

Denis L. Brown August 10, 2006

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Second Quarter 2006 Groundwater Monitoring Report Shell-branded Service Station 610 Market Street Oakland, California SAP Code 135692 Incident No. 98995750 ACHCSA Case # RO-0493

Dear Mr. Wickham:

Attached for your review and comment is a copy of the *Second Quarter 2006 Groundwater Monitoring Report* for the above referenced site. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown Sr. Environmental Engineer

RECEIVED By dehloptoxic at 9:04 am, Aug 11, 2006

> Shell Oil Products US HSE - Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.l.brown@shell.com

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Second Quarter 2006 Groundwater Monitoring Report

Shell-branded Service Station 610 Market Street Oakland, California SAP Code 135692 Incident #99895750 Cambria Project #248-0594-002 ACHCSA Case # RO-0493

Dear Mr. Wickham:

On behalf of Equilon Enterprises LLC dba Shell Oil Products US, Cambria Environmental Technology, Inc. (Cambria) is submitting this groundwater monitoring report in accordance with the reporting requirements of 23 CCR 2652d. The site is located on Market Street between Sixth and Seventh Streets in Oakland, California (Figures 1 and 2).

REMEDIATION SUMMARY

Mobile Dual-Phase Vacuum Extraction (DVE) Treatment: From March to October 2000, Cambria coordinated mobile DVE from wells MW-2 and MW-3. Mobile DVE utilized a vacuum truck for extraction and off-hauling of groundwater. Carbon absorption vessels were used to abate extracted vapors. DVE was discontinued in October 2000 due to low groundwater extraction volumes.

DVE and Soil Vapor Extraction (SVE) Pilot Test: On March 22, 2001, Cambria performed a short-term (1-day) DVE test on well MW-3 and a short-term (1-day) SVE test on tank backfill well T-1. The tests were conducted using an internal combustion engine as the extraction and abatement device.

SVE Pilot Test: Between October 8 and 12, 2001, Cambria conducted a long-term (5-day) SVE pilot test on tank backfill well T-1. The test was conducted using an internal combustion engine as the extraction and abatement device.

Mobile Groundwater Extraction (GWE): As recommended in the August 29, 2001 *Site Conceptual Model and Pilot Test Report*, Cambria began coordinating weekly GWE from well MW-3 using a vacuum truck in August 2001. Beginning in January 2002, well MW-2 was added to the weekly GWE schedule at the site. Mobile GWE was discontinued on January 28, 2003 in anticipation of starting the GWE system.

GWE System: As recommended in the August 19, 2002 *Interim Remedial Action Plan*, a GWE system was installed to address the elevated methyl tertiary-butyl ether (MTBE) concentrations detected in groundwater beneath the site. The GWE system was started on February 18, 2003.

The following table summarizes the estimated total petroleum hydrocarbon as gasoline (TPHg), benzene, and MTBE mass removed by applying the remedial methods discussed:

		TPHg (pounds)	Benzene	e (pounds)	MTBE	(pounds)
Method	Period	Vapor- phase	Dissolved- phase	Vapor- phase	Dissolved- phase	Vapor- phase	Dissolved- phase
Mobile DVE	03/15/00 - 10/27/00	35.1	0.537	1.49	0.024	5.03	10.6
DVE/SVE Test	03/22/01	1.96	0.032	0.009	0	2.08	1.25
SVE Test	10/08/01 – 10/12/01	15.8	NA	1.33	NA	35.9	NA
Mobile GWE	08/22/01 – 01/28/03	NA	2.81	NA	0.062	NA	58.8
GWE System	02/18/03 – 8/1/06	NA	47.6	NA	0.382	NA	137
Subto	tal (per phase)	52.9	50.979	2.83	0.468	43.0	207.65
Total M	ass Removed	104	ounds	3.30	pounds	250.65 pounds	

Table A - Mass Removal Summary

NA = Not applicable

SECOND QUARTER 2006 ACTIVITIES

Groundwater Monitoring: Blaine Tech Services, Inc. (Blaine) of San Jose, California gauged and sampled the site wells, calculated groundwater elevations, and compiled the analytical data. Cambria prepared a vicinity map which includes previously submitted well survey information (Figure 1) and a groundwater elevation contour map (Figure 2). Blaine's report, presenting the laboratory reports and supporting field documents, is included as Attachment A.

Remedial Activities: Cambria began operating the fixed GWE system on February 18, 2003. Wells MW-2, MW-3, MW-6, MW-7, and MW-8 are equipped with pumps to be used as extraction points. As of July 22, 2005, the system has been pumping only from well MW-3. Table 1 summarizes system analytical data. Groundwater level measurements and flow meter readings have been recorded at various times of operation to assess system production. Table 2 summarizes the field data and system operation, and calculates mass removal. Based on the field data, the GWE system has operated at an average flow rate of approximately 1.43 gallons per minute since startup.

As of August 1, 2006, a total of 2,202,172 gallons of groundwater had been extracted. A total of 47.6 pounds of TPHg, 0.382 pounds of benzene, and 137 pounds of MTBE has been recovered.

ANTICIPATED THIRD QUARTER 2006 ACTIVITIES

Groundwater Monitoring: In the third quarter 2006, Blaine will gauge and sample all monitoring wells and tabulate the data. Cambria will prepare a monitoring report.

Remedial Activities: GWE system operation is expected to continue throughout the third quarter 2006. Per Cambria's standard operating procedures and East Bay Municipal Utilities District treatment-system monitoring requirements, Cambria will perform routine operation and maintenance of the GWE system. Cambria will monitor concentration trends and GWE system effectiveness.

Mr. Wickham August 10, 2006

CLOSING

We appreciate the opportunity to work with you on this project. Please call Ana Friel at (707) 268-3812 if you have any questions or comments.

Sincerely, Cambria Environmental Technology, Inc.

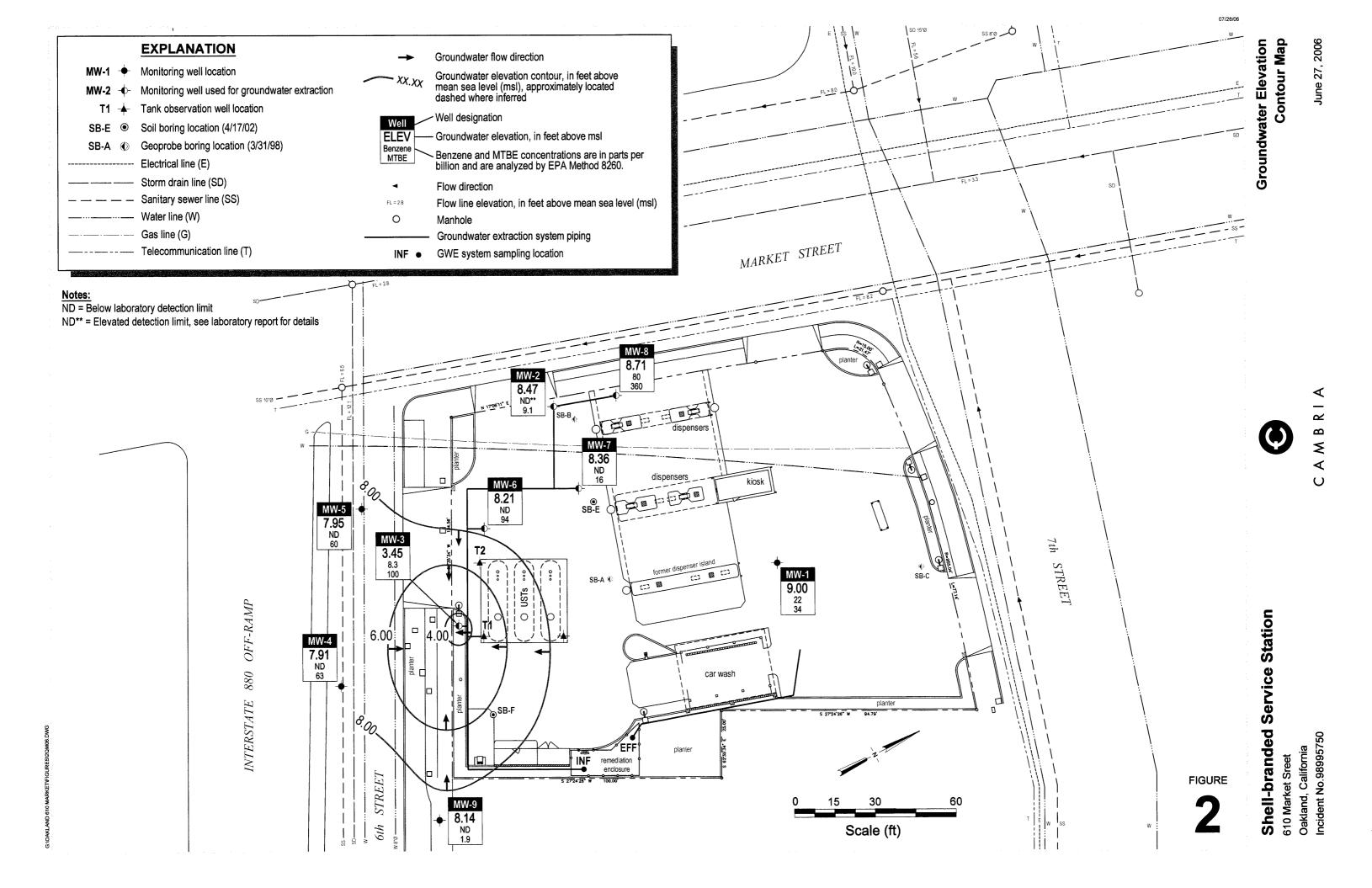
Anbrug K Col fr: Ana Friel, PG Associate Geologist

Figures:

8	2 - Groundwater Elevation Contour Map
Tables:	 Groundwater Extraction – System Analytical Data Groundwater Extraction – Operation and Mass Removal Data
Attachment:	A - Blaine Groundwater Monitoring Report and Field Notes

1 - Site Vicinity and Area Well Survey Map

cc: Denis Brown, Shell Oil Products US, 20945 S. Wilmington Ave., Carson, CA 90810 Virginia R. Rawson, Tr., 1860 Tice Creek Drive #1353, Walnut Creek, CA 94595 Roger Schmidt, 1224 Contra Costa Dr., El Cerrito, CA 94530


G:\Oakland 610 Market\QM\2006\2q06qm.doc

610 Market Street Oakland, California Incident No.98995750

CAMBRIA

1/2 Mile Radius

		Influent			Midfluent 1			Midfluent 2			Effluent	
Sample	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE
Date	Conc.	Conc.	Conc	Conc.	Conc	Conc.	Conc.	Conc	Conc.	Conc.	Conc.	Conc
(mm/dd/yy)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
02/18/2003	<20,000	270	93,000	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
02/25/2003	<20,000	<200	74,000	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
03/11/2003	<10,000	<100	47,000	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
03/25/2003	<10,000	<100	38,000	<250	<2.5	<25	<50	<0.50	<5.0	<50	<0.50	<5.0
04/07/2003	30,000	<250	33,000	<50	<0.50	<5.0	<50	<0.50	<5.0	<50	<0.50	<5.0
04/22/2003	<25,000	<250	26,000	<50	<0.50	2.6	<50	<0.50	<0.50	<50	<0.50	<0.50
05/01/2003	<10,000	<100	25,000	<50	<0.50	<5.0	<50	<0.50	<5.0	<50	<0.50	<5.0
05/20/2003	<10,000	<100	17,000	<500	<5.0	610	640	<0.50	<0.5	<50	<0.50	<0.5
06/03/2003	<10,000	<100	15,000	<5,000	<50	4000	<50	<0.50	<0.5	<50	<0.50	<0.5
06/17/2003	<10,000	<100	17,000	<25,000	<250	16,000	<50	<0.50	<5.0	<50	<0.50	<5.0
07/28/2003	<5,000	<50	7,100	<250	<2.5	420	<50	<0.50	<0.50	<50	<0.50	<0.50
08/11/2003	<2,500	<25	4,900	<250	<2.5	280	<50	<0.50	<0.50	<50	<0.50	<0.50
08/28/2003	<2,500	<25	7,700	<100	<1.0	260	<50	<0.50	<0.50	<50	<0.50	<0.50
09/08/2003	<2,500	<25	6,600	<50	<0.50	140	<50	<0.50	<0.50	<50	<0.50	<0.50
09/22/2003	<5,000	<50	5,700	<250	<2.5	230	<50	<0.50	<0.50	<50	<0.50	<0.50
10/08/2003	<2,500	<25	3,100	<50	<0.50	140	<50	<0.50	<0.50	<50	<0.50	<0.50
10/21/2003	<5,000	<50	3,800	<250	<2.5	180	<50	<0.50	<0.50	<50	<0.50	<0.50
11/06/2003	<1,000	<10	3,500	<50	<0.50	150	<50	<0.50	<0.50	<50	<0.50	<0.50
12/05/2003	<2,000	<20	3,400	<50	<0.50	130	<50	<0.50	<0.50	<50	<0.50	<0.50
01/09/2004	<2,000	<20	2,700	<50	<0.50	210	<50	<0.50	<0.50	<50	<0.50	<0.50
02/09/2004	<250	7.8	250	<50	<0.50	180	<50	<0.50	<0.50	<50	<0.50	<0.50
03/09/2004	<250	8.6	700	<100	<1.0	270	<50	<0.50	<0.50	<50	<0.50	<0.50
04/13/2004	<1,000	<10	1,900	<250	<2.5	570	<50	<0.50	<0.50	<50	<0.50	<0.50
05/10/2004	<1,000	<10	1,600	<250	<2.5	660	<50	<0.50	<0.50	<50	<0.50	< 0.50
05/28/2004	3,400	170	1,200	<50	<0.5	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
06/09/2004	<1,000	<10	1,100	<250	<2.5	920	<50	<0.50	<0.50	<50	<0.50	< 0.50

Table 1: Groundwater Extraction - System Analytical Data - Shell-branded Service Station, Incident #98995750, 610 Market St, Oakland, California

		Influent			Midfluent 1			Midfluent 2			Effluent	
Sample	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE
Date	Conc.	Conc.	Conc	Conc.	Conc	Conc.	Conc.	Conc	Conc.	Conc.	Conc.	Conc
(mm/dd/yy)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
07/07/2004	<1,000	<10	1,100	<500	<5.0	1,100	<50	<0.50	<0.50	<50	<0.50	<0.50
08/03/2004	<1,000	<10	850	<500	<5.0	680	<50	<0.50	<0.50	<50	<0.50	<0.50
09/16/2004	<250	<2.5	480	<500	<5.0	920	<50	<0.50	<0.50	<50	<0.50	<0.50
10/12/2004	<50	<0.50	320	<150	<1.5	820	<50	<0.50	<0.50	<50	<0.50	<0.50
11/08/2004	<200	<2.0	400	<250	<2.5	700	<50	<0.50	<0.50	<50	<0.50	<0.50
12/02/2004	<250	<2.5	530	<500	<5.0	860	<50	<0.50	<0.50	<50	<0.50	<0.50
01/10/2005	<250	<2.5	350	<500	<5.0	880	<50	<0.50	<0.50	<50	<0.50	<0.50
02/08/2005	<250	<2.5	460	<500	<5.0	830	<50	<0.50	<0.50	<50	<0.50	<0.50
03/07/2005	310	8.9	120	<500	<5.0	850	<50	<0.50	<0.50	<50	<0.50	<0.50
04/13/2005	<250	<2.5	350	<500	<5.0	550	<50	<0.50	1.2	<50	<0.50	<0.50
07/29/2005	<200	3.2	540	<50	<0.50	1.0	<50	<0.50	<0.50	<50	<0.50	1.0
08/04/2005	86 a	1.8	140	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
09/16/2005	77 a	1.1	55	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
10/13/2005	140	0.68	26	<50 a	<0.50	<0.50	<50 a	<0.50	<0.50	<50 a	<0.50	<0.50
11/11/2005	100 a	0.86	26	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
12/16/2005	92	1.0	36	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
01/09/2006	240	2.8	180	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
02/02/2006	150	2.0	140	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
03/03/2006	190	1.4	91	<50	<0.50	2.0	<50	<0.50	<0.50	<50	<0.50	<0.50
04/13/2006	150	3.1	250	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
05/11/2006	120	1.7	120	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
06/08/2006	190	0.96	63	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
07/07/2006	120	1.6	9.9	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50
08/01/2006	170	0.93	20	<50	<0.50	<0.50	<50	<0.50	<0.50	<50	<0.50	<0.50

Table 1: Groundwater Extraction - System Analytical Data - Shell-branded Service Station, Incident #98995750, 610 Market St, Oakland, California

Abbreviations & Notes:

TPHg = Total purgeable hydrocarbons as gasoline

MTBE = Methyl tert-butyl ether

Conc. = Concentration

Table 1: Groundwater Extraction - System Analytical Data - Shell-branded Service Station, Incident #98995750, 610 Market St, Oakland, California

	Influent				Midfluent 1			Midfluent 2			Effluent	
Sample	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE
Date	Conc.	Conc.	Conc	Conc.	Conc	Conc.	Conc.	Conc	Conc.	Conc.	Conc.	Conc
(mm/dd/yy)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)

ppb = parts per billion, equivalent to $\mu g/l$

TPHg, benzene, and MTBE analyzed by EPA Method 8260B

a - Quantity of unknown hydrocarbon(s) in sample based on gasoline

As of February 1, 2006, gasoline range organics reported as TPHg include MTBE, tertiary-butyl alcohol, and di-isopropyl ether concentrations. TPHg concentrations reported prior to February 1, 2006 may not include one or more of these constituents.

					Period			<u>TPHg</u>			Benzene			MTBE	
Site	Hour		Flow Meter	Period	Operational	Cumulative	TPHg	Period	Cumulative	Benzene	Period	Cumulative	MTBE	Period	Cumulative
Visit	Meter	Uptime	Reading	Volume	Flow Rate	Volume	Conc.	Removal	Removal	Conc.	Removal	Removal	Conc.	Removal	Removal
(mm/dd/yy)	(hours		(gal)	(gal)	(gpm)	(gal)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)
00/10/00	0.0		100	0	0.00	0	20.000	0.000	0.000	270	0.0000	0.000			
02/18/03	0.0		100	0	0.00	0	<20,000	0.000	0.000	270	0.0000	0.000	93,000	0.000	0.000
02/18/03	3.5		1,024	924	4.40	924		0.077	0.077		0.0021	0.002		0.717	0.717
02/25/03	140.2	0.83	30,312	29,288	3.57	30,212	<20,000	2.44	2.52	<200	0.0244	0.027	74,000	18.1	18.8
03/11/03	475.8	1.00	84,666	54,354	2.70	84,566	<10,000	2.27	4.79	<100	0.0227	0.049	47,000	21.3	40.1
03/13/03	524.0	1.00	92,030	7,364	2.55	91,930		0.307	5.10		0.0031	0.052		2.89	43.0
03/25/03	527.0	0.01	92,840	810	4.50	92,740	<10,000	0.034	5.13	<100	0.0003	0.053	38,000	0.257	43.3
04/07/03	838.6	1.00	142,754	49,914	2.67	142,654	30,000	12.5	17.6	<250	0.0521	0.105	33,000	13.7	57.0
04/14/03	985.4	0.87	165,205	22,451	2.55	165,105		5.62	23.2		0.0234	0.128		6.18	63.2
04/22/03	1,184.1	1.03	197,360	32,155	2.70	197,260	<25,000	3.35	26.6	<250	0.0335	0.162	26,000	6.98	70.2
04/29/03	1,305.4	0.72	216,450	19,090	2.62	216,350		1.99	28.6		0.0199	0.182		4.14	74.3
05/01/03	1,351.3	0.96	223,850	7,400	2.69	223,750	<10,000	0.309	28.9	<100	0.0031	0.185	25,000	1.54	75.9
05/20/03	1,783.0	0.95	291,620	67,770	2.62	291,520	<10,000	2.83	31.7	<100	0.0283	0.213	17,000	9.61	85.5
06/03/03	2,122.1	1.01	341,643	50,023	2.46	341,543	<10,000	2.09	33.8	<100	0.0209	0.234	15,000	6.26	91.7
06/17/03	2,456.1	0.99	388,001	46,358	2.31	387,901	<10,000	1.93	35.7	<100	0.0193	0.253	17,000	6.58	98.3
06/30/03	2,766.0	0.99	429,880	41,879	2.25	429,780		1.75	37.5		0.0175	0.271		5.94	104
07/14/03	3,095.9	0.98	473,549	43,669	2.21	473,449		1.82	39.3		0.0182	0.289		6.19	110
07/28/03	3,423.7	0.98	514,826	41,277	2.10	514,726	<5,000	0.861	40.2	<50	0.0086	0.297	7,100	2.45	113
08/11/03	3,761.9	1.01	545,750	30,924	1.52	545,650	<2,500	0.323	40.5	<25	0.0032	0.301	4,900	1.26	114
08/28/03	4,171.0	1.00	595,525	49,775	2.03	595,425	<2,500	0.519	41.0	<25	0.0052	0.306	7,700	3.20	117
09/08/03	4,435.4	1.00	626,720	31,195	1.97	626,620	<2,500	0.325	41.3	<25	0.0033	0.309	6,600	1.72	119
09/22/03	4,769.9	1.00	665,449	38,729	1.93	665,349	<5,000	0.808	42.2	<50	0.0081	0.317	5,700	1.84	121
10/08/03	5,084.6	0.82	701,104	35,655	1.89	701,004	<2,500	0.372	42.5	<25	0.0037	0.321	3,100	0.922	122
10/21/03	5,396.7	1.00	735,644	34,540	1.84	735,544	<5,000	0.721	43.2	<50	0.0072	0.328	3,800	1.10	123
11/06/03	5,785.7	1.01	778,218	42,574	1.82	778,118	<1,000	0.178	43.4	<10	0.0018	0.330	3,500	1.24	124
11/19/03	6,097.1	1.00	810,223	32,005	1.71	810,123		0.134	43.6		0.0013	0.331		0.935	125
12/05/03	6,481.6	1.00	849,610	39,387	1.71	849,510	<2,000	0.329	43.9	<20	0.0033	0.334	3,400	1.12	126
12/23/03	6,909.0	0.99	898,595	48,985	1.91	898,495		0.409	44.3		0.0041	0.339		1.390	128
01/02/04	7,057.2	0.62	917,835	19,240	2.16	917,735		0.161	44.5		0.0016	0.340		0.546	128
01/09/04	7,170.7	0.68	941,766	23,931	3.51	941,666	<2,000	0.200	44.7	<20	0.0020	0.342	2,700	0.539	129
01/21/04	7,461.1	1.01	986,590	44,824	2.57	986,490		0.374	45.0		0.0037	0.346		1.010	130
02/09/04	7,492.3	0.07	991,309	4,719	2.52	991,209	<250	0.005	45.0	7.8	0.0003	0.346	250	0.010	130
02/25/04	7,872.5	0.99	1,048,823	57,514	2.52	1,048,723		0.060	45.1		0.0037	0.350		0.120	130
03/09/04	7,952.6	0.26	1,062,912	14,089	2.93	1,062,812	<250	0.015	45.1	8.6	0.0010	0.351	700	0.082	130
03/23/04	8,285.6	0.99	1,117,340	54,428	2.72	1,117,240		0.057	45.2		0.0039	0.355		0.318	130
04/13/04	8,792.3	1.01	1,191,229	73,889	2.43	1,191,129	<1,000	0.308	45.5	<10	0.0031	0.358	1,900	1.17	131

							·····								
									·····			1			
Site	Hour		Flow Meter	Period	Period Operational	Cumulative	TPHg	<u>TPHg</u> Period	Cumulative	Benzene	<u>Benzene</u> Period	Cumulative	MTBE	<u>MTBE</u> Period	Cumulative
Visit	Meter	Uptime	Reading	Volume	Flow Rate	Volume	Conc.	Removal	Removal	Conc.	Removal	Removal	Conc.	Removal	Removal
(mm/dd/yy)	(hours	optime	(gal)	(gal)	(gpm)	(gal)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)
04/29/04	9,010.2	0.57	1,221,189	29,960	2.29	1,221,089	<u> </u>	0.125	45.6	GF - 7	0.0012	0.359	(FF-2)	0.475	132
05/10/04	9,273.9	1.00	1,256,838	35,649	2.25	1,256,738	<1,000	0.149	45.7	<10	0.0015	0.361	1,600	0.476	132
05/25/04	9,633.5	1.00	1,299,232	42,394	1.96	1,299,132		0.177	45.9		0.0018	0.362		0.566	133
05/28/04	9,633.5	0.00	1,299,232	0	0.00	1,299,132	3,400	0.000	45.9	170	0.0000	0.362	1,200	0.000	133
06/09/04	9,784.0	0.52	1,317,792	18,560	2.06	1,317,692	<1,000	0.077	46.0	<10	0.0008	0.363	1,100	0.170	133
06/22/04	10,092.7	0.99	1,353,124	35,332	1.91	1,353,024		0.147	46.1		0.0015	0.365		0.324	133
07/07/04	10,452.9	1.00	1,392,516	39,392	1.82	1,392,416	<1,000	0.164	46.3	<10	0.0016	0.366	1,100	0.362	134
07/22/04	10,815.9	1.01	1,431,329	38,813	1.78	1,431,229		0.162	46.5		0.0016	0.368		0.356	134
08/03/04	11,101.8	0.99	1,458,993	27,664	1.61	1,458,893	<1,000	0.115	46.6	<10	0.0012	0.369	850	0.196	134
08/18/04	11,462.6	1.00	1,489,829	30,836	1.42	1,489,729		0.129	46.7		0.0013	0.370		0.219	135
08/31/04	11,774.4	1.00	1,509,195	19,366	1.04	1,509,095		0.081	46.8		0.0008	0.371		0.137	135
09/16/04	12,158.3	1.00	1,544,659	35,464	1.54	1,544,559	<250	0.037	46.8	<2.5	0.0004	0.372	480	0.142	135
09/29/04	12,454.1	0.95	1,570,554	25,895	1.46	1,570,454		0.027	46.9		0.0003	0.372		0.104	135
10/12/04	12,764.9	1.00	1,596,571	26,017	1.40	1,596,471	<50	0.005	46.9	<0.50	0.0001	0.372	320	0.069	135
10/29/04	13,155.1	0.96	1,629,213	32,642	1.39	1,629,113		0.007	46.9		0.0001	0.372		0.087	135
11/08/04	13,396.0	1.00	1,650,078	20,865	1.44	1,649,978	<200	0.017	46.9	<2.0	0.0002	0.372	400	0.070	135
11/23/04	13,753.4	0.99	1,681,329	31,251	1.46	1,681,229		0.026	46.9		0.0003	0.372		0.104	135
12/02/04	13,970.7	1.01	1,699,369	18,040	1.38	1,699,269	<250	0.019	46.9	<2.5	0.0002	0.373	530	0.080	135
12/13/04	14,232.5	0.99	1,722,500	23,131	1.47	1,722,400		0.024	47.0		0.0002	0.373		0.102	135
12/27/04	14,569.0	1.00	1,753,347	30,847	1.53	1,753,247		0.032	47.0		0.0003	0.373		0.136	136
01/10/05	14,908.0	1.01	1,791,516	38,169	1.88	1,791,416	<250	0.040	47.0	<2.5	0.0004	0.374	350	0.111	136
01/24/05	15250.0 a	1.02	1,833,667	42,151	2.05	1,833,567		0.044	47.1		0.0004	0.374		0.123	136
02/08/05	15610.0 a	1.00	1,877,563	43,896	2.03	1,877,463	<250	0.046	47.1	<2.5	0.0005	0.374	460	0.168	136
02/22/05	977.7 b	0.99	1,905,770	28,207	1.41	1,905,670		0.029	47.2		0.0003	0.375		0.108	136
03/07/05	981.5	0.01	1,906,415	645	2.83	1,906,315	310	0.002	47.2	8.9	0.0000	0.375	120	0.001	136
03/21/05	1313.8	0.99	1,955,583	49,168	2.47	1,955,483		0.127	47.3		0.0037	0.378		0.049	136
04/13/05	1868.6	1.01 *	2,040,301	84,718	2.55	2,040,201	<250	0.088	47.4	<2.5	0.0009	0.379	350	0.247	136
04/26/05	2178.9	0.99	2,075,269	34,968	1.88	2,075,169		0.036	47.4		0.0004	0.380		0.102	136
07/22/05	2255.0	0.00	2,086,544	11,275	2.47	2,086,444		0.009	47.4		0.0003	0.380		0.051	137
07/29/05	2419.6	0.98	2,088,327	1,783	0.18	2,088,227	<200	0.001	47.4	3.2	0.0000	0.380	540	0.008	137
08/04/05	2562.3	0.99 *	2,090,240	1,913	0.22	2,090,140	86 c	0.001	47.4	1.8	0.0000	0.380	140	0.002	137
08/23/05	3020.5	1.00	2,095,197	4,957	0.18	2,095,097		0.004	47.4		0.0001	0.380		0.006	137
09/16/05	3596.9	1.00	2,101,199	6,003	0.17	2,101,099	77 c	0.004	47.4	1.1	0.0001	0.380	55	0.003	137

2,104,244

3,045

0.15

09/30/05

3932.7

1.00

0.002

2,104,144

0.0000

0.380

47.4

0.001

137

					Period			TPHg			Benzene	····		MTBE	
Site	Hour		Flow Meter	Period	Operational	Cumulative	TPHg	Period	Cumulative	Benzene	Period	Cumulative	MTBE	Period	Cumulative
Visit	Meter	Uptime	Reading	Volume	Flow Rate	Volume	Conc.	Removal	Removal	Conc.	Removal	Removal	Conc.	Removal	Removal
(mm/dd/yy)	(hours		(gal)	(gal)	(gpm)	(gal)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)
10/13/05	4247.0	1.01 *	2,107,078	2,834	0.15	2,106,978	140	0.003	47.4	0.68	0.0000	0.380	26	0.001	137
10/28/05	4603.6	0.99	2,109,993	2,915	0.14	2,109,893		0.003	47.4		0.0000	0.380		0.001	137
11/11/05	4941.6	1.01 *	2,112,924	2,931	0.14	2,112,824	100 c	0.002	47.4	0.86	0.0000	0.380	26	0.001	137
11/23/05	5227.2	0.99	2,115,278	2,354	0.14	2,115,178		0.002	47.4		0.0000	0.380		0.001	137
12/16/05	5779.7	1.00 *	2,120,371	5,093	0.15	2,120,271	92	0.004	47.4	1.0	0.0000	0.380	36	0.002	137
12/30/05	6115.8	1.00	2,125,465	5,094	0.25	2,125,365		0.004	47.4		0.0000	0.380		0.002	137
01/09/06	6358.4	1.01	2,129,968	4,503	0.31	2,129,868	240	0.009	47.5	2.8	0.0001	0.381	180	0.007	137
01/20/06	6620.0	0.99 *	2,134,437	4,469	0.28	2,134,337		0.009	47.5		0.0001	0.381		0.007	137
02/02/06	6930.2	0.99	2,139,637	5,200	0.28	2,139,537	150	0.007	47.5	2.0	0.0001	0.381	140	0.006	137
02/17/06	7289.0	1.00 *	2,145,122	5,485	0.25	2,145,022		0.007	47.5		0.0001	0.381		0.006	137
03/03/06	7626.1	1.00	2,150,516	5,394	0.27	2,150,416	190	0.009	47.5	1.4	0.0001	0.381	91	0.004	137
03/17/06	7963.7	1.00 *	2,153,262	2,746	0.14	2,153,162		0.004	47.5		0.0000	0.381		0.002	137
03/31/06	8299.5	1.00	2,160,188	6,926	0.34	2,160,088		0.011	47.5		0.0001	0.381		0.005	137
04/13/06	8614.7	1.01 *	2,168,040	7,852	0.42	2,167,940	150	0.010	47.5	3.1	0.0002	0.381	250	0.016	137
04/27/06	8949.0	0.99	2,175,853	7,813	0.39	2,175,753		0.010	47.5		0.0002	0.381		0.016	137
05/11/06	9282.4	0.99	2,182,492	6,639	0.33	2,182,392	120	0.007	47.5	1.7	0.0001	0.381	120	0.007	137
05/26/06	9642.0	1.00 *	2,189,098	6,606	0.31	2,188,998		0.007	47.5		0.0001	0.382		0.007	137
06/08/06	9953.6	1.00	2,194,105	5,007	0.27	2,194,005	190	0.008	47.5	0.96	0.0000	0.382	63	0.003	137
06/22/06	10289.9	1.00 *	2,199,001	4,896	0.24	2,198,901		0.008	47.6		0.0000	0.382		0.003	137
07/07/06	10650.1	1.00	2,200,780	1,779	0.08	2,200,680	120	0.002	47.6	1.6	0.0000	0.382	9.9	0.000	137
07/18/06	10762.0	0.42 *	2,202,272	1,492	0.22	2,202,172		0.001	47.6		0.0000	0.382		0.000	137
08/01/06	11105.1	1.02	2,206,401	4,129	0.20	2,206,301	170	0.006	47.6	0.93	0.0000	0.382	20	0.001	137
				Total Extra	acted Volume:	2,202,172	Total Pounds	Removed:	47.6	Total Pounds I	Removed:	0.382	Total Pounds	Removed:	137
		Aver	age Operationa	al Flow Rate:	1.43		Total Gallons	Removed:	7.81	Total Gallons J	Removed:	0.052	Total Gallons	Removed:	22.1

Abbreviations & Notes:

TPHg = Total purgeable hydrocarbons as gasoline MTBE = Methyl tert-butyl ether Conc. = Concentration ppb = Parts per billion, equivalent to $\mu g/L$ $\mu g/L$ = Micrograms per liter L = Liter

gal = Gallon

g = Gram

Mass removed based on the formula: volume extracted (gal) x Concentration (μ g/L) x (g/10⁶ μ g) x (pound/453.6g) x (3.785 L/gal) When constituents are not detected, the concentration is assumed to be equal to half the detection limit in subsequent calculations. Volume removal data based on the formula: mass (pounds) x (density)⁻¹ (cc/g) x 453.6 (g/pound) x (L/1000 cc) * (gal/3.785 L)

			Period				TPHg			Benzene			MTBE		
Site	Hour		Flow Meter	Period	Operational	Cumulative	TPHg	Period	Cumulative	Benzene	Period	Cumulative	MTBE	Period	Cumulative
Visit	Meter	Uptime	Reading	Volume	Flow Rate	Volume	Conc.	Removal	Removal	Conc.	Removal	Removal	Conc.	Removal	Removal
(mm/dd/yy)	(hours		(gal)	(gal)	(gpm)	(gal)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)

Density inputs: TPHg = 0.73 g/cc, benzene = 0.88 g/cc, MTBE = 0.74 g/cc

TPHg, BTEX, and MTBE analyzed by EPA Method 8260B

a. Hour meter value is calculated due to hour meter failure

b. Hour meter replaced on 2/8/05. Initial reading 645.2 hours.

c. Quantity of unknown hydrocarbon(s) in sample is based on gasoline

As of February 1, 2006, gasoline range organics reported as TPHg include MTBE, tertiary-butyl alcohol, and di-isopropyl ether concentrations. TPHg concentrations reported prior to February 1, 2006 may not include one or more of these constituents.

ATTACHMENT A

Blaine Groundwater Monitoring Report and Field Notes

. . .

GROUNDWATER SAMPLING SPECIALISTS SINCE 1985

July 26, 2006

Denis Brown Shell Oil Products US 20945 South Wilmington Avenue Carson, CA 90810

> Second Quarter 2006 Groundwater Monitoring at Shell-branded Service Station 610 Market Street Oakland, CA

Monitoring performed on June 27, 2006

Groundwater Monitoring Report 060627-EM-1

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Shell Martinez Manufacturing Complex.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a fortyhour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses. Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata Project Coordinator

MN/ks

attachments: Cumulative Table of WELL CONCENTRATIONS Certified Analytical Report Field Data Sheet

cc: Anni Kreml Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608

							MTBE	MTBE					Γ	Depth to	GW
Well ID	Date	TPPH	В	Т	Ε	Х	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)						
MW-1	12/17/1998	2,200	20	<10	110	420	<50	NA	NA	NA	NA	NA	21.70	13.71	7.99
MW-1	03/09/1999	4,320	25.8	<10.0	338	474	<100	NA	NA	NA	NA	NA	21.70	13.03	8.67
MW-1	06/16/1999	6,150	107	84.0	615	1,050	<250	NA	NA	NA	NA	NA	21.70	13.82	7.88
MW-1	09/29/1999	3,440	97.3	58.7	433	578	89.1	NA	NA	NA	NA	NA	21.70	14.45	7.25
MW-1	12/22/1999	1,370	34.5	4.38	196	49.1	29.3	NA	NA	NA	NA	NA	21.70	15.39	6.31
MW-1	03/21/2000	2,550	10.3	3.36	164	312	65.6	NA	NA	NA	NA	NA	21.70	11.94	9.76
MW-1	06/20/2000	4,770	64.3	18.6	387	732	51.3	NA	NA	NA	NA	NA	21.70	13.15	8.55
MW-1	09/21/2000	7,490	350	229	690	1,490	160	NA	NA	NA	NA	NA	21.70	13.65	8.05
MW-1	11/30/2000	5,410	420	168	494	1,170	167	NA	NA	NA	NA	NA	21.70	14.20	7.50
MW-1	03/06/2001	965	25.7	9.14	13.3	9.12	<25.0	NA	NA	NA	NA	NA	21.70	12.99	8.71
MW-1	06/28/2001	5,900	190	71	360	910	NA	1 1 0	NA	NA	NA	NA	21.70	13.98	7.72
MW-1	09/12/2001	7,400	240	110	460	1,300	NA	130	NA	NA	NA	NA	21.70	14.15	7.55
MW-1	12/12/2001	1,700	100	30	120	300	NA	98	NA	NA	NA	NA	21.70	13.75	7.95
MW-1	03/08/2002	1,100	63	12	74	83	NA	50	NA	NA	NA	NA	21.70	13.22	8.48
MW-1	06/06/2002	2,300	95	31	130	290	NA	49	NA	NA	NA	NA	21.70	13.57	8.13
MW-1	09/09/2002	3,600	150	44	200	590	NA	54	NA	NA	NA	NA	21.70	14.05	7.65
MW-1	12/12/2002	2,200	130	14	120	310	NA	46	NA	NA	NA	NA	21.70	14.20	7.50
MW-1	02/26/2003	580	30	2.9	25	48	NA	27	NA	NA	NA	NA	21.70	13.57	8.13
MW-1	04/15/2003	NA	NA	NA	NA	NA	21.70	13.67	8.03						
MW-1	06/13/2003	440	18	6.1	33	88	NA	24	NA	NA	NA	NA	21.70	13.85	7.85
MW-1	09/26/2003	54	3.8	0.51	4.7	7.5	NA	11	NA	NA	NA	NA	21.70	14.63	7.07
MW-1	11/24/2003	120	5.6	0.87	8.4	20	NA	17	NA	NA	NA	NA	21.70	14.86	6.84
MW-1	03/01/2004	350	20	3.8	38	100	NA	18	NA	NA	NA	NA	21.70	12.85	8.85
MW-1	06/15/2004	100	1.8	<0.50	2.6	6.1	NA	15	NA	NA	NA	NA	21.70	14.27	7.43
MW-1	09/16/2004	200	20	0.75	7.8	16	NA	27	<2.0	<2.0	<2.0	<5.0	21.70	14.60	7.10
MW-1	12/29/2004	67	1.8	<0.50	1.8	3.5	NA	15	NA	NA	NA	NA	21.70	14.27	7.43
MW-1	02/28/2005	60	1.8	<0.50	1.9	3.6	NA	22	NA	NA	NA	NA	21.70	12.45	9.25
MW-1	03/23/2005	NA	NA	NA	NA	NA	21.70	12.50	9.20						

							MTBE	MTBE				·		Depth to	GW
Well ID	Date	TPPH	В	Т	Ε	Х	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										
		_													
MW-1	_05/18/2005	92	5.3	<0.50	5.4	12	NA	9.7	NA	NA	NA	NA	21.70	12.22	9.48
MW-1	08/16/2005	NA	21.70	13.51	8.19										
MW-1	09/15/2005	210	16	<0.50	4.3	19	NA	19	<2.0	<2.0	<2.0	320	21.70	14.00	7.70
MW-1	10/26/2005	NA	21.70	14.30	7.40										
MW-1	12/13/2005	<50.0	7.55	2.14	2.39	2.73	NA	18.6	NA	NA	NA	NA	21.70	14.27	7.43
MW-1	03/08/2006	<50.0	1.95	<0.500	1.29	2.42	NA	13.6	NA	NA	NA	NA	21.70	12.10	9.60
MW-1	06/27/2006	180	22	1.9	8.0	25	NA	34	NA	NA	NA	NA	21.70	12.70	9.00
MW-2	12/17/1998	<5,000	<50	<50	<50	<50	11,000	NA	NA	NA	NA	NA	19.61	12.07	7.54
MW-2	03/09/1999	<250	5.20	<2.50	<2.50	<2.50	9,870	NA	NA	NA	NA	NA	19.61	11.46	8.15
MW-2	06/16/1999	<50.0	0.569	<0.500	<0.500	<0.500	3,440	NA	NA	NA	NA	NA	19.61	12.26	7.35
MW-2	09/29/1999	58.6	2.51	0.978	<0.500	<0.500	3,930	NA	NA	NA	NA	NA	19.61	12.51	7.10
MW-2	12/22/1999	<2,000	50.4	<20.0	<20.0	<20.0	15,000	NA	NA	NA	NA	NA	19.61	13.40	6.21
MW-2	03/21/2000	<5,000	94.7	<50.0	<50.0	<50.0	13,900	NA	NA	NA	NA	NA	19.61	10.36	9.25
MW-2	06/20/2000	101	5.95	<0.500	<0.500	0.552	7,670	NA	NA	NA	NA	NA	19.61	11.12	8.49
MW-2	09/21/2000	<2,000	<20.0	<20.0	<20.0	<20.0	4,460	NA	NA	NA	NA	NA	19.61	11.95	7.66
MW-2	11/30/2000	81.1	4.46	0.924	0.841	3.23	3,450	NA	NA	NA	NA	NA	19.61	12.48	7.13
MW-2	03/06/2001	<500	183	<5.00	<5.00	<5.00	14,000	NA	NA	NA	NA	NA	19.61	11.10	8.51
MW-2	06/28/2001	<1,000	<10	<10	<10	<10	NA	4,200	NA	NA	NA	NA	19.61	12.40	7.21
MW-2	09/12/2001	<2,000	120	<20	<20	<20	NA	17,000	NA	NA	NA	NA	19.61	12.45	7.16
MW-2	12/12/2001	<1,000	<10	<10	<10	<10	NA	3,000	NA	NA	NA	NA	19.61	12.14	7.47
MW-2	03/08/2002	<250	<2.5	<2.5	<2.5	<2.5	NA	1,100	NA	NA	NA	NA	19.61	11.68	7.93
MW-2	06/06/2002	<500	<5.0	<5.0	<5.0	<5.0	NA	2,000	NA	NA	NA	NA	19.61	11.95	7.66
MW-2	09/09/2002	<200	<2.0	<2.0	<2.0	<2.0	NA	740	NA	NA	NA	NA	19.62	12.38	7.24
MW-2	12/12/2002	<200	<2.0	<2.0	<2.0	<2.0	NA	1,000	NA	NA	NA	NA	19.62	12.40	7.22
MW-2	02/26/2003	<500	<5.0	<5.0	<5.0	<5.0	NA	1,600	NA	NA	NA	NA	19.62	12.69	6.93
MW-2	04/15/2003	NA	19.62	12.81	6.81										
MW-2	06/13/2003	<500	<5.0	<5.0	<5.0	<10	NA	790	NA	NA	NA	NA	19.62	12.65	6.97

							MTBE	MTBE					1	Depth to	GW
Well ID	Date	ТРРН	В	Т	Е	Х	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-2	09/26/2003	<250	<2.5	<2.5	<2.5	<5.0	NA	250	NA	NA	NA	NA	18.20	12.95	5.25
MW-2	11/24/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	87	NA	NA	NA	NA	18.20	12.89	5.31
MW-2	03/01/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	35	NA	NA	NA	NA	18.20	10.08	8.12
MW-2	06/15/2004	66 b	<0.50	<0.50	<0.50	<1.0	NA	110	NA	NA	NA	NA	18.20	12.85	5.35
MW-2	09/16/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	26	<2.0	<2.0	<2.0	<5.0	18.20	12.00	6.20
MW-2	12/29/2004	<50	<0.50	0.73	<0.50	<1.0	NA	43	NA	NA	NA	NA	18.20	11.60	6.60
MW-2	02/28/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.20	9.71	8.49
MW-2	03/23/2005	340 f	3.9	<2.0	<2.0	<4.0	NA	370	NA	NA	NA	NA	18.20	10.10	8.10
MW-2	05/18/2005	<100	4.6	<1.0	<1.0	3.3	NA	160	NA	NA	NA	NA	18.20	10.21	7.99
MW-2	08/16/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.20	10.53	7.67
MW-2	09/15/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	11	<2.0	<2.0	<2.0	520	18.20	11.98	6.22
MW-2	10/26/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.20	11.38	6.82
MW-2	12/13/2005	<50.0	<0.500	1.66	<0.500	<0.500	NA	2.11	NA	NA	NA	NA	18.20	10.71	7.49
MW-2	03/08/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA	NA	NA	NA	18.20	9.50	8.70
MW-2	06/27/2006	<100 m	<1.0 m	<1.0 m	<1.0 m	<1.0 m	NA	9.1 m	NA	NA	NA	NA	18.20	9.73	8.47
MW-3	12/17/1998	30,000	890	110	2,100	4,300	42,000	43,000	NA	NA	NA	NA	19.05	11.65	7.40
MW-3	03/09/1999	22,700	536	<200	1,030	1,510	35,400	38,500	NA	NA	NA	NA	19.05	11.03	8.02
MW-3	06/16/1999	19,300	625	129	805	1,210	42,400	51,600	NA	NA	NA	NA	19.05	11.89	7.16
MW-3	09/29/1999	20,200	727	155	1,000	1,180	84,100	136,000 a	NA	NA	NA	NA	19.05	12.35	6.70
MW-3	12/22/1999	44,500	767	64.4	1,810	2,090	191,000	186,000 a	NA	NA	NA	NA	19.05	13.45	5.60
MW-3	03/21/2000	<25,000	466	<250	727	2,280	126,000	155,000	NA	NA	NA	NA	19.05	10.00	9.05
MW-3	06/20/2000	16,200	1,140	98.8	1,140	1,410	579,000	376,000 a	NA	NA	NA	NA	19.05	11.15	7.90
MW-3	09/21/2000	<50,000	712	<500	520	795	293,000	298,000	NA	NA	NA	NA	19.05	11.58	7.47
MW-3	11/30/2000	18,000	1,050	124	1,120	2,010	543,000a	403,000 a	NA	NA	NA	NA	19.05	12.10	6.95
MW-3	03/06/2001	19,900	1,290	115	1,450	1,760	706,000	149,000	NA	NA	NA	NA	19.05	11.00	8.05
MW-3	06/28/2001	<50,000	1,200	<250	1,100	1,300	NA	610,000	NA	NA	NA	NA	19.05	11.96	7.09
MW-3	09/12/2001	<20,000	430	<200	230	480	NA	390,000	NA	NA	NA	NA	19.05	12.05	7.00

					-		MTBE	МТВЕ	{					Depth to	GW
Well ID	Date	ТРРН	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	• (ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
<u> </u>															
MW-3	10/23/2001	11,000	350	<100	210	440	NA	290,000	NA	NA	NA	NA	19.05	12.62	6.43
MW-3	12/12/2001	<20,000	280	<200	<200	<200	NA	160,000	NA	NA	NA	NA	19.05	11.83	7.22
MW-3	03/08/2002	<20,000	270	<200	<200	<200	NA	340,000	NA	NA	NA	NA	19.05	11.26	7,79
MW-3	06/06/2002	<50,000	290	<250	<250	<250	NA	290,000	NA	NA	NA	NA	19.05	11.50	7.55
MW-3	09/09/2002	<20,000	<200	<200	<200	<200	NA	230,000	NA	NA	NA	NA	19.06	11.92	7.14
MW-3	12/12/2002	<50,000	<200	<200	<200	<500	NA	190,000	NA	NA	NA	NA	19.06	10.95	8.11
MW-3	02/26/2003	<25,000	<250	<250	<250	<250	NA	210,000	NA	NA	NA	NA	19.06	15.01	4.05
MW-3	04/15/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.06	15.12	3.94
MW-3	06/13/2003	<25,000	<250	<250	<250	<500	NA	27,000	NA	NA	NA	NA	19.06	15.25	3.81
MW-3	09/26/2003	<10,000	<100	<100	<100	<200	NA	15,000	NA	NA	NA	NA	18.08	16.65 c	NA
MW-3	11/24/2003	<10,000	<100	<100	<100	<200	NA	9,900	NA	NA	NA	NA	18.08	15.13	2.95
MW-3	03/01/2004	<10,000	<100	<100	<100	<200	NA	8,000	NA	NA	NA	NA	18.08	9.97	8.11
MW-3	06/15/2004	<10,000	<100	<100	<100	<200	NA	6,900	NA	NA	NA	NA	18.08	15.05	3.03
MW-3	09/16/2004	<500	<5.0	<5.0	<5.0	<10	NA	1,000	<20	<20	<20	75	18.08	14.70	3.38
MW-3	12/29/2004	<250	2.8	<2.5	<2.5	<5.0	NA	580	NA	NA	NA	NA	18.08	14.83	3.25
MW-3	02/28/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.08	9.60	8.48
MW-3	03/23/2005	<1,000	<10	<10	<10	<20	NA	1,500	NA	NA	NA	NA	18.08	12.68	5.40
MW-3	05/18/2005	1,200	49	<10	47	<20	NA	3,400	NA	NA	NA	NA	18.08	10.60	7.48
MW-3	08/16/2005	NA	NA	NA	NA	NA	NA	330	NA	NA	NA	NA	18.08	15.22	2.86
MW-3	09/15/2005	<1,000	<10	<10	<10	<20	NA	140	<40	<40	<40	180	18.08	15.30	2.78
MW-3	10/26/2005	NA	NA	NA	NA	NA	NA	48	NA	NA	NA	NA	18.08	15.00	3.08
MW-3	12/13/2005	482	4.56	1.64 h	<0.500	<0.500	NA	72.5	NA	NA	NA	273	18.08	11.18	6.90
MW-3	03/08/2006	627	2.62	<0.500	1.71	1.25	NA	175	NA	NA	NA	483	18.08	14.95	3.13
MW-3	06/27/2006	530	8.3	<2.5	9.5	3.5	NA	100	NA	NA	NA	NA	18.08	14.63	3.45
MW-4	05/13/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10.64	NA
MW-4	05/20/2002	<1,000	<10	<10	<10	<10	NA	4,600	NA	NA	NA	NA	NA	10.64	NA
MW-4	06/06/2002	<1,000	<10	<10	<10	<10	NA	4,800	NA	NA	NA	NA	NA	10.61	NA

							MTBE	MTBE	<u> </u>					Depth to	GW
Well ID	Date	ТРРН	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
			•												
MW-4	09/09/2002	Unable to s	ample	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.03	11.07	6.96
MW-4	09/18/2002	<250	<2.5	<2.5	<2.5	<2.5	NA	1,000	NA	NA	NA	NA	18.03	11.15	6.88
MW-4	12/12/2002	<100	<1.0	<1.0	<1.0	<1.0	NA	370	NA	NA	NA	NA	18.03	11.13	6.90
MW-4	02/26/2003	<50	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	18.03	10.61	7.42
MW-4	04/15/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.03	10.73	7.30
MW-4	06/13/2003	180 b	<0.50	110	<0.50	<1.0	NA	2.3	NA	NA	NA	NA	18.03	10.88	7.15
MW-4	09/26/2003	<5,000	<50	<50	<50	<100	NA	13,000	NA	NA	NA	NA	18.03	11.58	6.45
MW-4	11/24/2003	<13,000	<130	<130	<130	<250	NA	11,000	NA	NA	NA	NA	18.03	11.78	6.25
MW-4	03/01/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	18.03	9.47	8.56
MW-4	06/15/2004	<500	<5.0	<5.0	<5.0	<10	NA	630	NA	NA	NA	NA	18.03	11.38	6.65
MW-4	09/16/2004	<100	<1.0	12	<1.0	<2.0	NA	280	<4.0	<4.0	<4.0	280	18.03	1 1.80	6.23
MW-4	12/29/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	18.03	10.63	7.40
MW-4	02/28/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	18.03	9.20	8.83
MW-4	03/23/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.03	9.43	8.60
MW-4	05/18/2005	1,900	<5.0	<5.0	16	97	NA	910	NA	NA	NA	NA	18.03	9.75	8.28
MW-4	08/16/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.03	10.85	7.18
MW-4	09/15/2005	<2,500	<25	<25	<25	85	NA	5,100	<100	<100	<100	400	18.03	11.30	6.73
MW-4	10/26/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.03	11.45	6.58
MW-4	12/13/2005	3,480	<0.500	1.54 h	<0.500	<0.500	NA	2,490 j	NA	NA	NA	201	18.03	1 1.70	6.33
MW-4	03/08/2006	1,560	<0.500	0.910	<0.500	3.39	NA	0.870	NA	NA	NA	<10.0	18.03	9.25	8.78
MW-4	06/27/2006	75	<0.50	18	<0.50	<0.50	NA	63	NA	NA	NA	<20	18.03	10.12	7.91
	-														
MW-5	05/13/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10.40	NA
MW-5	05/20/2002	<2,500	<25	<25	<25	<25	NA	17,000	NA	NA	NA	NA	NA	10.41	NA
MW-5	06/06/2002	<5,000	<50	<50	<50	<50	NA	15,000	NA	NA	NA	NA	NA	10.36	NA
MW-5	09/09/2002	Unable to s	ample	NA	NA	NA	NA	NA	NA	NA	NA	NA	17.78	10.82	6.96
MW-5	09/18/2002	<2,500	<25	<25	<25	<25	NA	16,000	NA	NA	NA	NA	17.78	10.81	6.97
MW-5	12/12/2002	<2,500	<25	<25	<25	<25	NA	13,000	NA	NA	NA	NA	17.78	10.83	6.95

							MTBE	MTBE						Depth to	GW
Well ID	Date	ТРРН	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)_	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-5	02/26/2003	<2,000	<20	<20	<20	<20	NA	7,500	NA	NA	NA	NA	17.78	10.57	7.21
MW-5	04/15/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	17.78	10.69	7.09
MW-5	06/13/2003	<2,500	<25	<25	<25	<50	NA	4,400	NA	NA	NA	NA	17.78	10.82	6.96
MW-5	09/26/2003	<2,500	<25	<25	<25	<50	NA	4,700	NA	NA	NA	NA	17.78	11.49	6.29
MW-5	11/24/2003	<10,000	<100	<100	<100	<200	NA	7,100	NA	NA	NA	NA	17.78	11.70	6.08
MW-5	03/01/2004	<2,000	<20	<20	<20	<40	NA	2,800	NA	NA	NA	NA	17.78	9.68	8.10
MW-5	06/15/2004	<2,000	<20	<20	<20	<40	NA	2,100	NA	NA	NA	NA	17.78	11.28	6.50
MW-5	09/16/2004	<2,000	<20	<20	<20	<40	NA	2,200	<80	<80	<80	2,800	17.78	11.62	6.16
MW-5	12/29/2004	<2,000	<20	<20	<20	<40	NA	3,700	NA	NA	NA	NA	17.78	11.11	6.67
MW-5	02/28/2005	<200	<2.0	<2.0	<2.0	<4.0	NA	740	NA	NA	NA	NA	17.78	9.50	8.28
MW-5	03/23/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	17.78	9.70	8.08
MW-5	05/18/2005	<50 g	<0.50	<0.50	<0.50	<1.0	NA	180	NA	NA	NA	NA	17.78	9.49	8.29
MW-5	06/17/2005	NA	NA	NA	NA	NA	NA	270	NA	NA	NA	NA	17.78	9.89	7.89
MW-5	07/15/2005	NA	NA	NA	NA	NA	NA	350	NA	NA	NA	NA	17.78	10.20	7.58
MW-5	08/16/2005	NA	NA	NA	NA	NA	NA	270	NA	NA	NA	NA	17.78	10.50	7.28
MW-5	09/15/2005	<250	<2.5	<2.5	<2.5	<5.0	NA	500	<10	<10	<10	670	17.78	10.96	6.82
MW-5	10/26/2005	NA	NA	NA	NA	NA	NA	260	NA	NA	NA	NA	17.78	11.22	6.56
MW-5	12/13/2005	438	<0.500	1.49 h	<0.500	<0.500	NA	167	NA	NA	NA	452	17.78	11.05	6.73
MW-5	03/08/2006	330	<0.500	<0.500	<0.500	<0.500	NA	169	NA	NA	NA	206	17.78	9.30	8.48
MW-5	06/27/2006	<50	<0.50	<0.50	<0.50	<0.50	NA	60	NA	NA	NA	75	17.78	9.83	7.95
							•								
MW-6	03/28/2003	Well inacce	ssible	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.10	NA	NA
MW-6	04/07/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.10	13.80	4.30
MW-6	04/15/2003	14,000	<250	<250	<250	<500	NA	41,000	NA	NA	NA	NA	18.10	15.05	3.05
MW-6	06/13/2003	<10,000	<100	<100	<100	<200	NA	27,000	NA	NA	NA	NA	18.10	14.42	3.68
MW-6	09/26/2003	<5,000	<50	<50	<50	<100	NA	11,000	NA	NA	NA	NA	18.05	18.35 c	NA
MW-6	11/24/2003	<10,000	<100	<100	<100	<200	NA	5,000	NA	NA	NA	NA	18.05	14.68	3.37
MW-6	03/01/2004	<1,000	<10	<10	<10	<20	NA	2,500	NA	NA	NA	NA	18.05	9.84	8.21

	-						MTBE	MTBE						Depth to	GW
Well ID	Date	ТРРН	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	ТВА	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-6	06/15/2004	<1,000	<10	<10	<10	<20	NA	2,800	NA	NA	NA	NA	18.05	14.82	3.23
MW-6	09/16/2004	<1,000	<10	<10	<10	<20	NA	830	<40	<40	<40	610	18.05	14.20	3.85
MW-6	12/29/2004	<200	<2.0	<2.0	<2.0	<4.0	NA	530	NA	NA	NA	NA	18.05	14.78	3.27
MW-6	02/28/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.05	9.58	8.47
MW-6	03/23/2005	290 f	<2.0	<2.0	<2.0	<4.0	NA	590	NA	NA	NA	NA	18.05	14.22	3.83
MW-6	05/18/2005	390	8.7	<0.50	0.93	9.0	NA	68	NA	NA	NA	NA	18.05	9.79	8.26
MW-6	08/16/2005	NA	NA	NA	NA	NA	NA	34	NA	NA	NA	NA	18.05	10.64	7,41
MW-6	09/15/2005	<500	<5.0	<5.0	<5.0	<10	NA	45	<20	<20	<20	21,000 e	18.05	11.83	6.22
MW-6	10/26/2005	NA	NA	NA	NA	NA	NA	31	NA	NA	NA	NA	18.05	11.31	6.74
MW-6	12/13/2005	982	<0.500	1.36 h	<0.500	<0.500	NA	35.1	NA	NA	NA	11,300 i	18.05	11.22	6.83
MW-6	03/08/2006	2,110	<0.500	<0.500	<0.500	<0.500	NA	29.6	NA	NA	NA	21,800	18.05	9.50	8.55
MW-6	06/27/2006	510	<0.50	<0.50	<0.50	<0.50	NA	94	NA	NA	NA	<20	18.05	9.84	8.21
·····														_	
MW-7	03/28/2003	Well inacce	ssible	NA	19.16	NA	NA								
MW-7	04/07/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.16	13.85	5.31
MW-7	04/15/2003	6,000	<100	<100	<100	<200	NA	19,000	NA	NA	NA	NA	19.16	13.95	5.21
MW-7	06/13/2003	<5,000	<50	<50	<50	<100	NA	5,700	NA	NA	NA	NA	19.16	13.92	5.24
MW-7	09/26/2003	<250	<2.5	<2.5	<2.5	<5.0	NA	110	NA	NA	NA	NA	<u>19.</u> 13	13.85	5.28
MW-7	11/24/2003	<50	<0.50	0.59	<0.50	1.7	NA	7.6	NA	NA	NA	NA	19.13	13.99	5.14
MW-7	03/01/2004	67 b	<0.50	<0.50	< 0.50	<1.0	NA	120	NA	NA	NA	NA	19.13	10.85	8.28
MW-7	06/15/2004	120 b	<0.50	<0.50	<0.50	<1.0	NA	89	NA	NA	NA	NA	19.13	13.27	5.86
MW-7	09/16/2004	<500	<5.0	<5.0	<5.0	<10	NA	130	<20	<20	<20	4,700	19.13	12.83	6.30
MW-7	12/29/2004	<500	<5.0	<5.0	<5.0	<10	NA	130	NA	NA	NA	NA	19.13	11.82	7.31
MW-7	02/28/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.13	10.59	8.54
MW-7	03/23/2005	<1,000	<10	<10	<10	<20	NA	16	NA	NA	NA	NA	19.13	11.16	7.97
MW-7	05/18/2005	67 g	<0.50	<0.50	<0.50	<1.0	NA	12	NA	NA	NA	NA	19.13	10.42	8.71
MW-7	08/16/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.13	11.52	7.61

			···				MTBE	MTBE						Depth to	GW
Well ID	Date	ТРРН	В	т	Е	х	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
	<u></u> .	· · · · · · · · · · · · · · · · · · ·				-								·	
MW-7	10/26/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.13	12.23	6.90
MW-7	12/13/2005	1,210	<0.500	<0.500	<0.500	<0.500	NA	19.1	NA	NA	NA	14,600 i	19.13	12.15	6.98
MW-7	03/08/2006	989	<0.500	<0.500	<0.500	<0.500	NA	7.29	NA	NA	NA	14,000	19.13	10.70	8.43
MW-7	06/27/2006	370	<0.50	<0.50	<0.50	<0.50	NA	16	NA	NA	NA	20,000 !	19.13	10.77	8.36
MW-8	03/28/2003	Well inacce	ssible	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.72	NA	NA
MW-8	04/07/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.72	14.13	4.59
MW-8	04/15/2003	890	29	22	15	71	NA	430	NA	NA	NA	NA	18.72	14.10	4.62
MW-8	06/13/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.72	13.94	4.78
MW-8	09/26/2003	<250	55	51	33	140	NA	330	NA	NA	NA	NA	18.71	14.21	4.50
MW-8	11/24/2003	<5,000	<50	<50	<50	<100	NA	5,600	NA	NA	NA	NA	18.71	1 4.16	4.55
MW-8	03/01/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	12	NA	NA	NA	NA	18.71	10.34	8.37
MW-8	06/15/2004	2,800	170	240	140	560	NA	440	NA	NA _	NA	NA	18.71	13.88	4.83
MW-8	09/16/2004	2,500	180	200	120	490	NA	480	<10	<10	<10	260	18.71	13.92	4.79
MW-8	12/29/2004	4,400	360	600	280	1,400	NA	690	NA	NA	NA	NA	18.71	13.44	5.27
MW-8	02/28/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.71	10.15	8.56
MW-8	03/23/2005	2,800	120	190	110	420	NA	300	NA	NA	NA	NA	18.71	13.79	4.92
MW-8	05/18/2005	250	34	3.4	6.6	27	NA	110	NA	NA	NA	NA	18.71	10.85	7.86
MW-8	08/16/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.71	10.95	7.76
MW-8	09/15/2005	460 f	54	21	24	92	NA	250	<4.0	<4.0	<4.0	130	18.71	11.38	7.33
MW-8	10/26/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.71	11.75	6.96
MW-8	12/13/2005	1,180	49.6	4.89 h	15.2	76.0	NA	<u>320 j</u>	NA	NA	NA	1,870	18.71	11.80	6.91
MW-8	03/08/2006	1,040	48.0	1.82	5.07	19.9	NA	271	NA	NA	NA	190	18.71	10.50	8.21
MW-8	06/27/2006	730	80	<2.5	8.6	28	NA	360	NA	NA	NA	500 k	18.71	10.00	8.71
		·													
MW-9	03/28/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.78	11.19	7.59
MW-9	04/15/2003	420	<2.5	<2.5	<2.5	6.3	NA	37	NA	NA	NA	NA	18.78	11.24	7.54
MW-9	06/13/2003	290 b	<0.50	<0.50	<0.50	2.6	NA	34	NA	NA	NA	NA	18.78	11.39	7.39

							MTBE	MTBE]	Depth to	GW
Well ID	Date	тррн	В	Т	Е	Х	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
	-								•				_		
MW-9	09/26/2003	540 b	<0.50	<0.50	<0.50	9.2	NA	21	NA	NA	NA	NA	18.78	12.12	6.66
MW-9	11/24/2003	650 d	<0.50	<0.50	<0.50	6.3	NA	14	NA	NA	NA	NA	18.78	12.30	6.48
MW-9	03/01/2004	 230 d	<0.50	<0.50	<0.50	1.7	NA	7.7	NA	NA	NA	NA	18.78	10.45	8.33
MW-9	06/15/2004	280	<0.50	<0.50	<0.50	1.9	NA	8.3	NA	NA	NA	NA	18.78	11.88	6.90
MW-9	09/16/2004	260	<0.50	<0.50	<0.50	1.5	NA	3.9	<2.0	<2.0	<2.0	<5.0	18.78	12.26	6.52
MW-9	12/29/2004	220	<0.50	<0.50	<0.50	1.2	NA	3.5	NA	NA	NA	NA	18.78	11.76	7.02
MW-9	02/28/2005	140 g	<0.50	<0.50	<0.50	<1.0	NA	1.5	NA	NA	NA	NA	18.78	10.21	8.57
MW-9	03/23/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.78	10.14	8.64
MW-9	05/18/2005	210 g	<0.50	<0.50	<0.50	<1.0	NA	2.8	NA	NA	NA _	NA	18.78	10.21	8.57
MW-9	08/16/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.78	11.25	7.53
MW-9	09/15/2005	230 g	<0.50	<0.50	<0.50	1.1	NA	2.6	<2.0	<2.0	<2.0	<5.0	18.78	11.75	7.03
MW-9	10/26/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.78	11.97	6.81
MW-9	12/13/2005	504	<0.500	<0.500	<0.500	2.53	NA	2.88	NA	NA	NA	NA	18.78	11.92	6.86
MW-9	03/08/2006	205	<0.500	<0.500	<0.500	<0.500	NA	1.45	NA	NA	NA	NA	18.78	10.05	8.73
MW-9	06/27/2006	260	<0.50	<0.50	<0.50	<0.50	NA	1.9	NA	NA	NA	NA	18.78	10.64	8.14

							MTBE	MTBE				·		Depth to	GW
Well ID	Date	ТРРН	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to June 28, 2001, analyzed by EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to June 28, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260B

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260B

TOC = Top of Casing Elevation

GW = Groundwater

ug/L = Parts per billion

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

NA = Not applicable

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										

Notes:

a = Sample was analyzed outside the EPA recommended holding time.

b = Hydrocarbon reported does not match the labaratory standard.

c = Measurement is depth to top of pump; unable to reach water with sounder.

d = Sample contains discrete peaks in addition to gasoline.

e = Estimated value. The concentration exceeded the calibration of analysis.

f = Quantity of unknown hydrocarbon(s) in sample based on gasoline.

g = The concentration reported reflects individual or discrete unidentified peaks not matching a typical fuel pattern.

h = Analyte was detected in the associated Method Blank.

i = Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements.

j = Initial analysis within holding time. Reanalysis for the required dilution or confirmation was past holding time.

k = Sample was originally analyzed within the EPA recommended hold time. Re-analysis for confirmation was performed past the recommended hold time.

I = Sample was originally analyzed within the EPA recommended hold time. Re-analysis for dilution was performed past the recommended hold time.

m = Sample was diluted due to the presence of high levels of non-target analytes resulting in elevated reporting limits.

Wells MW-1, MW-2, and MW-3 surveyed December 9, 1998 by Virgil Chavez Land Surveying of Vallejo, CA.

Wells MW-6 through MW-9 surveyed April 10, 2003 by Virgil Chavez Land Surveying of Vallejo, CA.

Wells MW-2, MW-3, MW-6, MW-7, and MW-8 surveyed September 23, 2003 by Virgil Chavez Land Surveying of Vallejo, CA.

20 July, 2006

Michael Ninokata Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose, CA 95112

RE: 610 Market St., Oakland Work Order: MPG0108

Enclosed are the results of analyses for samples received by the laboratory on 06/28/06 15:47. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Doughs Clark

Douglas Clark For Theresa Allen Project Manager

CA ELAP Certificate # 1210

Page 1 of 21

Blaine Tech Services - San Jose (Shell)	Project: 610 Market St., Oakland	MPG0108
1680 Rogers Avenue	Project Number: 060627	Reported:
San Jose CA, 95112	Project Manager: Michael Ninokata	07/20/06 09:02

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	MPG0108-01	Water	06/27/06 10:35	06/28/06 15:47
MW-2	MPG0108-02	Water	06/27/06 10:15	06/28/06 15:47
MW-4	MPG0108-03	Water	06/27/06 08:55	06/28/06 15:47
MW-5	MPG0108-04	Water	06/27/06 09:10	06/28/06 15:47
MW-6	MPG0108-05	Water	06/27/06 11:30	06/28/06 15:47
MW-7	MPG0108-06	Water	06/27/06 10:50	06/28/06 15:47
MW-8	MPG0108-07	Water	06/27/06 11:10	06/28/06 15:47
MW-9	MPG0108-08	Water	06/27/06 08:35	06/28/06 15:47
MW-3	MPG0108-09	Water	06/27/06 13:05	06/28/06 15:47

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112	Pro Project Nur Project Man	nber: 060	627	t., Oakland kata			МРС) Repo 07/20/00	rted:
Total Purgeable	e Hydrod tAmeric:		•	-	'A LUF	Г)		
1650			gan m	II, CA]
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (MPG0108-01) Water Sampled: 06/27/06 10:35	Received:	06/28/06	15:47	-				
Gasoline Range Organics (C4-C12) 180	50	ug/l	1	6G10029	07/10/06	07/10/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4	99 %	60-1	45	11	"	11	"	
MW-2 (MPG0108-02) Water Sampled: 06/27/06 10:15	Received:	06/2 <mark>8</mark> /06	15:47					R-05
Gasoline Range Organics (C4-C12) ND	100	ug/l	2	6G10029	07/10/06	07/10/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4	100 %	60-1	45	"	"	"	"	
MW-4 (MPG0108-03) Water Sampled: 06/27/06 08:55	Received:	06/28/06	15:47					
Gasoline Range Organics (C4-C12) 75	50	ug/ł	1	6G10029	07/10/06	07/10/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4	100 %	60-1	45	"	"	11	"	
MW-5 (MPG0108-04) Water Sampled: 06/27/06 09:10	Received:	06/28/06	15:47					
Gasoline Range Organics (C4-C12) ND	50	ug/l	1	6G10029	07/10/06	07/11/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4	96 %	60-1	45	"	"	п	"	
MW-6 (MPG0108-05) Water Sampled: 06/27/06 11:30	Received:	06/28/06	15:47					
Gasoline Range Organics (C4-C12) 510	50	ug/l	1	6G10029	07/10/06	07/11/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4	108 %	60-1	45	"	"	11	11	
MW-7 (MPG0108-06) Water Sampled: 06/27/06 10:50	Received:	06/28/06	15:47					
Gasoline Range Organics (C4-C12) 370	50	ug/l	1	6G11004	07/11/06	07/11/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4	94 %	60-1	45	n	ıt	"	11	
MW-8 (MPG0108-07) Water Sampled: 06/27/06 11:10	Received:	06/28/06	15:47					
Gasoline Range Organics (C4-C12) 730	250	ug/l	5	6G11004	07/11/06	07/11/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4	99 %	60-1	145	"	st	11	n	

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112		Project Nur Project Man		MPG0108 Reported: 07/20/06 09:02					
Total	Purgeable	-		•		'A LUF	Т)		
	Test	tAmerica	a - Mo	organ Hi	<u>II, СА</u>				r
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-9 (MPG0108-08) Water Sampled: 06/	27/06 08:35	Received:	06/28/0	6 15:47					
Gasoline Range Organics (C4-C12)	260	50	ug/l	1	6G11004	07/11/06	07/11/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		101 %	60	-145	"	rt	"	"	
MW-3 (MPG0108-09) Water Sampled: 06/	27/06 13:05	Received:	06/28/0	6 15:47					
Gasoline Range Organics (C4-C12)	530	250	ug/l	5	6G11004	07/11/06	07/11/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		98 %	60	-145	"	77	"	"	

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112		MPG0108 Reported: 07/20/06 09:02							
V	latile Organ	nic Com	pounds	by EPA	A Metho	od 8260]	B		
	Tes	- tAmeric:	a - Mor	gan Hi	ll, CA				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (MPG0108-01) Water Sampled	: 06/27/06 10:35	Received:	06/28/06	15:47					
Benzene	22	0.50	ug/l	1	6G10029	07/10/06	07/10/06	EPA 8260B	
Ethylbenzene	8.0	0.50	11	17	"	*1	"	**	
Methyl tert-butyl ether	34	0.50		11	.,	•		le .	
Toluene	1.9	0.50	11	11		н	н	D	
Xylenes (total)	25	0.50	11	11	11	II	N	IF	
Surrogate: 1,2-Dichloroethane-d4		<i>99 %</i>	60-1	45	"	"	11	п	
Surrogale: 4-Bromofluorobenzene		88 % 60-115				п	"	17	
Surrogate: Dibromofluoromethane		95 % 75-130 "				"	11	"	
Surrogate: Toluene-d8		100 % 70-130		n	"	,,	"		
MW-2 (MPG0108-02) Water Sampled	: 06/27/06 10:15	Received:	06/28/06	15:47					R-05
Benzene	ND	1.0	ug/l	2	6G10029	07/10/06	07/10/06	EPA 8260B	
Ethylbenzene	ND	1.0		н	n	н	11	11	
Methyl tert-butyl ether	9.1	1.0	41	*1	6	tı	11	11	
Toluene	ND	1 .0		"	"	"	11	11	
Xylenes (total)	ND	1.0	"	u 		11	"-		
Surrogate: 1,2-Dichloroethane-d4		100 %	60-1	45	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93 %	60-1	15	"	"	"	"	
Surrogate: Dibromofluoromethane		94 %	75-I	30	"	п	"	"	
Surrogate: Toluene-d8		89 %	70-I	30	"	"	"	"	
MW-4 (MPG0108-03) Water Sampled	: 06/27/06 08:55	Received:	06/28/06	15:47					
Benzene	ND	0.50	ug/l	1	6G10029	07/10/06	07/10/06	EPA 8260B	
Toluene	18	0.50	*1		u.	U	*1	tr	
Ethylbenzene	ND	0.50		"	н	11	"	"	
Xylenes (total)	ND	0.50	*1		"	u	"		
Methyl tert-butyl ether	63	0.50	*1	м			"		
tert-Butyl alcohol	ND	20	17	11		"	н 	II	
Surrogate: 1,2-Dichloroethane-d4		100 %	60-1	45	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		84 %	60-1	15	"	"	"	11	
Surrogate: Dibromofluoromethane		99 %	75-1	30	11	"	"	п	
Surrogate: Toluene-d8		98 %	70-1	30	"	"	"	"	

Blaine Tech Services - San Jose (Shell 1680 Rogers Avenue San Jose CA, 95112	hell) Project: 610 Market St., Oakland Project Number: 060627 Project Manager: Michael Ninokata								0108 rted: 6 09:02
·····	Volatile Organ	nic Com	pounds t	y EPA	A Metho	od 8260]	B		
	•	tAmeric	-	-					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-5 (MPG0108-04) Water Sampl	ed: 06/27/06 09:10	Received:	06/28/06 1	5:47					
Benzene Foluene	ND ND	0.50 0.50	ug/l "	1 "	6G10029 "	07/10/06 "	07/11/06 "	EPA 8260B "	
Ethylbenzene Xylenes (total) Methyl tert-butyl ether	ND ND 60	0.50 0.50 0.50	0 0 0	17 19 17	11 11 11	11 12	11 17 11	-	
tert-Butyl alcohol	75	20			п		11		
Surrogate: 1,2-Dichloroethane-d4		96 %	60-14		"	"	"	"	
Surrogate: 4-Bromofluorobenzene Surrogate: Dibromofluoromethane		86 % 92 %	60-11 75-13		"	,,		"	
Surrogate: Dioromojiuoromethane Surrogate: Toluene-d8		92 % 89 %	70-13			"	"	17	
-	ed: 06/27/06 11:30								
Benzene	ND	0.50	ug/l	1	6G10029	07/10/06	07/11/06	EPA 8260B	
Foluene	ND	0.50	"	1	"	"	"	"	
Ethylbenzene	ND	0.50					"		
Xylenes (total)	ND	0.50	11	u		U	н	u	
Methyl tert-butyl ether	94	0.50	11		н	ii	ч	н	
tert-Butyl alcohol	ND	20	11	u	•1	μ	н	u	
Surrogate: 1,2-Dichloroethane-d4		108 %	60-14	5	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91 %	60-11	5	11	"	"	H	
Surrogate: Dibromofluoromethane		108 %	75-13	0	"	"	"	"	
Surrogate: Toluene-d8		106 %	70-13	0	"	"	"	"	
MW-7 (MPG0108-06) Water Sampl	ed: 06/27/06 10:50	Received:	06/28/06 1	5:47					
Benzene	ND	0.50	ug/l	I	6G11004	07/11/06	07/11/06	EPA 8260B	
Toluene	ND	0.50	u,	μ		**		11	
Ethylbenzene	ND	0.50	11	1J	tr	**	ų	"	
Xylenes (total)	ND	0.50	н	u	u		11	"	
Methyl tert-butyl ether	16	0.50	II	11	U	"	II	••	
Surrogate: 1,2-Dichloroethane-d4		94 %	60-14		"	17	"	"	
Surrogate: 4-Bromofluorobenzene		88 %	60-11		"	"	11	"	
Surrogate: Dibromofluoromethane		97 %	75-13		"	"	n	"	
Surrogate: Toluene-d8		91 %	70-13	0	"	"		rt	

Blaine Tech Services - San Jose (S 1680 Rogers Avenue San Jose CA, 95112	(Shell) Project: 610 Market St., Oakland Project Number: 060627 Project Manager: Michael Ninokata								G0108 orted:)6 09:02
, ,	Volatile Organ					nd 8260	B		
	e	Americ	•	•			~		
	==	Reporting		<u> </u>					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 (MPG0108-06RE1) Water	Sampled: 06/27/06 10):50 Recei	ved: 06/2	8/06 15:47	1				HT-RD
tert-Butyl alcohol	20000	800	ug/l	20	6G12004	07/12/06	07/12/06	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		99 %	60-1	45		n	11	"	
Surrogate: 4-Bromofluorobenzene		83 %	60-1	15	n	0	п	"	
Surrogate: Dibromofluoromethane		106 %	75-1	30	"	"	#	"	
Surrogate: Toluene-d8		91 %	70-1	30	"	"	"	"	
MW-8 (MPG0108-07) Water Sar	npled: 06/27/06 11:10	Received:	06/28/06	15:47					
Benzene	80	2.5	ug/l	5	6G11004	07/11/06	07/11/06	EPA 8260B	
Toluene	ND	2.5	11	"	D.	11	n	II.	
Ethylbenzene	8.6	2.5	"	te .	17	11	11	11	
Xylenes (total)	28	2.5	6		11		11	11	
Methyl tert-butyl ether	360	2.5	et	11	11	11	*1	11	
Surrogate: 1,2-Dichloroethane-d4		99 %	60-1	45	"	"	"		
Surrogate: 4-Bromofluorobenzene		92 %	60-1	15	"	"	"	"	
Surrogate: Dibromofluoromethane		101 % 75-130		"	11	"	"		
Surrogate: Toluene-d8		89 %	70-1	30	"	n	"	"	
MW-8 (MPG0108-07RE1) Water	Sampled: 06/27/06 11	:10 Recei	ved: 06/2	8/06 15:47	7				HT-RC
tert-Butyl alcohol	500	100	ug/l	5	6G13003	07/13/06	07/13/06	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		100 %	60-1	45	11	"	"	"	
Surrogate: 4-Bromofluorobenzene		88 %	60-1	15	n	"	п	"	
Surrogate: Dibromofluoromethane		104 %	75-1	30	11	"	u	п	
Surrogate: Toluene-d8		88 %	70-1	30	11	"	п	"	
MW-9 (MPG0108-08) Water Sai	npled: 06/27/06 08:35	Received:	06/28/06	15:47					
Benzene	ND	0.50	ug/l	1	6G11004	07/11/06	07/11/06	EPA 8260B	
Ethylbenzene	ND	0.50	u	"	14	11	11	u	
Methyl tert-butyl ether	1.9	0.50	II	"	"	"	11	11	
Toluene	ND	0.50	II	**		"	n	u.	
Xylenes (total)	ND	0.50	Ш	11	18	*1	n	H	
Surrogate: 1,2-Dichloroethane-d4		101 %	60-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87 %	60-1		"	"	"	"	
Surrogate: Dibromofluoromethane		102 %	75-1		**	п	"	"	
Surrogate: Toluene-d8		94 %	70-1	30	"	"	"	"	

Blaine Tech Services - San Jose (Shell)	Project: 610 Market St., Oakland	MPG0108
1680 Rogers Avenue	Project Number: 060627	Reported:
San Jose CA, 95112	Project Manager: Michael Ninokata	07/20/06 09:02

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6G10029 - EPA 5030B P/T / L	UFT GCMS									
Blank (6G10029-BLK1)				Prepared	& Analyz	ed: 07/10/	06			
Gasoline Range Organics (C4-C12)	ND	50	ug/l							
Surrogate: 1,2-Dichloroethane-d4	2.50		"	2.50		100	60-145			
Laboratory Control Sample (6G10029-B	IS1)			Prepared	& Analyze	ed: 07/10/	06			
Gasoline Range Organics (C4-C12)	461	50	ug/l	440		105	75-140			
Surrogate: 1,2-Dichloroethane-d4	2.28		"	2.50		91	60-145		* *	
Matrix Spike (6G10029-MS1)	Source: M	PF1006-01		Prepared	& Analyze	ed: 07/10/	06			
Gasoline Range Organics (C4-C12)	1840	50	ug/l	440	1300	123	75-140			
Surrogate: 1,2-Dichloroethane-d4	2.34		"	2.50		94	60-145			
Matrix Spike Dup (6G10029-MSD1)	Source: M	PF1006-01		Prepared & Analyzed: 07/10/06						
Gasoline Range Organics (C4-C12)	1760	50	ug/l	440	1300	105	75-140	4	20	
Surrogate: 1,2-Dichloroethane-d4	2.26		"	2.50	•	90	60-145			
Batch 6G11004 - EPA 5030B P/T / L	UFT GCMS									
Blank (6G11004-BLK1)				Prepared & Analyzed: 07/11/06						
Gasoline Range Organics (C4-C12)	ND	50	ug/l							
Surrogate: 1,2-Dichloroethane-d4	2.43		п	2.50		97	60-145			
Laboratory Control Sample (6G11004-B	IS1)			Prepared & Analyzed: 07/11/06						
Gasoline Range Organics (C4-C12)	515	50	ug/l	440		117	75-140			
Surrogate: 1,2-Dichloroethane-d4	2.38		"	2.50		95	60-145			
Matrix Spike (6G11004-MS1)	Source: M	PG0109-01		Prepared & Analyzed: 07/11/06						
Gasoline Range Organics (C4-C12)	90500	5000	ug/l	44000	46000	101	75-140			
Surrogate: 1,2-Dichloroethane-d4	2.40		Ħ	2.50		96	60-145			

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

,,

0

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112		Project Nur Project Man	nber: 060	0627	t., Oakland kata			MPG(Repor 07/20/06	ted:
	olatile Organ Test	iic Comp tAmeric:	•	•		od 8260]	B		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (MPG0108-09) Water Sampled	: 06/27/06 13:05	Received:	06/28/06	5 15:47					
Benzene Ethylbenzene Methyl tert-butyl ether Toluene Xylenes (total)	8.3 9.5 100 ND 3.5	2.5 2.5 2.5 2.5 2.5	ug/1 " "	5 " "	6G11004 " "	07/11/06 " " "	07/11/06 " " "	EPA 8260B " " "	
Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene		98 % 90 %		145 115	11 11	11 11	17 14	11 11	

75-130

70-130

11

"

,,

,,

"

100 %

92 %

Blaine Tech Services - San Jose (Shell)	Project: 610 Market St., Oakland	MPG0108
1680 Rogers Avenue	Project Number: 060627	Reported:
San Jose CA, 95112	Project Manager: Michael Ninokata	07/20/06 09:02

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6G11004 - EPA 5030B P/T / L	UFT GCMS									
Matrix Spike Dup (6G11004-MSD1)	Source: Ml	PG0109-01		Prepared	& Analyze	d: 07/11/	06			
Matrix Spike Dup (6G11004-MSD1) Gasoline Range Organics (C4-C12)	Source: MI 92800	PG0109-01 5000	ug/l	Prepared 44000	& Analyze 46000	ed: 07/11/0 106	06 75-140	3	20	

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112 Project: 610 Market St., Oakland Project Number: 060627 Project Manager: Michael Ninokata MPG0108 Reported: 07/20/06 09:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

	D1:	Reporting	11-2	Spike Lavel	Source	0/DEC	%REC	רותם	RPD Limit	NT-+
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6G10029 - EPA 5030B P/T /]	EP <u>A 8260B</u>									
Blank (6G10029-BLK1)				Prepared a	& Analyze	ed: 07/10/0)6			
Benzene	ND	0.50	ug/l							
Tolucne	NĎ	0.50	"							
Ethylbenzene	ND	0.50	"							
Xylenes (total)	ND	0.50	n							
Methyl tert-butyl ether	ND	0.50								
Di-isopropyl ether	ND	0.50	11							
Ethyl tert-butyl ether	ND	0.50	11							
Benzene	ND	0.50								
tert-Amyl methyl ether	ND	0.50	11							
tert-Butyl alcohol	ND	20	n							
1,2-Dichloroethane	ND	0.50								
1,2-Dibromoethane (EDB)	ND	0.50								
Ethanol	ND	100	н							
Ethylbenzene	ND	0.50	н							
Methyl tert-butyl ether	ND	0.50	н							
Toluene	ND	0.50	н							
Xylenes (total)	ND	0.50	н							
Surrogate: 1,2-Dichloroethane-d4	2.50		"	2.50		100	60-145			
Surrogate: 1,2-Dichloroethane-d4	2.50		п	2.50		100	60-145			
Surrogate: 4-Bromofluorobenzene	2.22		11	2.50		<i>89</i>	60-115			
Surrogate: 4-Bromofluorobenzene	2.22		11	2.50		89	60-115			
Surrogate: Dibromofluoromethane	2.28		n	2.50		91	75-130			
Surrogate: Dibromofluoromethane	2.28		17	2.50		91	75-130			
Surrogate: Toluene-d8	2.50		"	2.50		100	70-130			
Surrogate: Toluene-d8	2.50		"	2.50		100	70-130			
Laboratory Control Sample (6G10029-	BS1)			Prepared	& Analyze	d: 07/10/0	06			.
Benzene	5.37	0.50	ug/l	5.16		104	70-125			
Toluene	38.3	0.50	н	37.2		103	70-120			
Ethylbenzene	6.83	0.50		7.54		91	80-130			
Xylenes (total)	40.0	0.50	"	41.2		97	85-125			
Methyl tert-butyl ether	8.42	0.50	н	7.02		120	50-140			
Di-isopropyl ether	15.I	0.50	"	15.1		100	70-130			
Ethyl tert-butyl ether	14.7	0.50		15.0		98	65-130			
Benzene	5.37	0.50	**	5.16		104	70-125			
tert-Amyl methyl ether	15.3	0.50	0	15.0		102	65-135			

TestAmerica - Morgan Hill, CA

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112 Project: 610 Market St., Oakland Project Number: 060627 Project Manager: Michael Ninokata MPG0108 Reported: 07/20/06 09:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	rpd	RPD Limit	Notes
Batch 6G10029 - EPA 5030B P/T / I	EPA 8260B									
- Laboratory Control Sample (6G10029-1	BS1)			Prepared &	& Analyze	d: 07/10/0)6			
tert-Butyl alcohoi	160	20	ug/l	143		112	60-135			
1,2-Dichloroethane	15.7	0.50	11	14.7		107	75-125			
1,2-Dibromoethane (EDB)	16.3	0.50	n	14.9		109	85-125			
Ethanol	131	100	11	142		92	15-150			
Ethylbenzene	6.83	0.50	11	7.54		91	80-130			
Methyl tert-butyl ether	8.42	0.50	11	7.02		120	50-140			
Toluene	38.3	0.50	п	37.2		103	70-120			
Xylenes (total)	40.0	0.50	11	41.2		97	85-125			
Surrogate: 1,2-Dichloroethane-d4	2.28	·	"	2.50		91	60-145			
Surrogate: 1,2-Dichloroethane-d4	2.28		"	2.50		91	60-145			
Surrogate: 4-Bromofluorobenzene	2.21		"	2.50		88	60-115			
Surrogate: 4-Bromofluorobenzene	2.21		"	2.50		88	60-115			
Surrogate: Dibromofluoromethane	2.36		"	2.50		94	75-130			
Surrogate: Dibromofluoromethane	2.36		"	2.50		94	75-130			
Surrogate: Toluene-d8	2.45		"	2.50		98	70-130			
Surrogate: Toluene-d8	2.45		"	2.50		98	70-130			
Matrix Spike (6G10029-MS1)	Source: MP	'F1006-01		Prepared &	& Analyze	d: 07/10/0)6			
Benzene	15.8	0.50	ug/l	5.16	10	112	70-125			
Toluene	41.6	0.50	"	37.2	0.34	111	70-120			
Ethylbenzene	20.6	0.50	11	7.54	14	88	80-130			
Xylenes (total)	48.0	0.50	"	41.2	4.4	106	85-125			
Methyl tert-butyl ether	8.96	0.50	11	7.02	1.6	105	50-140			
Di-isopropyl ether	15.6	0.50	11	15.1	ND	103	70-130			
Ethyl tert-butyl ether	15.4	0.50	"	15.0	ND	103	65-130			
Велzене	15.8	0.50	11	5.16	10	112	70-125			
tert-Amyl methyl ether	16.6	0.50	*1	15.0	ND	111	65-135			
tert-Butyl alcohol	173	20	"	143	ND	121	60-135			
1,2-Dichloroethane	17.4	0.50	H	14.7	ND	118	75-125			
1,2-Dibromoethane (EDB)	16.8	0.50	"	14.9	ND	113	85-125			
Ethanol	178	100	"	142	ND	125	15-150			
Ethylbenzene	20.6	0.50	4	7.54	14	88	80-130			
Methyl tert-butyl ether	8.96	0.50	"	7.02	1.6	105	50-140			
Toluene	41.6	0.50	•	37.2	0.34	111	70-120			
Xylenes (total)	48.0	0.50	11	41.2	4.4	106	85-125			
Surrogate: 1,2-Dichloroethane-d4	2.34		#	2.50		94	60-145			

TestAmerica - Morgan Hill, CA

Blaine Tech Services - San Jose (Shell)Project:610 Market St., OaklandMPG01081680 Rogers AvenueProject Number:060627Reported:San Jose CA, 95112Project Manager:Michael Ninokata07/20/06 09:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6G10029 - EPA 5030B P/T / E	PA 8260B									
Matrix Spike (6G10029-MS1)	Source: M	PF1006-01		Prepared	& Analyze	ed: 07/10/	06			
Surrogate: 1,2-Dichloroethane-d4	2.34		ug/l	2.50		94	60-145			
Surrogate: 4-Bromofluorobenzene	2.28		"	2.50		91	60-115			
Surrogate: 4-Bromofluorobenzene	2.28		"	2.50		91	60-115			
Surrogate: Dibromofluoromethane	2.43		"	2.50		97	75-130			
Surrogate: Dibromofluoromethane	2.43		"	2.50		97	75-130			
Surrogate: Toluene-d8	2.51		"	2.50		100	70-130			
Surrogate: Toluene-d8	2.51		"	2.50		100	70-130			
Matrix Spike Dup (6G10029-MSD1)	Source: M	Source: MPF1006-01 Prepared & Analyzed: 07/10/06								
Benzene	14.7	0.50	ug/l	5.16	10	91	70-125	7	15	
Toluene	43.2	0.50	н	37.2	0.34	115	70-120	4	15	
Ethylbenzene	21.8	0.50		7.54	14	103	80-130	6	15	
Xylenes (total)	49.8	0.50		41.2	4.4	110	85-125	4	15	
Methyl tert-butyl ether	9.82	0.50	•	7.02	1.6	117	50-140	9	25	
Di-isopropyl ether	16.4	0.50	41	15.1	ND	109	70-130	5	35	
Ethyl tert-butyl ether	16.7	0.50	"	15.0	ND	111	65-130	8	35	
Benzene	14.7	0.50	.,	5.16	10	91	70-125	7	15	
tert-Amyl methyl ether	17.1	0.50	"	15.0	ND	114	65-135	3	25	
tert-Butyi alcohol	175	20	"	143	ND	122	60-135	1	35	
1,2-Dichlorocthane	16.6	0.50	*1	14.7	ND	113	75-125	5	10	
1,2-Dibromocthanc (EDB)	17.2	0.50	"	14.9	ND	115	85-125	2	15	
Ethanol	185	100		142	ND	130	15-150	4	35	
Ethylbenzene	21.8	0.50	11	7.54	14	103	80-130	6	15	
Methyl tert-butyl ether	9.82	0.50	*1	7.02	1.6	117	50-140	9	25	
Toluenc	43.2	0.50	**	37.2	0.34	115	70-120	4	15	
Xylenes (total)	49.8	0.50	"	41.2	4.4	110	85-125	4	15	
Surrogate: 1,2-Dichloroethane-d4	2.26		"	2.50		90	60-145			
Surrogate: 1,2-Dichloroethane-d4	2.26		"	2.50		90	60-145			
Surrogate: 4-Bromofluorobenzene	2.41		"	2.50		96	60-115			
Surrogate: 4-Bromofluorobenzene	2.41		"	2.50		96	60-115			
Surrogate: Dibromofluoromethane	2.40		"	2.50		96	75-130			
Surrogate: Dibromofluoromethane	2.40		"	2.50		96	75-130			
Surrogate: Toluene-d8	2.58		"	2.50		103	70-130			
Surrogate: Toluene-d8	2.58		"	2.50		103	70-130			

TestAmerica - Morgan Hill, CA

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112 Project: 610 Market St., Oakland Project Number: 060627 Project Manager: Michael Ninokata MPG0108 Reported: 07/20/06 09:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

							· • · ·			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			OING		Iteaut	701CEC			Luur	110103
Batch 6G11004 - EPA 5030B P/T / E	CPA 8260B									
Blank (6G11004-BLK1)				Prepared	& Analyze	ed: 07/11/0	06			
Benzene	ND	0.50	ug/l							
Toluene	ND	0.50	11							
Ethylbenzene	ND	0.50	11							
Xylencs (total)	ND	0.50	11							
Methyl tert-butyl ether	ND	0.50	11							
Di-isopropyl ether	ND	0.50	11							
Ethyl tert-butyl ether	ND	0.50	11							
Benzene	ND	0.50								
tert-Amyl methyl ether	ND	0.50	11							
tert-Butyl alcohol	ND	20	н							
1,2-Dichloroethane	ND	0.50	н							
1,2-Dibromoethane (EDB)	ND	0.50	н							
Ethanol	ND	100	н							
Ethylbenzene	ND	0.50	н							
Methyl tert-butyl ether	ND	0.50								
Toluene	ND	0.50	n							
Xylenes (total)	ND	0.50	п							
Surrogate: 1,2-Dichloroethane-d4	2.43		"	2.50	··* +	97	60-145			
Surrogate: 1,2-Dichloroethane-d4	2.43		п	2.50		97	60-145			
Surrogate: 4-Bromofluorobenzene	2.29		"	2.50		<i>92</i>	60-115			
Surrogate: 4-Bromofluorobenzene	2.29		1	2.50		<i>92</i>	60-115			
Surrogate: Dibromofluoromethane	2,49		"	2.50		100	75-130			
Surrogate: Dibromofluoromethane	2.49		"	2.50		100	75-130			
Surrogate: Toluene-d8	2.28		11	2.50		91	70-130			
Surrogate: Toluene-d8	2.28		11	2.50		91	70-130			
Laboratory Control Sample (6G11004-E	SS1)			Prepared	& Analyze	ed: 07/11/0	06			
Benzene	5.13	0.50	ug/l	5.16		99	70-125			
Toluene	36.4	0.50		37.2		98	70-120			
Ethylbenzene	7.84	0.50	п	7.54		104	80-130			
Xylenes (total)	45.2	0.50		41.2		110	85-125			
Methyl tert-butyl ether	8.64	0.50	п	7.02		123	50-140			
Di-isopropyl ether	15.8	0.50	н	15.1		105	70-130			
Ethyl tert-butyl ether	15.2	0.50	н	15.0		101	65-130			
Benzene	5.13	0.50		5.16		99	70-125			
tert-Amyl methyl ether	15.3	0.50	п	15.0		102	65-135			

TestAmerica - Morgan Hill, CA

Blaine Tech Services - San Jose (Shell)Project:610 Market St., OaklandMPG01081680 Rogers AvenueProject Number:060627Reported:San Jose CA, 95112Project Manager:Michael Ninokata07/20/06 09:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

		Reporting	TT-'	Spike	Source	WREC	%REC	DDD	RPD	Nat
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6G11004 - EPA 5030B P/T	/ EPA 8260B									
Laboratory Control Sample (6G11004	I-BS1)			Prepared a	& Analyze	ed: 07/11/	06			
tert-Butyl alcohol	143	20	ug/l	143		100	60-135			
1,2-Dichloroethane	14.8	0.50	.,	14.7		101	75-125			
1,2-Dibromoethane (EDB)	15.2	0.50	11	14.9		102	85-125			
Ethanol	155	100	11	142		109	15-150			
Ethylbenzene	7.84	0.50	11	7.54		104	80-130			
Methyl tert-butyl ether	8.64	0.50	17	7.02		123	50-140			
Toluene	36.4	0.50		37.2		98	70-120			
Xylenes (total)	45.2	0.50	4	41.2		110	85-125			
Surrogate: 1,2-Dichloroethane-d4	2.38		"	2.50		95	60-145			
Surrogate: 1,2-Dichloroethane-d4	2.38		rt.	2.50		95	60-145			
Surrogate: 4-Bromofluorobenzene	2.43		"	2.50		97	60-115			
Surrogate: 4-Bromofluorobenzene	2.43		"	2.50		97	60-115			
Surrogate: Dibromofluoromethane	2.44		"	2.50		<i>98</i>	75-130			
Surrogate: Dibromofluoromethane	2.44		"	2.50		<i>98</i>	75-130			
Surrogate: Toluene-d8	2.33		"	2.50		93	70-130			
Surrogate: Toluene-d8	2.33		"	2.50		93	70-130			
Matrix Spike (6G11004-MS1)	Source: M	PG0109-01		Prepared	& Analyze	ed: 07/11/	06			
Benzene	1660	50	ug/l	516	1200	89	70-125			
Toluene	5500	50	**	3720	1900	97	70-120			
Ethylbenzene	1860	50	"	754	1100	101	80-130			
Xylenes (total)	11300	50		4120	7100	102	85-125			
Methyl tert-butyl ether	831	50	ч	702	ND	118	50-140			
Di-isopropyl ether	1520	50	*1	1510	ND	101	70-130			
Ethyl tert-butyl ether	1460	50	11	1500	ND	97	65-130			
Benzene	1660	50	11	516	1200	89	70-125			
tert-Amyl methyl ether	1520	50	11	1500	ND	101	65-135			
tert-Butyl alcohol	15300	2000	н	14300	ND	107	60-135			
1,2-Dichloroethane	1430	50	u.	1470	ND	97	75-125			
1,2-Dibromoethane (EDB)	1520	50		1490	ND	102	85-125			
Ethanol	19100	10000		14200	ND	135	15-150			
Ethylbenzene	1860	50	н	754	1100	101	80-130			
Methyl tert-butyl ether	831	50	"	702	ND	118	50-140			
Toluene	5500	50	"	3720	1900	97	70-120			
Xylenes (total)	11300	50	n	4120	7100	102	85-125			
Surrogate: 1,2-Dichloroethane-d4	2.40		"	2.50		96	60-145			

TestAmerica - Morgan Hill, CA

Blaine Tech Services - San Jose (Shell)	Project: 610 Market St., Oakland Project Number: 060627	MPG0108 Reported:
1680 Rogers Avenue San Jose CA, 95112	Project Manager: Michael Ninokata	07/20/06 09:02

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6G11004 - EPA 5030B P/T / E	CPA 8260B									
Matrix Spike (6G11004-MS1)	Source: MI	PG0109-01		Prepared	& Analyz	ed: 07/11/	06			
Surrogate: 1,2-Dichloroethane-d4	2.40		ug/l	2.50		96	60-145			_
Surrogate: 4-Bromofluorobenzene	2.40		"	2.50		96	60-115			
Surrogate: 4-Bromofluorobenzene	2.40		"	2.50		96	60-115			
Surrogate: Dibromofluoromethane	2.44		"	2.50		98	75- 130			
Surrogate: Dibromofluoromethane	2.44		"	2.50		98	75-130			
Surrogate: Toluene-d8	2.38		"	2.50		95	70-130			
Surrogate: Toluene-d8	2.38		11	2.50		95	70-130			
Matrix Spike Dup (6G11004-MSD1)	Source: MPG0109-01			Prepared	& Analyz	ed: 07/11/	06			
Benzene	1700	50	ug/l	516	1200	97	70-125	2	15	
Toluene	5710	50		3720	1900	102	70-120	4	15	
Ethylbenzene	1930	50		754	1100	110	80-130	4	15	
Xylenes (total)	11600	50		4120	7100	109	85-125	3	15	
Methyl tert-butyl ether	732	50	•	702	ND	104	50-140	13	25	
Di-isopropyl ether	1620	50	"	1510	ND	107	70-130	6	35	
Benzene	1700	50	"	516	1200	97	70-125	2	15	
Ethyl tert-butyl ether	1540	50		1500	ND	103	65-130	5	35	
tert-Amyl methyl ether	1630	50	17	1500	ND	109	65-135	7	25	
tert-Butyl alcohol	16000	2000	11	14300	ND	112	60-135	4	35	
1,2-Dichloroethane	1400	50	"	1470	ND	95	75-125	2	10	
1,2-Dibromoethane (EDB)	1580	50	11	1490	ND	106	85-125	4	15	
Ethanol	23300	10000	н	14200	ND	164	15-150	20	35	QM0
Ethylbenzene	1930	50		754	1100	110	80-130	4	15	
Methyl tert-butyl cther	732	50	u	702	ND	104	50-140	13	25	
Toluene	5710	50		3720	1900	102	70-120	4	15	
Xylenes (total)	11600	50	11	4120	7100	109	85-125	3	15	
Surrogate: 1,2-Dichloroethane-d4	2.33		11	2.50		93	60-145			
Surrogate: 1,2-Dichloroethane-d4	2.33		"	2.50		93	60-145			
Surrogate: 4-Bromofluorobenzene	2.50		п	2.50		100	60-115			
Surrogate: 4-Bromofluorobenzene	2.50		п	2.50		100	60-115			
Surrogate: Dibromofluoromethane	2.33		rt.	2.50		9 3	75-130			
Surrogate: Dibromofluoromethane	2.33		и	2.50		93	75-130			
Surrogate: Toluene-d8	2.45		"	2.50		<i>98</i>	70-130			
Surrogate: Toluene-d8	2.45		"	2.50		98	70-130			

TestAmerica - Morgan Hill, CA

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112 Project: 610 Market St., Oakland Project Number: 060627 Project Manager: Michael Ninokata MPG0108 Reported: 07/20/06 09:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6G12004 - EPA 5030B P/T / 1	EPA 8260B									
Blank (6G12004-BLK1)				Prepared	& Analyze	ed: 07/12/	06			
Benzene	ND	1.0	ug/l							
Toluenc	ND	1.0	•1							
Ethylbenzene	ND	0.1	n							
Xylenes (total)	ND	1.0	"							
Methyl tert-butyl ether	ND	1.0	•1							
Di-isopropyl ether	ND	1.0	*1							
Ethyl tert-butyl ether	ND	1.0								
tert-Amyl methyl ether	ND	1.0	*1							
tert-Butyl alcohol	ND	40								
1,2-Dichloroethane	ND	1.0	11							
1,2-Dibromoethane (EDB)	ND	1.0	91							
Ethanol	ND	200	41							
Surrogate: 1,2-Dichloroethane-d4	2.36		"	2.50		94	60-145			
Surrogate: 4-Bromofluorobenzene	2.24		"	2.50		90	60-115			
Surrogate: Dibromofluoromethane	2.45		"	2.50		98	75-130			
Surrogate: Toluene-d8	2.34		"	2.50		94	70-130			
Laboratory Control Sample (6G12004-	BS1)			Prepared a	& Analyze	ed: 07/12/	06			
Benzene	9.85	1.0	ug/l	10.0		98	70-125			
Tolucne	9.87	1.0	"	10.0		99	70-120			
Ethylbenzene	10.8	1.0	11	10.0		108	80-130			
Xylenes (total)	32.6	1.0	11	30.0		109	85-125			
Methyl tert-butyl ether	11.1	1.0	41	10.0		111	50-140			
Di-isopropyl ether	10.6	1.0	11	10.0		106	70-130			
Ethyl tert-butyl ether	9.38	1.0	11	10.0		94	65-130			
tert-Amyl methyl ether	9.69	1.0	"	10.0		97	65-135			
tert-Butyl alcohol	191	40	11	200		96	60-135			
1,2-Dichloroethane	8.45	1.0	"	10.0		84	75-125			
1,2-Dibromoethane (EDB)	9.58	1.0	11	10.0		96	85-125			
Ethanol	254	200	11	200		127	15-150			
Surrogate: 1,2-Dichloroethane-d4	2.13		"	2.50		85	60-145			
Surrogate: 4-Bromofluorobenzene	2.42		"	2.50		97	60-115			
Surrogate: Dibromofluoromethane	2.37		"	2.50		95	75-130			
Surrogate: Toluene-d8	2.53		rt	2.50		101	70-130			

TestAmerica - Morgan Hill, CA

·			
Blaine Tech Services - San Jose (Shell)	Project:	610 Market St., Oakland	MPG0108
1680 Rogers Avenue	Project Number:	060627	Reported:
San Jose CA, 95112	Project Manager:	Michael Ninokata	07/20/06 09:02

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6G12004 - EPA 5030B P/T	EPA 8260B									
Laboratory Control Sample Dup (6G)	12004-BSD1)			Prepared	& Analyze	ed: 07/12/	06			
Benzene	22.4	1.0	ug/l	20.0		112	70-125	78	15	QC2
Toluene	23.8	1.0		20.0		119	70-120	83	15	QC2
Ethylbenzene	24.0	1.0		20.0		120	80-130	76	15	QC2
Xylencs (total)	73.8	1.0	"	60.0		123	85-125	77	15	QC2
Methyl tert-butyl ether	22.3	1.0		20.0		112	50-140	67	25	QC2
Di-isopropyl ether	24.0	1.0		20.0		120	70-130	77	35	QC2
Ethyl tert-butyl ether	21.3	1.0		20.0		106	65-130	78	35	QC2
tert-Amyl methyl ether	22.4	1.0		20.0		112	65-135	79	25	QC2
tert-Butyl alcohol	404	40		400		101	60-135	72	35	QC2
1,2-Dichloroethane	20.7	1.0		20.0		104	75-125	84	10	QC2
1,2-Dibromoethane (EDB)	22.4	1.0	.,	20.0		112	85-125	80	15	QC2
Ethanol	506	200	•1	400		126	15-150	66	35	QC2
Surrogate: 1,2-Dichloroethane-d4	2.45		"	2.50		98	60-145			
Surrogate: 4-Bromofluorobenzene	2.40		"	2.50		96	60-115			
Surrogate: Dibromofluoromethane	2.58		"	2.50		103	75-130			
Surrogate: Toluene-d8	2.82		"	2.50		113	70-130			

Batch 6G13003 - EPA 5030B P/T / EPA 8260B

Blank (6G13003-BLK1)				Prepared & An	alyzed: 07/13/	'06	
Benzene	ND	0.50	ug/l				
Toluene	ND	0.50	н				
Ethylbenzene	ND	0.50					
Xylenes (total)	ND	0.50	н				
Methyl tert-butyl ether	ND	0.50	н				
Di-isopropyl ether	ND	0.50					
Ethyl tert-butyl ether	ND	0.50	u.				
tert-Amyl methyl ether	ND	0.50	17				
tert-Butyl alcohol	ND	20					
1,2-Dichloroethane	ND	0.50	17				
1,2-Dibromoethane (EDB)	ND	0.50					
Ethanol	ND	100					
Surrogate: 1,2-Dichloroethane-d4	2.40		17	2.50	96	60-145	
Surrogate: 4-Bromofluorobenzene	2.14		"	2.50	86	60-115	
Surrogate: Dibromofluoromethane	2.51		"	2.50	100	75-130	
Surrogate: Toluene-d8	2.27			2.50	91	70-130	

TestAmerica - Morgan Hill, CA

Blaine Tech Services - San Jose (Shell)		610 Market St., Oakland	MPG0108
1680 Rogers Avenue	Project Number:		Reported:
San Jose CA, 95112	Project Manager:	Michael Ninokata	07/20/06 09:02

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6G13003 - EPA 5030B P/T /	EPA 8260B									
Laboratory Control Sample (6G13003	-BS1)			Prepared	& Analyze	ed: 07/13/	06			
Benzene	9.76	0.50	ug/l	10.0		98	70-125			
Toluene	9.54	0.50		10.0		95	70-120			
Ethylbenzene	11.0	0.50		10.0		110	80-130			
Xylenes (total)	33.1	0.50		30.0		110	85-125			
Methyl tert-butyl ether	9.27	0.50		10.0		93	50-140			
Di-isopropyl ether	9.71	0.50	н	10.0		97	70-130			
Ethyl tert-butyl ether	8.71	0.50	"	10.0		87	65-130			
tert-Amyl methyl ether	9.06	0.50	•	10.0		91	65-135			
tert-Butyl alcohol	175	20	et.	200		88	60-135			
1,2-Dichlorocthane	9.08	0.50		10.0		91	75-125			
1,2-Dibromoethane (EDB)	9.75	0.50	"	10.0		98	85-125			
Ethanol	193	100	"	200		96	15-150			
Surrogate: 1,2-Dichloroethane-d4	2.26		"	2.50		90	60-145			
Surrogate: 4-Bromofluorobenzene	2.41		"	2.50		96	60-115			
Surrogate: Dibromofluoromethane	2.45		11	2.50		<i>98</i>	75-130			
Surrogate: Toluene-d8	2.55		"	2.50		102	70-130			
Laboratory Control Sample (6G13003	-BS2)			Prepared	& Analyza	ed: 07/13/	06			
Benzene	5.29	0.50	ug/l	5.16		103	70-125			
Toluene	38.0	0.50	н	37.2		102	70-120			
Ethylbenzene	7.38	0.50	"	7.54		98	80-130			
Xylenes (total)	43.6	0.50	н	41.2		106	85-125			
Methyl tert-butyl ether	7.29	0.50	ч	7.02		104	50-140			
Di-isopropyl ether	16.0	0.50	*1	15.1		106	70-130			
Ethyl tert-butyl ether	15.4	0.50	u	15.0		103	65-130			
tert-Amyl methyl ether	15.7	0.50	11	15.0		105	65-135			
tert-Butyl alcohol	154	20	11	143		108	60-135			
1,2-Dichloroethane	14.5	0.50		14.7		99	75-125			
1,2-Dibromoethane (EDB)	15.4	0.50	н	14.9		103	85-125			
Ethanol	251	100	11	142		177	15-150			QC
Surrogate: 1,2-Dichloroethane-d4	2.35	•••	"	2.50	-	94	60-145			
Surrogate: 4-Bromofluorobenzene	2.39		"	2.50		96	60-115			
Surrogate: Dibromofluoromethane	2.38		"	2.50		95	75-130			
Surrogate: Toluene-d8	2.39		n	2.50		96	70-130			

TestAmerica - Morgan Hill, CA

Blaine Tech Services - San Jose (Shell)	Project:	610 Market St., Oakland	MPG0108
1680 Rogers Avenue	Project Number:	060627	Reported:
San Jose CA, 95112	Project Manager:	Michael Ninokata	07/20/06 09:02

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6G13003 - EPA 5030B P/T / E	PA 8260B									
Matrix Spike (6G13003-MS2)	Source: MI	PG0033-04R	E1	Prepared	& Analyze	ed: 07/13/	06			TO
Benzene	132	5.0	ug/l	100	33	99	70-125			
Tolucne	136	5.0	м	100	30	106	70-120			
Ethylbenzene	111	5.0		100	2.4	109	80-130			
Xylenes (total)	443	5.0	м	300	110	111	85-125			
Methyl tert-butyl ether	580	5.0	н	100	530	50	50-140			QM0
Di-isopropyl ether	97.3	5.0	н	100	ND	97	70-130			
Ethyl tert-butyl ether	87.9	5.0	"	100	ND	88	65-130			
tert-Amyl methyl ether	106	5.0	н	100	14	92	65-135			
tert-Butyl alcohol	3280	200		2000	1400	94	60-135			
1,2-Dichloroethane	96.8	5.0	u	100	ND	97	75-125			
1,2-Dibromoethane (EDB)	102	5.0	*1	100	ND	102	85-125			
Ethanol	2230	1000	u	2000	ND	112	15-150			
Surrogate: 1,2-Dichloroethane-d4	2.49		H	2.50		100	60-145			
Surrogate: 4-Bromofluorobenzene	2.37		"	2.50		95	60-115			
Surrogate: Dibromofluoromethane	2.53		"	2.50		101	75-130			
Surrogate: Toluene-d8	2.63		"	2.50		105	70-130			
Matrix Spike Dup (6G13003-MSD2)	Source: MI	2G0033-04R	E1	Prepared	& Analyze	ed: 07/13/	06			TO
Benzene	129	5.0	ug/l	100	33	96	70-125	2	15	
Toluene	132	5.0	11	100	30	102	70-120	3	15	
Ethylbenzene	113	5.0	11	100	2.4	111	80-130	2	15	
Xylenes (total)	435	5.0	μ	300	110	108	85-125	2	15	
Methyl tert-butyl ether	575	5.0	P	100	530	45	50-140	0.9	25	QM0
Di-isopropyl ether	97.7	5.0		100	ND	98	70-130	0.4	35	
Ethyl tert-butyl ether	89.5	5.0	0	100	ND	90	65-130	2	35	
tert-Amyl methyl ether	107	5.0	н	100	14	93	65-135	0.9	25	
tert-Butyl alcohol	3270	200		2000	1400	94	60-135	0.3	35	
1,2-Dichloroethane	93.9	5.0		100	ND	94	75-125	3	10	
I,2-Dibromoethane (EDB)	99.9	5.0		100	ND	100	85-125	2	15	
Ethanol	3030	1000		2000	ND	152	15-150	30	35	QM0
Surrogate: 1,2-Dichloroethane-d4	2.29		"	2.50		92	60-145			
Surrogate: 4-Bromofluorobenzene	2.44		"	2.50		98	60-115			
Surrogate: Dibromofluoromethane	2.46		"	2.50		98	75-130			
Surrogate: Toluene-d8	2.52		n	2.50		101	70-130			

TestAmerica - Morgan Hill, CA

	ch Services - San Jose (Shell) ers Avenue	Project: Project Number:	610 Market St., Oakland 060627	MPG0108 Reported:				
· ·	CA, 95112	•	Michael Ninokata	07/20/06 09:02				
<u> </u>		Notes and De	efinitions					
T01	Sample was injected past the method speci	fied tuning time peri	od.					
R-05	The sample was diluted due to the presence	e of high levels of no	on-target analytes resulting in elevated reporting limits.					
QM05			MSD due to analyte concentration at 4 times or greater or LCSD recoveries within the acceptance limits.	the spike				
QM01	QM01 The spike recovery was above control limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recover							
QC2 1	The RPD result exceeded the control limits were accepted based on percent recoveries		cent recoveries were acceptable. Sample results for the (f QC data.	QC batch				
QC01	The percent recovery was above the contro	l limits.						
HT-RD	This sample was originally analyzed within recommended hold time.	n the EPA recommen	nded hold time. Re-analysis for dilution was performed	past the				
HT-RC	This sample was originally analyzed within the recommended hold time.	n the EPA recommen	nded hold time. Re-analysis for confirmation was perform	rmed past				
DET	Analyte DETECTED							
ND	Analyte NOT DETECTED at or above the report	ting limit or MDL, if N	IDL is specified					
NR	Not Reported							
dry	Sample results reported on a dry weight basis							

RPD Relative Percent Difference

TestAmerica - Morgan Hill, CA

TA - Irvine, California TA - Morgan Hill, California	NAME OF PER	SON TO	BILL:	Denis	Brown		-		····· ·	-	5						이야비	цоў.(କ୍ଟର୍ଡା						
🕽 TA - Sacramento, California	DENVIRONMENTAL	SERVICES ·	8] анеак	(BOX	TO VERIF	Y IF NC) INCIDE	ENT # A	PPLIES		9	8	g	9	5	7 5	0	ת [ATE. (37-0	06
TA - Nashville, Tennessee,	NETVICER DEV / C			CONSULTA	NA 🛇		etti olise	CS IS											M			3 1		•	
Calscience	COMPLIANCE	333						過度					数開鍵						1888 			P.	AGE:	· <u>'</u> 。	ſ
AMPLING COMPANY:	Trend Statistical Statistics	스스스 [LOG CODE		19999Co.co.	1000.00g	etre	Appher		· .			<u> </u>			State			GLOBAL				·			<u></u>
Blaine Tech Services		BTSS				1			eland City St., C		hne				CA					212 [.]	1			• . •	-
ADDRESS:				· .		EDF DI	LIVERABL	ETOP	lame, Compaz	y, Office	Localion):		PHON	E NO.:				MAR:	010	<u> </u>	•			CONSULTANT	
680 Rogers Avenue, San PROJECT CONTACT (Hardsong) or POP R		·		· ·			Kromi	Ca	mbria, E	mon	villa C	fica	- 510	.420.1	1225			hall a	n edf	@con	ibria.4	элv.co	י תור	0600	07
lichael Ninokata		-			•••	SAMP	LERNANE	, 04 (6) (Pri	א <u>ר</u> הואוים, ב		- -		* 310	4204				101.0	n.cui	woan	國際				
теlерноне) 108-573-0555	FAX:	E-MAL:	ata@blal		A .].	· • • •	1	1.00		• •	·. ·		. :						-					
108-573-0555 TAT (STD IS 10 BUSINESS DAY	1 .			ESULTS NE	· · · · ·	}	T-	\mathcal{P}	FON S	<u>Ľ</u>											捕獲				國國領
🖻 STD 🗋 S DAY 🔲 3				ON WEEKE	ND					·	• ••			R	QUE	STE	D AN	ALY	sis .		• •		• • • •		-
LA - RWQCB REPORT FORM			·	•				ŀ		;	-[-		• • • • •	· · - ·		•	·	·	•			 	•		
PECIAL INSTRUCTIONS OR NO			r Needed				(8Q15M)			.		.		'									1.	FIELD NO	TES:
· · · ·		🗋 SHEUL CI 🗐 STATE R			s:	(8260B)		.	<u>981</u> .		·	··	. I · .			.	. ·		-	·	· ·· :		c .	ontainer/Pres	
· · · ·					ടന്നാ	e (8	ctable		т. Ш.	\mathbf{r}	·			ŀ			£						l.	or PID Read or Laboratory	
· · · ·		-	· ·	÷ • .	:	- Ideo	trac.		TA P		·	: .	· _	[· `	· .	s:	(8015M	· i	a lá	g .	ŀ	· ·	1	or Laboratory	/ Notes
		• •	• :	• .	· · ·	Purg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			:		ត្ត	(8260B)	1	809	0151	둥				.		.		
				: ;		Sg.	0 ese	8260	renates TBA, DIF (6260B)	Zeot	3280)	828		2605	(83	10	Ę.	60°-1	donus, per j		.				
Field Sample	Identification		IPLING	MATRIX	NO. OF	T-H-T	TPH-C	BTEX (3250B)	e oxya Ameia Ameia (TBA (8260B)	DIPE (8260B)	TAME (8260B)	1,2 DCA (826	EDB, (8260B)	Ethanol (8260B)	Methanol (8016M)	TPH-motor	TDS (160.1)					TEMPER	RATURE ON RE	CEIPTO
		DATE		1	3	L.		-		ام	<u>а</u> ,	<u>। भ</u>	╞╌╌	<u> </u>	<u>ш</u>	-		<u>- -</u>			+		<u></u>		
	mhr.)	· 62/06	5/1835	.Ψ_	12	<u> </u>		X	<u>}</u>	<u>+-</u>				<u> :</u> -							- 				
	murz		1015	·] :		X	· /	<u> </u>	K	ŀ.													<u> </u>		
	mir-4 St		835	T I	:	X	>	2	· 🛪	2		. ·		ŀ								}	· ·		• •
	m		910	:	11	٩		×	a	R	:	;							-	-					
				÷ 1.	₩.			~	- A	+	┝──┝	·				-	-+			+	<u>+</u> .		<u> </u>	<u>_</u>	
	MAG		130	·	┟╏╴╺				~~~	R	ŀ∔	_		·						- <u> </u> -	+ ·	-	 		
	mut-1	1	1050	· (·		~		₹	<u> </u>	ેત				·											
	murg		110	:		j.	0	x	R	ዳ	:			1								ľ			
	mit 9	1	835	1	3	\mathbf{v}	1	× .	×	1	·		1	1			·		-		-	1	1	•	
	7400			17	3	1~	┞──┟─			<u> </u> '	┝╼╌┞				┝╼╼┤			+	+	- -		· 	┢───		
	rnv s	0/2/10	1305	W		$\uparrow \uparrow$	0	<u>\</u> ,		· · ·	$\left \cdot \right $				┝╌┥								₋		
				• •	: •	•		÷۴															<u> </u>		
Relinquished by: (Signature)	1.1.			Received b	y: (Signatur	2)	_		1000	dr.	· ~	15-					Date:	<u>ر</u> ہے	~	лt	<u>.</u>	Tune	630		•
Relignational by: (Signature).				Received b	y; (Signalun		\rightarrow	Ĺ	Story	° U	- 0	10	a fl	/		-	Dalar	-04	•	St.		Time		مع <i>نا معر</i> م	·
	grep and	of lith		100	- 0	ø)	et a				<u></u>				-		Q.	20	* <u>/</u> _	04	.	 4	[4]	82	
Refine thed by: (Signakura)	· · ·	-	1	Received b	y: (Signatur	e}		5	TUM	R				•		·		75	A	•	2	Πητα	151	45	

WELL GAUGING DATA

ŝ

Project #<u>26062?em1</u> Date <u>6-27-06</u> Client <u>Sholl</u> Site <u>5/0</u> Marfat st, Oakland

Well ID	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	
mw 1	4					1270	24.62		2
mr 2	4					9.73	18,29		J
mw-3	Ч					14,63			Sext
MW-4	4					10.12	19.77		8
mw-5	Ц	-					20.06		4
mw.5 mr.6	ц					9.84	18.65		cx4 9
mw?	4					-	18.24		6
MW? MW8 MW-9	Ц			·		10.00	18.23		7
Mr-9	4					10.64	19.75	Ţ	3
		,							利 通
								_	
				-					
					ś.				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

	BTS #: 06	5062	2 en	1	Site: 99	599	15750	
	Sampler:	_	rse_	1	Date: 💪	· þ	7-06	
	Well I.D.: M	ner (Well Diar	neter:	2 3 4	6 8
	Total Well):24. (62	Depth to	Water	(DTW): /2	.70
	Depth to Fr		•		Thickness	s of Fi	ree Product (fee	et):
• •	Referenced	to:	FVC	Grade	D.O. Met	er (if i	req'd):	YSI HACH
· . ·	DTW with	80% Rech	arge [(H	eight of Water	Column x	0.20)	+ DTW] /5 0	8
, n	Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump		Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing
	7 7 ((1 Case Volume	Gals.) X Speci	3 fied Volum	= 23,2 les Calculated Vo	Gals.	Diameter]" 2" 3"	r Multiplier Well f 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163
	Time	Temp (°F)	рН	Cond. (mS or S	Turbidi (NTUs	- 1	Gals. Removed	Observations
	1026	69.3	7.0	897	13		8.0	
	1029	68.6	6.6	916	12		16.0	
	,031	68.7	6.6	921	11		24.0	
	· not (þ.	80.	90				
	Did well de	water?	Yes (No	Gallons a	ctually	y evacuated: 🐊	40
	Sampling D	ate: 6-27	-06	Sampling Time	:1035		Depth to Water	r: 14.91
	Sample I.D.	: mw			Laborator	y:	STL Other	
	Analyzed for	or: TPH-5	BTEX		Other:			
	EB I.D. (if a	applicable):	@ Time	Duplicate	I.D. ((if applicable):	
	Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:	_		
	D.O. (if req	'd): Pi	re-purge:		^{mg} /L	P	ost-purge:	""g/L
	O.R.P. (if re	eq'd): P	re-purge:		mV	P	ost-purge:	mV

ي د ا

SHELL WELL MONITORING DATA SHEET

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

	BTS #: 06	(06)7	erni		Site: (189	95750		<u>_</u>
	Sampler: ξ	- Mar	<u>- v.y</u>			5-27)-06		········
	ر :Well I.D.				Well Di		2 3 (4	6 8
	Total Well)): /5	29	Depth to	o Water	·(DTW):	9:	73
· .	Depth to Fr				<u> </u>		ree Product		
	Referenced		(PVC)	Grade	D.O. M			•	YSI HACH
	DTW with a	80% Rech	arge [(H	leight of Water	Column	x 0.20)	+ DTW]:	114	14
	Purge Method:	Bailer Disposable B Positive Air I Electric Subr	<u>Disp</u> laceme		Waterra Peristaltic tion Pump		Sampling Me	thod:)ther:	Baller Disposable Bailer Extraction Port Dedicated Tubing
	5_6_(1 Case Volume	Gals.) X	3 ified Volun	_ = <u>16</u> . S	Gals.	Vell Diamete 1" 2" 3"	rMultiplier 0.04 0.16 0.37	Well Di 4" 6" Other	ameter Multiplier 0.65 1.47 radius ² * 0.163
	Time	Temp (°F)	рН	Cond. (mS o(µS)	Turb (NT	-	Gals. Remo	ved	Observations
Q	10 1007	73.4	6.5	892	ষ্ঠ	- 1	6.0		
	1008	71.6	6.2	857	3 إ	•	12.0		
	1009	\$701	6.2	930	18		18.0		
	+015	Vaibe	f far	- 80%				_	
	Did well de		Yes C	Nd	Gallons	actually	y evacuated	l:/ {	8.0
	Sampling D	ate: 6.27	06	Sampling Time	:1015	5	Depth to W	ater:	11.44
	Sample I.D.	: mw-)	<u> </u>		Laborat	ory:	STL Othe	T	\sim
	Analyzed fo	or: TPH-Q	BEER	MTBE TPH-D	Other:			···	
	EB I.D. (if a	applicable):	@ Time	Duplica	te I.D. ((if applicab	le):	
	Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:				
	D.O. (if req	'd): P	re-purge:	_	^{mg} /L	P	ost-purge:		^{mg} /L
	O.R.P. (if re	eq'd): P	re-purge:		mV	P	ost-purge:		mV

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

.

:

	BTS #:	000 2	Ten /	/	Site:	98-99	25.		
	BTS #: 0 Sampler: 2	Mas	r'	·	Date:	6-3	9-06		
	Well I.D.:	mu-	3		Well D	iameter	: 2 3	Ø	6 8
	Total Well	Depth (TD):	د_	Depth	to Water	r (DTW):	14	.63
	Depth to Fre	ee Product	•		Thickn	ess of F	ree Produc	t (fee	et):
	Referenced	to:	PVC	Grade	D.O. M	leter (if	req'd):		YSI HACH
	DTW with	80% Rech	arge [(H	leight of Water	Colum	1 x 0.20)) + DTW]:		
	Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Sisplaceme		Waterra Peristaltic tion Pump		Sampling M	ethod:	Bailer Disposable Bailer Extraction Port Dedicated Tubing
	((1 Case Volume	Gals.) XSpeci	fied Volum	nes Calculated Vo	Gals. lume	Well Diamete 1" 2" 3"	r Multiplier 0.04 0.16 0.37	Well D 4" 6" Oiher	Diameter Multiplier 0.65 1.47
	Time	Temp (°F)	pH	Cond. (mS or µS)		pidity FUs)	Gals. Remo	oved	Observations
	1305	70.0	6.0	1107	၁၂၀	00			rust copie
							···· ,		
	of Uno	tble f	<u>0</u> 5	emple th	poor	le	wt		1001 ·
-	Ba	Ver W	avlor	# Fit do	ven	- he	e_		
	Did well de		Yes	No	Gallon	s actuall	y evacuate	đ:	
3	Sampling D	ate:G-27	06	Sampling Time	: /3<	5	Depth to V	Vater	r:
·	Sample I.D.	: MA-	3		Labora	tory:	STL Oth	T	4
	Analyzed fo	or: TPH-G	BTEX		Other:				_
	EB I.D. (if a	applicable)):	@ Time	Duplic	ate I.D.	(if applicab	ole):	
	Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:				
	D.O. (if req	'd): Pi	e-purge:		^{mg} /L	Р	ost-purge:		^{mg} /L
	O.R.P. (if re	eq'd): Pi	e-purge:		mV	Р	ost-purge:		mV

SHELL WELL MONITORING DATA SHEET

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

BTS #:060627 em/	,	Site: 6	89	95750			
Sampler: E Marse	Date: 6-27-06						
Well I.D.: M W. 4		Well Di	Well Diameter: 2 3 (4) 6 8				
Total Well Depth (TD): / 9.	27	Depth to Water (DTW): 10,12 Thickness of Free Product (feet):			12		
Depth to Free Product:							
Referenced to:) Grade	D.O. Me	eter (if	req'd):	YSI HACH		
DTW with 80% Recharge [(H	leight of Water	Column	x 0.20)	+DTW]: / 2	2.05		
Purge Method: Bailer Disposable Bailer Positive <u>Air Displaceme</u> Plecific Submersible	ent Extrac	Waterra Peristaltic tion Pump		Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing		
<u>G: 3</u> (Gals.) X <u>3</u> 1 Case Volume Specified Volum	nes Calculated Vo	Gals,	ell Diameter 1" 2" 3"	r Multiplier Well I 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163		
Time Temp (°F) pH	Cond. (mS or as)	Turbi (NTI		Gals. Removed	Observations		
845 680 6.0	732	10		7.0	odo		
devatared of				110			
			_				
855 67.5 6.1	794	18					
Did well dewater?	No	Gallons	actually	y evacuated: /	1.0		
Sampling Date 6.27.06	Sampling Time	e: SSS		Depth to Water	r:1205		
Sample I.D.: Mlr. 4	·	Laborate	ory:	STL Other 1			
Analyzed for: (TPH-) (BREX	MTBE TPH-D	Other: 7	BA)			
EB I.D. (if applicable):	@ Time	Duplicat	te I.D. (if applicable):			
Analyzed for: TPH-G BTEX	MTBE TPH-D	Other:					
D.O. (if req'd): Pre-purge:		"",L	P	ost-purge:	^{ing} /1		
O.R.P. (if req'd): Pre-purge:	· ·	mV	P	ost-purge:	mV		

÷.

SHELL WELL MONITORING DATA SHEET

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

BTS #:0606270m	Site: 98995750					
Sampler: E Morse	Date: 6-27-06					
Well I.D.: MNS	Well Diameter: 2 3 7 6 8					
Total Well Depth (TD): 2006	Depth to Water (DTW): 4,83					
Depth to Free Product:	Thickness of Free Product (feet):					
Referenced to: Grade	D.O. Meter (if reg'd): YSI HACH					
DTW with 80% Recharge [(Height of War	ater Column x 0.20) + DTW]: X //.88					
Purge Method: Bailer Disposable Bailer Positive Air Displacement Ex Electric Submersible Other	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer xtraction Pump Extraction Port Dedicated Tubing Other:					
Gals.) X 3 = 19 1 Case Volume Specified Volumes Calculated	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47 3" 0.37 Other radius ² * 0.163					
Cond.	Turbidity					
Time Temp (°F) pH (mS or (15)						
900 687 6.6 1221	11 70					
902 68.8 6.6 1226	6 137 14.0					
dernterd e	15.0					
410 68.9 67 1199	34					
Did well dewater? Yes No	Gallons actually evacuated: / 5.0					
Sampling Date 270C Sampling T	Times 10 Depth to Water: 14.87 (haffs e To					
Sample I.D.: MLAS	Laboratory: STL Other TA					
Analyzed for TPH-G BTEX MTBE TPH-I	D Other: TBA					
EB I.D. (if applicable):	Duplicate I.D. (if applicable):					
Analyzed for: TPH-G BTEX MTBE TPH-I	D Other:					
D.O. (if req'd): Pre-purge:	^{mg} / _L Post-purge: ^{mg} / _L					
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV					

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

•,

¢

Ş.,

BTS #: 060627 em	Site: 98995750						
Sampler: E. Morse	Date: 6-27-06						
Well I.D.: MW-6	Well Diameter: 2 3 (4						
Total Well Depth (TD): 18.65	Depth to Water (DTW): 9.	Depth to Water (DTW): 9.84					
Depth to Free Product:	Thickness of Free Product (fe	Thickness of Free Product (feet):					
Referenced to: PVC Grade	D.O. Meter (if req'd):	D.O. Meter (if req'd): YSI HACH					
DTW with 80% Recharge [(Height of Wa	er Column x 0.20) + DTW]: //	.60					
Electric Submersible Other_	1" 0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing					
Gals.) X = / (.) 1 Case Volume Specified Volumes Calculated	2" 0.16 6" Volume 3" 0.37 Other	1.47 er radius ² * 0.163					
TimeTemp (°F)pHCond.TimeTemp (°F)pH(mS or fus)	Turbidity (NTUs) Gals. Removed	Observations					
1117 69.6 68 384	270 0.0	,					
1118 70.06.6942	19 12.0						
1119 701 6.7 952	13 18.0						
Brith waited for	Solo 1	: .					
Did well dewatter? Yes No	Gallons actually evacuated:	18.0					
Sampling Date: 6-27-06 Sampling Time: 1130 Depth to Water: 1160							
Sample I.D.: MW-G Laboratory: STL Other TA							
Analyzed for TPH-G BTEX MTBE TPH-D Other: 713 A							
EB I.D. (if applicable): [@] Duplicate I.D. (if applicable):							
Analyzed for: TPH-G BTEX MTBE TPH-							
D.O. (if req'd): Pre-purge:	^{mg} / _L Post-purge:	^{mg} /L					
O.R.P. (if req'd): Pre-purge:	mV Post-purge:	mV					

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

BTS #:060G27em(Site: 98996750						
BTS #:060GD7em(Sampler: E Morse	Date: 6-27-06						
Well I.D.: mw-7	Well Diameter: 2	Well Diameter: 2 3 74 6 8					
Total Well Depth (TD): 1824	Depth to Water (D	TW): 1077)				
Depth to Free Product:	Thickness of Free	Thickness of Free Product (feet):					
Referenced to: PVO Grade		D.O. Meter (if req'd): YSI HACH					
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 12,26							
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Other Well Diameter_Multiplier Well Diameter_Multiplier							
$\frac{4}{100} \frac{9}{(Gals.) X} = \frac{14}{100} \frac{1}{100} \frac{100}{100} 1$							
Time Temp (°F) pH Cond. (mS or µS)		als. Removed	Observations				
1040 679 67 950		5.0					
1041 67.8 6.6 953	100 10.0						
deventered a]/	0					
1050 671 68 975	40						
Did well dewater? Yes No	Gallons actually ev	vacuated: //	1.0				
Sampling Date: 6.2.7.06 Sampling Time: 1050 Depth to Water: 12,2:5							
Sample I.D.: MW-7 Laboratory: STL Other							
Analyzed for: TPH-G BTEX MTBE TPH-D Other: TBA							
EB I.D. (if applicable): [@] Duplicate I.D. (if applicable):							
Analyzed for: TPH-G BTEX MTBE TPH-D Other:							
D.O. (if req'd): Pre-purge:	^{mg} /L Post-p	purge:	mg/L				
O.R.P. (if req'd): Pre-purge:	mV Post-p	purge:	mV				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

• •

BTS #: 060627em)	Site: 989	95750					
Sampler: E Newse	Date: 6-2-	Date: 6-27-06 *					
Well I.D.: MW-8	Well Diameter	Well Diameter: 2 3 (4) 6 8					
Total Well Depth (TD): 18,23	Depth to Water	Depth to Water (DTW):)000					
Depth to Free Product:	Thickness of F	Thickness of Free Product (feet):					
Referenced to: PVO Grade	D.O. Meter (if	req'd):	YSI HACH				
DTW with 80% Recharge [(Height of Wat	er Column x 0.20)	+ DTW]: J	1.65				
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Effective Submersible Other Dedicated Tubing Other: Other: Other:							
	Well Diamete	r Multiplier Well] 0.04 4"	Diameter Multiplier 0.65				
<u>5.3</u> (Gals.) X <u>3</u> = <u>15</u> <u>1 Case Volume</u> Specified Volumes Calculated		0.16 6" 0.37 Other	1.47				
Cond.	Turbidity		Observations 3				
TimeTemp ($^{\circ}F$)pH(mS or μS) $(1 \rightarrow 2)$ $1 \rightarrow 1$ $1 \rightarrow 2$		Gals. Removed	1				
102 67.1 6.6 1134	8	6.0	odar				
		12.0	· · · · · · · · · · · · · · · · · · ·				
de valered		13.0					
110 663 6.6 1105	454		orange fint				
Did well dewater? Res No	Gallons actuall	y evacuated:	13.0				
Sampling Date: 6-27.06 Sampling Ti	me: ///D	Depth to Wate					
Sample I.D.: Vour & Laboratory: STL Other The							
Analyzed for: TPH-G_BTEX_MTBE TPH-D Other: TBA							
EB I.D. (if applicable):	Duplicate I.D.	Duplicate I.D. (if applicable):					
Analyzed for: TPH-G BTEX MTBE TPH-D							
D.O. (if req'd): Pre-purge:	^{ing} /L P	^{ing} /L Post-purge:					
O.R.P. (if req'd): Pre-purge:	mV P	ost-purge:	mV				

¢,

:

¥,

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

. •

BTS #: 00627 em)			Site: 98995750					
			Date: 6-27-06					
Well I.D.: mw-9			Well Diameter: 2 3 (4) 6 8					
Total Well I	Depth (TD): 19	.75	Depth to Water	r (DTW): 10	64		
Depth to Fre	ee Product	:		Thickness of Free Product (feet):				
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH		
DTW with 8	30% Recha	arge [(H	leight of Water	Column x 0.20)) + DTW]:) 🥎)M/		
-	Bailer Disposable B Positive Air I Electric Subr	Displaceme		Waterra Peristaltic tion Pump <u>Well Diamete</u>	Sampling Method: Other: <u>r Multiplier Well</u> 0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing		
5.9 (C 1 Case Volume	Jals.) X Speci	3 fied Volum	$= 17.8$ $\frac{17.8}{\text{Calculated Volume}}$	_ Gals. 2"	0.16 6" 0.37 Other	1.47		
Time	Temp (°F)	pН	Cond. (mS or as)	Turbidity (NTUs)	Gals. Removed	Observations		
824	66.4	5,7	1073	12	6.0			
825	657	57	1078		120			
den	atered	-Q	• •		15.0			
835	65-5	5.6	1077	88		Greenish bint		
Did well dev	water?	Yes	No	Gallons actuall	y evacuated:	50		
Sampling Date: 6-27-06 Sampling Time: 835 Depth to Water: 1245								
Sample I.D.: ML- & Laboratory: STL Other IN								
Analyzed for: TPH-G BTEX MTBE TPH-D Other:								
EB I.D. (if a	pplicable)	:	@ Time	Duplicate I.D. (if applicable):				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Other:				
D.O. (if req'd): Pre-purge:				^{mg} /L P	ost-purge:	^{mg} /L		
O.R.P. (if re	q'd): Pr	e-purge:		mV P	ost-purge:	mV		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

' ;

`....

WELLHEAD INSPECTION CHECKLIST

.

Page / of /

Client <u>Shell</u>						Date	6-27	7-06			
Site Address 65/0 Market St. Da Kland											
Job Number	er <u>060627em</u> Techn						nician	iician <u>E. Marse</u>			
Well ID	Well Inspected - No Corrective Action Required	WELL IS SECURABLE BY DESIGN (12°07 (039)	WELL IS MARKED WITH THE WORDS "MONITORING WELL" (12 [°] 07 (895)	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Aclion Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted	
mw-l		1		.							
mw-2	J	ر	Vault								
MW-3	J	ر									
MW-4	1	ر	/								
MW-4 MW.5	<i>、</i>	1	J								
MW-6	J	<u>ا</u>	Vault								
MW- 7	ر	_ ر									
MN-8	J)									
MW-9)	7]								
								-			
		-			***						
NOTES:			<u></u>]						ĽJ	L	
			· · ·			•					
			.								

۰,

..