.003	0.024		0.000	0.000		0.117	0.950
11:30		38	330	2.53		0.003	0.028		0.000	0.000		0.124	1.074
11:45		0	330	0.00		0.000	0.028		0.000	0.000		0.000	1.074
12:00		53	383	3.53		0.004	0.032		0.000	0.000		0.172	1.246

otal Gallon	s Extracted:		383	7. (1.14.1.7.2)	Total Pound	ls Removed:	- 0.032			- 0.000			1.246

Table 2: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98995750, 610 Market Street, Oakland, California

Cumulative TPPH Benzene Volume Volume Flow TPPH TPPH Removed Benzene Benzene Removed MTBE Date Well Pumped Pumped Rate Conc. Removed To Date Conc. Removed to Date Conc.		<u>MTBE</u>		<u>Benzene</u>	,		<u>TPPH</u>						
	MTBE		Benzene			TPPH				Cumulative			
Date Well Pumped Pumped Rate Conc. Removed To Date Conc. Removed to Date Conc.	MTBE Removed	MTBE MTBE	Removed	Benzene	Benzene	Removed	TPPH	ТРРН	Flow	Volume	Volume		
• •	Removed To Date	Conc. Removed	to Date	Removed	Conc.	To Date	Removed	Conc.	Rate	Pumped	Pumped	Well	Date
Purged ID (gal) (gal) (gpm) (ppb) (lb) (lb) (ppb) (lb) (ppb)	(lb) (lb)	(ppb) (lb)	(lb)	(lb)	(ppb)	(lb)	(lb)	(ppb)	(gpm)	(gal)	(gal)	ID	Purged

Abbreviations & Notes:

TPPH = Total purgeable hydrocarbons as gasoline

MtBE = Methyl tert-butyl ether

 μ g/L = Micrograms per liter

ppb = Parts per billion, equivalent to μ g/L

lb = Pound

SPH = Separate phase hydrocarbons

L = Liter

gal = Gallon

g = Gram

* = Groundwater volume pumped estimated; data not available

RPM = Revolutions per minute

Mass removed based on the formula: volume extracted (gal) x Concentration ((g/L) x (g/10° µg) x (pound/453.6g) x (3.785 L/gal)

Volume removal data based on the formula: density (in gms/cc) x 9.339 (ccxlbs/gmsxgals)

TPPH and benzene analyzed by EPA Method 8015/8020

MTBE data in bold font analyzed by EPA Method 8260, all other MTBE analyzed by EPA Method 8020

Concentrations based on most recent groundwater monitoring results

If concentrations are below laboratory detection limits, one half the detection limit is used for mass removal calculations.

Groundwater extracted by vacuum trucks provided by ACTI; water disposed of at a Martinez refinery

APPENDIX D WELL SURVEY RESULTS

Table 1. Well Survey Results - Shell-branded Service Station, 610 Market Street, Oakland, California. Incident # 98995756

				Depth	Screened	Sealed
Map ID	Well ID	Installation Date	Use	(fbg)	Interval (fbg)	Interval (fbg)
1	1S/4W-3SF12	Sept. 23, 1990	IRR	480	180-240, 300-340, 360-380, 430-470	0 to 90
2	1S/4W-35R	Unknown	UNK	175	Unknown	Unkown
3	1S/4W-35N1	Feb. 2, 1955	UNK	140	Unknown	Unkown
4	1S/4W-35Q	May 30, 1973	CATH	120	Unknown	0-90
5	1S/4W-35C7	Unknown	DES	55	Unknown	0-55

Well information provided by the State of California Department of Water Resources

Notes and Abbreviations:

Map ID = Column number refers to map location on Figure 1

Well ID = California State well identification number as recorded by the Department of Water Resources in Sacramento, California

fbg = feet below grade

UNK = Unknown

CATH = Cathodic Protection

DES = Destroyed Well