ExxonMobil Environmental Services Company 4096 Piedmont Avenue #194 Oakland, California 94611 510 547 8196 Telephone 510 547 8706 Facsimile Jennifer C. Sedlachek Project Manager

ExonMobil

April 30, 2015

Ms. Karel Detterman Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Room 250 Alameda, California 94502-6577 RECEIVED

By Alameda County Environmental Health 2:24 pm, May 04, 2015

RE: Former Exxon RAS #73006/720 High Street, Oakland, California.

Dear Ms. Detterman:

Attached for your review and comment is a copy of the letter report entitled *Addendum to Soil Assessment, Groundwater Monitoring Report, and Request for closure,* dated April 30, 2015, for the above-referenced site. The report was prepared by Cardno ERI of Petaluma, California, and details activities pertaining to the subject site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

Jehnifer C. Sedlachek Project Manager

Attachment: Cardno ERI's Addendum to Soil Assessment, Groundwater Monitoring Report, and Request for closure, dated April 30, 2015

cc: w/ attachment

Mr. Mansour Sepehr, Ph.D., P.E., SOMA Environmental Engineering, Incorporated Mr. Mo Mashoon, Mash Petroleum, Inc. Mr. Victor Chu

w/o attachment Mr. Greg Gurss, Cardno ERI Addendum to Soil Assessment, Groundwater Monitoring Report, and Request for Closure

Former Exxon Service Station 73006

Cardno ERI 2010C.R35

April 30, 2015

Addendum to Soil Assessment, Groundwater Monitoring Report, and Request for Closure

Former Exxon Service Station 73006 720 High Street Oakland, California

Alameda County No. 491

Cardno ERI 2010C.R35

April 30, 2015

Greg Gurss Senior Project Manager for Cardno ERI 916 692 3130 Email: greg.gurss@cardno.com

David R. Daniels P.G. 8737 for Cardno ERI Direct Line 707 766 2000 Email: <u>david.daniels@cardno.com</u>

Table of Contents

1	Introduction		1
2	Site De	scription	1
3	Well Survey		1
	3.1	DWR Well Completion Reports	1
	3.2	ACPWA Well Records	2
4	Revise	d Plate	3
5	Conclu	sions	3
6	Recom	mendations	3
7	Contact Information		3
8	Distribution List		3
9	Limitations		4
10	References		4
11	Acronym List		5

Plates

- Plate 1 Site Vicinity Map
- Plate 2 Generalized Site Plan
- Plate 3 Local Area Map
- Plate 4 Dissolved Hydrocarbons in Groundwater

Tables

Table 1 Well Locations

Appendices

- Appendix A Correspondence
- Appendix B Remedial Action Completion Certification, Former Cobbledick-Kibbe Site, 500 High Street, Oakland, CA, 94601 (ACHSA, 1998)

1 Introduction

At the request of ExxonMobil Environmental Services (EMES), on behalf of Exxon Mobil Corporation, Cardno ERI prepared this addendum to soil investigation, groundwater monitoring report, and request for closure for the subject site. This report was prepared in response to electronic correspondence from Alameda County Environmental Health (County), dated April 5, 2015 (Appendix A). The request was in response to Cardno ERI's *Soil Investigation, Groundwater Monitoring Report, and Request for Closure*, dated January 30, 2015 (Cardno ERI, 2015). The purpose of this addendum is to present the results of an updated well search for the area surrounding the site and to present a revised plate.

2 Site Description

Former Exxon Service Station 73006 is located at 720 High Street, Oakland, California (Assessor's Parcel Number 34-2290-6-3) on the southeastern corner of the intersection of High Street and Coliseum Way adjacent to an elevated portion of Interstate Highway 880 (Plate 1). The site operated as an Exxon-branded service station from 1970 to 1987. Prior to use as a service station, the site was used as an oil storage and distribution facility from 1912 to 1934, an automobile junkyard from 1953 to 1969, and a dump site prior to 1970 (RESNA, 1993). The site is currently an active Gas and Food-branded station owned and operated by Mash Petroleum, Inc. The locations of select site features are shown on the Generalized Site Plan (Plate 2).

Additional information (including site history, features, geology, hydrogeology, and environmental activities) is included in Cardno ERI's *Updated SCM and Soil and Groundwater Investigation and Groundwater Monitoring Report* dated July 17, 2014 (Cardno ERI, 2014).

3 Well Survey

As requested by the County, Cardno ERI contacted the State of California Department of Water Resources (DWR) and the Alameda County Public Works Agency (ACPWA) to request well completion reports for a 2,000-foot radius of the site. The April 5, 2015 correspondence requested that the DWR and ACPWA records be included in an appendix of this report. The process to obtain the well completion reports includes an acknowledgement that the records are to be kept confidential and not be published. To maintain the confidentiality, the well records will be submitted to the County under separate cover and are not being uploaded to a public website. The results of the search are summarized in the following sections, Table 1, and Plate 3.

3.1 DWR Well Completion Reports

The well search with the DWR returned 830 potential wells located near the site. Of the 830 wells, 776 were for environmental monitoring or remediation and 19 were geotechnical borings and were not investigated further.

The 35 remaining wells were further investigated to determine their location and use:

- Two of the 35 well completion reports were illegible and a location and use could not be determined.
- Twenty-six of the 35 wells were located greater than 2,000 feet from the subject site.
- Seven well completion reports were for wells located within approximately 2,000 feet of the site.

The well completion reports within approximately 2,000 feet are summarized below, and shown on Plate 3 and Table 1. Two of the six well completion reports are for the same industrial well with separate reports for the installation and destruction. The four remaining wells are listed as industrial, cathodic protection, or unknown. The use of one of the wells is unknown based on the well completion report; however, it is located at the same address and owner (4701 San Leandro Street, National Lead Company) as another listed industrial well.

Location	Use	Distance	Direction
Coliseum Way and 45th Avenue	Cathodic Protection	670	Southeast
499 High Street	Industrial	1,150	West-Southwest
499 High Street	Destroyed	1,150	West Southwest
4701 San Leandro Street	Industrial	1,500	East
4701 San Leandro Street	Unknown	1,500	East
Coliseum and 50th Avenue	Cathodic Protection	2,100	Southeast
37th Avenue and East 12th Street	Cathodic Protection	2,200	North-Northwest

Wells Located within Approximately 2,000 Feet of the Site in DWR Records

3.2 ACPWA Well Records

The well search with the ACPWA returned 481 potential wells located near the site. Of the 481 wells, 359 were for environmental monitoring or remediation and 63 were geotechnical borings and were not investigated further.

The 59 remaining wells were further investigated to determine their location and use:

- Three of the 59 wells were destroyed wells with inadequate location to determine a location.
- Forty-four of the 59 wells that were investigated further were destroyed monitoring or remediation wells.
- Two of the wells appear to be miscategorized (classified as irrigation and ON [perhaps a typographical error for the monitoring well abbreviation of MON]) as the address and owner (3801 East 8th Street, American Can Company) are associated with numerous other wells associated with an environmental investigation.
- Three of the 59 wells were located greater than 2,000 feet from the subject site.
- One of the wells that was categorized as "other" is actually a monitoring or remediation well (well ARW1B owned by Arco Products Co.) associated with an ongoing environmental investigation.
- Six records were for wells located within approximately 2,000 feet of the site that meet the criteria requested by the County.

The six records within 2,000 feet are summarized below. Four of the wells are also included in the records supplied by the DWR. One of the additional wells is a cathodic protection well located approximately 1,950 feet southeast of the site.

The ACPWA well records included a reported domestic well at 500 High Street. In addition to the domestic well, the ACPWA records include a record of a destroyed monitoring well (MW4) at the same location. THE ACPWA lists the installation date of the domestic wells as March 1991. The *Remedial Action Completion Certification* states that monitoring wells MW1 through MW4 were installed at 500 High Street in February and March of 1991 (ACHSA, 1998) (Appendix B). It appears likely that the well was miscategorized as domestic and was part of the environmental investigation. Cardno ERI performed a field visit to 500 High Street on May 1, 2015 to investigate the presence of the well. There was no visual indication of the existence of a well and personnel at the site (a public storage facility) were not aware of any wells at the site.

Location	Use	Distance	Direction			
500 High Street	Domestic (likely	750	Southwest			
4930 Coliseum Way	Cathodic Protection	1,900	Southeast			
Coliseum Way and 45th Avenue	Cathodic Protection	670	Southeast			
499 High Street	Industrial	1,150	West-Southwest			
4701 San Leandro Street	Unknown	1,500	East			
Coliseum and 50th Avenue	Cathodic Protection	1,950	Southeast			
500 High Street	Domestic (likely	750	Southwest			

Wells Located within Approximately 2,000 Feet of the Site in ACPWA Records

4 Revised Plate

Cardno ERI revised Plate 4 from the *Soil Investigation, Groundwater Monitoring Report, and Request for Closure* (Cardno ERI, 2015) as requested by the County (Appendix A). The revised Plate is included as Plate 4.

5 Conclusions

Based on cumulative site data, Cardno ERI concludes that:

- Site conditions do not present an unacceptable risk to the identified wells.
- The site is in a long-industrialized part of Oakland and the surrounding area and historical land use make it difficult to perform environmental work without encountering concentrations associated with other sources.
- The site is zoned for industrial uses; land use is not expected to change in the foreseeable future.
- Residual petroleum hydrocarbon concentrations meet the commercial criteria listed in the State Water Resources Control Board's *Low-Threat Underground Storage Tank Case Closure Policy* (SWRCB, 2012).
- Dissolved-phase petroleum hydrocarbons show overall stable and/or decreasing trends.
- Petroleum hydrocarbons remaining at the site are not likely to migrate to water wells, deeper drinking water aquifers, surface water, or other sensitive receptors and do not pose a significant risk to human health or the environment.
- The site adequately meets the criteria for Low-Threat Closure under a commercial land-use scenario.

6 Recommendations

Cardno ERI recommends the site be evaluated for case closure and that groundwater monitoring and sampling be suspended pending the evaluation.

7 Contact Information

The responsible party contact is Ms. Jennifer C. Sedlachek, ExxonMobil Environmental Services Company, 4096 Piedmont Avenue #194, Oakland, California, 94611. The consultant contact is Mr. Greg Gurss, Cardno ERI, 601 N. McDowell Boulevard, Petaluma, California, 94952. The agency contact is Ms. Karel Detterman, Alameda County Health Care Services Agency, Department of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, California, 94502.

8 Distribution List

Cardno ERI recommends forwarding copies of this document to:

Ms. Karel Detterman Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Mr. Mo Mashoon Mash Petroleum 428 13th Street, 10th Floor Oakland, California 94612

Mr. Mansour Sepehr, Ph.D., P.E. SOMA Environmental Engineering, Incorporated 6620 Owens Drive, Suite A Pleasanton, California 94588

9 Limitations

For documents cited that were not generated by Cardno ERI, the data taken from those documents is used "as is" and is assumed to be accurate. Cardno ERI does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

This document and the work performed have been undertaken in good faith, with due diligence and with the expertise, experience, capability, and specialized knowledge necessary to perform the work in a good and workmanlike manner and within all accepted standards pertaining to providers of environmental services in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

10 References

Alameda Health Care Services Agency (ACHSA). February 2, 1998. Remedial Action Completion Certification, Former Cobbledick-Kibbe Site, 500 High St., Oakland, CA 94601

Cardno ERI. July 17, 2014. Updated SCM and Soil and Groundwater Investigation and Groundwater Monitoring Report, Former Exxon Service Station 73006, 720 High Street, Oakland, California.

Cardno ERI . January 30, 2015. Soil Investigation, Groundwater Monitoring Report, and Request for Closure, Former Exxon Service Station 73006, 720 High Street, Oakland, California

RESNA Industries, Inc. (RESNA). March 24, 1993. *Findings of a Limited Record Search, Exxon Station* 7-3006, 720 High Street, Oakland, California.

State Water Resources Control Board (SWRCB). August 17, 2012. *Low-Threat Underground Storage Tank Case Closure Policy*. Adopted May 1, 2012.

11 Acronym List

µg/L	Micrograms per liter
μs	Microsiemens
1,2-DCA	1,2-dichloroethane
acfm	Actual cubic feet per minute
AS	Air sparge
bgs	Below ground surface
BTEX	Benzene, toluene, ethylbenzene, and total xylenes
CEQA	California Environmental Quality Act
cfm	Cubic feet per minute
COC	Chain of Custody
CPT	Cone Penetration (Penetrometer) Test
DIPE	Di-isopropyl ether
DO	Dissolved oxygen
DOT	Department of Transportation
DPE	Dual-phase extraction
DTW	Depth to water
EDB	1,2-dibromoethane
EPA	Environmental Protection Agency
EPH	Extractable petroleum hydrocarbons
ESL	Environmental screening level
ETBE	Ethyl tertiary butyl ether
FID	Flame-ionization detector
fpm	Feet per minute
GAC	Granular activated carbon
gpd	Gallons per day
gpm	Gallons per minute
GRO	Gasoline-range organics
GWPTS	Groundwater pump and treat system
HVOC	Halogenated volatile organic compound
J	Estimated value between MDL and PQL (RL)
LEL	Lower explosive limit
LPC	Liquid-phase carbon
LRP	Liquid-ring pump
LUFT	Leaking underground fuel tank
LUST	Leaking underground storage tank
MCL	Maximum contaminant level
MDL	Method detection limit
mg/kg	Milligrams per kilogram
mg/L	Milligrams per liter
mg/m ³	Milligrams per cubic meter
MPE	Multi-phase extraction
MRL	ivietnod reporting limit
msi	Iviean sea level
MIBE	Methyl tertiary butyl ether
MICA	Nodel Loxics Control Act
NAI	Natural attenuation indicators

	Non aqueous phase liquid
	Notional Environmental Daliau Act
	National Environmental Policy Act
NGVD	National Geodetic Vertical Datum
NPDES	National Pollutant Discharge Elimination System
0&M	Operations and Maintenance
ORP	Oxidation-reduction potential
OSHA	Occupational Safety and Health Administration
OVA	Organic vapor analyzer
P&ID	Process & Instrumentation Diagram
PAH	Polycyclic aromatic hydrocarbon
PCB	Polychlorinated biphenyl
PCE	Tetrachloroethene or perchloroethylene
PID	Photo-ionization detector
PLC	Programmable logic control
POTW	Publicly owned treatment works
vmqq	Parts per million by volume
PQL	Practical quantitation limit
psi	Pounds per square inch
PVC	Polyvinyl chloride
	Quality assurance/quality control
RBSI	Risk-based screening levels
RCRA	Resource Conservation and Recovery Act
RI	Reporting limit
scfm	Standard cubic feet per minute
SCIII	Sita-specific target lovel
SUL	Soluble threshold limit concentration
SILC	Soluble intestion
SVE	Soli vapor extraction
	Semivolatile organic compound
	Tertiary arry meury ener
TBA	
TCE	
TOC	Top of well casing elevation; datum is msi
TOG	I otal oil and grease
TPHd	I otal petroleum hydrocarbons as diesel
TPHg	Total petroleum hydrocarbons as gasoline
TPHmo	Total petroleum hydrocarbons as motor oil
TPHs	Total petroleum hydrocarbons as stoddard solvent
TRPH	Total recoverable petroleum hydrocarbons
UCL	Upper confidence level
USCS	Unified Soil Classification System
USGS	United States Geologic Survey
UST	Underground storage tank
VCP	Voluntary Cleanup Program
VOC	Volatile organic compound
VPC	Vapor-phase carbon

PROJECT NO. 2010

N

2010

PLATE 2

EXPLANATION
MW21
AS6 Alr Sparge Wel
RW4 Recovery Well
RW7
B38 Soll Boring/Soll Sample
DP9 Direct-Push Boring
CPT12 Cone Penetration Test Boring
Hydropunch Boring
Soil Vapor Extraction We
Destroyed Groundwater Monitoring Weil Ww3/B37
Soll Vapor Extraction Well
MW12/B12
Well Paved over - Inaccessible
MW-10 Groundwater Monitoring Well by Shell
SB-9 Soil Boring by Shell
MW-10 Groundwater Monitoring Well by Ekotek
CPT-7 Cone Penetration Test Boring by Ekotek Off Site
CPT-4 Cone Penetration Test Boring by Ekotek
Sell Boring by Ekotek 12/2009 & 01-2010 B-6
 Soll Boring by Ekotek July 1995 SB-9 Soll Boring by Ekotek Off Site
EO-1 Soil Boring by Enviro-Core Off Site
EO-6 Soil Boring By Enviro-Core
C-22 ● Soil Boring by Southern Pacific
MW-C-6
GW-1 GW-1 GW-1
DISSOLVED PHASE
HYDROCARBONS IN
GROUNDWATER
FORMER EXXON SERVICE STATION 720 High Street
Oakland, California
Cardno [®]
ERI
Shaping the Future
Project Flgure
Scale A
1"= 80'
File Name
2010 R35 TYPICAL PLUME LENGTH AERIAL_SP

TABLE 1WELL LOCATIONSFormer Exxon Service Station 73006Oakland, California(Page 1 of 1)

Well Owner	Type of Well	Distance (feet)	Location	Direction	Map Designation
PG&E	Cathodic Protection	670	Near Coliseum Way and 45th Avenue	Southeast	1
Integrated Environmental Systems	Destroyed Industrial	1,150	499 High Street	West-Southwest	2
National Lead Company	Industrial	1,500	4701 San Leandro Street	East	3
National Lead Company	Unknown	1,500	4701 San Leandro Street	East	3
PG&E	Cathodic Protection	2,200	Near 37th Avenue and East 12th Street	North-Northwest	4
PG&E	Cathodic Protection	2,100	Near Coliseum Way and 50th Avenue	Southeast	5
EBMUD	Cathodic Protection	1,950	Near Coliseum Way and 50th Avenue	Southeast	6

APPENDIX

A

CORRESPONDENCE

From:	Detterman, Karel, Env. Health
To:	"Sedlachek, Jennifer C"; "David R. Daniels"; "Mansour Sepehr"; Greg Gurss; mashpetroleum@yahoo.com
Cc:	Roe, Dilan, Env. Health
Subject:	Fuel Leak Case No. RO491 and GeoTracker Global ID T0600100552, EXXON #7-3006, 720 High Street, Oakland, CA 94601
Date:	Monday, April 06, 2015 3:28:40 PM
Attachments:	RO1135 Well Survey pages from SCM_SWL_R_2013-11-08.pdf

Hello everyone:

Alameda County Environmental Health (ACEH) staff has reviewed the case file including the *Soil* Assessment, Groundwater Monitoring Report and Request for Closure (RFC) dated January 30, 2015, prepared and submitted on your behalf by Cardno ERI (Cardno) in conjunction with the State Water Resources Control Board's (SWRCBs) Low Threat Underground Storage Tank Case Closure Policy (LTCP). Thank you for submitting the RFC.

The case appears to be eligible for closure contingent on addressing the two following Technical Comments in an RFC Addendum:

TECHNICAL COMMENTS:

- 1. Request for Updated Sensitive Receptor Survey: The RFC's Section 7, Sensitive Receptors, it states that Records from the Department of Water Resources (DWR) and Public Works (Alameda County Public Works Agency [ACPWA]) do not indicate the presence of municipal or domestic wells within a 2,000-foot radius of the site. However, Cardno's July 14, 2014 Updated SCM and Soil and Groundwater Investigation and Groundwater Monitoring Report refers to a CH2MHIII Report well survey for a neighboring fuel leak case, Southern Pacific Transportation Company, RO0001135, 744 High Street, Oakland, which included DWR and ACPWA records indicating the existence of three potential downgradient water supply wells within a 2,000-foot radius of the site as shown in the Attachment from R01135 Well Survey. To resolve this discrepancy, please confirm the presence of the water supply wells by performing a 2,000-foot well survey from both ACPWA and DWR records. ACEH requests review of both ACPWA and DWR well data sources for a complete inventory of vicinity water supply wells. ACEH requests the identification and location on a site vicinity figure all active, inactive, standby, decommissioned (sealed with concrete), unrecorded, and abandoned (improperly decommissioned or lost) wells including irrigation, water supply, industrial, dewatering, and cathodic protection wells within a 2,000-foot radius of the site, as shown in the attached Well Survey Map and Table for RO 475. Please provide a figure indicating numbered well locations, a table listing addresses of numbered well locations, distance and direction from site, and well use. Please include both the ACPWA and DWR records in an appendix.
- 2. Improve Legibility of Figure 4: Please revise and resubmit the RFC's Figure 4, *Dissolved Phase Hydrocarbons in Groundwater* to make the salient features of the figure legible by magnifying or enlarging the figure, highlighting the 90th Percentile and Average Plume Lengths and monitoring well locations, and fading-out the underlying aerial photograph base map.

TECHNICAL REPORT REQUEST

Please address the two Technical Comments in an RFC Addendum and upload technical report to the ACEH ftp site (Attention: Karel Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the following specified file naming convention and schedule:

 May 4, 2015 – Request for Closure Addendum File to be named: RO491_RFC ADDEND_R_yyyy-mm-dd

This report is being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR

Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Thank you for your cooperation. Should you have any questions or concerns regarding this correspondence or your case, please send me an e-mail message at <u>karel.detterman@acgov.org</u> or call me at (510) 567-6708.

Thank you,

Karel Detterman, PG Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502 Direct: 510.567.6708 Fax: 510.337.9335 Email: <u>karel.detterman@acgov.org</u>

PDF copies of case files can be downloaded at:

http://www.acgov.org/aceh/lop/ust.htm

APPENDIX

B

REMEDIAL ACTION COMPLETION CERTIFICATION, FORMER COBBLEDICK-KIBBE SITE 500 HIGH STREET, OAKLAND, CA, 94601 (ACHSA, 1998)

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

February 2, 1998 StID # 3818

REMEDIAL ACTION COMPLETION CERTIFICATION

AGENCY

Mr. John Schovanec Bank of America 4000 MacArthur Blvd., Ste. 100 Newport Beach, CA 92660

RE: Former Cobbledick-Kibbe Site, 500 High St., Oakland CA 94601

Dear Mr. Schovanec:

This letter confirms the completion of site investigation and remedial action for the one 10,000 gallon diesel/gasoline and the one 2,000 gallon gasoline underground tanks removed from the above described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground tank is greatly appreciated.

Based upon the available information and with provision that the information provided to this agency was accurate and representative of site conditions, no further action related to the underground tank releases is required.

This notice is issued pursuant to a regulation contained in Title 23, Division 3, Chapter 16, Section 2721 (e) of the California Code of Regulations.

Please contact Barney Chan at (510) 567-6765 if you have any questions regarding this matter.

Sincerely,

Mee Ling Tung

Director, Environmental Health

c: B. Chan, Hazardous Materials Division-files Stephen Hill, RWQCB Mr. Dave Deaner, SWRCB Cleanup Fund Mr. Leroy Griffin, City of Oakland OES, 505 14th St., Suite 702, Oakland CA 94612 RACC500Hi

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION (LOP) 1131 Harbor Bay Parkway. Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

ALAMEDA COUNTY HEALTH CARE SERVICES

1

DAVID J. KEARS, Agency Director

AGENCY

February 4, 1998 StID# 3818

Mr. John Schovanec Bank of America 4000 MacArthur Blvd., Ste. 100 Newport Beach, CA 92660 ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION (LOP) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

RE: Fuel Leak Site Case Closure Former Cobbledick-Kibbe Site 500 High St., Oakland CA 94601

Dear Mr. Schovanec:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with the Health and Safety Code, Chapter 6.75 (Article 4, Section 25299.37 h). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Health Services, Local Oversight Program (LOP) is required to use this case closure letter. We are also enclosing the case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site.

Site Investigation and Cleanup Summary:

Please be advised that the following conditions exist at the site:

* 4 parts per million (ppm) Total Petroleum Hydrocarbons as gasolinel (TPHg), 0.25, 0.0098, 0.17, 0.11 ppm BTEX, respectively and low levels (0.0055-0.2ppm) of the chlorinated hydrocarbons; methylene chloride, cis and trans-1,2-DCE and TCE remain in the soil at the site.

* 80 parts per billion (ppb) TPHg and 90 ppb TPHd, 0.9 ppb benzene and low levels (2.1-210 ppb) of the chlorinated solvents; cis and trans-1,2-DCE, TCE and vinyl chloride remain in groundwater at the site. (Vinyl chloride = 2.1 ppb)

This site should be included in the City's permit tracking system. Please contact me at (510) 567-6765 if you have any questions.

Sincerely,

Barney U. Chem

Barney M. Chan Hazardous Materials Specialist Mr. John Schovanec Former Cobbledick-Kibbe Site 500 High St., Oakland CA 94601 February 4, 1998 StID# 5487 Page 2.

enclosures: Case Closure Letter, Case Closure Summary

c: Mr. L. Griffin, City of Oakland OES, 505 14th St., Suite 702, Oakland CA 94612 B. Chan, files (letter only) trlt500Hi

I.

CASE CLOSURE SUMMARY Leaking Underground Fuel Storage Tank Program

Date: July 15,1997

Alameda County-HagMat Address: 1131 Harbor Bay Parkway Agency name: Rm 250, Alameda CA 94502 City/State/Zip: Alameda Phone: (510) 567-6700 Responsible staff person:Barney Chan Title: Hazardous Materials Spec. II. CASE INFORMATION Site facility name: Former Cobbledick Kibbe Site Site facility address: 500 High St., Oakland CA 94601 RB LUSTIS Case No: N/A Local Case No./LOP Case No.: 3818 ULR filing date: 4/10/90 SWEEPS No: N/A

Responsible Parties:Addresses:Phone Numbers:Bank of America c/o4000 MacArthur Blvd. Ste.100714-260-5808Mr. Taba SchaulageNewport Beach, CA 92660714-260-5812

Mr. Ja <u>Tank</u> <u>No:</u>	ohn Schovanec <u>Size in</u> <u>gal.:</u>	<u>Contents:</u>	<u>Closed in-place</u> <u>or removed?:</u>	Date:
1	10,000	diesel/gas	Removed	3/13/90
2	2,000	gasoline	Removed	3/13/90

III RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and type of release: unknown

AGENCY INFORMATION

Site characterization complete? Yes

Date approved by oversight agency:

Monitoring Wells installed? Yes Number: 7

Proper screened interval? Yes, based upon first encounterd groundwater during well installation. Groundwater is under semi-confined conditions.

Leaking Underground Fuel Storage Program

Highest GW depth: 1.57' Lowest depth: 8.79'

Flow direction: west-southwesterly

Most sensitive current use: commercial/industrial, however, downgradient of site are two residential homes.

Are drinking water wells affected? No Aquifer name: NA

Is surface water affected? No Nearest affected SW name: NA

Off-site beneficial use impacts (addresses/locations): NA

Report(s) on file? **Yes** Where is report(s)? Alameda County 1131 Harbor Bay Parkway, Room 250, Alameda CA 94502-6577

Treatment and Disposal of Affected Material:

<u>Material</u>	<u>Amount</u> (include units)	<u>Action (Treatment</u> <u>of Disposal w/destination)</u>	Date
Tanks & Piping	1-10,000 gallon 1-2,000 gallon	Disposed to Erickson Richmond, CA	3/13/90
Soil	410 tons	Disposed BFI, Livermore	2/14&2/15/91
Groundwater	unknown amount 20,000 gallons	H&H Shipping, SF Released to storm drain with RWQCB approval	3/21/90 3/8/91

Maximum Documented Contaminant	Contaminant Co Soil	oncentrations (ppm)	<u> </u>	Before a Wate	and After er (ppb)	Cleanup
	1 <u>Before</u>	After 3		2 Before	After	
TPH (gasoline)	1700	4		18,000	80	
TPH (Diesel)	2	ND		12,000	90	
Benzene	2	0.25	3000	1700	0.9	
Toluene	48	0.0098		1900	ND	
Ethylbenzene	30	0.17		150	ND	
Xylenes	150	0.11		3500	ND	

Comments (Depth of Remediation, etc.):

1 Initial sample from 3/13/90 tank removals

2 grab groundwater sample from 3/28/90 after pit recharged

3 Soil samples taken after overexcavation on 4/9/90

Page 2 of 4

Leaking Underground Fuel Storage Tank Program

Treatment and Disposal of Affected Material: (Oil Water Separator)

<u>Material</u>	<u>Amount</u> (include units)	<u>Action (Treatment</u> of Disposal w/destination)	Date
Oil-Water Separator	1-160 gallon (800 pounds)	Disposed by H&H Shipping San Francisco	2/3/92
Soil	approx 150 cy	Recycled by R&G Env. San Jose, CA 95128-2406	6/29/93

Maximum Documented Contaminant Concentrations - - Before and After Cleanup Contaminant Soil (ppm) Water (ppb)

	Defin Johns	D . 6	
	Belore Alter	Belore /	AITEL
	(1) (2)	(3)	(4)
TPH (Diesel)	ND NA		
Semi-vocs			
Vil and Grease	9400 ND 00 0 ND 107 07 5	-	
Metals: Cd, Cr, PD, N1, Zh	ND,90.3,ND,137,37.5)	
VOCS (8240) Nothulana Chlowida	0.053	•	
Metnylene Chioride	0.053	2.0	0.0
CIS-I, 2-DCE	0.20	2.8	96
trans-1,2-DCE	0.0055	1.3	24
TCE	0.012	3.2	210
1,1,1-TCA		3.1	ND
vinyi chioride			2.1
comments (Depth of Remed	liation, etc.):		
1 P3-5.5'			
2 P3-9', AS-1-7', AS-5-7	,		
3 PIT-1			
4 MW-7 (MW-1), 2/24/97 e	event		
IV. CLOSURE			
Does completed correctiv	ve action protect exis	sting beneficia	l uses per the
Regional Board Basin Pla	in? Undetermined		
Deer compating antique of		6	
Does corrective action p	brotect public nealth	for current la	na use: 165
Site management requirem	ents: Yes		
Should corrective action	be reviewed if land	use changes?	Yes
Monitoring wells Decommi	isioned: One of sever	n	
Number Decommisioned: or	ne Number Reta	ined: 6	
List enforcement actions	s taken: Preenforcemer	nt hearing-3/27	/95
List enforcement actions	rescinded above		
Tipe curordement accions	repetition. above		

Page 3 of 4

Leaking Underground Fuel Storage Tank Program

V. LOCAL AGENCY REPRESENTATIVE DATA

Title: Hazardous Materials Specialist

Date: 10/2/97

Name: Barney M. Chan Borney MChen Signature: Reviewed by

Name: Tom Peacock

Name: Madhulla Logan

Signature: Mast

Signature:

VI.

Title: Manager

Title: AWRCE

Date: 10-1-97

Title: Hazardous Materials Specialist

Date: September 22 , 1997

10-17-97

RB Response: Approved

Date:

Date Submitted to RB: RWQCB Staff Name: K. Graves

RWQCB NOTIFICATION

VII. ADDITIONAL COMMENTS, DATA, ETC.

see site summary

Page 4 of 4

Site Summary for 500 High St., StID #3818

ey Kan a

October 2, 1989- Three borings were advanced by Blymyer Engineers within and around the tank pit of the 10k and 2k USTs. Boring B-1, located within the tank pit, indicated a release had occurred exhibiting 330 ppm TPHg and 0.42, 7.8, 39 and 9.1 ppm BTEX, respectively.

March 13, 1990- One 10,000 gallon tank which had originally contained diesel and then gasoline and one 2,000 gallon gasoline tank were removed from this site. Groundwater was encountered in the bottom of both tank pits. Soil samples were taken at the groundwater interface from the ends of each tank. Samples were also taken from beneath the dispenser and along the piping run. Up to 1700 ppm TPHg and 2.0,48,30 and 150 ppm BTEX, respectively, was found in the soil samples from within the pit. Line samples detected neglible TPH or BTEX. Because floating product appeared on the water, the existing water was pumped out by H&H and grab groundwater samples taken on March 28, 1990. These samples exhibited up to 18 mg/l TPHg, 12 mg/l TPHD and 1,700, 1,900, 150 and 3,500 ppb BTEX, respectively.

April 9, 1990- The tank pit was overexparated and five confirmatory soil samples taken. Contamination was reduced to 4 ppm TPHg, 1.7 ppm TPHd and 0.25, 0.0098, 0.17 and 0.11 ppm BTEX, respectively.

During the winter of 1990, a water line ruptured and filled the excavation pit to approximately 3' bgs. Prior to backfilling the pit, approximately 20,000 gallons of water was pumped out into a Baker tank. The RWQCB approved the disposal of this water to a nearby storm drain on a one-time basis.

February 26 and 27, 1991- Three soil bores (B-1 through B-3) were converted into monitoring wells MW-1 through MW-3. Soil samples from these borings did not indicate much, if any, petroleum contamination. Based upon the detection of elevated petroleum contamination in MW-1, a fourth well, MW-4, was installed downgradient of the former UST on March 25, 1991. Up to 2400 ppm TPHd was detected in the boring from MW-4. As it turns out, this contamination was likely from a release from the oil-water separator located near MW-4, which was later removed.

May 23, 1991- Nine soil borings (P-1 through P-9) were advanced around the oil-water separator (OWS) attempting to delineate the extent of contamination from the OWS. Analysis of these soil borings indicated highest contamination immediately north and east of the OWS. These soil samples were analyzed for Oil and Grease and the one with the highest O&G was analyzed for halogenated VOCS. This sample, P-3-5.5', detected 9400 ppm TOG and was ND for VOCS. Site Summary for 500 High St. StID # 3818 Page 2.

N .

November 26, 1991- The 160 gallon steel, oil-water separator was removed from the site. Approximately 150-175 cubic yards of oil impacted soil was removed. A total of seven soil samples (AS-1 through AS-7) were taken from the pit after excavation on 11/27/91. The soil sample directly beneath the OWS, AS-1-7', was analyzed for the entire suite of waste oil parameters. Results of this analysis were: ND for TOG, 1.3 ppm TPHd, ND for TPHg, ND for BTEX, 0.053ppm methylene chloride, 0.20 ppm cis-1,2-DCE, 0.0055ppm trans-1,2-DCE, ND for semi-volatiles and background levels of the metals; chromium, nickel and zinc. Cadmium and lead were ND. The other samples were run for TOG, TPHd and HVOCs. The only additional HVOCs detected were 0.012 ppm TCE in sample AS-5-7'. Based upon these results, additional excavation in the northwest area of the pit was done and an additional sample, AS-8-9', was taken on 12/24/91. This sample exhibited ND for TOG, TPHd and HVOCs. It appears that excavation was fairly complete in removing soil contamination. During this excavation, MW-4 was properly destroyed.

On November 21, 1991 MW-5 was installed further downgradient of the OWS in Howard St. When sampled on 12/12/91 the HVOCs; cis and trans-DCE and TCE were detected above their respective MCLs.

Based upon the above results, on **March 16, 1992** MW-6 was installed even further downgradient within the Dailey Truck Body property, approximately 200' downgradient of MW-5 and approximately 300' downgradient of the OWS. Soil borings from MW-5 were analyzed from 6-6.5' and from 11-11.5' and from MW-6 from 5-5.5', 10-10.5' and 15-15.5'. No contaminants; TPH or HVOCs were detected in these samples. Unfortunately, only TPH was analyzed in the borings from MW-5.

Further offsite characterization was proposed and approved by our office, however, the owner of the offsite property denied access. After a pre-enforcement hearing on 3/27/95, site access was approved by Mr. Minor, the offsite property owner.

As a further attempt to determine the extent of the HVOC plume, an April 27, 1994 investigation was performed where four offsite borings (B-1 through B-4) were advanced and soil and groundwater samples taken. At the same time, groundwater was sampled from the existing wells plus the well from the adjacent property, the former El Monte R.V. Service center. This well was named MW-7 for the purposes of the 500 High St. investigation but was identified as MW-1 for the purpose of investigation a release from the former gasoline tank removed at the El Monte site (4341 Howard St.). Site Summary for 500 High St. StID # 3818 Page 3.

eg fige f

Soil samples from these borings indicate that both TPH and HVOCs did not impact the soil. The groundwater samples from the borings indicated that low levels of HVOCs were further downgradient of the site. The exception was the well on the El Monte RV site which detected considerably higher HVOCs in groundwater than the other sampling points. This indicates another possible offsite source of HVOCs besides the OWS.

This site was inherited by Bank of America through purchase of Security Pacific Bank who foreclosed on the loan of Mr. Cobbledick. The site has since been sold to the High St. Group with Bank of America retaining remediation responsibility. In **September 1994** a prepurchase subsurface investigation was performed at the site for the Thielscher Investment Corporation representing the High St. Group. A total of fourteen (14) borings were advanced at the site. Soil and grab groundwater samples were taken. No significant soil or groundwater contamination was observed. It appears that there is no significant soil contamination onsite.

The HVOC plume was detected highest in concentration near MW-7/ (MW-1) on the El Monte RV Center. Potential risk appears to be the highest to the two residential homes on Howard St.

A feasibility study was performed. Included in the options to be considered was a human health risk assessment (HHRA) and the performance of a pump test to determine if groundwater extraction was possible. Three additional borings were proposed to evaluate the lateral extent of contamination. One additional monitoring well was also proposed to be located immediately downgradient of the former OWS and adjacent to one of the residential homes. On **September 12, 1995** this well, MW-8, was installed. On **October 13, 1995** the three borings, AEC/B-1, AEC/B-2 and AEC/B-3 were advanced. On **December 21, 1995** wells MW-2, MW-5 and MW-8 were slug tested.

Soil contamination, again, was not detected in either MW-8 or the AEC borings. HVOC contamination was detected in groundwater from MW-8 but in significantly lower concentration than MW-7 (MW-1). The boring nearest MW-7, AEC/B-3, not surprisingly, exhibited the highest grab groundwater HVOCs concentration amoung the borings. These results support the belief that there may be a source of HVOC coming from the El Monte RV Center.

From monitoring data, our office concurred that the TPH releases from both the former Cobbledick Kibbe and El Monte RV was adequately investigated. Analysis for TPHg,d and BTEX was discontinued for all wells starting in 1996. Monitoring would Site Summary for 500 High St. StID # 3818 Page 4.

1 1. 1

continue for the HVOCs on a semi-annual basis. The HHRA provided should would include groundwater concentrations from wells closest the existing residential homes, which were installed by both sites.

An **April 8, 1997 ASTM RBCA** was provided for County review. The following pathways were considered complete and were therefore evaluated:

* Onsite residential ingestion and dermal contact to surface soil * Onsite residential exposure to outdoor air including volatiles and particulates from surface soils

* Volatiles and particulates from subsurface soils to ambient air * Volatiles from groundwater to ambient air

* Indoor air exposure from subsurface soils and groundwater to enclosed space

The HHRA was reviewed by Madhulla Logan of our office and she concurred that no risk existed exceeding 1E-6. In fact, the highest risk evaluated was from indoor air exposure pathways @ 1.4E-7 and its hazard quotient was 1.9E-3.

No further action is recommended for both the petroleum and HVOC releases based upon:

1. Adequate source removal; the UST and Qil Water Separator and impacted soil have been removed.

2. Adequate site characterization; HVOCs have been delineated both on and offsite of 500 High St. Additional monitoring wells and geoprobes/hydropunch sampling has been performed.

3. Groundwater in this area is not being used as a source of drinking water.

4. A HHRA has been performed and this indicates no risk exceeding 1E-6.

A risk management plan should be developed to :

* If appropriate, mitigate any potential negative impacts posed by the residual groundwater contamination

* Develop a strategy to address any risk posed to construction or utility worker exposure during earth moving activitities in the vicinity of groundwater contamination

* Take precautions to avoid making any vertical or lateral conduits which may cross contamination the shallow and deep aquifers

14

TABLE 3

á	 10.1	-7.5	414	
	•			

•

n v A ra

-

	Concentration Units	B-1 (6-9 feet)	B-2 (4-7 feet)	B-3 (4 feet)	Detection	Regulatory
Total Petroleun	Hydrocarbons					Chicila
Gasoline **	mg/kg	330 -	5.8	<2.5	0.5	1,0002
	mg/kg	<1	<1	<1.0	1.0	1,0002
Aromatic Hydro	carbons				2 	
Benzene	µg/kg	420	140	<5.0	1.0	203
Voluene Xvienes	μg/kg	7,800	51	40.0	1.0	2,0003
Ethylbenzene	μg/kg	39,000 9.100	140	15.0	1.0	35,0003
Total BTXE		53,320	641	6.0 66.0	1.0	11,6003
Semi-quantifier Level in mg/kg MCL or SAL is before a value i	d results, samples analyzed at which EPA defines as a \$	i after holding time for as azardom. binding.	aalysis had expired.			
		me verezion nmit of	ine analysis.	174 18		

•)

.

20 *

141-44.R3 11/21/89

100

TANK REMOVAL REJULTS

placed on ice, and transported under chain of custody to a California Department of Health Services certified laboratory for analysis.

Original results of the analyses and the chain of custody form used, are attached with this report.

Summary of Soil Sampling:

7

Six (6) soil samples were collected in the excavation on March 13, 1990 at the locations indicated on the attached drawing. All samples were analyzed by Sequoia Analytical Laboratory in Redwood City, California, for Total Petroleum Hydrocarbons (TPH) as Gasoline and Diesel with Benzene, Toluene, Ethyl Benzene, and Xylenes (BTE&X) distinctions on a five (5) day rush turnaround. Sequoia Analytical Laboratory is a Department of Health Services certified Lab (DHS# 145).

Soil Sampling Results:

Results of the analyses performed did show contamination levels above the laboratory stated detection limits:

* please note original results attached

Sample:		TPH as Gas	TPH as Dicscl	Benzene	Toluene	Ethyl Benzene	Xylene
	•	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
LINE DISP		2.0	N.D.	N.D.	N.D.	N.D.	0.13
LINE TANK		N.D.	N. D.	N.D.	N.D.	N.D.	N.D.
10 K FILL		N.D.	2.0	N.D.	N.D.	N.D.	N.D.
10 K END		5.0	N.D	0.10	N.D.	N.D.	N.D.
2 K FILL		1,700	**	2.0	48	30	150
2 K END		580 🤔	**	0.11	1.0	8.0	37
Detection Limits:		1.0	1.0	0.05	0.1	0.1	0.1

TPH as G = Total Petroleum Hydrocarbons as Gasoline N.D. = Not detected above stated limit ppm = parts per million

> Cobbledick-Kibbe 500 High Street, Oakland 2

Water Sampling Procedure:

At the time of the tank removal, floating product was noticed on the ground water in the excavation. In order to assure an accurate level of Total Petroleum Hydrocarbons in the water of that area it was recommended that the ground water in the excavation be pumped out and allowed to recharge. Herbert Elliot, President of Cobbledick-Kibbe was notified of the situation and gave the approval to remove the water. At that time H & H Shipping was called to pump out the contaminated ground water, which they did on March 21, 1990 and hauled water under Hazardous Waste Manifest Number 90003342 to their facility at 220 China Basin, San Francisco, CA.

Ground water was allowed to recharge and sampled on March 28, 1990 in accordance with accepted sampling techniques. Water was extracted with the use of a clean Teflon bailer and poured directly into appropriate glass amber one liter jars and VOA vials. Samples were labeled, placed on blue ice and transported under chain of custody to Sequoia Analytical Laboratory.

Summary of Water Sampling:

One (1) liter jar and two (2) vials were collected from the water in the area where the 2,000 gallon Diesel tank was located and analyzed for TPH as D and G with BTE & X distinctions. Four (4) vials were collected from the water in the area where the 10,000 gallon Gasoline tank was located and analyzed for TPH as G with BTE & X distinctions.

Water Sampling Results: FROM TANK REMOVAL

Results of the analyses performed did show contamination levels above the laboratory stated detection limits: Xylene Ethyl Toluene Benzene TPH TPH Sample: Benzene as Diesel as Gas 1= liter (ppb) (ppb) (ppb) V= vial (ppb) -(ppb) (ppb) 3.500 150 1.200 12,000 1.500 18,000 L1,V1,V2 3,200 3.4 1.900 1.700 17.000 V3.V4.V5.V6 Detection 0.3 0.3 0.3 0.3 30 Limits:

[please refer to the original lab results attached] ppb = parts per billion

> Cobbledick-Kibbe 500 High Street, Oakland 3

SOL SAMPLES AFTER OVEREXCAVATION

Soil Mitigation Work Performed:

7

Stud

After reviewing these results with Herb Elliott, Accutite recommended that the site be over-excavated with the goal of reducing the contamination to levels acceptable to the Implementing Agencies.

On April 9, 1990 Accutite began over-excavation of the site where the tanks had been removed. Five (5) soil samples were collected from the excation, and three (3) composite soil samples were taken from the stock piles on site, location of sampling is indicated on the attached drawing. All samples were analysed by Sequoia Analytical Laboratory in Redwood City, California, to be analyzed for TPH as G and D with BTE&X distinctions on a five (5) day rush turnaround.

	Soil Sampling Rest Sample:	ilts: TPH	трн	Benzene	Toluene	Ethyl Benzene	Xylene
	as Gas (ppm)		as Diesel (ppm)	(ppm)	(ppm)	(ppm)	(ppm)
(Comp. A	82	36	0.32	1.0	0.69	3.0
hpule 3	Comp. B	200	99	0.83	3.0	3.0	13
(Comp. C	210	140	0.85	4.0	2.0	12
	10 K End	N.D.	1.7	0.0065	0.0059	N.D.	0.011
	10 K Fill	N.D.	N.D.	0.0061	N.D.	0.0054	0.013
	2 K End	2.0	N.D.	0.25	0.0098	0.057	0.055
	2 K Fill	4.0	N.D.	0.050	0.0094	0.17	0.11
	Middle	2.0	N.D.	0.051	N.D.	0.033	0.013
	Detection Limits:	1.0	1.0	0.005	0.00)5	0.005

Cobbledick-Kibbe 500 High Street, Oakland 4

			TAN SI	LE I, Summary Of Well Install: Soil Sample Analytical Results Bank of America 10 High Street, Oakland, Califor BEI Job No. 91169	ation nia			
	Sample Identification	Modified EPA	A Method 8015 g/kg)	EPA Method 8010 (µg/kg)		EPA Met (µg/	hod 8020 (kg)	
	Ē	TPH as diesel	TPH as gasoline	Halogenated Volatile Organics	Benzene	Ethylbenzene	Toluene	Total Xylenes
	B-1 5'	50	<1		<2.5	<2.5	<2.5	<2.5
	B-1 10'	<1	<1		<2.5	<2.5	<2.5	<2.5
	B-2 5.5-6'	67	<1		<2.5	<2.5	<2.5	<2.5
	B-2 11-11.5'	<1	<1		<2.5	<2.5	<2.5	<2.5
	B-3 5-5.5'	18	<1		<2.5	<2.5	<2.5	<2.5
	B-3 11'	<1	<1		<2.5	<2.5	<2.5	<2.5
	B-4-1 5.5-6'	(2,300)	<1	<u>.</u>	<2.5	<2.5	9.8	4.9
2	B-4-2.10-10.5'	<1	<1		<2.5	<2.5	<2.5	<2.5
Ċ	MW-5 6-6.5'	<1	<1		<2.5	<2.5	<2.5	<2.5
	MW-5 11-11.5'	<1	<1		<2.5	<2.5	<2.5	<2.5
	MW-6-1 5-5.5'	<1	<1	ND	<5.0	<5.0	<5.0	<5.0
	MW-6-2 10-10.5'	<1	- <1	ND	<5.0	. <5.0	<5.0	<5.0
	MW-6-3 15-15.5'	<1	<1	ND	<5.0	<5.0	<5.0	<5.0

1

=	below	grade	surface
---	-------	-------	---------

=	Total	Petroleum	Hydrocarbons
---	-------	-----------	--------------

= milligrams per kilogram

mg/kg µg/kg

Ξ

bgs TPH

micrograms per kilogram

Shaded areas indicate that samples were not analyzed for the listed method. For results presented as < x, x represents the reporting limit.

• •	BORINGS 1	FROUND	0 W S			
TABLE V, Summary Of Soil Bore Sample Analytical Results Bank of America 500 High Street, Oakland; California BEI Job No. 91169						
Sample	Date	Sample	SM5520CF	EPA Method 8010		
Identification	Sampled	(feet bgs)	Oil and Grease (mg/kg)	Halogenated Volatile Organics (mg/kg)		
P-1-6'	5/23/91	6	25			
P-1-10.5'	5/23/91	10.5	12			
P-2-5'	5/23/91	5	280			
P-2-9'	5/23/91	9	11			
P-3-5.5'	5/23/91	5.5	9,400	ND		
P-3-9'	5/23/91	9	8,300			
P-4-3*	5/23/91	3	4,300			
P-4-9'	5/23/91	9	19			
P-5-6'	5/23/91	6	11			
P-6-6'	5/23/91	6	<10			
P-7-5.5'	5/23/91	5.5	<10			
P-7-8'	5/23/91	8	<10			
P-8-6'	5/23/91	6	<10			
P-9-6'	5/23/91	6	<10			

mg/kg = ND

≒

milligrams per kilogram

None detected above the reporting limit

bgs below grade surface

Shaded areas indicate that samples were not analyzed for the listed method.

For results listed as <x, x represents the reporting limit.

8 B

		TABL	F VI, Summ Soil S \$00 High	ary of Oil-Water Sep ample Analytical Re Bank of America Street, Oakland, Ca BEL Job No. 91169	arator Excayation sults difornia		
Sample Identification	SM5520EF	Modified EPA M	fethod 8015	EPA Method 8020	EPA Method 8010	EPA Method 8270	EPA Methods 6010/7420
	Oil and Grease (mg/kg)	TPH as Diesel (mg/kg)	TPH as Gasoline (mg/kg)	BTEX (pg/kg)	Halogenated Volatile Organics* (µg/kg)	Semi-volatile Organics (µg/kg)	Total Metals (mg/kg)
AS-1-7'	<50	1.3	<1.0	<5.0	methylene chloride (53) eis-1,2-dichloroethene (200) trans-1,2-dichloroethene (5.5)	ND	Chromium (90.3) [0.50] Nickel (137) [1.6] Zinc (37.5) [1.0]
AS-2-11'	<50	1.2			ND		
AS-3-8'	<50	<1.0			ND		
AS-4-8'	<50	<1.0			ND		
AS-5-7'	<50	<1.0			cis-1,2-dichloroethene (12) trans-1,2-dichloroethene (2.9) trichloroethylene (12)		
AS-6-11'	52	<1.0			trichloroethylene (3.2)		
AS-7-8'	<50	<1.0			ND		
AS-8-9'	<50	<1.0			ND		

TPH = Total Petroleum Hydrocarbons NA = mg/kg = (x) =

Not analyzed Detected concentration

milligrams per kilogram micrograms per kilogram

pg/kg =

*

WORK IN

ND None detected above the reporting limit =

Compounds that are individually listed were the only analytes detected above the respective reporting limits. =

Shaded areas indicate that samples were not analyzed for the listed method.

For results listed as <x, x represents the reporting limit.

· . . 2.0

A.

.

REVISED 4-3-97 H: PUBLIC ACADLW 922422d

4/27/94 OFFSITE BORINGES - TPH

		TABLE	I, Summa for P BEI Job J 500 High	ry of Sol etroleum No. 92242 Street, O	l Sample An Hydrocarbo , Bank of An akland, Cali	alytical Results . ns merica formia		
Sampie ID	Depth (feet)	Sample Date	Modifie Methor (mg	ed EPA 1 8015 ykg)		EPA Metho (µg/kg	id 8020 ;)	
			TEPH	TPPH	Benzene	Ethylbenzene	Toluene	Totai Xylenes
B-1-6	6	4/27/94	<1	<1	<2.5	<2.5	<2.5	<2.5
B-1-11	11	4/27/94	<1	<1	<2.5	<2.5	<2.5	<2.5
B-2-6	6	4/27/94	<1	<1	<2.5	<2.5	<2.5	<2.5
B-2-11	11	4/27/94	<1	<1	<2.5	<2.5	<2.5	<2.5
B-3-6	6	4/27/94	<1	<1	<2.5	<2.5	<2.5	<2.5
B-3-11	11	4/27/94	<1	<1	<2.5	<2.5	<2.5	<2.5
B-4-6	6	4/27/94	<1	<1	<2.5	<2.5	<2.5	<2.5
B-4-11	I1	4/27/94	<1	<1	<2.5	<2.5	<2.5	25

Notes:

÷

.

EPA	=	Environmental Protection Agency
TEPH	=	Total Extractable Petroleum Hydrocarbons
TPPH	3	Total Purgable Petroleum Hydrocarbons
mg/kg	= _	milligrams per kilogram
ug/kg	#	micrograms per kilogram
<	=	less than the method reporting limit (x)

4/27/94 OPPSITE BURINGS - HUOCS

1

Sample ID	Sample Depth (feet)	Sampling Date		HVOs EPA Method 8010 (µg/Kg)							
			cis- 1.2-DCE	trans-1,2- DCE	TCE	TCA	Vinyl Chloride				
B-1-6	6	4/27/94	<2.0*	<2.0	<2.0	<2.0	<2.0				
B-1-11	11	4/27/94	<2.0*	<2.0	<2.0	<2.0	<2.0				
B-2-6	6	4/27/94	<2.0*	<2.0	<2.0	<2.0	<2.0				
B-2-11	11	4/27/94	<2.0*	<2.0	<2.0	<2.0	<2.0				
B-3-6	6	4/27/94	<2.0*	<2.0	<2.0	<2.0	<2.0				
B-3-11	11	4/27/94	<2.0*	<2.0	<2.0	<2.0	<2.0				
B-4-6	6	4/27/94	<2.0*	<2.0	<2.0	<2.0	<2.0				
B-4-11	11	4/27/94	<2.0*	<2.0	<2.0	<2.0	<2.0				
1 Same	10. J.	Ellerskier, see	All all and the	16 AN 18 AN	terit I. Sa	Martania,					

Notes:

<7

HVOs = Halogenated Volatile Organics

DCE = Dichloroethene

TCE = Trichloroethene

TCA = Trichloroethane

µg/Kg = _ micrograms per kilogram

= less than the method reporting limit (x)

= Technically nonreportable concentration, cis-1,2-DCE laboratory standard was not run by laboratory

Project No. 3278

TABLE 1 SEPTEMBER 1994 IN JESTIGATION SEPTEMBER 1994 IN JESTIGATION CHEMICAL COMPOUNDS DETECTED IN SOIL AND GRAB GROUND-WATER SAMPLES CHEMICAL COMPOUNDS DETECTED IN SOIL AND GRAB FACILITY FORMER COBBLEDICK-KIBBE FACILITY OAXLAND, CALIFORNIA (concentrations in ppm)

			1.110212				BAITERS BUT		RANGE ST	
Sample		TPN as	TPH as diesel	TPN	as oil	TCE.	CIS- ,2-DCE	Acetone	Methy Chlor	lene ide
10 1	3000000		*******		•					
Ground water						-0.005	<0.005	<0.100	-0,	.005
\$8-1GGW	20-Sep-94	<0.05	<0.05		a.2	<0.005	<0.005	<0.100	4	.005
SR-3CGV	20-Sep-94	<0.05	<0.03		-		-0.005	<0.100	. <0	.005
SE-SGGW	20-Sep-94	<0.05	<0.05	5	<0.2	0.005	<0.005	<0.100) <0	.005
	19-Sep-94	<0.05	<0.05	5	<0.2	<0.003		-0.10	n ⊲0	
28.0004		<0.05	<0.0	5	0.3	<0.005	<0.005	40-10		
SB-8GGW	19-Sep-74		∠0 0'	5	0.2	<0.005	<0.005	<0.10	0 4	1.005
58-966¥	19-Sep-94	<0.05		- -	0.3	<0.005	0.010	<0.10	0 4	1.005
58-14GGH	20-Sep-94	1.5	v.	•						
Soll		-								0.005
***********	1	1		4	4	<0.005	<0.005	<0.10		
SB-1-3	20-Sep-94	40.2			63	<0.005	<0.005	<0.10	>0 1	0.005
58-2-4	20-sep-94	<0.2			0	<0.005	<0.005	<0.1	00 1	d.006
58-3-3	20-Sep-94	<1	2.3	<1 :	,	-0.005	<0_005	; <0.1	00 ·	-0.007
cz.4.3	20-Sep-94	<0.Z	125-13	<1	20	49.005	-0.00	s 0.1	20	<0.030
	20-Sep-94	् व		ও	196	<0.005				<0.020
28-1-4-1	20-5-0-94	<0.2		<3	140	<0.005	<0.00			×0.007
58-6-3-5	20-300-04	<0.2		<1	53	<0.005	<0.00	\$ <0.1	100	
s a- 7-3	19-Sep-94			45	800	<0.00	; <0.00	5 4.1	100	<0*010
58-6-2	19-Sep-94			-3	400	<0.00	5 <0.00	15 0. 3	240	<0.020
SB-9-3	19-Sep-94	<1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	57	<0.00	5 <0.00	, s <0.	100	<0.005
58-10-2.5	19-Sep-94	<1		<1	عر هر	<0.00	5 <0.0	05 0.	100	<0.020
SH-11-3.5	19-Sep-94	<0.2		<1	• • • • •	-0.00	- < <0.1	05	ĸA	0.023
58-14-3.5 *	20-Sep-94	<0.2		<5	1,100) «ψ.Ψυ			1 X 4 X 10 X 10	128 8225 4
		1								

Data entered by OLM/18 Oct 94 Data proofed by <u>LPL</u> OM/OC <u>KH</u>

ppm = parts per million

.

.× *

1 2415

2 2 13

> NA = not analyzed TPHd = total petroleum hydrocarbons as dieset TPHg = total petroleum hydrocarbons as gasoline TPHo = total petroleum hydrocarbons as oil

All samples analyzed using EPA Nethod 8015 TPHg, BTEX, TPHd, TPHo, EPA Method This sample not analyzed by EPA Method 8240 but EPA Method 8010 and EPA Method 8020 8240 volatile organic compounds

17 7.000

1

ARTESIAN ENVIRONMENTAL

Table 1

Soil Laboratory Analytical Results 4341 Howard Street, Oakland, California

AEC BORINGS PERFORMED FOR MINOR (EL MONTERV. CENTER)

. 9		Sample	EPA Method 8010			
Sample	Date	Depth	compounds	12	g et	
ID	Sampled	(feet)	μg/Kg	 	 	
B 1	10/13/95	8	<0.5			
B2	10/13/95	8	<0.5			
245						
B3	10/13/95	11.5	<0.5			
2 A A						

Notes 🐘 👘

See go

· .

1.0

ŧ.

No targeted volatile halogenated compounds detected in soil samples

 $\mu g/Kg = micrograms$ per kilogram; equivalent to parts per billion (ppb)

n () ·· * * · .

4 (* 11)

1946 - 19⁴ - 1

3100 Kerner Blvd., Suite C • San Rafael, CA • 94901 • (415) 257-4801 • FAX (415) 257-4805

Table 2 Groundwater Laboratory Analytical Results

4341 Howard Street, Oakland, California

	·										
			trans	cis		Other EPA				Ethyl	Total
	Sample	Date	1.2 DCE	1,2 DCE	TCE	Method 8010	TPH-g	Benzene	Toluene	benzene	Xylenes
(a _	ID	Sampled	μ g/L	µg/L	μg/L	compounds	mg/L	μ g/L	μg/L	μg/L	μg/L
H-7)	MW-1 (1)	6/25/93	NA	NA	NA	NA	<0.05 (2)	<0.5	<0.5	<0.5	<0.5
	MW-1	7 <i>1</i> 27/93	NA	NA	NA	NA	0.25	1.7	<0.5	<0.5	<0.5
	MW-1	4/27/94	NA	NA	NA	NA	0.34	2.1	<0.5	<0.5	<0.5
	MW-1	7/29/94	NA	NA	NA	NA	0.41	1.8	<0.5	<0.5	<0.5
	MW-1	10/25/94	NA	NA	NA	NA	< 0.05	<0.5	<0.5	<0.5	<0.5
	MW-1	3/23/95	12	36	220	ND(3)	0.08	1.6	<0.5	<0.5	<0.5
	MW-1	10/16/95	7.2	91	91	ND	<0.05	0.6	<0.5	<0.5	<0.5
rab	B1 AQ	10/13/95	<0.5	2.2	4.3	ND	NA	NA	NA	NA	NA
ws	B2 AQ (4)	10/13/95	3.4	22	9.7	ND	NA	NA	NA	NA	NA
r (B3 AQ	10/13/95	9.4	[•] 120	83	. ND	NA	NA	NA	NA	NA

Notes

and the second second

a trade

A Dealer of

1. 3.1.5

(1) Grab water sample collected during well installation

(2) 0.37 mg/L of unknown compounds in gasoline range

(3) All other EPA METHOD 8010 analytes were below laboratory reporting limits

(4) Groundwater reacted with preservative forming small bubbles in VOA

mg/L = milligrams per Liter; equivalent to parts per million (ppm)

 $\mu g/L = micrograms per Liter; equivalent to parts per billion (ppb)$

TPH-g = Total Petroleum Hydrocarbons as Gasoline

trans-1,2 DCE = trans 1,2 Dichloroethene

cis-1,2 DCE = cis 1,2 Dichloroethene

TCE = Trichloroethene

NA = Not Analyzed

3100 Kerner Blvd., Suite C • San Rafael, CA • 94901 • (415) 257-4801 • FAX (415) 257-4805

MW8: SOIL BORINGS

		BEI Jo 500 Hij	b No. 9224 gh Street, (2, Bank of Jakland, C	America alifornia		
Sample IDSampleSampleEPABTEXDepthDate415.1EPA 8020(feet)(mg/kg)(µg/kg)							
5	(1001)		TOC	Benzene	Toluene	Ethylbenzene	Total Xylenes
Manie - Silverichi							
MW8-6 5	65	09/12/95	NA	<2.5	<2.5	<2.5	<2.5
NUMB 0	0.0	09/12/95	300	NA	NA	NA	NA
MW8-14.5	14.5	09/12/95	280	<2.5	<2.5	<2.5	<2.5

Notes:

ų.

ŝ

TOC BTEX mg/kg µg/kg	a.		Total Organic Carbon Benzene, Toluene, Ethylbenzene, Total Xylenes Milligrams per kilogram Micrograms per kilogram Not analyzed
NA <x< td=""><td></td><td>=</td><td>Less than the method reporting limit (x)</td></x<>		=	Less than the method reporting limit (x)
~~~			

and the second se	•	) Tabl	ηωδ : • 11, Sumr 5	SOIL D nary of Sol EI Job No 00 High St	ATA'.C. 1 Sample A .92242, Ba reet, Oakla	hornate nalytical H nk of Amer nd, Califor H	Voc tesuits f ics nis VOs	or HVOs		
	Sample ID	Sample	Sample Date			EPA Me	g/kg)	.0		
		(feet)		Cis-	Trans-	1,1-DCE	TCE	1,1,1- TCA	1,1,2- TCA	Vinyl Chloride
				1,2-DCE	1,2-DCE	1				.0.0
	NOTION STREAM				-20	<2.0	<2.0	<2.0	<2.0	<2.0
	MW8-6.5	6.5	9/12/95	<2.0	2.0	<2.0	<2.0	<2.0	<2.0	
	MW8-14.5	14.5	9/12/95	<2.0	Succession	Creshin Mill		<u>1997, 1997, 1997</u>		
and the second se	MW8-14.514.5 $9/12/95$ Notes:HVOs=Halogenated Volatile OrganicsDCE=DichloroetheneTCETCA=Trichloroethaneµg/kg=Less than the method reporting limit (x)Shaded results indicate concentrations over the listed method detection limit.									





H:\PUBLIC\ACADLW\922422A



..

Blymyer Engineers, Inc.

Table I, Summary of Groundwater Sample Analytical Results for Petroleum Hydrocarbons BEI Job No. 92242, Bank of America 500 High Street, Oakland, California

Sample Identification	Sampling Date	Modifi Metho (m	ed EPA d 8015 g/L)		EPA Met (µg	hod 602 /L)	
		TPH as diesel	TPH as gasoline	Benzene	Toluene	Ethyl- benzene	Total Xylenes
MW-1	3/4/91	0.18	0.67	280	3.1	16	40
	11/26/91	<0.05	0.17	12	1.1	<0.5	4.9
	12/17/91	NA	NA	NA	NA	NA	NA
	9/13/93	<0.05	0.05	1.1	<0.5	<0.5	0.74
e i i i i i i i i i i i i i i i i i i i	4/27/94	0.13	0.08	5.2	<0.5	0.7	<0.5
	8/3/94	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	10/26/94	0.12 ^e	<0.05	<0.5	<0,5	<0.5	<0.5
	3/22/95	0.16	0.21	14	<0.5	<0.5	<0.5
	6/26/95	0.18*	<0.05	0.8	<0.5	<0.5	<0.5
	10/12/95	0.09°	<0.05	<0.5	<0.5	<0.5	<0.5
	2/21/96	NA	NA	NA	NA	NA	NA
	8/22/96	NA	NA	NA	NA	NA	NA
	2/24/97	NA	NA	NA	NA	NA	NA
la di si bisi	Way Barghan	(ini) () (a)	os - Period			(manifestille	
MW-2	3/4/91	<0.05	0.07	<0.5	<0.5	<0.5	<0.5
5	11/26/91	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	12/17/91	NA	NA	NA	NA	NA	NA
	9/13/93	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	4/27/94	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	8/3/94	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	10/26/94	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	3/22/95	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	6/27/95	0.16	<0.05	<0.5	<0.5	<0.5	<0.5
	10/12/95	0.14°	<0.05	<0.5	<0.5	<0.5	<0.5
	2/21/96	NA	NA	NA	NA	NA	NA
	8/21/96	NA	NA	NA	NA	NA	NA
	2/24/97	NA	NA	NA	NA	NA	NA
ekoneko Kae	with the state of the second s	gi de conte	t stand	(Jacobia)			(SCOMES)2
MW-3	3/4/91	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	11/26/91	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	12/17/91	NA	NA	NA	NA	NA	NA
	9/13/93	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	4/27/94	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	8/3/94	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	10/25/94	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	3/23/95	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5
	6/26/95	0.12°	<0.05	<0.5	<0.5	<0.5	<0,5
	10/13/95	0.08 ^e	<0.05	<0.5	<0.5	<0.5	<0.5
	2/21/96	NA	NA	NA	NA	NA	NA

-

Í

Ta	ble I, Summ B 5	ary of Gro for Petr EI Job No 30 High St	oleum Hy 92242, B reet, Oakl	drocarboni ank of Ame and, Califo	nalytical fi rica rnia					
Sample dentification	Sampling Date	Modifie Method (mg	d EPA 8015 /L)	EPA Method 602 (µg/L)						
		TPH as diesel	TPH as gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes			
	9/02/06	NA	NA	NA	NA	NA	NA			
	2/24/97	NA	NA	NA	NA	NA	NA NA			
	The state of the second states	CAR BACK LAND	n ang th	) . ¹			<u>CASER AND</u>			
CARLES AND	3/27/91	<0.05	0.17	2.7	<0.5	<0.5	<0,0			
MW-4	S S S S S S S S S S S S S S S S S S S	Negaratine XX	S. Berley	a area a		0.002.228	C. e. A table for			
	11/26/91	<0.05	0.06	<0.5	0.7	<0.5	1.1			
MW-5	10/19/01	NA	<0.05	<0.5	<0.5	<0.5	<0.5			
	0/19/02	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5			
	9/13/93	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5			
	4/21/94	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5			
	8/3/94	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5			
	10/25/94	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5			
	3/22/95	0.00	<0.05	<0.5	<0.5	<0.5	<0.5			
	6/27/95	-0.05	<0.05	<0.5	<0.5	<0.5	<0.5			
	10/12/95	- NTA	NA	NA	NA	NA	NA			
	2/20/96	NA NA	NA	NA	NA	NA	NA			
	8/21/96	NA NA	NA	NA	NA	NA	NA			
	2/25/97		The Second of	a. Carra della	ere o reighte	an san sa				
		2013A. 196	-0.05		<0.5	<0.5	<0.5			
MW-6	3/19/92	0.073	<0.05	<0.5	<0.5	<0.5	0.85			
	9/13/93	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5			
	4/27/94	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5			
	8/3/94	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5			
	10/26/94	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5			
	4/6/95	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5			
	6/26/95	0.14	<0.00	c0.5	<0.5	<0.5	<0.5			
	10/13/95	0.09	<u.ud< td=""><td>NA NA</td><td>NA</td><td>NA</td><td>NA</td></u.ud<>	NA NA	NA	NA	NA			
	2/20/96	- NA	NA NTA	NA	NA	NA	NA			
	8/21/96			- NA	NA	NA	NA			
	2/24/97	NA		2743 2743 (1975) - 1975 2743 (1975) - 1975		WY YOU AND				
de a ta aita		AN PORCH	<u>27-0.0000</u>	16	<0.5	<0.5	<0.5			
MW-7 @	4/27/94	<0.05	0.11	85	<0.5	<0.5	<0.5			
	8/3/94	<0.05	0.14	1.0	0.8	<0.5	<0.5			
	10/25/94	0.08	0.23	0.8	<0.5	<0.5	<0.5			
	4/6/95	<0.05	<0.05	1.0	<0.5	<0.5	<0.5			
	6/27/95	0.15	0.18	1.0	<0.5	<0.5	<0.5			
	10/16/95	0.09	0.08	NIA	NA	NA	NA			
	2/20/96	- NA		NA	NA	NA	NA			
	8/21/96	NA	NA	NTA	NA	NA	NA			
1	2/24/97	NA NA	NA	ANT		TATION AND AND AND A	State State State			

Table I, Summary of Groundwater Sample Analytical Results for Petroleum Hydrocarbons BEI Job No. 92242, Bank of America 500 High Street, Oakland, California

Sample Identification	Sampling Date	Modified EPA Method 8015 (mg/L)		EPA Method 602 (µg/L)					
		TPH as diesel	TPH as gasoline	Benzene	Toluene	Ethyl- benzene	Total Xylenes		
MW-8	10/12/95	0.11 ^{c,b}	<0.05	<0.5	<0.5	<0.5	<0.5		
	2/20/96	NA	NA	ŇA	NA	NA	NA		
	8/21/96	NA	NA	NA	NA	NA	NA		
	2/25/97	NA	NA	NA	NA	NA	NA		
11	Ary Andre (	h. 1	, i						
PIT-1	12/17/91	NA	NA	NA	NA	NA	NA		
8. 4 ⁰ - 7	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	211 - W.F	031.033						
B-1-AQ	4/27/94	0.19	<0.05	<0.5	1.6	<0.5	3.0		
B-2-AQ	4/27/94	0.14	<0.05	<0.5	1.3	<0.5	1.9		
B-3-AQ	4/27/94	0.18	<0.05	<0.5	0.8	<0.5	1.1		
B-4-AQ	4/27/94	NA*	NA*	<0.5	0.9	<0.5	<0.5		

Notes:

ż

mg/L	=	milligrams per liter
ug/L		micrograms per liter
TPH	=	Total Petroleum Hydrocarbons
NA	=	Not analyzed
(m)	=	Well installed by Mr. Jim Minor, trustee
<x< td=""><td>52</td><td>less than the method reporting limit (x)</td></x<>	52	less than the method reporting limit (x)
DHS	=	Department of Health Services
а	=	Insufficient water to allow analysis
ъ	-	The laboratory reports this result as an unknown hydrocarbon with several peaks
e	-	The laboratory reports that this result appears to be a heavier hydrocarbon than diesel.
đ	=	The laboratory reports that this result has an atypical pattern for gasoline analysis.
e	5	The laboratory reports that Freon 113 was detected in the sample and the method blank at concentrations of 1.0 and 1.1 $\mu$ g/L, respectively.

Bold results indicate concentrations above the listed method detection limit.

Maximum Contaminant Levels (MCLs) ^f	Benzene Toluene Ethylbenzene Total Xylenes		1 µg/L (Primary DHS MCL) 150 µg/L (Primary DHS MCL) 700 µg/L (Primary DHS MCL) 1.750 µg/L (Primary DHS MCL)
	Total Xylenes	=	1,750 µg/L (Primary DHS MCL)

¹ Information obtained from *Compilation of Federal and State Drinking Water Standards and Criteria*, July 1995, Quality Assurance Technical Document No. 3, State of California Department of Water Resources.

	Table II, I	Summary of BEI 500 I	Groundwa Job No. 92 High Stree	ter Sample 242, Bank t, Oakland,	Analytic of Ameri Californ	al Rési ca lia	llts for I	IVOs	
Sample Identification	Sampling Date			El	HVOs PA Methoo (µg/L)	1 8010			
		Chloroform	cis- 1,2-DCE	trans- 1,2-DCE	1,1- DCE	TCE	1,1, <b>1</b> - TCA	1,1,2- TCA	Vinyl Chloride
MW-1	3/4/91	<0.4	NA	NA	NA	NA	NA	NA	NA
	11/26/91	<0.4	NA	NA	NA	NA	NA	NA	NA
	12/17/91	<0.4	21	. 5.8	<0.4	58	<2.5	<2.5	<5.0 .
	9/13/93	<0.4	3.4	1.6	<0.4	22	<0.5	<0.5	<1.0
	4/27/94	<0.4	<0.4*	<0.4	<0.4	21	<1	<1	<0.4
	8/3/94	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<1	0.9
	10/26/94	<0.4	2.9	1.0	<0.4	19	<0.4	<1	<0.4
	3/22/95	<0.4	2.4	2,4	<0.4	16	<0.4	<1	<0.4
	6/26/95	<0.4	2.9	0.8	<0.4	16	<0.4	<1	<0.4
	10/12/95	<0.4	2.0	0.57	<0.4	18	<0.4	<1	<0.4
	2/21/96	<0.4	3.8	<0.4	<0.4	15	<0.4	<1	. <0.4
	8/22/96	<0.4	1.7	1.2	<0.4	16	<0.4	<1	<0.4
	2/24/97	<0.4	2.7	1.5	<0.4	13	<0.4	<1	<0.4
						2 : : <b>:</b> :		1.281.330	
MW-2	3/4/91	<0.4	NA	NA	NA	NA	NA	NA	NA
	11/26/91	<0.4	NA	NA	NA	NA	NA	NA	NA
	12/17/91	<0.4	<2.5	<2.5	<0.4	<2.5	<2.5	<2.5	<5.0
	9/13/93	<0.4	<0.5	<0.5	<0.4	<0.5	<0.5	<0.5	1.0
	4/27/94	<0.4	<0.4*	<0.4	<0.4	<0.4	<1	<1	<0.4
	8/3/94	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<1	<0.4
	10/26/94	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<1	<0.4
	3/22/95	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<1	<0.4
	6/27/95	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<1	<0.4
	10/12/95	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<1	<0.4
	2/21/96	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<1	<0.4
	8/21/96	<0.4	<0,4	<0.4	<0.4	<0.4	<0.4	<1	<0.4
	2/24/97	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<1	<0.4

	Table II,	Summary of ( BEI 500 I	Groundwat Job No. 92 High Street	er Sample 242, Bank , Oakland,	Analytic of Americ Californ	al Resu ca la	dts for H	WOs	
Sample Identification	Sampling Date			EF	HVOs A Methoo (µg/L)	l 8010			
		Chloroform	cis- 1,2-DCE	trans- 1,2-DCE	1,1- DCE	TCE	1,1,1- TCA	1,1,2- TCA	Vinyl Chlorid
				33140411		10030			
MW-3	3/4/91	<0.4	NA	NA	NA	NA	NA	NA	NA
	11/26/91	<0.4	NA	NA	NA	NA	NA	NA	NA
	12/17/91	<0.4	<2.5	<2.5	<0.4	4.0	<2.5	<2.5	<5.0
	9/13/93	<0.4	<0.5	<0.5	<0.4	1.8	<0.5	<0.5	<1.0
	4/27/94	<0.4	<0.4ª	<0.4	<0.4	1.1	<1	<1	<0.4
	8/3/94	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<1	<0.4
	10/26/94	<0.4	<0.4	<0.4	<0.4	1.4	<0.4	<1	<0.4
	3/22/95	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<1	<0.4
	6/26/95	<0.4	<0.4	<0.4	<0.4	1.7	<0.4	<1	<0.4
	10/13/95	<0.4	<0.4	<0.4	<0.4	2.4	<0.4	<1	<0.4
	2/21/96	<0.4	<0.4	<0.4	<0.4	3.2	<0.4	<1	<0.4
	8/22/96	<0.4	0.8	<0.4	<0.4	3.0	<0.4	<1	<0.4
	2/24/97	<0.4	1.3	<0.4	<0.4	4.3	<0.4	<1	<0.4
						A Babba			
MW-4	3/27/91	<0.4	NA	NA	NA	NA	NA	NA	NA
					BRUNN	Ari All			
MW-5	11/26/91	<0.4	NA	NA	NA	NA	NA	NA	NA
	12/12/91	<0.4	55	32	<0.4	93	<1.0	<1.0	<2.0
	9/13/93	<0.4	11	9.1	<0.4	39	<0.5	<0.5	<1.0
	4/27/94	<0.4	27*	18	<0.4	51	<1	<1	1.4
	8/3/94	<0.4	36	<0.4	<0.4	<0.4	<0.4	<1	1.6
	10/26/94	<0.4	21	11	<0.4	52	<0.4	<1	<0.4
	3/22/95	<0.4	<0.4	17	<0.4	32	<0.4	<1	<0.4
	6/27/95	<0.4	12	9.6	<0.4	29	<0.4	<1	<0.4
	10/12/95	<0.4	11	5.1	<0.4	30	<0.4	<1	<0.4
	2/20/96	<0.4	17	12	<0.4	26	<0.4	<1	<0.4

.

100000000000000000000000000000000000000	Samping			סק	HVOs A Mothor	1 8010			
Identification	Date			Ŀr	(µg/L)	1 00 10			
		Chloroform	cis- 1,2-DCE	trans- 1,2-DCE	1,1- DCE	TCE	1,1,1- TCA	1,1,2- TCA	CI
	8/21/96	<0.4	10	8.5	<0.4	27	<0.4	<1	<u> </u>
	2/25/97	<0.4	12	9.2	<0.4	24	<0.4	<1	<u> </u>
							830 agi		13. W.C.
MW-6	3/19/92	<0.4	18 ·	1.0	<0.4	42	5	<1	
	9/13/93	<0.4	21	11	<0.4	43	<0.5	<0.5	
	4/27/94	<0.4	18*	7.5	<0.4	35	<1	<1	
	8/3/94	<0.4	26	7.8	<0.4	37	<0.4	<1	
	10/26/94	<0.4	16	6.0	<0.4	30	<0.4	<1	
	4/6/95	<0.4	12	6.4	<0.4	28	<0.4	<1	
	6/26/95	<0.4	15	9.2	<0.4	31	<0.4	<1	
	10/13/95	<0.4	16	5.4	<0.4	31	<0.4	<1	
	2/20/96	<0.4	9.8	6.1	<0.4	18	<0.4	<1	
	8/21/96	<0.4	13	7.9	<0.4	28	<0.4	<1	
	2/24/97	<0.4	13	8.2	<0.4	31	<0.4	<1	
Westerner a		57200/2010/ <u>2</u>			C C C C C C				
PIT-1	12/17/91	<0.4	2.8	1.3	<0.4	3.2	3.1	<2.5	
	ár sité							<u>Manga</u>	
MW-7 ^b	4/27/94	<0.4	200"	25	<0.4	130	<1	<1	
	8/3/94	<0.4	210	<0.4	<0.4	180	<0.4	<1	
	10/26/94	<0.4	200	22	0.7	180	<0.4	<1	
	4/6/95	<0.4	53	12	1.5	190	<0,4	<1	
	6/27/95	<0.4	120	18	1.6	230	<0.4	<1	
	10/12/95	<2.0	150	16	2.2	150	<2	<2	
	2/20/96	<0.4	110	21	2.1	130	<0.4	<1	
	Concernance and a second second				VACA SECTION			1211000	4

S2

Sample Identification	Sampling Date			EF	HVOs PA Methoo (µg/L)	d 8010		
		Chloroform	cis- 1,2-DCE	trans- 1,2-DCE	1,1- DCE	TCE	1,1,1- TCA	1,1,2- TCA
				New Strategy	ési Hurr		Sec.23	
MW-8	10/12/95	0.54	5.7	2.7	<0.4	13	<0.4	<1
	2/20/96	<0.4	5.9	4.1	<0.4	8.2	<0.4	<1
	8/21/96	<0.4	4.2	3.4	<0.4	10	<0.4	<1
	2/25/97	<0.4	4.2	3.1	<0.4	8.5	<0.4	<1
		Canal Second	상품, (취원) 또	han et piller r	اېمې گېلماندى	s girth	ц.). Д	
B-1-AQ	4/27/94	<0.4	12ª	3.7	<0.4	4.5	<1	<1
B-2-AQ	4/27/94	<0.4	5.0ª	0.4	<0.4	<0.4	<1	<1
B-3-AQ	4/27/94	<0.4	10"	0.4	<0.4	16	<1	<1
B + +0	4107104	-0.4	-0.4	-0.4	<0.4	11	-1	-1

Table II, Summary of Groundwater Sample Analytical Results for HVOs, continued

Notes:

HVOs	=	Halogenated Volatile Organics
DCE	=	Dichloroethene
TCE	=	Trichloroethene
TCA	=	Trichloroethane
pg/L	=	micrograms per liter
NA	=	Not analyzed
<x< td=""><td>=</td><td>less than the method reporting limit (x)</td></x<>	=	less than the method reporting limit (x)
•	=	Technically nonreportable concentration, cis-1,2-DCE laboratory standard was not run by laboratory; please refer to Status Report, Former
		Cobbledick-Kibbe Site, dated June 16, 1994, by Blymyer Engineers, Inc.
b	н	Well installed by Mr. Jim Minor, Trustee

^b Bold results indicate concentrations over the listed method detection limit.

0. 21.54

Maximum Contaminant Levels (MCLs)°:

cis-1,2-DCE	=	6 µg/L (Primary DHS MCL)
trans-1,2-DCE	=	10 µg/L (Primary DHS MCL)
1,1-DCE	=	6 µg/L (Primary DHS MCL)
TCE	=	5 µg/L (Primary DHS MCL)
1,1,1-TCA	=	200 µg/L (Primary DHS MCL)
1,1, <b>2-</b> TCA	=	5 µg/L (Primary DHS MCL)
Vinyl Chloride	=	0.5 µg/L (Primary DHS MCL)

.

4

^c Information obtained from *Compilation of Federal and State Drinking Water Standards and Criteria*, July 1995, Quality Assurance Technical Document No. 3, State of California Department of Water Resources.

Ms. Andee Gerace-Coles April 8, 1997 Page 13

EA-5818. Additionally, benzene was reinput into the program to allow modification of chemical parameters, specifically use of the California Environmental Protection Agency (Cal.EPA) cancer potency factor (slope factor) of 0.1 kg-day/mg, in comparison to the Federal EPA slope factor of 0.029 kg-day/mg, using the chemical, and toxicological data from the *RBCA*. *Tool Kit* as a resource. This change was requested in point 5 in the February 20, 1997 ACHCSA letter. Identified COCs included 1,1-DCE, cis-1,2 DCE, trans-1,2-DCE, 1,1,1-TCA, 1,1,2-TCA, TCE, VC, and BTEX. Methylene Chloride has been excluded due to the probability that it is a laboratory contaminant. Copies of the data output files for all chemicals are included as

# 3.1.6 Representative COC Concentrations

Screen 7 allows input of *Representative COCs Concentrations in Source Media*. Representative soil COC concentrations used specifically included the five UST closure confirmation soil samples; soil samples from soil bores/MW-1, MW-4, MW-7, MW-8; and soil samples P-3, AS-1, AS-5, and AS-6 from the vicinity of the former OWS, as requested by the ACHCSA in their February 20, 1997 letter: The mean analytical concentrations. Other soil samples was assumed to be representative of source-zone soil analytical concentrations. Other soil samples were excluded as they were not from the general vicinity around the two source zones. As a conservative technique, Blymyer Engineers combined analytical data from the two source zones (UST-related and OWS-related) and modeled a single source zone zero feet upgradient from the residential units (as discussed above). The mean of groundwater analytical samples from the be representative of groundwater COCs, as requested by the February 20, -1997 ACHCSA letter. The case the mean was calculated using a subroutine within the modeling program. Copies of the data output files for the results of these calculations are included as Appendix G.

### 3.1.7 Site-Specific Parameters

80 - 80X

Screen 8.1 allows Site-Specific Soil Parameters to be input. These parameters include vadose zone thickness, capillary zone thickness, depth to groundwater, and a number of other parameters. Screen 8.2 allows Site-Specific Groundwater Parameters to be input, and screen 8.3 allows Site-Specific Air Parameters to be input. Screen 8.4 allows Site-Specific Building Parameters to be input. If site-specific parameters were not available the RBCA Tool-Kit default parameters were used. A printout of the parameters used in this project are included as Appendix E.

Barney,

. . . . .

After I reviewed the final/amended risk assessment, I had couple of questions regarding the porosity values used in table III of the risk assessment documents. Mark called me today and explained that the saturation % used is the moisture content measured on iste and what is given as moistant content is a really a misnomer and has something to do with density/compaction etc. So, based on the info given, it looks like the risk assessment is fine.

### Madhulla

### **RBCA SITE ASSESSMENT**

#### **Tier 2 Worksheet 5.8**

Site Name: Former Cobbledick-Kibbe Site Site Location: 500 High Street, Oakland, CA Date Completed: 3/31/1997

34

1 of 1

	and the second se		TIER 2 GRO	UNDWATER	CONCENTRATIC	N DATA SUMMA	RY
							I
		Analytical Method			Det	ected Concentrat	ons
CONSTITUENTS DETEC	CTED	Typical Detection	No. of	No. of	Maximum	Mean /	UCL on M
CAS No. Name		Limit (mg/L)	Samples	Detects	Conc. (mg/L)	Conc. (mg/L)	Conc. (m
71-43-2 Benzene - 6	CA	5.0E-04	9.	/9	(1.0E-03)	1.0E-03 5	#DIV/0
75-35-4 Dichloroeth	ene, 1,1-	4.0E-04	121	12	2.3E-03	2.1E-03	2.2E-0
156-59-2 Dichloroeth	ene, cis-1,2-	4.0E-04	12	12	1.5E-01	1.9E-02	3.3E-0
156-60-5 Dichloroeth	ene, 1, 2-trans-	4.0E-04	42 Y	12	2.4E-02	1.1E-02	1.4E-0
100-41-4 Ethylbenze	ne	5.0E-04	9	9	0.0E+00	#DIV/0!	#DIV/0
108-88-3 Toluene		5.00-04	9	9	3 0E-04	8.0E-04	#DIV/0
79-01-6 Trichloroet	nene	4.0E-04	12	12	3.1E-01	3.7E-02	6.1E-0
75-01-4 Vinyl chlori	de	4.0E-04	12;	12	2.1E-03	1 1E-03	1.4E-0
1330-20-7 Xvlene (mb	(ed isomers)	5.0E-04	9	9	0 0E+00	#DIV/0!	#DIV/0

Serial: g-301-wwx-7 Software: GSI RBCA Spreadsheet © Groundwater Services, Inc. (GSI), 1995-97 All Rights Reserved. 1 Version: 1.0.1 Why UCL on some & no UCL

Value & Small, aud noit taleute UCL

Site Name: For	mer Cobbledick-	-Kibbe Site	(	Completed By	Mark Denern ad: 3/31/1997				0.53	1
Site Location: 5	i00 High Street,	Oakland, CA		DACEL IN	E PISK SU	MARY TA	BLE			
			TIER Z	BASELIN	E RISK SUI		BASELI	NE TOXIC EF	FECTS	
		BASELINE	CARCINOGE	Risk Limit(s)			Quotient	Toxicit Limit(s Exceede		
EXPOSURE	Individual Maximum Value	COC Risk Target Risk	Total Value	Target Risk	Exceeded	Maximum Value	Applicable Limit	Total Value	Applicable Limit	
OUTDOOR AIR	EXPOSURE PAT	HWAYS			r					
Complete:	1.6E-9	1.0E-6	1.8E-9	1.0E-6		2.1E-5	1.0E+0	2.2E-5	1.0E+0	
NDOOR AIR E	POSURE PATH	NAYS			1	1	T		Γ	
Complete:	1.4E-7	1.0E-6	2.3E-7	1.0E-6		1.9E-3	1.0E+0	1.9E-3	1.0E+0	
SOIL EXPOSUR	REPATHWAYS					т	1	r	1	
Complete:	7.5E-9	1.0E-6	8.7E-9	1.0E-6		2.0E-4	1.0E+0	2.7E-4	1.0E+0	
GROUNDWAT	R EXPOSURE P	ATHWAYS			-1	<u>r</u>	т		1	1
Complete:	NC	1.0E-6	NC	1.0E-6	8	NC	1.0E+0	NC	1.0E+0	
	and the second diversion of th									
ORTICAL EVD	OSURE PATHWA	Y (Select Ma	dmum Values F	rom Complete	Pathways			T	- <u></u>	1
GRIEIGASCAR	1 4E-7	1.0E-6	2.3E-7	1.0E-6		1.9E-3	1.0E+0	1.9E-3	1.0E+0	

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: g-301-wwx-744

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

----

10 N. 199

MARTIN O

------

Site Name: Former Cobbledic	k-Kibbe Sile S	Site Location: 5	00 High Street,	Oakland, CA		Completed By: I	Mark Detterman		Date Completed:	3/31/1997	30
			*-	TIER 2 PAT	HWAY RISK	CALCULATION					
SOL EXPOSURE PATHWAYS						ICHECKED IF PAT	HWAYS ARE ACT	INE			
			CI	RCINOGENIC RI	SK 、				TOXIC EFFECTS		
	(1) EPA	(2) Total C Intake Rate	arcinogenic (mg/kg/day)	(3) Oral Slope Factor	(4) Individ Risk (	dual COC 2) x (3)	(5) Total Intake Rate	Toxicant (mg/kg/day)	(6) Oral Réference Dos <i>e</i>	(7) Indivi Hazard Que	Jual COC /sient (5) / (6)
Constituents of Concern	Carcinogenic	On-Site Residential	On-Site Commercial	(mg/kg-day)^-1	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	(mg/kg-day)	On-Site Residential	On-Site Commercia
Benzene - CA	A	7.5E-8		1.0E-1	7.5E-9						
Dichloroethene, 1,1-		0.0E+0		6.0E-2	0.0E+0		0.0E+0		9.0E-3	0.0E+0	
Dichloroethene, cis-1,2-	D						2.0E-6		1.0E-2	2.0E-4	
Dichloroethene,1,2-trans-				1			1.2E-7		2.0E-2	5.8E-6	
Ethylbenzenø	D						1.5E-6		1.0E-1	1.5E-5	
Toluene	D						3.5E-7		2.0E-1	1.8E-6	
Trichloroethene		1.1E-7		1.1E-2	1.2E-9		2.5E-7		6.0E-3	4.2E-5	
Vinvl chloride	A	0.0E+0		1.9E+0	0.0E+0						
Xylene (mixed isomers)	D						8.0E-7		2.0E+0	4.0E-7	
		Total Pati	hway Carcinos	enic Risk =	8.7E-9	0.0E+0	T	otal Pathwøy I	fazard Index =	2.7E-4	0.0E+0

.

300_01 F82 (30

weeks were a set of the

545

© Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved

Software GSI RBCA Spreadsheet Version 101 Serial. g-301-wwx-744

•

* े ए

Site Name: Former Cobbledie	L Willia Cita										
Site Hame, Pointer Cobbiedic	K-MIDDe Sile	Site Location; 5	ou High Stree	et, Oakland, CA		Completed By:	Mark Detterman		Date Completed	: 3/31/1997	2 OF
				TIER 2 PAT	HWAY RISK	CALCULATIO	N				
NOCO AND EXPONNESS DATED											
	A1.9					ECHECKED IF PA	THWAYS ARE AC	IVE)			
	<b></b>		(	ARCINOGENIC RI	SK				TOXIC EFFECTS		
	(1) EPA	(2) Total Ca Intake Rate	ucinoganic (mg/kg/day)	(3) Inhelation Slope Factor	(4) Indivi Risk (	dual COC 2) x (3)	(5) Total Intake Rate	Toxicant (mg/kg/day)	(6) Inhatation Reference Dose	(7) Indivi Hazard Que	dual COC otlent (5) / (6)
Constituents of Concern	Carcinogenic Classification	On-Site Residential		(mgAkg-day)^-1	On-Site Residential		On-Site Residential		(molike, dav)	On-Site	
Benzene - CA	A	1.4E-8		1.08-1	1.4E-7		3.2E-6		175.3	1 05 3	r
Dichloroethene, 1,1-	_	6.7E-8		1.8E-1	1.2E-8		1.6E-7		9.05-3	1.75-5	
Dichloroethene, cis-1,2-	D		)						0.00-0	1.76-5	
Dichloroethene,1,2-trans-	_			·	10.00						
Ethylbenzene	D						2.9E-6		2 9E-1	105.5	
Toluene	D						4.9E-7		116.1	435.6	
Frichloroethene	_	1.1E-5		6.0E-3	6.7E-8					4.02-0	
/inyl chloride	A	5,4E-8		3.0E-1	1.6E-8						- 61 - 10 - 10 - 10 - 10 - 10 - 10 - 10
(ylene (mixed isomers)	D					A.S.S.S.	5.3E-7		2 0E+0	2 65.7	
						10-02-031-030	an a			2.02-7	
		Total Path	way Carcino	genic Risk =	2.3E-7	0.0E+0	] Ta	tal Pathway	Hazard Index = [	1.9E-3	0.0E+0
							-		-		

Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved

Software GSI RBCA Spreadsheet Version 1.01

Senal g-301-wwx-744

ς.e

•

		RBCA	SITE ASSESS	SMENT	dia and				Tier 2 Wor	ksheet 8.2	
Site Name: Former Cobbledick	-Kibbe Site S	ite Location: 5	00 High Stree	t, Oakland, CA		Completed By:	Mark Detterman		Date Completed	3/31/1997	10
				TIER 2 PAT	HWAY RISK	CALCULATION	N				
OUTDOOR AIR EXPOSURE PATH	NAYE					ICHECKED IF PA	THWAYS ARE ACTIV	e)			
			(	ARCINOGENIC RI	SK				TOXIC EFFECTS		
	(1) EPA	(2) Total C Intake Rate	arcinogenic (mg/kg/day)	(3) Inhalation Slope Factor	(4) Individ Risk (	lual COC 2) * (3)	(5) Total Top Intake Rate (mg	kicant g/kg/day}	(6) Inhalation Reference Dose	(7) Indiv Hazard Qu	dual COC xient (5) / (6)
Constituents of Concern	Carcinogenic	On-Site Residential		(mg/kg-day)^-1	On-Site Residentiat		Residential		(mg/kg-day)	On-Site Residential	
Benzene - CA	A	1.6E-8		1.0E-1	1.6E-9		3.7E-8		1.7E-3	2.1E-5	
Dichloroethene, 1,1-		1.3E-10		1.8E-1	2.4E-11		3.1E-10		9.0E-3	3.5E-8	
Dichloroethene, cis-1,2-	D										V
Dichloroethene, 1, 2-trans-				_							
Ethylbenzene	D						5.3E-8		2.9E-1	1.9E-7	
Toluene	D						1.0E-8		1.1E-1	8.8E-8	
Trichloroethene		2.8E-8		6.0E-3	1.7E-10						
Vinyl chloride	A	1.1E-10		3.0E-1	3.2E-11						
Xylene (mixed isomers)	D		1				1.6E-8		2.0E+0	7.8E-9	[
					4.05.0	0.05+0	1 7.4	10-4-	Lange Martine F	2 25 5	1 0.00040

© Groundwater Services, Inc. (GSI), 1995-1997 All Rights Reserved

.

Software: GSI RBCA Spreadsheet Version: 1,0,1 Serial, g-301-wwx-744

t.

~



ैं। हे स्टूर्ग भ