

Brian Waite Project Manager Marketing Business Unit

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6486 BWaite@Chevron.com

November 16, 2012

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RECEIVED

11:20 am, Nov 20, 2012

Alameda County Environmental Health

Re: Chevron Facility # 96991

Address: 2920 Castro Valley Boulevard, Castro Valley, CA

I have reviewed the attached report titled <u>Addendum to Case Closure Request</u> and dated November 16, 2012.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

Brian A. Waite

Brian Waite Project Manager Digitally signed by Brian A. Waite DN: cn=Brian A. Waite, o=Chevron Environmental Management Company, ou=Marketing Business Unit, email=BWaite@chevron.com, c=US Date: 2012.11.16 12:06:34 -08'00'

Enclosure: Report

10969 Trade Center Drive Rancho Cordova, California 95670 Telephone: (916) 889-8900 Fax: (916) 889-8999 http://www.craworld.com

November 16, 2012

Reference No. 611633D

Mr. Mark Detterman, P.G., C.E.G. Alameda County Environmental Health (ACEH) 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Addendum to Case Closure Request Chevron Service Station 96991 2920 Castro Valley Boulevard Castro Valley, California Case No. RO0000475

Dear Mr. Detterman:

Conestoga-Rovers & Associates (CRA) is submitting this *Addendum to Case Closure Request* for the site referenced above (Figure 1) on behalf of Chevron Environmental Management Company (Chevron). CRA previously submitted the July 29, 2011 *Case Closure Request* (Attachment A), in which case closure was requested based on low-risk conditions. To date, a response to this request has not been received from ACEH.

The purpose of this addendum is to present the results of our evaluation of current site conditions to the general and media-specific closure criteria included in the recently adopted *Low-Threat Underground Storage Tank Case Closure Policy* (the "policy"). The site meets the stated closure criteria; therefore, we are requesting ACEH concur that the site meets low-threat case closure criteria and grant case closure. A summary of the policy, an evaluation of the site conditions to the policy case closure criteria, and our conclusions and recommendations are presented below.

PURPOSE OF THE LOW THREAT UNDERGROUND STORAGE TANK CASE CLOSURE POLICY

On August 17, 2012, the State Water Resources Control Board (SWRCB) adopted the policy via Resolution 2012-0016. The intent of the policy is to increase cleanup process efficiency at petroleum release sites. A benefit of improved efficiency is the preservation of limited resources for mitigation of releases posing the greatest threat to human and environmental health. Per the policy, sites that meet the specified general and media-specific criteria pose a low threat to human health, safety, or the environment and are appropriate for case closure pursuant to Health and Safety Code section 25296.10. The policy further states that those sites

Equal Employment Opportunity Employer

Reference No. 611633D

- 2 -

that meet the criteria for low-threat closure do not require further corrective action and shall be issued a uniform closure letter. The general and media-specific criteria are described below.

GENERAL CRITERIA

The eight general criteria that must be satisfied by all candidate sites, and the site-specific evaluation for each of these criteria, are presented below.

a. The unauthorized release is located within the service area of a public water system.

<u>Satisfied:</u> Water for the site and surrounding vicinity is provided by the East Bay Municipal Utility District (EBMUD) from distant surface water sources.

b. The unauthorized release consists only of petroleum.

<u>Satisfied</u>: The unauthorized release at the site has been characterized as a release of petroleum-based products (gasoline and related constituents, diesel, used-oil).

c. The unauthorized ("primary") release from the UST system has been stopped.

<u>Satisfied</u>: The original potential source(s) of the released petroleum hydrocarbons (USTs, dispensers, and piping) have been removed from the site or replaced.

d. Free product has been removed to the maximum extent practicable.

Satisfied: No light non-aqueous phase liquid (LNAPL) has been observed in the site wells.

e. A conceptual site model that assesses the nature, extent, and mobility of the release has been developed.

<u>Satisfied:</u> Previous reports and information included herein contain all elements of a conceptual site model.

f. Secondary source has been removed to the extent practicable.

<u>Satisfied:</u> Remedial excavation in 1990 removed approximately 700 cubic yards of impacted soil from the source areas (Figure 2). Decreasing concentrations in groundwater indicate the lack of any significant residual secondary source material.

Reference No. 611633D

g. Soil and groundwater has been tested for MTBE and results reported in accordance with Health and Safety Code section 25296.15.

- 3 -

<u>Satisfied</u>: Soil and groundwater samples have been analyzed for MTBE, and reported in accordance with Health and Safety Code section 25296.15.

h. Nuisance as defined by Water Code section 13050 does not exist at the site.

<u>Satisfied</u>: Conditions defined as a "nuisance" in Water Code section 13050 do not exist at the site.

MEDIA-SPECIFIC CRITERIA

Impacts to human health and the environment can occur due to releases from USTs through contact with contaminated media (groundwater, surface water, soil, and soil vapor) via various exposure pathways. In the policy, the most common exposure scenarios have been combined into three media-specific criteria:

- 1. Groundwater
- 2. Vapor Intrusion to Indoor Air
- 3. Direct Contact and Outdoor Air Exposure

Candidate sites must satisfy all three of these criteria, described further below.

Groundwater

It is a fundamental tenet of the policy that if the closure criteria described in the policy are satisfied at an unauthorized petroleum release site, attaining background water quality is not feasible, and applicable water quality objectives (WQOs) will be attained through natural attenuation within a reasonable amount of time, prior to the expected need for use of any affected groundwater. If a site has groundwater with a designated beneficial use that is affected by an unauthorized release, to satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds WQOs must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites listed in the policy as follows:

Reference No. 611633D

- 1. a. The contaminant plume that exceeds WQOs is less than 100 feet in length.
 - b. There is no free product.
 - c. The nearest existing water supply well or surface water body is greater than 250 feet from the defined plume boundary.
- 2. a. The contaminant plume that exceeds WQOs is less than 250 feet in length.
 - b. There is no free product.
 - c. The nearest existing water supply well or surface water body is greater than 1,000 feet from the defined plume boundary.

- 4 -

- d. The dissolved concentration of benzene is less than 3,000 micrograms per liter $(\mu g/L)$ and the dissolved concentration of MTBE is less than 1,000 $\mu g/L$.
- 3. a. The contaminant plume that exceeds WQOs is less than 250 feet in length.
 - b. Free product may be present below the site but does not extend off-site.
 - c. The plume has been stable or decreasing for a minimum of 5 years.
 - d. The nearest existing water supply well or surface water body is greater than 1,000 feet from the defined plume boundary.
 - e. The property owner is willing to accept a land use restriction if the regulatory agency requires a land use restriction as a condition of closure.
- 4. a. The contaminant plume that exceeds WQOs is less than 1,000 feet in length.
 - b. There is no free product.
 - c. The nearest existing water supply well or surface water body is greater than 1,000 feet from the defined plume boundary.
 - d. The dissolved concentration of benzene is less than 1,000 μ g/L and the dissolved concentration of MTBE is less than 1,000 μ g/L.
- 5. a. The regulatory agency determines, based on an analysis of site specific conditions, that under current and reasonably anticipated near-term future scenarios, the contaminant plume poses a low threat to human health and safety and to the environment and WQOs will be achieved within a reasonable time frame.

<u>Satisfied:</u> The site satisfies the characteristics of Class 2 above. The petroleum hydrocarbon plume that exceeds WQOs (Environmental Screening Levels [ESLs]) is less than 250 feet in length as evidenced by downgradient well MW-6, there is no LNAPL, the nearest water supply wells and surface water body are greater than 1,000 feet from the defined plume boundary, and the dissolved benzene and MTBE concentrations are less than 3,000 μ g/L and 1,000 μ g/L, respectively (benzene no longer detected). A copy of the most recent groundwater monitoring and sampling report (second semi-annual 2012) is included as Attachment B.

- 5 -

Petroleum Vapor Intrusion to Indoor Air

The low-threat vapor intrusion criteria described below apply to sites where the release originated and impacted or potentially impacted adjacent parcels when: (1) existing buildings are occupied or may be reasonably expected to be occupied in the future, or (2) buildings for human occupancy are reasonably expected to be constructed in the future.

Petroleum release sites will satisfy the media-specific screening criteria for petroleum vapor intrusion if:

- a. Site-specific conditions at the release site satisfy all of the characteristics and criteria of scenarios 1 through 3 as applicable, or all of the characteristics and criteria of scenario 4 as applicable; or,
- b. A site-specific risk assessment for vapor intrusion is conducted and demonstrates that human health is protected to the satisfaction of the regulatory agency; or,
- c. The regulatory agency determines there is no significant risk of adversely affecting human health through the use of institutional or engineering controls.

Scenarios 1-4 of criteria (a) (existing building or future construction) are described below.

Scenario 1: Unweathered* LNAPL in Groundwater

- Depth to groundwater with unweathered* LNAPL is ≥30 feet below building foundation.
- Total TPH (TPHg + TPHd) in soil within 30 feet below building foundation is <100 milligrams per kilogram (mg/kg).

Scenario 2: Unweathered* LNAPL in Soil

- Unweathered* LNAPL in soil is ≥30 feet from building foundation in all directions, and depth to groundwater is >30 feet below building foundation.
- Total TPH in soil within 30 feet of building foundation in all directions is <100 mg/kg.

Scenario 3A: No LNAPL, dissolved phase benzene in groundwater

- Depth to groundwater is \geq 5 feet below building foundation.
- Dissolved benzene in groundwater is $<100 \mu g/L$.
- Total TPH in soil within 5 feet below building foundation is <100 mg/kg.
- Oxygen (O₂) concentration in soil within 5 feet below building foundation is <4%, or no O₂ data.

Reference No. 611633D

Reference No. 611633D

- 6 -

Scenario 3B: No LNAPL, dissolved phase benzene in groundwater

- Depth to groundwater is ≥ 10 feet below building foundation.
- Dissolved benzene in groundwater is $\geq 100 \mu g/L$ and $<1,000 \mu g/L$.
- Total TPH in soil within 10 feet below building foundation is <100 mg/kg.
- O_2 concentration in soil within 10 feet below building foundation is <4%, or no O_2 data.

Scenario 3C: No LNAPL, dissolved phase benzene in groundwater

- Depth to groundwater is \geq 5 feet below building foundation.
- Dissolved benzene in groundwater is <1,000 µg/L.
- Total TPH in soil within 5 feet below building foundation is <100 mg/kg.
- O_2 concentration in soil within 5 below building foundation is $\geq 4\%$.

Scenario 4A: Direct soil gas measurements at least 5 feet below grade (fbg) or foundation at sites without bioattenuation zone**

	Benzene µg/m³	Ethylbenzene µg/m³	Naphthalene µg/m³
Residential	<85	<1,100	<93
Commercial	<280	<3,600	<310

 $\mu g/m^3$ – micrograms per cubic meter

Scenario 4B: Direct soil gas measurements at least 5 fbg or foundation at sites with bioattenuation zone**

	Benzene µg/m³	Ethylbenzene µg/m³	Naphthalene µg/m³
Residential	<85,000	<1,100,000	<93,000
Commercial	<280,000	<3,600,000	<310,000
177 1 1 7 3 7 1 757 1			1.1 . 1

*Unweathered LNAPL is comparable to recently dispensed fuel where product has not been subjected to significant volatilization or solubilization.

**Bioattentuation zone = total TPH <100 mg/kg in upper 5' of soil, and \geq 4% oxygen in soil at 5' sample depth; a 1,000-fold bioattenuation of petroleum vapors is assumed for the zone.

Petroleum release sites shall satisfy the media-specific criteria for petroleum vapor intrusion to indoor air and be considered low-threat for the vapor intrusion to indoor air pathway if any of the above criteria are met. However, for active commercial petroleum fueling facilities, satisfaction of these criteria is not required, except in cases where release characteristics can be reasonably believed to pose an unacceptable health risk.

Reference No. 611633D

<u>Satisfied</u>: The site remains an active Chevron station, and thus satisfaction of the media-specific criteria for petroleum vapor intrusion to indoor air is not required.

However, to further support the conclusion of no unacceptable health risk, remedial excavation was performed to remove hydrocarbon source mass soil, remaining concentrations in groundwater are low (no benzene), and the extent appears to be generally away from the site building.

-7-

Direct Contact and Outdoor Air Exposure

The policy describes conditions where direct contact with contaminated soil or inhalation of contaminants volatized to outdoor air poses a low threat to human health. Release sites where human exposure may occur satisfy the media-specific criteria for direct contact and outdoor air exposure and shall be considered low-threat if they meet any one of the following:

a. Maximum concentrations of petroleum constituents in soil are less than or equal to those listed in the table below for the specified depth below ground surface. The limits from 0 to 5 fbg protect from ingestion, dermal contact, and outdoor inhalation of volatile and particulate emissions. The 5 to 10 fbg limits protect from inhalation of volatile emissions only; the ingestion and dermal contact pathways are not considered significant. In addition, if exposure to construction workers or utility trench workers is reasonably anticipated, the concentration limits for Utility Worker shall also be satisfied.

	Residential Volatilization to outdoor air 0-5 fbg (5-10 fbg) (mg/kg) (mg/kg)		Commerc	Utility Worker	
Constituent			0–5 fbg (mg/kg)	Volatilization to outdoor air (5-10 fbg) (mg/kg)	0–10 fbg (mg/kg)
Benzene	1.9	2.8	8.2	12	14
Ethylbenzene	21	32	89	134	314
Naphthalene	9.7	9.7	45	45	219
PAH*	0.063	NA	0.68	NA	4.5

* Based on the seven carcinogenic polycyclic aromatic hydrocarbons (PAHs) as benzo(a)pyrene toxicity equivalent [BaPe]. The PAH screening level is only applicable where soil is affected by either waste oil and/or Bunker C fuel. NA = not applicable

Reference No. 611633D

b. Maximum concentrations of petroleum constituents in soil are less than levels that a site-specific risk assessment demonstrates will have no significant risk of adversely affecting human health.

- 8 -

c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, the regulatory agency determines that the concentrations of petroleum constituents in soil will have no significant risk of adversely affecting human health.

Satisfied: The site meets the characteristics of criteria (a) above. The maximum detected concentrations of benzene and ethylbenzene in soil samples collected in the 0 to 5 fbg and 5 to 10 fbg intervals do not exceed the most conservative limits (residential) (see Table 1 of Attachment A). Soil samples have not been analyzed for naphthalene or PAHs. Soil at the site was impacted by the former used-oil UST; however, extensive excavation to 15 fbg was performed to remove impacted soil in this area (Figure 2). The final confirmation soil samples collected from the excavation within 0 to 10 fbg contained only low concentrations of total oil and grease (TOG), or it was not detected. Therefore, if PAHs, including naphthalene, were present in soil, it is expected that they were primarily removed by the excavation and no concentrations remain that would pose a significant threat to human health.

CONCLUSIONS AND RECOMMENDATIONS

Based on the information presented in this and previous reports, site conditions meet the general and media-specific criteria of a low-threat UST release case established in the policy, and therefore pose a low threat to human health, safety, and the environment. A completed SWRCB low-threat checklist is included as Attachment C. The site satisfies the case closure requirements of Health and Safety Code section 25296.10, and case closure is consistent with Resolution 92-49 that requires cleanup goals be met within a reasonable time frame. Therefore, on behalf of Chevron, CRA respectfully requests ACEH grant case closure.

As the impacted groundwater poses no significant threat to human health or the environment, effective immediately, Chevron shall cease groundwater monitoring and sampling activities pending a response and further direction from ACEH.

Reference No. 611633D

REG/

No. 68498 Exp. 9/30/ /3

-9-

We appreciate your assistance on this project and look forward to your reply. Please contact James Kiernan at (916) 889-8917 if you have any questions or require additional information.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Bryan J. Sandor

BJS/de/14 Encl.

Figure 1	Vicinity Map
Figure 2	Site Plan

Attachment A	July 29, 2011 Case Closure Request
Attachment B	Second Semi-Annual 2012 Groundwater Monitoring and Sampling Report
Attachment C	Low-Threat Checklist

cc: Mr. Brian Waite, Chevron (*electronic copy*) K&K Petroleum, LLC, property owner

James P. Kiernan, P.E.

FIGURES

611633D-00(014)GN-WA001 OCT 31/2012

Castro Valley, California

611633D-00(014)GN-WA002 OCT 31/2012

ATTACHMENT A

JULY 29, 2011 CASE CLOSURE REQUEST

10969 Trade Center Drive, Suite 107 Rancho Cordova, California 95670 Telephone: (916) 889-8900 Fax: (916) 889-8999 www.CRAworld.com

TRANSMITTAL

DATE:	July 29, 2011	R	EFERENCE NO.:	611633
		 Pi	ROJECT NAME:	Chevron Station 9-6991 (RO475)
То:	Mr. Mark Detterma		,	
	Alameda County E		h	
	1131 Harbor Bay Pa			
	Alameda, CA 94502		_	
Please fin	d enclosed: Dra	ginals [Final Other	
Sent via:	Ma Ove		_ Same Day Co ☑ Other <u>AC</u>	ourier EH FTP Site Electronic Upload
QUAN	TITY		DESCRIPT	ΓΙΟΝ
1	Case Closu	re Request		
	Requested Your Use NTS:	For Revi For Revi	ew and Comment	
	Mc Olivia SI	ance, Chevron		
Copy to:	K&K Petrolet			
Complete	ed by: James P. Kier [I	man Please Print]	Signed:	AK
Filing:	Correspondence File			

Olivia Skance Team Lead Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6521

July 29, 2011

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Facility # 9-6991

Address: 2920 Castro Valley Boulevard, Castro Valley, California

I have reviewed the attached report titled Case Closure Request and dated July 29, 2011.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

Lis Steam

Olivia Skance Project Manager

Enclosure: Report

CASE CLOSURE REQUEST

Chevron Service Station 9-6991 2920 Castro Valley Boulevard Castro Valley, California Case No. RO0000475

Prepared for:

Mr. Mark Detterman, P.G., C.E.G. Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Prepared by: Conestoga-Rovers & Associates

10969 Trade Center Drive, #107 Rancho Cordova, California U.S.A. 95670

Office: (916) 889-8900 Fax: (916) 889-8999

web: http://www.CRAworld.com

JULY 29, 2011 REF. NO. 611633 (9) This report is printed on recycled paper.

CASE CLOSURE REQUEST

Chevron Service Station 9-6991 2920 Castro Valley Boulevard Castro Valley, California Case No. RO0000475

Christopher J. Benedict

James P. Kiernan, P.E.

Prepared by: Conestoga-Rovers & Associates

10969 Trade Center Drive, #107 Rancho Cordova, California U.S.A. 95670

Office: (916) 889-8900 Fax: (916) 889-8999

web: http://www.CRAworld.com

JULY 29, 2011 REF. NO. 611633 (9) This report is printed on recycled paper.

TABLE OF CONTENTS

1.0	INTRODU	UCTION	1
2.0	SITE DES	CRIPTION AND BACKGROUND	1
3.0	SITECH	ARACTERISTICS	r
5.0	3.1	REGIONAL GEOLOGY AND HYDROGEOLOGY	
	3.2	SITE GEOLOGY AND HYDROGEOLOGY	
	3.2 3.3	NEARBY WELLS AND SENSITIVE RECEPTORS	
	3.3 3.4	PREFERENTIAL PATHWAY EVALUATION	
4.0	CONCTIT	UENTS OF CONCERN	1
4.0	4.1	SOIL	
	4.2	GROUNDWATER	4
5.0	PETROLE	EUM HYDROCARBON SOURCES AND DISTRIBUTION	5
	5.1	RELEASE SOURCE AND VOLUME	5
	5.2	POTENTIAL OFFSITE SOURCES	5
	5.3	PETROLEUM HYDROCARBONS IN SOIL	5
	5.4	PETROLEUM HYDROCARBONS IN GROUNDWATER	5
6.0	RISK EVA	ALUATION	7
	6.1	NEARBY WELLS AND SENSITIVE RECEPTORS	7
	6.2	POTENTIAL EXPOSURE PATHWAYS	7
	6.2.1	SOIL	7
	6.2.2	GROUNDWATER	8
	6.2.3	SURFACE WATER	8
	6.2.4	VAPOR INTRUSION	8
	6.3	COMPARISON TO ENVIRONMENTAL SCREENING LEVELS	8
	6.3.1	SOIL	9
	6.3.2	GROUNDWATER	10
	6.3.3	SOIL VAPOR	11
7.0	LOW-RIS	K GROUNDWATER CRITERIA	11
	7.1	THE LEAK HAS BEEN STOPPED AND ONGOING SOURCES,	
		INCLUDING LNAPL, HAVE BEEN REMOVED OR REMEDIATED	12
	7.2	THE SITE HAS BEEN ADEQUATELY CHARACTERIZED	
	7.3	THE DISSOLVED HYDROCARBON PLUME IS STABLE,	
		DECREASING, AND NOT MIGRATING	12
	7.4	NO WATER WELLS, DEEPER DRINKING	
		WATER AQUIFERS, SURFACE WATER, OR OTHER	
		SENSITIVE RECEPTORS ARE LIKELY TO BE IMPACTED	13
	7.5	THE SITE PRESENTS NO SIGNIFICANT RISK	
		TO HUMAN HEALTH OR THE ENVIRONMENT	13
8.0	CONCLU	ISIONS AND RECOMMENDATIONS	13

LIST OF FIGURES (Following Text)

- FIGURE 1 VICINITY MAP
- FIGURE 2 SITE PLAN
- FIGURE 3 GEOLOGIC CROSS-SECTION A-A'
- FIGURE 4 GEOLOGIC CROSS-SECTION B-B'
- FIGURE 5 TPHD GROUNDWATER ISOCONCENTRATION MAP
- FIGURE 6 TPHG GROUNDWATER ISOCONCENTRATION MAP
- FIGURE 7 MTBE GROUNDWATER ISOCONCENTRATION MAP

LIST OF TABLES (Following Text)

- TABLE 1SOIL SAMPLE ANALYTICAL RESULTS
- TABLE 2GROUNDWATER SAMPLE ANALYTICAL RESULTS

LIST OF APPENDICES

- APPENDIX A SUMMARY OF ENVIRONMENTAL INVESTIGATION AND REMEDIATION
- APPENDIX B PREVIOUS EXCAVATION SITE PLANS
- APPENDIX C HISTORICAL BORING LOGS
- APPENDIX D WELL SURVEY INFORMATION
- APPENDIX E FIRST SEMI-ANNUAL 2011 GROUNDWATER MONITORING REPORT
- APPENDIX F MASS CALCULATIONS
- APPENDIX G CONCENTRATION VERSUS TIME AND TREND GRAPHS AND DEGRADATION CALCULATIONS

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) has prepared this *Case Closure Request* on behalf of Chevron Environmental Management Company (Chevron) for Chevron service station 9-6991 located at 2920 Castro Valley Boulevard in Castro Valley, California. Based on our review of the site background and conditions, the site meets the San Francisco Bay Regional Water Quality Control Board (RWQCB) criteria for closure as a low-risk groundwater case as described in their January 5, 1996 memorandum entitled *Interim Guidance on Required Cleanup of Low-Risk Fuel Sites*. Presented below are the site description and background, site conditions and discussion of remaining impacts, an evaluation of potential risk, the rationale for closure based on the low-risk criteria, and our conclusions and recommendations.

2.0 <u>SITE DESCRIPTION AND BACKGROUND</u>

The site is located on the northeast corner of the intersection of Castro Valley Boulevard and Anita Avenue (Figure 1), and is currently a Chevron-branded station. Current station facilities include a station building, three 10,000-gallon fiberglass gasoline underground storage tanks (USTs), four dispenser islands, and associated piping. The site is bounded by Anita Avenue to the west, Castro Valley Boulevard to the south, and parking areas for a strip mall to the east and north.

The date the site was first occupied by a service station is unknown; however, based on historical aerial photographs, it appears to have been since at least 1946. Chevron reportedly operated the service station from 1961 to 2004, when the property and all improvements were sold to a private party (K&K Petroleum LLC). According to Chevron records, the USTs were replaced in 1983 and at that time the storage and sale of diesel fuel was discontinued. In 1990, a 6,000-gallon unleaded gasoline UST and a 1,000-gallon used-oil UST were removed and the station was remodeled into its current configuration. The three existing gasoline USTs were left in place; however, the product piping was replaced. Current and former station facilities are shown on Figure 2.

Environmental work has been ongoing since 1990, and has included the installation of monitoring wells MW-1 through MW-7, the drilling of exploratory borings SB-1 through SB-7, and confirmation soil sampling during UST removals. Remedial excavation in 1990 removed approximately 700 cubic yards of hydrocarbon-bearing soil. A summary of the environmental work is presented in Appendix A. The historical soil and groundwater sample analytical results are presented in Tables 1 and 2, respectively. The approximate well and boring locations and the excavation extents are shown on Figure 2. Previous site

plans showing the excavations and confirmation sample locations are presented in Appendix B.

Surrounding land use is commercial with residential further from the site. An additional Leaking Underground Storage Tank (LUST) case is present across Anita Avenue to the west of the site (former Walt's Auto Tec at 2896 Castro Valley Boulevard). This facility was formerly a Texaco service station, and also appears to have been occupied by a service station as early as 1946. A dry cleaning facility was formerly located in the strip mall behind the site, and is an open chlorinated solvent release case (Dry Clean Club of America at 2960 Castro Valley Boulevard).

3.0 <u>SITE CHARACTERISTICS</u>

3.1 <u>REGIONAL GEOLOGY AND HYDROGEOLOGY</u>

The site is located within the Castro Valley groundwater basin in a valley between ridges of the Diablo Range. The unconfined water-bearing zone lies within unconsolidated alluvial sediments and exhibits a generally southwestward flow direction toward San Francisco Bay. These water-bearing sediments overlie the sedimentary Chico Formation; considered non-water-producing based on historically poor groundwater yields.

3.2 SITE GEOLOGY AND HYDROGEOLOGY

Soil encountered beneath and in the vicinity of the site has generally consisted of clays and to a lesser degree, sand, with varying amounts of silt, sand, clay, and gravel to the maximum explored depth of 26.5 feet below grade (fbg). Copies of the historical boring logs are presented in Appendix C. Geologic cross-sections depicting the best available information on the shallow subsurface are presented on Figures 3 and 4.

Groundwater was encountered during drilling at depths ranging from approximately 6 to 16 fbg, but generally between 11 and 13 fbg. Depth to groundwater in the site wells has ranged from approximately 8 to 21 feet below top of casing (TOC), but typically fluctuates between 10 and 12 feet below TOC. The groundwater flow direction is generally southwesterly following the local topography (see rose diagram on Figure 2). The historical range of groundwater elevations measured in the wells is shown on the cross-sections (Figures 3 and 4).

3.3 NEARBY WELLS AND SENSITIVE RECEPTORS

CRA reviewed California Department of Water Resources (DWR) files to identify any water-supply wells within 2,000 feet of the site. Five wells were identified within the search radius. Three of the wells (uses listed as test well, domestic, and cooling system return) were identified at Eden Hospital approximately 2,000 feet northwest (crossgradient) of the site. The remaining two wells were identified as domestic: one approximately 1,400 feet south-southwest (down- to crossgradient) and one approximately 1,400 feet north (crossgradient) of the site. The well survey results and a figure showing the identified well locations are presented in Appendix D.

There do not appear to be any sensitive receptors within 2,000 feet of the site in the downgradient direction with the exception of some residential areas at least 200 feet from well MW-6. The local water supply is provided by East Bay Municipal Utility District (EBMUD); the source is the Mokelumne River Basin in the Sierra Nevada range. The nearest surface water is an unnamed intermittent creek (concrete-lined channel or underground culvert) approximately 1,100 feet southwest of the site.

3.4 PREFERENTIAL PATHWAY EVALUATION

Due to the relatively shallow depth to groundwater, CRA evaluated potential preferential pathways (underground utility lines) in the site vicinity that could contribute to the migration of groundwater. As shown on Figure 2, sanitary sewer, water, and storm drain lines are present beneath Anita Avenue to the west of the site; these connect to main lines beneath the north side of Castro Valley Boulevard. Additional water and sanitary sewer lines are present beneath the south side of Castro Valley Boulevard. There may be additional lines beneath the surrounding sidewalk(s) such as gas, communications, or electric; however, these lines are typically buried at shallow depths (several feet or less) and therefore not considered a concern.

The depth of the storm drain and water lines are approximately 7 fbg and 3 fbg, respectively. Based on the typical depth to groundwater, these lines do not appear to be a potential preferential pathway concern. The utilities which may intersect groundwater are the sanitary sewer lines beneath Castro Valley Boulevard which vary in depth from approximately 10 to 12 fbg. However, according to Mr. Run Chen, Associate Engineer with the Castro Valley Sanitary District (CVSD), these lines are older and thus most likely were backfilled with native soil, as was the typical practice. As the soil to this depth is generally fine-grained clay, these trenches would not be expected to act as preferential pathways. There appear to be no potential receptors in the site vicinity that would be

affected. The creek to the west/southwest of the site is channelized or an underground culvert; regardless, the sanitary sewer lines would not discharge into a surface water body but would flow to a treatment plant. Based on this information, the sanitary sewer lines also do not appear to be a potential preferential pathway concern and no further work appears warranted.

4.0 <u>CONSTITUENTS OF CONCERN</u>

4.1 <u>SOIL</u>

Based on the historical data, the primary constituents of concern (COCs) in remaining soil (i.e. not excavated) are total petroleum hydrocarbons as diesel (TPHd) and gasoline (TPHg). These constituents were only detected in several of the soil samples, and only at low concentrations (up to 150 milligrams per kilogram [mg/kg] TPHd and 430 mg/kg TPHg). Benzene, toluene, ethylbenzene, and xylenes (BTEX) are less significant COCs in soil, as they were only detected at low concentrations in several samples (benzene detected in four samples at a maximum of only 0.24 mg/kg).

Total oil and grease (TOG) was detected in several of the soil samples collected from the used-oil UST excavation at concentrations up to 780 mg/kg; however, heavier-end hydrocarbons such as TOG exhibit characteristics of low mobility and low toxicity in the environment. In addition, since the soil samples were collected in 1990, concentrations likely have decreased due to natural attenuation processes, and TOG was not detected in groundwater samples from MW-1. Therefore, TOG does not appear to be a primary COC in soil.

Methyl tertiary butyl ether (MTBE), other fuel oxygenates, and volatile organic compounds (VOCs) generally were not detected in any of the soil samples analyzed; therefore, none of these constituents appear to be COCs in soil.

4.2 <u>GROUNDWATER</u>

Based on the monitoring results, the primary COCs remaining in groundwater are TPHd, TPHg, and MTBE. No BTEX were detected during the most recent event and in most wells, benzene has not been detected for at least several years. As such, BTEX are not primary COCs. Ethanol was not detected in any of the wells and as mentioned above, TOG was not detected in MW-1. Therefore, these constituents are not COCs in groundwater.

5.0 <u>PETROLEUM HYDROCARBON SOURCES AND DISTRIBUTION</u>

5.1 <u>RELEASE SOURCE AND VOLUME</u>

Based on previous investigations and UST/piping removal confirmation sampling, the primary source(s) of the released petroleum hydrocarbons appears to be the former USTs and dispensers. As the site appears to have been occupied by a service station since at least 1946, releases from previous generation USTs or site activities may also have occurred. Although the volume of released hydrocarbons is unknown, approximately 700 cubic yards of impacted soil was excavated and removed. This remedial action has adequately mitigated the release as evidenced by decreasing hydrocarbon concentrations in groundwater and lack of dissolved-phase BTEX.

5.2 <u>POTENTIAL OFFSITE SOURCES</u>

There do not appear to be any offsite sources contributing to the impacts at the site. The nearby former Walt's Auto Tec facility is located in the crossgradient direction.

5.3 <u>PETROLEUM HYDROCARBONS IN SOIL</u>

As described above, only low concentrations of TPHd, TPHg, and BTEX were detected in remaining soil. The maximum concentrations were either detected in the area of the former dispenser islands, or in the southwest corner of the site. The remedial excavations ranged from approximately 3 to 15 fbg, and appear to have removed the majority of the hydrocarbon source mass soil. In addition, residual concentrations likely have further decreased due to natural attenuation processes as indicated by decreasing concentrations in groundwater and lack of dissolved-phase BTEX. Based on the data, the lateral and vertical extent of hydrocarbons in soil has been adequately defined, and no further investigation is warranted. The soil sample analytical results are presented in Table 1 (samples collected from areas that were later excavated are shaded).

5.4 <u>PETROLEUM HYDROCARBONS IN GROUNDWATER</u>

Groundwater has been monitored since 1991. Wells MW-2, MW-6, and MW-7 are currently sampled semi-annually during the first and third quarters, and wells MW-1 and

MW-4 are sampled annually during the first quarter. Wells MW-3 and MW-5 are no longer sampled. A copy of the first semi-annual 2011 groundwater monitoring report is presented in Appendix E.

Based on the monitoring results, the dissolved hydrocarbon plume is generally located in the area of the former dispensers (downgradient of the former gasoline UST) as well as downgradient beneath Castro Valley Boulevard. Low concentrations of TPHd also remain in groundwater in the area of the former used-oil UST. The residual concentrations are low and have decreased by up to three orders of magnitude below historic maximums. Based on the concentrations in MW-6, the downgradient extent of hydrocarbons in groundwater is adequately defined and no further investigation is warranted. Isoconcentration maps of TPHd, TPHg, and MTBE remaining in groundwater are presented on Figures 5 through 7, respectively. The dissolved mass remaining is estimated at 0.2 pounds TPHd, 0.004 pounds TPHg, and 0.04 pounds MTBE (Appendix F).

Graphs of TPHd, TPHg, benzene, and/or MTBE concentrations over time in wells MW-1, MW-2, and MW-7 are presented in Appendix G. As shown in the graphs, although fluctuations occur, the COC concentrations are low and declining, indicating that the plume has reached its maximum extent and is decreasing in size and mass due to natural attenuation. The TPHg concentrations in MW-7 have remained relatively stable over the years, but have recently declined to new lows. A comparison of the historical maximum and most recent TPHd, TPHg, benzene, and MTBE concentrations in the wells is presented in Table A below.

TABL	TABLE A. COMPARISON OF MAXIMUM AND MOST RECENT CONCENTRATIONS IN GROUNDWATER (concentrations in µg/L)							
	TP	Hd	TP	Hg	Ben	zene	МТ	BE^{a}
Well ID	Max Conc.	Most Recent Conc.	Max Conc.	Most Recent Conc.	Max Conc.	Most Recent Conc.	Max Conc.	Most Recent Conc.
MW-1	2,300	180	340	<50	120	< 0.5	1	< 0.5
10100-1	(3-2-00)	(3-23-11)	(11-4-91)	(3-23-11)	(11-4-91)	(3-23-11)	(3-16-10)	(3-23-11)
MW-2	1,300	570	2,400	<50	30	< 0.5	530	91
101 0 0 -2	(9-13-96)	(3-23-11)	(3-20-97)	(3-23-11)	(3-31-98)	(3-23-11)	(3-21-06)	(3-23-11)
MW-4	290	<50	<50	<50	< 0.5	< 0.5	1	< 0.5
101 0 0 -4	(3-26-07)	(3-23-11)	(all)	(3-23-11)	(all)	(3-23-11)	(6-26-07)	(3-23-11)
MW-6	470	51	1,700	<50	170	< 0.5	18	3
101 0 0-0	(12-30-92)	(9-21-10)	(12-30-92)	(9-21-10)	(12-30-92)	(9-21-10)	(6-28-04)	(9-21-10)
MW-7	13,000	360	3,200	76	750	< 0.5	790	0.6
1V1 V V -7	(3-21-02)	(3-23-11)	(3-21-02)	(3-23-11)	(9-30-00)	(3-23-11)	(9-15-03)	(3-23-11)

a Only results obtained using EPA Method 8260 reported

< Indicates constituent was not detected at or above stated laboratory reporting limit

6.0 <u>RISK EVALUATION</u>

To evaluate potential risks to human health or the environment associated with the residual petroleum hydrocarbons in soil and groundwater, CRA evaluated the presence of wells and potential sensitive receptors in the site vicinity, evaluated potential receptor exposure pathways, and performed a screening-level risk evaluation. The findings of the risk evaluation are presented below.

6.1 NEARBY WELLS AND SENSITIVE RECEPTORS

As described in Section 3.3, the only identified water-supply well within 2,000 feet downgradient was a domestic well approximately 1,400 feet south-southwest. Based on this distance and the groundwater monitoring results from well MW-6, it is unlikely this well would be impacted by petroleum hydrocarbons from the site. As the local drinking water supply is obtained from EBMUD, it is unlikely this well would be used as a drinking water source.

The site is currently an active service station and therefore no sensitive receptors exist at the site. Some residential areas are located further downgradient from the site. However, drinking water is supplied by EBMUD.

Based on this information, there do not appear to be any wells or sensitive receptors that would likely be impacted by petroleum hydrocarbons from the site.

6.2 <u>POTENTIAL EXPOSURE PATHWAYS</u>

6.2.1 <u>SOIL</u>

As the site is generally capped with asphalt or concrete as part of the existing development, potential exposure to any residual impacted soil beneath the site by the general public is de minimis. Therefore, the only identified potential exposure pathway to any residual impacted soil beneath the site is direct exposure by construction workers during trenching or excavating activities.

6.2.2 <u>GROUNDWATER</u>

The extent of hydrocarbons in groundwater appears to be adequately defined, not migrating, and no water-supply wells appear likely to be impacted. Therefore, no complete groundwater ingestion pathways exist and none are likely to exist in the foreseeable future based on the current municipal water supply. Based on the depth to groundwater, it may be encountered during deeper trenching or excavating activities.

6.2.3 <u>SURFACE WATER</u>

The unnamed creek is located approximately 1,100 feet downgradient. Based on this distance, it is unlikely this creek would be impacted by petroleum hydrocarbons from the site.

6.2.4 <u>VAPOR INTRUSION</u>

The site remains an active gas station and remedial excavation was performed to remove hydrocarbon source mass soil. Although impacted groundwater remains beneath the site, concentrations are low and the extent appears to be generally away from the site building. Benzene is considered the primary risk driver for vapor intrusion as it is a known human carcinogen. No benzene is detected in groundwater indicating limited residual source in soil. Based on this information, potential vapor intrusion is not a significant concern under the current land use scenario.

6.3 <u>COMPARISON TO ENVIRONMENTAL SCREENING LEVELS</u>

The maximum residual COC concentrations in soil and groundwater were compared to the corresponding environmental screening levels (ESLs) established by the RWQCB in May 2008. The ESLs are for use as screening levels in determining if further evaluation is warranted, in prioritizing areas of concern, in establishing cleanup goals, and in estimation of potential health risks. As stated by the RWQCB, the ESLs are considered to be conservative. The presence of a chemical at a concentration above an ESL does not necessarily indicate that adverse impacts to human health or the environment are occurring; rather exceeding ESLs indicates that the potential for impacts may exist and that additional evaluation may be needed. Under most circumstances, the presence of a chemical in soil, groundwater, or soil gas at concentrations below the corresponding ESL can be assumed to not pose a significant, long-term (chronic) threat to human health and the environment. For soil vapor, the most recent groundwater concentrations were compared to the ESLs for evaluation of potential vapor intrusion concerns, where established.

6.3.1 <u>SOIL</u>

The only complete potential exposure pathway to residual hydrocarbons in soil under the current land use scenario is direct exposure by construction workers during trenching or excavation activities. Table B below presents a comparison of the maximum COC concentrations detected in remaining soil to the respective ESLs associated with construction/trench worker direct exposure concerns. The results were also compared to the ESLs for groundwater protection (soil leaching) at commercial sites where groundwater is a current or potential drinking water source.

TABLE B. COMPARISON OF MAXIMUM RESIDUAL SOIL CONCENTRATIONS TO ESLs (concentrations in mg/kg)					
Constituent	uent Highest Detected Concentration Remaining in Soil ESL for Construction/Trench Worker Exposure ¹		ESL for Groundwater Protection ²		
TPHd	150 (TE; 5 fbg; 9/18/90)	4,200	83		
TPHg	430 (SB-7; 13 fbg; 7/29/03)	4,200	83		
Benzene	0.24 (TNW; 3 fbg; 9/11/90)	12	0.044		
Toluene	0.26 (MW-6; 5 fbg; 9/25/92)	650	2.9		
Ethylbenzene	0.52 (PITNC; 9 fbg; 9/11/90)	210	3.3		
Xylenes	2 (PITNC; 9 fbg; 9/11/90)	420	2.3		

 ESLs from Table K-3, Direct Exposure Soil Screening Levels, Construction/Trench Worker Exposure Scenario, in Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, RWQCB-May 2008

2. ESLs from Table A-2, Shallow Soil Screening Levels, Commercial/Industrial Land Use, Groundwater is a current or potential source of drinking water, in *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, RWQCB-May 2008

As shown above, the maximum detected COC concentrations in soil are well below the respective ESLs for construction/trench worker exposure. The TPHd, TPHg, and benzene concentrations exceed the ESLs associated with groundwater protection; however, concentrations in groundwater are declining and therefore any residual impacted soil does not appear to be acting as a significant continuing source of hydrocarbons that

would reverse overall improving trends. In addition, as the majority of these samples were collected in 1990, concentrations have likely decreased due to natural attenuation. Therefore, the residual hydrocarbons in soil do not appear to pose a significant threat to human health or the environment.

6.3.2 <u>GROUNDWATER</u>

As described above, there were no identified complete groundwater ingestion pathways. However, the most recent COC concentrations detected in groundwater were compared to the ESLs at sites where groundwater is a current or potential source of drinking water. The comparison is presented in Table C below.

TABLE C. COMPARISON OF MOST RECENT MAXIMUM GROUNDWATER CONCENTRATIONS TO ESLs (concentrations in ug/L)				
ConstituentHighest Detected Concentration Remaining in GroundwaterGroundwater ESL				
TPHd	570	100		
TPHg	76	100		
MTBE	91	5		

 ESLs from Table C, ESLs for Deep Soils, groundwater is a current or potential source of drinking water in *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, RWQCB-May 2008

The maximum detected TPHd and MTBE concentrations in groundwater exceeded the respective ESLs. However, the source has been removed, the plume is stable, and concentrations are decreasing. Although groundwater could be encountered during deeper trenching or excavation activities, the potential risk to construction workers is low based on the remaining concentrations. Additionally, as the site in an active gas station, workers would be required to have the appropriate health and safety training. Therefore, the residual petroleum hydrocarbons in groundwater do not appear to pose a significant threat to human health or the environment.

Trend analysis was performed to estimate when the TPHd and/or MTBE concentrations in those wells with residual concentrations over ESLs would reach the respective ESLs (Appendix G). As shown in Table D below, TPHd and MTBE are expected to reach the ESLs by 2050 at the latest, which is a reasonable amount of time given the municipal water supply.

	TABLE D SUMMARY OF DEGRADATION CALCULATIONS						
WellCOCPeak Concentration $(\mu g/L)$ ESLCurrent Concentration $(\mu g/L)$ Estimated 							
MW-1	TPHd	2,300	100	180	Nov 2014		
MW-2	TPHd	1,300	100	570	Jun 2011		
	MTBE	20,000	5	91	Dec 2015		
MW-7	TPHd	13,000	100	360	Oct 2050		

6.3.3 <u>SOIL VAPOR</u>

The most recent COC concentrations in groundwater were compared to the groundwater ESLs for evaluation of potential vapor intrusion concerns at residential sites (most conservative). However, the only remaining COC that has a corresponding ESL is MTBE (ESL of 24,000 micrograms per liter [μ g/L]), and the highest remaining concentration (91 μ g/L) is well below the ESL and thus does not pose a significant threat to human health.

7.0 LOW-RISK GROUNDWATER CRITERIA

The site appears to meet the RWQCB criteria for classification as a low-risk groundwater case. As described in the January 5, 1996 memorandum, a low-risk groundwater case has the following general characteristics:

- The leak has been stopped and ongoing sources, including light non-aqueous phase liquid (LNAPL), have been removed or remediated.
- The site has been adequately characterized.
- The dissolved hydrocarbon plume is not migrating.
- No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted.
- The site presents no significant risk to human health or the environment.

Each low-risk groundwater case criteria, as it relates to the site, is discussed below.

7.1 THE LEAK HAS BEEN STOPPED AND ONGOING SOURCES, INCLUDING LNAPL, HAVE BEEN REMOVED OR REMEDIATED

All original potential sources of the petroleum hydrocarbon release(s) (former used-oil and gasoline USTs, dispensers, and product piping) were removed in 1990. The site is currently an active station with three USTs. The remedial excavation appears to have removed the majority of the hydrocarbon mass from the original source areas. Based on the decreasing concentrations in groundwater, any residual impacted soil is not acting as a continuing source of hydrocarbons to groundwater that would reverse these trends. LNAPL has not been observed in any of the wells. Based on this information, the leak has been stopped and ongoing sources have been removed.

7.2 <u>THE SITE HAS BEEN ADEQUATELY CHARACTERIZED</u>

Soil sample analytical results indicate that the lateral and vertical extent of impacted soil has been adequately defined. Groundwater monitoring has been performed since 1991. The plume appears to be stable and the extent appears adequately defined. Concentrations are expected to continue to decrease over time due to natural attenuation.

Although soil vapor sampling has not been performed, potential vapor intrusion does not appear to be a significant concern at the site based on the remaining concentrations in soil and groundwater, the lack of benzene in groundwater, and the current land use scenario, and therefore it is not needed to make a case closure evaluation. Based on this information, the extent of impact has been defined to the degree necessary to demonstrate that the site does not present a significant threat to human health or the environment.

7.3 THE DISSOLVED HYDROCARBON PLUME IS STABLE, DECREASING, AND NOT MIGRATING

Based on the monitoring results, the plume appears stable, shrinking, and not migrating. Natural attenuation is expected to continue to reduce the remaining concentrations to background levels. The remaining TPHd and MTBE concentrations in groundwater are estimated to reach the ESLs by 2050 and 2015, respectively.

7.4 NO WATER WELLS, DEEPER DRINKING WATER AQUIFERS, SURFACE WATER, OR OTHER SENSITIVE RECEPTORS ARE LIKELY TO BE IMPACTED

No water wells, surface water, or other sensitive receptors were identified that are likely to be impacted by petroleum hydrocarbons from the site.

7.5 THE SITE PRESENTS NO SIGNIFICANT RISK TO HUMAN HEALTH OR THE ENVIRONMENT

The site is capped with asphalt or concrete over most of the surface area, thus potential exposure to any residual impacted soil by the general public is precluded. The maximum residual detected concentrations in soil slightly exceeded the ESLs associated with groundwater protection; however, concentrations in groundwater are decreasing indicating the lack of a continuing source. Although impacted groundwater remains beneath the site, the residual concentrations are low, the plume appears stable and limited in extent, and no sensitive receptors appear likely to be impacted. Natural attenuation is expected to continue to decrease concentrations to background levels. Potential vapor intrusion is not a significant concern given the remaining concentrations and the current land use scenario. If site redevelopment occurs, any residual hydrocarbons and potential vapor intrusion can be addressed at that time, if warranted. Based on this information, the site does not pose a significant risk to human health or the environment under the current land use scenario.

8.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

Based on the site conditions and analytical data, the site satisfies the RWQCB criteria for classification as a low-risk groundwater case. The extent of hydrocarbons in soil and groundwater has been adequately defined and no further work is warranted. The dissolved hydrocarbon plume is decreasing in size and mass and concentrations are expected to reach ESLs by 2050 at the latest. The residual petroleum hydrocarbons in soil and groundwater do not pose a significant threat to human health or the environment under the current land use scenario. The site is expected to remain a gas station for the foreseeable future. Any residual hydrocarbons can be addressed in the future if and when the site is no longer used as a service station and the existing tanks and piping are removed. Therefore, on behalf of Chevron, CRA respectfully requests the site be considered for low-risk case closure.

FIGURES

611633-400(009)GN-WA001 NOV 08/2010

611633-400(009)GN-WA002 JUN 03/2011

611633-400(009)GN-WA011 JUN 03/2011

611633-400(009)GN-WA011 JUN 03/2011

611633-400(009)GN-WA007 JUN 03/2011

611633-400(009)GN-WA008 JUN 03/2011

611633-400(009)GN-WA009 JUN 03/2011

SOIL SAMPLE ANALYTICAL RESULTS CHEVRON STATION 9-6991 2920 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA

Boring/ Sample ID	Sample Depth (fbg)	Sample Date	TOG	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	VOCs	HVOCs	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
								— Concen	trations rep	orted in mi	lligrams pe	er kilogram (mg/kg)					→
WOM	ST Removal a 11	9/11/90			15	0.07	<0.005	0.01	0.05		ND ^a							
AW	8	9/11/90 9/11/90	2,000 830		15	0.07	<0.005					 ND						
AVV	8	9/11/90 9/11/90	1,400									ND						
WOW15	15	9/11/90 9/18/90	780	 <10	 26	 ND	 ND	 ND	 ND		 ND	ND 						
WOW15 WOE15	15 15	9/18/90 9/18/90	160	<10 <10	20 <10	ND	ND ND	ND	ND		ND							
WOE15 WOM15	15	9/18/90 9/18/90	480	<10 <10	13	ND	ND ND	ND	ND		ND							
A-1	13	9/20/90	710								ND							
2A	12	9/20/90 9/20/90	1,500															
3A	12	9/20/90	1,500 510															
6A	12	9/20/90 9/20/90	3,200															
4A	12	9/20/90	3,200															
4A 5A	12	9/20/90 9/20/90	68															
PH1-6	6	9/20/90 9/20/90	42															
PH1-10	10	9/20/90 9/20/90	42															
PH2-6	6	9/20/90 9/20/90	400 58															
PH2-10	10	9/20/90 9/20/90	38															
PH3-6	6	9/20/90 9/20/90	38 22															
PH3-10	10		35															
E-1-10	10	9/20/90 9/20/90	12	 ND		 ND	 ND	 ND	 ND									
E-1-10 E-2-10	10	9/20/90 9/20/90	12	ND		ND	ND ND	ND	ND									
E-2-10 E-3-2	2	9/20/90 9/20/90	<10					-										
E-3-2 E-3-1	2 1	9/20/90 9/20/90	<10 <10		_	_			_			-	_		-	-	-	
E-3-1-10	10	9/20/90 9/21/90	<10 14	ND		ND	ND	ND	ND		-	-	-		-		-	
E-3-2-10 E-3-2-10	10	9/21/90 9/21/90	14	ND		ND	ND	ND	ND									
E-4-10	10	9/21/90 9/20/90	12	ND		ND	ND	ND	ND									
E-4-10 E-5-10	10	9/20/90 9/20/90	<10	ND		ND	ND	ND	ND									
E-6-10	10	9/20/90 9/20/90	<10 <10	ND		ND	ND	ND	ND									
1-0-10	10	9/20/90	~10	ND		ND	ND	ND	ND									
Gasoline US	ST Excavation	ı																
PITW	11	9/11/90			<1	< 0.005	< 0.005	< 0.005	< 0.015									
PITNC	9	9/11/90			63	0.05	0.01	0.52	2									
PITE	11	9/11/90			1	< 0.005	< 0.005	< 0.005	< 0.015									
n 1		10 5																
	e Removal an				_		·0.06=											
TNW	3	9/11/90			5	0.24	< 0.005	0.09	0.24									
TNE	3	9/11/90		<10														
TSW	3	9/11/90			52	0.16	< 0.005	0.57	0.53									
TSE	3	9/11/90		1,000														

SOIL SAMPLE ANALYTICAL RESULTS CHEVRON STATION 9-6991 2920 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA

Boring/ Sample ID	Sample Depth (fbg)	Sample Date	TOG	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	VOCs	HVOCs	DIPE	ETBE	TAME	TBA	1,2 - DCA	EDB
			•					- Concent	trations rep	orted in mil	ligrams pe	er kilogram (mg/kg)					
TE	5	9/18/90		150		0.01	0.01	0.01	0.02									
TW	5	9/18/90			21	0.1	0.01	0.02	0.1									
PT-N-7	7	9/20/90		140	<1	< 0.005	< 0.005	< 0.005	< 0.015									
PT-S-7	7	9/20/90		58	<1	< 0.005	< 0.005	< 0.005	< 0.015									
PT-S-1-7	7	9/20/90	16	ND	<1	< 0.005	< 0.005	< 0.005	< 0.015									
PT-S-2-7	7	9/20/90	41	ND	<1	< 0.005	< 0.005	< 0.005	< 0.015									
PT1	Unk	9/20/90	190		-	-	-			-	-	-		-	-			-
PT2	Unk	9/20/90	290							-					-			
PTS WALL	Unk	9/20/90	380							-					-			
PTN WALL	Unk	9/20/90	33		-		-	-			-							-
Exploratory	and Monitori	ing Well Bor	rings															
MW-1A	9	9/23/91	<50		<1	< 0.005	< 0.005	< 0.005	< 0.005									
MW-2A	5	9/23/91			<1	< 0.005	0.005	0.006	0.014									
MW-2B	10	9/23/91			<1	< 0.005	< 0.005	< 0.005	< 0.005									
MW-3A	6	9/30/91			<1	< 0.005	< 0.005	< 0.005	< 0.005									
MW-3C	10	9/30/91			<1	< 0.005	< 0.005	< 0.005	< 0.005									
MW-4	5	9/25/92		<1	<1	< 0.005	0.03	< 0.005	< 0.005									
	10	9/25/92		<1	<1	< 0.005	0.042	< 0.005	< 0.005									
	20	9/25/92		<1	<1	< 0.005	0.03	< 0.005	< 0.005									
MW-5	5	9/25/92		<1	<1	< 0.005	0.052	< 0.005	< 0.005									
	10	9/25/92		<1	<1	< 0.005	0.067	< 0.005	< 0.005									
MW-6	5	9/25/92		5	<1	< 0.005	0.26	< 0.005	0.011									
	10	9/25/92		<1	<1	< 0.005	0.021	< 0.005	0.008									
MW-7	5.5	8/30/95			<1.0	< 0.005	< 0.005	< 0.005	< 0.015									
	12	8/30/95			3.7	< 0.005	0.009	0.006	< 0.015									
	21	8/30/95			<1.0	< 0.005	< 0.005	< 0.005	< 0.015									
SB-1	5	3/6/02		<10	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050								
	10	3/6/02		<10	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050								
SB-2	5.5	3/6/02		<10	<1.0	< 0.0050	< 0.0050	<0.0050	<0.015	< 0.050								

SOIL SAMPLE ANALYTICAL RESULTS CHEVRON STATION 9-6991 2920 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA

Boring/ Sample ID	Sample Depth (fbg)	Sample Date	TOG	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	VOCs	HVOCs	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
			•					- Concent	trations repo	orted in mil	ligrams pe	er kilogram (i	mg/kg)					
SB-3	5.5	3/6/02		<10	<1.0	< 0.0050	<0.0050	< 0.0050	<0.015	<0.050								
SB-5	5	3/6/02		<10	1.1	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050								
	10	3/6/02		53	250	< 0.05	< 0.20	< 0.50	0.99	< 0.50								
SB-6	5	3/6/02		<10	<1.0	< 0.0050	< 0.0050	<0.0050	<0.015	< 0.050								
SB-7	8	7/29/03		36	25	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			< 0.001	< 0.001	< 0.001	< 0.02	< 0.001	< 0.001
	11.5	7/29/03		110	180	< 0.001	< 0.001	0.018	0.001	< 0.001			< 0.001	< 0.001	< 0.001	< 0.02	< 0.001	< 0.001
	13	7/29/03		60	430	< 0.005	< 0.005	0.044	0.005	< 0.005			< 0.005	< 0.005	< 0.005	< 0.098	< 0.005	< 0.005
	15.5	7/29/03		<10	<1.0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			< 0.001	< 0.001	< 0.001	< 0.02	< 0.001	< 0.001
	17	7/29/03		<10	<1.0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			< 0.001	< 0.001	< 0.001	< 0.02	< 0.001	< 0.001
	19.5	7/29/03		<10	<1.0	< 0.001	< 0.001	< 0.001	< 0.001	0.001			< 0.001	< 0.001	< 0.001	< 0.02	< 0.001	< 0.001

Abbreviations/Notes:

fbg = feet below grade

TOG = Total oil and grease

TPHd/TPHg = Total petroleum hydrocarbons as diesel and gasoline, respectively

MTBE = Methyl tertiary butyl ether

VOCs = Volatile organic compounds

HVOCs = Halogenated volatile organic compounds

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

1,2-DCA = 1,2-dichloroethane

EDB = 1,2-dibromoethane

<x = Not detected at or above stated laboratory reporting limit

-- = Not analyzed

ND = Not detected; reporting limits vary or are unknown

a = Not detected except BTEX and 1,2-Dichlorobenzene (0.0078 mg/kg)

Unk = Sample depth unknown

Note: Shaded samples were collected from soil that was later excavated

GROUNDWATER SAMPLE ANALYTICAL RESULTS CHEVRON STATION 9-6991 2920 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA

Boring/ Sample ID	Sample Date	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	ETBE	DIPE	TAME
		◀			- Concer	ntrations reported	d in microgra	ams per liter	(ug/L) —			
Gasoline US	T Excavation	n										
PITWTR1	9/11/90		51,000	5,800	9,600	960	13,000					
PITWTR2	9/11/90		54,000	6,200	10,000	1,100	14,000					
Used-Oil US WOWAT1	T Excavation 9/18/90	n 	1,400									
WOWAT2	9/18/90		510									
Exploratory	Borings											
SB1	3/6/02	<200	<50	< 0.50	< 0.50	< 0.50	<1.5	< 0.5	<5.0	< 0.5	< 0.5	< 0.5
SB2	3/6/02	200	<50	< 0.50	< 0.50	< 0.50	<1.5	< 0.5	<5.0	< 0.5	< 0.5	< 0.5
SB3	3/6/02	960	990	0.59	0.7	1.4	<1.5	8	<5.0	< 0.5	< 0.5	< 0.5
SB6	3/6/02	<200	<50	< 0.50	< 0.50	< 0.50	<1.5	<0.5	<5.0	< 0.5	< 0.5	< 0.5
SB7	7/29/03	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	0.9	<5.0	< 0.5	< 0.5	< 0.5

Abbreviations/Notes:

TPHd/TPHg = Total petroleum hydrocarbons as diesel and gasoline, respectively

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

ETBE = Ethyl tertiary butyl ether

DIPE = Di-isopropyl ether

TAME = Tertiary amyl methyl ether

-- = Not analyzed

<x = Not detected at or above stated laboratory reporting limit

APPENDIX A

SUMMARY OF ENVIRONMENTAL INVESTIGATION AND REMEDIATION

SUMMARY OF ENVIRONMENTAL INVESTIGATION AND REMEDIATION CHEVRON STATION 9-6991 2920 CASTRO VALLEY BLVD, CASTRO VALLEY, CA

1983 Underground Storage Tank (UST) Replacement

According to Chevron records, all USTs were replaced in 1983, and the storage and sale of diesel fuel was discontinued. No other information is available.

September 1990 UST Removal/Station Remodel

Groundwater Technology, Inc. (GTI) observed the removal of a 1,000-gallon used-oil UST and a 6,000-gallon unleaded gasoline UST. Three 10,000-gallon fuel USTs were left in place, but the product piping was replaced. Soil samples collected at 9 or 11 feet below grade (fbg) beneath the gasoline UST contained maximums of only 63 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPHg) and 0.05 mg/kg benzene (one sample). Two groundwater samples collected from the excavation contained up to 54,000 micrograms per liter (μ g/L) TPHg and 6,200 μ g/L benzene.

Based on confirmation sample results beneath the used-oil UST at 8 fbg and 11 fbg, the excavation was deepened to 15 fbg. Soil samples collected from the excavation bottom contained up to 780 mg/kg total oil and grease (TOG) and 26 mg/kg TPHg, but no benzene. Two groundwater samples collected from the excavation contained up to 1,400 µg/L TPHg. The excavation was subsequently extended laterally until petroleum hydrocarbon concentrations in soil were near or below detection limits. The final confirmation soil samples contained a maximum of only 14 mg/kg TOG. The approximate final dimensions of the excavation were 40 feet by 16 feet by 15 feet deep.

Soil samples collected at 3 fbg beneath the product piping contained up to 1,000 mg/kg TPH as diesel (TPHd), 52 mg/kg TPHg, and 0.24 mg/kg benzene. The southern product line trench was deepened to 7 fbg; soil samples collected from the sidewalls contained up to 140 mg/kg TPHd, but no TPHg or benzene. Excavation could not continue to the south due to the sidewalk; the approximate final dimensions were 10 feet by 4 feet by 7 feet deep.

Approximately 700 cubic yards of source mass soil with the highest hydrocarbon concentrations was removed and disposed offsite, and the excavations were backfilled with clean imported material. Details were presented in GTI's December 1990 *Summary Tank Excavation Report*.

September 1991 Well Installations

GTI installed wells MW-1, MW-2, and MW-3 (³/₄-inch diameter). No TOG, TPHg, or benzene were detected in soil. Details were presented in GTI's November 11, 1991 *Well Installation Report*.

September and October 1992 Well Installations

GTI installed onsite well MW-4 and offsite wells MW-5 and MW-6. One soil sample contained 5 mg/kg TPHd. No TPHg or benzene were detected in soil. Details were presented in GTI's December 11, 1992 *Environmental Assessment Report*.

March 1993 Offsite Source Investigation

GTI performed a site reconnaissance, reviewed files at the Regional Water Quality Control

Board (RWQCB) and ACEH, and reviewed Castro Valley Sanitary District maps to identify potential sources of the hydrocarbons detected in groundwater in MW-6. A former service station at 2896 Castro Valley Boulevard to the west of the site was identified as a possible source, as was an underground utility adjacent to MW-6. Further details were presented in Weiss Associates' December 20, 1994 *Comprehensive Site Evaluation and Proposed Future Action Plan*.

August 1995 Well Installation

Gettler-Ryan Inc. (G-R) installed well MW-7. The highest TPHg concentration detected in soil was only 3.7 mg/kg; no benzene was detected. Details were presented in G-R's October 27, 1995 *Well Installation Report*.

March 2002 Subsurface Investigation

Delta Environmental Consultants, Inc. (Delta) advanced exploratory borings SB-1 through SB-6 in the vicinity of nearby utility trenches to further evaluate the extent of hydrocarbons in groundwater and to evaluate if the trenches were potentially acting as preferential pathways for hydrocarbon migration. Soil samples collected from each boring except SB-4 (refusal at 3.5 fbg) contained up to 53 mg/kg TPHd and 250 mg/kg TPHg; no benzene or methyl tertiary butyl ether (MTBE) were detected. Groundwater samples collected from borings SB-1, SB-2, SB-3, and SB-6 contained up to 960 µg/L TPHd, 990 µg/L TPHg, 0.59 µg/L benzene, and 8 µg/L MTBE. The groundwater sample collected from SB-5 was not analyzed due to the reported presence of light non-aqueous phase liquid (LNAPL). However, on the boring log for SB-5 only a sheen was indicated. Further details were presented in Delta's April 29, 2002 *Soil Boring and Utility Trench Investigation Report*.

July 2003 Subsurface Investigation

Cambria Environmental Technology, Inc. (Cambria [now CRA]) advanced exploratory boring SB-7 to further evaluate the reported LNAPL in previous boring SB-5. Soil samples collected from the boring at 8, 11.5, 13, 15.5, 17, and 19.5 fbg contained up to 110 mg/kg TPHd, 430 mg/kg TPHg, and 0.001 mg/kg MTBE (one sample), but no benzene. A grab-groundwater sample collected from the boring contained 0.9 μ g/L MTBE, but no TPHd, TPHg or benzene were detected. Based on the results, it was concluded that the previously reported LNAPL in SB-5 was erroneous. Further details were presented in Cambria's September 16, 2003 *Site Assessment/Summary*.

APPENDIX B

PREVIOUS EXCAVATION SITE PLANS

APPENDIX C

HISTORICAL BORING LOGS

GROUNDWATER TECHNOLOGY See Site Map Project ______ Owner _____ Owner _____ Chevron U.S.A. Inc. For Boring Location Location Castro Valley, CA Project Number 02030/038 Date Drilled _9/24/91 _____ Total Depth of Hole _21.0 ft. ____ Diameter _2 in. NOTES: Top of Casing ______ Water Level Initial _____ft. _____ Static Screen: Dia <u>.75 in.</u> _____ Slot Size ____020 in. Casing: Dia <u>.75 in</u> _____ Type __*SCH 80 PVC* _____ Length 3.0 ft. Filter Pack Material ______ No 2/12 Labis Lustre ______ Rig/Core Type _____ _ Dril./Mon. Method _ Percussion Hammer / PID Drilling Company <u>Power Core</u> Driller <u>Michael Nosewicz</u> _____ Log By Glen Mitchell Geologist/Engineer _______ David Kleesattel____ _ License No _5136 <u>io</u> Sample ID Class Graphic Log (feet) Well Completi Description (Color, Texture, Structure) Soil 0 Six inches ASPHALT PID -light gray clayey GRAVEL (loose, dry) GC 2 Brown clayey SAND (loose, dry) SC Δ Tan gravelly SAND (loose, moist) 6 0 8 SP 0 10 Encountered water 9/24/91 (09:32 hours)i -Tan sandy gravel (loose, saturated) 00 12 6P റ Mottled tan and dark brown silty CLAY (soft, saturated) CL 14 -Tan clayey GRAVEL (loose, saturated) GC 16 Dark brown silty CLAY (soft, saturated) CL 18 Tan clayey GRAVEL (loose, saturated) GC 20 Mottled tan and gray silty CLAY (firm, moist) CL End of boring at 21.0 feet. Constructed monitoring well. 22 24 26

11/11/1991 gtibasic oct

Drilling Log

Monitoring Well MW-1

Drilling Log GROUNDWATER TECHNOLOGY

	ТЕСН	INOLOG	SY .					
Project _(<u>CHV/2920 (</u>	Castro Va	iley Bivd.		Own	er _ <u>Chevron U.S.A.</u>	Inc.	See Site Map
Location .	Castro Va	lley, CA			Proj	ect Number	01038	
Date Drille	d <u>9/24/9</u>	1	Tota	Depth of	Hole	<u>_21.0 ft.</u>	Diameter <u>2 in.</u>	— NOTES:
Top of Ca	ising		Wate	r Level Init	ial _/	11 ft.	Static	—
Screen; D	na <u>75 in.</u> 75 in		Leng	th_ <u>1577.</u> 11. 60 <i>1</i> 1		•	Slot Size <u>.020 in.</u> Type <u>SCH 80 PVC</u>	<u> </u>
Filter Pack	Matorial	No 2/12 I	Leng abis Lustre	tn <u>. 0.0 //.</u>	Dia	Core Type	Type	
Drilling Cor	ndany <u>Po</u> l	wer Core			Dril	/Mon Method Perc	cussion Hammer / PID	
Driller Mid	chael Nosel	wicz			Log	By <u>Glen Mitchell</u>		
Geologist/	'Engineer "	David Kle	esattel	_ License	No_	5136		
Depth (feet)	Well Completion	OId (mqq)	Sample ID	Graphic Log	Soil Class		Descr (Color, Textu	iption re, Structure)
- 0 -	<u>5</u> [0	PID		0 0 0		ASPHALT	,	
	000	·.		7/77	╟──	<u>∥</u>	silty CLAY (firm, moist	b)
- 2 -		8						~
- 4 -			-			Dark gray sil	ty CLAY(firm, moist)	
			A					· · ·
- 6 -		4.4						·
F 1					CL	Mottled gray	and tan silty CLAY	(firm, moist)
- 8 -					1		ith minor gravel	
		· . 1.0						
- 10 -		.4						· ·
.0			В 📕			.		
						+ Encountered	water 9/24/91 (12:0	O hours)i
- 12 -						Craw have a	No. or CILT with the	
		89.0				Gray Drown C	clayey SILT with fine	sand (tirm, moist)
- 14 -					ML			
						Tan silty SAI	VD (hard, saturated)	
- 16 -								
+						Gray clayey	fine SAND (hard, sai	turated)
- 18 -					SC			
						Gray and rus	ty sandy CLAY (sati	urated.)
- 20 -						0		
				1///	α	Gray silty CL	AY (saturated)	
├ ╢				<u></u>		End of borio	at 21.0 feet Const	ructed groundwater monitoring well.
- 22 -							,oou oonsu	
} -	1							
- 24 -								
	-							
	1 1 1							
- 26 -								
<u> </u>	n		•	ليا	. 1	и, <u> </u>		

II/II/I991 gtibasic oct

GROUNDWATER

Monitoring Well MW-3

	HNOLOG	βY				
Project _CHV/2920	Castro Val	iey Bivd.		Owni	er _ Chevron U.S.A. Inc.	See Site Map For Boring Location
					ect Number	
Date Drilled <u>9/30/</u> Top of Casing	91	Total Water	Depth of I Level Initi	Hole . ial	Diameter Diameter 2 in. Static Slot Size020 in.	NOTES:
Screen: Dia <u>.75 m.</u>		Leng	in <u>15 n.</u> 15 5.0 ft.		Slot Size Type SCH 80 PVC	
Filter Pack Material	No 2/12 L	abis Lustre		Ria/	Type	
Drilling Company _Po	wer Core			Dril./	Mon. Method Percussion Hammer / PID	
Driller <u>Michael Nose</u>	ewicz			Log	By Greg Mischel	
Geologist/Engineer	David Kle	esattel	_ License	No	RG 5136	
Depth (feet) Well Completion	OId (mdd)	Sample ID	Graphic Log	Soil Class	Descript (Color, Texture,	ion Structure)
	PID				Six inches asphalt	
			0.0.0		Pea gravel FILL (saturated from loc	al inflow)
	4		а ХИХИ	∥—-	Brown to black silty CLAY (moist)	
- 2 - 2 - 6					Poor recovery	• •
				₿./м		
- 4 - 1				1	Grades to black clayey SILT (moist	:)
			00.00	GW	Sandy GRAVEL	
	~			GW	Black clayey SILT	•
		A			Brown and gray silty gravely CLAY	(moist)
	:	в				
- 10 -				1	Clough in help. No approlog	
			1.7.7		Slough in hole. No samples.	· · · · ·
- 12 -	•		555			
			<u>, , , , , , , , , , , , , , , , , , , </u>			
	•		1777			
				1		
- 16 -		•	1.1.1			
			1997			
			555			
- 18 -	•					
			<i>[]]</i>		÷	
- 20	-		<i>[[[[[[]</i>		End of boring at 20.0 feet. Construct	ted aroundwater monitoring well
					End of boring at 20.0 reet. constitut	
- 22 -			1			
- 24 -			ł	1		
·						
- 26 -	1					
					<u> </u>	·····

11/11/1991 gtbasic oct

Monitoring Well MW-4

						
Project 4	<u>CHV/2920</u>	<u>) Castro V</u>	alley Blvd		_ 0	Owner <u>Chevron U.S.A. Products Co.</u> See Site Map
Location	<u>Castro V</u>	lalley, CA		Projec	t No	<u>. 02020 2778</u> Date drilled 09/25/92
Surface	Elev. <u>169.</u>	<u>43 ft.</u> Ti	otal Hole [Depth 3	<u>21.5</u>	ft. Diameter <u>8 inches</u>
Top of C	asing <u>169</u>	<u>.18 ft.</u> Wa	ater Level	Initial	<u>14 f</u>	<u>tStatic 10/27/92 11.39 ft.</u>
Screen: I	Dia <u>2 in.</u> 	Le	ength <u>15 1</u>	<u>t.</u>		Type/Size 0.020 in.
Casing: E)ia <u>2 m. </u>		ength <u>5 f(</u>	<u> </u>		Type <u>SCH 40 PVC</u>
	ck Materia	yilhəna W	ustre #3		R	Ng/Core Type <u>Mobile B-53/Split Spoon</u>
	ompany <u>n</u> Del Visil	Vandug ne				Hollow Stem Auger Permit # 92365 .og By Jason Fedota
		, Kleesatt	el	Licer		NO. RG# 5136 D-1 Klisaltus
		1	_			
f f f f f f f f f f f f f f f f f f f	Well Completion		Sample ID Blow Count/ X Recovery	Graphic Log	Class.	Description
Depth (ft.)	Wel	PID (mqq)			Ū	· · ·
	5	Ŭ	B B B B B B B B B B B B B B B B B B B	້ ອ	š	(Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
			Wex		5	
2-						
	:					
						· · ·
	╞┟┝━━┥╢╺┦					
	h h h					
F 2 -	< <					
	國國					·
				//		
		0	° 🗋	$//\lambda$		Orange mottled brown CLAY (stiff and moist)
- 6 -			11 -	$//\lambda$		
	:: ∃ ::			//	ŀ	
- 8 -						
	[·]Ξ[·]			//		
	⊡≣⊡					2
- 10 -	::I <u>=</u> [:]	0	7 -	$//\lambda$		Orange mottled brown silty CLAY (stiff and moist)
┠╶╢	.:I≡I:-I	-			CL	
L 12 _	:]≣[:		l "U			
	:: Ξ[::					
	: ≣ :∥					
<u> </u> 14 - ∥	: ≣[:			//		₹ Encountered groundwater at 14 feet on 09/25/92.
	∷ ≡ ∷					
- 16 -	.: ≣ :	0	é H	$//\lambda$		Orange mottled brown silty CLAY (saturated).
	: ≣[:		юЦ			
┠┨	:: ∃ ::					
- 18 -	: ≡ :		ĺ			
L _∬	∵ ≣[.					
	∷ ≡!∷∥		ļ,			
- 20 -			N N			Orange mottled brown silty CLAY (saturated).
⊦ -∥				//		
- 22 -			- A			End of boring at 21.5 feet. Installed groundwater monitoring well.
						Lie of boining at 21.0 reet. Instaned groundwater monitoring well.
[1						
- 24 -						
<u> </u>	1	<u> </u>		<u> </u>		
11/23/1992	lithlog-mars	92				Page: Lot 1

Monitoring Well MW-5

Location Surface Top of C Screen: Casing: D Filter Pa Drilling C Driller <u>J</u>	<u>Castro V</u> Elev. <u>168.</u> Casing <u>167.</u> Dia <u>2 in.</u> Cla <u>2 in.</u> ck Materia ompany <u>K</u> <u>cel Visil</u> By <u>Davio</u>	' <u>alley, CA</u> <u>0 ft.</u> Tr .4 <u>1 ft.</u> Wa 	otal Hole [ater Level ength <u>15 f</u> ength <u>5 ft</u> ustre #3 ell Drilling el	Projec Depth _ Initial <u>t.</u> 	t No <u>21.5</u> <u>13 f</u> R nod <u>1</u> L nse N	Wher <u>Chevron U.S.A. Products Co.</u> <u>02020 2778</u> Date drilled <u>10/08/92</u> <u>ft.</u> Diameter <u>8 inches</u> <u>t.</u> Static <u>10/27/92 9.95 ft.</u> <u>Type/Size 0.020 in.</u> <u>Type SCH 40 PVC</u> <u>ig/Core Type <u>Mobile B-53/Split Spoon</u> <u>Hollow Stem Auger</u> Permit <u># 92365</u> og By <u>Jason Fedota</u> No. <u>RG# 5136</u> <u>Mail</u> Klazatta</u>	See Site Map For Boring Location COMMENTS: Orginal soliboring for MW-5 was abandoned on September 25, 1992, because flowing sands obstructed installation of the well. The second boring for MW-5 was relocated approximately 5 feet from the orginal boring on October 10, 1992.
Depth (ft.)	Well Completion	(mqq)	Sample ID Blow Count/ & Recovery	Graphic Log	USCS Class.	Descripti (Color, Texture, S Trace < 10%, Little 10% to 20%, Some	(tructure)
-2-2 -0 -2 -2 -4 -6 -10 -12 -14 -16 -18 -18 -20 -18 -20 -22 -24 -24		0		Participation of the second of	GC	Dark brown CLAY (soft and moist) (abundant roots) Orange mottled brown silty CLAY (sof ✓ Encountered groundwater at 13 feet of Brown clayey sandy GRAVEL (loose a Brown gravelly clayey fine SAND (loo End of boring at 21.5 feet. Installed of	on 09/25/92. and saturated). se and saturated).

٩

11/24/1992 lithlog-mar92

GROUNDWATER
TECHNOLOGY

Monitoring Well MW-6

Project 1 Location	<u>CHV/2920</u> <u>Castro V</u>	<u>Castro V</u> Talley, CA	alley Bivo	Projec	0 :t No	Wher <u>Chevron U.S.A. Products Co.</u> . <u>02020 2778</u> Date drilled <u>09/25/92</u>
Depth (ft.)	Well Completion	(mqq) DIg	Sample ID Blow Count/ X Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 - 26		0	8 X 27 X 40 X		2) S	Brown silty clayey SAND (firm and saturated)
- 28 - 30					•	End of boring at 26.5 feet. Installed groundwater monitoring well.
- 32 - - 32 - - 34 -						
- 36 - - 36 - - 38 -						
- 40 - - 40 - - 42 -						
- 44 - - 44 - 						
- 48 - - 50 -					-	
- 52 - - 52 -						
- 54 - - 56 -						

11/23/1992 lithlog-mar92

.

PRO	JECT:	Che	vron SS#	9-0	5991	<u></u>		<u> </u>	LOCATION: 292	0 Castro Valley Bl	vd, Ca	stro Vall	ev. CA
G⊸R	PROJE		10.: 529	6.0						TION: 168.80 fee			
DAT	E STA	RTEC): 08/30	/95					WL (ft. bgs): 12.0	DATE: 08/30/95	TIME	E: <i>16:30</i>	
			D: 08/30						WL (ft. bgs): 12.0	DATE: 08/30/95	TIME	E: 17:40	
			10D: 8 in	· · ·					TOTAL DEPTH:				
	LING	COMP	ANY: Ba	у А. I	rea E	xplora	tion, T	Inc.	GEOLOGIST: B.	Sieminski	1		
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		GE	OLOGIC DESCRIPTIO	DN		WELL DI	AGRAM
					////	CL	\mathbb{L}	PAVEMENT - 4 ii	nches of asphalt ove	r baserock. 🦯			$\sqrt{\pi}$
٦				.		GC	1_	SANDY CLAY WIT	ГН GRAVEL (CL) – Ы	ack (10YR 1/2),		NR	_∐. *
-				'				damp, medium sti to coarse sand, :	ff, low plasticity; 50% 20% gravel; fill.	fines, 30% fine	ch. 40		cement vite
- - 5-	10.4	13	MW7-5.5			CL		4/3), damp, very 20% fines, 10% fir	(GC) – dark yellowis dense; 70% gravel a ne to coarse sand; co 4 inches in diameter	nd cobbles,	2" blank pvc Sch.		→ k → k · · · cen
-								(5GY 4/1), damp, fine sand.	H SAND (CL) – dark stiff, Iow plasticity;	80% fines, 20%	4		
_				.				Color change to medium plasticity	black (7.5YR 2/0), d at 4 feet.	ecreasing sand,	Î	Ξ	
- 10	16.6	13	MW7-9.5					olive (5Y 5/4), 3 hydrocarbon odd	grayish green (56 5, 0% fine to coarse sa or at 9 feet; increasir race fine gravel at 10	nd; noticeable ng sand to 40%.	[4]		
	199	22	MW7-12			SC	¥¥,	green (5GY 4/1) medium dense; 50	(TH GRAVEL (SC) – (mottled olive (5Y 4/ 0% fine to coarse sar obvious hydrocarbon eet.	4), moist, id, 40% fines,	otted pvc (0.01 inch)		#5/12 sand
15	0	14	MW7-15.5					Color change to dark yellowish br	light olive brown (2.5 own (10YR 4/6) at 15	Y 5/4) mottled i feet.	2" machine slotte		
- 20-				 		CL		SANDY CLAY (Cl stiff, low plasticit	.) – dark bluish gray ty: 75% clay, 25% fine	(5B 4/1), moist, e sand.	de 2		→¦≺ →bentonite
-	0	15	MW7-21	•				Becomes damp a	t 21 feet.				¦∡⊥ ↓
	:			-					at 21.5 feet, 08/30/	95.			J.
25-				-				().	to equivalent standar				

.

.

Page 1 of 1

	Get	tle	er—F	lyan	, Inc.	Log of Boring	SB1
ROJE		20160	- Sor	vice St	ation No. 9-6991	LOCATION: 2920 Castro Valley Blvd.,	Castro Valley, CA
	JECT N					SURFACE ELEVATION:	
	STARTE		03/06			WL (ft. bgs): DATE:	TIME:
	FINISHE		_				LINE:
			_		Hand Auger	TOTAL DEPTH: 12 feet	
	NG COM		_		Ryan, Inc.	GEOLOGIST: Tony Mikacich	
(feet)	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	REMARKS
3-		-		CL	CLAY WITH SAND (CL) fine sand.	– dark brown (10YR 3/3), moist; 80% clay, 20%	Boring backtilled with excavated sol to surface grade.
6-	SB1-5				CLAY (CL) – dark bro trace organic matter.	wn (10YR 3/3), moist: 00% clay, 10% fine sand,	
9	SB1-10				Becomes wet.		
12	SBI-₩				SANDY CLAY (CL) - medium sand. Bottom of boring at 1	brown (10YR 5/3), wet; 70% clay, 30% fine to 12 feet bgs.	Grab groundwate sample SBI-W collected at 12 feet.
- 15—							
- 18–							
21-			_				Page

Gettler	-Ryan	, Inc.	Log of Boring SB2				
OJECT: Chevron	Service Sta	ation No. 9–6991	LOCATION: 2920 Castro Valley Blvd.,	LOCATION: 2920 Castro Valley Blvd., Castro Valley, CA			
R PROJECT NO. : L			SURFACE ELEVATION:				
TE STARTED: 03		• <u> </u>	WL (ft. bgs): DATE: T)	IME:			
ATE FINISHED: 0				IME:			
RILLING METHOD:		and Auger	TOTAL DEPTH: 16 feet				
RILLING COMPANY:			GEOLOGIST: Tony Mikacich				
<u> </u>	SOIL CLASS		GEOLOGIC DESCRIPTION	REMARKS			
	<u> </u>	Concrete and base rock	– 9 inches thick.	Boring backfilled			
	-	Asphalt - 6 inches thick.		with excavated sol to 6 inches bgs.			
	· -	Concrete and base rock	- 12 inches thick.	Concrete used to surface grade.			
-							
3- 5B2~5.5	CL	ULAT (UL) - greenisti gi	ay (5G 5/1), moist; 00% clay, 10% fine sand.	-			
9-							
12-			prown (10YR 5/3), wet; 70% fine to medium sand,				
15-	SC	CLAYEY SAND (SC) - L 30% clay.					
SB2-W		Bottom of boring at 16	feet bas	Grab groundwate			
		Borrow of point at to		collected at 16 feet.			
18			· ·				
21				Page 1			

Gettler-Ryan, Inc.	Log of Boring SB3				
ROJECT: Chevron Service Station No. 9–6991	LOCATION: 2920 Castro Valley Blvd., Cas	LOCATION: 2920 Castro Valley Blvd., Castro Valley, CA			
ROJECT: Chevron Service Station No. 0 0001	SURFACE ELEVATION:				
ATE STARTED: 03/06/02	WL (ft. bgs): DATE: TIME				
ATE STARTED: 03/06/02	WL (ft. bgs): DATE: TIME				
RILLING METHOD: 3 1/4 in. Hand Auger	TOTAL DEPTH: 6 feet	··			
RILLING COMPANY: Gettler-Ryan, Inc.	GEOLOGIST: Tony Mikacich	- <u></u>			
SAMPLE NUMBER SAMPLE INT. GRAPHIC LOG SOIL CLASS	GEOLOGIC DESCRIPTION	REMARKS			
B는 중 중 중 위 CL CLAY WITH SAND (CL medium sand.	L) - black (7.5YR 2/0), moist; 80% clay, 20% fine to	Boring backfilled with excavated soi to surface grade.			
3-					
6- SB3-W Bottom of boring at the second seco	rown (10YR 3/3), wet; 90% clay, 10% fine sand. 6 feet bgs.	Grab groundwater sample SB3-W collected at 6 feet.			
9	·				
21 JOB NUMBER: DG96991G.4CT1		Page			

Gettler-Ryan, Inc.			,ydi)	· · · · · · ·	Log of Boring Se		
ROJECT: Chevron Service Station No. 9–6991					ation No. 9-6991	LOCATION: 2920 Castro Valley Bivd., Ca	astro Valley, CA
				6991 <u>G.</u> 4		SURFACE ELEVATION:	
	TARTE					WL (fi. bgs); DATE: TIME	· · · · · · · · · · · · · · · · · · ·
ATE FI	INISHE	ED:	03/00	6/02		WL (ft. bgs): DATE: TIME	
RILLIN	NG MET	HOD:	: 31,	/4 in. H	Hand Auger	TOTAL DEPTH: 3.5 feet	
	NG COM				Ryan, Inc.	GEOLOGIST: Tony Mikacich	
(feet)	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	REMARKS
	ഗ	<u></u>	- <u>-</u>	- 10	Concrete and base roc	zk – 9 Inches thick.	Boring backfilled with excavated sol
J			1	-	Asphalt - 4 inches thic	ck	with excavated sol to 6 inches bgs. Concrete used to
1		i	1	' Ì	Concrete and base roc	ck – 12 inches thick.	Concrete used to surface grade.
-		1	677	CL	SANDY CLAY (CL) - DI	orown (10YR 5/3), moist; 70% clay, 30% sand.	
3_			V/A		1		
3–		F	Y //4	1	Bottom of boring at 3.	5 feet bgs.	7
-		.	1	l I	1		1
		1		1 1	Į		1
-			1	1			ł
6-		_	-	1	1		
- 1			ļ	1			
4		1	1		1		
]	1	1		
4		1	1				
9-		-	4	1			
-		ļ	1				
-		ļ	1				
			1	ł	Į		
1				1			ļ
12-		.	-				
			1	Į	1		
4	1	Į	1				ł
	١		-				
1	١			1			Į
15-	ļ		-	1			ļ
1	ł						
Ī	ļ		1		1		
4	4		ł		}		1
ا	Į			l			
18—	1		4				
	1]			1		ļ
	1			1			
-	-		1	l			
21-	1		۱ ۱	1			1

Gettler-Ryan, Inc.		Log of Boring SB5			
ROJECT: Chevron Service Station No. 9-6991	LOCATION: 2920 Castro Valley Blvd., C	Castro Valley, CA			
ROJECT: Chevron Service Station No. 0 Con-	SURFACE ELEVATION:				
ATE STARTED: 03/06/02	ML (III. Dgs). SATE.	ME:			
ATE STARTED: 03/08/02	NL (II. DUS). BRICE	ME:			
RILLING METHOD: 3 1/4 in. Hand Auger	TOTAL DEPTH: 14 feet				
RILLING COMPANY: Gettler-Ryan, Inc.	GEOLOGIST: Tony Mikacich	<u> </u>			
MPLE NUMBER MPLE NUMBER APHIC LOG	GEOLOGIC DESCRIPTION	REMARKS			
Hat Hat Hat Hat Hat Hat Hat Hat Hat Hat Hat Hat Hat Hat Hat Hat Hat Hat Hat Hat	.5YR 2/0), moist: 90% clay, 10% fine sand, trace lor.	Boring backfilled with excavated soi to surface grade.			
- SB5-5					
9- SB5-10 12- At approximately 13 ft	n odor. feet Becomes saturated; includes hydrocarbon				
sheen.					
Bottom of boring at					
21 JOB NUMBER: DG96991G.4CT1		Page			

Gettler-Ryan, Inc.				lyan	, Inc.	Log of Boring SB6			
PROJECT: Chevron Service Station No. 9–6991					ation No. 9-6991	LOCATION: 2920 Castro Valley Blvd., Castro Valley, CA			
GR PROJECT NO. : DG969916.4CT1						SURFACE ELEVATION:			
	STARTED		03/06			WL (ft. bgs): DATE: TIME:			
	INISHE	_	03/0			WL (ft. bgs): DATE: TIM			
					land Auger	TOTAL DEPTH: 12 feet			
					Ryan, Inc.	GEOLOGIST: Tony Mikacich			
(feet)	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		OLOGIC DESCRIPTION	REMARKS		
			<u> </u>	<u> </u>	Asphalt and base rock - 11	inches thick.	Boring backfilled		
3				CL	CLAY (CL) - brown (10YR sand.	5/3), moist; 90% clay, 10% fine to medium	with excavated so to 6 inches bgs. Asphalt used to surface grade.		
6	S86-5								
 9 -	-								
- 12	SB6-W				SANDY CLAY (CL) – brow medium sand. Bottom of boring at 12 fe	in (10YR 5/3), saturated; 70% clay, 30% fine to et bgs.	Grab groundwate sample SB6-W collected at 12 feet.		
- 15— -									
18-									
21-							Page		

1

i

REMARKS

Cambria Environmental Technology, Inc. 4111 Citrus Ave. Suite 12 Rocklin, CA Telephone: 916.630.1855 Fax: 916.630.1856

BORING/WELL LOG

CLIENT NAME	Chevron Products Company	BORING/WELL NAME SB-7
JOB/SITE NAME	Chevron Service Station 9-6991	DRILLING STARTED 29-Jul-03
	2920 Castro Valley Blvd., Castro Valley, CA	DRILLING COMPLETED 29-Jul-03
PROJECT NUMBER	41D-1633	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Woodward Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	I. Robb	DEPTH TO WATER (First Encountered) 14.0 ft (29-Jul-03)
REVIEWED BY	B. Foss, RG# 7445	DEPTH TO WATER (Static) 🖳 NA; NA 📃 💆

CONTACT DEPTH (ft bgs) TPHg (mg/kg) SAMPLE ID GRAPHIC LOG BLOW U.S.C.S. EXTENT DEPTH (ft bgs) LITHOLOGIC DESCRIPTION WELL DIAGRAM Large gravel with fines (Fill) 8.0 Clayey SILT: Greenish Gray; dry; 60% silt, 40% clay; high plasticity; low estimated permeability. NA SB-7@ 8' 25 Portland Type 10 1/11 ML NA SB-7@ 11.5' 180 NA 430 SB-7@ ▽ 14.0 13' Clayey SILT: Greenish Gray; moist; 80% silt, 20% clay; moderate plasticity; low estimated permeability. 15 ML NA <1.0 SB-7@ 16.5 Sandy SILT: Bown; moist; 60% silt, 20% sand, 10% clay, 10% gravel; low plasticity; medium estimated permeability. 15.5 8/8/06 NA ML SB-7@ <1.0 18.0 17' ML WELL LOG (NESTED/TPHG) R:19-6991~119-6991~2093.GPJ DEFAULT.GDT Sandy SILT: Light Brown; moist; 50% silt, 40% sand, 19.0 <u>Sandy SILT</u>: Light Brown, moist, 50% sint, 40% sand, 10% clay; low plasticity; medium estimated permeability. <u>Sandy SILT</u>: Bown; moist; 60% silt, 20% sand, 10% clay, 10%gravel; low plasticity; medium estimated ML 20.0 NA SB-7@ 19.5' <1.0 -20 Bottom of Boring @ 20 ft permeability.

PAGE 1 OF 1

APPENDIX D

WELL SURVEY INFORMATION

WELL SURVEY RESULTS CHEVRON STATION 9-6991 2920 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA

Well No./	Well Owner	Well Address		Total Well	Date	Distance/Direction from	Well Use	
Figure ID		Street	City	Depth (ft)	Installed	Site (ft) (approx)		
1	Private	20036 Anita Avenue Lake Chabot Road	Castro Valley	51	2/19/1953	1,400 N	Domestic	
	Eden Township	1,000' south of						
2	Hospital	Williams	Castro Valley	150	9/30/1953	2,000 NW	Test well	
	Eden Township	Eden Township						
3	Hospital	Hospital	Castro Valley	250	9/9/1952	2,000 NW	Domestic	
	Eden Township	Eden Township						
4	Hospital	Hospital	Castro Valley	60	7/11/1952	2,000 NW	Cooling system return	
5	Sam Wallace	Tyee Court	Castro Valley	52	7/3/1953	1,400 S-SW	Domestic	

611633-400(009)GN-WA010 JUN 03/2011
APPENDIX E

FIRST SEMI-ANNUAL 2011 GROUNDWATER MONITORING REPORT

TRANSMITTAL

April 20, 2011 G-R #385296

- TO: Mr. James Kiernan Conestoga-Rovers & Associates 10969 Trade Center Drive, Suite 107 Rancho Cordova, CA 95670
- FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

RE: Chevron Service Station #9-6991 (MTI) 2920 Castro Valley Boulevard Castro Valley, California RO 0000475

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	April 12, 2011	Groundwater Monitoring and Sampling Report First Semi-Annual Event of March 23, 2011

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for <u>your</u> <u>use and distribution to the following (including PDF submittal of the entire report to</u> <u>GeoTracker):</u>

- Ms. Stacie H. Frerichs, Chevron Environmental Management Company, 6111 Bollinger Canyon Road, Room 3596, San Ramon, CA 94583 (PDF ONLY)
- Mr. Chuck Headlee, RWQCB-San Francisco Bay Region, 1515 Clay Street, Oakland, CA 94612 (No Hard Copy)

K & K Petroleum, (Property Owner), 2920 Castro Valley Blvd., Castro Valley, CA 94546 Mr. Mark Detterman, Alameda County Health Care Services, Dept. of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577

(No Hard Copy-CRA UPLOAD TO ALAMEDA CO.)

WELL CONDITION STATUS SHEET

Client/Facility #:	Chevron	#9-6991					Job #	385296			
Site Address:	2920 Ca	stro Valle	y Blvd				Event Date:	3-2			
City:	Castro V	alley, CA				• •	Sampler:	206			
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	LIDOK	REPLACE CAP Y / N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
mw = 1	0.14	0.1C	0.16	2-5	0.14	0.14	O.K	N	N	8"morrison/2	No
MW-2		i i		2-5	1		1		1	8" MOREison/2	No
mw-4				2-5						12" Universal/2	No
MW-6		par	ked a	over	all a	aej.	Took	Pict	tures		Yes
MW-7	V I	M	\bigvee	3-5	V	\checkmark	$\overline{\mathbf{V}}$	V	V	i2" Pomeco/3	No
	L										

Comments

April 12, 2011 G-R Job #385296

Ms. Stacie H. Frerichs Chevron Environmental Management Company 6111 Bollinger Canyon Road, Room 3596 San Ramon, CA 94583

RE: First Semi-Annual Event of March 23, 2011 Groundwater Monitoring & Sampling Report Chevron Service Station #9-6991 2920 Castro Valley Boulevard Castro Valley, California

Dear Ms. Frerichs:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and the laboratory analytical reports are also attached. All groundwater and decontamination water generated during sampling activities was removed from the site, per the Standard Operating Procedure.

No. 6882

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

ading

Deanna L. Harding Project Coordinator

Douglas J Lee Senior Geologist, P.G. No. 6882

Figure 1:	Potentiometric Map
Table 1:	Groundwater Monitoring Data and Analytical Results
Table 2:	Field Measurements and Analytical Results
Attachments:	Standard Operating Procedure - Groundwater Sampling
	Field Data Sheets
	Chain of Custody Document and Laboratory Analytical Reports

FILE NAME: P:\Enviro\Chevron\9-6991\Q11-9-6991.DWG | Layout Tab: Pot1

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991

						alley, Calif	ornia					
WELL ID/	TOC	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE	TOG	ETHANOL
DATE	(fl.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-1												
10/08/91	169.30	158.20	11.10		230	45	< 0.5	0.9	9.1		<5,000	
11/04/91	169.30	158.27	11.03		340	120	< 0.5	<0.5	6.1			
12/04/91	169.30	158.25	11.05	170	<50	3.9	< 0.5	< 0.5	<0.5		<5,000	
06/05/92	169.30	158.26	11.04	<50	100	26	0.6	0.5	1.0			
10/27/92	169.30	158.20	11.10	54	<50	11	< 0.5	< 0.5	<0.5			
12/30/92	169.30			170	<50	24	< 0.5	< 0.5	<0.5			
01/27/93	169.30	158.67	10.63									
03/05/93	169.30			<50	<50	< 0.5	<0.5	<0.5	<0.5			
03/17/93	169.30	158.59	10.71									
06/18/93	169.30	158.29	11.01	<50	<50	0.6	< 0.5	<0.5	<1.5			
09/28/93	169.30	157.35	11.95	<50	<50	0.8	<0.5	<0.5	<1.5			
12/30/93	169.30	158.34	10.96	<50	<50	8.5	<0.5	<0.5	<0.5			
04/07/94	169.30	158.49	10.81	<10	<50	<0.5	<0.5	<0.5	<0.5			
05/31/94	169.30	158.38	10.92	<50	<50	1.0	<0.5	<0.5	<0.5			
09/23/94	169.30	158.40	10.92	<50	<50	1.3	<0.5	<0.5	<0.5			
11/30/94	169.30	158.76	10.54	570 ²	<50	8.9	<0.5	<0.5	<0.5			
03/30/95	169.30	158.60	10.70	110 ¹	<50	<0.5	<0.5	<0.5	<0.5			
06/06/95	169.30	158.38	10.92	570 ¹	61	15	<0.5	<0.5	<0.5			
09/25/95	169.30	158.30	11.00	550 ¹	<50	4.7	<0.5	<0.5	<0.5			
12/28/95	169.30	158.50	10.80	330 ¹	72	9.1	0.65	<0.5	<0.5	6.0		
03/05/96	169.30	159.20	10.00	780 ¹	<50	7.8	<0.5	<0.5	<0.5	<2.5		
09/13/96	169.30	159.20	11.02	SAMPLED A								
12/19/96	169.30	158.08	11.02									
03/20/97	169.30	158.40	10.90	350 ¹	<50	2.2	<0.5	<0.5	<0.5	<2.5		
06/27/97	169.30	158.27	11.03						~0.5			
09/19/97	169.30	158.34	10.96									
12/05/97	169.30	158.62	10.68									
03/31/98	169.30	158.67	10.63	760 ¹	<50	6.7	<0.5	<0.5	 <0.5	<2.5		
06/19/98	169.30	159.62	9.68				-0.5					
08/13/98	169.30	157.67	11.63									
12/17/98	169.30	157.07	11.05									
03/19/99	169.30	158.25	10.95	890 ¹	124	 14.8	 <0.5					
06/23/99	169.30	158.55	10.93					<0.5	<0.5	6.49/<2.5 ¹³		
09/16/99	169.30	158.25	10.89									
12/16/99												
12/10/99	169.30	158.46	10.84									

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991 2920 Castro Valley Boulevard

Castro Valley, California

WELL ID/ DATE		TOC	GWE	DTW	TPH-DRO	TPH-GRO	В	Т	E	X	MTBE	TOG	ETHANOL
		(ft.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-1 (cont)													
03/02/00		169.30	158.83	10.47	2,300 ¹	155	10.4	<0.5	<0.5	<0.5	10.3		
06/30/00		169.30	159.04	10.26									
09/30/00	NP	169.30	158.30	11.00									
12/19/00		169.30	158.44	10.86									
03/13/01	NP	169.30	158.45	10.85	14	50.4	4.50	0.553	0.522	2.10	1.65		
06/12/01		169.30	158.28	11.02	SAMPLED A								
09/18/01		169.30	158.23	11.07	SAMPLED A								
12/17/01		169.30	158.59	10.71	SAMPLED A								
03/21/02		169.30	158.54	10.76	14	<50	< 0.50	<0.50	<0.50	<1.5	<2.5		
06/08/02		169.30	158.33	10.97	SAMPLED A	NNUALLY							
09/13/02		169.30	158.28	11.02	SAMPLED A								
12/13/02		169.30	158.47	10.83	SAMPLED A	NNUALLY							
03/17/03		169.30	158.60	10.70	250	<50	<0.50	< 0.50	< 0.50	<1.5	<2.5		
06/16/03		169.30	158.34	10.96	SAMPLED A	NNUALLY							
09/15/03		169.30	158.28	11.02	SAMPLED A	NNUALLY							
12/15/03		169.30	158.71	10.59	SAMPLED A	NNUALLY							
03/01/04		169.30	158.78	10.52	NOT SAMPL	ED DUE TO I	NSUFFICIEN	IT WATER					
06/28/04		169.30	158.27	11.03	SAMPLED A	NNUALLY							
09/13/04		169.30	156.96	12.34	SAMPLED A	NNUALLY							
12/22/04		169.30	158.38	10.92	SAMPLED A	NNUALLY							
03/04/05		169.30	158.81	10.49	NOT SAMPL	ED DUE TO I	NSUFFICIEN	IT WATER					
06/30/05		169.30	158.54	10.76	SAMPLED A	NNUALLY							
09/16/05		169.30	158.33	10.97	SAMPLED A	NNUALLY							
12/21/05		169.30	158.70	10.60									
03/21/06 ¹⁶		169.30	158.93	10.37	1,100	<50	0.6	<0.5	<0.5	<0.5	1		<50
06/21/06		169.30	158.37	10.93	SAMPLED A	NNUALLY							
09/05/06		169.30	158.32	10.98	SAMPLED A	NNUALLY							
12/28/06		169.30	157.52	11.78	SAMPLED A	NNUALLY							
03/26/07 ¹⁶		169.30	158.39	10.91	730	<50	0.6	<0.5	<0.5	<0.5	<0.5		<50
06/26/07		169.30	158.30	11.00	SAMPLED A	NNUALLY							
09/26/07		169.30	158.26	11.04	SAMPLED A	NNUALLY							
12/20/07		169.30	158.66	10.64	SAMPLED A								
02/29/08 ¹⁶	PER	169.30	158.57	10.73	64	87	4	<0.5	<0.5	<0.5	1		<50
05/09/08		169.30	158.38	10.92	SAMPLED A								
09/19/08		169.30	158.28	11.02	SAMPLED A								

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991

2920 Castro Valley Boulevard

Castro Valley, California

						the second s	alley, Calife	ornia					
WELL ID/		TOC	GWE	DTW	TPH-DRO	TPH-GRO	B	Т	E	X	MTBE	TOG	ETHANOL
DATE		(ft.)	(mst)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-1 (cont	t)												1.0.2
12/04/08		169.30	158.28	11.02	SAMPLED /	ANNUALLY					3		
03/05/09 ¹⁶	PER-NP ²³	169.30	159.10	10.20	77	<50	<0.5	<0.5	<0.5	<0.5	<0.5	122	<50
06/23/09		169.30	158.36	10.94	SAMPLED								
09/01/09		169.30	158.26	11.04	SAMPLED								
03/16/10 ¹⁶	PER	169.30	158.75	10.55	1,200	70	3	<0.5	<0.5	<0.5	1	() 1	
09/21/10		169.30	158.20	11.10	SAMPLED	ANNUALLY							122
03/23/11 ¹⁶	PER	169.30	159.02	10.28	180	<50	<0.5	<0.5	<0.5	<0.5	<0.5	1.557 A	
MW-2													
10/08/91		169.15	157.20	11.95		110	5.1	1.1	0.8	26			
11/19/91		169.15	157.40	11.75		120	11	1.1	< 0.5	17		3. 3	
12/04/91		169.15	157.35	11.80	130	440	30	2.5	<0.5	52			
06/05/92		169.15	157.35	11.80	130	80	13	<0.5	<0.5	1.0			5
10/27/92		169.15	157.15	12.00	110	54	13	<0.5	<0.5	<0.5			1
12/30/92		169.15			92	180	30	<0.5	<0.5	1.0			
01/27/93		169.15	158.24	10.91					-0.0				
03/05/93		169.15			<50	<50	<0.5	< 0.5	<0.5	<0.5			
03/17/93		169.15	158.26	10.89									-
06/18/93		169.15	157.41	11.74	<50	<50	1.4	<0.5	< 0.5	<1.5			
09/28/93		169.15	157.97	11.18	<50	<50	0.6	< 0.5	< 0.5	<1.5			
12/30/93		169.15	158.34	21.00	<50	<50	0.9	<0.5	< 0.5	<0.5			
04/07/94		169.15	158.40	10.75	<10	<50	< 0.5	< 0.5	<0.5	<0.5			
05/31/94		169.15	158.35	10.80	<50	<50	< 0.5	< 0.5	< 0.5	<0.5			
09/23/94		169.15	157.50	11.65	120	<50	0.7	< 0.5	< 0.5	< 0.5			
11/30/94		169.15	158.41	10.74	570 ⁴	55	2.9	< 0.5	1.4	0.94			
03/30/95		169.15	158.25	10.90	430 ¹	91	4.5	< 0.5	3.8	<0.5			
06/06/95		169.15	157.73	11.42	410 ¹	<50	< 0.5	< 0.5	<0.5	<0.5			
09/25/95		169.15	157.52	11.63	220 ¹	<50	<0.5	< 0.5	< 0.5	<0.5			
12/28/95		169.15	157.98	11.17	120 ¹	<2,000	<20	<20	<20	<20	5,000		
03/05/96		169.15	159.09	10.06	860 ¹	<2,000	<20	<20	<20	<20	10,000		
09/13/96		169.15	157.37	11.78	1,300	1,100	25	<10	<10	<10	20,000	5 	
12/19/96		169.15	158.30	10.85	,	EMI-ANNUAL							
03/20/97		169.15	157.75	11.40	190 ¹	2400	<10	<10	46	<10	6,200		
06/27/97		169.15	157.35	11.80									

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991 2920 Castro Valley Boulevard

						2920 Castro Castro V	alley, Calif						
WELL ID/		TOC	GWE	DTW	TPH-DRO	TPH-GRO	B	Т	E	X	MTBE	TOG	ETHANOL
DATE		(fl.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-2 (cont)												<u></u>	<u></u>
09/19/97		169.15	157.43	11.72	60 ¹	<50	<0.5	< 0.5	<0.5	<0.5	280		
12/08/97		169.15	158.27	10.88									
03/31/98		169.15	158.46	10.69	220 ¹	110	30	0.74	0.74	0.59	1,000		
06/19/98		169.15	159.31	9.84									
08/31/98		169.15	157.43	11.72	380 ¹	<100	3.4	<1.0	<1.0	<1.0	980		
12/17/98		169.15	157.60	11.55							480		
03/19/99		169.15	158.63	10.52	107 ⁴	<250	12.7	<2.5	<2.5	<2.5	1,040/819 ¹³		
06/23/99		169.15	159.61	9.54									
09/16/99		169.15	157.54	11.61	84.9	<100	<1.0	<1.0	<1.0	<1.0	216		
12/16/99		169.15	157.86	11.29						-1.0			
03/02/00		169.15	158.70	10.45	<50	84.8	21.5	<0.5	<0.5	0.636	413		
06/30/00		169.15	159.08	10.07				-0.5	-0.5	0.030	415		
09/30/00	NP	169.15	157.54	11.61	10011	<50	< 0.50	0.57	< 0.50	1.0	2,800		
12/19/00		169.15	158.04	11.11			-0.50		~0.J0 		2,800		
03/13/01	NP	169.15	158.22	10.93	14	179	11.6	2.01	0.856	3.66	1,290		
06/12/01		169.15	157.52	11.63						5.00	1,290		
09/18/01	NP	169.15	157.37	11.78	100	<50	< 0.50	< 0.50	< 0.50	<1.5			
12/17/01		169.15	158.29	10.86		EMI-ANNUAL		-0.50	<0.50 		670		
09/13/02		169.15	157.50	11.65	200	<50	<0.50	< 0.50	< 0.50	<1.5	 260		
12/13/02		169.15	158.07	11.08		EMI-ANNUAL		-0.50					
03/17/03		169.15	158.38	10.77		ED DUE TO IN							
06/16/03		169.15	150.50	11.38		EMI-ANNUAL							
09/15/03 ^{16,17}		169.15	157.55	11.60	110	<50	<0.5	<0.5	 <0.5	 0.6			
12/15/03		169.15	158.40	10.75		EMI-ANNUAL		~0.5	~0.5		400		
03/01/04		169.15	158.49	10.75		ED DUE TO IN							
06/28/04		169.15	157.63	11.52		EMI-ANNUAL							
09/13/04		169.15	156.27	12.88		ED DUE TO IN							
12/22/04		169.15	157.93	11.22		ED DOE TO IN					5		
)3/04/05		169.15	157.55	10.57		ED DUE TO IN							
)6/30/05		169.15	158.08	11.07		ED DUE TO IN EMI-ANNUAL							
09/16/05 ¹⁶	NP	169.15	156.64	12.51	130	emi-annual. <50							
12/21/05	181	169.15	158.41	12.51		<50 EMI-ANNUAL	<0.5	<0.5	<0.5	<0.5	140		<50
)3/21/06 ¹⁶		169.15	158.41										
)6/21/06				10.41	72 SAMPLED SI	<50 EMI-ANNUALI	<0.5	<0.5	<0.5	<0.5	530		<50
09/05/06 ¹⁶		169.15	157.64	11.51 11.64									
12/02/00		169.15	157.51	11.04	620	<50	<0.5	<0.5	<0.5	<0.5	150		<50

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991

2920 Castro Valley Boulevard Castro Valley, California

						Castro	Valley, Calif	ornia					
WELL ID/		TOC	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE	TOG	ETHANOL
DATE		(ft.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-2 (cont	t)									88 ⁹	- 50		
12/28/06	,	169.15	158.19	10.96	SAMPLED S	SEMI-ANNUA	LLY						
03/26/0716		169.15	157.74	11.41	86	<50	<0.5	<0.5	< 0.5	< 0.5	160		<50
06/26/07		169.15	157.60	11.55		SEMI-ANNUA			-0.5				
09/26/0716		169.15	157.52	11.63	140	<50	<0.5	< 0.5	<0.5	< 0.5	69		<50
12/20/07		169.15	158.50	10.65		SEMI-ANNUA							
02/29/0816	PER	169.15	158.18	10.97	73	<50	<0.5	<0.5	<0.5	< 0.5	54		<50
05/09/08		169.15	157.74	11.41		SEMI-ANNUA		-0.5	-0.5				
09/19/08	PER	169.15	157.48	11.67	120	<50	<0.5	< 0.5	< 0.5	<0.5	12		 <50
12/04/08		169.15	157.67	11.48		SEMI-ANNUA		-0.5	-0.5	~0.5			
03/05/0916	PER-NP ²³	169.15	158.65	10.50	<50	<50	<0.5	<0.5	< 0.5	<0.5	55		
06/23/09		169.15	157.65	11.50		SEMI-ANNUA			-0.5				<50
09/01/09 ¹⁶	PER	169.15	157.55	11.60	75	<50	<0.5	< 0.5	< 0.5	<0.5	10	-	
03/16/10 ¹⁶	PER	169.15	158.50	10.65	120 ²⁴	< 5 0	<0.5	<0.5	<0.5	<0.5 <0.5			
09/21/10¹⁶	PER	169.15	157.67	11.48	84	<50	-0.5	<0.5	<0.5		23		
03/23/1116	PER	169.15	158.97	10.18	570	< 50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 < 0.5	32 91		(1 77) (1
MW-4													
10/27/92		169.18	157.79	11.39	<50	<50	< 0.5	0.6	0.5	4.3			
12/30/92		169.18	159.05	10.13	<50	<50	< 0.5	< 0.5	< 0.5	<0.5			80
01/27/93		169.18	160.09	9.09									37 44 0
03/05/93		169.18			<50	<50	< 0.5	< 0.5	< 0.5	<0.5			
03/17/93		169.18	159.28	9.90									
06/18/93		169.18	158.50	10.68	<50	<50	< 0.5	< 0.5	< 0.5	<1.5			
09/28/93		169.18	159.82	9.36	<50	<50	< 0.5	< 0.5	< 0.5	<1.5			
12/30/93		169.18	159.91	9.27	<50	<50	< 0.5	< 0.5	< 0.5	<0.5	1221		
04/07/94		169.18	160.37	8.81	<10	<50	< 0.5	< 0.5	< 0.5	<0.5			
05/31/94		169.18	160.27	8.91	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5			
09/23/94		169.18	158.79	10.39	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	T		
11/30/94		169.18	160.08	9.10	58 ²	<50	< 0.5	< 0.5	<0.5	<0.5			
03/30/95		169.18	160.66	8.52	61 ¹	<50	<0.5	< 0.5	<0.5	<0.5			
06/06/95		169.18	158.70	10.48	<50	<50	<0.5	< 0.5	<0.5	<0.5			
09/25/95		169.18	158.38	10.80	<50	<50	<0.5	< 0.5	<0.5	<0.5			
12/28/95		169.18	159.23	9.95	<50	<50	<0.5	< 0.5	<0.5	<0.5	9.9		
12/21/05 ¹⁶		169.18	159.65	9.53	76 ¹⁸	<50	<0.5	<0.5	<0.5	<0.5	0.7		<50
						-20	-0.5	-0.5	-0.5	NU.J	0.7	100 m	~30

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991 2920 Castro Valley Boulevard

100			
Castro	Vallov	California	
Casulo	vancy,	Camonna	

WELL ID/	****					alley, Calif						····
	TOC	GWE	DTW	TPH-DRO	TPH-GRO	B	T	E	X	MTBE	TOG	ETHANOL
DATE	(fl.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-4 (cont)												
03/21/06 ¹⁶	169.18	160.35	8.83	<50	<50	< 0.5	< 0.5	<0.5	<0.5	0.5		<50
06/21/06 ¹⁶	169.18	158.55	10.63	<50	<50	<0.5	<0.5	<0.5	<0.5	0.8	. <u></u> .	<50
09/05/06 ¹⁶	169.18	158.24	10.94	170	<50	<0.5	<0.5	<0.5	<0.5	1	. <u>41.</u>	<50
12/28/06 ¹⁶	169.18	159.06	10.12	120	<50	<0.5	< 0.5	<0.5	<0.5	<0.5		<50
03/26/07 ¹⁶	169.18	158.73	10.45	290	<50	<0.5	<0.5	<0.5	<0.5	<0.5		<50
06/26/07 ¹⁶	169.18	158.22	10.96	<50	<50	<0.5	< 0.5	<0.5	<0.5	1		<50
09/26/07 ¹⁶	169.18	157.98	11.20	<50	<50	<0.5	<0.5	<0.5	<0.5	0.8		<50
12/20/0716	169.18	159.01	10.17	62	<50	<0.5	< 0.5	<0.5	<0.5	0.5		<50
02/29/0816	169.18	159.32	9.86	180	<50	<0.5	< 0.5	<0.5	<0.5	<0.5		<50
05/09/0816	169.18	158.41	10.77	80	<50	<0.5	<0.5	<0.5	<0.5	0.6		<50
09/19/0816	169.18	157.97	11.21	<50	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	() ()	<50
12/04/08 ¹⁶	169.18	158.20	10.98	58	<50	< 0.5	<0.5	<0.5	<0.5	0.8		<50
03/05/0916	169.18	159.36	9.82	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5		<50
06/23/09	169.18	158.45	10.73	SAMPLED A								
09/01/09	169.18	158.10	11.08	SAMPLED A								
03/16/1016	169.18	159.81	9.37	60 ²⁵	<50	<0.5	< 0.5	< 0.5	< 0.5	<0.5		
09/21/10	169.18	158.06	11.12	SAMPLED A								
03/23/1116	169.18	160.39	8.79	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	: .):	
										-010		
MW-6												
10/27/92	166.46	153.92	12.54	<50	600	22	22	24	130			
12/30/92	166.46	156.26	10.20	470	1,700	170	16	46	160		6 00 0	
01/27/93	166.46	156.44	10.02									
03/05/93	166.46			150	480	76	0.9	3.1	7.1			
03/17/93	166.46	155.79	10.67								3 3	
06/18/93	166.46	154.63	11.83	51	240	37	3.4	2.9	18		(1 21. 2)	
09/28/93	166.46	154.90	11.56	120	150	11	1.2	1.3	4.3			
12/30/93	166.46	154.81	11.65	290	680	77	5.1	5.5	13			
04/07/94	166.46	155.34	11.12	<10	190	24	2.9	1.9	8.0			
05/31/94	166.46											
09/23/94	166.46	155.05	11.41									
11/30/94	166.46	156.58	9.88	150 ²	320	49	0.58	1.4	1.2			
12/15/03 ¹⁶	166.46	156.60	9.86	71	210	0.5	0.9	0.7	2	14		<50
03/01/04 ^{16,21}	166.46	157.16	9.30	<250	150	< 0.5	4	3	18	10		<50

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991

~ ·	37 11	0.110	
(actro	Valley	('alitom	010
Cusuv	v and v.	Californ	110

$ \begin{array}{ $	ELL ID/	TOC	GWE	DTW	TPH-DRO		alley, Calif B	T	E	X	MTBE	TOG	ETHANOL
NW-6 (cont) 002304 ^{43.1} 166.46 155.13 11.33 66 100 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 1.5 1.8 $= 0.001040^{44.11}$ 166.46 155.75 0.71 300 4.00 1 1 2 3 10 $= 0.5$ < 0.5 < 0.5 1.5 1.5 1.1 8 $= 0.5$ < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	NTE	(ft.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)			(ug/L)	(ug/L)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	W-6 (cont)												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		166.46	155.13	11.33	66	100	< 0.5	< 0.5	<0.5	<0.5	18		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		166.46	154.88										<50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		166.46	155.75	10.71	300								<50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		166.46	157.25	9.21	75		< 0.5	< 0.5					<50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		166.46	155.49	10.97	73	<50							<50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		166.46	155.02	11.44									<50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		166.46	156.66	9.80	120 ¹⁹	140							<50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		166.46	157.54	8.92		52							<50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		166.46	155.38	11.08	56	92	< 0.5						<50
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		166.46	155.07	11.39	67	62							<50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		166.46	156.32	10.14	300	260	< 0.5	0.5					<50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/26/07 ²¹	166.46	INACCESS	BLE - VE	HICLE PARKE	ED OVER WEL							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		166.46						<0.5					<50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		166.46	155.02	11.44	84								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/20/07 ¹⁶	166.46	156.41	10.05	220								22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29/08 ¹⁶	166.46	156.49	9.97	110	110							<50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/09/08 ¹⁶	166.46	155.19	11.27	100	<50							<50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19/08 ¹⁶	166.46	154.85	11.61	<50	<50							<50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/04/08 ¹⁶	166.46	155.08	11.38	<50	<50							<50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	05/09 ¹⁶	166.46	157.57	8.89	140								<50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		166.46	155.14	11.32	SAMPLED S								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		166.46	154.82	11.64				< 0.5					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	'16/10 ¹⁶	166.46	156.78	9.68	76 ²⁵	100							2011 - C
03/23/11 166.46 INACCESSIBLE - VEHICLE PARKED OVER WELL -	21/10 ¹⁶	166.46	154.98	11.48	51	<50							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23/11	166.46	INACCESS	IBLE - VE	HICLE PARK	KED OVER W							-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	W-7												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		168 80	157.20	11.60	1.400^{1}	220	0 70	<0.5	0.67	-0 F			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-							
$\frac{12}{19} \frac{96}{96} \qquad \frac{168.80}{158.29} \qquad \frac{158.29}{10.51} \qquad \frac{1}{1,100^3} \qquad \frac{1}{5,000} \qquad \frac{20}{50} \qquad \frac{10}{50} \qquad \frac{24}{50} \qquad \frac{10}{20,000} \qquad \frac{2}{50} \qquad \frac{10}{50} \qquad \frac{2}{50} \qquad \frac{10}{50} \qquad \frac{2}{50} \qquad \frac{10}{50} \qquad \frac{2}{50} \qquad \frac{10}{50} \qquad \frac{10}{50}$													
13/107/107/1000 -1000		168.80	158.29	10.51	1,100 $1,600^3$								
$03/20/97 168.80 157.84 10.96 1,600^3 <1,000 <10 <10 <10 <10 <10 2,100/2,000^{13}$	20171	100.00	137.04	10.90	1,000	<1,000	<10	<10	<10	<10	2,100/2,000		

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991

-		~	••••		~J			
	Ca	stro	\mathbf{V}_{2}	llev	C	alif	orni	9

						Castro V	alley, Calif	ornia					
WELL ID/		TOC	GWE	DTW	TPH-DRO	TPH-GRO	B	T	E	X	MTBE	TOG	ETHANOL
DATE		(ft.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-7 (cont)													
06/27/97		168.80	157.02	11.78	1,600 ¹	2,000	<20	<20	<20	<20	11,000		
09/19/97		168.80	156.87	11.93	1,900 ¹	<1,000	35	<10	<10	<10	13,000		
12/05/97		168.80	158.40	10.40	1,100 ¹	2,100	47	2.7	28	<2.5	15,000		
03/31/98		168.80	158.89	9.91	780 ¹	410	4.0	0.61	2.2	< 0.5	<2.5		
06/19/98		168.80	159.09	9.71	480 ¹	1,100	16	<10	17	<10	12,000		
08/31/98		168.80	157.11	11.69	580 ¹	<500	350	22	<5.0	<5.0	47,000		
12/17/98		168.80	157.70	11.10	970	1,800	<10	<10	24	<10	13,000/14,000 ¹³		
03/19/99		168.80	158.51	10.29	615 ¹	1,280	<5.0	5.0	16.3	<5.0	2,240/2,910 ¹³		
06/23/99		168.80	157.25	11.55	1,240 ¹	<5,000	<50	<50	<50	<50	18,000		
09/16/99		168.80	157.31	11.49	2,230	<5,000	<50	<50	<50	<50	13,700		
12/16/99		168.80	158.27	10.53	973 ¹	1,330	<1.0	6.44	14	5.17	10,800		
03/02/00		168.80	159.25	9.55	880 ¹	1,980	7.22	<5.0	6.11	<5.0	4,230		
06/30/00		168.80	157.68	11.12	620 ⁷	2,500 ⁶	6.0	8.5	16	72	6,900		
09/30/00	NP	168.80	157.23	11.57	1,600 ⁷	1,700 ¹⁰	750	<5.0	<5.0	<5.0	7,300		
12/19/00		168.80	158.26	10.54	1,100 ¹²	1,800 ¹⁰	<10	<10	<10	<10	4,900		
03/13/01		168.80	158.74	10.06	1,500 ¹²	1,470	9.34	5.09	6.08	2.69	2,920		
06/12/01		168.80	157.45	11.35	910 ¹⁵	920 ¹⁰	260	4.2	9.7	2.8	4,500		
09/18/01		168.80	156.87	11.93	3,000	2,000	< 0.50	< 0.50	< 0.50	<1.5	5,300		
12/17/01		168.80	157.99	10.81	7,000	1,700	<5.0	< 0.50	7.1	<1.5	4,100		
03/21/02		168.80	158.56	10.24	13,000	3,200	<5.0	< 0.50	24	<1.5	980		
06/08/02		168.80	157.32	11.48	3,500	1,500	3.6	< 0.50	8.5	<1.5	2,800		
09/13/02		168.80	157.02	11.78	2,400	1,200	1.8	<1.0	2.8	<1.5	3,300		
12/13/02		168.80	157.97	10.83	3,400	1,100	2.4	<0.50	2.3	<1.5	2,000		
03/17/03		168.80	158.71	10.09	3,700	1,600	<10	< 0.50	5.1	<1.5	1,000		
06/16/03 ¹⁶		168.80	157.81	10.99	4,400	2,500	1	0.5	14	<0.5	260		
09/15/03 ¹⁶		168.80	157.38	11.42	4,700	1,700	1	<0.5	6	0.5	790		<50
12/15/03 ¹⁶		168.80	158.58	10.22	3,200	610	<0.5	<0.5	1	< 0.5	780		<50
03/01/04 ¹⁶		168.80	159.19	9.61	2,200	1,500	<0.5	<0.5	4	<0.5	16		<50
06/28/04 ¹⁶		168.80	157.38	11.42	3,700	2,500	2	<0.5	* 8	<0.5	300		
09/13/04 ¹⁶		168.80	156.78	12.02	2,000	2,000	1	<0.5	4	<0.5	700		
12/22/04 ¹⁶		168.80	158.39	10.41	1,300	2,000 970	0.8	<0.5	4 5	<0.5	370		<100
03/04/05 ¹⁶		168.80	158.57	9.68	890	790	<0.5	<0.5	1	<0.5 <0.5	5		<50 <50
06/30/05 ¹⁶		168.80	157.63	11.17	2,600	1,300	<0.5	<0.3 <0.5	3	<0.5 <0.5	5 68		<50
09/16/05 ¹⁶		168.80	157.29	11.51	1,300	1,300	< 0.5	<0.5 <0.5	3	<0.5 <0.5			<50
12/21/05 ¹⁶		168.80	157.29	10.06	1,600 ²⁰	1,200	<0.5	<0.5 <0.5	2		380		<50
14/21/03		100.00	130.74	10.00	1,000	1,300	\U.J	<0.3	2	<0.5	170		<50

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-6991

<u></u>					Castro V	alley, Calif	ornia					
WELL ID/	тос	GWE	DTW	TPH-DRO	TPH-GRO	B	Т	E	X	MTBE	TOG	ETHANOL
DATE	(ft.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-7 (cont)						e selectoris - 12 confidérante	ana na takan kata kata kata kata kata ka					
03/21/0616	168.80	159.28	9.52	2,800	810	<0.5	< 0.5	<0.5	< 0.5	200		<50
06/21/06 ¹⁶	168.80	157.35	11.45	1,100	1,800	0.5	<0.5	2	<0.5	260		<50
09/05/06 ¹⁶	168.80	157.01	11.79	2,100	910	<0.5	<0.5	<0.5	<0.5	370		<50
12/28/06 ¹⁶	168.80	158.34	10.46	7,200	2,700	0.5	<0.5	3	<0.5	140		<50
03/26/0716	168.80	157.46	11.34	6,500	1,300	<0.5	<0.5	1	<0.5	150		<50
06/26/07 ¹⁶	168.80	157.15	11.65	2,100	1,900	0.6	<0.5	2	<0.5	170		<50
09/26/07 ¹⁶	168.80	156.98	11.82	2,200	670	<0.5	<0.5	<0.5	<0.5	420		<50
12/20/0716	168.80	158.23	10.57	4,300	2,600	0.8	<0.5	4	<0.5	130		<50
02/29/0816	168.80	158.56	10.24	2,400	1,400	<0.5	<0.5	2	<0.5	35		<50
05/09/08 ¹⁶	168.80	157.27	11.53	1,700	2,200	0.6	0.6	2	<0.5	76		<50
09/19/08 ¹⁶	168.80	156.86	11.94	10,000	610	<0.5	<0.5	<0.5	<0.5	430		<50
12/04/08 ¹⁶	168.80	157.16	11.64	3,000	1,100	<0.5	<0.5	<0.5	<0.5	440		<50
03/05/09 ¹⁶	168.80	159.46	9.34	1,000	2,100	<0.5	<0.5	3	<0.5	57		<50
06/23/09 ¹⁶	168.80	157.41	11.39	2,300	1,800	<0.5	<0.5	1	<0.5	100		
09/01/09 ¹⁶	168.80	156.88	11.92	6,800	2,100	<0.5	<0.5	i	<0.5	150		
03/16/10 ¹⁶	168.80	158.99	9.81	5,500	1,700	<0.5	<0.5	2	<0.5	9		
09/21/10 ¹⁶	168.80	157.19	11.61	1,200	2,800	<0.5	<0.5	0.7	<0.5	16		
03/23/1116	168.80	159.59	9.21	360	76	<0.5	<0.5	<0.5	<0.5	0.6		
							-015	-0.5	-0.5	0.0		
MW-3												
10/08/91	169.11	160.84	8.27		81	1.9	0.7	0.8	2.4			
11/04/91	169.11	158.26	10.85		60	< 0.5	< 0.5	<0.5	<0.5			
12/04/91	169.11	158.06	11.05	<50	<50	< 0.5	< 0.5	< 0.5	<0.5			
06/05/92	169.11	157.96	11.15	170	<50	< 0.5	< 0.5	< 0.5	< 0.5			3 -3
10/27/92	169.11	157.51	11.60	120	<50	< 0.5	<0.5	< 0.5	< 0.5			
12/30/92	169.11			170	<50	< 0.5	< 0.5	< 0.5	< 0.5			
01/27/93	169.11	160.00	9.11							() ()		
03/05/93	169.11											
03/17/93	169.11	159.16	9.95									
06/18/93	169.11	158.22	10.89	<50	<50	<0.5	< 0.5	<0.5	<1.5		-	
09/28/93	169.11	159.49	9.62	<50	<50	<0.5	< 0.5	<0.5	<1.5			
12/30/93	169.11	159.80	9.31	<50	<50	<0.5	<0.5	<0.5	<0.5			
04/07/94	169.11	160.30	8.81	<10	<50	< 0.5	<0.5	<0.5	<0.5			
05/31/94	169.11	160.21	8.90	<50	<50	<0.5	<0.5	<0.5	<0.5			1.11

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-6991

2920 Castro Valley Boulevard Castro Valley, California

				-		Castro V	Valley, Califo	ornia					
WELL ID/		тос	GWE	DTW	TPH-DRO	TPH-GRO	В	Г	E	X	мтве	TOG	ETHANOL
DATE		(fl.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-3 (cont)													
09/23/94		169.11	158.48	10.63	<50	<50	<0.5	< 0.5	<0.5	<0.5			
11/30/94		169.11	160.19	8.92									
03/30/95		169.11	160.01	9.10	290 ¹	<50	< 0.5	<0.5	< 0.5	< 0.5			
06/06/95		169.11	158.79	10.32	150 ¹	<50	<0.5	< 0.5	< 0.5	< 0.5			
09/25/95		169.11	158.11	11.00	260 ¹	<50	<0.5	< 0.5	< 0.5	< 0.5			
12/28/95		169.11	158.96	10.15	200 ¹	<250	<2.5	<2.5	<2.5	<2.5	1,400		
12/17/98		169.11	158.86	10.25	130 ¹	<250	<2.5	<2.5	<2.5	<2.5	62,000		
03/19/99		169.11	159.37	9.74	139 ¹	<1,000	<10	<10	<10	<10	5,650/5,850 ¹³		
)6/23/99		169.11	158.40	10.71	61.6 ¹	<2,000	<20	<20	<20	<20	6,700		
09/16/99		169.11	157.44	11.67	122	<1,000	<10	<10	<10	<10	1,910		
2/16/99		169.11	158.79	10.32							5,850		
2/20/00		169.11	158.91	10.20	96.8 ¹	65.2	< 0.5	< 0.5	<0.5	< 0.5	1,790		
)3/02/00		169.11	160.26	8.85	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	5,600		
)6/30/00		169.11	158.81	10.30	<50	360 ⁵	< 0.50	< 0.50	< 0.50	< 0.50	1,300		
09/30/00	NP	169.11	158.07	11.04		150 ⁹	75	<1.3	<1.3	<1.3	8,200		
2/19/00	NP	169.11	159.06	10.05	¹⁴	<1,000	<10	<10	<10	<10	4,600		
03/13/01	NP	169.11	159.76	9.35	 ¹⁴	284	0.601	1.00	< 0.500	1.27	3,670		
06/12/01	NP	169.11	158.08	11.03	<50	140 ⁹	67	< 0.50	< 0.50	< 0.50	2,600		
09/18/01	NP	169.11	157.96	11.15	100	240	< 0.50	< 0.50	< 0.50	<1.5	3,200		
12/17/01		169.11	159.22	9.89	270	55	< 0.50	< 0.50	< 0.50	<1.5	930		
)3/21/02		169.11	159.38	9.73	290	190	< 0.50	< 0.50	< 0.50	<1.5	2,600		
06/08/02		169.11	158.21	10.90	110	110	< 0.50	< 0.50	< 0.50	<1.5	2,200		
9/13/02		169.11	158.26	10.85	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	650	22	
2/13/02		169.11	159.11	10.00	120	<50	< 0.50	< 0.50	< 0.50	<1.5	450		
)3/17/03		169.11	159.66	9.45	370	80	< 0.50	<0.50	< 0.50	<1.5	1,600		
06/16/03		169.11	158.98	10.13	NOT SAMPI	LED DUE TO I	NSUFFICIEN	IT WATER					
9/15/03		169.11	157.85	11.26	NOT SAMPI	LED DUE TO I	NSUFFICIEN	IT WATER					
2/15/03 ¹⁶		169.11	159.78	9.33	14	<50	<0.5	3	0.6	4	220		<50
03/01/04		169.11	159.22	9.89	NOT SAMPI	LED DUE TO I	NSUFFICIEN	IT WATER					
)6/28/04 ¹⁶		169.11	158.26	10.85	95	<50	< 0.5	<0.5	< 0.5	<0.5	980		
)9/13/04		169.11	DRY AT 12	.96 FEET									
12/22/04 ¹⁶	NP	169.11	159.14	9.97	 ¹⁴	53	< 0.5	<0.5	< 0.5	<0.5	110		<50

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991

						2920 Castr	to Valley Bo	oulevard					
WELL ID/		тос	GWE	DTW	TPH-DRO	TPH-GRO	Valley, Calif						
DATE		(fL)	(msl)	(fl.)	(ug/L)		B	Т (тар. И.)	E	X	MTBE	TOG	ETHANOL
· · · · · · · · · · · · · · · · · · ·		04/	(11135)		(HS/L/)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-3 (cont)		15500% (MR)											
03/04/05 ¹⁶	NP	169.11	159.68	9.43	<50	<50	<0.5	< 0.5	<0.5	<0.5	460	-	<50
06/30/05 ¹⁶	NP	169.11	158.66	10.45	58 ¹⁷	<50	<0.5	<0.5	<0.5	<0.5	600		<50
09/16/05 ¹⁶	NP	169.11	158.26	10.85	14	<50	< 0.5	<0.5	<0.5	<0.5	530		<50
NOT MONIT	ORED/SA	MPLED											
MW-5													
10/27/92		167.41	157.46	9.95	<50	74	< 0.5	< 0.5	0.6	7.1			
12/30/92		167.41	158.21	9.20	<50	<50	< 0.5	< 0.5	< 0.5	<0.5			
01/27/93		167.41	157.80	9.61	66 H								
03/05/93		167.41		*-	<50	<50	< 0.5	<0.5	< 0.5	<0.5			
03/17/93		167.41	157.90	9.51									
06/18/93		167.41	157.56	9.85	<50	<50	<0.5	< 0.5	<0.5	<0.5		-	
09/28/93		167.41	157.55	9.86	<50	<50	< 0.5	<0.5	<0.5	<1.5			
12/30/93		167.41	157.08	10.33	<50	<50	< 0.5	< 0.5	<0.5	<0.5			
04/07/94		167.41	157.69	9.72	<10	<50	<0.5	< 0.5	<0.5	<0.5			
05/31/94		167.41	157.68	9.73	<50	<50	<0.5	<0.5	<0.5	<0.5			
09/23/94		167.41	157.56	9.85	<50	<50	< 0.5	<0.5	<0.5	<0.5			
11/30/94		167.41	157.73	9.68	79 ²	<50	< 0.5	<0.5	<0.5	<0.5			
03/30/95		167.41	157.79	9.62	<50	<50	< 0.5	<0.5	<0.5	<0.5			
06/06/95		167.41	157.55	9.86	<50	<50	<0.5	<0.5	<0.5	<0.5			
09/25/95		167.41	157.56	9.85	<50	<50	<0.5	<0.5	<0.5	<0.5			3. 33
12/28/95		167.41	157.67	9.74	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5		00
NOT MONITO	ORED/SA		10,107	2.71	-50	-50	-0.5	-0.5	-0.5	-0.5	~2.5		
TRIP BLAN	K												
10/08/91						<50	<0.5	<0.5	<0.5	< 0.5			
11/04/91						<50	< 0.5	<0.5	<0.5	<0.5			
12/04/91					<50	<50	< 0.5	<0.5	< 0.5	< 0.5	8 0	:	3 -3
06/05/92						<50	<0.5	< 0.5	<0.5	< 0.5			
12/30/92						<50	<0.5	< 0.5	<0.5	<0.5		9 46	
01/05/00													

01/27/93

03/05/93

03/17/93

06/18/93

--

--

--

--

--

< 0.5

--

< 0.5

--

< 0.5

< 0.5

--

< 0.5

--

< 0.5

--

< 0.5

--

<1.5

--

<50

--

--

<50

--

<50

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991

Castro	Vallev	California	

WELL ID/	TOC	GWE	DTW	TPH-DRO	TPH-GRO	alley, Califo B	лша Т	E	x	MTBE	TOG	ETHANOL
DATE	(fl.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	+ (ug/L)	L (ug/L)	л (ug/L)			
		11131	(¹⁰)	(48/1/)	(48/L)		(ug/L).	(48/1)	(<i>ug/L</i>)	(ug/L)	(ug/L)	(ug/L)
TRIP BLANK (cont)												
09/28/93					<50	<0.5	<0.5	< 0.5	<0.5			
12/30/93					<50	<0.5	< 0.5	<0.5	<0.5			
04/07/94					<50	<0.5	< 0.5	<0.5	<0.5			
05/31/94					<50	<0.5	<0.5	< 0.5	<0.5			
09/23/94					<50	< 0.5	< 0.5	< 0.5	<0.5			
11/30/94					<50	<0.5	< 0.5	< 0.5	<0.5			
03/30/95					<50	<0.5	< 0.5	< 0.5	<0.5			
06/06/95					<50	<0.5	< 0.5	<0.5	<0.5			
09/25/95					<50	< 0.5	< 0.5	< 0.5	<0.5			
12/28/95					<50	<0.5	< 0.5	< 0.5	<0.5			
03/05/96					<50	<0.5	< 0.5	<0.5	<0.5			
06/27/96					<50	< 0.5	< 0.5	< 0.5	<0.5			
09/13/96					<50	<0.5	< 0.5	<0.5	<0.5			
12/19/96					<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5		
03/20/97					<50	<0.5	< 0.5	< 0.5	<0.5	<2.5		
06/27/97					<50	<0.5	< 0.5	< 0.5	<0.5	<2.5		
09/19/97					<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5		
12/05/97					<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5		
03/31/98					<50	< 0.5	<0.5	< 0.5	< 0.5	<2.5		
06/19/98					<50	<0.5	<0.5	<0.5	< 0.5	<2.5		
08/31/98					<50	< 0.5	<0.5	<0.5	< 0.5	<2.5		
03/19/99					<50	< 0.5	< 0.5	<0.5	< 0.5	<2.0		
09/16/99					<50	< 0.5	<0.5	< 0.5	< 0.5	<2.5		
12/16/99					<50	< 0.5	<0.5	< 0.5	< 0.5	<2.5	5.6075 5. -0	
12/20/99					<50	<0.5	<0.5	< 0.5	<0.5	<2.5		
03/02/00					<50	<0.5	< 0.5	< 0.5	<0.5	<2.5		
06/30/00 ⁸					<50	< 0.50	<0.50	< 0.50	< 0.50	<2.5		
09/30/00					<50	< 0.50	< 0.50	< 0.50	<0.50	<2.5		
12/19/00					<50	< 0.50	< 0.50	<0.50	<0.50	<2.5		
03/13/01					<50.0	< 0.500	0.534	< 0.500	1.25	<0.500		
06/12/01				-	<50.0	< 0.50	<0.50	< 0.50	<0.50	<2.5		
09/18/01					<50	< 0.50	<0.50	<0.50	<1.5	<2.3 <2.5		
	-				~50	~0.JU	\U.JU	~0.30	~1.3	~2.3		

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991

2920 Castro Valley Boulevard

Castro Valley, California

WELL ID/	TOC	GWE	DTW	TPH-DRO	TPH-GRO	В	т	E	X	MTBE	TOG	ETHANOL
DATE	(fL)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
QA												
12/17/01					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5		
03/21/02					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5		
06/08/02					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5		
09/13/02					<50	< 0.50	< 0.50	<0.50	<1.5	<2.5		
12/13/02					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5		
03/17/03					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5		
06/16/03 ¹⁶					<50	<0.5	< 0.5	< 0.5	<0.5	< 0.5		
09/15/03 ¹⁶					<50	< 0.5	< 0.5	< 0.5	<0.5	<0.5		
12/15/03 ¹⁶					<50	< 0.5	< 0.5	<0.5	<0.5	< 0.5		
03/01/04 ¹⁶					<50	< 0.5	< 0.5	<0.5	<0.5	<0.5		
06/28/04 ¹⁶					<50	< 0.5	<0.5	<0.5	<0.5	<0.5		
09/13/04 ¹⁶					<50	< 0.5	< 0.5	<0.5	<0.5	<0.5		
12/22/04 ¹⁶					<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5		
03/04/05 ¹⁶					<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5		
06/30/05 ¹⁶					<50	< 0.5	<0.5	<0.5	<0.5	<0.5		
09/16/05 ¹⁶					<50	<0.5	<0.5	<0.5	< 0.5	< 0.5		
12/21/05 ¹⁶					<50	<0.5	< 0.5	<0.5	< 0.5	<0.5		
03/21/06 ¹⁶					<50	<0.5	< 0.5	<0.5	<0.5	<0.5		
06/21/06 ¹⁶					<50	<0.5	< 0.5	<0.5	< 0.5	< 0.5		
09/05/06 ¹⁶					<50	<0.5	< 0.5	< 0.5	<0.5	<0.5		
12/28/06 ¹⁶					<50	<0.5	< 0.5	< 0.5	<0.5	<0.5		
03/26/07 ¹⁶					<50	< 0.5	< 0.5	<0.5	<0.5	<0.5		
06/26/07 ¹⁶					<50	<0.5	<0.5	< 0.5	<0.5	< 0.5		
09/26/07 ¹⁶					<50	<0.5	< 0.5	<0.5	<0.5	< 0.5		
12/20/07 ¹⁶					<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5		
02/29/08 ¹⁶					<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5		
05/09/08 ¹⁶					<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5		
09/19/08 ¹⁶					<50	<0.5	<0.5	< 0.5	< 0.5	<0.5		
12/04/08 ¹⁶					<50	< 0.5	< 0.5	<0.5	<0.5	<0.5		
03/05/09 ¹⁶					<50	<0.5	<0.5	< 0.5	<0.5	<0.5		
06/23/09 ¹⁶					<50	< 0.5	<0.5	<0.5	<0.5	<0.5		
09/01/09 ¹⁶					<50	< 0.5	<0.5	<0.5	<0.5	<0.5		
DISCONTINUED					20	515			-0.0	6.01		

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to June 30, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

- TOC = Top of CasingGRO = Gasoline Range Organics MTBE = Methyl Tertiary Butyl Ether (ft.) = FeetTPH-D = Total Petroleum Hydrocarbons as Diesel $(\mu g/L) =$ Micrograms per liter GWE = Groundwater Elevation TOG = Total Oil and Grease -- = Not Measured/Not Analyzed (msl) = Mean sea level B = BenzeneNP = No PurgeDTW = Depth to WaterT = ToluenePER = Peristaltic Pump TPH = Total Petroleum Hydrocarbons E = EthylbenzeneQA = Quality Assurance/Trip Blank DRO = Diesel Range Organics X = Xylenes1 Chromatogram pattern indicates an unidentified hydrocarbon. 2 Chromatogram pattern indicates a non-diesel mix. 3 Chromatogram pattern indicates an unidentified hydrocarbon and weathered diesel. 4 Chromatogram pattern indicates a non-diesel mix + discrete peaks. 5 Laboratory report indicates unidentified hydrocarbons C6-C12. 6 Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons C6-C12. 7 Laboratory report indicates unidentified hydrocarbons C9-C24. 8 Laboratory report indicates this sample was analyzed outside of the EPA recommended holding time. 9 Laboratory report indicates discrete peaks. 10 Laboratory report indicates gasoline C6-C12. 11 Laboratory report indicates unidentified hydrocarbons >C16. 12 Laboratory report indicates diesel C9-C24 + unidentified hydrocarbons <C16. 13 Confirmation run. 14 Insufficient water to obtain sample for TPH-D. 15 Laboratory report indicates unidentified hydrocarbons C9-C17. 16 BTEX and MTBE by EPA Method 8260. 17 Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. The reported result is due to individual peak(s) eluting in the DRO range. 18 Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It elutes in the DRO range later than #2 fuel and contains individual peaks eluting in the DRO range. 19 Laboratory report indicates the observed sample pattern includes #2 fuel/diesel, an additional pattern which elutes later in the DRO range, and individual peaks eluting in the DRO range. 20 Laboratory report indicates the observed sample pattern includes #2 fuel/diesel and additional patterns which elute earlier and later in the DRO range. 21 Incorrect TOC elevation (168.80) was used in past reports. Correct TOC and GWE are shown. 22 Analysis inadvertently missed in the field. 23 No Purge due to insufficient water. 24 Laboratory report indincates DRO was detected in the method blank at a concentration of 38 µg/L. Results from the reextraction are within the limits. The hold time had expired prior
 - to the reextraction therefore, all results are reported from the original extract. Similar results were obtained in both extracts.
 - ²⁵ Laboratory report indincates DRO was detected in the method blank at a concentration of 38 μg/L. Results from the reextraction are within the limits. The hold time had expired prior to the reextraction therefore, all results are reported from the original extract. The DRO result for the reextract is ND.

Table 2 Field Measurements and Analytical Results Chevron Service Station #9-6991

2920 Castro Valley Boulevard

Castro Valley, California

WELL ID	DATE	D.O.	ORP	Castro Valley, Ca	SULFATE	NITRATE as NITROGEN	FERROUS IRON
		(mg/L)	(mV)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-1	12/21/05	3.7	151	581,000	184,000	6,400	29
	03/21/06	4.7	32	546,000	147,000	5,800	600
	06/21/06	SAMPLED ANNU	JALLY				
	09/05/06	SAMPLED ANNU	JALLY				
	12/28/06	SAMPLED ANNU	JALLY				
	03/26/07	3.4	47	844,000 ³	112,000	3,600	22,400
	02/29/08	2.6	153	¹ <460/584,000 ²	158,000	4,500	730
MW-4	12/21/05	1.4	89	396,000	137,000	2,300	<8.0
	03/21/06	3.0	82	407,000	139,000	2,200	<8.0
	06/21/06	0.3	86	¹ 710/403,000 ²	136,000	2,700	12
	09/05/06	2.1	106	¹ <460/412,000 ²	147,000	2,700	210
	12/28/06	1.1	114	¹ <460/396,000 ²	175,000	2,500	<8.0
	03/26/07	1.2	188	393,000³	151,000	1,800	190
	06/26/07	1.9	31	392,000	179,000	2,900	<8.0
	09/26/07	2.3	110	¹ <460/412,000 ²	182,000	1,600	<8.0
	12/20/07	2.1	76	¹ <460/402,000 ²	169,000	1,400	<8.0
	02/29/08	1.6	88	¹ <460/396,000 ²	193,000	1,500	15
	05/09/08	1.1	77	¹ <460/399,000 ²	165,000	1,500	23
	09/19/08	1.7	43	¹ <460/420,000 ²	167,000	2,500	<8.0
MW-7	12/21/05	1.4	53	475,000	2,700	<400	820
	03/21/06	2.5	12	439,000	3,800	<400	3,800
	06/21/06	0.1	-62	¹ 1,400/480,000 ²	1,600	<250	5,000
	09/05/06	1.2	-23	¹ <460/419,000 ²	1,700	<250	3,500
	12/28/06	0.80	-36	¹ <460/498,000 ²	2,100	<250	1,000
	03/26/07	1.1	-24	490,000 ³	2,000	<250	2,200
	06/26/07	1.0	-72	426,000	1,800	<250	4,700
	09/26/07	.90	26	¹ <460/423,000 ²	2,400	<250	3,800
	12/20/07	1.3	-8	¹ <460/539,000 ²	3,200	<250	910
	02/29/08	1.2	80	¹ <460/510,000 ²	8,100	<250	690
	05/09/08	1.0	65	¹ <460/157,000 ²	2,700	<250	1,800
	09/19/08	1.7	25	¹ <460/403,000 ²	8,100	<250	8,000

EXPLANATIONS:

D.O. = Dissolved Oxygen (mg/L) = milligrams per liter ORP = Oxidation Reduction Potential (mV) = millivolts -- = Not Analyzed (µg/L) = Micrograms per liter

¹ pH 8.3.

² pH 4.5.

³ Laboratory report indicates this sample was analyzed past the 14-day hold time.

ANALYTICAL METHODS:

Alkalinity by EPA Method SM20 2320 B for Alkalinity to pH 8.3 Alkalinity by EPA Method SM20 2320 B for Alkalinity to pH 4.5 Sulfate by EPA Method 300.0 Nitrate as Nitrogen by EPA Method 300.00 Ferrous Iron by EPA Method SM20 3500-Fe B

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hills, California.

Client/Facility#:	Chevron #9-6991		Job Number:	385296	
Site Address:	2920 Castro Valley E	Blvd	Event Date:	3-23-11	(inclusive)
City:	Castro Valley, CA		Sampler:	Joe	
Well ID	MW-)		Date Monitored:	3-23-11	
Well Diameter	3/4/2 in.	L.V.	olume 3/4"= 0.02		7 3"= 0.38
Total Depth	17.7/ ft.		actor (VF) 4"= 0.66		
Depth to Water	10.28 ft.	Check if water col	lumn is less then 0.50	ft.	
	7.43 xVF		x3 case volume = E	stimated Purge Volume:	gal.
Depth to Water w	/ 80% Recharge [(Height of V	Vater Column x 0.2	20) + DTW]:		
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other: <u>Peristan</u>	S	ampling Equipme isposable Bailer ressure Bailer iscrete Bailer eristaltic Pump ED Bladder Pump ther: <u><i>Percist</i></u>	ent:	Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thick Visual Confirmation Skimmer / Absorba Amt Removed from	ft ft ft ft ft ft ft ft ft ft
Approx. Flow Rate	e: <u>0823 / 3-23-1</u> / e:gpm. /lf yes, Time: Volume (gal.) pH	Water Col Sediment	Or: <u>Clear</u> Description: Jume: <u> </u>	Ddor: () / N f Norre al. DTW @ Samplin D.O. (mg/L)	ORP (mV)

		L	ABORATORY IN	FORMATION	
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
/	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)
	2 x 500ml ambers	YES	NO	LANCASTER	TPH-DRO (8015)
COMMENTS:	slow recon	ecy.			

Add/Renlaced Lack

Client/Facility#: Chevron #9-6991 Job Number: 385296 Site Address: 2920 Castro Valley Blvd Event Date: 3 - 2 3 - 1 ((inclusive)) City: Castro Valley, CA Sampler: 3 - 2 3 - 1 ((inclusive))
City: Castro Valley, CA Sampler: 302
Well ID MW-2 Date Monitored: 3-23-11
Well Diameter 3/4 [°] / 2 in. Volume 3/4 [°] = 0.02 1 [°] = 0.04 2 [°] = 0.17 3 [°] ≈ 0.38
Total Depth 14.69 ft. Factor (VF) 4"= 0.66 5"= 1.02 6"= 1.50 12"= 5.80
Depth to Water / 0 / 8 ft. Check if water column is less then 0.50 ft.
A . 5 / xVF = x3 case volume = Estimated Purge Volume: gal.
Depth to Water w/ 80% Recharge [(Height of Water Column x 0.20) + DTW]: Time Started: (2400 hrs)
Purge Equipment: Sampling Equipment: Time Started: (2400 hrs) Time Completed: (2400 hrs)
Disposable Bailer Disposable Bailer Disposable Bailer
Stainless Steel Bailer Pressure Bailer ft
Stack Pump Discrete Bailer Visual Confirmation/Description:
Suction Pump Peristaltic Pump
Grundfos QED Bladder Pump Skimmer / Absorbant Sock (circle one) Peristaltic Pump Other: Peristaltic Pump
OED Bladder Rump Amt Removed from Well: gal
Other: Perist - pump Product Transferred to:
Start Time (purge): 0835 Weather Conditions: Pain
Sample Time/Date: 0845 13-23-(Water Color: Cleric Odor: Y / W
Did well de-water?
Time D.O. ORP (2400 hr.) Volume (gal.) pH Conductivity Temperature D.O. ORP (µmhos/cm - ⋬S) (℃ / F) (mg/L) (mV)
7.46 1251 15.9

	LABORATORY INFORMATION										
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES						
MW- 2	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)						
	2 x 500ml ambers	YES	NO	LANCASTER	TPH-DRO (8015)						
[

COMMENTS:

Slow recovery

Add/Doplaced Look

Client/Facility#:	Chevron #9-6991	Job Number:	385296	
Site Address:	2920 Castro Valley Blvd	Event Date:	3-23-11	— (inclusive)
City:	Castro Valley, CA	Sampler:	Joe	
Well ID	MW- 4	Date Monitored:	3-23-11	
Well Diameter Total Depth	<u>3/4 /(2) in.</u> 19.74 ft.	Volume 3/4"= 0.02 Factor (VF) 4"= 0.66		
Depth to Water		column is less then 0.50 86 x3 case volume = E		
Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	w/ 80% Recharge [(Height of Water Column x Sampling Equip Disposable Baile	nent: mp		cle one) gal gal
Start Time (purge) Sample Time/Dat Approx. Flow Rat Did well de-water	e: gpm. Sedime	Color: <u>clea(</u> () ent Description:	من Odor: ۲ / ۹۵ مر محمد al. DTW @ Sampling:9	.22
Time (2400 hr.) <u>@9@8</u> <u>@9/3</u> <u>@9/8</u>	Volume (gal.) pH Conductivity (μ mhos/cm - μ 2 7.36 1154 4 7.30 1150 -6 7.33 1157	HS) (Ô/F) /6,2 / <u>5.7</u>	D.O. ORP (mg/L) (mV)	- - -
				-

<u></u>	LABORATORY INFORMATION										
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES						
MW- 2	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)						
	7 x 500ml ambers	YES	NO	LANCASTER	TPH-DRO (8015)						
<u> </u>											

COMMENTS:

Client/Facility#:	Chevron #9-6991		Job Number:	385296	
Site Address:	2920 Castro Valle	ey Blvd	Event Date:	3-23-11	(inclusive)
City:	Castro Valley, CA		Sampler:		
				Jue	
Well ID	MW-6		Date Monitored:		
Well Diameter	3/4 /(2) in.	Vo	lume 3/4"= 0.	.02 1"= 0.04 2"= 0.17	21-0.20
Total Depth	ft.		ctor (VF) $4''=0$.		3"= 0.38 12"= 5.80
Depth to Water	ft. [Check if water coli	umn is less then 0.5	50 ft.	
		17.707-40		= Estimated Purge Volume:	nal
Depth to Water	w/ 80% Recharge [(Heigh	nt of Water Column x 0.2	 0) + DTW]:		
			· · ·	Time Started:	(2400 hrs) (2400 hrs)
Purge Equipment:		Sampling Equipmen	nt:		(2400 hrs) ft
Disposable Bailer		Disposable Bailer			t
Stainless Steel Bailer	·	Pressure Bailer		Hydrocarbon Thickne	
Stack Pump		Discrete Bailer		Visual Confirmation/E	Description:
Suction Pump Grundfos		Peristaltic Pump		Skimmer / Absorbant	Sock (circle and)
Peristaltic Pump		QED Bladder Pump	<u> </u>	Amt Removed from S	Sock (circle one) Skimmer: gal
QED Bladder Pump		Other:		Amt Removed from V	Vell:
Other:				Water Removed:	
<u> </u>				Product Transferred t	0:
Start Time (purge)) <i>·</i>	N/anthan O			
Sample Time/Dat		_ Weather C			
Approx. Flow Rat		7	or: Description:	_Odor: Y / N	
Did well de-water			· · · · · · · · · · · · · · · · · · ·		·····
		voi	iume	gal. DTW @ Sampling	:
Time	Volume (gal.) pH	Conductivity		D.O. (ORP
(2400 hr.)		(μmhos/cm - μS)	(C/F)	(mg/L) (mV)
	<u> </u>			<u> </u>	
	<u> </u>				
		LABORATORY	NEORMATION		
SAMPLE ID	(#)/CONTAINER REFR	IG. PRESERV. TYPE		ANALY	
MW-	x voa vial YES		LANCASTER	TPH-GRO(8015)/BTEX+MT	BE(8260)
	x 500ml ambers YES	NO	LANCASTER	TPH-DRO (8015)	
COMMENTS:	Was packed a	ver all da	y. Pictur	e taken.	
	1		/		

Add/Renlaced Lock:

-

Client/Facility#:	Chevron #9-6991	Job Number:	385296	
Site Address:	2920 Castro Valley Blvd	Event Date:	3-23-11	(inclusive)
City:	Castro Valley, CA	Sampler:		(inclusive)
Well ID	MW- 7			
Well Diameter	014 10	Date Monitored:	3-23-11	
Total Depth		Volume 3/4"= 0.02		
Depth to Water		Factor (VF) 4"= 0.66	5"= 1.02 6"≈ 1.50 12"= 5.8	30
Deptil to Water		7 column is less then 0.50 f	ft. Estimated Purge Volume: 	-
Depth to Water w	/ 80% Recharge [(Height of Water Column	10 X3 case volume = E	stimated Purge Volume:	gal.
		(1 - 20) + D(W)	Time Started:	(2400 hrs)
Purge Equipment:	Sampling Equi	pment:	Time Completed:	(2400 hrs)
Disposable Bailer	Disposable Bail	er	Depth to Product:	
Stainless Steel Bailer	Pressure Bailer		Depth to Water: Hydrocarbon Thickness:	ftft
Stack Pump	Discrete Bailer		Visual Confirmation/Description	<u>{</u>
Suction Pump	Peristaltic Pump			
Grundfos Peristaltic Pump	QED Bladder Pu		Skimmer / Absorbant Sock (cire Amt Removed from Skimmer:_	cle one)
QED Bladder Pump	Other:		Amt Removed from Well:	gal
Other:			Water Removed:	
			Product Transferred to:	
Start Time (purge):	0945 Weath	er Conditions:	······································	
		<u></u>	Dor: () I P light	
Approx. Flow Rate		ant Deceminticus	<u> </u>	
Did well de-water?			и оте al. DTW @ Sampling: <u>10</u>	
		ye	a. Drw @ Sampling. <u>ro</u>	./6
Time (2400 hr.)	Volume (gal.) pH Conductivi (µmhos/cm -		D.O. ORP (mg/L) (mV)	
0952	105 6.96 925			
0956	3.5 6.90 915	(6.4		
<u> </u>	<u>5.</u> <u>6.87</u> <u>919</u>			•

LABORATORY INFORMATION										
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES					
<u>MW- 7</u>	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)					
	2_x 500ml ambers	YES	NO		TPH-DRO (8015)					
				14						

COMMENTS:

Add/Replaced Lock:

	Ch	evre	on Ca	alii	foi	ni	a	Re	eg	io	n	Ar	10	lV	sis	R	ec	U	es	t/(Chain c	of Ci	istoc
Lancaster Laboratories	632	-31	1-0-	7			A																
			CRA M		roje	ct#	t 61	H-16	633				A	naty	/808	Req	Jest	ed			16#12	3874	18
acility #:SS#9-6991 G-R#385296 C						M	latrix	ĸ			1		F	res	erva	tion (Code	8			-	rative Co	
ite Address: 2920 CASTRO VALLEY BLV	D, CA	STRO	VALLEY,	CA						L#	H		_						\Box		H = HCI	T = Thi	osulfate
Chevron PM: MTI	d Coneu	Itent C	RAKJ H	Kiern	an			-1				Cleanup									$N = HNO_3$ $S = H_2SO_4$		
G-R, Inc., 6747 Sierra C	Court, Su	uite J,	Dublin, CA	94	68		ຊ ເນ		Siel			5									J value repo		
Deanna L. Harding	(deanna	a@grin	c.com)				Potable NPDES		ıtair	021[Silica Gel									Must meet i	west dete	ction limit
			-551-7899						S	R					J	8					Tpossible for	8260 com	pounds
ampler:	Fax	#:	001-7033	-		Ī		1	Total Number of Containers	8260 🕅 8021 🗆	TPH 8015 MOD GRO	TPH 8015 MOD DRO		8	Method	Dissolved Lead Method					8021 MTBE C		
ampen,					ste			<u>با</u>	qui	뼕	DOM	Q	æ	Oxygenates		ead					Confirm high		
	Da	ta	Time		Composite		je L		I NC	(+ MTBE	3015	0151	8260 fult scan	8	ead	Ved L					Confirm all I		
ample Identification	Colle	cted	Collected	Grab	Š	Sol	Water	Oil 🗆 Air	Tota	ВТЕХ	H	TPH	8280		Total Lead	Diseo						ty's on all i	hits
<u></u>	3-2	13-11	0823	\checkmark			\checkmark		8	V	マ	7		Ť	Í				\uparrow	+	Comments /		
		 	0845	+		-+		\square	8	\mathbf{A}		1								Τ			-
MW-4 MW-7		7	0930	. -		_	\downarrow	\square	8	M	~	4	_										
	- ¥		1010			-+	Y	┠╌┼	8		\checkmark	~	_				+	+	╞	4_	1		
	+					+		╏─┼				-+		-+			+	┦	┢	┥			
						-+		╞╌┼				-+		\rightarrow				+	+		-		
												-+	-+		-+		╶╂─		╉╌				
	<u> </u>																	+	+-	+			
									_												1		
					-+								\dashv	-+	\rightarrow								
						_		┝╌╊		-+			-+	\rightarrow	\rightarrow		╋	_	-	+			
urnaround Time Requested (TAT) (please			Belingu	shed	by:	Y									me						,		
TD. AT 72 hour 48 ho	•		Tes	Ø	Je -							3 -2	ate 3-		15	Rec	ET	T1	58		YAN FRIDG	Date	Time
Fhour 4 day 5 day			Retnou	ished	YE	4	Ì	T		່ລ	2	AR	ate	13	me 35	Rec	eived	by.		1	33		Time
the Bookage Options (stress to the			Relinqu	d ished	by:	<u> </u>	7	5			-		<u>. /</u> ate		<u>55</u> me	100	eived	AC.	N.	n	- 19	Date 14R11	1335
ata Package Options (please circle if required C Summary Type I - Full	EDF/E	DD	<u></u>	<u>4</u> .	-8		a.	6			3	43	T	163			-6	DY:				Date	Time
pe VI (Raw Data) Coett Deliverable not ne	eded		Relinqu	shed			ercial								7		eived	by:	7		1	Date	Time
IP (RWQCB)			UPS		Fee	e		0	ther_				_	_	£			L	~		1	July	GANE
sk			Temper	eture	Ilnon	Dee	oint		•	1-	1.4	1			-		100	1	Inta		YES NO	7 · · · · ·	-

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

2425 New Holland Pike, PO Box 12425, Lancasler, PA 17605-2425 - 717-656-2300 Fax: 717-656-2661 - www.lancesterlabs.com

ANALYTICAL RESULTS

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for:

Chevron c/o CRA Suite 107 10969 Trade Center Dr Rancho Cordova CA 95670

March 31, 2011

Project: 96991

Submittal Date: 03/24/2011 Group Number: 1238748 PO Number: 96991 Release Number: MTI State of Sample Origin: CA RECEIVED

APR 01 2001

GETTLER-RYAN INC. General contractors

Lancaster Labs (LLI) # 6238090 6238091 6238092 6238093

MW-1-W-110323 Grab Water MW-2-W-110323 Grab Water MW-4-W-110323 Grab Water MW-7-W-110323 Grab Water

Client Sample Description

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Gettler-Ryan, Inc. COPY TO ELECTRONIC Chevron c/o CRA COPY TO ELECTRONIC Chevron COPY TO

Attn: Rachelle Munoz Attn: Report Contact Attn: Anna Avina

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 >717-656-2300 Fox: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300 Ext. 1241

Respectfully Submitted,

Roh Chi-

Robin C. Runkle Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * Www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-1-W-110323 Grab Water Facility# 96991 Job# 385296 MTI# 61H-1633 GRD 2920 Castro Valley-Castro T0600100324 MW-1

LLI Sample # WW 6238090 LLI Group # 1238748 Account # 12099

Project Name: 96991

Collected: 03/23/2011 08:23

Submitted: 03/24/2011 09:45 Reported: 03/31/2011 15:46 Chevron c/o CRA Suite 107 10969 Trade Center Dr Rancho Cordova CA 95670

CVC01

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-8	46 8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ethe	er 1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	atiles SW-84	6 8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1
GC Ext	ractable TPH SW-84	6 8015B	ug/l	ug/l	
06609	TPH-DRO CA C10-C28	n.a.	180	50	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	F110872AA	03/28/2011 12:59	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F110872AA	03/28/2011 12:59	Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11087C20A	03/29/2011 17:37		1
01146	GC VOA Water Prep	SW-846 5030B	1	11087C20A	03/29/2011 17:37	Elizabeth J Marin	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	110830027A	03/29/2011 21:43		-
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	110830027A	03/25/2011 09:55		1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Sample Description: MW-2-W-110323 Grab Water Facility# 96991 Job# 385296 MTI# 61H-1633 GRD

2920 Castro Valley-Castro T0600100324 MW-2

LLI Sample # WW 6238091 LLI Group # 1238748 Account # 12099

Page 1 of 1

Project Name: 96991

Collected: 03/23/2011 08:45

Submitted: 03/24/2011 09:45 Reported: 03/31/2011 15:46

CVC02

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0,5	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Buty	l Ether	1634-04-4	91	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	atiles s	SW-846	8015B	ug/l	ug/1	
01728	TPH-GRO N. CA water C	C6-C12	n.a.	N.D.	50	1
GC Ext	ractable TPH	SW-846	8015B	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	570	50	1

Chevron c/o CRA

10969 Trade Center Dr

Rancho Cordova CA 95670

Suite 107

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	F110872AA	03/28/2011 13:21	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F110872AA	03/28/2011 13:21	Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11087C20A	03/29/2011 17:59	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	11087C20A	03/29/2011 17:59	Elizabeth J Marin	-
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	110830027A	03/29/2011 22:00	Melissa McDermott	-
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	110830027A	03/25/2011 09:55	Denise L Trimby	ī

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 * 717-656-2300 Fax: 717-656-2681 * Www.lancasterlabs.com

Sample Description: MW-4-W-110323 Grab Water Facility# 96991 Job# 385296 MTI# 61H-1633 GRD

2920 Castro Valley-Castro T0600100324 MW-4

LLI Sample # WW 6238092 LLI Group # 1238748 Account # 12099

Page 1 of 1

Project Name: 96991

Collected: 03/23/2011 09:30

Submitted: 03/24/2011 09:45 Reported: 03/31/2011 15:46 Chevron c/o CRA Suite 107 10969 Trade Center Dr Rancho Cordova CA 95670

CVC04

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/1	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0,5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	atiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1
GC Ext	ractable TPH SW-846	8015B	ug/l	ug/l	
06609	TPH-DRO CA C10-C28	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	F110872AA	03/28/2011 13:43	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F110872AA	03/28/2011 13:43	Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11087C20A	03/29/2011 18:21	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	11087C20A	03/29/2011 18:21	Elizabeth J Marin	-
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	110830027A	03/29/2011 21:08	Melissa McDermott	-
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	110830027A	03/25/2011 09:55	Denise L Trimby	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • WWW.lancasterlabs.com

Page 1 of 1

Sample Description: MW-7-W-110323 Grab Water Facility# 96991 Job# 385296 MTI# 61H-1633 GRD 2920 Castro Valley-Castro T0600100324 MW-7

LLI Sample # WW 6238093 LLI Group # 1238748 Account # 12099

Project Name: 96991

CVC07

Collected: 03/23/2011 10:10

Submitted: 03/24/2011 09:45 Reported: 03/31/2011 15:46 Suite 107 10969 Trade Center Dr Rancho Cordova CA 95670

Chevron c/o CRA

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l		
10943	Benzene		71-43-2	N.D.	0.5	1	
10943	Ethylbenzene		100-41-4	N.D.	0.5	1	
10943	Methyl Tertiary But	yl Ether	1634-04-4	0.6	0.5	1	
10943	Toluene		108-88-3	N.D.	0.5	1	
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1	
GC Vol	latiles	SW-846	8015B	ug/l	ug/l		
01728	TPH-GRO N. CA water	C6-C12	n.a.	76	50	1	
GC Ext	ractable TPH	SW-846	8015B	ug/l	ug/l		
06609	TPH-DRO CA C10-C28		n.a.	360	50	1	

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P110872AA	03/28/2011 11:30	Nicholas R Rossi	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P110872AA	03/28/2011 11:30	Nicholas R Rossi	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11087C20A	03/29/2011 18:43	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	11087C20A	03/29/2011 18:43	Elizabeth J Marin	-
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	110830027A	03/29/2011 21:26	Melissa McDermott	
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	110830027A	03/25/2011 09:55	Denise L Trimby	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 03/31/11 at 03:46 PM

Group Number: 1238748

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD Limits	RPD	RPD Max
Batch number: F110872AA	Sample numb	per(s): 62	38090-6238	1092				
Benzene	N.D.	0.5	ug/l	97	97	79-120	0	30
Ethylbenzene	N.D.	0.5	ug/l	94	92	79-120	2	30
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	96	97	76-120	1	30
Toluene	N.D.	0.5	ug/l	92	91	79-120	ĩ	30
Xylene (Total)	N.D.	0.5	ug/1	95	93	80-120	2	30
Batch number: P110872AA	Sample numb	er(s): 623	38093					
Benzene	N.D.	0.5	ug/l	103	106	79-120	3	30
Ethylbenzene	N.D.	0.5	ug/l	97	100	79-120	3	30
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	103	109	76-120	6	30
Toluene	N.D.	0.5	ug/l	100	103	79-120	3	30
Xylene (Total)	N.D.	0.5	ug/l	96	99	80-120	4	30
Batch number: 11087C20A	Sample numb	er(s): 623	8090-6238	093				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	118	127	75-135	7	30
Batch number: 110830027A	Sample numb	er(s): 623	8090-6238	093				
TPH-DRO CA C10-C28	N.D.	32.	ug/l	99	104	56-122	5	20

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6238090	99	100	97	91	
5238091	99	100	98	91	
5238092	100	100	98	90	
Blank	101	101	97	93	
'CS	99	98	97	101	
CSD	98	99	97	99	
imits:	80-116	77-113	80-113	78-113	
	Name: UST VOCs by nber: P110872AA	8260B - Water			
acon nu	Dibromofluoromethane	1.2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 03/31/11 at 03:46 PM

Group Number: 1238748

Surrogate Quality Control

6238093	99	99	100	95		
Blank	98	100	99	94		
LCS	97	100	99	95		
LCSD	98	102	100	96		
Limits:	80-116	77-113	80-113	78-113		
Analysis Batch nu	Name: TPH-GRO N. mber: 11087C20A Trifluorotoluene-F	CA water C6-C12				
6238090	75	······		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
6238091	75				•	
5238092	76					
5238093	76					
Blank	75					
LCS	116					
LCSD	125					
Limits:	63-135					
Analysis	Name: TPH-DRO CA	C10-C28				
Batch num	mber: 110830027A					
	Orthoterphenyl					
6238090	109					
5238091	115					
238092	111					
238093	109					
lank	105					
CS	108					
CSD	110					
imits:	59-131					
THITCS:	22-131					

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

ugmicrogram(s)mgmilligram(s)mlmilliliter(s)Iliter(s)	ml	milliliter(s)	ĭ	liter(s)	
m3 cubic meter(s) ul microliter(s)			ul	microliter(s)	

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- B Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- Presumptive evidence of a compound (TICs only)
 Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike sample not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX F

MASS CALCULATIONS

ESTIMATED TPHd MASS REMAINING IN GROUNDWATER CHEVRON SERVICE STATION 9-6991 2920 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA

Impacted GW Thickness (ft)	Impacted GW Area (sq-ft)	Aquifer Volume (cu-ft)	Estimated Aquifer Porosity	Impacted GW Volume (gallons)	Representative TPHd Concentration (ug/l)	Total Dissolved TPHd Mass (lb)	Total Dissolved TPHd Volume (gallons)
10.0	236	2,360	0.4	7,061	140	0.008	0.001
10.0	2,975	29,750	0.4	89,012	283	0.210	0.028

Total Estimated Residual TPHd:0.2180.030

Notes:

Aquifer Volume = Impacted GW thickness x impacted GW area [excludes aquifer volume of greater impact]

Impacted GW Volume = Aquifer volume (cu-ft) x est. porosity (%) x 7.48 (gals/cu-ft)

Total Dissolved TPHd Mass = GW volume (gals) x 3.785 (l/gal) x Concentration (ug/l) x 2.205 lb/kg / 1,000,000,000 (ug/kg)

Total Dissolved TPHd Volume = Mass (lb) / 7.39 (lbs/gal)

Approximate density TPHd (diesel) = 7.39 lb/gal

Abbreviations:

GW = Groundwater		
ft = feet		
sq-ft = square feet	<u>Soil Type:</u>	Porosity
cu-ft = cubic feet	Gravel	25-40
gals = gallons	Sand	25-50
kg = kilograms	Silt	35-50
lb = pound	Clay	40-70
ug/l = micrograms per liter		

From: Groundwater; Freeze & Cherry, 1979, Prentice-Hall, Inc., pg. 37. (based on Davis, 1969)

Page 1 of 1

ESTIMATED TPHg MASS REMAINING IN GROUNDWATER CHEVRON SERVICE STATION 9-6991 2920 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA

Impacted GW Thickness (ft)	Impacted GW Area (sq-ft)	Aquifer Volume (cu-ft)	Estimated Aquifer Porosity	Impacted GW Volume (gallons)	Representative TPHg Concentration (ug/l)	Total Dissolved TPHg Mass (lb)	Total Dissolved TPHg Volume (gallons)
10.0	240	2,400	0.4	7,181	63	0.004	0.001
				Total Est	timated Residual TPHg:	0.004	0.001

Notes:

Aquifer Volume = Impacted GW thickness x impacted GW area [excludes aquifer volume of greater impact]

Impacted GW Volume = Aquifer volume (cu-ft) x est. porosity (%) x 7.48 (gals/cu-ft)

Total Dissolved TPHg Mass = GW volume (gals) x 3.785 (l/gal) x Concentration (ug/l) x 2.205 lb/kg / 1,000,000,000 (ug/kg)

Total Dissolved TPHg Volume = Mass (lb) / 6.14 (lbs/gal)

Approximate density TPHg (gasoline) = 6.14 lb/gal

Abbreviations:

GW = Groundwater		
ft = feet		
sq-ft = square feet	<u>Soil Type:</u>	Porosity
cu-ft = cubic feet	Gravel	25-40
gals = gallons	Sand	25-50
kg = kilograms	Silt	35-50
lb = pound	Clay	40-70
ug/l = micrograms per liter		

From: Groundwater; Freeze & Cherry, 1979, Prentice-Hall, Inc., pg. 37. (based on Davis, 1969)

Page 1 of 1

ESTIMATED MTBE MASS REMAINING IN GROUNDWATER CHEVRON SERVICE STATION 9-6991 2920 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA

Impacted GW Thickness (ft)	Impacted GW Area (sq-ft)	Aquifer Volume (cu-ft)	Estimated Aquifer Porosity	Impacted GW Volume (gallons)	Representative MTBE Concentration (ug/l)	Total Dissolved MTBE Mass (lb)	Total Dissolved MTBE Volume (gallons)
10.0	3,421	34,210	0.4	102,356	27.5	0.023	0.004
10.0	939	9,390	0.4	28,095	70.5	0.01653	0.003
				Total Est	imated Residual MTBE:	0.040	0.006

Notes:

Aquifer Volume = Impacted GW thickness x impacted GW area [excludes aquifer volume of greater impact] Impacted GW Volume = Aquifer volume (cu-ft) x est. porosity (%) x 7.48 (gals/cu-ft) Total Dissolved MTBE Mass = Impacted GW volume (gals) x 3.785 (l/gal) x Concentration (ug/l) x 2.205 lb/kg / 1,000,000,000 (ug/kg) Total Dissolved MTBE Volume = Mass (lb) / 6.19 (lbs/gal) Approximate density of MTBE = 6.19 lb/gal

Abbreviations:

GW = Groundwater		
ft = feet		
sq-ft = square feet	<u>Soil Type:</u>	Porosity
cu-ft = cubic feet	Gravel	25-40
gals = gallons	Sand	25-50
kg = kilograms	Silt	35-50
lb = pound	Clay	40-70
ug/l = micrograms per liter		

From: Groundwater; Freeze & Cherry, 1979, Prentice-Hall, Inc., pg. 37. (based on Davis, 1969)

APPENDIX G

CONCENTRATION VERSUS TIME AND TREND GRAPHS AND DEGRADATION CALCULATIONS

PREDICTED TIME TO REACH TPHd ESL IN MW-1 CHEVRON STATION 9-6991 2920 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA

PREDICTED TIME TO REACH TPHd AND MTBE ESLs IN MW-2 CHEVRON STATION 9-6991 2920 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA

$y = b e^{ax}$ where: y	===> γ = concentration in μ g	$x = \ln(y/b) / a$	a = decay constant	
	= concentration at tin		x = time in days	
ven	Constituent	MTBE	Total Petroleum Hydrocarbons as Diesel (TPHd)	
ESL:	у	5	100	
Constant:	b	1.73E+17	4407.033162	
Constant:	a	-8.99E-04	-9.30E-05	
Starting date for current trend:		9/13/1996	9/13/1996	
lculate				
Attenuation Half Life (years):	(-ln(2)/a)/365.25	2.11	20.41	
Estimated Date to Reach ESL:	$(x = \ln(y/b) / a)$	Dec 2015	Jun 2011	
100,000.0		▲ MTBE	→ TPHd TPHd: y = 4407e ^{-9E-05x}	
0.000,1 (Hg/L)				
1.0				
	Mayr.09	Cr SS Pr The state The state Date	Angr. B	\$2. \$2. \$2. \$2. \$2. \$2. \$2. \$2.
CHEVRON SERVICE STATION 9-6991 2920 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA		CONESTOGA-ROU & ASSOCIATES		and MTBE CONCENTRATION vs. TIME

PREDICTED TIME TO REACH TPHd ESL IN MW-7 CHEVRON STATION 9-6991 2920 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA

ATTACHMENT B

SECOND SEMI-ANNUAL 2012 GROUNDWATER MONITORING AND SAMPLING REPORT

TRANSMITTAL

October 25, 2012 G-R #385296

- TO: Mr. James Kiernan Conestoga-Rovers & Associates 10969 Trade Center Drive, Suite 107 Rancho Cordova, CA 95670
- FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

RE: Chevron Service Station #9-6991 2920 Castro Valley Boulevard Castro Valley, California RO 0000475

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	October 17, 2012	Groundwater Monitoring and Sampling Report Second Semi-Annual Event of September 14, 2012

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for <u>your</u> <u>use and distribution to the following (including PDF submittal of the entire report to</u> <u>GeoTracker):</u>

Ms. Alexis Fischer, Chevron Environmental Management Company, 6101 Bollinger Canyon Road, San Ramon, CA 94583

Mr. Chuck Headlee, RWQCB-San Francisco Bay Region, 1515 Clay Street, Oakland, CA 94612 (No Hard Copy)

K & K Petroleum, (Property Owner), 2920 Castro Valley Blvd., Castro Valley, CA 94546
 Mr. Mark Detterman, Alameda County Health Care Services, Dept. of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577
 (No Hard Copy-CRA UPLOAD TO ALAMEDA CO.)

trans/9-6991-OS

WELL CONDITION STATUS SHEET

Client/Facility #: Site Address: City:	2920 Cas	i #9-6991 stro Valley /alley, CA	/ Blvd				Job # Event Date: Sampler:	385296 9 HAU	/14 G_14	/12 KEVORK	<u></u>
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y / N	REPLACE CAP Y / N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
mw-1	0K —		>	2-5	oK -		>	N	N	MORRISON - 8"/2	NO
MW-2	0K -		>	2-5	0K —		>			V V	
MW - 4	ok —		>	2-5	0K		>			UNIVERSAL - 12"/2	
MW-6	•		>	2-5	ok —		~ >			EMC0 - 12"/2	
MW-7	ok –		~~~>	3-5	0K —		>	\checkmark	V	POMECO-12"/3	
							_				
					ж. П						
									-		
							=				

Comments _____

October 17, 2012 G-R Job #385296

Ms. Alexis Fischer Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583

RE: Second Semi-Annual Event of September 14, 2012 Groundwater Monitoring & Sampling Report Chevron Service Station #9-6991 2920 Castro Valley Boulevard Castro Valley, California

Dear Ms. Fischer:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and the laboratory analytical reports are also attached. All groundwater and decontamination water generated during sampling activities was removed from the site, per the Standard Operating Procedure.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding **Project Coordinator** 0.6882 Douglas J. Lee Senior Geologist, P.G. No. 6882 OF CALL Figure 1: Potentiometric Map Table 1: Groundwater Monitoring Data and Analytical Results Table 2: Field Measurements and Analytical Results Attachments: Standard Operating Procedure - Groundwater Sampling **Field Data Sheets** Chain of Custody Document and Laboratory Analytical Reports

Table 1Groundwater Monitoring Data and Analytical ResultsChevron Service Station #9-6991

2920 Castro Valley Boulevard

Castro	Valley.	California	
--------	---------	------------	--

WELL ID/	TOC	GWE	DTW	TPH-DRO	TPH-GRO	В	Г	E	X	MTBE	TOG	ETHANOL
DATE	(ft.)	(msl)	(ft.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-1												
10/08/91	169.30	158.20	11.10		230	45	<0.5	0.9	9.1		<5,000	
11/04/91	169.30	158.27	11.03		340	120	< 0.5	<0.5	6.1			
12/04/91	169.30	158.25	11.05	170	<50	3.9	< 0.5	< 0.5	<0.5		<5,000	
06/05/92	169.30	158.26	11.04	<50	100	26	0.6	0.5	1.0			
10/27/92	169.30	158.20	11.10	54	<50	11	<0.5	<0.5	<0.5			
12/30/92	169.30			170	<50	24	<0.5	<0.5	<0.5			
01/27/93	169.30	158.67	10.63									
03/05/93	169.30			<50	<50	<0.5	<0.5	<0.5	<0.5			
03/17/93	169.30	158.59	10.71									
06/18/93	169.30	158.29	11.01	<50	<50	0.6	< 0.5	<0.5	<1.5			
09/28/93	169.30	157.35	11.95	<50	<50	0.8	< 0.5	<0.5	<1.5			
12/30/93	169.30	158.34	10.96	<50	<50	8.5	< 0.5	<0.5	<0.5			
04/07/94	169.30	158.49	10.81	<10	<50	<0.5	<0.5	<0.5	<0.5			
05/31/94	169.30	158.38	10.92	<50	<50	1.0	<0.5	<0.5	<0.5			
09/23/94	169.30	158.40	10.90	<50	<50	1.3	<0.5	<0.5	<0.5			
11/30/94	169.30	158.76	10.54	570 ²	<50	8.9	< 0.5	<0.5	<0.5			
03/30/95	169.30	158.60	10.70	110 ¹	<50	<0.5	<0.5	<0.5	<0.5			
06/06/95	169.30	158.38	10.92	570 ¹	61	15	<0.5	<0.5	<0.5			
09/25/95	169.30	158.30	11.00	550 ¹	<50	4.7	<0.5	<0.5	< 0.5			
12/28/95	169.30	158.50	10.80	330 ¹	72	9.1	0.65	<0.5	<0.5	6.0		
03/05/96	169.30	159.20	10.10	780 ¹	<50	7.8	<0.5	<0.5	<0.5	<2.5		
09/13/96	169.30	158.28	11.02	SAMPLED A	NNUALLY							
12/19/96	169.30	158.08	11.22									
03/20/97	169.30	158.40	10.90	350 ¹	<50	2.2	<0.5	<0.5	<0.5	<2.5		
06/27/97	169.30	158.27	11.03									
09/19/97	169.30	158.34	10.96									
12/05/97	169.30	158.62	10.68									
03/31/98	169.30	158.67	10.63	760 ¹	<50	6.7	<0.5	<0.5	<0.5	<2.5		
06/19/98	169.30	159.62	9.68									
08/13/98	169.30	157.67	11.63									
12/17/98	169.30	158.25	11.05									
03/19/99	169.30	158.35	10.95	890 ¹	124	14.8	<0.5	<0.5	<0.5	6.49/<2.5 ¹³		
06/23/99	169.30	158.23	11.07									
09/16/99	169.30	158.41	10.89									
12/16/99	169.30	158.46	10.84									

1

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-6991
2920 Castro Valley Boulevard

Castro Valley, California

WELL ID/		TOC	GWE	DTW	TPH-DRO	TPH-GRO	В	r	E	X	MTBE	TOG	ETHANOL
DATE		(fL)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-1 (cont)													
03/02/00		169.30	158.83	10.47	2,300¹	155	10.4	<0.5	<0.5	<0.5	10.3		
06/30/00		169.30	159.04	10.26									
09/30/00	NP	169.30	158.30	11.00									
12/19/00		169.30	158.44	10.86									
03/13/01	NP	169.30	158.45	10.85	14	50.4	4.50	0.553	0.522	2.10	1.65		
06/12/01		169.30	158.28	11.02	SAMPLED AN	NUALLY							
09/18/01		169.30	158.23	11.07	SAMPLED AN	NUALLY							
12/17/01		169.30	158.59	10.71	SAMPLED AN	NUALLY							
03/21/02		169.30	158.54	10.76	¹⁴	<50	< 0.50	<0.50	< 0.50	<1.5	<2.5		
06/08/02		169.30	158.33	10.97	SAMPLED AN	NUALLY							
09/13/02		169.30	158.28	11.02	SAMPLED AN	NUALLY							
12/13/02		169.30	158.47	10.83	SAMPLED AN								
03/17/03		169.30	158.60	10.70	250	<50	<0.50	<0.50	< 0.50	<1.5	<2.5		
06/16/03		169.30	158.34	10.96	SAMPLED AN								
09/15/03		169.30	158.28	11.02	SAMPLED AN								
12/15/03		169.30	158.71	10.59	SAMPLED AN	INUALLY							
03/01/04		169.30	158.78	10.52	NOT SAMPLE		NSUFFICIEN	T WATER					
06/28/04		169.30	158.27	11.03	SAMPLED AN								
09/13/04		169.30	156.96	12.34	SAMPLED AN	NUALLY							
12/22/04		169.30	158.38	10.92	SAMPLED AN								
03/04/05		169.30	158.81	10.49	NOT SAMPLE	DUE TO IN	SUFFICIEN	T WATER					
06/30/05		169.30	158.54	10.76	SAMPLED AN								
09/16/05		169.30	158.33	10.97	SAMPLED AN	INUALLY							
12/21/05		169.30	158.70	10.60									
03/21/06 ¹⁶		169.30	158.93	10.37	1,100	<50	0.6	<0.5	<0.5	<0.5	1		<50
06/21/06		169.30	158.37	10.93	SAMPLED AN	NUALLY							-50
09/05/06		169.30	158.32	10.98	SAMPLED AN	NUALLY							
12/28/06		169.30	157.52	11.78	SAMPLED AN	NUALLY							
03/26/07 ¹⁶		169.30	158.39	10.91	730	<50	0.6	<0.5	<0.5	<0.5	<0.5		<50
06/26/07		169.30	158.30	11.00	SAMPLED AN								-50
09/26/07		169.30	158.26	11.04	SAMPLED AN								
12/20/07		169.30	158.66	10.64	SAMPLED AN								
02/29/08 ¹⁶	PER	169.30	158.57	10.73	64	87	4	<0.5	<0.5	<0.5	1		<50
05/09/08		169.30	158.38	10.92	SAMPLED AN								-50
		169.30	158.28		SAMPLED AN								

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991

2920 Castro Valley Boulevard

llev. Ca	litornia
	lley, Ca

WELL ID/		TOC	GWE	DTW	TPH-DRO	TPH-GRO	B	T	E	X	MTBE	TOG	ETHANOL
DATE		(fL)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-1 (cont	t)												
12/04/08		169.30	158.28	11.02	SAMPLED	ANNUALLY	2.75				22		
03/05/09 ¹⁶	PER-NP ²³	169.30	159.10	10.20	77	<50	<0.5	<0.5	<0.5	<0.5	<0.5		<50
06/23/09		169.30	158.36	10.94	SAMPLED A	ANNUALLY				<u>11</u>			
09/01/09		169.30	158.26	11.04	SAMPLED	ANNUALLY							
03/16/10 ¹⁶	PER	169.30	158.75	10.55	1,200	70	3	<0.5	<0.5	<0.5	1		
09/21/10		169.30	158.20	11.10	SAMPLED A	ANNUALLY							
03/23/11 ¹⁶	PER	169.30	159.02	10.28	180	<50	<0.5	<0.5	<0.5	<0.5	<0.5		
09/23/11		169.30	158.28	11.02	SAMPLED A	ANNUALLY							
03/20/12 ¹⁶	PER	169.30	158.73	10.57	70	<50	<0.5	<0.5	<0.5	<0.5	<0.5		
09/14/12		169.30	158.22	11.08	SAMPLED	ANNUALLY	-				-	10 00	-
MW-2													
10/08/91		169.15	157.20	11.95		110	5.1	1.1	0.8	26			
11/19/91		169.15	157.40	11.75		120	11	1.1	<0.5	20 17			-
12/04/91		169.15	157.35	11.80	130	440	30	2.5	<0.5 <0.5	52			
06/05/92		169.15	157.35	11.80	130	80	13	<0.5	<0.5 <0.5	1.0			
10/27/92		169.15	157.15	12.00	110	54	13	<0.5	<0.5	<0.5		(**)	
12/30/92		169.15			92	180	30	<0.5	<0.5	1.0			
01/27/93		169.15	158.24	10.91				-0.5					
03/05/93		169.15			<50	<50	< 0.5	<0.5	<0.5	<0.5		() == ()	
03/17/93		169.15	158.26	10.89		-50			-0.5	-0.5		3 -3	
06/18/93		169.15	157.41	11.74	<50	<50	1.4	< 0.5	<0.5	<1.5			
09/28/93		169.15	157.97	11.18	<50	<50	0.6	<0.5	<0.5	<1.5 <1.5			37-71
12/30/93		169.15	158.34	21.00	<50	<50	0.9	<0.5	<0.5	<0.5			
04/07/94		169.15	158.40	10.75	<10	<50	<0.5	<0.5	<0.5	<0.5			
05/31/94		169.15	158.35	10.80	<50	<50	<0.5	<0.5	<0.5	<0.5 <0.5			
09/23/94		169.15	157.50	11.65	120	<50	0.7	<0.5	<0.5	<0.5 <0.5			
11/30/94		169.15	158.41	10.74	570 ⁴	55	2.9	<0.5	<0.5 1.4	<0.3 0.94			
03/30/95		169.15	158.25	10.90	430 ¹	91	4.5	<0.5	3.8	< 0.5			
06/06/95		169.15	157.73	11.42	410 ¹	<50	<0.5	<0.5	<0.5	<0.5 <0.5			
09/25/95		169.15	157.52	11.63	220 ¹	<50	<0.5 <0.5	<0.5	<0.5	<0.3 <0.5			
12/28/95		169.15	157.98	11.03	120 ¹	<2,000	<0.5 <20	<0.3 <20	<0.5 <20	<0.5 <20			
03/05/96		169.15	159.09	10.06	860 ¹	<2,000 <2,000	<20 <20	<20 <20	<20 <20		5,000		
09/13/96		169.15	157.37	11.78	1,300	<2,000 1,100	20	<20 <10		<20	10,000		
		107.15	157.57	11.70	1,500	1,100	25	<10	<10	<10	20,000		

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-6991
2920 Castro Valley Boulevard

A - 4 - 4	37.11	C 1'C '
Castro	Valley	California

WELL ID/		тос	GWE	DTW	TPH-DRO	TPH-GRO	B	T	E	X	MTBE	TOG	ETHANOL
DATE		(ft.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-2 (cont)											· · · · · · · · · · · · · · · · · · ·		and a second second second
12/19/96		169.15	158.30	10.85	SAMPLED S	EMI-ANNUAL	LLY						
03/20/97		169.15	157.75	11.40	190 ¹	2400	<10	<10	46	<10	6,200		
06/27/97		169.15	157.35	11.80									
09/19/97		169.15	157.43	11.72	60 ¹	<50	<0.5	<0.5	<0.5	<0.5	280		-
12/08/97		169.15	158.27	10.88									
03/31/98		169.15	158.46	10.69	220 ¹	110	30	0.74	0.74	0.59	1,000		
06/19/98		169.15	159.31	9.84									
08/31/98		169.15	157.43	11.72	380 ¹	<100	3.4	<1.0	<1.0	<1.0	980		
12/17/98		169.15	157.60	11.55							480		
03/19/99		169.15	158.63	10.52	107 ⁴	<250	12.7	<2.5	<2.5	<2.5	1,040/819 ¹³		
06/23/99		169.15	159.61	9.54									
09/16/99		169.15	157.54	11.61	84.9	<100	<1.0	<1.0	<1.0	<1.0	216		
12/16/99		169.15	157.86	11.29									
03/02/00		169.15	158.70	10.45	<50	84.8	21.5	< 0.5	<0.5	0.636	413		
06/30/00		169.15	159.08	10.07									
09/30/00	NP	169.15	157.54	11.61	10011	<50	< 0.50	0.57	<0.50	1.0	2,800		
12/19/00		169.15	158.04	11.11							-,		
03/13/01	NP	169.15	158.22	10.93	¹⁴	179	11.6	2.01	0.856	3.66	1,290		
06/12/01		169.15	157.52	11.63									
09/18/01	NP	169.15	157.37	11.78	100	<50	<0.50	<0.50	< 0.50	<1.5	670		
12/17/01		169.15	158.29	10.86	SAMPLED S	EMI-ANNUAL	LY						
09/13/02		169.15	157.50	11.65	200	<50	<0.50	< 0.50	<0.50	<1.5	260		
12/13/02		169.15	158.07	11.08	SAMPLED S	EMI-ANNUAL	LY						
03/17/03		169.15	158.38	10.77	NOT SAMPL	ED DUE TO IN	NSUFFICIEN	T WATER					
06/16/03		169.15	157.77	11.38	SAMPLED S	EMI-ANNUAL	LY						
09/15/03 ^{16,17}		169.15	157.55	11.60	110	<50	<0.5	<0.5	<0.5	0.6	400		
12/15/03		169.15	158.40	10.75	SAMPLED S	EMI-ANNUAL	LY						
03/01/04		169.15	158.49	10.66	NOT SAMPL	ED DUE TO IN	NSUFFICIEN	T WATER					
06/28/04		169.15	157.63	11.52	SAMPLED S	EMI-ANNUAL	LY						
09/13/04		169.15	156.27	12.88	NOT SAMPL	ED DUE TO IN	SUFFICIEN	T WATER					
12/22/04		169.15	157.93	11.22	SAMPLED S	EMI-ANNUAL	LY						
03/04/05		169.15	158.58	10.57	NOT SAMPL	ED DUE TO IN	SUFFICIEN	T WATER					
06/30/05		169.15	158.08	11.07	SAMPLED S	EMI-ANNUAL	LY						
09/16/05 ¹⁶	NP	169.15	156.64	12.51	130	<50	<0.5	<0.5	<0.5	<0.5	140		<50
12/21/05		169.15	158.41	10.74	SAMPLED S	EMI-ANNUAL	LY						

					Groundwa	ter Monitoria Chevron Serv 2920 Castro	vice Station	#9-6991 ulevard	l Results				
WELL ID/		TOC	GWE	DTW	TPH-DRO	TPH-GRO	В	r	E	X	MTBE	TOG	ETHANOL
DATE		(ft.)	(msl)	(fL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-2 (cont)													
03/21/06 ¹⁶		169.15	158.74	10.41	72	<50	<0.5	<0.5	<0.5	<0.5	530		<50
06/21/06		169.15	157.64	11.51		EMI-ANNUAL							
09/05/06 ¹⁶		169.15	157.51	11.64	620	<50	<0.5	<0.5	<0.5	<0.5	150		<50
12/28/06		169.15	158.19	10.96		EMI-ANNUAL							
03/26/07 ¹⁶		169.15	157.74	11.41	86	<50	<0.5	<0.5	<0.5	<0.5	160		<50
06/26/07		169.15	157.60	11.55		EMI-ANNUAL				-0.5			
09/26/07 ¹⁶		169.15	157.52	11.63	140	<50	<0.5	<0.5	<0.5	<0.5	 69		<50
12/20/07		169.15	158.50	10.65		EMI-ANNUAL				-0.5			
02/29/08 ¹⁶ PE	R	169.15	158.18	10.97	73	<50	<0.5	<0.5	<0.5	<0.5	54		<50
05/09/08		169.15	157.74	11.41		EMI-ANNUAL				-0.5			
09/19/08 PE	R	169.15	157.48	11.67	120	<50	<0.5	<0.5	<0.5	<0.5	12		
12/04/08		169.15	157.67	11.48		EMI-ANNUAL				-0.5			<50
03/05/09 ¹⁶ PER-1	NP ²³	169.15	158.65	10.50	<50	<50	<0.5	<0.5	<0.5	<0.5	55		 <50
06/23/09		169.15	157.65	11.50		EMI-ANNUAL				-0.5			
09/01/09 ¹⁶ PE	R	169.15	157.55	11.60	75	<50	<0.5	<0.5	<0.5	<0.5	10		
03/16/10 ¹⁶ PE	R	169.15	158.50	10.65	120 ²⁴	<50	<0.5	< 0.5	<0.5	<0.5	23		
09/21/10 ¹⁶ PE		169.15	157.67	11.48	84	<50	1	<0.5	<0.5	<0.5	32		
03/23/11 ¹⁶ PE		169.15	158.97	10.18	570	<50	<0.5	< 0.5	<0.5	<0.5	91		
09/23/11 ¹⁶ PE	R	169.15	157.70	11.45	130	<50	<0.5	< 0.5	< 0.5	<0.5	50		
03/20/12 ¹⁶ PE		169.15	158.40	10.75	330	<50	0.7	<0.5 <0.5	<0.5 <0.5	<0.5			
09/14/12 ¹⁶ PE		169.15	157.39	11.76	620	-90 70	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	31		
MW-4				11			~0)	-0.5	~0.5	~0.5	49		
10/27/92		169.18	157.79	11.39	<50	<50	<0.5	0.6	0.5	4.3			
12/30/92		169.18	159.05	10.13	<50	<50	<0.5	<0.5	<0.5	<0.5			
01/27/93		169.18	160.09	9.09					-0.5				
03/05/93		169.18			<50	<50	<0.5	<0.5	<0.5	< 0.5			
03/17/93		169.18	159.28	9.90						-0.5			
06/18/93		169.18	158.50	10.68	<50	<50	<0.5	<0.5	<0.5	<1.5			
09/28/93		169.18	159.82	9.36	<50	<50	<0.5	<0.5	<0.5	<1.5			
12/30/93		169.18	159.91	9.27	<50	<50	<0.5	<0.5	<0.5	<0.5			
04/07/94		169.18	160.37	8.81	<10	<50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5			
05/31/94		169.18	160.27	8.91	<50	< 5 0	<0.5	<0.5 <0.5	<0.5 <0.5				
09/23/94		169.18	158.79	10.39	<50 <50	<50 <50	<0.5	<0.5 <0.5		<0.5			
				10.37	-50	~50	<i>∼</i> 0. <i>3</i>	~0.5	<0.5	<0.5			

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-6991
2920 Castro Valley Boulevard

0	37.11	O 110 1
Castro	vallev	California
Cubuo	v unoy,	Cumonnu

WELL ID/	TOC	GWE	DTW	TPH-DRO	TPH-GRO	alley, Calif B	orma T	E	X	MTBE	TOG	ETHANOL
DATE	(fL)	(msl)	(fL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	L (ug/L)	A (ug/L)	(ug/L)	(ug/L)	LIHANOL (ug/L)
MW-4 (cont)	· · · · · · · · · · · · · · · · · · ·	********** <u>******</u> *****	<u> </u>		.				(15,2)	(**6/1-)	(48/1)	(48/1)
11/30/94	169.18	160.08	9.10	58 ²	<50	<0.5	<0.5	<0.5	<0 F			
03/30/95	169.18	160.66	8.52	61 ¹	<50 <50	<0.3 <0.5	<0.3 <0.5	<0.5 <0.5	<0.5 <0.5			
06/06/95	169.18	158.70	10.48	<50	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5			
09/25/95	169.18	158.38	10.40	<50	<50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.3 <0.5			
12/28/95	169.18	159.23	9.95	<50	<50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	 9.9		
12/21/05 ¹⁶	169.18	159.65	9.53	76 ¹⁸	<50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	9.9 0.7		
03/21/06 ¹⁶	169.18	160.35	8.83	<50	<50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.7		<50
06/21/06 ¹⁶	169.18	158.55	10.63	<50	<50	<0.5	<0.5	<0.5	<0.5 <0.5	0.5		<50 <50
09/05/06 ¹⁶	169.18	158.24	10.94	170	<50	<0.5	<0.5	<0.5	<0.5	1		
12/28/06 ¹⁶	169.18	159.06	10.12	120	<50	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5		< 5 0
03/26/07 ¹⁶	169.18	158.73	10.45	290	<50	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5		<50
06/26/07 ¹⁶	169.18	158.22	10.96	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5 1		<50
09/26/07 ¹⁶	169.18	157.98	11.20	<50	<50	<0.5	<0.5	<0.5	<0.5 <0.5	0.8		<50
12/20/07 ¹⁶	169.18	159.01	10.17	62	<50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	0.8		<50
02/29/08 ¹⁶	169.18	159.32	9.86	180	<50	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5		<50
05/09/08 ¹⁶	169.18	158.41	10.77	80	<50	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5 0.6		<50
09/19/08 ¹⁶	169.18	157.97	11.21	<50	<50	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5		<50
12/04/08 ¹⁶	169.18	158.20	10.98	58	<50	<0.5	<0.5	<0.5	<0.5	<0.5 0.8		<50 <50
03/05/09 ¹⁶	169.18	159.36	9.82	<50	<50	<0.5	<0.5	< 0.5	<0.5 <0.5	<0.5		<50 <50
06/23/09	169.18	158.45	10.73	SAMPLED A						-0.5		
09/01/09	169.18	158.10	11.08	SAMPLED A								
03/16/10 ¹⁶	169.18	159.81	9.37	60 ²⁵	<50	<0.5	<0.5	<0.5	<0.5	<0.5		
09/21/10	169.18	158.06	11.12	SAMPLED A					-0.5	-0.5		
03/23/11 ¹⁶	169.18	160.39	8.79	<50	<50	< 0.5	<0.5	<0.5	<0.5	<0.5		
09/23/11	169.18	158.32	10.86	SAMPLED A						-0.5		
03/20/12 ¹⁶	169.18	159.53	9.65	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5		
09/14/12	169.18	158.17	11.01	SAMPLED A					-0.5			
MW-6												
10/27/92	166.46	153.92	12.54	<50	600	22	22	24	130			
12/30/92	166.46	156.26	10.20	470	1,700	170	16	24 46	160			
01/27/93	166.46	156.44	10.02					40				
03/05/93	166.46			150	480	76	0.9	3.1	 7.1		2.77	
03/17/93	166.46	155.79	10.67					J.1 		575. 1220 -		

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-6991
2920 Castro Valley Boulevard

GWE DTW TPH-DRO TPH-GRO B T E X MTBE
(msl) (fl.) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L)

WELL ID/	тос	GWE	DTW	TPH-DRO	TPH-GRO	B	T	E	X	MTBE	TOG	ETHANOL
DATE	(fl.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-6 (cont)												
06/18/93	166.46	154.63	11.83	51	240	37	3.4	2.9	18			
09/28/93	166.46	154.90	11.56	120	150	11	1.2	1.3	4.3			
12/30/93	166.46	154.81	11.65	290	680	77	5.1	5.5	13			
04/07/94	166.46	155.34	11.12	<10	190	24	2.9	1.9	8.0			
05/31/94	166.46											
09/23/94	166.46	155.05	11.41									
11/30/94	166.46	156.58	9.88	150 ²	320	49	0.58	1.4	1.2			
12/15/03 ¹⁶	166.46	156.60	9.86	71	210	0.5	0.9	0.7	2	14		<50
03/01/04 ^{16,21}	166.46	157.16	9.30	<250	150	<0.5	4	3	18	10		<50
06/28/04 ^{16,21}	166.46	155.13	11.33	66	100	<0.5	<0.5	<0.5	<0.5	18		
09/13/04 ^{16,21}	166.46	154.88	11.58	<50	<50	<0.5	<0.5	<0.5	<0.5	17		<50
12/22/04 ^{16,21}	166.46	155.75	10.71	300	440	1	1	2	3	10		<50
03/04/05 ^{16,21}	166.46	157.25	9.21	75	65	<0.5	< 0.5	< 0.5	1	8		<50
06/30/05 ^{16,21}	166.46	155.49	10.97	73	<50	<0.5	<0.5	<0.5	<0.5	7		<50 <50
09/16/05 ^{16,21}	166.46	155.02	11.44	58 ¹⁷	<50	<0.5	< 0.5	<0.5	<0.5	13		<50 <50
12/21/05 ^{16,21}	166.46	156.66	9.80	120 ¹⁹	140	<0.5	<0.5	< 0.5	1	8		<50 <50
03/21/06 ^{16,21}	166.46	157.54	8.92	75	52	< 0.5	<0.5	0.9	3	8		<50
06/21/06 ^{16,21}	166.46	155.38	11.08	56	92	<0.5	<0.5	0.5	2	10		<50
09/05/06 ^{16,21}	166.46	155.07	11.39	67	62	< 0.5	<0.5	<0.5	< 0.5	9		<50
12/28/06 ^{16,21}	166.46	156.32	10.14	300	260	<0.5	0.5	< 0.5	1	3		<50
03/26/07 ²¹	166.46	INACCESSI	IBLE - VEH	IICLE PARKE						-		
06/26/07 ¹⁶	166.46	155.32	11.14	67	<50	<0.5	<0.5	<0.5	<0.5	8		<50
09/26/07 ¹⁶	166.46	155.02	11.44	84	180	<0.5	0.5	3	5	6		
12/20/07 ¹⁶	166.46	156.41	10.05	220	530	<0.5	0.7	1	7	2		22
02/29/08 ¹⁶	166.46	156.49	9.97	110	110	<0.5	<0.5	1	, 4	4		<50
05/09/08 ¹⁶	166.46	155.19	11.27	100	<50	< 0.5	< 0.5	<0.5	< 0.5	<0.5		<50
09/19/08 ¹⁶	166.46	154.85	11.61	<50	<50	<0.5	<0.5	<0.5	<0.5	5		<50
12/04/08 ¹⁶	166.46	155.08	11.38	<50	<50	< 0.5	<0.5	<0.5	<0.5	5		<50
03/05/09 ¹⁶	166.46	157.57	8.89	140	160	<0.5	<0.5	1	-0.5	2		<30 <50
06/23/09	166.46	155.14	11.32		EMI-ANNUAL						-	<30
09/01/09 ¹⁶	166.46	154.82	11.64	52	<50	<0.5	<0.5	<0.5	<0.5	5		
03/16/10 ¹⁶	166.46	156.78	9.68	76 ²⁵	100	<0.5	<0.5	0.7	-0.5 7	0.7		
09/21/10 ¹⁶	166.46	154.98	11.48	51	<50	<0.5	<0.5	<0.5	<0.5	3		
03/23/11	166.46			IICLE PARKEI				-0.5	-0.5			

L	Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991 2920 Castro Valley Boulevard Castro Valley, California												
WELL ID/		TOC	GWE	DTW	TPH-DRO	TPH-GRO	B	T	E.	X	MTBE	TOG	ETHANOL
DATE		(fL)	(mst)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-6 (cont)													
09/23/11 ¹⁶		166.46	155.41	11.05	150	340	<0.5	<0.5	0.9	3	1		
03/20/12 ¹⁶		166.46	157.06	9.40	52	<50	<0.5	<0.5	<0.5	<0.5	<0.5		
09/14/12 ¹⁶		166.46	155.18	11.28	65	<50	<0.5	<0.5	<0.5	<0.5	0.5	-	-
MW-7													
09/25/95		168.80	157.20	11.60	1,400 ¹	220	0.79	<0.5	0.67	<0.5			
12/28/95		168.80	158.14	10.66	590 ¹	<50	<0.5	<0.5	<0.5	<0.5	 <2.5		
03/05/96		168.80	159.74	9.06	320 ¹	1,400	<10	<10	47	<10	5,300		
06/27/96		168.80	157.27	11.53	630 ¹	<2,500	<25	<25	<25	<25	14,000		
09/13/96		168.80	156.88	11.92	1,400	1,100	26	<10	24	<10	20,000		
12/19/96		168.80	158.29	10.51	$1,100^{3}$	<5,000	<50	<50	<50	<50	12,000		
03/20/97		168.80	157.84	10.96	1,600 ³	<1,000	<10	<10	<10	<10	2,100/2,000 ¹³		
06/27/97		168.80	157.02	11.78	1,600 ¹	2,000	<20	<20	<20	<20	11,000		
09/19/97		168.80	156.87	11.93	1,900 ¹	<1,000	35	<10	<10	<10	13,000		-
12/05/97		168.80	158.40	10.40	1,100 ¹	2,100	47	2.7	28	<2.5	15,000		
03/31/98		168.80	158.89	9.91	780 ¹	410	4.0	0.61	2.2	< 0.5	<2.5		
06/19/98		168.80	159.09	9.71	480 ¹	1,100	16	<10	17	<10	12,000		
08/31/98		168.80	157.11	11.69	580'	<500	350	22	<5.0	<5.0	47,000		
12/17/98		168.80	157.70	11.10	970	1,800	<10	<10	24	<10	13,000/14,000 ¹³		
03/19/99		168.80	158.51	10.29	615 ¹	1,280	<5.0	5.0	16.3	<5.0	2,240/2,910 ¹³		
06/23/99		168.80	157.25	11.55	1,240 ¹	<5,000	<50	<50	<50	<50	18,000		
09/16/99		168.80	157.31	11.49	2,230	<5,000	<50	<50	<50	<50	13,700		222
12/16/99		168.80	158.27	10.53	973 ¹	1,330	<1.0	6.44	14	5.17	10,800		
03/02/00		168.80	159.25	9.55	880 ¹	1,980	7.22	<5.0	6.11	<5.0	4,230		
06/30/00		168.80	157.68	11.12	620 ⁷	2,500 ⁶	6.0	8.5	16	72	6,900		
09/30/00	NP	168.80	157.23	11.57	1,600 ⁷	1,700 ¹⁰	750	<5.0	<5.0	<5.0	7,300	15 44 0	
12/19/00		168.80	158.26	10.54	1,100 ¹²	1,800 ¹⁰	<10	<10	<10	<10	4,900		
03/13/01		168.80	158.74	10.06	1,500 ¹²	1,470	9.34	5.09	6.08	2.69	2,920	()	
06/12/01		168.80	157.45	11.35	910 ¹⁵	920 ¹⁰	260	4.2	9.7	2.8	4,500		
09/18/01		168.80	156.87	11.93	3,000	2,000	<0.50	< 0.50	< 0.50	<1.5	5,300		
12/17/01		168.80	157.99	10.81	7,000	1,700	<5.0	<0.50	7.1	<1.5	4,100		asal l
03/21/02		168.80	158.56	10.24	13,000	3,200	<5.0	<0.50	24	<1.5	980		
06/08/02		168.80	157.32	11.48	3,500	1,500	3.6	< 0.50	8.5	<1.5	2,800		
09/13/02		168.80	157.02	11.78	2,400	1,200	1.8	<1.0	2.8	<1.5	3,300	5 44 0	<u>1818</u> 9

Table 1

Table 1

Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-6991

2920 Castro Valley Boulevard

WELL ID/	TOC	GWE	DTW	TPH-DRO	TPH-GRO	alley, Calif B	T	E	X	MTBE	TOG	ETHANOL
DATE	(fL)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-7 (cont)									<u></u>			
12/13/02	168.80	157.97	10.83	3,400	1,100	2.4	< 0.50	2.3	<1.5	2,000		
03/17/03	168.80	158.71	10.09	3,700	1,600	<10	<0.50	5.1	<1.5	1,000		
06/16/03 ¹⁶	168.80	157.81	10.99	4,400	2,500	1	0.5	14	<0.5	260		
09/15/03 ¹⁶	168.80	157.38	11.42	4,700	1,700	1	<0.5	6	0.5	200 790		 <50
12/15/03 ¹⁶	168.80	158.58	10.22	3,200	610	<0.5	<0.5	1	<0.5	790		<30 <50
03/01/04 ¹⁶	168.80	159.19	9.61	2,200	1,500	<0.5	<0.5	4	< 0.5	16		<30 <50
06/28/04 ¹⁶	168.80	157.38	11.42	3,700	2,500	2	<0.5	8	<0.5	300		
09/13/04 ¹⁶	168.80	156.78	12.02	2,000	2,000	1	<1	4	<0.5 <1	300 700		<100
12/22/04 ¹⁶	168.80	158.39	10.41	1,300	970	0.8	<0.5	5	<0.5	370		<50
03/04/05 ¹⁶	168.80	159.12	9.68	890	790	<0.5	<0.5	1	<0.5	5		<50 <50
06/30/05 ¹⁶	168.80	157.63	11.17	2,600	1,300	<0.5	<0.5	3	<0.5	68		
09/16/05 ¹⁶	168.80	157.29	11.51	1,300	1,200	<0.5	<0.5	1	<0.5 <0.5	380		<50
12/21/05 ¹⁶	168.80	158.74	10.06	1,600 ²⁰	1,200	<0.5	<0.5 <0.5	2	<0.5 <0.5	380 170		<50
03/21/06 ¹⁶	168.80	159.28	9.52	2,800	810	<0.5	<0.5	< 0.5	<0.5	200		<50
06/21/06 ¹⁶	168.80	157.35	11.45	1,100	1,800	0.5	<0.5	2	<0.5 <0.5	260		<50
09/05/06 ¹⁶	168.80	157.01	11.79	2,100	910	<0.5	<0.5	< 0.5	<0.5 <0.5	370		<50
12/28/06 ¹⁶	168.80	158.34	10.46	7,200	2,700	0.5	<0.5	3	<0.5 <0.5	140		<50
03/26/07 ¹⁶	168.80	157.46	11.34	6,500	1,300	<0.5	<0.5	1	<0.5 <0.5	140		<50
06/26/07 ¹⁶	168.80	157.15	11.65	2,100	1,900	<0.5 0.6	< 0.5	2	<0.5 <0.5	130		<50
09/26/07 ¹⁶	168.80	156.98	11.82	2,200	670	<0.5	<0.5	<0.5	<0.3 <0.5	420		<50
12/20/07 ¹⁶	168.80	158.23	10.57	4,300	2,600	<0.5 0.8	< 0.5		<0.5 <0.5			<50
02/29/08 ¹⁶	168.80	158.56	10.24	2,400	1,400	<0.5	<0.5 <0.5	4 2	<0.3 <0.5	130 35		<50
05/09/08 ¹⁶	168.80	157.27	11.53	1,700	2,200	<0.5 0.6	<0.5 0.6	2	<0.3 <0.5	33 76		<50
09/19/08 ¹⁶	168.80	156.86	11.94	10,000	610	<0.5	< 0.5	<0.5	<0.3 <0.5			<50
12/04/08 ¹⁶	168.80	157.16	11.64	3,000	1,100	<0.5 <0.5	<0.5	<0.3 <0.5	<0.5 <0.5	430		<50
03/05/09 ¹⁶	168.80	159.46	9.34	1,000	2,100	<0.5 <0.5	<0.5 <0.5	3	<0.5 <0.5	440 57		<50
06/23/09 ¹⁶	168.80	157.41	11.39	2,300	1,800	<0.5 <0.5	<0.5	1	<0.5 <0.5			<50
09/01/09 ¹⁶	168.80	156.88	11.92	6,800	2,100	<0.5 <0.5	<0.5 <0.5			100		
03/16/10 ¹⁶	168.80	158.99	9.81	5,500	1,700	<0.5 <0.5	<0.5 <0.5	1 2	<0.5 <0.5	150		
09/21/10 ¹⁶	168.80	157.19	11.61	1,200	2,800	<0.5 <0.5	<0.3 <0.5	2 0.7	<0.5 <0.5	9		
03/23/11 ¹⁶	168.80	159.59	9.21	360	2,800	<0.5	<0.5 <0.5	0.7 <0.5	<0.5 <0.5	16		
09/23/11 ¹⁶	168.80	157.32	11.48	340	420	<0.5	<0.3 <0.5	<0.5 <0.5		0.6		
03/20/12 ¹⁶	168.80	157.52	9.93	590	420 290	<0.5 <0.5			<0.5	14		
09/14/12 ¹⁶	168.80	158.87 157.24	9.95 11.56	700	1,100	<0.5 <0.5	<0.5 < 0.5	<0.5 <0.5	<0.5 < 0.5	2 16		

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6991

2920 Castro Valley Boulevard Castro Valley, California

WELL ID/		TOC	GWE	DTW	TPH-DRO	TPH-GRO	alley, Calif B	Т	E	,	MTBE	TOG	ETHANOL
DATE		(ft.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	L (ug/L)	л (ug/L)	(ug/L)	10G (ug/L)	LIHANOL (ug/L)
MW-3							<u> </u>	.	······································				(45/1-)
10/08/91		169.11	160.84	8.27		81	1.9	0.7	0.0	24			
11/04/91		169.11	158.26	10.85		60	<0.5	0.7 <0.5	0.8	2.4			
12/04/91		169.11	158.06	11.05	<50	<50			<0.5	< 0.5			
06/05/92		169.11	158.00	11.05	<30 170	<50	< 0.5	<0.5	<0.5	<0.5			
10/27/92		169.11	157.51	11.13	170	<50 <50	<0.5	< 0.5	< 0.5	<0.5			
12/30/92		169.11			120	<50 <50	<0.5	< 0.5	< 0.5	< 0.5			
01/27/93		169.11	160.00	 9.11			<0.5	<0.5	<0.5	<0.5			
03/05/93		169.11											
03/17/93		169.11	159.16	 9.95									
06/18/93		169.11	159.10										
09/28/93		169.11	158.22	10.89	<50	<50	<0.5	<0.5	<0.5	<1.5			
12/30/93		169.11		9.62	<50	<50	<0.5	<0.5	<0.5	<1.5			
04/07/94			159.80	9.31	<50	<50	<0.5	<0.5	<0.5	<0.5			
		169.11	160.30	8.81	<10	<50	<0.5	<0.5	<0.5	<0.5			
05/31/94		169.11	160.21	8.90	<50	<50	<0.5	<0.5	<0.5	<0.5			
09/23/94		169.11	158.48	10.63	<50	<50	<0.5	<0.5	<0.5	<0.5			
11/30/94		169.11	160.19	8.92									
03/30/95		169.11	160.01	9.10	290 ¹	<50	<0.5	<0.5	<0.5	<0.5			
06/06/95		169.11	158.79	10.32	150 ¹	<50	<0.5	<0.5	<0.5	<0.5			
09/25/95		169.11	158.11	11.00	260 ¹	<50	<0.5	<0.5	<0.5	<0.5			
12/28/95		169.11	158.96	10.15	200 ¹	<250	<2.5	<2.5	<2.5	<2.5	1,400		
12/17/98		169.11	158.86	10.25	130 ¹	<250	<2.5	<2.5	<2.5	<2.5	62,000		
03/19/99		169.11	159.37	9.74	139 ¹	<1,000	<10	<10	<10	<10	5,650/5,850 ¹³		
06/23/99		169.11	158.40	10.71	61.6 ¹	<2,000	<20	<20	<20	<20	6,700		
09/16/99		169.11	157.44	11.67	122	<1,000	<10	<10	<10	<10	1,910		
12/16/99		169.11	158.79	10.32	,						5,850		
12/20/00		169.11	158.91	10.20	96.8 ¹	65.2	<0.5	<0.5	<0.5	<0.5	1,790		
03/02/00		169.11	160.26	8.85	<50	<50	<0.5	<0.5	<0.5	<0.5	5,600		
06/30/00		169.11	158.81	10.30	<50	3605	<0.50	<0.50	< 0.50	< 0.50	1,300		
09/30/00	NP	169.11	158.07	11.04		150 ⁹	75	<1.3	<1.3	<1.3	8,200		
12/19/00	NP	169.11	159.06	10.05	¹⁴	<1,000	<10	<10	<10	<10	4,600		
03/13/01	NP	169.11	159.76	9.35	 ¹⁴	284	0.601	1.00	<0.500	1.27	3,670		
06/12/01	NP	169.11	158.08	11.03	<50	140 ⁹	67	< 0.50	< 0.50	<0.50	2,600		
09/18/01	NP	169.11	157.96	11.15	100	240	<0.50	< 0.50	< 0.50	<1.5	3,200		
12/17/01		169.11	159.22	9.89	270	55	< 0.50	< 0.50	<0.50	<1.5	930		

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-6991
2920 Castro Valley Boulevard

Castro	Valley.	California
Cusuv	v any v.	Camornia

WELL ID/	9995-9995 	TOC	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE	TOG	ETHANOL
DATE		(fL)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-3 (cont)													
03/21/02		169.11	159.38	9.73	290	190	< 0.50	<0.50	< 0.50	<1.5	2,600		
06/08/02		169.11	158.21	10.90	110	110	< 0.50	<0.50	< 0.50	<1.5	2,200		
09/13/02		169.11	158.26	10.85	<50	<50	< 0.50	<0.50	<0.50	<1.5	650		
12/13/02		169.11	159.11	10.00	120	<50	< 0.50	<0.50	< 0.50	<1.5	450		
03/17/03		169.11	159.66	9.45	370	80	< 0.50	<0.50	< 0.50	<1.5	1,600		
06/16/03		169.11	158.98	10.13	NOT SAMPL	ED DUE TO R	NSUFFICIEN	IT WATER					
09/15/03		169.11	157.85	11.26	NOT SAMPL	ED DUE TO R							
12/15/03 ¹⁶		169.11	159.78	9.33	¹⁴	<50	<0.5	3	0.6	4	220		<50
03/01/04		169.11	159.22	9.89	NOT SAMPL	ED DUE TO R	NSUFFICIEN	IT WATER					
06/28/04 ¹⁶		169.11	158.26	10.85	95	<50	<0.5	<0.5	<0.5	<0.5	980		
09/13/04		169.11	DRY AT 12	.96 FEET									
12/22/04 ¹⁶	NP	169.11	159.14	9.97	¹⁴	53	< 0.5	<0.5	<0.5	<0.5	110		<50
03/04/05 ¹⁶	NP	169.11	159.68	9.43	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	460		<50
06/30/05 ¹⁶	NP	169.11	158.66	10.45	58 ¹⁷	<50	<0.5	<0.5	<0.5	<0.5	600		<50
09/16/05 ¹⁶	NP	169.11	158.26	10.85	14	<50	<0.5	<0.5	<0.5	<0.5	530		<50
NOT MONITO	ORED/SA	MPLED											
MW-5													
10/27/92		167.41	157.46	9.95	<50	74	<0.5	<0.5	0.6	7.1			
12/30/92		167.41	158.21	9.20	<50	<50	<0.5	<0.5	<0.5	<0.5			
01/27/93		167.41	157.80	9.61									
03/05/93		167.41			<50	<50	<0.5	<0.5	<0.5	<0.5			
03/17/93		167.41	157.90	9.51									
06/18/93		167.41	157.56	9.85	<50	<50	<0.5	<0.5	<0.5	<0.5			
09/28/93		167.41	157.55	9.86	<50	<50	<0.5	<0.5	<0.5	<1.5			
12/30/93		167.41	157.08	10.33	<50	<50	<0.5	<0.5	<0.5	<0.5			
04/07/94		167.41	157.69	9.72	<10	<50	<0.5	<0.5	<0.5	<0.5			
05/31/94		167.41	157.68	9.73	<50	<50	<0.5	<0.5	<0.5	<0.5			
09/23/94		167.41	157.56	9.85	<50	<50	<0.5	<0.5	<0.5	<0.5			
11/30/94		167.41	157.73	9.68	79 ²	<50	<0.5	<0.5	<0.5	<0.5			
03/30/95		167.41	157.79	9.62	<50	<50	<0.5	<0.5	<0.5	<0.5			
06/06/95		167.41	157.55	9.86	<50	<50	<0.5	<0.5	< 0.5	<0.5			
09/25/95		167.41	157.56	9.85	<50	<50	<0.5	<0.5	<0.5	< 0.5			
12/28/95		167.41	157.67	9.74	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5		
NOT MONITO	ORED/SA	MPLED											

Table 1									
Groundwater Monitoring Data and Analytical Results									
Chevron Service Station #9-6991									
2920 Castro Valley Boulevard									

Costra	Valler	California	
Castro	vaney.	California	

WELL ID/	тос	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	МТВЕ	TOG	ETHANOL
DATE	(ft.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
TRIP BLANK												
10/08/91					<50	< 0.5	<0.5	<0.5	<0.5			
11/04/91					<50	< 0.5	< 0.5	< 0.5	<0.5			
12/04/91				<50	<50	<0.5	< 0.5	< 0.5	<0.5			
06/05/92					<50	<0.5	<0.5	< 0.5	<0.5			
12/30/92					<50	<0.5	<0.5	< 0.5	<0.5			
01/27/93				<50								
03/05/93					<50	<0.5	<0.5	<0.5	<0.5			
03/17/93												
06/18/93					<50	< 0.5	<0.5	<0.5	<1.5			
09/28/93					<50	< 0.5	< 0.5	<0.5	<0.5			
12/30/93					<50	<0.5	<0.5	<0.5	< 0.5			
04/07/94					<50	<0.5	< 0.5	<0.5	<0.5			
05/31/94					<50	<0.5	< 0.5	<0.5	<0.5			
09/23/94					<50	<0.5	< 0.5	<0.5	<0.5			
11/30/94					<50	<0.5	<0.5	< 0.5	<0.5			
03/30/95					<50	<0.5	<0.5	<0.5	<0.5			
06/06/95					<50	<0.5	<0.5	<0.5	<0.5			
09/25/95					<50	<0.5	<0.5	<0.5	<0.5			
12/28/95					<50	<0.5	< 0.5	< 0.5	< 0.5			
03/05/96					<50	<0.5	< 0.5	<0.5	<0.5			
06/27/96					<50	<0.5	<0.5	<0.5	< 0.5			
09/13/96					<50	<0.5	<0.5	<0.5	<0.5			
12/19/96					<50	<0.5	<0.5	<0.5	<0.5	<2.5		
03/20/97					<50	<0.5	<0.5	<0.5	<0.5	<2.5		
06/27/97					<50	<0.5	<0.5	<0.5	<0.5	<2.5		
09/19/97					<50	<0.5	<0.5	<0.5	<0.5	<2.5		
12/05/97					<50	<0.5	<0.5	<0.5	<0.5	<2.5		
03/31/98					<50	<0.5	<0.5	<0.5	<0.5	<2.5		
06/19/98					<50	<0.5	<0.5	<0.5	<0.5	<2.5		
08/31/98					<50	<0.5	<0.5	<0.5	<0.5	<2.5		
03/19/99					<50	<0.5	<0.5	<0.5	<0.5	<2.0		
09/16/99					<50	<0.5	<0.5	<0.5	<0.5	<2.5		
12/16/99					<50	<0.5	<0.5	<0.5	<0.5	<2.5		
12/20/99					<50	<0.5	<0.5	<0.5	<0.5	<2.5		
03/02/00					<50	<0.5	<0.5	<0.5	<0.5	<2.5		

Table 1Groundwater Monitoring Data and Analytical ResultsChevron Service Station #9-69912920 Castro Valley Boulevard

Castro Valley,	California
----------------	------------

WELL ID/	TOC	GWE	DTW	TPH-DRO	TPH-GRO	/alley, Calife B	ornia T	E	X	MTBE		
DATE	(fL)	(msl)	(fi.)	(ug/L)	(ug/L)	D (ug/L)	(ug/L)	E. (ug/L)	x (ug/L)		TOG	ETHANOL
* * * * <u>* * * * * * * * * * * * * * * </u>	<u></u>				(*6/14)		(48/1)	(u5/L)	(45/1)	(ug/L)	(ug/L)	(ug/L)
TRIP BLANK (cont)												
06/30/00 ⁸					<50	< 0.50	<0.50	< 0.50	< 0.50	<2.5		
09/30/00					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5		
12/19/00					<50	< 0.50	< 0.50	<0.50	< 0.50	<2.5		
03/13/01					<50.0	<0.500	0.534	<0.500	1.25	< 0.500		
06/12/01					<50	<0.50	< 0.50	< 0.50	< 0.50	<2.5		
09/18/01					<50	<0.50	<0.50	<0.50	<1.5	<2.5		
QA												
12/17/01					<50	<0.50	< 0.50	< 0.50	<1.5	<2.5		
03/21/02					<50	<0.50	< 0.50	<0.50	<1.5	<2.5		
06/08/02					<50	<0.50	< 0.50	<0.50	<1.5	<2.5		
09/13/02					<50	< 0.50	< 0.50	<0.50	<1.5	<2.5		
12/13/02					<50	<0.50	< 0.50	<0.50	<1.5	<2.5		
03/17/03					<50	<0.50	< 0.50	<0.50	<1.5	<2.5		
06/16/03 ¹⁶					<50	<0.5	<0.5	< 0.5	<0.5	<0.5		
09/15/03 ¹⁶					<50	<0.5	<0.5	< 0.5	<0.5	<0.5		
12/15/03 ¹⁶					<50	<0.5	<0.5	<0.5	<0.5	<0.5		
03/01/04 ¹⁶					<50	< 0.5	<0.5	<0.5	<0.5	< 0.5		
06/28/04 ¹⁶					<50	<0.5	< 0.5	<0.5	<0.5	<0.5		
09/13/04 ¹⁶					<50	<0.5	<0.5	<0.5	<0.5	<0.5		
12/22/04 ¹⁶					<50	<0.5	<0.5	<0.5	<0.5	<0.5		
03/04/05 ¹⁶					<50	<0.5	<0.5	<0.5	<0.5	<0.5		
06/30/05 ¹⁶					<50	<0.5	< 0.5	<0.5	<0.5	<0.5		
09/16/05 ¹⁶					<50	<0.5	<0.5	<0.5	<0.5	<0.5		
12/21/0516					<50	< 0.5	< 0.5	<0.5	<0.5	<0.5		
03/21/06 ¹⁶					<50	<0.5	< 0.5	<0.5	<0.5	<0.5		
06/21/06 ¹⁶					<50	<0.5	<0.5	<0.5	<0.5	<0.5		
09/05/06 ¹⁶					<50	<0.5	<0.5	<0.5	<0.5	<0.5		
12/28/06 ¹⁶					<50	<0.5	<0.5	<0.5 <0.5	<0.5	<0.5		
03/26/07 ¹⁶					<50	< 0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5		
06/26/07 ¹⁶					<50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		
09/26/07 ¹⁶					<50 <50	<0.5	<0.5 <0.5	<0.3 <0.5	<0.5 <0.5			
12/20/07 ¹⁶					<50 <50	<0.5	<0.5	<0.5 <0.5		<0.5		
02/29/08 ¹⁶					<30 <50	<0.3 <0.5	<0.3 <0.5		<0.5	< 0.5		
05/09/08 ¹⁶	-				<30 <50			<0.5	<0.5	< 0.5		
09/19/08 ¹⁶						<0.5	<0.5	<0.5	< 0.5	<0.5		
07/17/00					<50	<0.5	<0.5	<0.5	<0.5	<0.5		

				Groundwa	ter Monitoria Chevron Serv 2920 Castro	vice Station	#9-6991 ulevard	l Results				
WELL ID/	TOC	GWE	DTW	TPH-DRO	TPH-GRO	B	T	E	X	MTBE	TOG	ETHANOL
DATE	(fl.)	(msl)	(fl.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
QA (cont)												
12/04/08 ¹⁶					<50	<0.5	<0.5	<0.5	<0.5	<0.5		
03/05/09 ¹⁶					<50	<0.5	<0.5	<0.5	<0.5	<0.5		
06/23/09 ¹⁶					<50	<0.5	<0.5	<0.5	<0.5	<0.5		
09/01/09 ¹⁶					<50	<0.5	<0.5	<0.5	<0.5	<0.5		
DISCONTINUED									010	-015		0.000
09/14/12 ¹⁶			-		<50	<0.5	<0.5	<0.5	<0.5	<0.5		
										1000		

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to June 30, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing (ft.) = Feet GWE = Groundwater Elevation (msl) = Mean sea level DTW = Depth to Water TPH = Total Petroleum Hydrocarbons DRO = Diesel Range Organics GRO = Gasoline Range Organics TPH-D = Total Petroleum Hydrocarbons as Diesel TOG = Total Oil and Grease B = Benzene T = Toluene E = Ethylbenzene X = Xylenes

MTBE = Methyl Tertiary Butyl Ether (µg/L) = Micrograms per liter --- = Not Measured/Not Analyzed NP = No Purge PER = Peristaltic Pump QA = Quality Assurance/Trip Blank

- ¹ Chromatogram pattern indicates an unidentified hydrocarbon.
- ² Chromatogram pattern indicates a non-diesel mix.
- ³ Chromatogram pattern indicates an unidentified hydrocarbon and weathered diesel.
- ⁴ Chromatogram pattern indicates a non-diesel mix + discrete peaks.
- ⁵ Laboratory report indicates unidentified hydrocarbons C6-C12.
- ⁶ Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons C6-C12.
- ⁷ Laboratory report indicates unidentified hydrocarbons C9-C24.
- ⁸ Laboratory report indicates this sample was analyzed outside of the EPA recommended holding time.
- ⁹ Laboratory report indicates discrete peaks.
- ¹⁰ Laboratory report indicates gasoline C6-C12.
- ¹¹ Laboratory report indicates unidentified hydrocarbons >C16.
- ¹² Laboratory report indicates diesel C9-C24 + unidentified hydrocarbons <C16.
- ¹³ Confirmation run.
- ¹⁴ Insufficient water to obtain sample for TPH-D.
- ¹⁵ Laboratory report indicates unidentified hydrocarbons C9-C17.
- ¹⁶ BTEX and MTBE by EPA Method 8260.
- ¹⁷ Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. The reported result is due to individual peak(s) eluting in the DRO range.
- ¹⁸ Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It elutes in the DRO range later than #2 fuel and contains individual peaks eluting in the DRO range.
- ¹⁹ Laboratory report indicates the observed sample pattern includes #2 fuel/diesel, an additional pattern which elutes later in the DRO range, and individual peaks eluting in the DRO range.
- ²⁰ Laboratory report indicates the observed sample pattern includes #2 fuel/diesel and additional patterns which elute earlier and later in the DRO range.
- ²¹ Incorrect TOC elevation (168.80) was used in past reports. Correct TOC and GWE are shown.
- ²² Analysis inadvertently missed in the field.
- No Purge due to insufficient water.
 24
- Laboratory report indincates DRO was detected in the method blank at a concentration of 38 µg/L. Results from the reextraction are within the limits. The hold time had expired prior to the reextraction therefore, all results are reported from the original extract. Similar results were obtained in both extracts.
- ²⁵ Laboratory report indincates DRO was detected in the method blank at a concentration of 38 μg/L. Results from the reextraction are within the limits. The hold time had expired prior to the reextraction therefore, all results are reported from the original extract. The DRO result for the reextract is ND.

Table 2

Field Measurements and Analytical Results

Chevron Service Station #9-6991

2920 Castro Valley Bou	levard
C	10.000

				Castro Valley, Ca	lifornia		
WELL ID	DATE	D.O.	ORP	ALKALINITY	SULFATE	NITRATE as NITROGEN	FERROUS IRON
		(mg/L)	(mV)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-1	12/21/05	3.7	151	581,000	184,000	6,400	29
	03/21/06	4.7	32	546,000	147,000	5,800	600
	06/21/06	SAMPLED ANNU	JALLY				
	09/05/06	SAMPLED ANNU	JALLY				-
	12/28/06	SAMPLED ANNU	JALLY				
	03/26/07	3.4	47	844,000 ³	112,000	3,600	22,400
	02/29/08	2.6	153	¹ <460/584,000 ²	158,000	4,500	730
MW-4	12/21/05	1.4	89	396,000	137,000	2,300	<8.0
	03/21/06	3.0	82	407,000	139,000	2,200	<8.0
	06/21/06	0.3	86	$^{1}710/403,000^{2}$	136,000	2,700	-8.0
	09/05/06	2.1	106	¹ <460/412,000 ²	147,000	2,700	210
	12/28/06	1.1	114	¹ <460/396,000 ²	175,000	2,500	<8.0
	03/26/07	1.2	188	393,000 ³	151,000	1,800	-8.0
	06/26/07	1.9	31	392,000	179,000	2,900	<8.0
	09/26/07	2.3	110	¹ <460/412,000 ²	182,000	1,600	<8.0
	12/20/07	2.1	76	¹ <460/402,000 ²	169,000	1,400	<8.0
	02/29/08	1.6	88	¹ <460/396,000 ²	193,000	1,500	15
	05/09/08	1.1	77	¹ <460/399,000 ²	165,000	1,500	23
	09/19/08	1.7	43	¹ <460/420,000 ²	167,000	2,500	<8.0
MW-7	12/21/05	1.4	53	475,000	2,700	<400	820
	03/21/06	2.5	12	439,000	3,800	<400	3,800
	06/21/06	0.1	-62	¹ 1,400/480,000 ²	1,600	<250	5,000
	09/05/06	1.2	-23	¹ <460/419,000 ²	1,700	<250	3,500
	12/28/06	0.80	-36	¹ <460/498,000 ²	2,100	<250	1,000
	03/26/07	1.1	-24	490,000 ³	2,000	<250	2,200
	06/26/07	1.0	-72	426,000	1,800	<250	4,700
	09/26/07	.90	26	¹ <460/423,000 ²	2,400	<250	3,800
	12/20/07	1.3	-8	¹ <460/539,000 ²	3,200	<250	910
	02/29/08	1.2	80	¹ <460/510,000 ²	8,100	<250	690
	05/09/08	1.0	65	¹ <460/157,000 ²	2,700	<250	1,800
	09/19/08	1.7	25	¹ <460/403,000 ²	8,100	<250	8,000

Table 2 Field Measurements and Analytical Results Chevron Service Station #9-6991 2920 Castro Valley Boulevard Castro Valley, California

EXPLANATIONS:

D.O. = Dissolved Oxygen (mg/L) = milligrams per liter ORP = Oxidation Reduction Potential (mV) = millivolts -- = Not Analyzed (µg/L) = Micrograms per liter

¹ pH 8.3.

² pH 4.5. ³ Laborat

Laboratory report indicates this sample was analyzed past the 14-day hold time.

ANALYTICAL METHODS:

Alkalinity by EPA Method SM20 2320 B for Alkalinity to pH 8.3 Alkalinity by EPA Method SM20 2320 B for Alkalinity to pH 4.5 Sulfate by EPA Method 300.0 Nitrate as Nitrogen by EPA Method 300.00 Ferrous Iron by EPA Method SM20 3500-Fe B

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Evergreen Oil located in Newark, California.

N;\California\forms\chevron-SOP-Jan. 2012

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #9-6991		Job Number:	385296
Site Address:	2920 Castro Valley	Blvd	Event Date:	9/14/12 (inclusive)
City:	Castro Valley, CA		Sampler:	14A1G K
Well ID	_MW-)	<u></u>	Date Monitored:	9/14/10
Well Diameter	(3/4) 2 in.	Volur		
Total Depth	11.12 ft.		me 3/4"= 0. or (VF) 4"= 0.	
Depth to Water		Check if water colun		50 ft.
Depth to Water v		= of Water Column x 0.20)	x3 case volume: + DTW]:	= Estimated Purge Volume: N/A gal.
Purge Equipment:		Sampling Equipment:	,	C Time Started:(2400 hrs) Time Completed:(2400 hrs)
Disposable Bailer		Disposable Bailer		Depth to Product:ft
Stainless Steel Bailer	/	Pressure Bailer	/	Depth to Water:ft
Stack Pump		Discrete Bailer		Hydrocarbon Thickness:ft Visual Confirmation/Description:
Suction Pump		Peristaltic Pump		visual committadon/Description.
Grundfos		QED Bladder Pump	7	Skimmer / Absorbant Sock (circle one)
Peristaltic Pump		Other:	/	Amt Removed from Skimmer: gal Amt Removed from Well: gal
QED Bladder Pump				Amt Removed from Well: gal Water Removed:
Other:		NU/P	2	Product Transferred to:
Approx. Flow Rate Did well de-water? Time (2400 hr.)		Sediment De ne: Volur Conductivity (umhos/cm - µS)		gal. DTW @ Sampling:
		LABORATORY IN	FORMATION	
SAMPLE ID	(#) CONTAINER REFRIG	PRESERV. TYPE	LABORATORY	ANALYSES
MW	x voa vial YES	HCL		TPH=GRO(8015)/BTEX+MTBE(8260)
F	x 500ml ambers YES	NO	LANCASTER	TPH-DRO (8015)
├ 				
├				
COMMENTS:	- M	0		
Add/Replaced Lo	ck: Ado	Replaced Plug:		Add/Replaced Bolt:

Client/Facility#: Site Address: City:	Chevron #9-6991 2920 Castro Valley Blvd Castro Valley, CA	_ Job Number: _ Event Date: Sampler:	$\frac{385296}{9/14/12}$ (inclusive)
Well ID Well Diameter Total Depth Depth to Water Depth to Water Depth to Water Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	$\frac{MW-2}{3/4)2 \text{ in.}}$ $\frac{14.66 \text{ ft.}}{2.90 \text{ xVF}}$ $\frac{11.16 \text{ ft.}}{0.02} = 0.04$ w/ 80% Recharge [(Height of Water Column x 0.2) Sampling Equipment Disposable Bailer	Date Monitored: lume $3/4"= 0.02$ ctor (VF) $4"= 0.66$ umn is less then 0.50 X3 case volume = E 0) + DTW]: $1 2 - 3$	$\frac{5^{"}=1.02}{\text{ft.}} = \frac{6^{"}=1.50}{12^{"}=5.80}$ ft. Estimated Purge Volume: 0.17 gal ≈ 0.7 LITE.
Start Time (purge Sample Time/Dai Approx. Flow Rat Did well de-water ^{Time} (2400 hr.) <u>0157</u>	te: 0830/9/14/12 Water Cold te: 0.25 Liter opm. Sediment I	Description: ume: ga	CLOUDY Odor: Y (N) al. DTW @ Sampling: 12,20 D.C. ORP (mg/L) (rpv)

LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES		
MW- 2	G x voa vial		HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)		
	X 500ml ambers	YES	NO	LANCASTER	TPH-DRO (8015)		
	<u> </u>						
·							

COMMENTS:

Add/Replaced Lock: _____ Add/Replaced Plug: _____ Add/Replaced Bolt: _____

Client/Facility#:	Chevron #9-6991		Job Number	: 385296
Site Address:	2920 Castro Valley	Blvd	Event Date:	9 /14 /12 (inclusive)
City:	Castro Valley, CA		Sampler:	HAIG K.
Well ID	MW-4		Date Monitored	9 /11- 119
Well Diameter	3/4 (2) in.			
Total Depth	19.15 ft	Volur Facto	me 3/4"= 0 or (VF) 4"= 0	
Depth to Water	11,01 ft.	Check if water colun		
Depth to Water v	w/ 80% Recharge [(Height o	f Water Column x 0.20)	+ DTWI:	= Estimated Purge Volume: 1 /
		, ,		Time Started:(2400 hrs)
Purge Equipment:		Sampling Equipment:		Time Completed:(2400 hrs)
Disposable Bailer	<i>\</i>	Disposable Bailer	1	Depth to Product:ft Depth to Water:ft
Stainless Steel Bailer	/	Pressure Bailer		Hydrocarbon Thickness:
Stack Pump Suction Pump		Discrete Bailer		Visual Confirmation/Description:
Grundfos		Peristaltic Pump	<u>/</u>	Skimmer / Absorbant Sock (circle one)
Peristaltic Pump		QED Bladder Pump Other:		Amt Removed from Skimmer: gal
QED Bladder Pump		Olliel		Amt Removed from Well: gal
Other:	<u></u> Λ	NID		Water Removed:
		1/0		Product Transferred to:
Start Time (purge) Sample Time/Dat Approx. Flow Rate Did well de-water	e:	Weather Col Water Color: Sediment De	escription:	CLOUDY Odor: Y / N gal. DTW @ Sampling:
Time (2400 hr.)	Volume (gal.) pH	Conductivity (µmhos/cm - µS)	Temperature (C/F)	D.O. ORP (mg/L) (mV)
	<i></i>			
······			<u> </u>	
	<u> </u>			
CAMPLE ID J		LABORATORY IN		
SAMPLE ID MW-	(#) CONTAINER REFRIG. x voa vial YES	PRESERV. DAPE		ANALYSES
	x 500ml ambers YES	NO	LANCASTER LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260) TPH-DRO (8015)
			EAROADTER	TT THORN (auto)
<u>├</u> ────			 	
<u>├</u> ────┼				
COMMENTS:				

Add/Replaced Lock: _____

Add/Replaced Plug: _____

Add/Replaced Bolt:

Client/Facility#: Site Address:	Chevron #9-6991 2920 Castro Valley Blvd	Job Number:	385296
City:	Castro Valley, CA	Event Date: Sampler:	<u>(inclusive)</u>
Well ID Well Diameter Total Depth Depth to Water Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	Image: Second	tor (VF) $4''= 0.66$ mn is less then 0.50 f 2'' x3 case volume = E 3'' + DTWJ; $13'' 6'''$	5"= 1.02 6"= 1.50 12"= 5.80
Start Time (purge) Sample Time/Dat Approx. Flow Rate Did well de-water (2400 hr.) 0935	e:gpm. Sediment D	r: <u>CLOUDY</u> (escription:	$\frac{CLOUDY}{Odor: O'N SLICHT}$ al. DTW @ Sampling: 1.85 $\frac{DS}{(mg/L)} (mV)$

	LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES			
MW- Q	🖉 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)			
	2 x 500ml ambers	YES	NO	LANCASTER	TPH-DRO (8015)			
·								
· · · · · · · · · · · · · · · · · · ·								
		l						

COMMENTS:

Add/Replaced Lock: _____ Add/Replaced Plug: _____ Add/Replaced Bolt: _____

Client/Facility#:	Chevron #9-6991	Job Number:	385296
Site Address:	2920 Castro Valley Blvd	Event Date:	9/14/12 (inclusive)
City:	Castro Valley, CA	Sampler:	HAIG K
Well ID	<u>Mw- 17</u>	Date Monitored:	9/14/12
Well Diameter	3/4 (2) in.	me 3/4"= 0.02	1"= 0.04 2"= 0.17 3"= 0.38
Total Depth	19.67 ft. Factor	or (VF) 4"= 0.66	5"= 1.02 6"= 1.50 12"= 5.80
Depth to Water	<u>11,56 ft.</u> Check if water colur <u>8,11</u> xVF_0,17 = <u>1,3</u>	nn is less then 0.50 f x3 case volume = E	it. istimated Purge Volume:gal.
Depth to Water v	// 80% Recharge [(Height of Water Column x 0.20)	+ DTWJ: 13,18	
Purge Equipment:			Time Started:(2400 hrs) Time Completed:(2400 hrs)
Disposable Bailer	Sampling Equipment		Time Completed:(2400 hrs) Depth to Product:ft
Stainless Steel Bailer	Pressure Bailer		Depth to Water:ft
Stack Pump	Discrete Bailer		Hydrocarbon Thickness:ft Visual Confirmation/Description:
Suction Pump	Peristaltic Pump		
Grundfos Registertie Dumm	QED Bladder Pump		Skimmer / Absorbant Sock (circle one) Amt Removed from Skimmer: gal
Peristaltic Pump QED Bladder Pump	Other:		Amt Removed from Well: gal
Other:			Water Removed:
			Product Transferred to:
Start Time (purge)	0847 Weather Co	nditions:	CLOUDY
Sample Time/Date		CLEAR	
Approx. Flow Rate	e:gpm. Sediment De	escription:	IN PERME
Did well de-water?			I. DTW @ Sampling: 11,94
Time (2400 hr.) 0853 0855	Volume (gal.) pH Conductivity $(\mu mhos/cm - \mu s)$ 1.5 7.43 $4.477.38$ $4.554.557.35$ $4.557.35$ 4.55	$\begin{array}{c} \hline \\ \hline $	D.g. OBA (Mg/L) (mV)

	LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES			
MW- M	💪 x voa vial		HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)			
	2x 500ml ambers	YES	NO	LANCASTER	TPH-DRO (8015)			
	I			····				
				· · · · · · · · · · · · · · · · · · ·				

COMMENTS:

 Add/Replaced Lock:

 Add/Replaced Piug:

 Add/Replaced Diug:

 Add/Replaced Bolt:

Chevro	n Califo	rnia Reg	ion Analysis	Request/	Chain of Custody
Lancaster Laboratories 091412-		5	For Lan Sample #	caster Laboratories use 790365-58 Requested	
SS#9-0991-OML G-R#385296 Global ID#10	600100324			tion Codes	
Facility #:	AKJ Klema olin, CA 94568 om) 51-7899	Air Containers	THE R260 0610 000 GRO 000 GRO 000 DRO 0 Silica Gel Cleanup 100 DRO 0 Silica Gel Cleanup 100 000 DRO 0 Silica Gel Cleanup 100 000 000 000 000 000 000 000 000 00		Preservative Codes $H = HCI$ $T = Thiosulfate$ $N = HNO_3$ $B = NaOH$ $S = H_2SO_4$ $O = Other$ \Box J value reporting needed Must meet lowest detection limits possible for 8260 compounds 8021 MTBE Confirmation \Box Confirm highest hit by 8260
Sample Identification Date Collected	Time a book	Soil Water Oil 🛛 Total I	BTEX + MT TPH 8015 I TPH 8015 I TPH 8015 I B260 full sc Oxyr Total Lead	AO SS	Run oxy's on highest hit Run oxy's on all hits
QA q/14/12 MW - 2 0 MW - 6 0 MW - 7 V 0	830X 950X 905X				Comments / Remarks
Turnaround Time Requested (TAT) (please circle) STD. TAT 72 hour 48 hour 24 hour 4 day 5 day	Relinguished by Relinguished by Cu, Action		Date Time 7/14/12 /43 1456/12 Time 1456/12 1630		Date Time <i> </i>
Data Package Options (please circle if required) QC Summary Type ! - Full Type VI (Raw Data) Coelt Deliverable not needed WiP (RWQCB) Disk	Relinquished by: Relinquished by C	Commercial Carrier:	Date Time	Received by:	Date Time

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

4804.01 (north) Rev. 10/12/06

Analysis Report Laboratories 2425 New Holland Pike, PO Box 12425, Lancester, PA 17605-2425 +717-656-2300 Fax: 717-656-2681 + www.lancasterlabs.com

Lancaster

ANALYTICAL RESULTS

Prepared by:

🔅 eurofins

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for:

Chevron L4310 6001 Bollinger Canyon Rd. San Ramon CA 94583

October 16, 2012

Project: 96991

Submittal Date: 09/15/2012 Group Number: 1335963 PO Number: 0015110330 Release Number: WAITE State of Sample Origin: CA

OCT 1 2 2012

GETTLER-RYAN INC. GENERAL CONTRACTORS

Client Sample Description QA-T-120914 NA Water MW-2-W-120914 Grab Water MW-6-W-120914 Grab Water MW-7-W-120914 Grab Water

Lancaster Labs (LLI) # 6790355 6790356 6790357 6790358

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC	CRA c/o Gettler-Ryan	Attn: Rachelle Munoz
ELECTRONIC COPY TO	Chevron c/o CRA	Attn: Report Contact
ELECTRONIC COPY TO	Chevron	Attn: Anna Avina
ELECTRONIC COPY TO	Conestoga-Rovers & Associates	Attn: James Kiernan

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Respectfully Submitted,

fiel M. Parker

Jill M. Parker Senior Specialist

(717) 556-7262

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: QA-T-120914 NA Water Facility# 96991 Job# 385296 GRD 2920 Castro Valley-Castro T0600100324 QA

LLI Sample # WW 6790355 LLI Group # 1335963 Account # 10904

Project Name: 96991

Collected: 09/14/2012

Submitted: 09/15/2012 09:50 Reported: 10/16/2012 13:08

CVCQA

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

Chevron L4310

6001 Bollinger Canyon Rd.

San Ramon CA 94583

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	F122652AA	09/21/2012 08:23	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F122652AA	09/21/2012 08:23		1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	12262A07A	09/19/2012 00:45		1
01146	GC VOA Water Prep	SW-846 5030B	1	12262A07A	09/19/2012 00:45	Marie D John	l

🛟 eurofins

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-2-W-120914 Grab Water Facility# 96991 Job# 385296 GRD 2920 Castro Valley-Castro T0600100324 MW-2

LLI Sample # WW 6790356 LLI Group # 1335963 Account # 10904

Project Name: 96991

Collected: 09/14/2012 08:30 by HK

Submitted: 09/15/2012 09:50 Reported: 10/16/2012 13:08 Chevron L4310 6001 Bollinger Canyon Rd. San Ramon CA 94583

CVC02

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l		
10943	Benzene	71-43-2	N.D.	0.5	1	
10943	Ethylbenzene	100-41-4	N.D.	0.5	1	
10943	Methyl Tertiary Butyl Ether	1634-04-4	49	0.5	1	
10943	Toluene	108-88-3	N,D,	0.5	1	
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1	
GC Vol	Latiles SW-846	8015B	ug/l	ug/l		
01728	TPH-GRO N. CA water C6-C12	n.a.	70	50	1	
	croleum SW-846	8015B	ug/l	ug /1		
Hydrod	carbons					
06609	TPH-DRO CA C10-C28	n.a.	620	50	1	

State of California Lab Certification No. 2501

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	F122652AA	09/21/2012 08:4	5 Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F122652AA	09/21/2012 08:4		1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	12262A07A	09/19/2012 06:0		1
01146	GC VOA Water Prep	SW-846 5030B	1	12262A07A	09/19/2012 06:0	0 Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	122630023A	09/21/2012 02:4		1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	122630023A	09/20/2012 04:2		1

Lancaster Laboratories

Analysis Report

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

LLI Sample # WW 6790357

10904

LLI Group # 1335963

Sample Description: MW-6-W-120914 Grab Water Facility# 96991 Job# 385296 GRD 2920 Castro Valley-Castro T0600100324 MW-6

Project Name: 96991

Collected: 09/14/2012 09:50 by HK

Submitted: 09/15/2012 09:50 Reported: 10/16/2012 13:08

🔅 eurofins

Chevron L4310 6001 Bollinger Canyon Rd. San Ramon CA 94583

CVC06

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	0.5	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1
	roleum SW-846 arbons	8015B	ug/l	ug/l	
06609	TPH-DRO CA C10-C28	n.a.	65	50	1

State of California Lab Certification No. 2501

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	e	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	F122652AA	09/21/2012	09:51	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F122652AA	09/21/2012		Anita M Dale	1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	12262A07A	09/19/2012		Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	12262A07A	09/19/2012	06.26	Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	122630023A	· · · · ·	01:58	Glorines Suarez- Rivera	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	122630023A	09/20/2012 (04:20	Roman Kuropatkin	1

Lancaster Laboratories

Analysis Report

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

LLI Sample # WW 6790358

10904

LLI Group # 1335963

Sample Description: MW-7-W-120914 Grab Water Facility# 96991 Job# 385296 GRD 2920 Castro Valley-Castro T0600100324 MW-7

Project Name: 96991

Collected: 09/14/2012 09:05 by HK

Submitted: 09/15/2012 09:50 Reported: 10/16/2012 13:08

🚯 eurofins

L4310 6001 Bollinger Canyon Rd. San Ramon CA 94583

Chevron

CVC07

imit Factor
1
1
- 1
1
1
1
1

State of California Lab Certification No. 2501

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	F122652AA	09/21/2012 10:	12 Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F122652AA	09/21/2012 10:		1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	12263A07A	09/20/2012 01:		1
01146	GC VOA Water Prep	SW-846 5030B	1	12263A07A	09/20/2012 01:	48 Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	122630023A	09/21/2012 02:		1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	122630023A	09/20/2012 04:		1

🔹 eurofins

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron Reported: 10/16/12 at 01:08 PM

Group Number: 1335963

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	' Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD <u>%REC</u>	LCS/LCSD Limits	RPD	RPD Max
Batch number: F122652AA	Sample num	ber(s): 67	90355-6790	358				
Benzene	N.D.	0.5	ug/l	92		77-121		
Ethylbenzene	N.D.	0.5	ug/l	94		79-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	94		68-121		
Toluene	N.D.	0.5	ug/l	94		79-120		
Xylene (Total)	N.D.	0.5	ug/l	96		77-120		
Batch number: 12262A07A	Sample num	ber(s): 67	90355-6790	357				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	114	111	75-135	3	30
Batch number: 12263A07A	Sample num	ber(s): 67	90358					
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	109	109	75-135	0	30
Batch number: 122630023A	Sample num	ber(s): 679	90356-6790	358				
TPH-DRO CA C10-C28	N.D.	32.	ug/l	95	91	56-122	5	20

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: F122652AA	Sample	number(s)	: 6790355	-67903	58 UNSP	K: 6790356			
Benzene	100	99	72-134	0	30				
Ethylbenzene	104	102	71-134	2	30				
Methyl Tertiary Butyl Ether	96	98	72-126	1	30				
Toluene	101	100	80-125	1	30				
Xylene (Total)	103	100	79-125	2	30				*

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Toluene-d8

Analysis Name: UST VOCs by 8260B - Water Batch number: F122652AA Dibromofluoromethane 1,2-Dichloroethane-d4

4-Bromofluorobenzene

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

🐝 eurofins

Lancaster Laboratories

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client	Name: Chevron	1		Grou	p Number:	1335963	
Report	ed: 10/16/12 a	t 01:08	PM	+1	p manaoer i	200000	
1				Gummershe	0	d	
				Surrogate	Quality	Control	
6790355	109	100		98	95		
6790356	109	102		100	101		
6790357	109	102		100	97		
6790358	104	96		101	104		
Blank	106	99		101	98		
LCS	104	99		99	102		
MS	106	99		100	105		
MSD	106	101		99	106		
Limits:	80-116	77-113		80-113	78-113		
	· · · · · · · · · · · · · · · · · · ·						
	Name: TPH-GRO N.	CA water	C6-C12				
Batch nu	mber: 12262A07A						
	Trifluorotoluene-F						
<u></u>				·····			
6790355	89						
6790356	88						
6790357	88						
Blank	88						
LCS	103						
LCSD	101						
Limits:	63-135		·				
Analysis	Name: TPH-GRO N.	CA water	C6-C12				
Batch nur	mber: 12263A07A						
	Trifluorotoluene-F						
6790358	122						
Blank	85						
LCS	101						
LCSD	103						
Limits:	63-135			·····			
	Name: TPH-DRO CA	C10-C28					
Batch num	nber: 122630023A						
	Orthoterphenyl						
6790356	82						
6790357	87						
6790358	88						
Blank	82						
LCS	103						
LCSD	95						
Limits:	50-154						

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

🍪 eurofins

Lancaster Laboratories

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

	-	g teeninean aata.				
RL N.D.	Reporting Limit none detected	BMQL MPN	Below Minimum Quantitation Level			
TNTC	Too Numerous To Count	CP Units	Most Probable Number cobalt-chloroplatinate units			
IU umbaa/au	International Units	NTU	nephelometric turbidity units			
umhos/cm C	micromhos/cm	ng	nanogram(s)			
meg	degrees Celsius milliequivalents	F	degrees Fahrenheit			
g	gram(s)	lb.	pound(s)			
pd	microgram(s)	kg	kilogram(s)			
mĽ	milliliter(s)	mg I	milligram(s) liter(s)			
m3	cubic meter(s)	μL	microliter(s)			
		pg/L	picogram/liter			

< less than - The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

В

- ppb parts per billion
- **Dry weight** basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C - result confirmed by reanalysis.

J - estimated value – The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- B Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- D Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- N Presumptive evidence of a compound (TICs only)
- P Concentration difference between primary and
- confirmation columns >25%
- U Compound was not detected
- X,Y,Z Defined in case narrative

Inorganic Qualifiers

- Value is <CRDL, but ≥IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike sample not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ATTACHMENT C

LOW-THREAT CHECKLIST

Site meets the criteria of the Low-Threat Underground Storage Tank (UST) Case Closure Policy as described below.¹

General Criteria General criteria that must be satisfied by all candidate sites:	
Is the unauthorized release located within the service area of a public water system?	⊠Yes □ No
Does the unauthorized release consist only of petroleum?	⊠ Yes □ No
Has the unauthorized ("primary") release from the UST system been stopped?	⊠ Yes □ No
Has free product been removed to the maximum extent practicable?	🗆 Yes 🗆 No 🖾 NA
Has a conceptual site model that assesses the nature, extent, and mobility of the release been developed?	⊠ Yes □ No
Has secondary source been removed to the extent practicable?	⊠ Yes □ No
Has soil or groundwater been tested for MTBE and results reported in accordance with Health and Safety Code Section 25296.15?	⊠ Yes □ No
Does nuisance as defined by Water Code section 13050 exist at the site?	🗆 Yes 🖾 No
Are there unique site attributes or site-specific conditions that demonstrably increase the risk associated with residual petroleum constituents?	□ Yes ⊠ No
Media-Specific Criteria Candidate sites must satisfy all three of these media-specific criteria:	
1. Groundwater: To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites:	
Is the contaminant plume that exceeds water quality objectives stable or decreasing in areal extent?	⊠ Yes □ No □ NA
Does the contaminant plume that exceeds water quality objectives meet all of the additional characteristics of one of the five classes of sites?	⊠ Yes □ No □ NA
If YES, check applicable class: 🛛 1 🛛 2 🗔 3 🗔 4 🗔 5	

¹ Refer to the Low-Threat Underground Storage Tank Case Closure Policy for closure criteria for low-threat petroleum UST sites.

For sites with releases that have not affected groundwater, do mobile constituents (leachate, vapors, or light non-aqueous phase liquids) contain sufficient mobile constituents to cause groundwater to exceed the groundwater criteria?	□ Yes □ No ⊠ NA
2. Petroleum Vapor Intrusion to Indoor Air: The site is considered low-threat for vapor intrusion to indoor air if site-specific conditions satisfy all of the characteristics of one of the three classes of sites (a through c) or if the exception for active commercial fueling facilities applies.	
Is the site an active commercial petroleum fueling facility? Exception: Satisfaction of the media-specific criteria for petroleum vapor intrusion to indoor air is not required at active commercial petroleum fueling facilities, except in cases where release characteristics can be reasonably believed to pose an unacceptable health risk.	⊠ Yes □ No
a. Do site-specific conditions at the release site satisfy all of the applicable characteristics and criteria of scenarios 1 through 3 or all of the applicable characteristics and criteria of scenario 4?	□Yes □ No ⊠ NA
 If YES, check applicable scenarios: 1 1 2 3 4 b. Has a site-specific risk assessment for the vapor intrusion pathway been conducted and demonstrates that human health is protected to the satisfaction of the regulatory agency? 	□ Yes □ No ⊠ NA
C. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that petroleum vapors migrating from soil or groundwater will have no significant risk of adversely affecting human health?	□ Yes □ No ⊠ NA
3. Direct Contact and Outdoor Air Exposure: The site is considered low-threat for direct contact and outdoor air exposure if site-specific conditions satisfy one of the three classes of sites (a through c).	
a. Are maximum concentrations of petroleum constituents in soil less than or equal to those listed in Table 1 for the specified depth below ground surface (bgs)?	⊠ Yes □ No □ NA
b. Are maximum concentrations of petroleum constituents in soil less than levels that a site specific risk assessment demonstrates will have no significant risk of adversely affecting human health?	□ Yes □ No ⊠ NA
c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that the concentrations of petroleum constituents in soil will have no significant risk of adversely affecting human health?	□ Yes □ No ⊠ NA