The Goodyear Tire & Rubber Company

200 Innovation Way Akron, Ohio 44316-0001

330-796-7377 dennis_mcgavis@goodyear.com

July 16, 2014

RECEIVED

By Alameda County Environmental Health at 2:47 pm, Jul 21, 2014

Ms. Karel Detterman Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Parkway, Suite 250 Alameda, CA 94502-6577

Dear Ms. Detterman:

Attached for your review is our response letter to the ACEH Comments dated April 30, 2014 regarding the *Site Conceptual Model* for the Goodyear DEX #9578, 3430 Castro Valley Boulevard, Castro Valley, California. This response letter was prepared for the Goodyear Tire & Rubber Company by Stantec Consulting Services, Inc.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct, to the best of my knowledge.

If you have any questions, please don't hesitate to contact me or Stantec Project Manager Gary Messerotes at 408-827-3533.

Very Truly Yours,

Dennis F. Mc Davis

Dennis E. McGavis Director, Global EHS Sustainability The Goodyear Tire & Rubber Company

Attachment

cc: Ms. Karen Burlingame (via electronic mail)

For Written Communications:

The Goodyear Tire & Rubber Company 200 Innovation Way, D/108i Akron, Ohio 44316-0001

Phone: (330) 668-4600

BROWNFIELD Restoration Group, LLC

Environmental Consultant On Behalf of: The Goodyear Tire & Rubber Company

July 16, 2014

Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda CA 94502 Attention: Karel Detterman, Hazardous Materials Specialist

Reference: ACEH Comments dated April 30, 2014 Former Goodyear DEX #9578 3430 Castro Valley Boulevard, Castro Valley, CA

Ms. Detterman:

The Goodyear Tire & Rubber Company (Goodyear) received the ACEH comments dated April 30, 2014 regarding the review of the case file, including the *Site Conceptual Model* for the above referenced Site. The ACEH comments (bold text) have been recreated below for reference. The italicized text following each comment, as well as the attached figures and tables, provides our response to each comment.

- 1. Please use the SWRCB's Low Threat Underground Storage Tank Case Closure Policy (LTCP) as a reference to guide the case to closure. Noted and addressed as such in Table 4-1 of the SCM.
- 2. ACEH's biggest concern is tetrachloroethene (PCE), vinyl chloride (VC), and free product (non-aqueous phase liquids [NAPL]) in former well MW-3:
 - a. What and where is the source of the PCE, VC, and free product. The PCE, VC, and petroleum hydrocarbons were observed and detected in MW-3 which was located immediately down-gradient from the former UST. The source of the impacts in MW-3 was the former UST.
 - b. Definition of PCE needs to be accomplished. Additional soil and grabgroundwater samples are being proposed to further evaluate the area of the former UST for PCE, as presented in Table 5-1 of the SCM.
 - c. Requested contours of free product shown on cross section & plan view & how free product is related to potential source areas. Since groundwater monitoring was initiated at the Site in 1994, light non-aqueous phase liquid (LNAPL) or "free product" was only detected intermittently in former monitoring well MW-3. LNAPL has not been observed in any of the other monitoring wells at the site. Per your request, isoconcentration contours for total petroleum hydrocarbon (TPH) have been added to the cross section and plan view maps. It appears that the soil concentrations exceeding 50 mg/Kg of TPH-DRO and 100 mg/Kg of TPH-GRO are limited to the area around the former UST as well as the HL-1 sample. The revised figures demonstrating these contours are included as Figures 3, 7 and 8.

- 3. Adequacy of monitoring well network:
 - a. Boring log lithology points to possible confined conditions. It is agreed that possible confined conditions, or at least semi-confined conditions, are present as static groundwater levels rise above first encountered groundwater depths. However, as the shallow clay and silty clay interval (approximately 10-15' bgs) sometimes has been described as moist, it may not yield significant water until an adequate time passes allowing the well to recharge.
 - b. MW-4 is not screened in same lithologic unit (SP/SC) at 15 feet below grade as MW-1, MW-2, & former MW-3 therefore MW-4 is not an adequate downgradient well to monitor for hydraulic lifts, which may be potentially associated PCE. It may be true that MW-4 is not screened in the same lithologic unit as MW-1, MW-2 and MW-3. However, MW-5 is screened in the same lithologic unit and is upgradient of MW-4. Both MW-4 and MW-5 were sampled in May 2014 for VOCs and SVOCs and the results for both samples indicated no analytes above the method detection limits. Monitoring wells MW-4 and MW-5 are downgradient from the former UST which is the source area for the release.
 - c. Monitor and sample MW-5 using low-flow purging and sampling and analyze groundwater samples for VOCs EPA 8260 and SVOCs EPA 8270. As indicated above, sampling of MW-5 (and MW-4) was completed in May 2014 with all analytes resulting in ND concentrations. Table 4 has been modified to add this data and is attached along with the certified analytical reports. These items will also be uploaded to the ACEH's FTP site and Geotracker.
 - d. If total depth of MW-5 matches construction depth, there shouldn't be a need to redevelop well although it hasn't been sampled since 8/2013. Monitoring well MW-5 did not require redevelopment and a valid groundwater sample was collected in May 2014. Field data sheets are included as an attachment.
 - e. Please prepare and submit with the updated SCM a Rose diagram documenting direction variations in the groundwater gradient. A Rosediagram has been prepared and is included as an attachment. The Rosediagram confirms the groundwater flow direction to the south with the Vector Mean at approximately 171 degrees (180 degrees being due South).
- 4. An Oxygen-Releasing Compound (ORC) Amendment was placed in the excavations but there were no confirmation borings done to see if ORC & excavation was successful. The ORC was placed in the bottom of the excavation as a general polishing technique to help degrade the petroleum hydrocarbons over time and was not considered a remedial action alternative. However, three borings will be drilled to determine the effectiveness of the ORC based on a comparison of current TPH results vs previous TPH results in nearby soil samples. This is discussed further in Table 5-1 of the SCM.
- Please revise Figure 8 by adding all eleven potential source areas listed in Section 1.1.2. Site features identified in the 2004 Phase I ESA and listed in Section 1.1.2 of the SCM have been added to Figure 2. The revised figure is attached.
- 6. Please submit the laboratory analytical report for the soil excavated during the August 2012 remedial action event which are referenced in Stantec's 10/19/2012 *Remediation Summary Report and First Semi-Annual Groundwater Monitoring Report*, page 5: "Soil proximate to the former UST was stored and characterized separately from the rest of the excavated soil, due to the presence of a *strong*

odor and visible sheen on the soil. This investigation-derived waste was subsequently sampled by Stantec, and profiled as a non-hazardous waste". The laboratory reports are attached and will also be uploaded to the ACEH's FTP site and Geotracker.

- a. Additionally, please submit daily field observations from the August 2012 remedial action event to inform of the location of the visible sheen on the soil. The field data sheets are attached.
- 7. Last bullet of Section 1.1 regarding the oil/water separator and PCBs: please investigate for VOCs, SVOC including PAHs and naphthalene. The Phase I ESA and Limited Subsurface Investigation completed in 2004 evaluated various site features including the oil/water separator. The 2004 investigation was completed as a voluntary due diligence assessment for Goodyear's use. The scope of the assessment was not intended to comply with a regulatory program. Information from the 2004 due diligence investigation was provided as part of the SCM; however, Goodyear is not seeking agency closure for the entire Site. Based on the laboratory data from the 2004 investigation, the only areas that exceeded environmental screening levels (ESLs) were the former UST area and the area of HL-1. Additional investigation in these areas is discussed further in Table 5-1 of the SCM.
- 8. Groundwater contamination is probably not a dissolved phase in groundwater issue. Based on my telephone conversation on with you on June 12, it is my understanding that this comment is in regards to the possibility of the presence of secondary source as defined in the LTCP. The LTCP indicates that "petroleum release sites are required to undergo secondary source removal to the extent practicable". The secondary source in the area of the UST excavation was removed to the extent practicable in 2012. The excavation was limited by the presence of a high pressure natural gas line to the west, by a water line located along the Site building to the east, and by the presence of groundwater at approximately eight feet below ground surface. Per the LTCP, "additional removal or active remedial actions shall not be required by regulatory agencies unless (1) necessary to abate a demonstrated threat to human health or (2) the groundwater plume does not meet the definition of low threat as described in this policy." The current conditions at the Site support the conclusion that additional remedial actions are not required. This is further supported by the May 2014 groundwater sample results from the sampling of MW-4 and MW-5.

Per your request, the tabular form of the SCM and the Data Gap Summary and Proposed Investigation form have been prepared and are attached. These forms as well as the revised figures and tables will be uploaded to the ACEH's FTP site and Geotracker. As indicated on Table 5-1, additional soil and grab-groundwater sampling is proposed in the area of the former UST and in the area of HL-1. The results of the proposed sampling will then be incorporated into the SCM in order to determine if additional data gaps are present.

Please do not hesitate to contact me if there are any questions. I can be reached at 330-668-4600 x 111 or at karen.burlingame@goodyear.com.

Alameda County Health Department July 16, 2014 Page 4 of 4

Respectfully,

Karen D. Burlingäme Project Manager for The Goodyear Tire & Rubber Company

Attachments: Table 1 Historical Soil Analytical Results (revised) Table 4 Historical Groundwater Analytical Results (revised) Table 4-1 Site Conceptual Model Table 5-1 Data Gaps Summary and Proposed Investigation Figure 2 Site Plan with Cross Section (revised) Figure 3 Geologic Cross Section A-A' (revised) Figure 7 Lateral Extent of Contaminants in Unsaturated Zone Soil (revised) Figure 8 Lateral Extent of Contaminants in Smear and Saturated Zone Soil (revised) Rose Diagram 2012 Waste Disposal Characterization Laboratory Reports 2012 Field Data Sheets

All information, conclusions, and recommendations provided by Stantec in this document regarding the Site have been prepared under the supervision of and reviewed by the Licensed Professional whose signature appears below:

Licensed Approver:

Name: Gary P. Messerotes, P.G.

uly 16, 2014 Date:

Signature: Jay Contraction Stamp:

TABLES

TABLE 1 Historical Soil Analytical Results Former Merritt Tire Sales / Goodyear DEX #9578 3430 Castro Valley Boulevard Castro Valley, California

Confirmation Sample ID	Sample Depth (feet)	Sample Date	TPH-GRO	TPH-DRO	O&G	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	EDC	EDB	PCE	Carbon disulfide	Fluoranthene	2- Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Cadmium	Chromium	Lead	Nickle	Zinc
SWRCB LTCP Closur			<100	<100	15		NE	89				115			0.68		45	0.68	0.68	NE	115	NE	NE	
SWRCB LTCP Closure			<100	<100	NE	8.2	NE	134	NE NE	NE	NE NE	NE NE	NE NE	NE	0.68 NE	NE NE	45	0.68 NE	0.68 NE	NE	NE	NE	NE	NE
No. 1-South	8	09/21/93	230	2,400	6,100	0.88	7.6	3.6	24	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.5	31	Illegible	32	140
No. 2-North	8	09/21/93	22	380	1,600	0.099	0.88	0.34	2.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.5	45	14	33	44
MW 1-1-3	6	09/28/94	<1	<10	<50	< 0.005	< 0.005	< 0.005	< 0.005	NA	< 0.005	NA	< 0.005	NA	<0.3	<0.3	<0.3	NA	<0.3	0.3	28	7	26	30
MW 1-2-2	10	09/28/94	<1	<10	<50	< 0.005	< 0.005	< 0.005	< 0.005	NA	<0.005	NA	< 0.005	NA	<0.3	<0.3	<0.3	NA	<0.3	NA	NA	NA	NA	NA
MW 2-1-1	6	09/28/94	<1	<10	<50	< 0.005	< 0.005	< 0.005	< 0.005	NA	<0.005	NA	< 0.005	NA	<0.3	<0.3	<0.3	NA	<0.3	NA	NA	NA	NA	NA
MW 2-2-1	10	09/28/94	<1	<10	<50	< 0.005	< 0.005	< 0.005	< 0.005	NA	< 0.005	NA	< 0.005	NA	<0.3	<0.3	<0.3	NA	<0.3	NA	NA	NA	NA	NA
MW 3-1-1	6	09/28/94	4	210	550	0.022	0.072	0.067	0.28	NA	< 0.005	NA	< 0.005	NA	<0.3	<0.3	<0.3	NA	<0.3	NA	NA	NA	NA	NA
MW 3-2-2	10	09/28/94	14	560	1,300	0.047	0.016	0.068	0.58	NA	< 0.005	NA	0.031	NA	<0.3	0.7	0.6	NA	<0.3	NA	NA	NA	NA	NA
PB-1	3-3.5	12/13/96	120	NA	8200 ¹	0.6	3.8	1.6	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PB-4	3-3.5	12/13/96	<1	NA	<10	< 0.005	<0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OWS-1	11.5	09/30/04	NA	<12.1	<12.0	<0.0024	< 0.0024	<0.0024	< 0.0024	<0.0024	< 0.0024	NA	NA	0.00731	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
UST-1	7.5	09/30/04	NA	1,050	2,490	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HL-1	8	09/30/04	NA	818	899	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HL-2	12	09/30/04	NA	<10.1	10.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HL-3	12	09/30/04	NA	<9.96	10.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HL-4	5	09/30/04	NA	<10.2	11.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SA-1 SB-1	6.5	09/30/04	NA	<10.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-1-5'	6.5	09/30/04	<6.10	<12.1	<12.1	NA	NA ====	NA 0.027	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-1-3 SB-1-13'	5	09/10/09	1.4	780	1,900	< 0.0048	<0.0048	0.027 <0.0048	< 0.0097	< 0.0048	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-1-17	13 17	09/10/09	1.5 <0.047	260	770 <100	<0.0048 <0.0047	<0.0048 <0.0047	<0.0048	<0.0096 <0.0094	<0.0048 <0.0047	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SB-4-2'	2	09/10/09	<0.047	9.5	<100	<0.0047	<0.0047	<0.0047	<0.0094	<0.0047	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-4-7'	7	09/10/09	< 0.05	900	2,600	<0.0050	< 0.0050	<0.0050	<0.01	<0.0050	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-4-13'	13	09/10/09	<0.049	<0.99	<100	<0.0049	< 0.0049	<0.0049	<0.0098	< 0.0049	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-4-17'	17	09/10/09	<0.047	<0.99	<100	<0.0047	<0.0050	<0.0050	<0.0099	< 0.0050	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-5-7'	7	09/10/09	< 0.05	1.5	<100	< 0.0050	<0.0050	< 0.0050	< 0.01	< 0.0050	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-5-14'	14	09/10/09	<0.049	1.0	<100	< 0.0049	< 0.0049	< 0.0049	< 0.0098	< 0.0049	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-5-16'	16	09/10/09	<0.05	1.2	<100	< 0.0050	< 0.0050	<0.0050	< 0.0099	< 0.0050	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-8-6'	6	09/10/09	1.4	780	2,200	< 0.0050	< 0.0050	< 0.0050	< 0.0099	< 0.0050	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-8-9'	9	09/10/09	0.42	96	380	< 0.0050	< 0.0050	< 0.0050	< 0.01	< 0.0050	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-8-19'	19	09/10/09	< 0.05	1.8	<100	< 0.0050	<0.0050	< 0.0050	< 0.01	< 0.0050	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EX-1	~5	08/13/12	< 0.230	< 0.99	<170	< 0.0045	< 0.0048	< 0.0045	< 0.0091	< 0.0045	< 0.0045	< 0.0045	NA	NA	<0.066	<0.066	<0.066	< 0.066	<0.066	NA	NA	8.8	NA	NA
EX-2	~5	08/13/12	< 0.250	<1.0	<170	< 0.0049	< 0.0049	<0.0049	< 0.0098	< 0.0049	< 0.0049	< 0.0049	NA	NA	<0.066	<0.066	<0.066	<0.066	<0.066	NA	NA	12	NA	NA
EX-3	8	08/13/12	<0.230	<0.99	<170	< 0.0047	< 0.0047	<0.0047	< 0.0094	< 0.0047	< 0.0047	<0.0047	NA	NA	<0.067	<0.067	<0.067	<0.067	<0.067	NA	NA	10	NA	NA
EX-4	~5	08/13/12	<0.240	<1.0	<170	< 0.0047	<0.0047	<0.0047	< 0.0095	<0.0047	<0.0047	<0.0047	NA	NA	<0.067	<0.067	<0.067	<0.067	<0.067	NA	NA	7.6	NA	NA
EX-5	~5	08/14/12	7.1	980	370	0.014	0.022	0.046	0.3	< 0.0047	< 0.0047	< 0.0047	NA	NA	<3.3	<3.3	<3.3	<3.3	<3.3	NA	NA	16	NA	NA
EX-6	7.75	08/14/12	5.4	750	510	0.051	0.092	0.19	0.71	< 0.0047	< 0.0047	< 0.0047	NA	NA	<1.3	<1.3	<1.3	<1.3	<1.3	NA	NA	13	NA	NA
EX-7	~5	08/14/12	4.9	1,200	600	0.048	0.0063	0.16	0.037	< 0.0049	< 0.0049	< 0.0049	NA	NA	<0.67	1.7	1.1	<0.67	<0.67	NA	NA	11	NA	NA
MW-5@6.5-7	6.5-7	08/15/12		<0.99	<20 *	<0.0048	<0.0048	<0.0048		< 0.0048	<0.0048	<0.0048	NA	NA	<0.066	<0.066	<0.066	<0.066	<0.066	NA	NA	8.0	NA	NA
EX-8	~5	08/16/12	31	2,000	<170	0.12	0.11	0.27	3.9	0.0057	<0.0048	< 0.0048	NA	NA	< 0.33	2.4	1.6	0.37	0.38	NA	NA	26	NA	NA
EX-9	7.75	08/16/12	6.3	930	420	0.03	0.053	0.14	0.075	< 0.0047	< 0.0047	< 0.0047	NA	NA	<0.33	0.89	0.71	<0.33	<0.33	NA	NA	15	NA	NA
EX-10	5-6	08/16/12	25	2,300	630	0.085	0.41	0.32	3.3	< 0.0049	< 0.0049	< 0.0049	NA	NA	0.35	3.5	2.3	0.47	0.56	NA	NA	0.31	NA	NA
EX-11	5-6	08/17/12	2.4	670	240	< 0.0050	< 0.0050	<0.0050	< 0.0099	< 0.0050	< 0.0050	< 0.0050	NA	NA	<0.33	<0.33	< 0.33	< 0.33	< 0.33	NA	NA	17	NA	NA
EX-12 EX-13	7.75	08/17/12	1.0	740	<170	< 0.0049	< 0.0049	0.019	< 0.0099	< 0.0049	< 0.0049	< 0.0049	NA	NA	< 0.33	< 0.33	<0.33	< 0.33	< 0.33	NA	NA	9.3	NA	NA
	5-6	08/17/12	<0.25	6.8	<170	<0.0049	<0.0049	<0.0049	<0.0099	< 0.0049	<0.0049	< 0.0049	NA	NA	<0.33	< 0.33	<0.33	< 0.33	<0.33	NA	NA	12	NA	NA
EX-14 EX-15	6	08/17/12	<0.25	83	<170	<0.0050	<0.0050	<0.0050	<0.0099	<0.0050	<0.0050	< 0.0050	NA	NA	<0.067	<0.067	< 0.067	<0.067	<0.067	NA	NA	13	NA	NA
EX-15 EX-16	7.75	08/17/12 08/17/12	2.0	530	<170 <170	<0.0048 <0.0050	<0.0048 <0.0050	0.024 <0.0050	0.014 0.055	<0.0048 <0.0050	<0.0048 <0.0050	<0.0048 <0.0050	NA	NA NA	<0.33 <0.066	<0.33 <0.066	<0.33 <0.066	<0.33 <0.066	<0.33 <0.066	NA	NA	11	NA	NA NA
EX-18 EX-17	6	08/17/12	0.57 <0.24	5.5 40	<170	<0.0050	<0.0050	<0.0050	<0.0096	<0.0050	<0.0050	< 0.0050	NA NA	NA	<0.066	<0.066	<0.066	<0.066	<0.066	NA NA	NA NA	9.1 9.5	NA NA	NA
EX-17 EX-18	° 7.75	08/18/12	<0.24	250	<170	<0.0048	<0.0048	<0.0048	<0.0098	<0.0048	<0.0048	<0.0048	NA	NA	<0.088	<0.33	<0.066	<0.088	<0.066	NA	NA	9.5 9.6	NA	NA
EX-18	6	08/18/12	<0.25	<1.0	<170	<0.0030	<0.0030	<0.0030	< 0.0099	< 0.0030	< 0.0030	< 0.0030	NA	NA	<0.067	<0.067	<0.067	<0.067	<0.067	NA	NA	7.6 8.5	NA	NA
EX-20	6.5	08/20/12	11	2,600	2,600	0.013	0.013	0.069	0.048	< 0.0047	<0.0047	<0.0047	NA	NA	<0.067	<0.067	<0.067	<0.067	<0.067	NA	NA		NA	NA
EX-2U	6.5	08/20/12	- 11	2,600	2,600	0.013	0.013	0.069	0.048	<0.004/	<0.004/	~0.004/	NA	NA	<0.06/	<0.06/	<0.067	<0.067	<0.067	NA	NA	7.5 ⁸	NA	NA

TABLE 1 Historical Soil Analytical Results Former Merritt Tire Sales / Goodyear DEX #9578 3430 Castro Valley Boulevard Castro Valley, California

Notes:

- All soil concentrations measured in milligrams per kilogram (mg/kg)
- TPH-GRO = Total petroleum hydrocarbons as gasoline range organics; historically analyzed by EPA Method 80158; beginning December 3, 2007 TPHg analyzed by LUFT GC/MS 82608
- TPH-DRO = Total petroleum hydrocarbons as diesel range organics; analyzed by EPA Method 8015B/3510; beginning August 21, 2012 analyzed by 8015B with silica gel cleanup
- HEM = Hexane extractable materials
- O & G = Oil and Grease 1 Reported as Total Recoverable Petroleum Hydrocarbons (TRPH) by EPA Method 418.1 and also reported as HEM with silica gel cleanup (SGT-HEM) analyzed by EPA 1664A.
- BTEX = Benzene, Toulene, Ethyl-benzene, and Total Xylenes; historically analyzed by EPA Method 8021B; beginning September 30, 2003 VOCs analyzed by EPA Method 8260B
- MTBE = Methyl tert-butyl ether; historically analyzed by EPA Method 8021B; beginning September 30, 2003 volatile organic compounds analyzed by EPA Method 8260B
- EDC and EDB = 1,2-Dicholorethane and Ethylene Dibromide respectively, analyzed by EPA Method 8260B
- PCE = Tetrachloroethene

SWRCB LICP State Water Resources Control Board's (SWRCB) Low-Threat Underground Storage Tank Case Closure Policy (LICP), Media-Specific Closure Criteria for sites with Closure Criteria = commercial/industrial use.

- NE = No established SWRCB LTCP Closure Criteria
- NA = Not analyzed
- art Hor analyzoa
- <= concentration is below laboratory reporting limit (RL) (see analytical reports for details) Bold numbers denote concentration levels at or above laboratory reporting limits.
- * = LCS or LCSD exceeds the control limits
- Denote concentration at or above SWRCB LTCP Closure Criteria

TABLE 4Historical Groundwater Analytical ResultsFormer Merritt Tire Sales/Goodyear DEX #95783430 Castro Valley BoulevardCastro Valley, California

Groundwater Monitoring Well ID	Sample Date	TPH-GRO	TPH-DRO	O&G/ HEM	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	EDC	EDB DEH	Vinyl Chloride	1,1 -DC	E 1,1 -DCA	cis 1,2- DCE	Chloroform	1,1,1 - TCE	TCE PO	CE Na	apthalene	n-Butylbenzene	Chloroethane	lsopropylbenzene	n-Propylbenzene	1,2,4-TMBZ	Chromium	Lead	Nickel	Zinc
SWRCB LTCP Closure	e Criteria	NE	NE	NE	1,000	NE	NE	NE	1,000	NE	NE NE	NE	NE	NE	NE	NE	NE	NE NE		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	09/30/94 04/24/95	<50 <50	<50	<5,000	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	NA NA	<0.5 NA	NA 10 NA NA	<0.5 NA	<0.5	<0.5 NA	<0.5	1.0 NA	<0.5 NA	<0.5 <0		<10 NA	NA NA	NA NA	NA NA	NA NA	NA NA	<10 52 ⁽¹⁾	<50 5.6	<20 60 ⁽¹⁾	30 130 ⁽¹⁾
	08/28/02	<50.0 ⁽¹⁾	<50 <50	<5,000 207	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA N/		NA	NA	NA	NA	NA	NA	92.0 ⁽¹⁾	20.0 ⁽¹⁾	98.0 ⁽¹⁾	
	09/30/03 09/30/04	<50.0 <100	<50 87	<5,000 <5,000	<0.50 <1.0	<0.50 <1.0	<0.50 <1.0	<0.50 <1.0	<0.50 <1.0	<0.50 <1.00	NA NA NA NA	<0.50 <1.00	<0.50 <1.00	<0.50 <1.00	<0.50 <1.00	<0.50 <1.00	<0.50 <1.00	<0.50 <0.5 <1.00 <1.0		<2.50 <5.00	<0.50 <1.00	<0.50 <1.00	<0.50 <1.00	<0.50 <1.00	<0.50 <1.0	NA NA	<5.0 <5.0	NA NA	NA NA
	03/29/05	<100	<100	<5,210	<1.0	<1.0	<1.0	<1.0	<1.0	<1.00	NA NA	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00 <1.0	> 00	<5.00	<1.00	<1.00	<1.00	<1.00	<1.0	NA	<5.0	NA	NA
	05/30/06 06/15/06	<50 NA	<50 NA	<2,500 NA	<0.50* <0.50	<0.50* <0.50	<0.50* <0.50	<0.50* <0.50	NA NA	<0.50 <0.50	<0.50 NA <0.50 NA	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.5 <0.50 <0.5		<5.0 <5.0	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	NA NA	<100 NA	NA NA	NA NA
	12/14/06	<50	<70	<2,600	<0.50	<0.50	<0.50	<0.50	NA	<0.50	<0.50 NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50 <0.5	50	<5.0	<0.50	<1.0	<0.50	<0.50	<0.50	NA	<100	NA	NA
MW-1	06/27/07 12/03/07	<50 <100	<490 <50	<4,700 <5,000	<2.0 <0.28	<2.0 <0.36	<2.0 <0.25	<4.0 <0.60	<5.0 <0.32	NA NA	<2.0 NA <0.40 NA	<5.0 <0.30	<5.0 <0.42	<2.0 <0.27	<2.0 <0.32	<2.0 <0.33	<2.0 <0.30	<2.0 <2. <0.26 <0.3		<5.0 <0.41	<5.0 <0.37	<5.0 <0.40	<2.0 <0.25	<2.0 <0.27	<2.0 <0.23	NA NA	25 6.2	NA NA	NA NA
	06/30/08	<50.0	<49.0	<5,260	<0.500	<0.500	<0.500	<0.500	<0.500	NA	<0.500 NA	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500 <0.5	i00 <	<5.00	<0.500	<0.500 L	<1.00	<0.500	<0.500	NA	<5.00	NA	NA
	12/04/08 06/05/09	<50 <50	<50 <50	<2,500 <5,000	<0.50 0.52	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <5.0	<0.50 <0.50	<0.50 <11 <0.50 <10	NA <0.50	NA <0.50	NA <0.50	NA <0.50	NA NA	NA <0.50	NA NA <0.50 <0.		<2.1 <2.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<5.0 <6.0	NA NA	NA NA
	08/21/12 01/29/13	<21 <21	<24 <24	<1,400 <1,400	<0.25 <0.25	<0.17 <0.17	<0.070 <0.13	<0.49 <0.49	<0.069 <0.069	<0.077 <0.077	<0.075 <1.5 <0.075 <1.5		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		<0.24 <0.24	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<2.3	NA NA	NA NA
	05/01/13	<50	<51	<1,400	<0.23	<0.17	<0.13	<1.0	<0.087	<0.50	<0.50 <10		NA	NA	NA	NA	NA	NA NA		<2.0	NA	NA	NA	NA	NA	NA	4.7 ^J <5.0	NA	NA
	08/21/13 05/21/14	<21 NS	<24 NS	910 ^J NS	<0.25 NS	<0.17 NS	<0.13 NS	<0.49 NS	<0.069 NS	<0.077 NS	<0.075 <1.3 NS NS	NA NS	NA NS	NA NS	NA NS	NA NS	NA NS	NA NA NS NS		<1.0 NS	NA NS	NA NS	NA NS	NA NS	NA NS	NA NS	<2.3 NS	NA NS	NA NS
	09/30/94	<50	<50	<5,000	<0.5	<0.5	<0.5	<0.5	NA	<0.5	NA <10	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5 <0).5	<10	NA	NA	NA	NA	NA	<10	<50	<20	<20
	04/24/95 08/28/02	<50 <50	<50 <50	<5,000 162	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	NA <0.5	NA NA	NA NA NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	54 ⁽¹⁾ 43.0 ⁽¹⁾	7.5 10.0 ⁽¹⁾	67 ⁽¹⁾ 52.0 ⁽¹⁾	120 ⁽¹⁾ 59.0 ⁽¹⁾
	09/30/03	<50.0	<50	<5,000	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	NA NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50 <0.5	50 <	<2.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA
	09/30/04 03/29/05	<100 <100	78 <100	<5,000 <5,490	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.00 <1.00	NA NA NA NA	<1.00 <1.00	<1.00 <1.00	<1.00 <1.00	<1.00 <1.00	<1.00 <1.00	<1.00 <1.00	<1.00 <1.0 <1.00 <1.0		<5.00 <5.00	<1.00 <1.00	<1.00 <1.00	<1.00 <1.00	<1.00 <1.00	<1.0 <1.0	NA NA	<5.0 <5.0	NA NA	NA NA
	05/30/06	<50	<50	<2,400	<0.50*	<0.50*	<0.50*	<0.50*	NA	<0.50	<0.50 NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50 <0.5	50	<5.0	<0.50	<1.0	<0.50	<0.50	<0.50	NA	<100	NA	NA
	06/15/06 12/14/06	NA <50	NA <70	NA <2,700	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	NA NA	<0.50 <0.50	<0.50 NA <0.50 NA	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.5 <0.50 <0.5		<5.0 <5.0	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	NA NA	NA <100	NA NA	NA NA
MW-2	06/27/07	<50	<480	<4,700	<2.0	<2.0	<2.0	<4.0	<5.0	NA	<2.0 NA	<5.0	<5.0	<2.0	<2.0	<2.0	<2.0	<2.0 <2.		<5.0	<5.0	<5.0	<2.0	<2.0	<2.0	NA	17	NA	NA
	12/03/07 06/30/08	<100 <50.0	<50 <47.6	<5,000 <5,210	<0.28 <0.500	<0.36 <0.500	<0.25 <0.500	<0.60 <0.500	<0.32 <0.500	NA NA	<0.40 NA <0.500 NA	<0.30 <0.500	<0.42 <0.500	<0.27 <0.500	<0.32 <0.500	<0.33 <0.500	<0.30 <0.500	<0.26 <0.3 <0.500 <0.5		<0.41 <5.00	<0.37 <0.500	<0.40 <0.500 L	<0.25 <1.00	<0.27 <0.500	<0.23 <0.500	NA NA	<5.0 <5.00	NA NA	NA NA
	12/04/08 06/05/09	<50 <50	<50 <50	<2,500 <5,000	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <5.0	<0.50 <0.50	<0.50 <10 <0.50 <10		NA <0.50	NA <0.50	NA <0.50	NA NA	NA <0.50	NA NA <0.50 <0.5		<2.1 <2.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<5.0 <6.0	NA NA	NA NA
	08/21/12	<21	<24	<1,400	<0.25	<0.17	<0.49	<0.49	<0.069	<0.077	<0.075 <1.5	NA	NA	NA	NA	NA	NA	NA NA	۹ <	<0.24	NA	NA	NA	NA	NA	NA	<2.3	NA	NA
	01/29/13 05/01/13	<21 <50	<24 <51	<1,400 <1,400	<0.25 <0.50	<0.17 <0.50	<0.13 <0.50	<0.49 <1.0	<0.069 <0.50	<0.077 <0.50	<0.075 <1.5 <0.50 <11		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		<0.25 <2.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	4.1^J <5.0	NA NA	NA NA
	08/21/13	<21	<24	1,700 ^J	<0.25	<0.17	<0.13	<0.49	<0.069	<0.077	<0.075 <1.3	NA	NA	NA	NA	NA	NA	NA N/	Ą	<1.0	NA	NA	NA	NA	NA	NA	<2.3	NA	NA
	05/21/14 09/30/94	NS 290	NS 72	NS <5,000	NS 29	NS 3.2	NS 3.3	NS 29	NS NA	NS 1.2	NS NS NA <10	NS 8.3	NS 1.6	NS 17	NS 8.4	NS <0.5	NS 12	NS NS		NS <10	NS NA	NS NA	NS NA	NS NA	NS NA	NS 10	NS <50	NS 20	NS <20
	04/24/95 02/09/96	53 NA	960	<5,000	12	0.84 1.4	0.69 1.2	2.4 2	NA NA	NA NA	NA NA		NA NA	NA	NA	NA NA	NA NA	NA N. NA N.		NA NA	NA NA	NA NA	NA	NA	NA	29 ⁽¹⁾ NA	7.1 NA	75 ⁽¹⁾ NA	84 ⁽¹⁾ NA
	12/31/96	NA	NA NA	NA NA	9.6 95	7	1.2	53	NA	NA	NA NA		NA	NA NA	NA NA	NA	NA	NA N		NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA
	08/28/02 09/30/03	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP FP FP		FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP
	09/30/04	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP FP	FP	FP	FP	FP	FP	FP	FP FP	,	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
MW-3**	03/29/05 05/30/06	274 NS	2,430 NS	<5,260 NS	81.0 NS	7.8 NS	8.0 NS	11.5 NS	23.6 NS	<1.00 NS	NA NA NS NS	73.0 NS	<1.00 NS	21.2 NS	<1.00 NS	<1.00 NS	<1.00 NS	<1.00 <1 NS NS		9.50 NS	1.40 NS	12.6 NS	1.50 NS	2.90 NS	5.2 NS	NA NS	<5.0 NS	NA NS	NA NS
	12/14/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS NS	6	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	06/27/07 12/03/07	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP FP FP		FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP
	06/30/08	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP FP	FP	FP	FP	FP	FP	FP	FP FF		FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
	12/04/08 06/05/09	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP FP FP		FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP	FP FP
	12/31/96	ND	ND	ND	ND	ND	ND <0.5	ND	ND	ND NA	ND ND NA NA	ND	ND	ND	ND	ND	ND NA	ND ND			ND	ND	ND	ND	ND	NA 24.0 ⁽¹⁾	NA	NA 77.0 ⁽¹⁾	NA 70.0 (l)
	08/28/02 09/30/03	<50 <50.0	<50 <50	<100 <5,000	<0.5 <0.50	<0.5 <0.50	<0.50	<0.5 <0.50	<0.5 <0.50	<0.50	NA NA NA NA	NA <0.50	NA <0.50	NA <0.50	NA <0.50	NA <0.50	<0.50	NA NA <0.50 <0.5		NA <2.50	NA <0.50	NA <0.50	NA <0.50	NA <0.50	NA <0.50	24.0 **	11.0 ⁽¹⁾ <5.0	NA	78.0 ⁽¹⁾ NA
	09/30/04	<50	103	<5,000	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.00 <1.00	NA NA NA NA	<1.00 <1.00	<1.00		<1.00	<1.00	<1.00 <1.00	<1.00 <1.0 <1.00 <1.0		<5.00 <5.00	<1.00 <1.00	<1.00 <1.00	<1.00 <1.00	<1.00	<1.0 <1.0	NA	11.0	NA	NA NA
	03/29/05 05/30/06	<100 NS	<100 NS	<5,320 NS	<1.0 NS	<1.0 NS	<1.0 NS	<1.0 NS	<1.0 NS	NS	NS NS	<1.00 NS	<1.00 NS	<1.00 NS	<1.00 NS	<1.00 NS	NS	NS NS	5	<5.00 NS	<1.00 NS	<1.00 NS	<1.00 NS	<1.00 NS	<1.0 NS	NA NS	<5.0 NS	NA NS	NA NS
	12/14/06 06/27/07	<50 <50	87 <470	<3,500 <4,800	<0.50 <2.0	<0.50 <2.0	<0.50 <2.0	<0.50 <4.0	NA <5.0	<0.50 NA	<0.50 NA <2.0 NA	<0.50 <5.0	<0.50 <5.0	<0.50 <2.0	<0.50 <2.0	<0.50 <2.0	<0.50 <2.0	<0.50 <0.5 <2.0 <2.5		<5.0 <5.0	<0.50 <5.0	<1.0 <5.0	<0.50 <2.0	<0.50 <2.0	<0.50 <2.0	NA NA	<400 28	NA NA	NA NA
MW-4	12/03/07	<100	<50	<4,700	<0.28	<0.36	<0.25	<0.60	<0.32	NA	<0.40 NA	<0.30	<0.42	<0.27	<0.32	<0.33	<0.30	<0.26 <0.3	32 <	<0.41	<0.37	<0.40	<0.25	<0.27	<0.23	NA	<5.0	NA	NA
	06/30/08 12/04/08	<50 <50	<58.8 <50	<5,210 <2,500	<0.500 <0.50	<0.500 <0.50	<0.500 <0.50	<0.500 <1.0	<0.500 <0.50	NA <0.50	<0.500 NA <0.50 <11	<0.500 NA	<0.500 NA	<0.500 NA	<0.500 NA	<0.500 NA	<0.500 NA	<0.500 <0.5 NA NA		<5.00 <2.1	<0.500 NA	<0.500 L NA	<1.00 NA	<0.500 NA	<0.500 NA	NA NA	15.8 <5.0	NA NA	NA NA
	06/05/09	<50	<50	<5,000	<0.50	<0.50	<0.50	<1.0	<5.0	<0.50	<0.50 <10	<0.50	<0.50	<0.50	<0.50	NA	<0.50	<0.50 <0.5	50	<2.1	NA	NA	NA	NA	NA	NA	<6.0	NA	NA
	08/21/12 01/29/13	<21 <21	<24 <24	<1,400 <1,400	<0.25 <0.25	<0.17 <0.17	<0.070 <0.13	<0.49 <0.49	<0.069 <0.069	<0.077 <0.077	<0.075 <1.5 <0.075 <1.5		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		<0.24 <0.24	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<2.3 6.9	NA NA	NA NA
	05/01/13	<50	<53	1,900 ^J	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50 <11	NA	NA	NA	NA	NA	NA	NA N/	Ą	<2.2	NA	NA	NA	NA	NA	NA	6.3	NA	NA
	08/21/13 05/21/14	<21 NA	<24 NA	1,800 ^J NA	<0.25 <0.50	<0.17 <0.50	<0.13 <0.50	<0.49 <1.0	<0.069 <0.50	<0.077 <0.50	<0.075 <1.5 <0.50 <9.5		NA <0.50	NA <0.50	NA <0.50	NA <1.0	NA <0.50	NA N/ <0.50 <0.5		<1.0 <1.0	NA <1.0	NA <1.0	NA <1.0	NA <1.0	NA <0.50	NA NA	<2.3 NA	NA NA	NA NA

TABLE 4Historical Groundwater Analytical ResultsFormer Merritt Tire Sales/Goodyear DEX #95783430 Castro Valley Boulevard

Castro Valley, California

Groundwater Monitoring Well ID	Sample Date	TPH-GRO	TPH-DRO	O&G/ HEM	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	EDC	EDB	DEHP	Vinyl Chloride	1,1 -DCE	1,1 -DCA	cis 1,2- DCE	Chloroform	1,1,1 - TCE	TCE	PCE	Napthalene	n-Butylbenzene	Chloroethane	lsopropylbenzene	n-Propylbenzene	1,2,4-TMBZ	Chromium	Lead	Nickel	Zinc
	08/21/12	<21	<24	1,700 ^J	<0.25	<0.17	<0.070	<0.49	0.17 ^J	<0.077	< 0.075	<1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	8.1	NA	NA
	01/29/13	<21	<24	1,800 ^J	<0.25	<0.17	<0.13	<0.49	0.44 ^J	< 0.077	< 0.075	<1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.6	NA	NA
MW-5	05/01/13	<50	<53	<1,500	< 0.50	< 0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<10	NA	NA	NA	NA	NA	NA	NA	NA	<2.1	NA	NA	NA	NA	NA	NA	<5.0	NA	NA
	08/21/13	<21	<24	1,700 ^J	<0.25	<0.17	<0.13	<0.49	0.091 ^J	<0.077	< 0.075	<1.5	NA	NA	NA	NA	NA	NA	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	4.3 ^J	NA	NA
	05/21/14	NA	NA	NA	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<9.6	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	NA	NA	NA	NA

Notes:

All groundwater concentrations measured in micrograms per liter (µg/L)

TPH-GRO = Total petroleum hydrocarbons as gasoline range organics; historically analyzed by EPA Method 8015B; beginning December 3, 2007 TPHg analyzed by LUFT GC/MS 8260B

TPH-DRO = Total petroleum hydrocarbons as diesel range organics; analyzed by EPA Method 8015B/3510; beginning August 21, 2012 analyzed by 8015B with silica gel cleanup

HEM = Hexane extractable materials

Oil & Grease = also reported as HEM with silica gel cleanup (SGT-HEM) analyzed by EPA 1664A.

BTEX = benzene, toulene, ethyl-benzene, and total xylenes; historically analyzed by EPA Method 8021B; beginning September 30, 2003 VOCs analyzed by EPA Method 8260B

MTBE = Methyl tert-butyl ether; historically analyzed by EPA Method 8021B; beginning September 30, 2003 volatile organic compounds analyzed by EPA Method 8260B

DEHP = Bis (2-ethylhexyl) phthalate

EDC = 1,2-Dichloroethane analyzed by EPA Method 8260B

EDB = Ethylene Dibromide analyzed by EPA Method 8260B

1,1-DCE = 1,1-Dichloroethene

1,1-DCA = 1,1 Dicholorethane

cis 1,2-DCE = cis 1, 2-Dichloroethene

TCE = Trichloroethene

PCE = Tetrachloroethene

1,1,1 - TCE = 1,1,1 - Trichloroethane

1,2,4 - TMBZ = 1,2,4 - Trimethylbenzene

SWRCB LTCP

Closure Criteria = State Water Resources Control Board's (SWRCB) Low-Threat Underground Storage Tank Case Closure Policy (LTCP), Media-Specific Closure Criteria for sites with commercial/industrial use. ⁽¹⁾ = Historical groundwater data as referenced in Secor groundwater monitoring report dated 4/26/05.

NE = No established SWRCB LTCP Closure Criteria

NA = Not Analyzed

NS = Not Sampled

ND = Not Detected - as reported in EMCON's Expanded Assessment, and Risk-Based Corrective Action Evaluation r eport, dated March 4, 1997

FP = Free product, well not sampled

L = Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptable limits. Analyte not detected, data not impacted.

* = Due to the laboratory exceeding the hold time for 8260B analysis, MW-1 and MW-2 were resampled on 6/15/06.

.

** = Groundwater Monitoring Well MW-3 was destroyed September 10, 2009.

¹ = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

< = Concentration is below method detection limit (MDL) or laboratory reporting limit (RL) when MDL is not presented (see analytical reports for details).

Bold numbers denote concentration levels at or above laboratory reporting limits.

Denote concentration levels at or above SWRCB LTCP Closure Criteria

Table 4-1
Site Conceptual Model

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
Geology and Hydrogeology	Regional	As described by Stantec's Site Conceptual Model (2014), the lithology encountered in the subsurface beneath the Site during drilling activities consisted predominantly of a yellowish brown to black clay and silty clay underlain by a dark yellowish brown sand, silty sand and gravelly sand. The primary stratigraphic units at the Site are listed below, with the approximate ranges of depth (bgs) each unit was encountered across the Site:	NA	NA
		 0 to 14 feet bgs: surface soil typically consists of black to yellowish brown clay to silty clay. 		
		 14 to 20 feet bgs: dark yellowish brown, fine-grained sand with some silt, and brown sand with some gravels. 		
		 Below 20 feet bgs: stiff, dry silty clay 		
		During the drilling of the borings for monitoring wells MW-1 through MW-4 in the 1990's, first encountered groundwater was at approximately 10 feet bgs. However, when MW-5 was installed in 2012, first encountered groundwater was approximately 14 feet bgs. In all cases after well construction, groundwater stabilized at a shallower depth than first encountered, with historical highs reaching 3.77 feet bgs in MW-3 in March 2005. The fact that static groundwater rises above first encountered groundwater, indicates that groundwater at the Site is under confined or semi-confined conditions.		

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
Geology and Hydrogeology	Site	According to the California's Groundwater Bulletin 118, the Site belongs to the East Bay Plain Subbasin, which consists of unconsolidated sediments of Quaternary age. The cumulative thickness of the unconsolidated sediments is about 1,000 feet. According to the U.S Department of Agriculture's (USDA) Soil Conservation Service (SCS) soil map, the Site belongs to a Class D hydrologic group, which is defined by very slow infiltration rates due to clayey soils, have a high water table, or are shallow with an impervious layer. Since the groundwater monitoring wells were first installed in 1994, the depth to groundwater has ranged between 3.03 ft bgs (MW-2, March 2005) to 11.25 ft bgs (MW-3, August 2002). Based on information collected by Stantec during the last and most recent groundwater sampling event on August 21, 2013, groundwater flow direction was to the south with a gradient of 0.015 feet per feet. Flow direction and gradient has been fairly consistent since groundwater monitoring was initiated in 1994.	NA	NA
		A Rose diagram has been prepared (and included as an attachment) for 18 sampling events that have occurred since monitoring wells were installed. Seventeen of the 18 events were within an 18 degree range of each other, with the Vector Mean at approximately 171 degrees (180 degrees is due South).		
Surface Water Bodies		San Lorenzo Creek is located approximately 4,500 feet west of the Site. A tributary to San Lorenzo Creek is located approximately 1,000 feet east of the Site. Other water bodies near the Site include the South Reservoir located beyond another tributary to San Lorenzo Creek approximately 3,500 feet west of the Site and Don Castro Reservoir approximately 6,000 feet east of the Site beyond San Lorenzo Creek. San Lorenzo Creek flows from the western slope of the Coast Ranges westward across the East Bay	NA	NA

Table 4-1Site Conceptual Model (Continued)

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		Plain and into the San Francisco and San Pablo bays. Therefore, there is a very low likelihood of a material threat or		
Nearby Wells		release to a surface water body within a ¼-mile radius of the Site. Stantec conducted a sensitive receptor survey consisting of an evaluation of well completion reports for wells located within a 2,000-foot radius of the Site that were available from the DWR and the Alameda County Public Works Agency (ACPWA). Stantec also reviewed available groundwater monitoring reports on the Water Board's Geotracker database for additional wells within the 2,000- foot radius of the Site. The reports reviewed from the DWR did not identify any municipal or water supply wells within a ¼-mile radius of the Site. According	NA	NA
		to Geotracker, three properties within a ¼-mile radius of the Site have open cases on Geotracker with related petroleum releases. The nearest sensitive receptor (various medical offices) is located approximately 680 feet northeast of the Site. Based on the distance of the closest sensitive receptor (various medical offices) and the mixed-use neighborhood of the Site, there is a low likelihood of a material threat or release to sensitive receptors within a ¼-mile radius of the Site.		
Potential Release Source and Volume		A 550-gallon used oil underground storage tank (UST) was removed from the Site prior to 1993, however, a review of available documents indicates that the UST removal was conducted without a permit and details regarding the removal, including date, condition of the UST, or disposal of the UST were unavailable. It was suspected that the former tenant, Merritt Tire & Brake, had the UST removed without Goodyear's knowledge. Based on a 1994 investigation, it was concluded that a release had occurred from the UST and the adjacent soils and the shallow saturated zone was impacted. However, the volume of the release is unknown.	 Additional soil and groundwater data is needed in the vicinity of the former UST and HL-1. 	Additional borings will be advanced in the area of the former UST and the HL-1. Soil and grab-groundwater samples will be collected and analyzed.

Table 4-1Site Conceptual Model (Continued)

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		The only other area where soil data exceeded ESLs was the area of HL-1 next to a hydraulic lift in the service bay area. TPH-DRO and oil & grease were present above the ESLs for shallow soils.		
LNAPL		Since groundwater monitoring was initiated at the Site in 1994, light non-aqueous phase liquid (LNAPL) was only detected infrequently in groundwater monitoring well MW-3, which was immediately downgradient of the UST, between August 2002 and March 2005 and from June 2007 until the well was decommissioned in 2009. LNAPL was not present during the corrective action excavation activities conducted in 2012 nor in any groundwater monitoring wells (other than MW-3) since they were installed through the most recent sampling of all wells in August 2013 and in the recent sampling of MW-4 and MW-5 in May 2014.	NA	NA
Source Removal Activities		Source removal activities consisted of soil excavation in the area of the former UST and included the exterior area in front of service bay numbers 5 through 8 and the AST storage area. Based on the results of previous investigations, the area of the former UST excavated was 15-feet wide (limited by the presence of a high pressure natural gas line to the west and a water line along the Site building to the east), by 60-feet long (the extent of known petroleum impacted soils), and by approximately 8-feet deep (the depth of first-encountered groundwater). The soil excavated was the maximum extent practicable as utilities on the western and eastern flanks limited the lateral extent of excavations in those directions.	2. Soil contamination at a depth below the excavation (9-foot bgs and deeper) has not been fully characterized.	Three additional soil borings are proposed, as discussed in the data gaps table.
		Approximately 400 pounds of an oxygen releasing compound (ORC) was applied to the overall excavation (i.e., the portion in communication with the first encountered water-bearing zone) prior to placement of backfill. Addition of the ORC was designed to stimulate and enhance bioremediation of petroleum hydrocarbons present in groundwater. The ORC selected for use was a		

Table 4-1Site Conceptual Model (Continued)

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		Regenesis product, which is a combination of calcium and oxyhydroxide [CaO(OH)2] and calcium hydroxide [Ca(OH)2].		
Contaminants of Concern		Based on the historical investigations conducted at the Site, TPH- GRO); TPH-DRO; O&G BTEX; MTBE; vinyl chloride (VC); 1,1- dichloroethane (1,1-DCA); cis-1,2-dichloroethene (cis-1,2-DCE); 2- methylnaphthalene; naphthalene; and low concentrations of metals (chromium, lead, nickel, and zinc) have been detected in soil and groundwater.	3. The former tank area was not assessed for VOCs after the 2012 source removal. In addition, the LTCP dictates that additional analyses are necessary in the area of HL-1.	Any additional soil or groundwater sample analysis will include the appropriate COC for the area to be assessed.
COCs in Soil		 Petroleum constituents in soil are less than those listed in the Table of the SWRCB's Low Threat Underground Storage Tank Closure Policy (LTCP) for commercial/industrial properties. Specifically: None of the soil samples collected from zero to 10 ft bgs contained benzene or ethylbenzene at concentrations above those listed in Table 1 of the LTCP. Benzene and ethylbenzene concentrations were evaluated using concentrations for commercial/industrial exposure because the Site is not anticipated to be developed for residential use and is not in a residential zone area (Table 1 of SWRCB 2012a). Soil samples were not analyzed for naphthalene and other polycyclic aromatic hydrocarbons (PAHs). However, benzene exclusion criteria are considered conservative for naphthalene given that naphthalene is less volatile than benzene (i.e., has a much lower solubility value and Henry's Law coefficient than benzene), is typically present in gasoline at much lower fractions (SWRCB 2012c). Using SWRCB staff precedent from recent case 	4. The soil in the former tank area was not assessed for VOCs after the 2012 source removal. In addition, the LTCP dictates that additional soil analyses are necessary in the area of HL-1.	Additional soil borings to be advanced, as described in the data gaps table.

Table 4-1Site Conceptual Model (Continued)

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		closure reviews, the lack of naphthalene data is not a data gap and site conditions can be assessed by using benzene concentrations (SWRCB 2013): "However, the relative concentration of naphthalene in soil can be conservatively estimated using published relative concentrations of naphthalene and benzene in gasoline." Gasoline mixtures contain approximately 3% benzene and 0.25% naphthalene (Potter, Thomas L. and Simmons, Kathleen, E. 1998). Therefore, benzene can be directly substituted for naphthalene concentrations with a safety factor of ten. Benzene concentrations are below the no significant risk values (NSRVs) (Table 1 of SWRCB 2012a); therefore, it is anticipated that the estimated naphthalene concentrations are also below the NSRVs (Table 1 of SWRCB 2012a) for commercial/ industrial direct contact and volatilization to outdoor air and utility worker direct contact.		
COCs in Groundwater		When initially installed in 1994, groundwater samples from MW-1 (upgradient) and MW-2 (cross-gradient to the UST area) had no detections of petroleum hydrocarbon constituents, VOCs, or metals, with the exception of bis (2-ethylhexyl) phthalate (DEHP) and zinc in MW-1 and chloroform in MW-2. However, MW-3 installed less than 20 feet down-gradient of the UST, had numerous COC detections.	5. Groundwater samples from former monitoring well MW-3 could not historically be collected due to the infrequent	Grab-groundwater samples will be collected from soil borings that encounter groundwater within the area of former MW-3.
		Initial sampling at the Site in 1994 and 1995 reported TPH-GRO at concentrations up to 290 micrograms per liter (μ g/L), TPH-DRO at concentrations up to 960 μ g/L, and BTEX concentrations (benzene and total xylenes) up to 29 μ g/L. Benzene was detected in well MW-3 at a concentration of 95 μ g/L in 1996, along with total xylenes of up to 53 μ g/L.	presence of LNAPL. Groundwater in this area requires additional assessment to determine the	
		The following VOCs were detected in MW-3: 8.3 μ g/L of vinyl chloride; 1.6 μ g/L of 1,1-dichloroethene; 17 μ g/L of 1,1-dichloroethene; 12 μ g/L of 1,1,1-dichloroethene; 1.2 μ g/L of 1,1,1-trichloroethene; 1.9 μ g/L of trichloroethene (TCE); and, 12 μ g/L of	current condition.	

Table 4-1Site Conceptual Model (Continued)

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		tetrachloroethene (PCE). Chromium, nickel, zinc, and total lead, have been sporadically		
		detected in all Site wells, with lead at concentrations ranging from 5.6 to 28 μ g/L. The presence of lead at similar concentrations in all Site wells is likely indicative of a background condition unrelated to the historical release of petroleum hydrocarbons from the UST.		
		Passive free product removal, using adsorbent socks, was implemented between August 2002 and December 2007. During this time, MW-3 was sampled only once, in March 2005, at which time TPH-GRO, TPH-DRO, benzene, and MTBE were detected above ESLs. Free product removal was discontinued in 2007, at the direction of ACEH, along with a requested evaluation of more aggressive remediation techniques.		
		On August 14, 2012, Stantec installed monitoring well MW-5 down- gradient of the remedial corrective excavation, to monitor post- remediation groundwater conditions. Analytical results from four consecutive sampling events of the four remaining Site wells since installing MW-5, indicated O&G (identified by hexane extractable materials [HEM] in the analytical reports) was detected in all four monitoring wells, with concentrations ranging from 910 μ g/L in MW- 1 to 1,800 μ g/L in MW-4. All detections of O&G were "J" qualified, meaning the results are an approximate value less than the reporting limit but greater than or equal to the method detection limit. MTBE was detected in only MW-5, with a concentration of 0.091 μ g/L, with the result being "J" qualified.		
		On May 21, 2014 at the direction of the ACEH, Stantec sampled wells MW-4 and MW-5 and analyzed groundwater for the Full Scan of VOCs by EPA Method 8260B and for SVOCs by EPA Method 8270C. Analytical results indicate that there were no detections		

Table 4-1Site Conceptual Model (Continued)

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		above the method detection limits of any analytes in the samples.		
Risk Evaluation		above the method detection limits of any analytes in the samples. The Site is and has been a tire changing facility since circa 1965 and is zoned by Alameda County as Castro Valley Business District, Subarea 7 (Intensive Retail Core, Castro Valley Central Business District Specific Plan), which allows for commercial uses. A Site specific risk evaluation for this Site is not necessarily applicable as the Site is being compared to the LTCP, which factors in "that many petroleum release cases pose a low threat to human health and the environment." "In the absence of unique attributes of a case or site-specific conditions that demonstrably increase the risk associated with residual petroleum constituents, cases that meet the general and media-specific criteria described in the policy pose a low threat to human health, safety or the environment and are appropriate for closure pursuant to Health and the environment through contact with any or all of the following contaminated media: groundwater, surface water, soil, and soil vapor. Although this contact can occur through ingestion, dermal contact, or inhalation of the various media, the most common drivers of health risk are ingestion of groundwater from drinking water wells, inhalation of vapors accumulated in buildings, contact with near surface contaminated soil, and inhalation of vapors in the outdoor environment. To simplify implementation, these media and pathways have been evaluated and the most common exposure	NA	NA
		scenarios have been combined into three media-specific criteria: 1. Groundwater		
		2. Vapor intrusion to indoor air		
		3. Direct contact and outdoor air exposure		

Table 4-1Site Conceptual Model (Continued)

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		1) Groundwater-specific criteria is met by the facts that:		
		 a) The contaminant plume has no water quality exceedances for TPH-GRO, TPH-DRO, benzene, ethylbenzene, MTBE, or naphthalene as presented in the May 2014 groundwater sample results from MW-4 and MW-5 (Table and Certified Analytical Reports attached). 		
		b) There is no free product		
		c) The nearest existing water supply well or surface water body is greater than 1000 feet from the defined plume boundary.		
		2) The facility is still an active commercial tire and auto service center, with workers constantly coming in contact with petroleum hydrocarbon and solvent products all day/every day. Therefore, as the LTCP indicates: "Exposures to petroleum vapors associated with historical fuel system releases are comparatively insignificant relative to exposures from small spills and fugitive vapor releases that typically occur at fueling facilities. Therefore, satisfaction of the media-specific criteria for petroleum vapor intrusion to indoor air is not required at active commercial petroleum fueling facilities, except in cases where release characteristics can be reasonably believed to post an unacceptable health risk."		
		3) For direct contact with contaminated soil, the exposure route for incidental ingestion, dermal contact, and dust inhalation for a residential and commercial/industrial worker are considered incomplete. These exposure routes for the construction worker are considered a potentially complete pathway, depending on the nature of the work and duration at the Site. For volatilization from soil to outdoor air, vapor inhalation is the potential exposure pathway. Given dilution		

Table 4-1Site Conceptual Model (Continued)

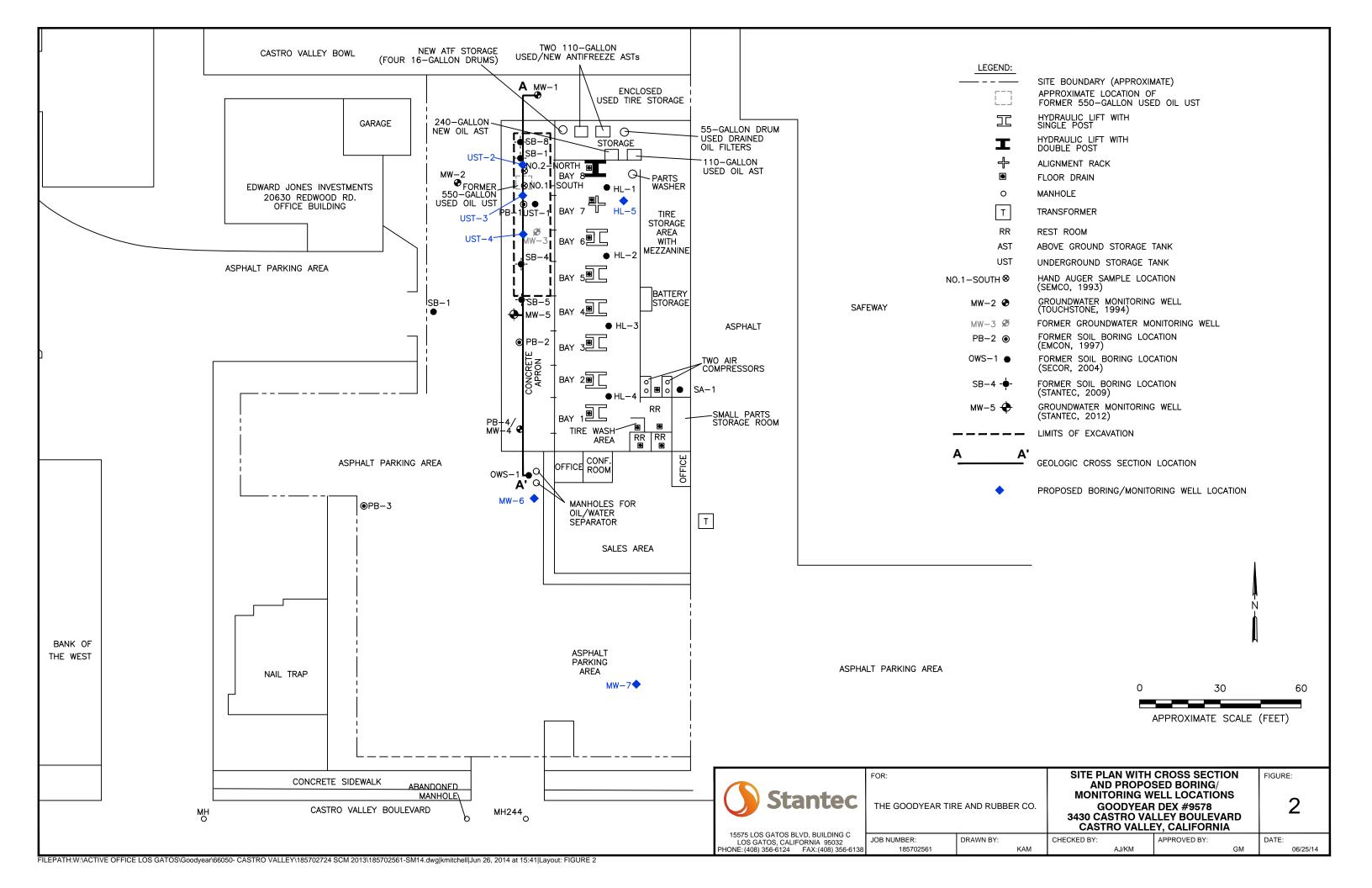
CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		effects that take place outdoors, this exposure pathway is considered incomplete for all three potential receptors. For indoor air, this exposure pathway is considered potentially complete for all three potential receptors.		
		For leaching of contaminants from soil to groundwater, the ingestion and dermal pathways for groundwater are considered incomplete, except for the construction worker, as shallow groundwater is not utilized as a drinking water source at the Site. For the construction worker, incidental ingestion and dermal contact is a potentially complete pathway. For volatilization from groundwater to outdoor air, the exposure pathway is considered insignificant due to dilution effects that take place outdoors. For indoor air, volatilization from groundwater to indoor air is considered a potentially complete pathway.		

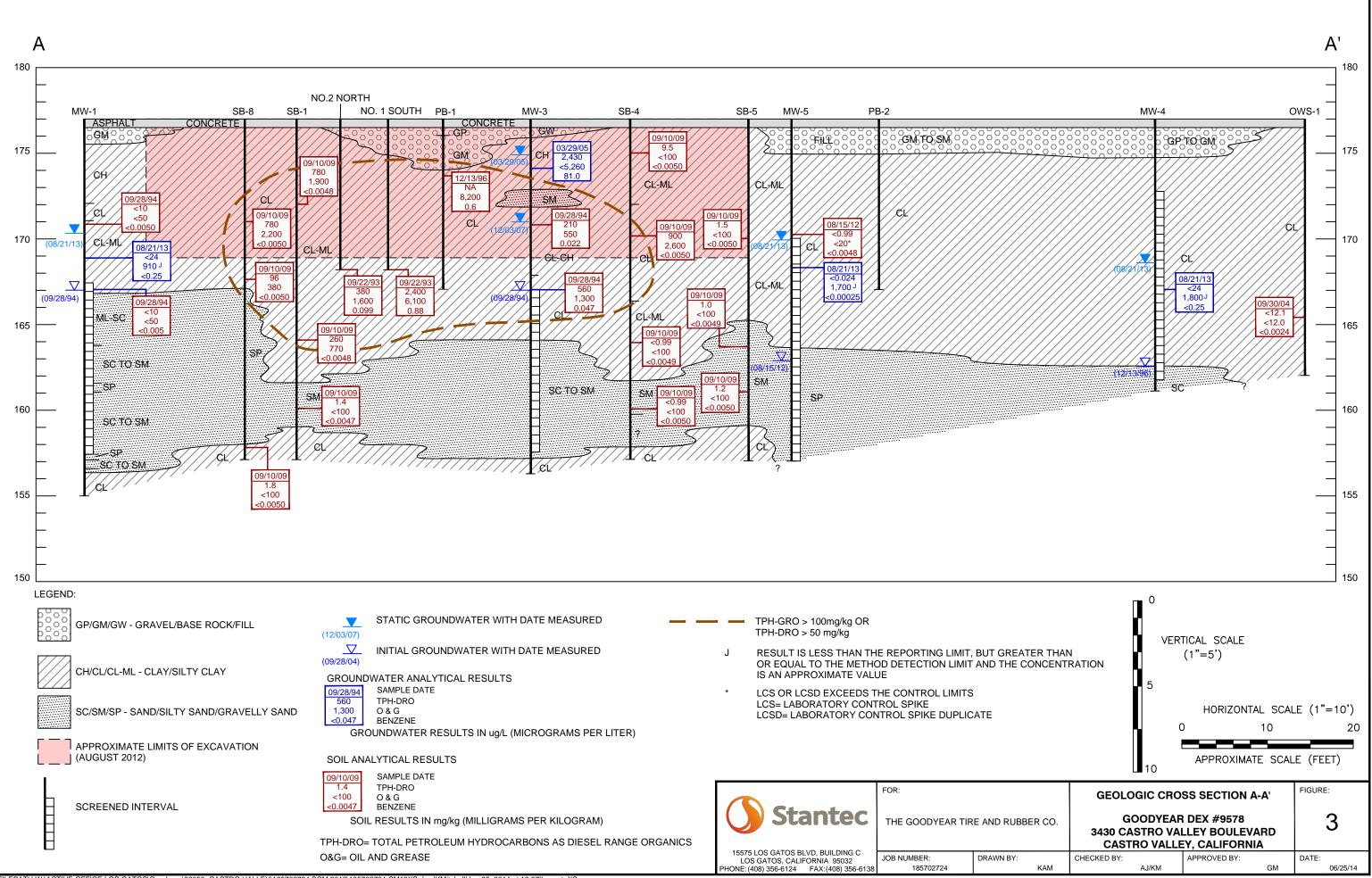
Table 4-1Site Conceptual Model (Continued)

Item	Data Gap Item #	Proposed Investigation	Rationale	Analyses
1	Additional soil and groundwater data is needed in the vicinity of the former UST and HL-1.	Three soil borings will be drilled to collect soil and grab-groundwater samples in the former UST area. A single soil boring will be drilled to collect soil samples in the area of HL-1. Soil borings will be drilled with a limited access drilling rig to first encountered groundwater (approximately 15 feet bgs). Soil will be logged continuously using the Unified Soil Classification System; samples will be collected at 3 foot intervals for analysis.	The proposed borings and groundwater sampling in the former UST area will be used to determine the current condition of soil and groundwater in the source area post- excavation. The proposed sampling in this area will also assess the effectiveness of the ORC application. This data gap will be reevaluated after the proposed investigation in order to determine if additional assessment of this area is necessary to adequately close this particular data gap.	Former UST Area: Soil and groundwater samples will be analyzed for TPH-GRO; TPH- DRO; BTEX; VOCs; and PAHs. Former HL-1 Area: Soil sample will be analyzed for TPH- GRO; TPH-DRO; Benzene; Ethylbenzene; Naphthalene; and PAHs.
		Grab groundwater samples will also be collected from the first encountered groundwater in each soil boring in the former UST area. Please see attached Figure 2 for locations.	Proposed boring HL-5 will be located adjacent to former boring HL-1 in order to evaluate this area for each of the parameters required under the LTCP. This data gap will be reevaluated after the proposed investigation in order to determine if additional assessment of this area is necessary to adequately close this particular data gap.	

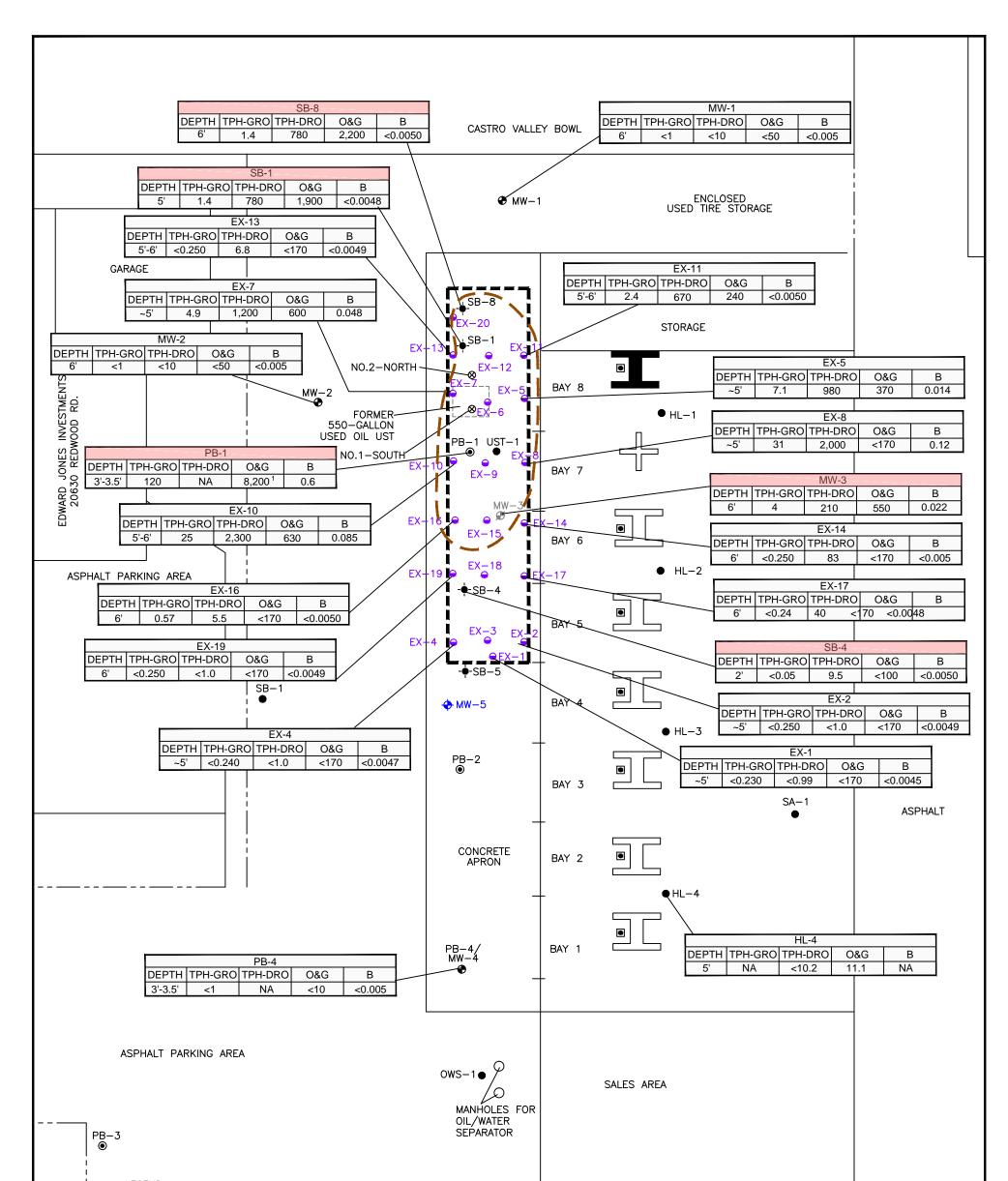
Table 5-1Data Gaps Summary and Proposed Investigation

ltem	Data Gap Item #	Proposed Investigation	Rationale	Analyses
2	Soil contamination at a depth below the excavation (9-foot bgs and deeper) has not been fully characterized in the former UST area.	Three soil borings (UST- 2, UST-3, and UST-4) will be drilled through the excavation backfill immediately near previous borings No.2- North, No1 South, UST- 1, and MW-3. The soil borings will be drilled with a limited access drilling rig to first encountered groundwater (approximately 15 feet bgs). Soil will be logged continuously using the Unified Soil Classification System; samples will be collected immediately below the excavation backfill (at approximately 9 feet bgs) and at 3 foot intervals to the target depth for analysis (a couple of feet into groundwater sample will also be collected from the first encountered groundwater for analysis. Please see attached Figure 2 for locations.	Soil samples collected below the excavation backfill will be compared to soil TPH sample results previously collected in the vicinity to evaluate the effectiveness of the ORC that was applied in the excavation prior to backfilling. Grab-groundwater analytical results will be used to fill additional data gaps about groundwater impacts in this area.	Soil and groundwater samples will be analyzed for: TPH-GRO; TPH- DRO; BTEX; VOCs; and PAHs.
3	The former tank area was not assessed for VOCs after the 2012 source removal. In addition, the LTCP dictates that additional analyses are necessary in the area of HL-1.	See Items 1 and 2	See Items 1 and 2	See Items 1 and 2


 Table 5-1


 Data Gaps Summary and Proposed Investigation (Continued)

Item	Data Gap Item #	Proposed Investigation	Rationale	Analyses
4	The soil in the former tank area was not assessed for VOCs after the 2012 source removal. In addition, the LTCP dictates that additional soil analyses are necessary in the area of HL-1.	See Items 1 and 2	See Items 1 and 2	See Items 1 and 2
5	Groundwater samples from former monitoring well MW-3 could not historically be collected due to the infrequent presence of LNAPL. Groundwater in this area requires additional assessment to determine the current condition.	See Items 1 and 2	See Items 1 and 2	See Items 1 and 2


Table 5-1Data Gaps Summary and Proposed Investigation (Continued)

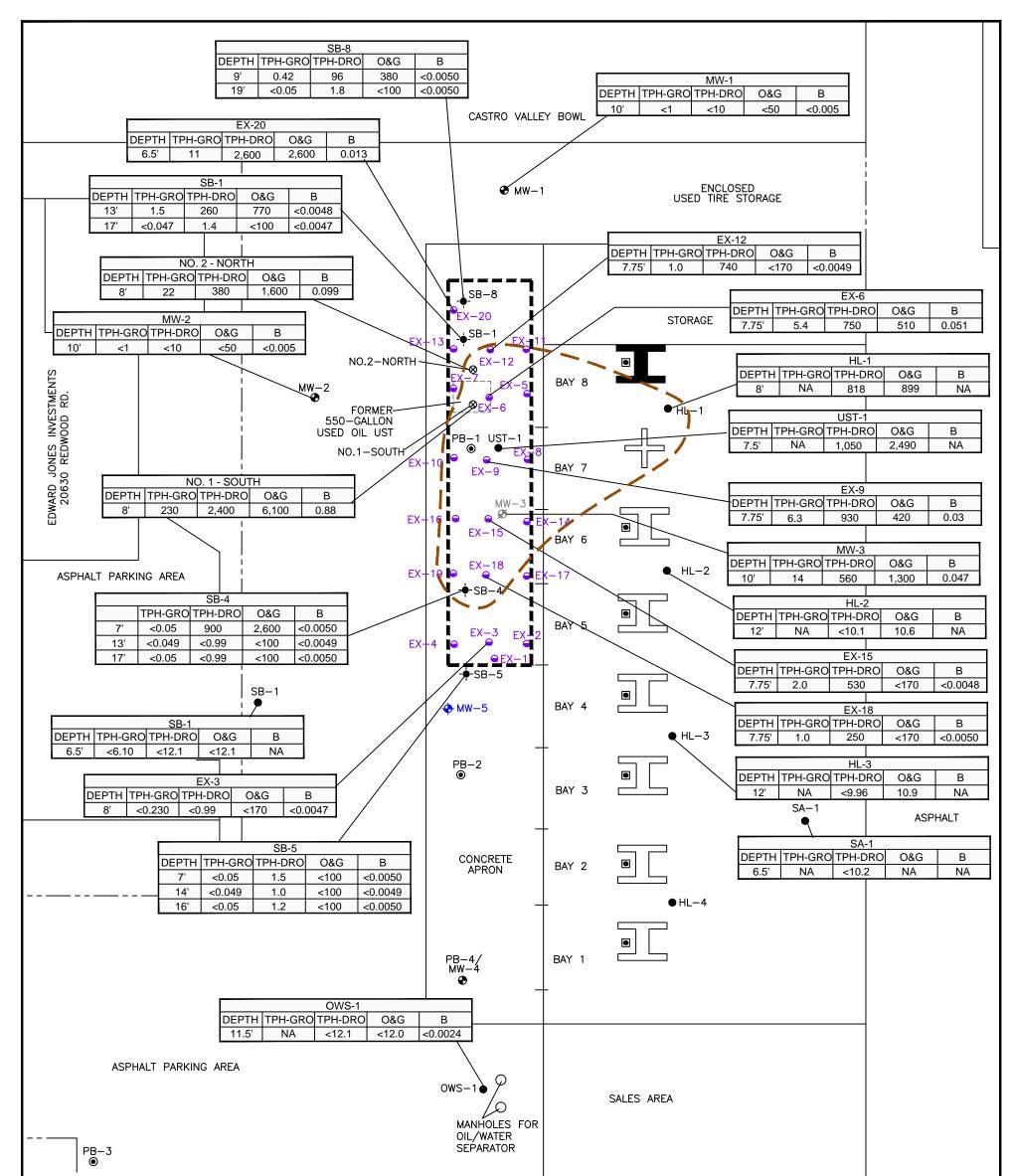
REVISED FIGURES

FILEPATH:W:\ACTIVE OFFICE LOS GATOS\Goodyear\66050- CASTRO VALLEY\185702724 SCM 2013\185702724-SM13XS.dwg|KMitchell|Jun 25, 2014 at 18:07|Layout: XS

LEGEND:

I I NO.1−SOUTH⊗ I	HAND AUGER SAMPLE LOCATION (SEMCO, 1993)		SB-4 SAMPLE LOCATION REMOV		INT	
MW-2 €	GROUNDWATER MONITORING WELL (TOUCHSTONE, 1994)					
MW−3 Ø	FORMER GROUNDWATER MONITORING WELL		TPH−GR0 >100mg/kg 0	R		1
PB−2 ●	FORMER SOIL BORING LOCATION (EMCON, 1997)	TPH-	TPH–DR0 >50mg/kg -GR0= TOTAL PETROLEUM HYDROCARBONS	AS GASOLINE RANGE	ORGANICS	
OWS−1 ●	FORMER SOIL BORING LOCATION (SECOR, 2004)		-DRO= TOTAL PETROLEUM HYDROCARBONS = OIL AND GREASE	AS DIESEL RANGE OF	RGANICS	ř N
SB−4 -∳-	FORMER SOIL BORING LOCATION (STANTEC, 2009)		BENZENE NOT ANALYZED			
₩₩−5 ♦	GROUNDWATER MONITORING WELL (STANTEC, 2012)	SOIL	ANALYTICAL RESULTS IN MILLIGRAMS PE	R KILOGRAM (mg/kg)) 0 15	
EX-1 👄	SOIL SAMPLE LOCATION (STANTEC, 2012)		HISTORICAL GROUNDWATER DATA AS REFER SECOR GROUNDWATER MONITORING REPORT			
I I					APPROXIMATE SCA	LE (FEET)
			FOR: THE GOODYEAR TIRE AND RUBBER CO.	IN UNSATUR GOODYE/ 3430 CASTRO V	T OF CONTAMINATES ATED ZONE SOIL AR DEX #9578 /ALLEY BOULEVARD LEY, CALIFORNIA	FIGURE: 7

30

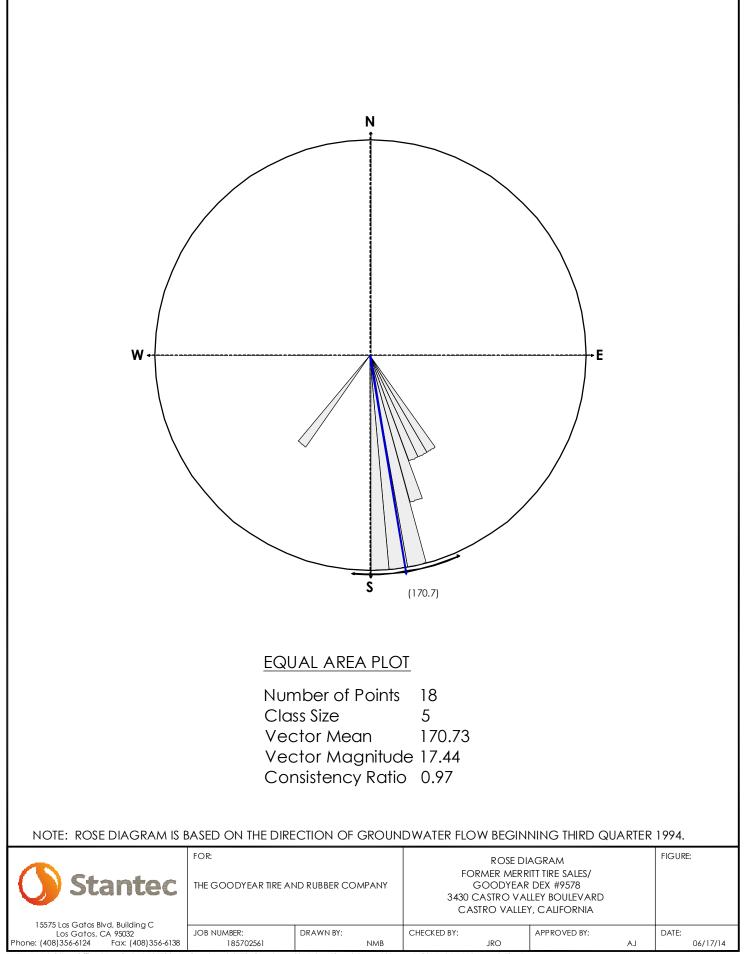

DATE:

GM

06/25/14

15575 LOS GATOS BLVD, BUILDING C LOS GATOS, CALIFORNIA 95032 PHONE: (408) 356-6124 FAX: (408) 356-6138 JOB NUMBER: DRAWN BY: CHECKED BY: APPROVED BY: 182602724 KAM ΚM

ATH:W:\ACTIVE OFFICE LOS GATOS\Goodyear\66050- CASTRO VALLEY\185702724 SCM 2013\185702724-SM13D.dwg|KMitchell|Jun 25, 2014 at 17:43|Layout: 7- SOIL-UNSAT



LEGEND:

- HAND AUGER SAMPLE LOCATION (SEMCO, 1993) NO.1−SOUTH ⊗ GROUNDWATER MONITORING WELL (TOUCHSTONE, 1994) MW−2 € FORMER GROUNDWATER MONITORING WELL MW−3 Ø FORMER SOIL BORING LOCATION (EMCON, 1997) PB−2 ⊙ OWS−1 ● FORMER SOIL BORING LOCATION (SECOR, 2004) FORMER SOIL BORING LOCATION (STANTEC, 2009) SB-4 -GROUNDWATER MONITORING WELL MW-5 🔶 (STANTEC, 2012) EX-1 👄 SOIL SAMPLE LOCATION (STANTEC, 2012)
- TPH-GRO >100mg/kg 0R TPH-DRO >50mg/kg TPH-DRO >50mg/kg TPH-DRO = TOTAL PETROLEUM HYDROCARBONS AS GASOLINE RANGE ORGANICS TOTAL PETROLEUM HYDROCARBONS AS DIESEL RANGE ORGANICS O&G= OIL AND GREASE B= BENZENE NA= NOT ANALYZED SOIL ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM (mg/kg) 0 15 30 APPROXIMATE SCALE (FEET) FOR: LATERAL EXTENT OF CONTAMINATES IN SMEAR AND SATURDETED SOIL ZONE FIGURE:

Stantec 15575 LOS GATOS BLVD, BUILDING C	THE GOODYEAR TIR	E AND RUBBER CO.	SATURATEL GOODYEAR 3430 CASTRO VA	AR AND) SOIL ZONE 1 DEX #9578 LLEY BOULEVARD EY, CALIFORNIA		8	
LOS GATOS, CALIFORNIA 95032	JOB NUMBER:	DRAWN BY:	CHECKED BY:	APPROVED BY:	D	DATE:	
PHONE: (408) 356-6124 FAX: (408) 356-6138	185702724	KAM	AJ/KM	GM	Л	06/25/14	4

FILEPATH:W:\ACTIVE OFFICE LOS GATOS\Goodyear\66050- CASTRO VALLEY\185702724 SCM 2013\185702724-SM13D.dwg|KMitchell|Jun 25, 2014 at 17:49|Layout: 8- SOIL-SAT

FILEPATH:P:\Other Offices\Los Gatos\185702561_Goodyear\9578_Goodyear 2014.dwg | jopalekopsahl | Jun 17, 2014 at 16:16 | Layout: Fig_Rose

2012 WASTE DISPOSAL CHARACTERIZATION LABORATORY REPORTS

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-43926-1

Client Project/Site: Goodyear - DEX # 9578.3430 Revision: 1

For:

Stantec Consulting Corp. 15575 Los Gatos Blvd Bldg. C Los Gatos, California 95032

Attn: Ms. Alicia Falk

Asanfilal

Authorized for release by: 9/19/2012 4:49:22 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	19
Lab Chronicle	20
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	28

Definitions/Glossary

Client: Stantec Consulting Corp. Project/Site: Goodyear - DEX # 9578.3430

Glossary

Glossary		 3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	Λ
₽	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CNF	Contains no Free Liquid	3
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
EDL	Estimated Detection Limit	
EPA	United States Environmental Protection Agency	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	8
PQL	Practical Quantitation Limit	
QC	Quality Control	9
RL	Reporting Limit	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 720-43926-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-43926-1

Revised Report on 9/19/12 **Comments** No additional comments.

Receipt

The samples were received on 8/14/2012 7:08 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.2° C.

GC/MS VOA

No other analytical or quality issues were noted.

GC/MS Semi VOA

No analytical or quality issues were noted.

GC VOA

No analytical or quality issues were noted.

GC Semi VOA

Method(s) 8015B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 119074 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

Metals

No other analytical or quality issues were noted.

General Chemistry

Method(s) 9071B: Insufficient sample volume was available to perform batch matrix spike/matrix spike duplicate (MS/MSD) associated with batch 46801. The laboratory control sample (LCS) was performed in duplicate to provide precision data for this batch.

Method(s) 9071B: Analysis for Hexane Extractable Material (HEM) was performed for the following sample(s): EX-1 (720-43926-1), EX-2 (720-43926-2), EX-3 (720-43926-3), EX-4 (720-43926-4). Since the HEM result(s) was below the reporting limit (RL), the result(s) for Silica Gel Treated - Hexane Extractable Material (SGT-HEM) was reported as a non-detect. All HEM quality control criteria were met.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

TestAmerica Pleasanton 9/19/2012

	Lab Sample ID: 720-43926-1
5	Lab Sample ID: 720-43926-2
6	
	Lab Sample ID: 720-43926-3
8	Lab Sample ID: 720-43926-4
9	
	Lab Sample ID: 720-43926-5

No Detections

No Detections

Client Sample ID: EX-3

Client Sample ID: EX-1

Client Sample ID: EX-2

No Detections

Client Sample ID: EX-4

No Detections

Client Sample ID: EX-1,2,3,4 Analyte Result Qualifier Prep Type RL MDL Unit Dil Fac D Method Chromium 45 1.9 4 6010B Total/NA mg/Kg Nickel 35 1.9 4 6010B Total/NA mg/Kg Lead 8.1 1.9 mg/Kg 4 6010B Total/NA 4 6010B Total/NA Zinc 49 5.8 mg/Kg

Method: 6010B - Metals (ICP)

Client Sample ID: EX-1,2,3,4 Date Collected: 08/13/12 22:18 Date Received: 08/14/12 07:08							Lab S	ample ID: 720- Matri	43926-5 x: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.48		mg/Kg		08/15/12 18:32	08/16/12 18:45	4
Chromium	45		1.9		mg/Kg		08/15/12 18:32	08/16/12 18:45	4
Nickel	35		1.9		mg/Kg		08/15/12 18:32	08/16/12 18:45	4
Lead	8.1		1.9		mg/Kg		08/15/12 18:32	08/16/12 18:45	4
Zinc	49		5.8		mg/Kg		08/15/12 18:32	08/16/12 18:45	4

Client Sample ID: Method Blank

5

6 7 9 10 11 12 13 14

Method: 8260B - Volatile Organic Compounds (GC/MS)
Γ
Lab Sample ID: MB 720-119100/1-A

Lab Sample ID: MB 720-11910	JU/ 1-A								Chefit 3	ample ID: Metho	
Matrix: Solid										Prep Type:	
Analysis Batch: 119084										Prep Batch	: 11910
		B MB									
Analyte		It Qualifier	RL		MDL	-			Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether		D	5.0			ug/Kg			14/12 17:00	08/14/12 17:33	
Benzene		D	5.0			ug/Kg		08/	14/12 17:00	08/14/12 17:33	
Ethylene Dibromide	N	D	5.0			ug/Kg		08/	14/12 17:00	08/14/12 17:33	
1,2-Dichloroethane	N	D	5.0			ug/Kg		08/	14/12 17:00	08/14/12 17:33	
Ethylbenzene	N	D	5.0			ug/Kg		08/	14/12 17:00	08/14/12 17:33	
Toluene	N	D	5.0			ug/Kg		08/	14/12 17:00	08/14/12 17:33	
Xylenes, Total	Ν	D	10			ug/Kg		08/	14/12 17:00	08/14/12 17:33	
Gasoline Range Organics (GRO) -C5-C12	Ν	D	250			ug/Kg		08/	14/12 17:00	08/14/12 17:33	
	M	IB MB									
Surrogate	%Recove		Limits						Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene			<u>45 _ 131</u>						14/12 17:00		
1,2-Dichloroethane-d4 (Surr)		06	60 - 140						14/12 17:00		
Toluene-d8 (Surr)	10)2	58 - 140					08/	14/12 17:00	08/14/12 17:33	
Lab Sample ID: LCS 720-1191	100/2-A							Clien	t Sample	ID: Lab Control	
Matrix: Solid										Prep Type:	
Analysis Batch: 119084										Prep Batch	: 11910
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Quali	ifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether			50.0	56.5			ug/Kg		113	70 - 144	
Benzene			50.0	54.8			ug/Kg		110	70 - 130	
Ethylene Dibromide			50.0	64.1			ug/Kg		128	70 - 140	
1,2-Dichloroethane			50.0	56.2			ug/Kg		112	70 - 130	
Ethylbenzene			50.0	55.7			ug/Kg		111	80 - 137	
Toluene			50.0	53.6			ug/Kg		107	80 - 128	
	LCS L										
Surrogate	%Recovery Q	ualifier	Limits								
4-Bromofluorobenzene	113	_	45 - 131								
1,2-Dichloroethane-d4 (Surr)	106		60 - 140								
Toluene-d8 (Surr)	111		58 - 140								
Lab Sample ID: LCS 720-1191	100/4-A							Clien	t Sample	ID: Lab Control	Samp
Matrix: Solid										Prep Type:	
Analysis Batch: 119084										Prep Batch	
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Quali	ifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)			1000	949			ug/Kg		95	61 - 128	
-C5-C12											
	LCS L	cs									
Surrogate	%Recovery Q		Limits								
4-Bromofluorobenzene	106		45 - 131								
1,2-Dichloroethane-d4 (Surr)	106		40 - 131 60 - 140								
Toluene-d8 (Surr)	112		58 - 140								

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-119100/3-A	
Matrix: Solid	

Lab Sample ID: LCSD 720-119100/3-A Client Sam							Lab Contro	I Sampl	e Dup
Matrix: Solid							Prep T	ype: Tot	al/NA
Analysis Batch: 119084							Prep I	Batch: 1	19100
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	50.0	54.5		ug/Kg		109	70 _ 144	4	20
Benzene	50.0	55.4		ug/Kg		111	70 - 130	1	20
Ethylene Dibromide	50.0	60.2		ug/Kg		120	70 _ 140	6	20
1,2-Dichloroethane	50.0	54.1		ug/Kg		108	70 - 130	4	20
Ethylbenzene	50.0	57.3		ug/Kg		115	80 - 137	3	20
Toluene	50.0	54.8		ug/Kg		110	80 - 128	2	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene			45 _ 131
1,2-Dichloroethane-d4 (Surr)	106		60 - 140
Toluene-d8 (Surr)	111		58 - 140

Lab Sample ID: LCSD 720-119100/5-A				Clie	nt Sam	ple ID:	Lab Contro	ol Sampl	e Dup	
Matrix: Solid							Prep 1	Type: To	tal/NA	÷
Analysis Batch: 119084							Prep	Batch: 1	19100	
	Spike	LCSD	LCSD				%Rec.		RPD	2
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics (GRO)	1000	973		ug/Kg		97	61 _ 128	2	20	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		45 - 131
1,2-Dichloroethane-d4 (Surr)	100		60 - 140
Toluene-d8 (Surr)	113		58 - 140

Lab Sample ID: MB 720-119130/1-A Matrix: Solid Analysis Batch: 119120

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		5.0		ug/Kg		08/15/12 07:00	08/15/12 08:44	1
Benzene	ND		5.0		ug/Kg		08/15/12 07:00	08/15/12 08:44	1
Ethylene Dibromide	ND		5.0		ug/Kg		08/15/12 07:00	08/15/12 08:44	1
1,2-Dichloroethane	ND		5.0		ug/Kg		08/15/12 07:00	08/15/12 08:44	1
Ethylbenzene	ND		5.0		ug/Kg		08/15/12 07:00	08/15/12 08:44	1
Toluene	ND		5.0		ug/Kg		08/15/12 07:00	08/15/12 08:44	1
Xylenes, Total	ND		10		ug/Kg		08/15/12 07:00	08/15/12 08:44	1
Gasoline Range Organics (GRO) -C5-C12	ND		250		ug/Kg		08/15/12 07:00	08/15/12 08:44	1

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	109		45 - 131	08/15/12 07:00	08/15/12 08:44	1
1,2-Dichloroethane-d4 (Surr)	98		60 - 140	08/15/12 07:00	08/15/12 08:44	1
Toluene-d8 (Surr)	109		58 - 140	08/15/12 07:00	08/15/12 08:44	1

9/19/2012

TestAmerica Pleasanton

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 119130

5

7

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-11	9130/2-A					Client	Sample	ID: Lab Control Sample
Matrix: Solid								Prep Type: Total/NA
Analysis Batch: 119120								Prep Batch: 11913
		Spike	LCS	LCS				%Rec.
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether		50.0	51.7		ug/Kg		103	70 - 144
Benzene		50.0	50.4		ug/Kg		101	70 - 130
Ethylene Dibromide		50.0	50.8		ug/Kg		102	70 - 140
1,2-Dichloroethane		50.0	46.1		ug/Kg		92	70 _ 130
Ethylbenzene		50.0	51.3		ug/Kg		103	80 - 137
Toluene		50.0	51.1		ug/Kg		102	80 - 128
	LCS LCS							
Surrogate	%Recovery Qualifier	l imits						

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	113		45 _ 131
1,2-Dichloroethane-d4 (Surr)	101		60 - 140
Toluene-d8 (Surr)	111		58 _ 140

Lab Sample ID: LCS 720-119130/4-A Matrix: Solid					Client	Sample	ID: Lab Control Sample Prep Type: Total/NA	
Analysis Batch: 119120							Prep Batch: 119130	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	1000	897		ug/Kg		90	61 - 128	
-C5-C12								

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	115		45 - 131
1,2-Dichloroethane-d4 (Surr)	104		60 - 140
Toluene-d8 (Surr)	112		58 - 140

Lab Sample ID: LCSD 720-119130/3-A Matrix: Solid

Analysis Batch: 119120								Batch: 1	10120
	Spike	LCSD	LCSD				%Rec.	Saten. 1	RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	50.0	57.2		ug/Kg		114	70 - 144	10	20
Benzene	50.0	53.2		ug/Kg		106	70 - 130	5	20
Ethylene Dibromide	50.0	58.1		ug/Kg		116	70 _ 140	13	20
1,2-Dichloroethane	50.0	50.7		ug/Kg		101	70 - 130	10	20
Ethylbenzene	50.0	52.0		ug/Kg		104	80 - 137	1	20
Toluene	50.0	50.9		ug/Kg		102	80 - 128	0	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	111		45 _ 131
1,2-Dichloroethane-d4 (Surr)	102		60 - 140
Toluene-d8 (Surr)	113		58 - 140

Lab Sample ID: LCSD 720-119130/5-A				Cli	ient Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid							Prep 1	Type: To	tal/NA
Analysis Batch: 119120							Prep	Batch: 1	19130
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	1000	933		ug/Kg		93	61 - 128	4	20

-C5-C12

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Lab Sample ID: LCSD 720-119130/5-A

58 _ 140

Prep Type: Total/NA Prep Batch: 119130

Client Sample ID: Lab Control Sample Dup

1 2 3 4 5 6 7 8 9 10

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 119111

npounds (GC/MS)		

LCSDLCSDSurrogate%RecoveryQualifierLimits4-Bromofluorobenzene11145 - 1311,2-Dichloroethane-d4 (Surr)10360 - 140

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

112

Lab Sample ID: MB 720-119111/1-A Matrix: Solid

Analysis Batch: 119203

Matrix: Solid

Toluene-d8 (Surr)

Analysis Batch: 119120

Analysis Batch: 119203	MD	мв						Prep Batch	: 119111
Analyte	Result		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Bis(2-chloroethyl)ether	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2-Chlorophenol	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
1,3-Dichlorobenzene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
1,4-Dichlorobenzene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Benzyl alcohol	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
1,2-Dichlorobenzene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2-Methylphenol	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Methylphenol, 3 & 4	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
N-Nitrosodi-n-propylamine	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Hexachloroethane	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Nitrobenzene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Isophorone	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2-Nitrophenol	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2,4-Dimethylphenol	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Bis(2-chloroethoxy)methane	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2,4-Dichlorophenol	ND		0.33		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
1,2,4-Trichlorobenzene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Naphthalene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
4-Chloroaniline	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Hexachlorobutadiene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
4-Chloro-3-methylphenol	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2-Methylnaphthalene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Hexachlorocyclopentadiene	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2,4,6-Trichlorophenol	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2,4,5-Trichlorophenol	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2-Chloronaphthalene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2-Nitroaniline	ND		0.33		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Dimethyl phthalate	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Acenaphthylene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
3-Nitroaniline	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Acenaphthene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2,4-Dinitrophenol	ND		0.66		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
4-Nitrophenol	ND		0.33		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Dibenzofuran	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2,4-Dinitrotoluene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2,6-Dinitrotoluene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Diethyl phthalate	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1

Lab Sample ID: MB 720-119111/1-A

Client Sample ID: Method Blank

Matrix: Solid								Prep Type: 1	
Analysis Batch: 119203	МВ	МВ						Prep Batch	: 119111
Analyte	MB Result		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chlorophenyl phenyl ether	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Fluorene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
4-Nitroaniline	ND		0.33		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
2-Methyl-4,6-dinitrophenol	ND		0.33		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
N-Nitrosodiphenylamine	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
4-Bromophenyl phenyl ether	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Hexachlorobenzene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Pentachlorophenol	ND		0.33		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Phenanthrene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Anthracene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Di-n-butyl phthalate	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Fluoranthene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Pyrene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Butyl benzyl phthalate	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
3,3'-Dichlorobenzidine	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Benzo[a]anthracene	ND		0.33		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Bis(2-ethylhexyl) phthalate	ND		0.33		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Chrysene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Di-n-octyl phthalate	ND		0.17		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Benzo[b]fluoranthene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Benzo[a]pyrene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Benzo[k]fluoranthene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Indeno[1,2,3-cd]pyrene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Benzo[g,h,i]perylene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Benzoic acid	ND		0.33		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Azobenzene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
Dibenz(a,h)anthracene	ND		0.067		mg/Kg		08/14/12 22:09	08/16/12 12:37	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	80		21 - 98				08/14/12 22:09	08/16/12 12:37	1
2-Fluorobiphenyl	87		30 - 112				08/14/12 22:09	08/16/12 12:37	1
Terphenyl-d14	95		32 - 117				08/14/12 22:09	08/16/12 12:37	1
2-Fluorophenol	86		28 - 98				08/14/12 22:09	08/16/12 12:37	1
Phenol-d5	80		23 - 101				08/14/12 22:09	08/16/12 12:37	1
2,4,6-Tribromophenol	80		37 - 114				08/14/12 22:09	08/16/12 12:37	1

Lab Sample ID: LCS 720-119111/2-A Matrix: Solid Analysis Batch: 119203

Analysis Batch: 119203							Prep B	atch: 119111
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Phenol	1.66	1.23		mg/Kg		74	48 - 115	
Bis(2-chloroethyl)ether	1.66	1.24		mg/Kg		74	45 - 115	
2-Chlorophenol	1.66	1.22		mg/Kg		74	48 - 115	
1,3-Dichlorobenzene	1.66	1.16		mg/Kg		70	41 _ 115	
1,4-Dichlorobenzene	1.66	1.09		mg/Kg		66	40 - 115	
Benzyl alcohol	1.66	1.33		mg/Kg		80	54 _ 115	
1,2-Dichlorobenzene	1.66	1.18		mg/Kg		71	44 - 115	
2-Methylphenol	1.66	1.27		mg/Kg		76	54 - 115	

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-119111/2-A Matrix: Solid					Client	Sample	BID: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 119203							Prep Batch: 119111
Analysis Batch. 110200	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Methylphenol, 3 & 4	3.32	2.47		mg/Kg		74	42 - 115
N-Nitrosodi-n-propylamine	1.66	1.38		mg/Kg		83	46 ₋ 115
Hexachloroethane	1.66	1.14		mg/Kg		69	44 - 115
Nitrobenzene	1.66	1.22		mg/Kg		73	48 - 115
Isophorone	1.66	1.31		mg/Kg		79	54 ₋ 115
2-Nitrophenol	1.66	1.21		mg/Kg		73	48 - 115
2,4-Dimethylphenol	1.66	1.25		mg/Kg		75	52 - 115
Bis(2-chloroethoxy)methane	1.66	1.30		mg/Kg		78	46 ₋ 115
2,4-Dichlorophenol	1.66	1.26		mg/Kg		76	49 - 100
1,2,4-Trichlorobenzene	1.66	1.21		mg/Kg		73	47 _ 115
Naphthalene	1.66	1.25		mg/Kg		75	44 - 115
4-Chloroaniline	1.66	1.04		mg/Kg		62	30 - 115
Hexachlorobutadiene	1.66	1.18		mg/Kg		71	44 - 115
4-Chloro-3-methylphenol	1.66	1.33		mg/Kg		80	58 - 115
2-Methylnaphthalene	1.66	1.21		mg/Kg		73	49 - 115
Hexachlorocyclopentadiene	1.66	1.23		mg/Kg		74	42 - 132
2,4,6-Trichlorophenol	1.66	1.32		mg/Kg		79	45 - 115
2,4,5-Trichlorophenol	1.66	1.27		mg/Kg		76	48 - 115
2-Chloronaphthalene	1.66	1.30		mg/Kg		78	52 - 115
2-Nitroaniline	1.66	1.42		mg/Kg		86	54 - 115
Dimethyl phthalate	1.66	1.35		mg/Kg		82	64 - 119
Acenaphthylene	1.66	1.49		mg/Kg		90	61 - 129
3-Nitroaniline	1.66	1.10		mg/Kg		81	50 - 115
Acenaphthene	1.66	1.34		mg/Kg		81	50 - 115
2,4-Dinitrophenol	1.66	ND		mg/Kg		26	15 - 115
4-Nitrophenol	1.66	1.38		mg/Kg		83	54 - 125
Dibenzofuran	1.66	1.33		mg/Kg		80	55 - 115
2,4-Dinitrotoluene	1.66	1.53		mg/Kg		92	57 - 115
2,6-Dinitrotoluene	1.66	1.60		mg/Kg		86	54 - 119
Diethyl phthalate	1.66	1.39		mg/Kg		84	49 - 117
4-Chlorophenyl phenyl ether	1.66	1.38		mg/Kg		83	57 - 115
Fluorene	1.66	1.38		mg/Kg		83	54 - 115
4-Nitroaniline	1.66	1.41		mg/Kg		85	59 ₋ 115
2-Methyl-4,6-dinitrophenol	1.66	0.879		mg/Kg		53	39 ₋ 115
N-Nitrosodiphenylamine	1.66	1.41		mg/Kg		85	56 - 115
4-Bromophenyl phenyl ether	1.66	1.41		mg/Kg		85	53 - 115
Hexachlorobenzene	1.66	1.45		mg/Kg		88	55 - 115
Pentachlorophenol	1.66	1.40		mg/Kg		63	35 - 115
Phenanthrene	1.66	1.05		mg/Kg		87	54 ₋ 115
Anthracene	1.66	1.43		mg/Kg		89	54 - 115 55 - 115
Di-n-butyl phthalate	1.66	1.48		mg/Kg		92	55 - 115
Fluoranthene	1.66	1.55		mg/Kg		92 94	55 - 115 54 - 115
Pyrene	1.66	1.50		mg/Kg		94 97	48 - 115 48 - 115
Butyl benzyl phthalate	1.66	1.62		mg/Kg		102	53 - 115
3,3'-Dichlorobenzidine	1.66	1.09		mg/Kg		89	42 - 115
Benzo[a]anthracene	1.66	1.40		mg/Kg		95	42 - 115 55 - 115
	1.66	1.58 1.64				95	
Bis(2-ethylhexyl) phthalate Chrysene	1.66	1.64		mg/Kg mg/Kg		99 96	53 ₋ 115 58 ₋ 115
Di-n-octyl phthalate	1.66	1.60		mg/Kg			
Benzo[b]fluoranthene	1.66	1.68		mg/Kg mg/Kg		101 83	53 ₋ 115 56 ₋ 115

Client Sample ID: Lab Control Sample

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-119111/2-A
Matrix: Calid

Matrix: Solid Analysis Batch: 119203						-	Prep Type: Total/ Prep Batch: 119	
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[a]pyrene	1.66	1.37		mg/Kg		83	55 - 115	
Benzo[k]fluoranthene	1.66	1.43		mg/Kg		86	57 ₋ 115	
Indeno[1,2,3-cd]pyrene	1.66	1.36		mg/Kg		82	56 - 115	
Benzo[g,h,i]perylene	1.66	1.35		mg/Kg		81	56 - 115	
Benzoic acid	1.66	ND		mg/Kg		18	10 _ 115	
Azobenzene	1.66	1.42		mg/Kg		86	52 - 115	
Dibenz(a,h)anthracene	1.66	1.38		mg/Kg		83	58 - 115	

	LCS	LCS LCS						
Surrogate	%Recovery	Qualifier	Limits					
Nitrobenzene-d5	76		21 - 98					
2-Fluorobiphenyl	82		30 - 112					
Terphenyl-d14	99		32 _ 117					
2-Fluorophenol	76		28 - 98					
Phenol-d5	80		23 - 101					
2,4,6-Tribromophenol	90		37 - 114					

Lab Sample ID: LCSD 720-119111/3-A

Matrix: Solid Analysis Batch: 119203

Analysis Batch: 119203								Batch: 1	
Analysis Datch. 115205	Spike	LCSD	LCSD				%Rec.	Daten. I	RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Phenol	1.66	1.23		mg/Kg		74	48 - 115	0	35
Bis(2-chloroethyl)ether	1.66	1.26		mg/Kg		76	45 - 115	2	35
2-Chlorophenol	1.66	1.23		mg/Kg		74	48 _ 115	1	35
1,3-Dichlorobenzene	1.66	1.19		mg/Kg		72	41 - 115	2	35
1,4-Dichlorobenzene	1.66	1.11		mg/Kg		67	40 - 115	2	35
Benzyl alcohol	1.66	1.34		mg/Kg		81	54 ₋ 115	1	35
1,2-Dichlorobenzene	1.66	1.22		mg/Kg		73	44 - 115	3	35
2-Methylphenol	1.66	1.27		mg/Kg		76	54 ₋ 115	0	35
Methylphenol, 3 & 4	3.32	2.44		mg/Kg		74	42 _ 115	1	35
N-Nitrosodi-n-propylamine	1.66	1.41		mg/Kg		85	46 _ 115	2	35
Hexachloroethane	1.66	1.15		mg/Kg		69	44 _ 115	0	35
Nitrobenzene	1.66	1.21		mg/Kg		73	48 - 115	1	35
Isophorone	1.66	1.29		mg/Kg		78	54 _ 115	1	35
2-Nitrophenol	1.66	1.21		mg/Kg		73	48 _ 115	1	35
2,4-Dimethylphenol	1.66	1.22		mg/Kg		74	52 - 115	2	35
Bis(2-chloroethoxy)methane	1.66	1.29		mg/Kg		78	46 _ 115	1	35
2,4-Dichlorophenol	1.66	1.25		mg/Kg		75	49 - 100	1	35
1,2,4-Trichlorobenzene	1.66	1.22		mg/Kg		74	47 _ 115	1	35
Naphthalene	1.66	1.25		mg/Kg		75	44 _ 115	0	35
4-Chloroaniline	1.66	1.05		mg/Kg		63	30 _ 115	1	35
Hexachlorobutadiene	1.66	1.21		mg/Kg		73	44 - 115	2	35
4-Chloro-3-methylphenol	1.66	1.32		mg/Kg		80	58 - 115	1	35
2-Methylnaphthalene	1.66	1.19		mg/Kg		72	49 _ 115	2	35
Hexachlorocyclopentadiene	1.66	1.25		mg/Kg		75	42 - 132	1	35
2,4,6-Trichlorophenol	1.66	1.31		mg/Kg		79	45 _ 115	0	35
2,4,5-Trichlorophenol	1.66	1.31		mg/Kg		79	48 _ 115	3	35
2-Chloronaphthalene	1.66	1.34		mg/Kg		81	52 - 115	3	35
2-Nitroaniline	1.66	1.41		mg/Kg		85	54 ₋ 115	1	35

5

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-119111/3-A Matrix: Solid				Cilei	n Saff	ipie iD:	Lab Contro		
								ype: To	
Analysis Batch: 119203	Spike		LCSD				%Rec.	Batch: 1	19111 RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dimethyl phthalate	<u></u>	1.40	Quaimer	mg/Kg		84	64 - 119	3	35
Acenaphthylene	1.66	1.40		mg/Kg		90	61 - 129	0	35
3-Nitroaniline	1.66	1.49		mg/Kg		83	50 - 115	3	35
Acenaphthene	1.66	1.35		mg/Kg		81	50 - 115 50 - 115	1	35
2,4-Dinitrophenol	1.66	ND		mg/Kg		19	15 - 115	33	35
4-Nitrophenol	1.66	1.33		mg/Kg		80	54 - 125	4	35
Dibenzofuran	1.66	1.33		mg/Kg		82	55 ₋ 125	- 3	35
2,4-Dinitrotoluene	1.66	1.37		mg/Kg		90	57 ₋ 115	3	35
2.6-Dinitrotoluene	1.66	1.49		mg/Kg		85	54 - 119	1	35
Diethyl phthalate	1.66	1.41		mg/Kg		86	49 ₋ 119	2	35
4-Chlorophenyl phenyl ether	1.66	1.42		mg/Kg		83	49 - 117 57 - 115	2	35
Fluorene	1.66	1.30				84	54 ₋ 115	1	35
4-Nitroaniline	1.66	1.39		mg/Kg		85	54 - 115 59 - 115	0	35
	1.66	0.764		mg/Kg		46	39 - 115 39 - 115	14	35
2-Methyl-4,6-dinitrophenol	1.66	1.41		mg/Kg		40 85	59 - 115 56 - 115	0	35
N-Nitrosodiphenylamine				mg/Kg					
4-Bromophenyl phenyl ether	1.66	1.36		mg/Kg		82	53 - 115	4	35
Hexachlorobenzene	1.66	1.44		mg/Kg		87	55 - 115	1	35
Pentachlorophenol	1.66	0.999		mg/Kg		60	35 - 115	5	35
Phenanthrene	1.66	1.44		mg/Kg		87	54 - 115	1	35
Anthracene	1.66	1.44		mg/Kg		87	55 ₋ 115	2	35
Di-n-butyl phthalate	1.66	1.49		mg/Kg		90	55 - 115	2	35
Fluoranthene	1.66	1.56		mg/Kg		94	54 _ 115	0	35
Pyrene	1.66	1.69		mg/Kg		102	48 ₋ 115	4	35
Butyl benzyl phthalate	1.66	1.66		mg/Kg		100	53 _ 115	2	35
3,3'-Dichlorobenzidine	1.66	1.53		mg/Kg		92	42 _ 115	3	35
Benzo[a]anthracene	1.66	1.61		mg/Kg		97	55 - 115	2	35
Bis(2-ethylhexyl) phthalate	1.66	1.68		mg/Kg		101	53 _ 115	2	35
Chrysene	1.66	1.56		mg/Kg		94	58 - 115	2	35
Di-n-octyl phthalate	1.66	1.65		mg/Kg		100	53 - 115	2	35
Benzo[b]fluoranthene	1.66	1.32		mg/Kg		79	56 - 115	5	35
Benzo[a]pyrene	1.66	1.39		mg/Kg		84	55 - 115	1	35
Benzo[k]fluoranthene	1.66	1.46		mg/Kg		88	57 _ 115	2	35
Indeno[1,2,3-cd]pyrene	1.66	1.36		mg/Kg		82	56 _ 115	0	35
Benzo[g,h,i]perylene	1.66	1.36		mg/Kg		82	56 - 115	1	35
Benzoic acid	1.66	ND		mg/Kg		12	10 _ 115	35	35
Azobenzene	1.66	1.29		mg/Kg		78	52 - 115	10	35
Dibenz(a,h)anthracene	1.66	1.38		mg/Kg		83	58 ₋ 115	0	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	76		21 - 98
2-Fluorobiphenyl	84		30 - 112
Terphenyl-d14	98		32 - 117
2-Fluorophenol	77		28 - 98
Phenol-d5	80		23 - 101
2,4,6-Tribromophenol	87		37 - 114

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 720-119074	4/1-A									•	Client Sa	mple ID: Me		
Matrix: Solid												Prep Typ		
Analysis Batch: 119112												Prep Ba	tch: '	119074
America		MB I					1		_			A		DH E
Analyte	R6	ND -	Qualifier	RL 2.0		MDL U			D		epared /12 14:22	Analyzed		Dil Fac
Diesel Range Organics [C10-C28]		ND		2.0		I	mg/Kg			06/14	12 14.22	08/15/12 11:	30	1
		MB I	мв											
Surrogate	%Reco	very (Qualifier	Limits						Pr	epared	Analyzed		Dil Fac
Capric Acid (Surr)										08/14	1/12 14:22	08/15/12 11:	30	1
p-Terphenyl		100		40 - 130						08/14	/12 14:22	08/15/12 11:	30	1
_ Lab Sample ID: LCS 720-11907	74/2-A								C	lient	Sample I	ID: Lab Con	trol S	ample
Matrix: Solid												Prep Typ	e: To	otal/NA
Analysis Batch: 119112												Prep Ba	tch: '	11 <mark>90</mark> 74
-				Spike	LCS	LCS						%Rec.		
Analyte				Added	Result	Qualif	ier	Unit		D	%Rec	Limits		
Diesel Range Organics				166	144			mg/Kg			87	50 - 150		
[C10-C28]														
	LCS	LCS												
Surrogate	%Recovery		fier	Limits										
p-Terphenyl	94			40 - 130										
Lab Sample ID: LCSD 720-1190	074/3-A							Cli	ent	Sam	ple ID: La	ab Control S	Samp	le Dup
Matrix: Solid												Prep Typ		
Analysis Batch: 119112												Prep Ba		
				Spike	LCSD	LCSD						%Rec.		RPD
Analyte				Added	Result	Qualif	ier	Unit		D	%Rec	Limits	RPD	Limit
Diesel Range Organics				162	143			mg/Kg			88	50 - 150	1	35
[C10-C28]														
	LCSD	LCSD												
Surrogate	LCSD %Recovery			Limits										
Surrogate	LCSD %Recovery 93			Limits 40 - 130										
Surrogate p-Terphenyl	%Recovery													
	%Recovery 93										Client Sa	Imple ID: Me	ethod	Blank
p-Terphenyl	%Recovery 93											imple ID: Me ype: Silica (
p-Terphenyl Lab Sample ID: MB 720-119244	%Recovery 93												Sel C	leanup
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid	%Recovery 93		ier									ype: Silica O	Sel C	leanup
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid	%Recovery 93 \$/1-A	Qualif	ier			MDL (Unit		D			ype: Silica O	Gel Cl tch: '	leanup
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274	%Recovery 93 \$/1-A	Qualif	fier	40 - 130			Unit mg/Kg	1	<u>D</u>	Pr	Prep Ty	ype: Silica (Prep Ba	Gel Cl	leanup 119244
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte	%Recovery 93 \$/1-A	Qualif MB I esult (ND	fier MB Qualifier	40 - 130 					<u>D</u>	Pr	Prep Ty	ype: Silica C Prep Ba Analyzed	Gel Cl	leanup 119244 Dil Fac
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics [C10-C28]	%Recovery 93 4/1-A 	Qualif MB I esult Q ND -	fier MB Qualifier MB	40 - 130 					<u>D</u> .	Pr 08/16	Prep Ty epared 5/12 16:35	ype: Silica C Prep Ba Analyzed 08/17/12 20:	Sel C tch: 7 06	leanup 119244 Dil Fac
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics [C10-C28] Surrogate	%Recovery 93 4/1-A 	Qualif MB I esult (ND - MB I very (fier MB Qualifier	40 - 130 RL 0.99 <i>Limits</i>					<u>D</u>	Pr 08/16 Pr	Prep Ty epared 5/12 16:35 epared	ype: Silica C Prep Ba Analyzed 08/17/12 20: Analyzed	Sel Cl tch: 7	leanup 119244 Dil Fac 1 Dil Fac
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics [C10-C28] Surrogate Capric Acid (Surr)	%Recovery 93 4/1-A 	Qualif MB I esult Q ND - MB I wery Q 0.006 -	fier MB Qualifier MB	40 - 130 RL 0.99 Limits 0 - 1				1	D .	Pr 08/16 Pr 08/16	Prep Ty epared 5/12 16:35 epared 5/12 16:35	ype: Silica C Prep Ba Analyzed 08/17/12 20: Analyzed 08/17/12 20:	Gel Cl tch: 06 06	leanup 119244 Dil Fac 1 Dil Fac 1
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics [C10-C28] Surrogate	%Recovery 93 4/1-A 	Qualif MB I esult (ND - MB I very (fier MB Qualifier MB	40 - 130 RL 0.99 <i>Limits</i>					<u>D</u> .	Pr 08/16 Pr 08/16	Prep Ty epared 5/12 16:35 epared	ype: Silica C Prep Ba Analyzed 08/17/12 20: Analyzed	Gel Cl tch: 06 06	leanup 119244 Dil Fac 1 Dil Fac
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics [C10-C28] Surrogate Capric Acid (Surr) p-Terphenyl	%Recovery 93 4/1-A	Qualif MB I esult Q ND - MB I wery Q 0.006 -	fier MB Qualifier MB	40 - 130 RL 0.99 Limits 0 - 1						Pr 08/16 Pr 08/16	Prep Ty epared 5/12 16:35 epared 5/12 16:35 5/12 16:35	ype: Silica C Prep Ba Analyzed 08/17/12 20: Analyzed 08/17/12 20: 08/17/12 20:	Sel C tch: 7 06 06	leanup 119244 Dil Fac 1 Dil Fac 1 1
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics [C10-C28] Surrogate Capric Acid (Surr) p-Terphenyl Lab Sample ID: LCS 720-11924	%Recovery 93 4/1-A	Qualif MB I esult Q ND - MB I wery Q 0.006 -	fier MB Qualifier MB	40 - 130 RL 0.99 Limits 0 - 1						Pr 08/16 Pr 08/16	Prep Ty epared 5/12 16:35 epared 5/12 16:35 5/12 16:35 Sample I	ype: Silica C Prep Ba Analyzed 08/17/12 20: Analyzed 08/17/12 20: 08/17/12 20: 08/17/12 20:	Sel C tch: 7 06 - 06 06	leanup 119244 Dil Fac 1 <i>Dil Fac</i> 1 5 ample
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics [C10-C28] Surrogate Capric Acid (Surr) p-Terphenyl Lab Sample ID: LCS 720-11924 Matrix: Solid	%Recovery 93 4/1-A	Qualif MB I esult Q ND - MB I wery Q 0.006 -	fier MB Qualifier MB	40 - 130 RL 0.99 Limits 0 - 1						Pr 08/16 Pr 08/16	Prep Ty epared 5/12 16:35 epared 5/12 16:35 5/12 16:35 Sample I	ype: Silica C Prep Ba Analyzed 08/17/12 20: 08/17/12 20: 08/17/12 20: 08/17/12 20: 08/17/12 20:	Gel Cl tch: 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06	leanup 119244 Dil Fac 1 Dil Fac 1 Sample Jeanup
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics [C10-C28] Surrogate Capric Acid (Surr) p-Terphenyl Lab Sample ID: LCS 720-11924	%Recovery 93 4/1-A	Qualif MB I esult Q ND - MB I wery Q 0.006 -	fier MB Qualifier MB	40 - 130 RL 0.99 Limits 0 - 1						Pr 08/16 Pr 08/16	Prep Ty epared 5/12 16:35 epared 5/12 16:35 5/12 16:35 Sample I	ype: Silica C Prep Ba Analyzed 08/17/12 20: Analyzed 08/17/12 20: 08/17/12 20: 08/17/12 20:	Gel Cl tch: 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06	leanup 119244 Dil Fac 1 Dil Fac 1 Sample Jeanup
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics [C10-C28] Surrogate Capric Acid (Surr) p-Terphenyl Lab Sample ID: LCS 720-11924 Matrix: Solid	%Recovery 93 4/1-A	Qualif MB I esult Q ND - MB I wery Q 0.006 -	fier MB Qualifier MB	40 - 130 RL 0.99 Limits 0 - 1 38 - 148	LCS	r r	mg/Kg	Unit		Pr 08/16 Pr 08/16	Prep Ty epared 5/12 16:35 epared 5/12 16:35 5/12 16:35 Sample I	ype: Silica C Prep Ba Analyzed 08/17/12 20: 08/17/12 20: 08/12/12 20: 08/12/12 20: 08/12/12 20: 08/12/12 20: 08/12/12 20: 08/12/12 20: 08/12/12 20: 08/12/12 20: 08/12 20: 08/	Gel Cl tch: 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06	leanup 119244 Dil Fac 1 Dil Fac 1 Sample Jeanup
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics [C10-C28] Surrogate Capric Acid (Surr) p-Terphenyl Lab Sample ID: LCS 720-11924 Matrix: Solid Analysis Batch: 119274 Analyte	%Recovery 93 4/1-A	Qualif MB I esult Q ND - MB I wery Q 0.006 -	fier MB Qualifier MB	40 - 130 	LCS	LCS	mg/Kg			Pr 08/16 08/16 08/16	Prep Ty epared /12 16:35 epared /12 16:35 5/12 16:35 S/12 16:35 Sample I Prep Ty	ype: Silica C Prep Ba Analyzed 08/17/12 20: <i>Analyzed</i> 08/17/12 20: 08/17/12 20: 08/17/12 20: 1D: Lab Con ype: Silica C Prep Ba %Rec.	Gel Cl tch: 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06	leanup 119244 Dil Fac 1 Dil Fac 1 Sample Jeanup
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics [C10-C28] Surrogate Capric Acid (Surr) p-Terphenyl Lab Sample ID: LCS 720-11924 Matrix: Solid Analysis Batch: 119274	%Recovery 93 4/1-A	Qualif MB I esult Q ND - MB I wery Q 0.006 -	fier MB Qualifier MB	40 - 130 RL 0.99 Limits 0 - 1 38 - 148 Spike Added	LCS Result	LCS	mg/Kg	Unit		Pr 08/16 08/16 08/16	Prep Ty epared 5/12 16:35 epared 5/12 16:35 5/12 16:35 Sample I Prep Ty %Rec	ype: Silica (Prep Ba Analyzed 08/17/12 20: <i>Analyzed</i> 08/17/12 20: 08/17/12 20: 08/17/12 20: 1D: Lab Con ype: Silica (Prep Ba %Rec. Limits	Gel Cl tch: 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06	leanup 119244 Dil Fac 1 Dil Fac 1 Sample Jeanup
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics [C10-C28] Surrogate Capric Acid (Surr) p-Terphenyl Lab Sample ID: LCS 720-11924 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics	%Recovery 93 4/1-A Re	Qualif MB I esult (ND MB I very (0.006 84	fier MB Qualifier MB	40 - 130 RL 0.99 Limits 0 - 1 38 - 148 Spike Added	LCS Result	LCS	mg/Kg	Unit		Pr 08/16 08/16 08/16	Prep Ty epared 5/12 16:35 epared 5/12 16:35 5/12 16:35 Sample I Prep Ty %Rec	ype: Silica (Prep Ba Analyzed 08/17/12 20: <i>Analyzed</i> 08/17/12 20: 08/17/12 20: 08/17/12 20: 1D: Lab Con ype: Silica (Prep Ba %Rec. Limits	Gel Cl tch: 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06	leanup 119244 Dil Fac 1 Dil Fac 1 Sample Jeanup
p-Terphenyl Lab Sample ID: MB 720-119244 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics [C10-C28] Surrogate Capric Acid (Surr) p-Terphenyl Lab Sample ID: LCS 720-11924 Matrix: Solid Analysis Batch: 119274 Analyte Diesel Range Organics	%Recovery 93 4/1-A	Qualif MB I esult Q ND - MB I very Q 0.006 - 84	Tier MB Qualifier MB Qualifier	40 - 130 RL 0.99 Limits 0 - 1 38 - 148 Spike Added	LCS Result	LCS	mg/Kg	Unit		Pr 08/16 08/16 08/16	Prep Ty epared 5/12 16:35 epared 5/12 16:35 5/12 16:35 Sample I Prep Ty %Rec	ype: Silica (Prep Ba Analyzed 08/17/12 20: <i>Analyzed</i> 08/17/12 20: 08/17/12 20: 08/17/12 20: 1D: Lab Con ype: Silica (Prep Ba %Rec. Limits	Gel Cl tch: 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06	leanup 119244 Dil Fac 1 Dil Fac 1 Sample Jeanup

QC Sample Results

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 720-11924	4/3-A					Clier	nt Sam	nple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid								Prep	Type: Silica	a Gel Cl	eanup
Analysis Batch: 119274									Prep	Batch: 1	19244
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Diesel Range Organics			82.5	56.6		mg/Kg		69	36 - 112	1	35
[C10-C28]											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
p-Terphenyl	83		38 - 148								
- Lab Sample ID: 720-43926-2 MS									Client Sa	mple ID	: EX-2
Matrix: Solid								Prep	Type: Silica	a Gel Cl	eanup
Analysis Batch: 119275									Prep	Batch: 1	19244
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Diesel Range Organics	ND		82.2	30.8	F	mg/Kg		37	50 - 150		
[C10-C28]											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
p-Terphenyl	40		38 - 148								
- Lab Sample ID: 720-43926-2 MS	D								Client Sa	mple ID	: EX-2
Matrix: Solid								Prep	Type: Silica	a Gel Cl	eanup
Analysis Batch: 119275									Prep l	Batch: 1	19244
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Diesel Range Organics	ND		82.7	44.5	F	mg/Kg		54	50 - 150	36	30
[C10-C28]											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
p-Terphenyl	57		38 - 148								

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 720-119103/1-A											Client S	ample ID:	Method	Blank
Matrix: Solid												Prep	Туре: То	otal/NA
Analysis Batch: 119289	МВ	МВ										Prep	Batch:	119103
Analyte		Qualifier		RL		MDL	Unit		D		repared	Analy		Dil Fac
		Quaimer							<u> </u>		•			DIIFac
Lead	ND			0.50			mg/Kg			08/1	4/12 19:15	08/16/12	21:47	1
Lab Sample ID: LCS 720-119103/2-A									CI	lient	Sample	ID: Lab C	ontrol S	ample
Matrix: Solid													Type: To	
Analysis Batch: 119289												Prep	Batch: '	119103
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Lead			50.0		49.9			mg/Kg		_	100	80 - 120		
Lab Sample ID: LCSD 720-119103/3-A								CI	ient	Sam	ple ID: L	ab Contro	ol Samp	le Dup
Matrix: Solid													Type: To	
Analysis Batch: 119289													Batch:	
			Spike		LCSD	LCS	D					%Rec.		RPD
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Lead			50.0		49.9			mg/Kg		_	100	80 - 120	0	20

LCSSRM LCSSRM

270

Result Qualifier

MDL Unit

0.012 mg/Kg

0.053 mg/Kg

0.051 mg/Kg

0.11 mg/Kg

0.64 mg/Kg

Unit

mg/Kg

Spike

Added

MB MB

ND

ND

ND

ND

ND

Result Qualifier

280

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 720-119103/25-A

Matrix: Solid

Matrix: Solid

Analyte

Analyte

Cadmium

Chromium

Nickel

Lead

Zinc

Lead

Analysis Batch: 119289

Analysis Batch: 119265

Prep Type: Total/NA

Prep Batch: 119103

Client Sample ID: Lab Control Sample

%Rec.

Limits

62 - 113

Client Sample ID: Lab Control Sample

Analyzed

%Rec

Prepared

08/15/12 18:32

08/15/12 18:32

08/15/12 18:32

08/15/12 18:32

08/15/12 18:32

96

D

D

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 119172 Dil Fac 08/16/12 18:22 1 08/16/12 18:22 1 08/16/12 18:22 1 08/16/12 18:22 1 08/16/12 18:22 1

Lab Sample ID: LCS 720-119172/2-A Matrix: Solid Analysis Batch: 119265

Lab Sample ID: MB 720-119172/1-A

Analysis Batch: 119265							Prep	Batch: 119172
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	50.0	49.4		mg/Kg		99	80 - 120	
Chromium	50.0	50.7		mg/Kg		101	80 - 120	
Nickel	50.0	48.2		mg/Kg		96	80 - 120	
Lead	50.0	47.9		mg/Kg		96	80 - 120	
Zinc	50.0	49.1		mg/Kg		98	80 - 120	

RL

0.13

0.50

0.50

0.50

1.5

Lab Sample ID: LCSD 720-119172/3-A

Matrix: Solid Analysis Batch: 119265

						11001	Juton. I	
Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
50.0	48.6		mg/Kg		97	80 - 120	2	20
50.0	50.0		mg/Kg		100	80 - 120	1	20
50.0	47.5		mg/Kg		95	80 - 120	1	20
50.0	47.1		mg/Kg		94	80 - 120	2	20
50.0	48.4		mg/Kg		97	80 - 120	1	20
	Added 50.0 50.0 50.0 50.0 50.0 50.0	Added Result 50.0 48.6 50.0 50.0 50.0 50.0 50.0 47.5 50.0 47.1	Added Result Qualifier 50.0 48.6 - 50.0 50.0 - 50.0 47.5 - 50.0 47.1 -	Added Result Qualifier Unit 50.0 48.6 mg/Kg 50.0 50.0 mg/Kg 50.0 47.5 mg/Kg 50.0 47.1 mg/Kg	Added Result Qualifier Unit D 50.0 48.6 mg/Kg mg/Kg 50.0 50.0 mg/Kg mg/Kg 50.0 47.5 mg/Kg mg/Kg 50.0 47.1 mg/Kg mg/Kg	Added Result Qualifier Unit D %Rec 50.0 48.6 mg/Kg 97 50.0 50.0 mg/Kg 100 50.0 47.5 mg/Kg 95 50.0 47.1 mg/Kg 94	Spike LCSD LCSD %Rec. Added Result Qualifier Unit D %Rec. Limits 50.0 48.6 mg/Kg 97 80 - 120 50.0 50.0 mg/Kg 100 80 - 120 50.0 47.5 mg/Kg 95 80 - 120 50.0 47.1 mg/Kg 94 80 - 120	Added Result Qualifier Unit D %Rec Limits RPD 50.0 48.6 mg/Kg 97 80 - 120 2 50.0 50.0 mg/Kg 100 80 - 120 1 50.0 47.5 mg/Kg 95 80 - 120 1 50.0 47.1 mg/Kg 94 80 - 120 2

Lab Sample ID: LCSSRM 720-119172/25-A Matrix: Solid

Analysis Batch: 119265

Analyte Cadmium Chromium Nickel Lead

Zinc

119265								Prep Batch: 119172				
	Spike	LCSSRM	LCSSRM				%Rec.					
	Added	Result	Qualifier	Unit	D	%Rec	Limits					
	 42.0	38.4		mg/Kg		92	67 _ 118					
	269	262		mg/Kg		97	67 - 121					
	106	89.2		mg/Kg		84	65 _ 117					

237

521

mg/Kg

mg/Kg

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Prep Batch: 119172

Prep Type: Total/NA

Client Sample	ID: Lab	Control	Sample
	_		

62 113

62 - 110

85

91

Prep Type: Total/NA Prop Botoby 110172

TestAmerica Pleasanton 9/19/2012

280

574

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 720-43926-5 MS Matrix: Solid								Clie	ent Sample ID: EX-1,2,3,4 Prep Type: Total/NA
Analysis Batch: 119265									Prep Batch: 119172
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cadmium	ND		48.5	44.9		mg/Kg		92	75 - 125
Chromium	45		48.5	90.5		mg/Kg		94	75 - 125
Nickel	35		48.5	78.2		mg/Kg		88	75 - 125
Lead	8.1		48.5	51.6		mg/Kg		90	75 - 125
Zinc	49		48.5	93.8		mg/Kg		93	75 - 125
Lab Sample ID: 720-43926-5 MSD Matrix: Solid								Clie	ent Sample ID: EX-1,2,3,4 Prep Type: Total/NA
Analysis Batch: 119265									Prep Batch: 119172

Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
ND		46.7	43.4		mg/Kg		93	75 _ 125	3	20
45		46.7	92.0		mg/Kg		101	75 - 125	2	20
35		46.7	76.0		mg/Kg		87	75 ₋ 125	3	20
8.1		46.7	50.3		mg/Kg		90	75 _ 125	3	20
49		46.7	91.0		mg/Kg		91	75 ₋ 125	3	20
	Result ND 45 35 8.1	45 35 8.1	Result Qualifier Added ND 46.7 45 46.7 35 46.7 8.1 46.7	Result Qualifier Added Result ND 46.7 43.4 45 46.7 92.0 35 46.7 76.0 8.1 46.7 50.3	Result Qualifier Added Result Qualifier ND 46.7 43.4 45 46.7 92.0 35 46.7 76.0 50.3 60.7 60.7	Result Qualifier Added Result Qualifier Unit ND 46.7 43.4 mg/Kg 45 46.7 92.0 mg/Kg 35 46.7 76.0 mg/Kg 8.1 46.7 50.3 mg/Kg	Result Qualifier Added Result Qualifier Unit D ND 46.7 43.4 mg/Kg mg/Kg 1 45 46.7 92.0 mg/Kg 1	Result Qualifier Added Result Qualifier Unit D %Rec ND 46.7 43.4 mg/Kg 93 93 45 46.7 92.0 mg/Kg 101 35 46.7 76.0 mg/Kg 87 8.1 46.7 50.3 mg/Kg 90	Sample Sample Spike MSD MSD %Rec. Result Qualifier Added Result Qualifier Unit D %Rec. Limits ND 46.7 43.4 mg/Kg 93 75.125 45 46.7 92.0 mg/Kg 101 75.125 35 46.7 76.0 mg/Kg 87 75.125 8.1 46.7 50.3 mg/Kg 90 75.125	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD ND 46.7 43.4 mg/Kg 93 75 - 125 3 45 46.7 92.0 mg/Kg 101 75 - 125 2 35 46.7 76.0 mg/Kg 87 75 - 125 3 8.1 46.7 50.3 mg/Kg 90 75 - 125 3

Method: 9071B - HEM and SGT-HEM

Lab Sample ID: MB 440-46755/1-A Matrix: Solid Analysis Batch: 46801	мв	мв					Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM	ND		200	24	mg/Kg		08/21/12 11:26	08/21/12 13:37	1
SGT-HEM	ND		170	20	mg/Kg		08/21/12 11:26	08/21/12 13:37	1
Lab Sample ID: LCS 440-46755/2-A						С	lient Sample I	D: Lab Control	Sample

Matrix: Solid							Prep [•]	Type: Total/NA
Analysis Batch: 46801							Prep	Batch: 46755
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
HEM	333	337		mg/Kg		101	78 - 114	
SGT-HEM	167	170		mg/Kg		102	70 ₋ 110	

Lab Sample ID: LCSD 440-46755/3-A Matrix: Solid Analysis Batch: 46801	Spike	LCSD	LCSD	Clier	nt Sam	iple ID: I		ol Sampl Type: Tot Batch:	tal/NA
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
HEM	333	320		mg/Kg		96	78 - 114	5	11
SGT-HEM	167	ND		mg/Kg		92	70 _ 110	12	15

Metals

Prep Batch: 119172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-43926-5	EX-1,2,3,4	Total/NA	Solid	3050B	
nalysis Batch: 119265					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-43926-5	EX-1,2,3,4	Total/NA	Solid	6010B	119172
	720-43926-5 nalysis Batch: 119265 Lab Sample ID	720-43926-5 EX-1,2,3,4 nalysis Batch: 119265 Exect the second se	720-43926-5 EX-1,2,3,4 Total/NA nalysis Batch: 119265 EX-1,2,3,4 Total/NA Lab Sample ID Client Sample ID Prep Type	720-43926-5 EX-1,2,3,4 Total/NA Solid nalysis Batch: 119265 Execution of the sample ID Prep Type Matrix	720-43926-5 EX-1,2,3,4 Total/NA Solid 3050B nalysis Batch: 119265 EX-1,2,3,4 EX-1,2,3,4 Matrix Method

Lab Sample ID: 720-43926-5

Matrix: Solid

Client Sample ID: EX-1,2,3,4 Date Collected: 08/13/12 22:18 Date Received: 08/14/12 07:08

Date Received:	00/14/12 07.0	10						
_	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			119172	08/15/12 18:32	CDT	TAL SF
Total/NA	Analysis	6010B		4	119265	08/16/12 18:45	BA	TAL SF

Laboratory References:

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

Client: Stantec Consulting Corp. Project/Site: Goodyear - DEX # 9578.3430

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: Stantec Con			TestAmerica Job ID): 720-43926-1
Project/Site: Goody	ear - DEX # 9578.3430			
Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-43926-1	EX-1	Solid	08/13/12 22:22	08/14/12 07:08
720-43926-2	EX-2	Solid	08/13/12 22:18	08/14/12 07:08
720-43926-3	EX-3	Solid	08/13/12 22:28	08/14/12 07:08
720-43926-4	EX-4	Solid	08/13/12 22:25	08/14/12 07:08
720-43926-5	EX-1,2,3,4	Solid	08/13/12 22:18	08/14/12 07:08
				_
				1

CHAIN OF	00010	UIREU	JORL	ر). 38((4	0133	3
		7					_							2	•	Ų	13	9)2	6													
GOODFYEAR		TestAme 1220 Qu Pleasani	arry L		566		Р	hon	e:	925.	484.'	1919)					T t	Fo ass his wo	ork be	ing co	ing the inducte vhich s	d for	regul	latory	purp	thod: oses	s, is ?					
Client Name:			·····																			ce Mon			0000	iica j		Yes	 	No			
	15575 Los			ard, I	Buildi	ng C	>													Enfo	rcem	ent Act	ion?					Yes	1	No			
City/State/Zip:							· · · · · · ·									Re	port T	o: J	ack H	ardin													
Project Manager:			: jack	hard	in@s	tant	ec.co	m		-						Inv	oice T	io: K	(aren l	Burling	jame	Goodye	ear D	ept. 1	10F 1	144	E.Mai	rket S	t. Ak	ron, C)H 441:	36-0001	
Telephone Number:					F	ax N	o.: <u>4</u> (08-3	56-6	138												ne@q											
Sampler Name: (Print)	Tris	tan f	2h	<u>od</u>	<u>er</u>										Territe			~				ar DE)	_										
Sampler Signature:		\leq	l												– Proj	ject l	No & I	Read of the local division of the local divi				51.				<u>م ا</u>							
PO & Quote Number: PO #: 4	Geodycar	PON	6412	F	Qu	4 -si e				Feet/	wher	ica (Dasis 1	2=17=08	٩			-	<u> </u>	<u>, v</u>	<u> </u>	21.		<u>.</u>	00								0
<u></u>	20 4 44	5697		(0/2	2012)	Pres	erva	tive		Matr	ix								/	\naly;	e For:	*****		2009.7m2/m2/m2	•						5,	Z°C
ample ID	Date Sampled	Time Sampled	No. of Containers Shipped	Grab Commosite	Field Filtered	HNO ₃ (Red Label)	HCI (Blue Label) NaOH (Orange Label)	H ₂ SO ₄ Plastic (Yellow Labe M-SO, Glass/Vallow I shot	None (Black Label)	Other (Specify) Groundwater	Soil	Other (specify)	8015 - TPH-DRO (C10 to C28)	8015 - TPH-ORO (C16 (e-C36)	82608-1PH-GRO (64-TO-C12)-	8260B VOCS	5	- I ,	PIEX (82008) MTBE (82608)		Pb (6010B)	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(8260B)			RUSH TAT (Pre-Schedule	RUSH Due Date	Standard TAT7-10 Business Day	Fax Results TestAmerica OC Found 3	Electronic Deliverables			RENARKS
	8/13/12		11	X					X		X		$\left \times \right $		1		N		বিষ	7	X	\leq	7		+			X	-	+x	<u> </u>	EDF R	lequired
	8/13/12		1	<u>K</u>					K		R		\boldsymbol{X}		1		R.	巾		रो	$\overline{\mathbf{x}}$	\geq	\geq	\vdash	\uparrow			$\overline{\mathbf{v}}$	+	$\frac{1}{x}$			loquilou
	8/13/12	2228		\checkmark					W	Τ	R		\overline{X}		1	Ť	1	<u></u>	ŤŻ	À,	ব	$ \ge $	-					\bigcirc	+		·		
EX-4	8/13/12	2225	11	X		Π	Π		N		K		$\mathbf{\hat{V}}$		†	1	25	さ	\mathbf{X}	入	7	\Rightarrow			┼──			ᠿ	┿	$\frac{1}{\lambda}$			
	1				T					1	\square	Ī	~~		1	+		┯		4	\rightarrow	\leq		+	+	┝╌┤		4	┿	+	╉────		
						T					\mathbf{T}	l			1	╈	┝─┼╴	+	+		+		╈	┿╾	-	┝─┼			┿		┿────		
					Ť	\square			\uparrow		\square	1			1		┢━─┢─		+		-			+		\square			+		<u> </u>		
					+	Ħ			┼┼		┢─┤					+	┝──┟╴	┿	┥┥						$\left \right $	┝─┼					Ļ		
				+	+	ŤŤ	╈	+	++	-	┢─┤	-			<u> </u>			┿	+				_	+		┝─┼			+				
ecial Instructions:	A copy of the	e chain of c	ustody	/ mus	t acco	mpa	nv ear	ch in		10 6				nont III	L				hora	tony C	Omm	onte									I		
i 	opb) for all a	nalytes mu	ist not	excee	ed the	follo	wing	value	<u>is:</u>						Detectio	<u>ən im</u>			len	iperat	ure U	pon Re ners Int	eceipi tact?	t		Ņ	ŕ	N	ĺ				
	EDF REQUI		AL ID :	= SLO	60814	5303		SEN	D AN	ALYI	ICAL	RE	PORTS	TO alic	ia.falk@	stant	lec.cor	l n	voo)s Fre	eof	leadsp	ace?			١	,	N	í				
induished by	Dat 8/(4/		Time 060	-		i by:	1. ²	J.	-1.	w		Ä		Date		Τ	Time 60	7				iouusp	GGG :				ſ	10					
linguished by: Bith I. Jum	Dat Solution	e 4 13	Time 74	6		i by T	estAn	nerica			-	~	<u></u>	Date		1	<u>00</u> ^{Time} 708	1				rables arge or											

CHAIN OF	CUSTC	DY RE	COR	۶D										JI	DE I	NO	. 38	62	7	2	0)		ų	3	9	2	6	9	C	,0	Ø	4				[40]	33	
GOOD/SYEAD Client Name:	Stantec	TøstAm 1220 Qu Pleasan	iarry	Lane				Ph	one:	ŧ	925.4	484.	1919)					~		To a this v	ssist vork S	us ir bein Itate) Usi g co in v	ng t ndu 7hic	he pi icted ih sa	oper for re mpli	anal Igula ng ol	ytical lory p	l me burp	thod	s. is						
Address:	15575 Lo	s Gatos E	Boule	vard	Buil	dina	C			****					,		÷									tonito		?				Ye	s	N	D			
City/State/Zip:				,							<u>.</u>			· · · · · ·			•	Day	n	۳	look			em	entu	Actio	17					Ye	\$	N	0			
Project Manager:	Jack Hard	din emai	il: jaci	k.har	rdin@)star	ntec.	con	÷		<u></u>							-	port 1						.													
Telephone Number;						Fax				5-61	38		·				"	invol	lice erre	1011 	halet	1 80	unga	me	600	dyaa	Dep	£ 11(>F 11	44 6	E.Ma	rket	St.	Akro	xn,C ──	H 44136-00	01	
Sampler Name: (Print)	State	tain 1	21.	ا م	205		-								*****		Territ		ice em													****		يرشدهم				
Sampler Signature:						Jen.	2000	t:		0	.o.	<u>c</u> 1	11-	21		****		-			Form	ner	Good	dyea	ar C	DEX#	169	<u>.</u>	15	<u> 78</u>		35	<u>(</u> }	2	<u> </u>	ins Uni	en Blue	J
PO & Quote Number	Geodrea	PONE				Hate	-000 Ma	Dool	tinut tinut		nia.	۰ سرد معرف	-1 [:	CS	- <u>A</u>	t-	P10	eci v	Vo & 1		185	7	<u>07</u>	51	51	. 2	00) <u>, </u>	000	<u>) </u>								
NF PO#:-4	50494	3694	-(7	101	1201	z)[*	P	rese/	vativ	91-24 8	ang atom	Mah	īx.	0.0395	72-17	-00	She	<u></u>	<u> </u>	ġ.	la i	(a.)	hail	ð,		<u>les</u>	A,	سفيت	ر مربعات	C) <u>-</u> 1	5	1-	2-	17	-08x	5,2°C	
ample ID	Date Sampled	Time Sampled	No. of Containers Shipped	Grab			HCI (Blue Label)						Other (specify)	8015 - TPH-DRO (C10 to C28)	.1		82608 - TPH GRO		61KO (BUISB	1771	(82608)	(00 200)	-1		Leve Justerieus	608) = 00)	State of the second	a se		dute	RUSH Due Date	Standard TATT-10 Business Day		evel 2	1		REMARKS	
EX-	8/13/12	2722	1	R		Ì	1		1	V		$\overline{\boldsymbol{\lambda}}$	<i>1</i> .	ت گ	1 2	-	-00 C	100	公	7	ŻŚ	汯	忎]-	$\langle \rangle$		┢			₽ 		∇	+	F	- 	<u> </u>	10	_
EX-2	8/13/12	2218	1	K		Ì	T		t t	प्रे	İ	$\overline{\mathbf{v}}$		∇	\		· · · · · · · · · · · · · · · · · · ·			러			无	1	$\overline{\mathbb{C}}$	\geq						2		╞	X	ED	² Required	i {
EX-3	8/13/12		11	ার		Ì	\square		\mathbf{T}	5	1	$\hat{\mathbf{x}}$	i di	\Rightarrow	1				Ĥ	3F	₽÷	75	¥£	44	-	\geq			-+	-+	·····,	X		<u> </u>	Ц <u>Х</u>	ļ		
EX-4	8/13/12		T	X			+		ΙŤ	2	a de la de l	X		>	1			-		¥	Y	SH2	1	⊁	-	>				┿		Ķ	<u> </u>		Ķ	ļ		
		1		ťŤ		T	\mathbf{T}		Ηť	1	Î I	2	-	<u>~</u>				-	4	7	ХİŻ	4	ųΧ	-	$ \leq $	<u> </u>	-			-		$ \Delta $	<u>↓</u>	ļ	X		·····	_
		1		11			+		\vdash	+					•		<u>.</u>			╋				+-		····	-			-		 	ļ	4				
		1	-	\uparrow		+			$\left \right $	+		-	-	: 	+			+				<u></u>	-]						_	÷.		<u> </u>		ļ		}		
		1					+	+			$\left \right $	_						+		-+-				+		·····			ļ	_		Ŀ	ļ	ļ		[
			<u> </u>	++		+	╞		┢╍┢		$\left \right $		4					┝┥	_	-			<u> </u>	4						_				Ĺ	L			
pecial Instructions:	A copy of th	e chain of	custo	dv mr	15 f 20					1				<u></u>						-																		
ļ	oph) for all (analytes m	ust no	ot exc	eed th	ie foi	lowin	iq va	lues;		0 9	2001	sar	IOF Dat	mont	<u>m c</u>	olecti	on lin	nits (i)	u -	16	empe	eratu	re U	pon	Rec	sipt:											
-		AF		To	(2)	518	8>	1	****		·····									_	Sa	ampl	e Co	ntair	19rs	Intac	1 ?			1	(Ν					
all gauished by	EDF REQUI	RED GLOE) = St	0608	453) 3	SE	ND /	ANA	LYT	ICA	RE	PORT	S TO	alicia	falk@	stant	ec.co	n m	V	Cs	Free	of	iead	dspac	æ?			Ŋ	,		N					
alle	B/(4/	(2	061		Receiv	ed by	Ľ	,Z	0 -	<u>t</u> er	~~			P 14	Date		······	7	time 60	7													14					
linquished by:	Da		Tin	- E	lecely	ed by	Ţəs	Ame	ica:	~		=			Date				lime	-	••	Leve	14 D	elive	rabi	les is	a Fu	II CLI) jike	dat	a nad	ckar	1e					1
Sill Intern	81	4 12	17	:0\$	7 4	- 		2			<i>.</i>		5	$\ge n$	rl.	~		1	708							e on a							je					

Page 1 of 1

Page 25 of 31

Salimpour, Afsaneh

720-43926

From: Falk, Alicia [Alicia.Falk@stantec.com]

Sent: Wednesday, August 15, 2012 9:32 AM

To: Salimpour, Afsaneh

Cc: Hardin, Jack

Subject: Goodyear Castro Valley - Additional Analytes Requested

Importance: High

Good Morning Afsaneh,

The landfill is requiring we provide them with additional analytes. Can you please run a composite of the four soil samples submitted on August 13, 2012 (EX-1 through EX-4) for LUFT 5 Metals on standard TAT?

Thank you, *Please note name change*

Alicia Jansen (formerly Falk) Project Scientist Stantec 15575 Los Gatos Boulevard Building C Los Gatos CA 95032-2569 Ph: (408) 356-6124 Ext. 261 Fx: (408) 356-6138 Cell: (408) 458-6357 alicia.falk@stantec.com

stantec.com

Salimpour, Afsaneh

From:	Falk, Alicia [Alicia.Falk@stantec.com]
Sent:	Thursday, August 16, 2012 9:02 AM
То:	Salimpour, Afsaneh
Cc:	Hardin, Jack; Messerotes, Gary; Rhodes, Tristan
Subject:	Goodyear Castro Valley - Additional Analytes

Attachments: Rev COC 43958.pdf; REV COC 081312.pdf

Good Morning Afsaneh,

Attached are revised COCs for the samples submitted for the Goodyear Castro Valley Site on 8/13 and 8/14. Please add a "COMP-1" and make a composite of the four soil samples (EX-1 through EX-4) and analyze it for LUFT F Metals.

Also for the samples submitted on 8/13 and 8/14, please analyze all samples for TPH-DRO with and without silica gel cleanup.

Thank you, *Please note name change*

Alicia Jansen (formerly Falk) Project Scientist Stantec 15575 Los Gatos Boulevard Building C Los Gatos CA 95032-2569 Ph: (408) 356-6124 Ext. 261 Fx: (408) 356-6138 Cell: (408) 458-6357 alicia.falk@stantec.com stantec.com

From: Salimpour, Afsaneh [mailto:afsaneh.salimpour@testamericainc.com]
Sent: Wednesday, August 15, 2012 6:56 PM
To: Falk, Alicia
Subject: Sample Login Confirmation for 720-43958, Goodyear -DEX No.9578,3430 Castro Valley

AFSANEH SALIMPOUR

TestAmerica Pleasanton THE LEADER IN ENVIRONMENTAL TESTING

Tel: 925.484,1919 www.testamericainc.com

Reference: [110142] Attachments: 3

Login Number: 43926 List Number: 1

Creator: Apostol, Anita

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	False	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

List Source: TestAmerica Pleasanton

Login Number: 43926 List Number: 1

Creator: Perez, Angel

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

14

Login Number: 43926 List Number: 1

Creator: Apostol, Anita

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	False	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

14

List Source: TestAmerica Pleasanton

Job Number: 720-43926-1

Login Number: 43926 List Number: 1

Creator: Perez, Angel

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-44090-1

Client Project/Site: Goodyear DEX#9578,3430 Castro Valley

For:

Stantec Consulting Corp. 15575 Los Gatos Blvd Bldg. C Los Gatos, California 95032

Attn: Ms. Alicia Falk

Alanf Sal D

Authorized for release by: 8/28/2012 3:26:16 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com

Total Access Have a Question?

Visit us at: www.testamericainc.com

The

Expert

..... Links

Review your project results through

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

Definitions/Glossary

Client: Stantec Consulting Corp. Project/Site: Goodyear DEX#9578,3430 Castro Valley

Glossary

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	Δ
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CNF	Contains no Free Liquid	
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
EDL	Estimated Detection Limit	0
EPA	United States Environmental Protection Agency	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	8
PQL	Practical Quantitation Limit	
QC	Quality Control	9
RL	Reporting Limit	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
		1

Job ID: 720-44090-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-44090-1

Comments

No additional comments.

Receipt

The samples were received on 8/21/2012 4:20 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.5° C.

Metals

No other analytical or quality issues were noted.

Lab Sample ID: 720-44090-3

5

Client Sample ID: COMP-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Prep Type
Chromium	35		1.9		mg/Kg	4	60	10B	Total/NA
Nickel	36		1.9		mg/Kg	4	60	10B	Total/NA
Lead	480		1.9		mg/Kg	4	60	10B	Total/NA
Zinc	100		5.7		mg/Kg	4	60	10B	Total/NA

Client Sample Results

Client: Stantec Consulting Corp. Project/Site: Goodyear DEX#9578,3430 Castro Valley TestAmerica Job ID: 720-44090-1

Method: 6010B - Metals (ICP)

Client Sample ID: COMP-2 Date Collected: 08/20/12 19:22 Date Received: 08/21/12 16:20							Lab S	ample ID: 720- Matri	44090-3 x: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.48		mg/Kg		08/22/12 18:56	08/23/12 13:46	4
Chromium	35		1.9		mg/Kg		08/22/12 18:56	08/23/12 13:46	4
Nickel	36		1.9		mg/Kg		08/22/12 18:56	08/23/12 13:46	4
Lead	480		1.9		mg/Kg		08/22/12 18:56	08/23/12 13:46	4
Zinc	100		5.7		mg/Kg		08/22/12 18:56	08/23/12 13:46	4

Method: 6010B - Metals (ICP)

 Lab Sample ID: MB 720-119606/1-A								Client S	ample ID: Me	thod	Blank
Matrix: Solid									Prep Typ	e: Tot	al/NA
Analysis Batch: 119659									Prep Ba		
-	MB	МВ									
Analyte	Result	Qualifier		RL	MDL U	nit	D	Prepared	Analyzed		Dil Fac
Cadmium	ND			0.13	m	g/Kg	0	3/22/12 18:56	08/23/12 12:	49	1
Chromium	ND			0.50	m	g/Kg	0	3/22/12 18:56	08/23/12 12:	49	1
Nickel	ND			0.50	m	g/Kg	0	3/22/12 18:56	08/23/12 12:	49	1
Lead	ND			0.50	m	g/Kg	0	3/22/12 18:56	08/23/12 12:	49	1
Zinc	ND			1.5	m	g/Kg	0	8/22/12 18:56	08/23/12 12:	49	1
Lab Sample ID: LCS 720-119606/2-A							Clie	nt Sample	ID: Lab Con	trol Sa	ample
Matrix: Solid									Prep Typ	e: Tot	al/NA
Analysis Batch: 119659									Prep Ba	tch: 1	19606
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifie	er Unit	I	D %Rec	Limits		
Cadmium			50.0	48.6		mg/Kg		97	80 - 120		
Chromium			50.0	53.0		mg/Kg		106	80 - 120		
Nickel			50.0	54.1		mg/Kg		108	80 - 120		
Lead			50.0	52.0		mg/Kg		104	80 - 120		
Zinc			50.0	50.1		mg/Kg		100	80 - 120		
Lab Sample ID: LCSD 720-119606/3-A						CI	ient Sa	ample ID: L	ab Control S	Sample	e Dup
Matrix: Solid									Prep Typ	e: Tot	al/NA
Analysis Batch: 119659									Prep Ba	tch: 1	19606
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifie	er Unit		D %Rec	Limits	RPD	Limit
Cadmium				Rooun				/01100	Emitto		
			50.0	49.2		mg/Kg		98	80 - 120	1	20
Chromium			50.0 50.0			mg/Kg mg/Kg					
Chromium Nickel				49.2				98	80 - 120	1	20
Chromium Nickel Lead			50.0	49.2 53.0		mg/Kg		98	80 - 120 80 - 120	1 0	20 20
Nickel Lead			50.0 50.0	49.2 53.0 54.3		mg/Kg mg/Kg	<u>-</u>	98 106 109	80 - 120 80 - 120 80 - 120	1 0 0	20 20 20
Nickel Lead Zinc			50.0 50.0 50.0	49.2 53.0 54.3 52.4		mg/Kg mg/Kg mg/Kg	Clie	98 106 109 105 101	80 - 120 80 - 120 80 - 120 80 - 120	1 0 0 1 1	20 20 20 20 20 20
Nickel Lead Zinc Lab Sample ID: LCSSRM 720-119606/20-A			50.0 50.0 50.0	49.2 53.0 54.3 52.4		mg/Kg mg/Kg mg/Kg	Clie	98 106 109 105 101	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	1 0 1 1 trol Sa	20 20 20 20 20
Nickel Lead Zinc Lab Sample ID: LCSSRM 720-119606/20-A Matrix: Solid			50.0 50.0 50.0	49.2 53.0 54.3 52.4		mg/Kg mg/Kg mg/Kg	Clie	98 106 109 105 101	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 ID: Lab Con	1 0 1 1 trol Sa pe: Tot	20 20 20 20 20 20 ample
Nickel Lead Zinc Lab Sample ID: LCSSRM 720-119606/20-A Matrix: Solid			50.0 50.0 50.0	49.2 53.0 54.3 52.4		mg/Kg mg/Kg mg/Kg mg/Kg	Clie	98 106 109 105 101	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 ID: Lab Con Prep Typ	1 0 1 1 trol Sa pe: Tot	20 20 20 20 20 20 ample
Nickel Lead Zinc Lab Sample ID: LCSSRM 720-119606/20-A Matrix: Solid Analysis Batch: 119659 Analyte			50.0 50.0 50.0 50.0 Spike Added	49.2 53.0 54.3 52.4 50.5 LCSSRM Result	LCSSR Qualifie	mg/Kg mg/Kg mg/Kg mg/Kg		98 106 109 105 101 nt Sample	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 ID: Lab Con Prep Typ Prep Ba %Rec. Limits	1 0 1 1 trol Sa pe: Tot	20 20 20 20 20 20 ample
Nickel Lead Zinc Lab Sample ID: LCSSRM 720-119606/20-A Matrix: Solid Analysis Batch: 119659 Analyte	· · · · · · · · · · · · · · · · · · ·		50.0 50.0 50.0 50.0 Spike	49.2 53.0 54.3 52.4 50.5	LCSSR Qualifie	mg/Kg mg/Kg mg/Kg mg/Kg		98 106 109 105 101 nt Sample	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 ID: Lab Con Prep Typ Prep Ba %Rec.	1 0 1 1 trol Sa pe: Tot	20 20 20 20 20 20 ample
Nickel Lead Zinc Lab Sample ID: LCSSRM 720-119606/20-A Matrix: Solid Analysis Batch: 119659 Analyte Cadmium Chromium	· · · · · · · · · · · · · · · · · · ·		50.0 50.0 50.0 50.0 Spike Added 42.0 269	49.2 53.0 54.3 52.4 50.5 LCSSRM Result 38.2 266	LCSSR Qualifie	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		98 106 109 105 101 nt Sample 0 %Rec 91 99	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 ID: Lab Con Prep Typ Prep Ba %Rec. Limits 67 - 118 67 - 121	1 0 1 1 trol Sa pe: Tot	20 20 20 20 20 20 ample
Nickel Lead Zinc Lab Sample ID: LCSSRM 720-119606/20-A Matrix: Solid Analysis Batch: 119659 Analyte Cadmium	<u> </u>		50.0 50.0 50.0 50.0 Spike Added 42.0	49.2 53.0 54.3 52.4 50.5 LCSSRM Result 38.2	LCSSR Qualifie	mg/Kg mg/Kg mg/Kg mg/Kg M er <u>Unit</u> mg/Kg		98 106 109 105 101 nt Sample 0 %Rec 91	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 ID: Lab Con Prep Typ Prep Ba %Rec. Limits 67 - 118 67 - 121 65 - 117	1 0 1 1 trol Sa pe: Tot	20 20 20 20 20 20 ample
Nickel Lead Zinc Lab Sample ID: LCSSRM 720-119606/20-A Matrix: Solid Analysis Batch: 119659 Analyte Cadmium Chromium	· · · · · · · · · · · · · · · · · · ·		50.0 50.0 50.0 50.0 Spike Added 42.0 269	49.2 53.0 54.3 52.4 50.5 LCSSRM Result 38.2 266	LCSSR Qualifie	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		98 106 109 105 101 nt Sample 0 %Rec 91 99	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 ID: Lab Con Prep Typ Prep Ba %Rec. Limits 67 - 118 67 - 121	1 0 1 1 trol Sa pe: Tot	20 20 20 20 20 20 ample

QC Association Summary

Client: Stantec Consulting Corp. Project/Site: Goodyear DEX#9578,3430 Castro Valley

TestAmerica Job ID: 720-44090-1

TestAmerica Pleasanton 8/28/2012

Metals

Prep Batch: 119606

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-44090-3	COMP-2	Total/NA	Solid	3050B	
LCS 720-119606/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 720-119606/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
LCSSRM 720-119606/20-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 720-119606/1-A	Method Blank	Total/NA	Solid	3050B	
nalysis Batch: 119659					
nalysis Batch: 119659			Matrix	Method	Prep Batcl
	Client Sample ID	Prep Type Total/NA	Matrix Solid	Method 6010B	Prep Batch
nalysis Batch: 119659 Lab Sample ID	Client Sample ID	Ргер Туре			
nalysis Batch: 119659 Lab Sample ID 720-44090-3 LCS 720-119606/2-A	Client Sample ID	Prep Type Total/NA	Solid	6010B	119606
nalysis Batch: 119659 Lab Sample ID 720-44090-3	Client Sample ID COMP-2 Lab Control Sample	Prep Type Total/NA	Solid Solid	6010B 6010B	

Page 8 of 14

Client: Stantec Consulting Corp. Project/Site: Goodyear DEX#9578,3430 Castro Valley

Lab Sample ID: 720-44090-3

Matrix: Solid

Client Sample ID: COMP-2 Date Collected: 08/20/12 19:22

Date Received: 08/21/12 16:20									
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3050B			119606	08/22/12 18:56	CDT	TAL SF	
Total/NA	Analysis	6010B		4	119659	08/23/12 13:46	CAM	TAL SF	

Laboratory References:

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: Stantec Consulting Corp. Project/Site: Goodyear DEX#9578,3430 Castro Valley

TestAmerica Job ID: 720-44090-1

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
California	State Program	9	2496	01-31-14	

Client: Stantec Consulting Corp. Project/Site: Goodyear DEX#9578,3430 Castro Valley

Method	Method Description	Protocol	Laboratory			
6010B	Metals (ICP)	SW846	TAL SF			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: Stantec Consulting Corp. Project/Site: Goodyear DEX#9578,3430 Castro Valley

TestAmerica Job ID: 720-44090-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-44090-3	COMP-2	Solid	08/20/12 19:22	08/21/12 16:20

CHAIN OF	CUSTO	DY RE	CORI	D										E NO.																		14030	Z
													الاتينية	720	, 2	44	40	X	5	D											- - 		
GOOD FYEAR		TestAm 1220 Qu Pleasan	iarry La		56		PI	ione	:	925.4	484.3	919		•					10	o assist is work	being	cond		l for r	regula	atory j	ourp	oses	?				
Client Name:	Stantec																				(Com	oliance	e Mo	nitoriı	ng?		Y	es	N	D		
Address:	15575 Los	Gatos I	Boulev	ard, E	Buildi	ng C															E	Enfor	rceme	nt Ac	tion?			Y	és	N	C		
City/State/Zip:	Los Gatos	, CA 950	032																	icia Fal													
Project Manager:				gary.r	ness	erote	s@s	stant	ec.c	om						I	nvoi	ce Te	o: Ka	aren Bu	rlingan	ne Gr	oodyea	ar De	pt. 11	0F 11	44 E	E.Mar	ket S	St. Akı	on, O	H 44136-0001	
Telephone Number:							o.: 4(•	1	nvoice	e ema	ii: <u>k</u> a	aren b	urling	ame	e@gc	ody	ear.	<u>com</u>							
ampler Name: (Print)	······			Ś			••••••								Territo	ory ID	:		F	ormer	Good	year	DEX	# 95	78, 3	430 C	ast	tro V	alle	у Во	uleva	rd, Castro V	alley, CA
Sampler Signature:		<u>\</u>	- >	عد الع	\sim	J									-	Proje	ct No	⊳& II): <u>1</u>	8570	2561										-		
PO & Quote Number:		PO No.	C412	1	Qu	ote N	o. Po	osted	on	est/	mer	ica C	asis 12-1	7-08								-											
							Pres	serva	tive		Mat	rix		T	1			T				alyze	For:		1 1		шŢ		~	<u> </u>		1	
ample ID	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite Field Filtered	HNO ₃ (Red Label)	HCI (Blue Label) NaOH (Orange Label)	H ₂ SO ₄ Plastic (Yellow Label)	None (Black Label)	Other (Specify)	Soil	Other (specify)	8015 - TPH-DRO (C10 to C28)	8015B - TPH-GRO	9071B - TRPH	3260B - BIEX,	M I DE, EUV, allu FDB	3270C - SVOCs	6010B - Lead	to C28) with Silca Gel	ruft 5 metals	6		a da a da angenera na manana na manana na manana na manana na manana na manana manana manana manana manana mana			RUSH TAT (Pre-Schedul	RUSH Due Date	Standard TAT7-10 Business Day	Fax Results	Electronic Deliverables		REMARKS
20110 2	8/20/12	1022		5	/			+			×		<u> </u>	<u>↓</u>				₩†	× `		X								X		X	EDF	Required
COMP-2	0120117	1922	<u> </u>	+ - 1'	4				<u> </u>	┝╋	+			+	1						+	· · · ·		1	+				<u>.</u>				
			_	╋┉┠╴				┼╌┼				++						-						+			-+			+	1		
	l		_	╂━╋		_		$\left \right $						+				-			+			+		t	-				+-		
	<u> </u>			╋╋╋	-																				-	-							
	ļ	-						++	+	┝╌┠	-				<u> </u>				_					+							_		
	l			++	_					┼─╂	+							-+	_														
			_							┿╋											-				-							<u> </u>	
				+				\downarrow			4	<u> </u>	<u> </u>								_				-								
												<u> </u>								abora			onte:										
pecial Instructions:	A copy o	f the ch	<u>ain of</u>	custo	ody r	nust	acc	omr	any	eac	<u>h ir</u>	voi	ce to Go	odyear f	or pay	ymen	t !!!	-	1	.aboia			ature I		n Rec	eipt:							
	Detectio	n limits	(in ug/	I) for	TPH	-DR	0/01	1 0	mus	t no	tex	cee	<u>a 100 uç</u>	/1.							Sar	nple	Conta	liners	s Inta	ct?		Y		N			
DF REQUIRED GL	OBAL ID =	T06001					1	AL	REF	POR	TS	'O a	licia.fall		c.con	n 					vo	Cs F	ree of	Hea	idspa	ce?		Y		N			
	8/21	i Z		ime I 35	Receiv	red b	A	~	4	. (\$	IA3	F	08/	Date 2112			Tir																
elinquistreet by:	68/21	ate	******	ime F	Receiv	red by	Test	Ameri		L.S				Date				ne Z	\mathbf{S}				4 Deliv a surc									3.5	مكن

Client: Stantec Consulting Corp.

Login Number: 44090 List Number: 1

Creator: Apostol, Anita

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-44090-1

List Source: TestAmerica Pleasanton

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

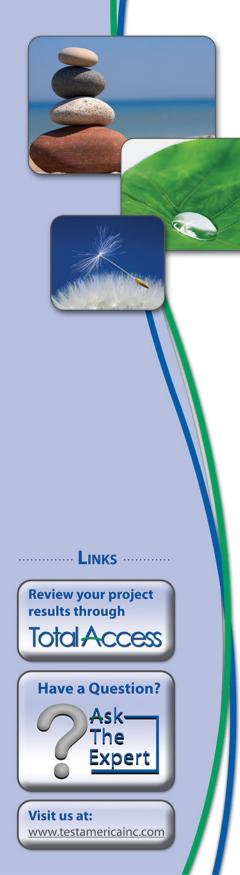
TestAmerica Job ID: 720-57584-1

Client Project/Site: Goodyear -DEX ID No.9578 Castro Valley

For:

Stantec Consulting Corp. 15575 Los Gatos Blvd Bldg. C Los Gatos, California 95032

Attn: Mr. Gary Messerotes


Asanaf Sal)

Authorized for release by: 5/27/2014 12:13:35 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	13
QC Association Summary	28
Lab Chronicle	29
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receipt Checklists	35

Client: Stantec Consulting Corp. Project/Site: Goodyear -DEX ID No.9578 Castro Valley

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

3 4

5

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
x	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	3
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	

4

5

Job ID: 720-57584-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-57584-1

Comments

No additional comments.

Receipt

The samples were received on 5/21/2014 4:50 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 7.1° C.

GC/MS VOA

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 159870 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270C: Surrogate recovery (Nitrobenzene-d5) for the following sample(s) was outside the upper control limit: MW-4 (720-57584-1), MW-5 (720-57584-2). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8270C: Surrogat (nitrobenzene-d5) recovery outside of QC control limit.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Stantec Consulting Corp.
Project/Site: Goodyear -DEX ID No.9578 Castro Valley

Client Sample ID: MW-4 Lab Sample ID: 720-57584-1 3 No Detections. 4 Client Sample ID: MW-5 Lab Sample ID: 720-57584-2 5 No Detections. 6

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 720-57584-1 Matrix: Water

5

6

Date Collected: 05/21/14 15:10 Date Received: 05/21/14 16:50

Client Sample ID: MW-4

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND	0.50	ug/L		05/22/14 17:33	
Acetone	ND	50	ug/L		05/22/14 17:33	
Benzene	ND	0.50	ug/L		05/22/14 17:33	
Dichlorobromomethane	ND	0.50	ug/L		05/22/14 17:33	
Bromobenzene	ND	1.0	ug/L		05/22/14 17:33	
Chlorobromomethane	ND	1.0	ug/L		05/22/14 17:33	
Bromoform	ND	1.0	ug/L		05/22/14 17:33	
Bromomethane	ND	1.0	ug/L		05/22/14 17:33	
2-Butanone (MEK)	ND	50	ug/L		05/22/14 17:33	
n-Butylbenzene	ND	1.0	ug/L		05/22/14 17:33	
sec-Butylbenzene	ND	1.0	ug/L		05/22/14 17:33	
tert-Butylbenzene	ND	1.0	ug/L		05/22/14 17:33	
Carbon disulfide	ND	5.0	ug/L		05/22/14 17:33	
Carbon tetrachloride	ND	0.50	ug/L		05/22/14 17:33	
Chlorobenzene	ND	0.50	ug/L		05/22/14 17:33	
Chloroethane	ND	1.0	ug/L		05/22/14 17:33	
Chloroform	ND	1.0	ug/L		05/22/14 17:33	
Chloromethane	ND	1.0	ug/L		05/22/14 17:33	
2-Chlorotoluene	ND	0.50	ug/L		05/22/14 17:33	
1-Chlorotoluene	ND	0.50	ug/L		05/22/14 17:33	
Chlorodibromomethane	ND	0.50	ug/L		05/22/14 17:33	
I,2-Dichlorobenzene	ND	0.50	ug/L		05/22/14 17:33	
1,3-Dichlorobenzene	ND	0.50	ug/L		05/22/14 17:33	
1,4-Dichlorobenzene	ND	0.50	ug/L		05/22/14 17:33	
1,3-Dichloropropane	ND	1.0	ug/L		05/22/14 17:33	
1,1-Dichloropropene	ND	0.50	ug/L		05/22/14 17:33	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		05/22/14 17:33	
Ethylene Dibromide	ND	0.50	ug/L		05/22/14 17:33	
Dibromomethane	ND	0.50	ug/L		05/22/14 17:33	
Dichlorodifluoromethane	ND	0.50	ug/L		05/22/14 17:33	
1,1-Dichloroethane	ND	0.50	ug/L		05/22/14 17:33	
1,2-Dichloroethane	ND	0.50	ug/L		05/22/14 17:33	
1,1-Dichloroethene	ND	0.50	ug/L		05/22/14 17:33	
cis-1,2-Dichloroethene	ND	0.50	ug/L		05/22/14 17:33	
rans-1,2-Dichloroethene	ND	0.50	ug/L		05/22/14 17:33	
1,2-Dichloropropane	ND	0.50	ug/L		05/22/14 17:33	
cis-1,3-Dichloropropene	ND	0.50	ug/L		05/22/14 17:33	
rans-1,3-Dichloropropene	ND	0.50	ug/L		05/22/14 17:33	
Ethylbenzene	ND	0.50	ug/L		05/22/14 17:33	
Hexachlorobutadiene	ND	1.0	ug/L		05/22/14 17:33	
2-Hexanone	ND	50	ug/L		05/22/14 17:33	
sopropylbenzene	ND	0.50	ug/L		05/22/14 17:33	
I-Isopropyltoluene	ND	1.0				
Methylene Chloride	ND	5.0	ug/L		05/22/14 17:33	
-			ug/L		05/22/14 17:33	
I-Methyl-2-pentanone (MIBK)	ND	50	ug/L		05/22/14 17:33	
Naphthalene	ND	1.0	ug/L		05/23/14 11:24	
N-Propylbenzene	ND	1.0	ug/L		05/22/14 17:33	
Styrene	ND	0.50	ug/L		05/22/14 17:33 05/22/14 17:33	

Lab Sample ID: 720-57584-1 Matrix: Water

Date Collected: 05/21/14 15:10 Date Received: 05/21/14 16:50

Client Sample ID: MW-4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			05/22/14 17:33	1
Tetrachloroethene	ND		0.50		ug/L			05/22/14 17:33	1
Toluene	ND		0.50		ug/L			05/22/14 17:33	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			05/22/14 17:33	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			05/22/14 17:33	1
1,1,1-Trichloroethane	ND		0.50		ug/L			05/22/14 17:33	1
1,1,2-Trichloroethane	ND		0.50		ug/L			05/22/14 17:33	1
Trichloroethene	ND		0.50		ug/L			05/22/14 17:33	1
Trichlorofluoromethane	ND		1.0		ug/L			05/22/14 17:33	1
1,2,3-Trichloropropane	ND		0.50		ug/L			05/22/14 17:33	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			05/22/14 17:33	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			05/22/14 17:33	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			05/22/14 17:33	1
Vinyl acetate	ND		10		ug/L			05/22/14 17:33	1
Vinyl chloride	ND		0.50		ug/L			05/22/14 17:33	1
Xylenes, Total	ND		1.0		ug/L			05/22/14 17:33	1
2,2-Dichloropropane	ND		0.50		ug/L			05/22/14 17:33	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	93		67 _ 130		05/22/14 17:33	1	
4-Bromofluorobenzene	95		67 - 130		05/23/14 11:24	1	
1,2-Dichloroethane-d4 (Surr)	96		72 - 130		05/22/14 17:33	1	
1,2-Dichloroethane-d4 (Surr)	96		72 _ 130		05/23/14 11:24	1	
Toluene-d8 (Surr)	99		70 _ 130		05/22/14 17:33	1	
Toluene-d8 (Surr)	99		70 - 130		05/23/14 11:24	1	

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND	1.9		ug/L		05/22/14 13:13	05/22/14 18:16	1
Bis(2-chloroethyl)ether	ND	1.9		ug/L		05/22/14 13:13	05/22/14 18:16	1
2-Chlorophenol	ND	3.8		ug/L		05/22/14 13:13	05/22/14 18:16	1
1,3-Dichlorobenzene	ND	1.9		ug/L		05/22/14 13:13	05/22/14 18:16	1
1,4-Dichlorobenzene	ND	1.9		ug/L		05/22/14 13:13	05/22/14 18:16	1
Benzyl alcohol	ND	4.7		ug/L		05/22/14 13:13	05/22/14 18:16	1
1,2-Dichlorobenzene	ND	1.9		ug/L		05/22/14 13:13	05/22/14 18:16	1
2-Methylphenol	ND	3.8		ug/L		05/22/14 13:13	05/22/14 18:16	1
4-Methylphenol	ND	7.6		ug/L		05/22/14 13:13	05/22/14 18:16	1
N-Nitrosodi-n-propylamine	ND	1.9		ug/L		05/22/14 13:13	05/22/14 18:16	1
Hexachloroethane	ND	1.9		ug/L		05/22/14 13:13	05/22/14 18:16	1
Nitrobenzene	ND	1.9		ug/L		05/22/14 13:13	05/22/14 18:16	1
Isophorone	ND	3.8		ug/L		05/22/14 13:13	05/22/14 18:16	1
2-Nitrophenol	ND	1.9		ug/L		05/22/14 13:13	05/22/14 18:16	1
2,4-Dimethylphenol	ND	2.8		ug/L		05/22/14 13:13	05/22/14 18:16	1
Bis(2-chloroethoxy)methane	ND	4.7		ug/L		05/22/14 13:13	05/22/14 18:16	1
2,4-Dichlorophenol	ND	4.7		ug/L		05/22/14 13:13	05/22/14 18:16	1
1,2,4-Trichlorobenzene	ND	1.9		ug/L		05/22/14 13:13	05/22/14 18:16	1
Naphthalene	ND	1.9		ug/L		05/22/14 13:13	05/22/14 18:16	1
4-Chloroaniline	ND	1.9		ug/L		05/22/14 13:13	05/22/14 18:16	1
Hexachlorobutadiene	ND	1.9		ug/L		05/22/14 13:13	05/22/14 18:16	1
4-Chloro-3-methylphenol	ND	4.7		ug/L		05/22/14 13:13	05/22/14 18:16	1

TestAmerica Pleasanton

Lab Sample ID: 720-57584-1 Matrix: Water

Date Collected: 05/21/14 15:10 Date Received: 05/21/14 16:50

Client Sample ID: MW-4

nalyte	Result Qualifier	RL	MDL Ur	nit	D	Prepared	Analyzed	Dil Fac
Methylnaphthalene	ND	1.9	ug	g/L		05/22/14 13:13	05/22/14 18:16	1
exachlorocyclopentadiene	ND	4.7	ug	g/L		05/22/14 13:13	05/22/14 18:16	1
4,6-Trichlorophenol	ND	1.9	ug	g/L		05/22/14 13:13	05/22/14 18:16	1
4,5-Trichlorophenol	ND	3.8	ug	g/L		05/22/14 13:13	05/22/14 18:16	1
Chloronaphthalene	ND	3.8	ug	g/L		05/22/14 13:13	05/22/14 18:16	1
Nitroaniline	ND	9.5	ug	g/L		05/22/14 13:13	05/22/14 18:16	1
methyl phthalate	ND	4.7	ug	g/L		05/22/14 13:13	05/22/14 18:16	1
cenaphthylene	ND	3.8	ug	g/L		05/22/14 13:13	05/22/14 18:16	1
Nitroaniline	ND	4.7	ug	g/L		05/22/14 13:13	05/22/14 18:16	1
enaphthene	ND	1.9	ug	g/L		05/22/14 13:13	05/22/14 18:16	1
4-Dinitrophenol	ND	9.5	ug	a/L		05/22/14 13:13	05/22/14 18:16	1

Roonapharyione	ND		0.0	ug/L	00/22/14 10:10	00/22/14 10:10	
3-Nitroaniline	ND		4.7	ug/L	05/22/14 13:13	05/22/14 18:16	1
Acenaphthene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
2,4-Dinitrophenol	ND		9.5	ug/L	05/22/14 13:13	05/22/14 18:16	1
4-Nitrophenol	ND		9.5	ug/L	05/22/14 13:13	05/22/14 18:16	1
Dibenzofuran	ND		3.8	ug/L	05/22/14 13:13	05/22/14 18:16	1
2,4-Dinitrotoluene	ND		3.8	ug/L	05/22/14 13:13	05/22/14 18:16	1
2,6-Dinitrotoluene	ND		4.7	ug/L	05/22/14 13:13	05/22/14 18:16	1
Diethyl phthalate	ND		4.7	ug/L	05/22/14 13:13	05/22/14 18:16	1
4-Chlorophenyl phenyl ether	ND		4.7	ug/L	05/22/14 13:13	05/22/14 18:16	1
Fluorene	ND		3.8	ug/L	05/22/14 13:13	05/22/14 18:16	1
4-Nitroaniline	ND		9.5	ug/L	05/22/14 13:13	05/22/14 18:16	1
2-Methyl-4,6-dinitrophenol	ND		9.5	ug/L	05/22/14 13:13	05/22/14 18:16	1
N-Nitrosodiphenylamine	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
4-Bromophenyl phenyl ether	ND		4.7	ug/L	05/22/14 13:13	05/22/14 18:16	1
Hexachlorobenzene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
Pentachlorophenol	ND		9.5	ug/L	05/22/14 13:13	05/22/14 18:16	1
Phenanthrene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
Anthracene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
Di-n-butyl phthalate	ND		4.7	ug/L	05/22/14 13:13	05/22/14 18:16	1
Fluoranthene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
Pyrene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
Butyl benzyl phthalate	ND		4.7	ug/L	05/22/14 13:13	05/22/14 18:16	1
3,3'-Dichlorobenzidine	ND		4.7	ug/L	05/22/14 13:13	05/22/14 18:16	1
Benzo[a]anthracene	ND		4.7	ug/L	05/22/14 13:13	05/22/14 18:16	1
Bis(2-ethylhexyl) phthalate	ND		9.5	ug/L	05/22/14 13:13	05/22/14 18:16	1
Chrysene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
Di-n-octyl phthalate	ND		4.7	ug/L	05/22/14 13:13	05/22/14 18:16	1
Benzo[b]fluoranthene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
Benzo[a]pyrene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
Benzo[k]fluoranthene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
Indeno[1,2,3-cd]pyrene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
Benzo[g,h,i]perylene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
Benzoic acid	ND		9.5	ug/L	05/22/14 13:13	05/22/14 18:16	1
Azobenzene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
Dibenz(a,h)anthracene	ND		1.9	ug/L	05/22/14 13:13	05/22/14 18:16	1
Surrogate		Qualifier	Limits		Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	81	X	16 - 72		05/22/14 13:13	05/22/14 18:16	1
2-Fluorobiphenyl	81		10 - 101		05/22/14 13:13	05/22/14 18:16	1
Terphenyl-d14	84		42 - 112		05/22/14 13:13	05/22/14 18:16	1
2-Fluorophenol	30		10 - 65		05/22/14 13:13	05/22/14 18:16	1
Phenol-d5	22		10 - 46		05/22/14 13:13	05/22/14 18:16	1

Client Sample Results

TestAmerica Job ID: 720-57584-1

Lab Sample ID: 720-57584-1

Matrix: Water

Client Sample ID: MW-4 Date Collected: 05/21/14 15:1

Date Collected: 05/21/14 15:10
Date Received: 05/21/14 16:50

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery Qua	ualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	89		17 - 100	05/22/14 13:13	05/22/14 18:16	1

Matrix: Water

5

6

Lab Sample ID: 720-57584-2

Client Sample ID: MW-5 Date Collected: 05/21/14 14:00 Date Received: 05/21/14 16:50

Method: 8260B - Volatile Organi Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		05/22/14 18:00	1
Acetone	ND	50	ug/L		05/22/14 18:00	1
Benzene	ND	0.50	ug/L		05/22/14 18:00	1
Dichlorobromomethane	ND	0.50	ug/L		05/22/14 18:00	1
Bromobenzene	ND	1.0	ug/L		05/22/14 18:00	1
Chlorobromomethane	ND	1.0	ug/L		05/22/14 18:00	1
Bromoform	ND	1.0	ug/L		05/22/14 18:00	1
Bromomethane	ND	1.0	ug/L		05/22/14 18:00	1
2-Butanone (MEK)	ND	50	ug/L		05/22/14 18:00	1
n-Butylbenzene	ND	1.0	ug/L		05/22/14 18:00	1
sec-Butylbenzene	ND	1.0	ug/L		05/22/14 18:00	1
tert-Butylbenzene	ND	1.0	ug/L		05/22/14 18:00	1
Carbon disulfide	ND	5.0	ug/L		05/22/14 18:00	1
Carbon tetrachloride	ND	0.50	ug/L		05/22/14 18:00	1
Chlorobenzene	ND	0.50	ug/L		05/22/14 18:00	1
Chloroethane	ND	1.0	ug/L		05/22/14 18:00	1
Chloroform	ND	1.0	ug/L		05/22/14 18:00	1
Chloromethane	ND	1.0	ug/L		05/22/14 18:00	1
2-Chlorotoluene	ND	0.50	ug/L		05/22/14 18:00	1
4-Chlorotoluene	ND	0.50	ug/L		05/22/14 18:00	1
Chlorodibromomethane	ND	0.50	ug/L		05/22/14 18:00	1
1,2-Dichlorobenzene	ND	0.50	ug/L		05/22/14 18:00	1
1,3-Dichlorobenzene	ND	0.50	ug/L		05/22/14 18:00	1
1,4-Dichlorobenzene	ND	0.50	ug/L		05/22/14 18:00	1
1,3-Dichloropropane	ND	1.0	ug/L		05/22/14 18:00	1
1,1-Dichloropropene	ND	0.50	ug/L		05/22/14 18:00	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		05/22/14 18:00	1
Ethylene Dibromide	ND	0.50	ug/L		05/22/14 18:00	1
Dibromomethane	ND	0.50	ug/L		05/22/14 18:00	1
Dichlorodifluoromethane	ND	0.50	ug/L		05/22/14 18:00	1
1,1-Dichloroethane	ND	0.50	ug/L		05/22/14 18:00	1
1,2-Dichloroethane	ND	0.50	ug/L		05/22/14 18:00	1
1,1-Dichloroethene	ND	0.50	ug/L		05/22/14 18:00	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		05/22/14 18:00	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		05/22/14 18:00	1
1,2-Dichloropropane	ND	0.50	ug/L		05/22/14 18:00	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		05/22/14 18:00	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		05/22/14 18:00	1
Ethylbenzene	ND	0.50	ug/L		05/22/14 18:00	1
Hexachlorobutadiene	ND	1.0	ug/L		05/22/14 18:00	1
2-Hexanone	ND	50	ug/L		05/22/14 18:00	1
Isopropylbenzene	ND	0.50	ug/L		05/22/14 18:00	1
4-Isopropyltoluene	ND	1.0	ug/L		05/22/14 18:00	1
Methylene Chloride	ND	5.0	ug/L		05/22/14 18:00	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		05/22/14 18:00	1
Naphthalene	ND	1.0	ug/L		05/22/14 18:00	1
N-Propylbenzene	ND	1.0	ug/L		05/22/14 18:00	1
Styrene	ND	0.50	ug/L		05/22/14 18:00	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		05/22/14 18:00	1

Lab Sample ID: 720-57584-2 Matrix: Water

5

6

Date Collected: 05/21/14 14:00 Date Received: 05/21/14 16:50

Client Sample ID: MW-5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			05/22/14 18:00	1
Tetrachloroethene	ND		0.50		ug/L			05/22/14 18:00	1
Toluene	ND		0.50		ug/L			05/22/14 18:00	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			05/22/14 18:00	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			05/22/14 18:00	1
1,1,1-Trichloroethane	ND		0.50		ug/L			05/22/14 18:00	1
1,1,2-Trichloroethane	ND		0.50		ug/L			05/22/14 18:00	1
Trichloroethene	ND		0.50		ug/L			05/22/14 18:00	1
Trichlorofluoromethane	ND		1.0		ug/L			05/22/14 18:00	1
1,2,3-Trichloropropane	ND		0.50		ug/L			05/22/14 18:00	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			05/22/14 18:00	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			05/22/14 18:00	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			05/22/14 18:00	1
Vinyl acetate	ND		10		ug/L			05/22/14 18:00	1
Vinyl chloride	ND		0.50		ug/L			05/22/14 18:00	1
Xylenes, Total	ND		1.0		ug/L			05/22/14 18:00	1
2,2-Dichloropropane	ND		0.50		ug/L			05/22/14 18:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		67 - 130			-		05/22/14 18:00	1
1,2-Dichloroethane-d4 (Surr)	96		72 - 130					05/22/14 18:00	1
Toluene-d8 (Surr)	98		70 - 130					05/22/14 18:00	1

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Phenol	ND	1.9	u u	ıg/L		05/22/14 13:13	05/22/14 18:40	1
Bis(2-chloroethyl)ether	ND	1.9	u	ug/L		05/22/14 13:13	05/22/14 18:40	1
2-Chlorophenol	ND	3.8	u	ug/L		05/22/14 13:13	05/22/14 18:40	1
1,3-Dichlorobenzene	ND	1.9	u	ıg/L		05/22/14 13:13	05/22/14 18:40	1
1,4-Dichlorobenzene	ND	1.9	U)	ug/L		05/22/14 13:13	05/22/14 18:40	1
Benzyl alcohol	ND	4.8	u	ug/L		05/22/14 13:13	05/22/14 18:40	1
1,2-Dichlorobenzene	ND	1.9	U	ıg/L		05/22/14 13:13	05/22/14 18:40	1
2-Methylphenol	ND	3.8	u	ug/L		05/22/14 13:13	05/22/14 18:40	1
4-Methylphenol	ND	7.7	u	ug/L		05/22/14 13:13	05/22/14 18:40	1
N-Nitrosodi-n-propylamine	ND	1.9	U	ıg/L		05/22/14 13:13	05/22/14 18:40	1
Hexachloroethane	ND	1.9	u	ug/L		05/22/14 13:13	05/22/14 18:40	1
Nitrobenzene	ND	1.9	u	ug/L		05/22/14 13:13	05/22/14 18:40	1
Isophorone	ND	3.8	u	ıg/L		05/22/14 13:13	05/22/14 18:40	1
2-Nitrophenol	ND	1.9	u	ug/L		05/22/14 13:13	05/22/14 18:40	1
2,4-Dimethylphenol	ND	2.9	U)	ug/L		05/22/14 13:13	05/22/14 18:40	1
Bis(2-chloroethoxy)methane	ND	4.8	u	ıg/L		05/22/14 13:13	05/22/14 18:40	1
2,4-Dichlorophenol	ND	4.8	U)	ug/L		05/22/14 13:13	05/22/14 18:40	1
1,2,4-Trichlorobenzene	ND	1.9	u	ug/L		05/22/14 13:13	05/22/14 18:40	1
Naphthalene	ND	1.9	U	ıg/L		05/22/14 13:13	05/22/14 18:40	1
4-Chloroaniline	ND	1.9	U)	ug/L		05/22/14 13:13	05/22/14 18:40	1
Hexachlorobutadiene	ND	1.9	u	ug/L		05/22/14 13:13	05/22/14 18:40	1
4-Chloro-3-methylphenol	ND	4.8	U	ıg/L		05/22/14 13:13	05/22/14 18:40	1
2-Methylnaphthalene	ND	1.9	u	ug/L		05/22/14 13:13	05/22/14 18:40	1
Hexachlorocyclopentadiene	ND	4.8	U)	ug/L		05/22/14 13:13	05/22/14 18:40	1
2,4,6-Trichlorophenol	ND	1.9	u	ıg/L		05/22/14 13:13	05/22/14 18:40	1

Lab Sample ID: 720-57584-2 Matrix: Water

5

6

Date Collected: 05/21/14 14:00 Date Received: 05/21/14 16:50

Client Sample ID: MW-5

Method: 8270C - Semivolatile Org	nanic Compounds	(GC/MS)	(Continued)
	guino o o inpoundo		(Continuou)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		3.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
2-Chloronaphthalene	ND		3.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
2-Nitroaniline	ND		9.6		ug/L		05/22/14 13:13	05/22/14 18:40	1
Dimethyl phthalate	ND		4.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
Acenaphthylene	ND		3.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
3-Nitroaniline	ND		4.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
Acenaphthene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	1
2,4-Dinitrophenol	ND		9.6		ug/L		05/22/14 13:13	05/22/14 18:40	1
4-Nitrophenol	ND		9.6		ug/L		05/22/14 13:13	05/22/14 18:40	1
Dibenzofuran	ND		3.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
2,4-Dinitrotoluene	ND		3.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
2,6-Dinitrotoluene	ND		4.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
Diethyl phthalate	ND		4.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
4-Chlorophenyl phenyl ether	ND		4.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
Fluorene	ND		3.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
4-Nitroaniline	ND		9.6		ug/L		05/22/14 13:13	05/22/14 18:40	1
2-Methyl-4,6-dinitrophenol	ND		9.6		ug/L		05/22/14 13:13	05/22/14 18:40	1
N-Nitrosodiphenylamine	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	1
4-Bromophenyl phenyl ether	ND		4.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
Hexachlorobenzene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	1
Pentachlorophenol	ND		9.6		ug/L		05/22/14 13:13	05/22/14 18:40	1
Phenanthrene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	1
Anthracene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	1
Di-n-butyl phthalate	ND		4.8		ug/L		05/22/14 13:13	05/22/14 18:40	
Fluoranthene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	1
Pyrene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	1
Butyl benzyl phthalate	ND		4.8		ug/L		05/22/14 13:13	05/22/14 18:40	
3,3'-Dichlorobenzidine	ND		4.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
Benzo[a]anthracene	ND		4.8		ug/L		05/22/14 13:13	05/22/14 18:40	1
Bis(2-ethylhexyl) phthalate	ND		9.6		ug/L		05/22/14 13:13	05/22/14 18:40	
Chrysene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	1
Di-n-octyl phthalate	ND		4.8		ug/L		05/22/14 13:13	05/22/14 18:40	. 1
Benzo[b]fluoranthene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	
Benzo[a]pyrene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	1
Benzo[k]fluoranthene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	. 1
Indeno[1,2,3-cd]pyrene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	
Benzo[g,h,i]perylene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	1
Benzoic acid	ND		9.6		ug/L		05/22/14 13:13	05/22/14 18:40	1
Azobenzene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	
Dibenz(a,h)anthracene	ND		1.9		ug/L		05/22/14 13:13	05/22/14 18:40	1
					U				
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	89	х	16 - 72				05/22/14 13:13	05/22/14 18:40	1
2-Fluorobiphenyl	90		10 - 101				05/22/14 13:13	05/22/14 18:40	1
Terphenyl-d14	98		42 - 112				05/22/14 13:13	05/22/14 18:40	1
2-Fluorophenol	34		10 - 65				05/22/14 13:13	05/22/14 18:40	1
Phenol-d5	23		10 - 46				05/22/14 13:13	05/22/14 18:40	1
2,4,6-Tribromophenol	95		17 - 100				05/22/14 13:13	05/22/14 18:40	1

5

6 7

Lab Sample ID: MB 720-159870/4 Matrix: Water

Analysis	Batch:	159870
Analysis	Duton.	100010

	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L		05/22/14 08:53	1
Acetone	ND		50	ug/L		05/22/14 08:53	1
Benzene	ND		0.50	ug/L		05/22/14 08:53	1
Dichlorobromomethane	ND		0.50	ug/L		05/22/14 08:53	1
Bromobenzene	ND		1.0	ug/L		05/22/14 08:53	1
Chlorobromomethane	ND		1.0	ug/L		05/22/14 08:53	1
Bromoform	ND		1.0	ug/L		05/22/14 08:53	1
Bromomethane	ND		1.0	ug/L		05/22/14 08:53	1
2-Butanone (MEK)	ND		50	ug/L		05/22/14 08:53	1
n-Butylbenzene	ND		1.0	ug/L		05/22/14 08:53	1
sec-Butylbenzene	ND		1.0	ug/L		05/22/14 08:53	1
tert-Butylbenzene	ND		1.0	ug/L		05/22/14 08:53	1
Carbon disulfide	ND		5.0	ug/L		05/22/14 08:53	1
Carbon tetrachloride	ND		0.50	ug/L		05/22/14 08:53	1
Chlorobenzene	ND		0.50	ug/L		05/22/14 08:53	1
Chloroethane	ND		1.0	ug/L		05/22/14 08:53	1
Chloroform	ND		1.0	ug/L		05/22/14 08:53	1
Chloromethane	ND		1.0	ug/L		05/22/14 08:53	1
2-Chlorotoluene	ND		0.50	ug/L		05/22/14 08:53	1
4-Chlorotoluene	ND		0.50	ug/L		05/22/14 08:53	1
Chlorodibromomethane	ND		0.50	ug/L		05/22/14 08:53	1
1,2-Dichlorobenzene	ND		0.50	ug/L		05/22/14 08:53	1
1,3-Dichlorobenzene	ND		0.50	ug/L		05/22/14 08:53	1
1,4-Dichlorobenzene	ND		0.50	ug/L		05/22/14 08:53	1
1,3-Dichloropropane	ND		1.0	ug/L		05/22/14 08:53	1
1,1-Dichloropropene	ND		0.50	ug/L		05/22/14 08:53	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		05/22/14 08:53	1
Ethylene Dibromide	ND		0.50	ug/L		05/22/14 08:53	1
Dibromomethane	ND		0.50	ug/L		05/22/14 08:53	1
Dichlorodifluoromethane	ND		0.50	ug/L		05/22/14 08:53	1
1,1-Dichloroethane	ND		0.50	ug/L		05/22/14 08:53	1
1,2-Dichloroethane	ND		0.50	ug/L		05/22/14 08:53	1
1,1-Dichloroethene	ND		0.50	ug/L		05/22/14 08:53	1
cis-1,2-Dichloroethene	ND		0.50	ug/L		05/22/14 08:53	1
trans-1,2-Dichloroethene	ND		0.50	ug/L		05/22/14 08:53	1
1,2-Dichloropropane	ND		0.50	ug/L		05/22/14 08:53	1
cis-1,3-Dichloropropene	ND		0.50	ug/L		05/22/14 08:53	1
trans-1,3-Dichloropropene	ND		0.50	ug/L		05/22/14 08:53	1
Ethylbenzene	ND		0.50	ug/L		05/22/14 08:53	1
Hexachlorobutadiene	ND		1.0	ug/L		05/22/14 08:53	1
2-Hexanone	ND		50	ug/L		05/22/14 08:53	1
Isopropylbenzene	ND		0.50	ug/L		05/22/14 08:53	1
4-Isopropyltoluene	ND		1.0	ug/L		05/22/14 08:53	1
Methylene Chloride	ND		5.0	ug/L		05/22/14 08:53	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L		05/22/14 08:53	1
Naphthalene	ND		1.0	ug/L		05/22/14 08:53	1
N-Propylbenzene	ND		1.0	ug/L		05/22/14 08:53	1
Styrene	ND		0.50	ug/L		05/22/14 08:53	1

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5 6

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-159870/4 Matrix: Water

Analy	sis	Batch:	159870

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			05/22/14 08:53	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			05/22/14 08:53	1
Tetrachloroethene	ND		0.50		ug/L			05/22/14 08:53	1
Toluene	ND		0.50		ug/L			05/22/14 08:53	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			05/22/14 08:53	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			05/22/14 08:53	1
1,1,1-Trichloroethane	ND		0.50		ug/L			05/22/14 08:53	1
1,1,2-Trichloroethane	ND		0.50		ug/L			05/22/14 08:53	1
Trichloroethene	ND		0.50		ug/L			05/22/14 08:53	1
Trichlorofluoromethane	ND		1.0		ug/L			05/22/14 08:53	1
1,2,3-Trichloropropane	ND		0.50		ug/L			05/22/14 08:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			05/22/14 08:53	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			05/22/14 08:53	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			05/22/14 08:53	1
Vinyl acetate	ND		10		ug/L			05/22/14 08:53	1
Vinyl chloride	ND		0.50		ug/L			05/22/14 08:53	1
Xylenes, Total	ND		1.0		ug/L			05/22/14 08:53	1
2,2-Dichloropropane	ND		0.50		ug/L			05/22/14 08:53	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 - 130		05/22/14 08:53	1
1,2-Dichloroethane-d4 (Surr)	92		72 - 130		05/22/14 08:53	1
Toluene-d8 (Surr)	99		70 - 130		05/22/14 08:53	1

Lab Sample ID: LCS 720-159870/5 Matrix: Water Analysis Batch: 159870

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Baten. 100070	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	25.3		ug/L		101	62 - 130
Acetone	125	118		ug/L		94	26 - 180
Benzene	25.0	26.2		ug/L		105	79 - 130
Dichlorobromomethane	25.0	26.4		ug/L		105	70 - 130
Bromobenzene	25.0	26.0		ug/L		104	70 - 130
Chlorobromomethane	25.0	26.2		ug/L		105	70 - 130
Bromoform	25.0	25.8		ug/L		103	68 - 136
Bromomethane	25.0	24.3		ug/L		97	43 - 151
2-Butanone (MEK)	125	114		ug/L		91	54 - 130
n-Butylbenzene	25.0	26.0		ug/L		104	70 _ 142
sec-Butylbenzene	25.0	25.1		ug/L		100	70 - 134
tert-Butylbenzene	25.0	25.4		ug/L		102	70 ₋ 135
Carbon disulfide	25.0	23.4		ug/L		93	58 - 130
Carbon tetrachloride	25.0	26.1		ug/L		104	70 - 146
Chlorobenzene	25.0	26.2		ug/L		105	70 - 130
Chloroethane	25.0	23.0		ug/L		92	62 - 138
Chloroform	25.0	25.9		ug/L		103	70 - 130
Chloromethane	25.0	20.4		ug/L		82	52 ₋ 175
2-Chlorotoluene	25.0	24.9		ug/L		100	70 - 130

2 3 Client Sample ID: Lab Control Sample Prep Type: Total/NA %Rec. <u>D</u> %Rec 102 70 - 130 114 70 - 115

7		
8		
9		
13		

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-159870/5

Matrix: Water
Analysis Batch: 159870

Analysis Batch: 159870	Spike	LCS	109		%Rec.
Analyte	Added		Qualifier Unit	D %Rec	Limits
4-Chlorotoluene	25.0	25.5	ug/L	102	70 - 130
Chlorodibromomethane	25.0	28.6	ug/L	114	70 - 145
1,2-Dichlorobenzene	25.0	26.2	ug/L	105	70 - 130
1,3-Dichlorobenzene	25.0	26.2	ug/L	105	70 - 130
1,4-Dichlorobenzene	25.0	26.5	ug/L	106	70 - 130
1,3-Dichloropropane	25.0	26.3	ug/L	105	70 - 130
1,1-Dichloropropene	25.0	27.2	ug/L	109	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	24.9	ug/L	99	70 - 136
Ethylene Dibromide	25.0	27.4	ug/L	109	70 - 130
Dibromomethane	25.0	26.0	ug/L	104	70 - 130
Dichlorodifluoromethane	25.0	19.9	ug/L	79	34 - 132
1,1-Dichloroethane	25.0	25.7	ug/L	103	70 ₋ 130
1,2-Dichloroethane	25.0	24.3	ug/L	97	61 - 132
1,1-Dichloroethene	25.0	23.3	ug/L	93	64 - 128
cis-1,2-Dichloroethene	25.0	24.7	ug/L	99	70 - 130
trans-1,2-Dichloroethene	25.0	26.4	ug/L	106	68 - 130
1,2-Dichloropropane	25.0	26.2	ug/L	105	70 - 130
cis-1,3-Dichloropropene	25.0	29.3	ug/L	117	70 - 130
rans-1,3-Dichloropropene	25.0	31.1	ug/L	124	70 - 140
Ethylbenzene	25.0	25.2	ug/L	101	80 - 120
Hexachlorobutadiene	25.0	27.5	ug/L	110	70 - 130
2-Hexanone	125	104	ug/L	83	60 - 164
sopropylbenzene	25.0	25.7	ug/L	103	70 - 130
I-Isopropyltoluene	25.0	25.5	ug/L	102	70 - 130
Methylene Chloride	25.0	25.8	ug/L	103	70 - 147
4-Methyl-2-pentanone (MIBK)	125	108	ug/L	87	58 - 130
Naphthalene	25.0	27.0	ug/L	108	70 - 130
N-Propylbenzene	25.0	25.2	ug/L	101	70 - 130
Styrene	25.0	27.4	ug/L	110	70 - 130
1,1,2-Tetrachloroethane	25.0	27.0	ug/L	108	70 - 130
1,1,2,2-Tetrachloroethane	25.0	23.9	ug/L	96	70 - 130
Tetrachloroethene	25.0	27.9	ug/L	112	70 - 130
Toluene	25.0	25.3	ug/L	101	78 - 120
1.2.3-Trichlorobenzene	25.0	28.8	ug/L	115	70 - 130
1.2.4-Trichlorobenzene	25.0	28.9	ug/L	116	70 - 130
1,1,1-Trichloroethane	25.0	25.1	ug/L	100	70 - 130
1,1,2-Trichloroethane	25.0	26.7	ug/L	107	70 - 130
Trichloroethene	25.0	27.4	ug/L	110	70 - 130 70 - 130
Trichlorofluoromethane	25.0	24.5	ug/L	98	66 ₋ 132
1,2,3-Trichloropropane	25.0	24.0	ug/L	96	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	24.4	ug/L	98	42 - 162
ne	20.0	27. 7	49/L	50	102
1,2,4-Trimethylbenzene	25.0	26.1	ug/L	105	70 - 132
1,3,5-Trimethylbenzene	25.0	26.0	ug/L	104	70 - 130
Vinyl acetate	25.0	28.5	ug/L	114	43 - 163
Vinyl chloride	25.0	20.5	ug/L	82	54 ₋ 135
m-Xylene & p-Xylene	25.0	25.8	ug/L	103	70 - 142
o-Xylene	25.0	25.9	ug/L	103	70 - 130

Spike

Added

Limits

67 - 130

72 - 130

25.0

LCS LCS

26.2

Result Qualifier

Unit

ug/L

Lab Sample ID: LCS 720-159870/5

Matrix: Water

2,2-Dichloropropane

4-Bromofluorobenzene

1,2-Dichloroethane-d4 (Surr)

Analyte

Surrogate

Analysis Batch: 159870

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

%Rec.

Limits

70 - 140

%Rec

105

D

7

Toluene-d8 (Surr)	101	70 - 130
_ Lab Sample ID: LCSD 720-159870/6 Matrix: Water		

LCS LCS

%Recovery Qualifier

93

87

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

Matrix: Water Analysis Batch: 159870

Analysis Datch. 159070	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	24.5		ug/L		98	62 - 130	3	20
Acetone	125	111		ug/L		89	26 - 180	6	30
Benzene	25.0	25.7		ug/L		103	79 - 130	2	20
Dichlorobromomethane	25.0	25.2		ug/L		101	70 - 130	4	20
Bromobenzene	25.0	25.9		ug/L		104	70 - 130	1	20
Chlorobromomethane	25.0	25.7		ug/L		103	70 - 130	2	20
Bromoform	25.0	25.8		ug/L		103	68 - 136	0	20
Bromomethane	25.0	22.9		ug/L		92	43 _ 151	6	20
2-Butanone (MEK)	125	112		ug/L		89	54 _ 130	2	20
n-Butylbenzene	25.0	25.7		ug/L		103	70 - 142	1	20
sec-Butylbenzene	25.0	25.1		ug/L		100	70 - 134	0	20
tert-Butylbenzene	25.0	25.3		ug/L		101	70 - 135	0	20
Carbon disulfide	25.0	23.1		ug/L		92	58 - 130	1	20
Carbon tetrachloride	25.0	25.7		ug/L		103	70 - 146	2	20
Chlorobenzene	25.0	25.8		ug/L		103	70 - 130	2	20
Chloroethane	25.0	21.5		ug/L		86	62 - 138	7	20
Chloroform	25.0	25.2		ug/L		101	70 - 130	3	20
Chloromethane	25.0	18.7		ug/L		75	52 ₋ 175	9	20
2-Chlorotoluene	25.0	25.1		ug/L		101	70 - 130	1	20
4-Chlorotoluene	25.0	25.5		ug/L		102	70 _ 130	0	20
Chlorodibromomethane	25.0	27.3		ug/L		109	70 - 145	5	20
1,2-Dichlorobenzene	25.0	25.8		ug/L		103	70 _ 130	2	20
1,3-Dichlorobenzene	25.0	25.8		ug/L		103	70 - 130	1	20
1,4-Dichlorobenzene	25.0	26.0		ug/L		104	70 - 130	2	20
1,3-Dichloropropane	25.0	25.2		ug/L		101	70 - 130	5	20
1,1-Dichloropropene	25.0	26.8		ug/L		107	70 - 130	2	20
1,2-Dibromo-3-Chloropropane	25.0	24.6		ug/L		99	70 - 136	1	20
Ethylene Dibromide	25.0	25.6		ug/L		103	70 - 130	7	20
Dibromomethane	25.0	25.2		ug/L		101	70 - 130	3	20
Dichlorodifluoromethane	25.0	18.8		ug/L		75	34 - 132	5	20
1,1-Dichloroethane	25.0	25.1		ug/L		100	70 - 130	2	20
1,2-Dichloroethane	25.0	23.5		ug/L		94	61 _ 132	3	20
1,1-Dichloroethene	25.0	22.8		ug/L		91	64 _ 128	2	20
cis-1,2-Dichloroethene	25.0	24.4		ug/L		97	70 _ 130	1	20
trans-1,2-Dichloroethene	25.0	26.2		ug/L		105	68 - 130	1	20
1,2-Dichloropropane	25.0	25.4		ug/L		102	70 - 130	3	20

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

5
7
8
9

	3	

3

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-159870/6

Matrix: V	Vater	
Analysis	Batch:	159870

Analysis Datch. 155070	0	1.000				0/ D	RPD		
• • • •	Spike		LCSD		_	a/ 5	%Rec.		
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,3-Dichloropropene	25.0	28.0		ug/L		112	70 - 130	5	20
trans-1,3-Dichloropropene	25.0	29.6		ug/L		119	70 ₋ 140	5	20
Ethylbenzene	25.0	25.0		ug/L		100	80 - 120	1	20
Hexachlorobutadiene	25.0	27.1		ug/L		108	70 - 130	1	20
2-Hexanone	125	95.5		ug/L		76	60 - 164	8	20
Isopropylbenzene	25.0	25.6		ug/L		102	70 - 130	0	20
4-Isopropyltoluene	25.0	25.3		ug/L		101	70 - 130	1	20
Methylene Chloride	25.0	25.0		ug/L		100	70 _ 147	3	20
4-Methyl-2-pentanone (MIBK)	125	102		ug/L		81	58 - 130	6	20
Naphthalene	25.0	27.4		ug/L		109	70 - 130	2	20
N-Propylbenzene	25.0	25.1		ug/L		101	70 - 130	0	20
Styrene	25.0	27.0		ug/L		108	70 - 130	2	20
1,1,1,2-Tetrachloroethane	25.0	26.5		ug/L		106	70 - 130	2	20
1,1,2,2-Tetrachloroethane	25.0	23.6		ug/L		94	70 - 130	1	20
Tetrachloroethene	25.0	26.9		ug/L		107	70 - 130	4	20
Toluene	25.0	25.5		ug/L		102	78 - 120	1	20
1,2,3-Trichlorobenzene	25.0	28.8		ug/L		115	70 _ 130	0	20
1,2,4-Trichlorobenzene	25.0	28.9		ug/L		116	70 - 130	0	20
1,1,1-Trichloroethane	25.0	24.8		ug/L		99	70 - 130	1	20
1,1,2-Trichloroethane	25.0	25.8		ug/L		103	70 - 130	4	20
Trichloroethene	25.0	26.8		ug/L		107	70 - 130	2	20
Trichlorofluoromethane	25.0	23.8		ug/L		95	66 - 132	3	20
1,2,3-Trichloropropane	25.0	24.0		ug/L		96	70 - 130	0	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.1		ug/L		92	42 _ 162	6	20
ne									
1,2,4-Trimethylbenzene	25.0	25.8		ug/L		103	70 - 132	1	20
1,3,5-Trimethylbenzene	25.0	25.9		ug/L		104	70 - 130	0	20
Vinyl acetate	25.0	26.6		ug/L		107	43 - 163	7	20
Vinyl chloride	25.0	19.6		ug/L		78	54 - 135	4	20
m-Xylene & p-Xylene	25.0	25.5		ug/L		102	70 _ 142	1	20
o-Xylene	25.0	25.6		ug/L		103	70 - 130	1	20
2,2-Dichloropropane	25.0	26.0		ug/L		104	70 _ 140	1	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 _ 130
1,2-Dichloroethane-d4 (Surr)	85		72 - 130
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: MB 720-159953/4 Matrix: Water Analysis Batch: 159953

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Methyl tert-butyl ether ND 0.50 ug/L 05/23/14 08:49 1 Acetone ND 50 ug/L 05/23/14 08:49 1 ND 0.50 ug/L 05/23/14 08:49 Benzene 1 Dichlorobromomethane ND 0.50 ug/L 05/23/14 08:49 1 Bromobenzene ND 1.0 ug/L 05/23/14 08:49 1

TestAmerica Pleasanton

Client Sample ID: Method Blank

Prep Type: Total/NA

Lab Sample ID: MB 720-159953/4

Client Sample ID: Method Blank

2 3 4 5 6 7

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)	

Analysis Batch: 159953							
-	МВ	MB					
Analyte		Qualifier R		Unit	D Prepared	Analyzed	Dil Fac
Chlorobromomethane	ND	1.	0	ug/L		05/23/14 08:49	1
Bromoform	ND	1.	0	ug/L		05/23/14 08:49	1
Bromomethane	ND	1.	0	ug/L		05/23/14 08:49	1
2-Butanone (MEK)	ND	5	0	ug/L		05/23/14 08:49	1
n-Butylbenzene	ND	1.	0	ug/L		05/23/14 08:49	1
sec-Butylbenzene	ND	1.	0	ug/L		05/23/14 08:49	1
tert-Butylbenzene	ND	1.	0	ug/L		05/23/14 08:49	1
Carbon disulfide	ND	5.	0	ug/L		05/23/14 08:49	1
Carbon tetrachloride	ND	0.5	0	ug/L		05/23/14 08:49	1
Chlorobenzene	ND	0.5	0	ug/L		05/23/14 08:49	1
Chloroethane	ND	1.	0	ug/L		05/23/14 08:49	1
Chloroform	ND	1.	0	ug/L		05/23/14 08:49	1
Chloromethane	ND	1.	0	ug/L		05/23/14 08:49	1
2-Chlorotoluene	ND	0.5	0	ug/L		05/23/14 08:49	1
4-Chlorotoluene	ND	0.5	0	ug/L		05/23/14 08:49	1
Chlorodibromomethane	ND	0.5	0	ug/L		05/23/14 08:49	1
1,2-Dichlorobenzene	ND	0.5	0	ug/L		05/23/14 08:49	1
1,3-Dichlorobenzene	ND	0.5	0	ug/L		05/23/14 08:49	1
1,4-Dichlorobenzene	ND	0.5	0	ug/L		05/23/14 08:49	1
1,3-Dichloropropane	ND	1.	0	ug/L		05/23/14 08:49	1
1,1-Dichloropropene	ND	0.5	0	ug/L		05/23/14 08:49	1
1,2-Dibromo-3-Chloropropane	ND	1.	0	ug/L		05/23/14 08:49	1
Ethylene Dibromide	ND	0.5	0	ug/L		05/23/14 08:49	1
Dibromomethane	ND	0.5		ug/L		05/23/14 08:49	1
Dichlorodifluoromethane	ND	0.5		ug/L		05/23/14 08:49	1
1,1-Dichloroethane	ND	0.5		ug/L		05/23/14 08:49	
1,2-Dichloroethane	ND	0.5		ug/L		05/23/14 08:49	1
1,1-Dichloroethene	ND	0.5		ug/L		05/23/14 08:49	1
cis-1,2-Dichloroethene	ND	0.5		ug/L		05/23/14 08:49	
trans-1,2-Dichloroethene	ND	0.5		ug/L		05/23/14 08:49	1
1,2-Dichloropropane	ND	0.5		ug/L		05/23/14 08:49	1
cis-1,3-Dichloropropene	ND	0.5		ug/L		05/23/14 08:49	· · · · · · · · · 1
trans-1,3-Dichloropropene	ND	0.5		ug/L		05/23/14 08:49	1
Ethylbenzene	ND	0.5		ug/L		05/23/14 08:49	1
Hexachlorobutadiene	ND	1.		ug/L		05/23/14 08:49	
2-Hexanone	ND		0	ug/L		05/23/14 08:49	1
Isopropylbenzene	ND	0.5		ug/L		05/23/14 08:49	1
4-Isopropyltoluene	ND	0.3				05/23/14 08:49	 1
Methylene Chloride	ND			ug/L		05/23/14 08:49	
•	ND	5.	0	ug/L		05/23/14 08:49	1
4-Methyl-2-pentanone (MIBK)				ug/L			1
Naphthalene	ND	1.		ug/L		05/23/14 08:49	1
N-Propylbenzene Styrano	ND ND	1.		ug/L		05/23/14 08:49	1
Styrene		0.5		ug/L		05/23/14 08:49	1
1,1,1,2-Tetrachloroethane	ND	0.5		ug/L		05/23/14 08:49	1
1,1,2,2-Tetrachloroethane	ND	0.5		ug/L		05/23/14 08:49	1
Tetrachloroethene	ND	0.5		ug/L		05/23/14 08:49	1
Toluene	ND ND	0.5	0 0	ug/L ug/L		05/23/14 08:49	1

Lab Sample ID: MB 720-159953/4

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA

						_
Method: 8260B ·	. Volatile	Organic	Compounds	(GC/MS)	(Continued)	1
	· · · · · · · · · · · · · · · · · · ·	erganne	oompoundo		(Continuou)	/

Analysis Batch: 159953 MB MB **Result Qualifier** RL MDL Unit D Dil Fac Analyte Prepared Analyzed 1,2,4-Trichlorobenzene ND 1.0 05/23/14 08:49 ug/L 1 1,1,1-Trichloroethane ND 0.50 ug/L 05/23/14 08:49 1 ND 1,1,2-Trichloroethane 0.50 ug/L 05/23/14 08:49 1 Trichloroethene ND 0.50 ug/L 05/23/14 08:49 1 Trichlorofluoromethane ND 1.0 ug/L 05/23/14 08:49 1 1,2,3-Trichloropropane ND 0.50 ug/L 05/23/14 08:49 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 05/23/14 08:49 1 1,2,4-Trimethylbenzene ND 0.50 ug/L 05/23/14 08:49 1 1,3,5-Trimethylbenzene ND 0.50 ug/L 05/23/14 08.49 1 Vinyl acetate ND 10 ug/L 05/23/14 08:49 1 05/23/14 08:49 Vinyl chloride ND 0.50 ug/L 1 Xylenes, Total ND 1.0 ug/L 05/23/14 08:49 1 2,2-Dichloropropane ND 0.50 ug/L 05/23/14 08:49 1 MB MB Qualifier Limits Prepared Dil Fac Surrogate %Recovery Analyzed 67 - 130 4-Bromofluorobenzene 100 05/23/14 08:49 1 1,2-Dichloroethane-d4 (Surr) 105 72 - 130 05/23/14 08:49 70 - 130 05/23/14 08:49 Toluene-d8 (Surr) 100

Lab Sample ID: LCS 720-159953/5 Matrix: Water

Analysis Batch: 159953

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	26.3		ug/L		105	62 - 130	_
Acetone	125	132		ug/L		106	26 - 180	
Benzene	25.0	25.6		ug/L		102	79 - 130	
Dichlorobromomethane	25.0	27.8		ug/L		111	70 - 130	
Bromobenzene	25.0	26.6		ug/L		106	70 - 130	
Chlorobromomethane	25.0	26.1		ug/L		104	70 - 130	
Bromoform	25.0	26.8		ug/L		107	68 - 136	
Bromomethane	25.0	25.9		ug/L		104	43 - 151	
2-Butanone (MEK)	125	132		ug/L		106	54 - 130	
n-Butylbenzene	25.0	27.1		ug/L		109	70 - 142	
sec-Butylbenzene	25.0	26.4		ug/L		106	70 - 134	
tert-Butylbenzene	25.0	26.5		ug/L		106	70 - 135	
Carbon disulfide	25.0	22.8		ug/L		91	58 - 130	
Carbon tetrachloride	25.0	28.7		ug/L		115	70 - 146	
Chlorobenzene	25.0	25.1		ug/L		100	70 - 130	
Chloroethane	25.0	25.9		ug/L		103	62 - 138	
Chloroform	25.0	26.3		ug/L		105	70 - 130	
Chloromethane	25.0	24.3		ug/L		97	52 - 175	
2-Chlorotoluene	25.0	26.8		ug/L		107	70 - 130	
4-Chlorotoluene	25.0	26.5		ug/L		106	70 - 130	
Chlorodibromomethane	25.0	29.5		ug/L		118	70 - 145	
1,2-Dichlorobenzene	25.0	25.6		ug/L		102	70 - 130	
1,3-Dichlorobenzene	25.0	26.5		ug/L		106	70 - 130	
1,4-Dichlorobenzene	25.0	25.6		ug/L		103	70 - 130	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

2 3 4 5 6 7 8 9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-159953/5

Matrix: W	/ater	
Analysis	Batch:	159953

Analysis Batch. 133933	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Re	c Limits
1,3-Dichloropropane	25.0	26.6	ug/L	10	6 70 - 130
1,1-Dichloropropene	25.0	28.5	ug/L	11	4 70 ₋ 130
1,2-Dibromo-3-Chloropropane	25.0	26.8	ug/L	10	7 70 ₋ 136
Ethylene Dibromide	25.0	27.9	ug/L	11	2 70 - 130
Dibromomethane	25.0	26.9	ug/L	10	7 70 ₋ 130
Dichlorodifluoromethane	25.0	27.8	ug/L	11	1 34 - 132
,1-Dichloroethane	25.0	26.0	ug/L	10	4 70 ₋ 130
,2-Dichloroethane	25.0	25.5	ug/L	10	2 61 - 132
1,1-Dichloroethene	25.0	24.0	ug/L	ç	6 64 - 128
sis-1,2-Dichloroethene	25.0	26.0	ug/L	10	4 70 - 130
rans-1,2-Dichloroethene	25.0	25.5	ug/L	10	2 68 - 130
,2-Dichloropropane	25.0	26.5	ug/L	10	6 70 ₋ 130
sis-1,3-Dichloropropene	25.0	28.3	ug/L	11	3 70 - 130
rans-1,3-Dichloropropene	25.0	30.7	ug/L	12	3 70 - 140
Ethylbenzene	25.0	24.5	ug/L	ç	8 80 - 120
lexachlorobutadiene	25.0	26.1	ug/L	10	4 70 - 130
2-Hexanone	125	142	ug/L	11	4 60 - 164
sopropylbenzene	25.0	25.9	ug/L	10	4 70 ₋ 130
Isopropyltoluene	25.0	26.3	ug/L	10	5 70 ₋ 130
lethylene Chloride	25.0	25.7	ug/L	10	3 70 - 147
-Methyl-2-pentanone (MIBK)	125	141	ug/L	11	2 58 - 130
laphthalene	25.0	28.7	ug/L	11	5 70 ₋ 130
I-Propylbenzene	25.0	27.1	ug/L	10	8 70 ₋ 130
ityrene	25.0	26.5	ug/L	10	6 70 ₋ 130
,1,1,2-Tetrachloroethane	25.0	28.2	ug/L	11	3 70 ₋ 130
,1,2,2-Tetrachloroethane	25.0	27.3	ug/L	10	9 70 - 130
etrachloroethene	25.0	25.8	ug/L	10	3 70 - 130
oluene	25.0	24.4	ug/L	ç	8 78 - 120
,2,3-Trichlorobenzene	25.0	26.7	ug/L	10	7 70 ₋ 130
,2,4-Trichlorobenzene	25.0	27.1	ug/L	10	8 70 ₋ 130
,1,1-Trichloroethane	25.0	26.7	ug/L	10	7 70 - 130
,1,2-Trichloroethane	25.0	27.0	ug/L	10	8 70 ₋ 130
richloroethene	25.0	26.3	ug/L	10	5 70 ₋ 130
richlorofluoromethane	25.0	27.7	ug/L	11	1 66 - 132
,2,3-Trichloropropane	25.0	26.8	ug/L	10	7 70 ₋ 130
,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.0	ug/L	ç	2 42 - 162
ie					
,2,4-Trimethylbenzene	25.0	26.8	ug/L	10	
,3,5-Trimethylbenzene	25.0	27.2	ug/L	10	
/inyl acetate	25.0	34.2	ug/L	13	
/inyl chloride	25.0	27.4	ug/L	11	
n-Xylene & p-Xylene	25.0	25.4	ug/L	10	
p-Xylene	25.0	24.4	ug/L	ę	8 70 - 130
2,2-Dichloropropane	25.0	28.5	ug/L	11	4 70 - 140

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	100		72 - 130

Limits

70 - 130

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

LCS LCS

%Recovery Qualifier

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

2 3 4 5 6 7 8

PD mit 20 30 1(20

Toluene-d8 (Surr)	102
_ Lab Sample ID: LCSD 720-159953/	6

Matrix: Water

Analysis Batch: 159953

Matrix: Water

Surrogate

Lab Sample ID: LCS 720-159953/5

Spike LCSD LCSD Kein D Kein L PPD Linki Description Dist D Dist Dist <thdist< th=""> Dist Dist D</thdist<>	Analysis Batch: 159953									
Methyl terhanyl ether 25.0 25.3 ugiL 101 62.130 4 20 Acetone 125 137 ugiL 109 2.180 3 30 Dichlorobornomethane 25.0 25.6 ugiL 106 70.130 4 20 Dichlorobornomethane 25.0 25.6 ugiL 106 70.130 4 20 Bromobornomethane 25.0 25.1 ugiL 104 68.136 4 20 Bromohetne 25.0 25.9 ugiL 104 68.136 4 20 Bromohetne 25.0 25.9 ugiL 104 68.136 4 20 Partomohetne 25.0 25.0 ugiL 113 70.134 7 20 acthon disulfde 25.0 25.0 26.2 ugiL 117 70.136 6 20 Chioroberzene 25.0 27.0 ugiL 102 70.130 1 20 <t< th=""><th></th><th>Spike</th><th>LCSD</th><th>LCSD</th><th></th><th></th><th></th><th>%Rec.</th><th></th><th>RPD</th></t<>		Spike	LCSD	LCSD				%Rec.		RPD
Acetone 125 137 ugl. 109 26.180 3 30 Benzene 25.0 25.6 ugl. 102 79.130 0 20 Dichtorborioniethane 25.0 25.6 ugl. 108 70.130 2 20 Bromohorm 25.0 25.1 ugl. 108 70.130 2 20 Bromohorm 25.0 25.9 ugl. 108 68.136 4 20 Bromohorm 25.0 25.0 ugl. 108 54.130 2 20 Bromohorm 25.0 25.0 26.1 ugl. 108 54.130 2 20 Sec-Butyloenzene 25.0 26.5 ugl. 113 70.134 7 20 sec-Butyloenzene 25.0 26.4 ugl. 108 7.130 1 20 Carbon terabulydenzene 25.0 25.4 ugl. 108 7.130 1 20 Charbon terabulydenzene 25.0 25.4 ugl. 108 2.13 20 C	Analyte			Qualifier	Unit	D	%Rec			Limit
Barsone 25.0 25.6 ugl. 102 79.130 0 20 Dichorboromentane 25.0 26.4 ugl. 106 70.130 4 20 Chiorboromentane 25.0 25.1 ugl. 100 70.130 4 20 Bronnohmane 25.0 25.1 ugl. 104 68.136 4 20 2-Butonon (MEK) 125 129 ugl. 108 43.151 4 200 2-Butonon (MEK) 125 129 ugl. 113 70.134 7 200 asce Butylbenzene 25.0 28.3 ugl. 112 70.135 66 200 Carbon disulfoncenee 25.0 28.4 ugl. 102 70.130 61 200 Carbon disulfoncenee 25.0 28.4 ugl. 102 70.130 14 200 Chiorobenzene 25.0 27.5 ugl. 104 70.130 14 200					-				4	
Dicklorobromomethane 25.0 26.6 ug/L 106 70.130 4 20 Bromoberzene 25.0 27.1 ug/L 108 70.130 4 20 Bromoform 25.0 25.0 ug/L 100 70.130 4 20 Bromoform 25.0 25.0 ug/L 103 43.151 4 20 Bromoform 25.0 25.0 28.5 ug/L 113 70.142 5 20 n-Butylbenzene 25.0 28.0 ug/L 112 70.134 7 20 Carbon disulfide 25.0 28.0 ug/L 117 70.148 6 20 Carbon disulfide 25.0 27.0 ug/L 104 70.130 1 20 Chlorobherzene 25.0 27.0 ug/L 104 70.130 1 20 Chlorobherzene 25.0 27.0 ug/L 104 70.130 1 20 <t< td=""><td>Acetone</td><td></td><td></td><td></td><td>ug/L</td><td></td><td>109</td><td>26 - 180</td><td>3</td><td>30</td></t<>	Acetone				ug/L		109	26 - 180	3	30
Bromobenzene 25.0 27.1 ug/L 108 70.130 2 20 Chicotomomethane 25.0 25.9 ug/L 104 68.136 4 20 Bromotom 25.0 25.9 ug/L 104 68.136 4 20 Bromotomethane 25.0 25.0 ug/L 103 54.130 2 20 Bromotomethane 25.0 28.3 ug/L 113 70.142 5 20 ScaUkylbenzene 25.0 28.0 ug/L 117 70.142 5 20 Carbon disulide 25.0 28.0 ug/L 117 70.142 5 20 Carbon disulide 25.0 28.4 ug/L 107 70.130 1 20 Chicorobrane 25.0 27.0 ug/L 108 62.138 4 20 Chicorobrane 25.0 27.0 ug/L 108 70.130 12 20 Chicorobrane	Benzene	25.0	25.6		ug/L		102	79 ₋ 130	0	20
Chiorobromomethane 25.0 25.1 ug/L 100 7.0.130 4 20 Bronnomethane 25.0 25.9 ug/L 104 48.136 4 20 2-Butanone (MEK) 125 129 ug/L 103 54.130 22 20 n-Butyberzene 25.0 28.5 ug/L 114 70.142 5 20 carbon terrachioride 25.0 28.0 ug/L 112 70.136 6 20 Carbon terrachioride 25.0 28.0 ug/L 102 70.136 6 20 Chioroberzene 25.0 25.4 ug/L 102 70.130 1 20 Chioroberzene 25.0 25.0 27.0 ug/L 104 70.130 1 20 Chioroberzene 25.0 27.6 ug/L 104 70.130 3 20 Chioroberzene 25.0 27.6 ug/L 104 70.130 3 20	Dichlorobromomethane	25.0	26.6		ug/L		106	70 - 130	4	20
Bromoform 25.0 25.9 ugl 104 68.136 4 20 Bromoform 25.0 27.0 ugl 108 43.151 4 20 2-Butanone (MEK) 125 129 ugl 108 64.130 2 20 n-Butylbenzene 25.0 28.5 ugl 114 70.144 7 20 tert-Butylbenzene 25.0 28.0 ugl 112 70.135 6 20 Carbon disulfide 25.0 24.1 ugl 107 70.146 2 20 Chlorobertane 25.0 27.0 ugl 108 62.138 4 20 Chlorobertane 25.0 27.0 ugl 108 62.138 4 20 Chlorobertane 25.0 25.6 ugl 102 52.175 5 20 Chlorobertane 25.0 27.6 ugl 102 70.130 3 20 1.2-Dichoroberzane	Bromobenzene	25.0	27.1		ug/L		108	70 - 130	2	20
Bromomethane 25.0 27.0 ugl. 108 43.151 4 20 2-Butonome (MEK) 125 129 ugl. 103 54.130 2 20 n-Butybenzene 25.0 28.3 ugl. 113 70.134 7 20 sec-Butybenzene 25.0 28.3 ugl. 112 70.135 6 20 Carbon disulfide 25.0 28.4 ugl. 107 70.146 2 20 Chioroberzene 25.0 25.4 ugl. 102 70.130 1 200 Chioroberzene 25.0 25.6 ugl. 104 70.130 1 200 Chioroberzene 25.0 26.6 ugl. 104 70.130 1 200 Chioroberzene 25.0 27.5 ugl. 110 70.130 3 200 Chioroberzene 25.0 27.1 ugl. 109 70.130 3 200 1.3-Dichiorop	Chlorobromomethane	25.0	25.1		ug/L		100	70 - 130	4	20
2-Butanone (MEK) 125 129 uglL 103 54.130 2 20 n-Butylbenzene 25.0 28.5 uglL 114 70.142 70 20 see-Butylbenzene 25.0 28.0 uglL 112 70.135 6 20 Carbon disulfide 25.0 28.0 uglL 107 70.146 2 20 Carbon disulfide 25.0 29.2 uglL 107 70.146 2 20 Chloroberzene 25.0 27.0 uglL 108 62.138 4 20 Chloroberzene 25.0 27.0 uglL 104 70.130 1 20 Chloroform 25.0 26.6 uglL 102 62.175 5 20 Chlorobluene 25.0 27.5 uglL 110 70.130 3 20 1.4.Dichoroberzene 25.0 27.6 uglL 110 70.130 3 20 1.3.Dichoroberzene 25.0 26.6 uglL 106 70.130 3 20	Bromoform	25.0	25.9		ug/L		104	68 - 136	4	20
n-Bulylbenzene 25.0 28.5 ug/L 114 70.142 5 20 sec-Bulybenzene 25.0 28.3 ug/L 113 70.134 7 20 Carbon disulfide 25.0 28.0 ug/L 112 70.135 6 20 Carbon disulfide 25.0 24.1 ug/L 107 70.146 2 20 Carbon disulfide 25.0 25.4 ug/L 102 70.130 1 20 Chloroethane 25.0 27.0 ug/L 108 62.138 4 20 Chloroethane 25.0 26.6 ug/L 102 52.175 20 2-Chlorobluene 25.0 27.5 ug/L 110 70.130 3 20 1.3-Dichlorobluene 25.0 27.5 ug/L 110 70.130 3 20 1.3-Dichlorobenzene 25.0 27.1 ug/L 108 70.130 3 20 1.3-Dichloropopane </td <td>Bromomethane</td> <td>25.0</td> <td>27.0</td> <td></td> <td>ug/L</td> <td></td> <td>108</td> <td>43 - 151</td> <td>4</td> <td>20</td>	Bromomethane	25.0	27.0		ug/L		108	43 - 151	4	20
sec-Butylbenzene 25.0 28.3 ug/L 113 70.134 7 20 tert-Butylbenzene 25.0 28.0 ug/L 112 70.135 6 20 Carbon disulfide 25.0 24.1 ug/L 97 58.130 6 20 Carbon tetrachloride 25.0 25.4 ug/L 102 70.136 1 20 Chlorodenzene 25.0 27.6 ug/L 108 62.138 4 20 Chloroderm 25.0 27.6 ug/L 102 70.130 1 20 Chlorodirm 25.0 27.5 ug/L 110 70.130 1 20 Chlorodibromethane 25.0 27.7 ug/L 110 70.130 3 20 Chlorodibromomethane 25.0 27.6 ug/L 110 70.130 3 20 Chlorodibromomethane 25.0 27.4 ug/L 106 70.130 3 20	2-Butanone (MEK)	125	129		ug/L		103	54 - 130	2	20
tert-Bulybenzene 25.0 28.0 ug/L 112 70.135 6 20 Carbon disulifié 25.0 24.1 ug/L 97 58.130 6 20 Carbon disulifié 25.0 29.2 ug/L 117 70.146 2 20 Chlorobetnane 25.0 27.0 ug/L 108 62.138 4 20 Chlorobetnane 25.0 26.6 ug/L 102 70.130 1 20 Chlorobetnane 25.0 26.6 ug/L 102 70.130 4 20 2-Chlorobluene 25.0 27.5 ug/L 110 70.130 3 20 Chlorodbinomomethane 25.0 27.6 ug/L 110 70.130 3 20 1.2-Dichorobenzene 25.0 26.4 ug/L 106 70.130 1 20 1.3-Dichoropropane 25.0 26.6 ug/L 104 70.130 2 20 <	n-Butylbenzene	25.0	28.5		ug/L		114	70 - 142	5	20
Carbon disulfide 25.0 24.1 ug/L 97 58.130 6 20 Carbon tetrachloride 25.0 25.4 ug/L 117 70.146 2 20 Chlorobenzene 25.0 25.4 ug/L 102 70.130 1 20 Chloroethane 25.0 25.0 ug/L 104 70.130 1 20 Chloroethane 25.0 26.0 ug/L 104 70.130 1 20 Chloroethane 25.0 27.9 ug/L 110 70.130 3 20 Chloroethane 25.0 27.5 ug/L 110 70.130 3 20 Chlorobluren 25.0 27.6 ug/L 106 70.130 3 20 Chloroblurene 25.0 27.6 ug/L 106 70.130 1 20 1.2-Dichorobenzene 25.0 26.4 ug/L 106 70.130 1 20 1.3-Dichoroben	sec-Butylbenzene	25.0	28.3		ug/L		113	70 - 134	7	20
Carbon tetrachloride 25.0 29.2 ug/L 117 70.146 2 20 Chlorobenzene 25.0 25.4 ug/L 102 70.130 1 200 Chlorobenzene 25.0 27.0 ug/L 108 62.138 4 200 Chlorobr 25.0 26.0 ug/L 102 52.175 5 200 Chlorobr 25.0 25.6 ug/L 102 52.175 5 201 Chlorobreme 25.0 27.5 ug/L 110 70.130 4 200 4-Chlorobreme 25.0 27.6 ug/L 100 70.130 3 201 1.4-Dichobenzene 25.0 27.6 ug/L 100 70.130 2 201 1.4-Dichobenzene 25.0 26.1 ug/L 1019 70.130 2 201 1.4-Dichobenzene 25.0 26.1 ug/L 1017 70.130 2 201 1.4-Dich	tert-Butylbenzene	25.0	28.0		ug/L		112	70 - 135	6	20
Chlorobenzene 25.0 25.4 ug/L 102 70.130 1 20 Chloroethane 25.0 27.0 ug/L 108 62.138 4 20 Chloroethane 25.0 26.0 ug/L 104 70.130 1 20 Chloroethane 25.0 27.5 ug/L 112 70.130 4 20 2-Chlorotoluene 25.0 27.5 ug/L 110 70.130 3 20 Chlorotoluene 25.0 27.6 ug/L 110 70.130 3 20 Chlorotoluene 25.0 27.6 ug/L 106 70.130 3 20 1.2-Dichlorobenzene 25.0 26.6 ug/L 106 70.130 2 20 1.3-Dichlorobenzene 25.0 26.6 ug/L 104 70.130 2 20 1.3-Dichloropropane 25.0 26.5 ug/L 107 70.130 2 20 1.2-Di	Carbon disulfide	25.0	24.1		ug/L		97	58 - 130	6	20
Chloroethane 25.0 27.0 ug/L 108 62.138 4 20 Chloroform 25.0 26.0 ug/L 104 70.130 1 20 Chloromethane 25.0 26.0 ug/L 102 52.175 5 20 2-Chlorotoluene 25.0 27.9 ug/L 110 70.130 4 20 2-Chlorotoluene 25.0 27.5 ug/L 110 70.130 3 20 Chlorodibromomethane 25.0 27.6 ug/L 106 70.130 3 20 1.3-Dichlorobenzene 25.0 27.6 ug/L 108 70.130 3 20 1.4-Dichlorobenzene 25.0 26.0 ug/L 104 70.130 2 20 1.4-Dichloropopane 25.0 26.6 ug/L 102 70.130 2 20 1.1-Dichloropopane 25.0 26.5 ug/L 106 70.130 2 20	Carbon tetrachloride	25.0	29.2		ug/L		117	70 ₋ 146	2	20
Chloroform 25.0 26.0 ug/L 104 70.130 1 20 Chloromethane 25.0 25.6 ug/L 102 52.175 5 20 2-Chlorotoluene 25.0 27.9 ug/L 112 70.130 4 20 4-Chlorotoluene 25.0 27.6 ug/L 110 70.130 3 20 1.2-Dichlorobenzene 25.0 27.6 ug/L 106 70.130 3 20 1.3-Dichlorobenzene 25.0 27.1 ug/L 109 70.130 2 20 1.4-Dichloropropane 25.0 27.1 ug/L 109 70.130 2 20 1.4-Dichloropropane 25.0 25.6 ug/L 102 70.130 4 20 1.4-Dichloropropane 25.0 25.6 ug/L 107 70.130 2 20 1.2-Dibromo-3-Chloropropane 25.0 26.5 ug/L 106 70.130 2 20	Chlorobenzene	25.0	25.4		ug/L		102	70 - 130	1	20
Chloromethane 25.0 25.6 ug/L 102 52.175 5 20 2-Chlorotoluene 25.0 27.9 ug/L 112 70.130 4 20 4-Chlorotoluene 25.0 27.5 ug/L 110 70.130 3 20 Chlorodhbromomethane 25.0 27.6 ug/L 106 70.130 3 20 1,2-Dichlorobenzene 25.0 27.1 ug/L 109 70.130 2 20 1,3-Dichlorobenzene 25.0 26.0 ug/L 104 70.130 1 20 1,3-Dichloropropane 25.0 26.6 ug/L 102 70.130 4 20 1,1-Dichloropropane 25.0 26.6 ug/L 102 70.130 4 20 1,2-Dibromo-s-Chloropropane 25.0 26.6 ug/L 106 70.130 2 20 Dichorodifluoromethane 25.0 26.6 ug/L 105 70.130 2 20 </td <td>Chloroethane</td> <td>25.0</td> <td>27.0</td> <td></td> <td>ug/L</td> <td></td> <td>108</td> <td>62 - 138</td> <td>4</td> <td>20</td>	Chloroethane	25.0	27.0		ug/L		108	62 - 138	4	20
2-Chlorotoluene 25.0 27.9 ug/L 112 70.130 4 20 4-Chlorotoluene 25.0 27.5 ug/L 110 70.130 3 20 Chlorodibromomethane 25.0 27.6 ug/L 110 70.130 3 20 1,2-Dichlorobenzene 25.0 27.6 ug/L 106 70.130 3 20 1,4-Dichlorobenzene 25.0 26.1 ug/L 109 70.130 2 20 1,4-Dichlorobenzene 25.0 26.0 ug/L 104 70.130 2 20 1,4-Dichloropropane 25.0 25.6 ug/L 102 70.130 4 20 1,1-Dichloropropane 25.0 25.6 ug/L 102 70.130 2 20 1,2-Dibromo-3-Chloropropane 25.0 25.0 26.1 ug/L 106 70.130 2 20 Dibromomethane 25.0 26.5 ug/L 106 70.130 1 20 Dichorodifluoromethane 25.0 26.1 ug/L 1	Chloroform	25.0	26.0		ug/L		104	70 - 130	1	20
4-Chlorotoluene25.027.5ug/L11070.130320Chlorodibromomethane25.027.6ug/L11070.1457201,2-Dichlorobenzene25.026.4ug/L10670.1303201,3-Dichlorobenzene25.027.1ug/L10970.1302201,4-Dichlorobenzene25.026.0ug/L10470.1302201,3-Dichloropopane25.026.0ug/L10470.1302201,1-Dichloropopane25.026.0ug/L10270.1302201,2-Dibromo-3-Chloropropane25.026.5ug/L10970.1302201,2-Dibromo-3-Chloropropane25.026.5ug/L10970.1302201,2-Dibromo-3-Chloropropane25.026.5ug/L10670.130520Dibromide25.026.5ug/L10670.1302201,1-Dichloroethane25.026.4ug/L10570.1301201,1-Dichloroethane25.026.1ug/L10570.1301201,2-Dichloroethane25.026.1ug/L10570.1301201,1-Dichloroethane25.026.3ug/L10570.1301201,2-Dichloroethene25.025.7ug/L10370.1301201,2-Dichloroethene25.025	Chloromethane	25.0	25.6		ug/L		102	52 - 175	5	20
Chlorodibromomethane 25.0 27.6 ug/L 10 70.145 7 20 1,2-Dichlorobenzene 25.0 26.4 ug/L 106 70.130 2 20 1,3-Dichlorobenzene 25.0 26.0 ug/L 104 70.130 2 20 1,3-Dichlorobenzene 25.0 26.0 ug/L 104 70.130 4 20 1,3-Dichloropropane 25.0 25.6 ug/L 107 70.130 4 20 1,1-Dichloropropene 25.0 25.6 ug/L 107 70.130 2 20 1,2-Dibrom-3-Chloropropane 25.0 26.5 ug/L 106 70.130 2 20 Dichlorodifluoromethane 25.0 26.5 ug/L 105 70.130 2 20 Dichlorodifluoromethane 25.0 26.4 ug/L 105 70.130 2 20 1,1-Dichloroethane 25.0 26.1 ug/L 105 70.130 1	2-Chlorotoluene	25.0	27.9		ug/L		112	70 - 130	4	20
1,2-Dichlorobenzene25.026.4ug/L10670.1303201,3-Dichlorobenzene25.027.1ug/L10970.1302201,4-Dichlorobenzene25.026.0ug/L10470.1301201,3-Dichloropropane25.025.6ug/L10270.1304201,1-Dichloropropane25.027.2ug/L10970.1302201,2-Dibromo-3-Chloropropane25.027.2ug/L10970.1302201,2-Dibromo-3-Chloropropane25.026.5ug/L10670.1302201,2-Dibromo-3-Chloropropane25.026.5ug/L10570.130220Dibromomethane25.026.4ug/L10570.130220Dichlorodifluoromethane25.026.1ug/L10570.1302201,1-Dichloroethane25.026.1ug/L10570.1301201,2-Dichloroethane25.026.1ug/L10570.1301201,2-Dichloroethane25.026.7ug/L10370.1301201,2-Dichloroethene25.026.7ug/L10370.1301201,2-Dichloroethene25.026.7ug/L10570.1301201,2-Dichloroethene25.026.7ug/L10570.1301201,2-Dichloroethene25	4-Chlorotoluene	25.0	27.5		ug/L		110	70 - 130	3	20
1.3-Dichlorobenzene25.027.1ug/L10970 - 1302201.4-Dichlorobenzene25.026.0ug/L10470 - 1301201.3-Dichloropropane25.025.6ug/L10270 - 1304201.1-Dichloropropane25.025.029.1ug/L11770 - 1302201.2-Dibromo-3-Chloropropane25.027.2ug/L10970 - 136120Ethylene Dibromide25.026.5ug/L10670 - 130520Dibromomethane25.026.4ug/L10570 - 1302201.1-Dichloroethane25.026.1ug/L10570 - 1302201.1-Dichloroethane25.026.1ug/L10570 - 1302201.1-Dichloroethane25.026.1ug/L10570 - 1301201.2-Dichloroethane25.026.1ug/L10570 - 1301201.2-Dichloroethane25.026.1ug/L10570 - 1301201.2-Dichloroethane25.026.7ug/L10370 - 1301201.2-Dichloroethane25.025.7ug/L10370 - 1301201.2-Dichloroethane25.026.2ug/L10570 - 1301201.2-Dichloroethane25.026.2ug/L10570 - 1301201.2-Dich	Chlorodibromomethane	25.0	27.6		ug/L		110	70 - 145	7	20
1.4-Dichlorobenzene25.026.0ug/L10470.1301201.3-Dichloropropane25.025.6ug/L10270.1304201.1-Dichloropropane25.029.1ug/L11770.1302201.2-Dibromo-3-Chloropropane25.027.2ug/L10970.136120Ethylene Dibromide25.026.5ug/L10670.130520Dibromomethane25.026.4ug/L10570.130220Dichloroethane25.026.1ug/L10570.1302201.1-Dichloroethane25.026.1ug/L10570.1301201.2-Dichloroethane25.026.1ug/L10570.1301201.2-Dichloroethane25.026.1ug/L10570.1301201.2-Dichloroethane25.026.1ug/L10570.1301201.2-Dichloroethane25.026.3ug/L10570.1301201.2-Dichloroethane25.026.3ug/L10370.1301201.2-Dichloroethane25.026.3ug/L10570.1301201.2-Dichloroethane25.026.3ug/L10570.1301201.2-Dichloroethane25.026.2ug/L10570.1301201.2-Dichloroethane25.026.2ug/L<	1,2-Dichlorobenzene	25.0	26.4		ug/L		106	70 - 130	3	20
1,3-Dichloropropane25.025.6ug/L10270.1304201,1-Dichloropropene25.029.1ug/L11770.1302201,2-Dibromo-3-Chloropropane25.027.2ug/L10970.136120Ethylene Dibromide25.026.5ug/L10670.130520Dibromoethane25.026.4ug/L10570.1302201,1-Dichloropthane25.026.1ug/L10570.1301201,2-Dichloroethane25.026.1ug/L10570.1301201,2-Dichloroethane25.026.1ug/L10570.1301201,2-Dichloroethene25.026.1ug/L10570.1301201,2-Dichloroethene25.026.1ug/L10570.1301201,2-Dichloroethene25.026.3ug/L9864.128220cis-1,2-Dichloroethene25.026.3ug/L10370.130120trans-1,2-Dichloroethene25.026.2ug/L10568.1303201,2-Dichloropropane25.026.2ug/L10570.130120cis-1,3-Dichloropropene25.027.4ug/L11070.130320trans-1,3-Dichloropropene25.027.4ug/L10080.120220Ethylbenzene25.0	1,3-Dichlorobenzene	25.0	27.1		ug/L		109	70 - 130	2	20
1,1-Dichloropropene25.029.1ug/L11770.1302201,2-Dibromo-3-Chloropropane25.027.2ug/L10970.136120Ethylene Dibromide25.026.5ug/L10670.130520Dibromoethane25.026.4ug/L10570.130220Dichlorodifluoromethane25.026.4ug/L11534.1323201,1-Dichloroethane25.026.1ug/L10570.1301201,2-Dichloroethane25.026.1ug/L9661.1326201,1-Dichloroethane25.024.6ug/L9864.128220cis-1,2-Dichloroethene25.025.7ug/L10370.130120trans-1,2-Dichloroethene25.026.3ug/L10568.1303201,2-Dichloroethene25.026.2ug/L10570.130120trans-1,2-Dichloroethene25.026.3ug/L10568.1303201,2-Dichloropropane25.026.2ug/L10570.130120cis-1,3-Dichloropropene25.026.2ug/L10570.130320trans-1,3-Dichloropropene25.027.4ug/L11070.130320Ethylbenzene25.025.1ug/L11770.140520Ethylbenzene25.0<	1,4-Dichlorobenzene	25.0	26.0		ug/L		104	70 - 130	1	20
1,2-Dibrom-3-Chloropropane25.027.2ug/L10970 - 136120Ethylene Dibromide25.026.5ug/L10670 - 130520Dibromomethane25.026.4ug/L10570 - 130220Dichlorodifluoromethane25.028.8ug/L11534 - 1323201,1-Dichloroethane25.026.1ug/L10570 - 1301201,2-Dichloroethane25.024.0ug/L9661 - 1326201,1-Dichloroethane25.025.024.6ug/L9864 - 1282201,1-Dichloroethene25.025.7ug/L10370 - 1301201,2-Dichloroethene25.025.7ug/L10370 - 130120trans-1,2-Dichloroethene25.026.3ug/L10568 - 1303201,2-Dichloroethene25.025.026.2ug/L10568 - 1303201,2-Dichloropropane25.026.2ug/L10570 - 130120cis-1,3-Dichloropropene25.027.4ug/L11070 - 130320trans-1,3-Dichloropropene25.025.1ug/L10080 - 120220Ethylbenzene25.025.1ug/L10080 - 120220Hexachlorobutadiene25.027.7ug/L11170 - 130620<	1,3-Dichloropropane	25.0	25.6		ug/L		102	70 - 130	4	20
Ethylene Dibromide25.026.5ug/L10670 - 130520Dibromomethane25.026.4ug/L10570 - 130220Dichlorodifluoromethane25.028.8ug/L11534 - 1323201,1-Dichloroethane25.026.1ug/L10570 - 1301201,2-Dichloroethane25.024.0ug/L9661 - 1326201,1-Dichloroethane25.024.6ug/L9864 - 1282201,1-Dichloroethene25.025.7ug/L10370 - 1301201,2-Dichloroethene25.025.7ug/L10370 - 1301201,2-Dichloroethene25.025.7ug/L10568 - 1303201,2-Dichloroethene25.026.2ug/L10570 - 130120trans-1,2-Dichloroethene25.026.3ug/L10568 - 1303201,2-Dichloropropane25.026.2ug/L10570 - 130120cis-1,3-Dichloropropene25.027.4ug/L11070 - 130320trans-1,3-Dichloropropene25.025.1ug/L11770 - 140520Ethylbenzene25.025.1ug/L10080 - 120220Hexachlorobutadiene25.027.7ug/L11170 - 130620	1,1-Dichloropropene	25.0	29.1		ug/L		117	70 - 130	2	20
Dibromomethane25.026.4ug/L10570 - 130220Dichlorodifluoromethane25.028.8ug/L11534 - 1323201,1-Dichloroethane25.026.1ug/L10570 - 1301201,2-Dichloroethane25.024.0ug/L9661 - 1326201,1-Dichloroethane25.024.6ug/L9864 - 128220cis-1,2-Dichloroethene25.025.7ug/L10370 - 130120trans-1,2-Dichloroethene25.026.3ug/L10568 - 1303201,2-Dichloropthane25.026.2ug/L10568 - 130320trans-1,2-Dichloroethene25.026.2ug/L10570 - 130120cis-1,3-Dichloropropane25.026.2ug/L10570 - 130120cis-1,3-Dichloropropene25.027.4ug/L11070 - 130320trans-1,3-Dichloropropene25.025.1ug/L11770 - 140520Ethylbenzene25.025.1ug/L10080 - 120220Hexachlorobutadiene25.027.7ug/L11170 - 130620	1,2-Dibromo-3-Chloropropane	25.0	27.2		ug/L		109	70 - 136	1	20
Dichlorodifluoromethane25.028.8ug/L11534.1323201,1-Dichloroethane25.026.1ug/L10570.1301201,2-Dichloroethane25.024.0ug/L9661.1326201,1-Dichloroethane25.024.6ug/L9864.128220cis-1,2-Dichloroethene25.025.7ug/L10370.130120trans-1,2-Dichloroethene25.026.3ug/L10568.1303201,2-Dichloropthene25.026.2ug/L10570.130120trans-1,2-Dichloropthene25.026.2ug/L10568.1303201,2-Dichloropthene25.026.2ug/L10570.130120trans-1,3-Dichloropropane25.027.4ug/L11070.130320trans-1,3-Dichloropropene25.025.1ug/L11770.140520Ethylbenzene25.025.1ug/L10080.120220Hexachlorobutadiene25.027.7ug/L11170.130620	Ethylene Dibromide	25.0	26.5		ug/L		106	70 - 130	5	20
1,1-Dichloroethane25.026.1ug/L10570 - 1301201,2-Dichloroethane25.024.0ug/L9661 - 1326201,1-Dichloroethane25.024.6ug/L9864 - 128220cis-1,2-Dichloroethene25.025.7ug/L10370 - 130120trans-1,2-Dichloroethene25.026.3ug/L10568 - 1303201,2-Dichloropthene25.026.2ug/L10570 - 130120trans-1,2-Dichloropthene25.026.2ug/L10570 - 1303201,2-Dichloroptopane25.026.2ug/L10570 - 130120cis-1,3-Dichloropropene25.027.4ug/L11070 - 130320trans-1,3-Dichloropropene25.029.1ug/L11770 - 140520Ethylbenzene25.025.1ug/L10080 - 120220Hexachlorobutadiene25.027.7ug/L11170 - 130620	Dibromomethane	25.0	26.4		ug/L		105	70 - 130	2	20
1,2-Dichloroethane25.024.0ug/L9661 - 1326201,1-Dichloroethene25.024.6ug/L9864 - 128220cis-1,2-Dichloroethene25.025.7ug/L10370 - 130120trans-1,2-Dichloroethene25.026.3ug/L10568 - 1303201,2-Dichloropthene25.026.2ug/L10570 - 130120cis-1,3-Dichloroptopane25.027.4ug/L11070 - 130320trans-1,3-Dichloroptopene25.029.1ug/L11770 - 140520Ethylbenzene25.025.1ug/L10080 - 120220Hexachlorobutadiene25.027.7ug/L11170 - 130620	Dichlorodifluoromethane	25.0	28.8		ug/L		115	34 - 132	3	20
1,1-Dichloroethene25.024.6ug/L9864 - 128220cis-1,2-Dichloroethene25.025.7ug/L10370 - 130120trans-1,2-Dichloroethene25.026.3ug/L10568 - 1303201,2-Dichloropropane25.026.2ug/L10570 - 130120cis-1,3-Dichloropropene25.027.4ug/L11070 - 130320trans-1,3-Dichloropropene25.029.1ug/L11770 - 140520Ethylbenzene25.025.1ug/L10080 - 120220Hexachlorobutadiene25.027.7ug/L11170 - 130620	1,1-Dichloroethane	25.0	26.1		ug/L		105	70 - 130	1	20
cis-1,2-Dichloroethene25.025.7ug/L10370 - 130120trans-1,2-Dichloroethene25.026.3ug/L10568 - 1303201,2-Dichloropropane25.026.2ug/L10570 - 130120cis-1,3-Dichloropropene25.027.4ug/L11070 - 130320trans-1,3-Dichloropropene25.029.1ug/L11070 - 140520Ethylbenzene25.025.1ug/L10080 - 120220Hexachlorobutadiene25.027.7ug/L11170 - 130620	1,2-Dichloroethane	25.0	24.0		ug/L		96	61 - 132	6	20
trans-1,2-Dichloroethene25.026.3ug/L10568 - 1303201,2-Dichloropropane25.026.2ug/L10570 - 130120cis-1,3-Dichloropropene25.027.4ug/L11070 - 130320trans-1,3-Dichloropropene25.029.1ug/L11770 - 140520Ethylbenzene25.025.1ug/L10080 - 120220Hexachlorobutadiene25.027.7ug/L11170 - 130620	1,1-Dichloroethene	25.0	24.6		ug/L		98	64 - 128	2	20
1,2-Dichloropropane25.026.2ug/L10570 - 130120cis-1,3-Dichloropropene25.027.4ug/L11070 - 130320trans-1,3-Dichloropropene25.029.1ug/L11770 - 140520Ethylbenzene25.025.1ug/L10080 - 120220Hexachlorobutadiene25.027.7ug/L11170 - 130620	cis-1,2-Dichloroethene	25.0	25.7		ug/L		103	70 - 130	1	20
cis-1,3-Dichloropropene 25.0 27.4 ug/L 110 70 - 130 3 20 trans-1,3-Dichloropropene 25.0 29.1 ug/L 117 70 - 140 5 20 Ethylbenzene 25.0 25.1 ug/L 100 80 - 120 2 20 Hexachlorobutadiene 25.0 27.7 ug/L 111 70 - 130 6 20	trans-1,2-Dichloroethene	25.0	26.3		ug/L		105	68 _ 130	3	20
trans-1,3-Dichloropropene25.029.1ug/L11770 - 140520Ethylbenzene25.025.1ug/L10080 - 120220Hexachlorobutadiene25.027.7ug/L11170 - 130620	1,2-Dichloropropane	25.0	26.2		ug/L		105	70 _ 130	1	20
Ethylbenzene 25.0 25.1 ug/L 100 80 - 120 2 20 Hexachlorobutadiene 25.0 27.7 ug/L 111 70 - 130 6 20	cis-1,3-Dichloropropene	25.0	27.4		ug/L		110	70 _ 130	3	20
Hexachlorobutadiene 25.0 27.7 ug/L 111 70 - 130 6 20	trans-1,3-Dichloropropene	25.0	29.1		ug/L		117	70 - 140	5	20
	Ethylbenzene	25.0	25.1		ug/L		100	80 - 120	2	20
	Hexachlorobutadiene	25.0	27.7		ug/L		111	70 - 130	6	20
	2-Hexanone	125	131		ug/L		104	60 - 164	9	20

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-159953/6

Matrix:	Water	
Amelia	- Detels	450050

Analysis Batch: 159953											
			Spike		LCSD				%Rec.		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Isopropylbenzene			25.0	26.4		ug/L		105	70 - 130	2	20
4-Isopropyltoluene			25.0	27.6		ug/L		111	70 - 130	5	20
Methylene Chloride			25.0	24.5		ug/L		98	70 _ 147	5	20
4-Methyl-2-pentanone (MIBK)			125	131		ug/L		105	58 - 130	7	20
Naphthalene			25.0	29.3		ug/L		117	70 - 130	2	20
N-Propylbenzene			25.0	28.5		ug/L		114	70 - 130	5	20
Styrene			25.0	26.7		ug/L		107	70 - 130	1	20
1,1,1,2-Tetrachloroethane			25.0	28.1		ug/L		113	70 - 130	0	20
1,1,2,2-Tetrachloroethane			25.0	28.0		ug/L		112	70 - 130	3	20
Tetrachloroethene			25.0	26.2		ug/L		105	70 - 130	1	20
Toluene			25.0	25.3		ug/L		101	78 - 120	3	20
1,2,3-Trichlorobenzene			25.0	27.1		ug/L		108	70 _ 130	2	20
1,2,4-Trichlorobenzene			25.0	27.3		ug/L		109	70 _ 130	1	20
1,1,1-Trichloroethane			25.0	27.3		ug/L		109	70 - 130	2	20
1,1,2-Trichloroethane			25.0	26.0		ug/L		104	70 - 130	4	20
Trichloroethene			25.0	26.4		ug/L		106	70 - 130	1	20
Trichlorofluoromethane			25.0	27.9		ug/L		112	66 - 132	1	20
1,2,3-Trichloropropane			25.0	27.2		ug/L		109	70 - 130	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha			25.0	23.6		ug/L		95	42 - 162	3	20
ne											
1,2,4-Trimethylbenzene			25.0	27.7		ug/L		111	70 - 132	3	20
1,3,5-Trimethylbenzene			25.0	28.2		ug/L		113	70 - 130	4	20
Vinyl acetate			25.0	32.4		ug/L		130	43 - 163	5	20
Vinyl chloride			25.0	28.8		ug/L		115	54 - 135	5	20
m-Xylene & p-Xylene			25.0	25.6		ug/L		102	70 _ 142	1	20
o-Xylene			25.0	24.7		ug/L		99	70 - 130	1	20
2,2-Dichloropropane			25.0	29.1		ug/L		116	70 - 140	2	20
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
4-Bromofluorobenzene	93		67 _ 130								
1,2-Dichloroethane-d4 (Surr)	94		72 _ 130								
Toluene-d8 (Surr)	100		70 - 130								

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 720-159880/1-A **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 159907 Prep Batch: 159880 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Phenol ND 2.0 ug/L 05/22/14 09:12 05/22/14 17:05 Bis(2-chloroethyl)ether ND 2.0 ug/L 05/22/14 09:12 05/22/14 17:05 2-Chlorophenol ND 4.0 ug/L 05/22/14 09:12 05/22/14 17:05 ND 1,3-Dichlorobenzene 2.0 ug/L 05/22/14 09:12 05/22/14 17:05 ND 1.4-Dichlorobenzene 2.0 ug/L 05/22/14 09:12 05/22/14 17:05 ND ug/L Benzyl alcohol 5.0 05/22/14 09:12 05/22/14 17:05 1,2-Dichlorobenzene ND 2.0 ug/L 05/22/14 09:12 05/22/14 17:05 2-Methylphenol ND 4.0 ug/L 05/22/14 09:12 05/22/14 17:05

TestAmerica Pleasanton

Dil Fac

1

1

1

1

1

1

1

1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-159880/1-A

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 159907							Prep Batch:		
	МВ	МВ							5
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
4-Methylphenol	ND		8.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
N-Nitrosodi-n-propylamine	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
Hexachloroethane	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	7
Nitrobenzene	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
Isophorone	ND		4.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	8
2-Nitrophenol	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
2,4-Dimethylphenol	ND		3.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	Q
Bis(2-chloroethoxy)methane	ND		5.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
2,4-Dichlorophenol	ND		5.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
1,2,4-Trichlorobenzene	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
Naphthalene	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
4-Chloroaniline	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
Hexachlorobutadiene	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
4-Chloro-3-methylphenol	ND		5.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
2-Methylnaphthalene	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
Hexachlorocyclopentadiene	ND		5.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
2,4,6-Trichlorophenol	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
2,4,5-Trichlorophenol	ND		4.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
2-Chloronaphthalene	ND		4.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
2-Nitroaniline	ND		10	ug/L		05/22/14 09:12	05/22/14 17:05		
Dimethyl phthalate	ND		5.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
Acenaphthylene	ND		4.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
3-Nitroaniline	ND		5.0	ug/L		05/22/14 09:12	05/22/14 17:05		
Acenaphthene	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
2,4-Dinitrophenol	ND		10	ug/L		05/22/14 09:12	05/22/14 17:05	1	
4-Nitrophenol	ND		10	ug/L		05/22/14 09:12	05/22/14 17:05		
Dibenzofuran	ND		4.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
2,4-Dinitrotoluene	ND		4.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
2,6-Dinitrotoluene	ND		5.0	ug/L		05/22/14 09:12	05/22/14 17:05		
Diethyl phthalate	ND		5.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
4-Chlorophenyl phenyl ether	ND		5.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
Fluorene	ND		4.0	ug/L		05/22/14 09:12	05/22/14 17:05		
4-Nitroaniline	ND		10	ug/L		05/22/14 09:12	05/22/14 17:05	1	
2-Methyl-4,6-dinitrophenol	ND		10	ug/L		05/22/14 09:12	05/22/14 17:05	1	
N-Nitrosodiphenylamine	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	· · · · · · · · 1	
4-Bromophenyl phenyl ether	ND		5.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
Hexachlorobenzene	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
Pentachlorophenol	ND		10	ug/L		05/22/14 09:12	05/22/14 17:05		
Phenanthrene	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
Anthracene	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
Di-n-butyl phthalate	ND		5.0			05/22/14 09:12	05/22/14 17:05		
Fluoranthene	ND		2.0	ug/L ug/L		05/22/14 09:12	05/22/14 17:05	1	
Pyrene	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
Butyl benzyl phthalate	ND		5.0			05/22/14 09:12	05/22/14 17:05	· · · · · · · · · · · · · · · · · · ·	
	ND		5.0 5.0	ug/L				1	
3,3'-Dichlorobenzidine				ug/L		05/22/14 09:12	05/22/14 17:05	1	
Benzo[a]anthracene	ND		5.0	ug/L		05/22/14 09:12	05/22/14 17:05	۱ ۰۰۰۰۰۰	
Bis(2-ethylhexyl) phthalate	ND ND		10 2.0	ug/L		05/22/14 09:12	05/22/14 17:05	1	
Chrysene	ND		2.0	ug/L		05/22/14 09:12	05/22/14 17:05	í	

RL

5.0

2.0

2.0

2.0

2.0

2.0

10

2.0

2.0

Limits

16_72

10_101

42 - 112

10 - 65

10 - 46

17 - 100

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

D

Prepared

05/22/14 09:12

05/22/14 09:12

05/22/14 09:12

05/22/14 09:12

05/22/14 09:12

05/22/14 09:12

05/22/14 09:12

05/22/14 09:12

05/22/14 09:12

Lab Sample ID: MB 720-159880/1-A

Matrix: Water

Di-n-octyl phthalate

Benzo[a]pyrene

Benzoic acid

Azobenzene

Surrogate

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

2-Fluorophenol

2,4,6-Tribromophenol

Phenol-d5

Benzo[b]fluoranthene

Benzo[k]fluoranthene

Benzo[g,h,i]perylene

Indeno[1,2,3-cd]pyrene

Dibenz(a,h)anthracene

Analyte

Analysis Batch: 159907

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

ND

ND

ND

ND

ND

ND

ND

ND

ND

62

59

84

25

18

69

%Recovery

MB MB

Qualifier

Result Qualifier

Client Sample ID: Method Blank

Analyzed

05/22/14 17:05

05/22/14 17:05

05/22/14 17:05

05/22/14 17:05

05/22/14 17:05

05/22/14 17:05

05/22/14 17:05

05/22/14 17:05

05/22/14 17:05

Prep Type: Total/NA Prep Batch: 159880

Dil Fac

1

1

1

1

1

1

1

1

1

2 3 4 5 6

7
8
9

	Dil Fac	Analyzed	Prepared
	1	05/22/14 17:05	05/22/14 09:12
	1	05/22/14 17:05	05/22/14 09:12
_	1	05/22/14 17:05	05/22/14 09:12
	1	05/22/14 17:05	05/22/14 09:12
	1	05/22/14 17:05	05/22/14 09:12
	1	05/22/14 17:05	05/22/14 09:12

Lab Sample ID: LCS 720-159880/2-A Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 159880

maurix. H	atter	
Analysis	Batch:	159907

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier U	nit	D	%Rec	Limits
Phenol	40.0	10.4	u	g/L		26	10 - 115
Bis(2-chloroethyl)ether	40.0	25.3	u	g/L		63	12 ₋ 115
2-Chlorophenol	40.0	24.4	u	g/L		61	14 - 115
1,3-Dichlorobenzene	40.0	25.0	u	g/L		63	13 _ 115
1,4-Dichlorobenzene	40.0	25.8	u	g/L		64	14 - 115
Benzyl alcohol	40.0	24.5	u	g/L		61	19 - 115
1,2-Dichlorobenzene	40.0	25.2	u	g/L		63	10 _ 115
2-Methylphenol	40.0	22.8	u	g/L		57	13 - 115
4-Methylphenol	40.0	21.3	u	g/L		53	10 - 115
N-Nitrosodi-n-propylamine	40.0	30.3	u	g/L		76	17 - 115
Hexachloroethane	40.0	26.7	u	g/L		67	9 - 115
Nitrobenzene	40.0	28.8	u	g/L		72	18 - 115
Isophorone	40.0	29.8	u	g/L		74	18 - 134
2-Nitrophenol	40.0	27.6	u	g/L		69	14 - 115
2,4-Dimethylphenol	40.0	29.1	u	g/L		73	10 - 119
Bis(2-chloroethoxy)methane	40.0	27.1	u	g/L		68	10 _ 119
2,4-Dichlorophenol	40.0	28.1	u	g/L		70	13 - 118
1,2,4-Trichlorobenzene	40.0	27.8	u	g/L		70	10 _ 115
Naphthalene	40.0	27.2	u	g/L		68	12 _ 115
4-Chloroaniline	40.0	24.4	u	g/L		61	26 - 115
Hexachlorobutadiene	40.0	30.0	u	g/L		75	12 - 115
4-Chloro-3-methylphenol	40.0	30.1	u	g/L		75	19 - 128
2-Methylnaphthalene	40.0	28.5	u	g/L		71	16 - 115
Hexachlorocyclopentadiene	40.0	22.7	u	g/L		57	10 - 115
2,4,6-Trichlorophenol	40.0	27.5	u	g/L		69	20 - 120

1 2 3 4 5 5 6 7 8 9 10 11 12 13 14

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-159880/2-A Matrix: Water							ID: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 159907							Prep Batch: 159880
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4,5-Trichlorophenol	40.0	28.5		ug/L		71	22 - 117
2-Chloronaphthalene	40.0	27.4		ug/L		69	17 - 115
2-Nitroaniline	40.0	28.4		ug/L		71	37 _ 119
Dimethyl phthalate	40.0	31.2		ug/L		78	48 - 127
Acenaphthylene	40.0	28.9		ug/L		72	29 - 129
3-Nitroaniline	40.0	25.8		ug/L		64	40 - 115
Acenaphthene	40.0	27.2		ug/L		68	25 - 115
2,4-Dinitrophenol	80.0	58.2		ug/L		73	44 - 116
4-Nitrophenol	80.0	30.7		ug/L		38	20 - 115
Dibenzofuran	40.0	28.1		ug/L		70	28 - 115
2,4-Dinitrotoluene	40.0	29.1		ug/L		73	42 - 115
2,6-Dinitrotoluene	40.0	30.6		ug/L		77	46 ₋ 119
Diethyl phthalate	40.0	31.3		ug/L		78	44 ₋ 115
4-Chlorophenyl phenyl ether	40.0	34.5		ug/L		86	32 - 115
Fluorene	40.0	31.2		ug/L		78	39 ₋ 115
4-Nitroaniline	40.0	36.8		ug/L		92	46 - 115
2-Methyl-4,6-dinitrophenol	80.0	58.7		ug/L		73	42 - 135
N-Nitrosodiphenylamine	40.0	29.2		ug/L		73	41 ₋ 115
4-Bromophenyl phenyl ether	40.0	28.2		ug/L		71	42 - 115
Hexachlorobenzene	40.0	29.3		ug/L		73	49 ₋ 115
Pentachlorophenol	80.0	60.1		ug/L		75	42 - 121
Phenanthrene	40.0	29.7		ug/L		74	54 ₋ 115
Anthracene	40.0	29.9		ug/L		75	54 ₋ 115
Di-n-butyl phthalate	40.0	32.9		ug/L		82	58 ₋ 115
Fluoranthene	40.0	31.9		ug/L		80	65 ₋ 115
Pyrene	40.0	30.8		ug/L		77	53 - 115
Butyl benzyl phthalate	40.0	31.4		ug/L		79	37 ₋ 115
3,3'-Dichlorobenzidine	40.0	29.1		ug/L		73	24 - 110
Benzo[a]anthracene	40.0	31.6		ug/L		79	56 - 115
Bis(2-ethylhexyl) phthalate	40.0	31.6		ug/L		79	59 ₋ 115
Chrysene	40.0	30.0		ug/L		75	50 - 115
Di-n-octyl phthalate	40.0	30.5		ug/L		76	12 - 115
Benzo[b]fluoranthene	40.0	29.8		ug/L		74	50 _ 115
Benzo[a]pyrene	40.0	31.8		ug/L		79	55 - 115
Benzo[k]fluoranthene	40.0	31.4		ug/L		78	60 - 115
Indeno[1,2,3-cd]pyrene	40.0	30.8		ug/L		77	49 - 117
Benzo[g,h,i]perylene	40.0	29.7		ug/L		74	54 - 115
Benzoic acid	40.0	8.32	J	ug/L		21	10 - 115
Azobenzene	40.0	29.6		ug/L		74	42 - 115
Dibenz(a,h)anthracene	40.0	30.0		ug/L		75	47 _ 127

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	74	X	16 - 72
2-Fluorobiphenyl	70		10 - 101
Terphenyl-d14	84		42 - 112
2-Fluorophenol	31		10 - 65
Phenol-d5	22		10 - 46
2,4,6-Tribromophenol	82		17 _ 100

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Water							Prep T	ype: Tot	tal/NA
Analysis Batch: 159907							Prep I	Batch: 1	59880
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Phenol	40.0	7.48		ug/L		19	10 _ 115	33	51
Bis(2-chloroethyl)ether	40.0	18.8		ug/L		47	12 _ 115	29	35
2-Chlorophenol	40.0	17.8		ug/L		44	14 ₋ 115	32	40
1,3-Dichlorobenzene	40.0	18.6		ug/L		46	13 _ 115	29	40
1,4-Dichlorobenzene	40.0	19.0		ug/L		48	14 - 115	30	41
Benzyl alcohol	40.0	17.5		ug/L		44	19 _ 115	33	35
1,2-Dichlorobenzene	40.0	18.3		ug/L		46	10 - 115	32	35
2-Methylphenol	40.0	16.5		ug/L		41	13 _ 115	32	35
4-Methylphenol	40.0	15.8		ug/L		40	10 ₋ 115	30	35
N-Nitrosodi-n-propylamine	40.0	22.3		ug/L		56	17 - 115	31	34
Hexachloroethane	40.0	19.1		ug/L		48	9 _ 115	33	35
Nitrobenzene	40.0	21.2		ug/L		53	18 - 115	30	43
Isophorone	40.0	23.2		ug/L		58	18 ₋ 134	25	39
2-Nitrophenol	40.0	19.9		ug/L		50	14 - 115	32	46
2,4-Dimethylphenol	40.0	21.6		ug/L		54	10 - 119	29	44
Bis(2-chloroethoxy)methane	40.0	20.5		ug/L		51	10 _ 119	28	46
2,4-Dichlorophenol	40.0	20.3		ug/L		51	13 - 118	32	38
1,2,4-Trichlorobenzene	40.0	20.4		ug/L		51	10 - 115	31	51
Naphthalene	40.0	20.2		ug/L		51	12 - 115	29	42
4-Chloroaniline	40.0	18.8		ug/L		47	26 - 115	26	49
Hexachlorobutadiene	40.0	20.7		ug/L		52	12 - 115	37	46
4-Chloro-3-methylphenol	40.0	25.3		ug/L		63	19 - 128	17	40
2-Methylnaphthalene	40.0	20.0		ug/L		53	16 - 120 16 - 115	29	45
Hexachlorocyclopentadiene	40.0	16.6		ug/L		41	10 - 115 10 - 115	31	63
2,4,6-Trichlorophenol	40.0	24.2		ug/L		61	20 - 120	13	43
2,4,5-Trichlorophenol	40.0	25.0		ug/L		63	20 - 120	13	41
2-Chloronaphthalene	40.0	23.0		ug/L		55	22 - 117 17 ₋ 115	22	49
2-Nitroaniline		22.0				66	37 - 119	7	29
	40.0			ug/L				3	
Dimethyl phthalate	40.0	30.4		ug/L		76	48 - 127		29
Acenaphthylene	40.0	25.1		ug/L		63	29 - 129	14	40
3-Nitroaniline	40.0	26.4		ug/L		66	40 - 115	2	30
Acenaphthene	40.0	24.3		ug/L		61	25 - 115	12	40
2,4-Dinitrophenol	80.0	60.4		ug/L		75	44 - 116	4	21
4-Nitrophenol	80.0	31.2		ug/L		39	20 - 115	1	32
Dibenzofuran	40.0	25.7		ug/L		64	28 - 115	9	46
2,4-Dinitrotoluene	40.0	30.2		ug/L		76	42 _ 115	4	19
2,6-Dinitrotoluene	40.0	28.8		ug/L		72	46 - 119	6	26
Diethyl phthalate	40.0	31.5		ug/L		79	44 _ 115	1	24
4-Chlorophenyl phenyl ether	40.0	31.3		ug/L		78	32 _ 115	10	38
Fluorene	40.0	29.8		ug/L		75	39 _ 115	5	39
4-Nitroaniline	40.0	36.4		ug/L		91	46 - 115	1	23
2-Methyl-4,6-dinitrophenol	80.0	61.1		ug/L		76	42 - 135	4	19
N-Nitrosodiphenylamine	40.0	29.6		ug/L		74	41 - 115	1	27
4-Bromophenyl phenyl ether	40.0	29.1		ug/L		73	42 _ 115	3	29
Hexachlorobenzene	40.0	29.7		ug/L		74	49 - 115	1	28
Pentachlorophenol	80.0	63.6		ug/L		80	42 _ 121	6	22
Phenanthrene	40.0	30.0		ug/L		75	54 - 115	1	35
Anthracene	40.0	30.6		ug/L		76	54 _ 115	2	25

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-159880/ Matrix: Water	/3-A					Clie	ent Sam	ple ID:	Lab Contro Prop T	ol Sampl 'ype: Tot	
Analysis Batch: 159907										Batch: 1	
Analysis Datch. 133307			Spike	LCSD	LCSD				%Rec.	Daten. i	RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Di-n-butyl phthalate			40.0	33.8		ug/L		84	58 - 115	3	26
Fluoranthene			40.0	32.6		ug/L		81	65 _ 115	2	26
Pyrene			40.0	31.7		ug/L		79	53 ₋ 115	3	22
Butyl benzyl phthalate			40.0	32.0		ug/L		80	37 _ 115	2	21
3,3'-Dichlorobenzidine			40.0	30.1		ug/L		75	24 _ 110	3	30
Benzo[a]anthracene			40.0	32.2		ug/L		80	56 - 115	2	24
Bis(2-ethylhexyl) phthalate			40.0	33.0		ug/L		82	59 ₋ 115	4	30
Chrysene			40.0	30.6		ug/L		77	50 _ 115	2	24
Di-n-octyl phthalate			40.0	31.7		ug/L		79	12 - 115	4	27
Benzo[b]fluoranthene			40.0	28.9		ug/L		72	50 _ 115	3	31
Benzo[a]pyrene			40.0	32.6		ug/L		81	55 - 115	3	23
Benzo[k]fluoranthene			40.0	34.9		ug/L		87	60 _ 115	11	39
Indeno[1,2,3-cd]pyrene			40.0	32.1		ug/L		80	49 _ 117	4	19
Benzo[g,h,i]perylene			40.0	30.8		ug/L		77	54 _ 115	4	35
Benzoic acid			40.0	9.44	J	ug/L		24	10 _ 115	13	56
Azobenzene			40.0	28.7		ug/L		72	42 - 115	3	35
Dibenz(a,h)anthracene			40.0	31.2		ug/L		78	47 _ 127	4	35
	LCSD	LCSD									
Surrogate %	&Recovery	Qualifier	Limits								
Nitrobenzene-d5	54		16 - 72								
2-Fluorobiphenyl	57		10 - 101								
Terphenvl-d14	85		42 - 112								

Terphenyl-d14	85	42 - 112
2-Fluorophenol	23	10 - 65
Phenol-d5	15	10 - 46
2,4,6-Tribromophenol	82	17 - 100

QC Association Summary

Client: Stantec Consulting Corp. Project/Site: Goodyear -DEX ID No.9578 Castro Valley

GC/MS VOA

Analysis Batch: 159870

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-57584-1	MW-4	Total/NA	Water	8260B	
720-57584-2	MW-5	Total/NA	Water	8260B	
LCS 720-159870/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-159870/6	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 720-159870/4	Method Blank	Total/NA	Water	8260B	
nalysis Batch: 15995	3				
nalysis Batch: 15995		Prep Type	Matrix	Method	Prep Batcl
nalysis Batch: 15995 Lab Sample ID 720-57584-1	Client Sample ID MW-4	Prep Type Total/NA	Matrix Water	Method	Prep Batch
Lab Sample ID 720-57584-1	Client Sample ID				Prep Batcl
Lab Sample ID	Client Sample ID MW-4	Total/NA	Water	8260B	Prep Batcl

GC/MS Semi VOA

Prep Batch: 159880

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-57584-1	MW-4	Total/NA	Water	3510C	
720-57584-2	MW-5	Total/NA	Water	3510C	
LCS 720-159880/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 720-159880/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 720-159880/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 159907

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-57584-1	MW-4	Total/NA	Water	8270C	159880
720-57584-2	MW-5	Total/NA	Water	8270C	159880
LCS 720-159880/2-A	Lab Control Sample	Total/NA	Water	8270C	159880
LCSD 720-159880/3-A	Lab Control Sample Dup	Total/NA	Water	8270C	159880
MB 720-159880/1-A	Method Blank	Total/NA	Water	8270C	159880

Client: Stantec Consulting Corp. Project/Site: Goodyear -DEX ID No.9578 Castro Valley

ate Collected	le ID: MW-4 : 05/21/14 15:1 : 05/21/14 16:5	0						Lab Sample ID:	720-57584-1 Matrix: Water
Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B			159870	05/22/14 17:33	LPL	TAL PLS	
Total/NA	Analysis	8260B		1	159953	05/23/14 11:24	PDR	TAL PLS	
Total/NA	Prep	3510C			159880	05/22/14 13:13	NDU	TAL PLS	
Total/NA	Analysis	8270C		1	159907	05/22/14 18:16	MQL	TAL PLS	
-	le ID: MW-5 : 05/21/14 14:0							Lab Sample ID:	720-57584-2 Matrix: Wate
	: 05/21/14 16:5	-							

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	159870	05/22/14 18:00	LPL	TAL PLS
Total/NA	Prep	3510C			159880	05/22/14 13:13	NDU	TAL PLS
Total/NA	Analysis	8270C		1	159907	05/22/14 18:40	MQL	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: Stantec Consulting Corp. Project/Site: Goodyear -DEX ID No.9578 Castro Valley

TestAmerica Job ID: 720-57584-1

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-16

Client: Stantec Consulting Corp. Project/Site: Goodyear -DEX ID No.9578 Castro Valley

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PLS
8270C	Semivolatile Organic Compounds (GC/MS)	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: Stantec Consulting Corp. Project/Site: Goodyear -DEX ID No.9578 Castro Valley TestAmerica Job ID: 720-57584-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-57584-1	MW-4	Water	05/21/14 15:10	05/21/14 16:50
720-57584-2	MW-5	Water	05/21/14 14:00	05/21/14 16:50

Stantec		Stantec Consulting Corporation 15575 Los Gatos Boulevard, Bldg C Los Gatos, California 95032 Tel:408-356-6124 Fax: 408-356-6138								/	153915 Page <u>1 of 1</u>																				
Project Contact (Hardco Gary Messerotes	py or PDF To)):	с	alifo	rnia	EDF	Rep	ort?	I		2	Yes]	No		Chain-of-Custody Record and Analysis										is F	leque	e:		
Laboratory / Address: Test America Pleasanton 1220 Quarry Lane, Pleasantor	n, CA		Electroni gary.mes				-		Addr	ess	s):									An	naly	/sis	Re	equ	est	:				ТАТ	
Phone No.: 925-484-1919	Fax No.:		Global ID) No:			т060	0101	801																					(1 wk)	
Project Number: 185702561	P.O. No	o.:	Samplers			5.	K	iła	r ر	n	u <i>ll</i> e	۲				0B		:												r/STD	
Project Name: Former Merritt Tire Sale	es / Goodyear D	DEX#9578	Project A	ddre	Iddress: Ø 3430 Castro Vally Blvd., Castro Valley, CA Container Preservative Mat Example 2000 Preservative Mat									EPA 8260B													ers	rí 72 h			
Project Manager:		Sam	pling		Co	ontai	ner		Pre	ese	erva	tive	e 1	Viat	trix	by El	с												ntain	48 hi	
Gary Messerotes	Field	-		I VOA x3	EVE		ER						ER	·		Full Scan VOCs by	SVOCs by 8270C												Number of Containers	hr/ 24 hr/ 48 hr/ 72 hr/STD (1	
Sample Name	Point Name	Date	Time	40 m	SLEE	POL	AMB		민	ENC NUC	Ш		WAT	SOIL		Full S	SVOC					1							Numl	12 h	
<u>MW-4</u>	MW-4	5/21/14	1510	3			2		x		;	x	<u> </u>	(x	Х												5	Х	
<u>MW-5</u>	MW-5	5/21/14	1400	3			2		x		,	×	<u> </u>	(_	x	X												5	Х	┦
												-					:							+			+				┨
																				_		_						_]
						-				-					+			- 1		, HIMI									`		
																		_													1
/		<u> </u>								-			_						720	101101 1-575	84 C	hain	of C	ustoc	ly I						
Relinquished by: Knita Myer	R	N/	Date J/2 //		me 50	Reco	eiveet		120			3			1	8	Rer	narks	s:							_1			1		<u> </u>
Relinguished by:()			Date			Rece	eived	by:	-													·			~	7. 6	ŋ «	0/			
																										-	· ·	<u> </u>	-		

13 153915 720-575 Stantec Consulting Corporation 15575 Los Gatos Boulevard, Bidg C Los Gatos, California 95032 Tel:408-356-6124 Fax: 408-356-6138 Page _ 1 of 1 Stantec **Chain-of-Custody Record and Analysis Request** Project Contact (Hardcopy or PDF To): California EDF Report? 🗸 Yes 🗌 No Gary Messerotes . Analysis Request <u>__</u> - Iuia Dalia T. المامة ال -). . . .

Laboratory / Address: Test America Pleasanton			Electron			ļ	•		Add	ress)):										11C	ary:	313		squ	163	L					TA'		
1220 Quarry Lane, Pleasantoi	n, CA		gary.mes	ssero	tes@	stan	tec.co	om												Г	T	1-	Т		T	T		T						1
Phone No.: 925-484-1919	Fax N			Global ID No: TO600101801														1									(1 wł		í					
Project Number:	P.	0. No.:	Samplers	iplers Name: 2 Con Owens Knifa Myla iect Address: 0							-																STD	≥						
185702561			Deven	<u>10</u> 0	ven	5	Kin	uta	ا ز	my	<u>lß</u>					8260B																hr/S	Only	
Project Name: Former Merritt Tire Sale	es / Goody	ear DEX#9578	Project /				/ally E			-						EPA 82														24	0	ır! 72	For Lab Use	:
Project Manager:		Sam	pling		Co	ntai	ner		Pr	ese	rvat	ive	N	/lati	rix	by	0							Ì		i				ţ		48 h	r La	ł
Gary Messerotes				OA x3	111											1 VOCs	y 8270								·					jo jo	5	12 hr/ 24 hr/ 48 hr/ 72 hr/STD (1 wk)	Foi	
Sample Name	Field Point Name	:	Time	40 ml VOA x3	SLEEVE	POLY	AMBER		HCI	HNO3	NONE		WATER	SOL		Full Scan VOCs	SVOCs by 8270C													Number of Contrinore		12 hr/		2
<u>MW-4</u>	MW-4	5/21/14	1510	3			2		х		x	(x			х	x														5	X		k
<u>MW-5</u>	MW-			3		1	2		х		X		x			х	x														5	Х		þ
																												_						Ъ Д
					<u> </u>		28	3 72 A		FATE	127	_								ļ		╞		_				\downarrow						Pag Pag
														_										_			+	\downarrow	+	_				_
					E		V	76				_		_				_ 1	ן נוי	1 EUENTI	1 11	L THUT	1 11116	, Intel fil	י 11 וווו ו	610619	11111		-	'-				-
					<u> </u>								-					_												-	+			-
1				┢							_	-	-																	-				-
		\rightarrow		-								+	╀─						7	20-5	758	4 Cł	hain	of C	usto	dy				-	╉			┨
Relinquished by:		()	Date	Ti	ime	Rec	eiveø	∕by:		. 1			1				Ren	narl	(S:		•	1	1			1	1	<u> </u>	<u> </u>		1		<u> </u>	┫
Knita myer	A	WE	J/21/1	1 16	50	$\left \right $	- 459	, <i>k</i>	1	M	Z	2					•																	
Relinquished by:		\rightarrow	Date	1 10	ime	Rec	eived	by:	<u> </u>								1						•				~							Ì
						i																				/	/	0	$^{\circ}$					
Relinquished by:		······	Date	Ti	ime	Rec	eived	by La	aboı	ratory	y:						Bill	To:	Ĝ	oody	yea	r Ti	re ð	k Ru	bbe	r Co). PC)#4 5	5054	6530)3			1
						i																												I
				1																														and a

Client: Stantec Consulting Corp.

Login Number: 57584 List Number: 1

Creator: Bullock, Tracy

Answer	Comment
N/A	
N/A	
N/A	
True	
N/A	
True	
True	
True	
True	
N/A	
	N/A N/A N/A True True True True True True True True

14

Job Number: 720-57584-1

List Source: TestAmerica Pleasanton

2012 FIELD DATA SHEETS

broodycan- Castro Vallay. T. RLodes Y. 3/13/12 Arrive onsite. Jack, Joe + Bill (ICS) onsite. 1745 H&S, spen wells. 1300 Photo document utility markings and condition of apron. 1830 Tag wells: MW-1=7.80 ft. bToc (18.98 TD - soft bottom) MW-2=5.83 ft. bToc (17.90 TD - soft bottom) MW-4=7.61 ft. 4Toc (14.95 TD) 1850 TOC ~ 0.5 ft. below grade, and MW-2 is ~1 ft. Lelow other wells, to static water below excavation = 7.5 Pt. 1920 Boll ceturns of phywood to protect hay doors. Also brought delineators and cantion tope, as fencing was also bargotten. 1940 hay out Visqueen for sports 1950 Begin breaking concrete @ bay 5. Slight In procarbon odor beneath concrete. 0.1 pm hit on PID (mostly D. Water line sporallel to building uncarthed. 12" deep; (9" from 2025 210 foundation. 23" from building on for side of bay (13 ft. to north). Called Jack, choose to not excavate under line, give It ~ 6" Begn first trench: 5ft. wide. At 4.5ft deep, AID=0.7 in hole, 2120 No hit on bucket. 2140 At 7th 20 PIDinhole, & to 02 in breathing zone. Hirst trench done. 5'x 13'x 8'day. Goil@ B'dry to moist. 2210 Collect EX-1 through EX-4. Side wall samples are ~ 5ft. deep Fold screen of PID - Et-1=31.1 ppm, Et-2=52.8 ppm, Ex-3=37.1, Ex-4=42.1 Cism next trench, 4 ft. wide w/4 ft. partition between it & 1st trench. 2230 2240 4" clay serve live encountered, broken & filled w/ dir t. (Abandoned). At ~ 5 begs, 2.7 ppm on hole, & - 0.1 in breathing zone. 2310 3.0 ppm in hole (7,504, deep), ro. 2 on bounthing zone. 2nd frende complete to 9 ft bys. A little bit of water vizible in 23 4'x 12.5'x 8'dear 2325 1st frendi. 3/14/12 viste ~1"steel line tound along N. sile of trenchwall, Disconnected/ abandoned. boll pite moved to spoils area by porto-potty. Begin sweeping site. 240 cover ple of visqueen 0100 Plates aranged in prep. for slurry arrivel. Apply ORC to bottom of tren ches: 6016s/9 incorfect fex = 2 budget 1st slurry truck arrives 2nd 3th 9 yd mud/fruch, 27 yd total for 9'linear of ex. 2530 0545 0555 ORC: 400145 = 0.44 108/642 chinindles: 1.5 times more slurry -- woodward concretie corer? - more pedestrian diversion Trench 1= 29 / hs 2:22/68

the Rain

0600 Lample courrier arrives onsite, sign over EX-(-> EX-24. 3rd & tural sharry truck departs, start plating 0630 Mates set, cold particle buties a plates of bay door. 0650 0720 All cleaned up, soil area roped off. Mengue to fince. MOB (ICS) - Show German plates and slight wolddle. He ok's, 0730 0740 MOD 1750 Arr. onstre. 120 fince & light tower delivered Boll & de oussite, walk through plan. 54 yel to arr. by 515. plan to french 4 trench to in bay 7 \$ 8. 1000 1820 photo site pre-work (ie bay doors). Mark sample goods par bary's diagram 1820 HA. 1840 nop out tour due for tonight from S. Sole Bay 7, trendy S.S. leave 205, trendro. Theme 2.5' trench 6' Leave 4' = 17 ft. total trench - CERC Concrete handling truck orr. Load w/ concrete from bay 5. Will also 1900 take tran bigs 7 FB. (H&S w(dr:ser). 1950 Set up for breaking; phy wood over bay doors. Begin broking Buy 7, the 3 2000 Done of breaking, begin loading concrete black into dump truck. Bay 7 and hast of 8 done, moderate odor @ forme UST, 0.7ppm max 2045 2130 hot on AID below commeter stats. Breading zone p.1 - 0.2 pp. .. 2150 Dumptruck offsite, remaining concrete to go next to soil pile. 2250 All concrete Eleaned, begin excavating N. most trench on Bay & 2300 At ~4ft deep, 13pp over hole (max), breathing zone 0.1 to 1.0. mote: water love found @ 20" from foundation accross entire spon of Bays 748. Excavation begins @ 26" from toundation. 2318 PID-20ppm overhole (@ 6ft. deep), lor lathing zone Ø to 3.6 (breezy) What Ex-5 from E. wall & - 5' depth ligs. Field suren= 235 ppm 2324 2x-6=252ppin 2 city streen on roll sommies 2x-7=168ppn 2 bottom > Eastwall 2344 2359 2430 Excavation of trench #3 complete. Begin clean up ferry. Stock ple over next french. TDof trench #3 = 7.75 bigs Begu trench # 4: splits bay 7 48. Former UST fielder pyre runs from 6/dg., curved lower & cutoff. Also have this gauge dectric wires found, cross excavation @W. wall. Ranto UST? 2445 0106 - note I day und before to ending against sand-canent sturry 5:5 Inca H, ex. = 36/43 ORC 4 112 hor 6 - 1 - 2, = 40/68 - yd/truck=9 - deliv. Home of 544d3:55

8/15/ 0/17 PID in breathing zone 2.0 to 17.6 pm. Strong odor. Visible oil, sheen an all soil removed. Grab sample @ 285 pput 0126 Free product pooling in hole @ 4.5' bss. Call Jack. Quarantine soil. Plan to move to fext hole, give time to discrete. note that caving - in occurring on N-wall of trench #4, lively due to all and poorly comparted backfill after UST removal. 0/40 Begin Buthen-most tolich, that At 6.75 bes, air over hole = 35 ppm, breathing zone = 1.2-5.0 ppm Note: same elec. wires found along w. wall Q i 2'bgs. Run to 0240 well? As not in proper conduct, in inspected installiation. 0530 Trenditts done, TD 7.5. Resume on trenditt 4. 0340 Trends # 4 (middle trends of the B) North wall continues to collapse due to UST back fill. Option I to dig out wall, sherry #3, #41 & dwiding wall, but would close bays 7 \$ 8 for nost of day Opton 2 to back foll # 4, slurny N. & S. trenches (# 3 # # 5), plate all. Call Jack, go with opt. 2. Done w/ backfill, clean up loge pool on ground Ad ORC, 35 168 to # 5 (5.5 wide), 40 (63 to# 3(6' wide) = 2.15 buckets 0430 0445 start distributing plates. 1st shurry truck. Duly 4 to arrive (36 yd3). Plant added accellinity 0515 2nd fruck 0525 3rd truck 0538 yth truck not needed, so used 27 7d3, bought 36 7d3. 0222 0615 Courier arrives, pull up EX-5,647 plates set, cold patch edges a gaps. 0700 cold set patched. 0725 5730 NOB Onsite. ICS (bill, Doe), Rob (Woodward corey) on site. \$74J Driv rig & support trule arr. HAS, site walk. Plan to core, set up drillers, pull plates from N. sode bay 5. J. side bay 7, break & trench in bay 6. \$ 8 00 \$845 Degin coring 14". Begin post hole / H.A. ILS breaking yo buy 6 concretic 900 - to ft. plates ?

Rite on the Read

MW-5 HA, to 5', Rob offsite, setup drill rig. 1920 1930 Start split goon fam duy (2 Pt. it a tone). Start excavating middle frende @ bay 6 (5' trende) Drille's angers @ 13', water fills #84 to 7'. Aar alsove T6 = 0.0 pm, even thought odor. 2000 2024 2055 Bezi pulling angens. Well set to 20°, "3' sureen w/ sur cap drilled/ 2100 surened on. 2200 Well grouted, set well box Wood word offsite. Finish T6 to ~ 7.75 begs. Aban dos ed water line 2240 Remove plates from Bay 5, start final trench of bay 2245 dome w/ T7; lo-ealx, note \$10=0.0 above both trenches. 2410 May out remailing truches. Now of 12' plates complete bay 7/8 (10.5' truch @ former UST) and halt of storage bay tomorrow. 2430 fomorrow. only half storage bay & two 4" thenches & bay 6 for last day Remove plates trom N! end of bay 8, prep jack liammer for storage bay. w/in 1400 0100 concrete brillen up tophigh volt line (@ slightangle towards building corner). Tomorrow, will excavate S. side of Ntrende 0210 pull by hand away from high volt aver Begin plating storage bays bay 7 and all other temp comoved. 0225 cold patch seams, cover soil fills 0230 0430 400 ORC, 25168 to T7 (4'), 35 168 to T6 (5'). 1st compart truck arrives. 050F 2525 3rd of truck, Resume plating. 2220 sample porte up. (one MW-5 can pie know 6.5-7"). plates set, ald patch start. Schedule remaining trenches stade 0614 0632 OBO w/accd. pour mon Am, plate 3 hrs. later, drive 36 hrs later slurny 24 hrshiefare compose surg 24 hrshiefare compose sompaction tot? back fill class 11? loft plates? biggen excavator yds for Fri AM? 54 Bell: all cons. sub.

8/16/12 Arr. onsite 1750 1815 Company cate with George (conc. restoration) through Bill: It ~ 7 AM Start on Monday, grade surface, set formes livine megh, pour, wait. plate by mid-afternoon, drive on by end of day is pon with wait for site walk with bearge to confirm, then propose schedule to German. HIS 1850 Sump truck arr. , start loading concrete 1900 20,4" 66 × 20.3× 0.3 = 17 y dr. beorge onsite, storage 15' x 20' x 4'' 5-8 51' x 20' x 4'' 19:50 Prep. O right, run trules in San - (2 truckes), give all day, plane in AM or pour at night, george to togure out it plant will dowen. Remove plates from bay 6 through storack. Hand 12' plates to area I for easy placement later (use front loader). 200 Begin pulling poil from T.4. Top 3 ft. is lean backful, place in standard soil pile. from 3 to 8 bes, south dirty if free 2030 Pib above hole, 5 m breathing zone &- 2 ppm (@ 3 bgs). digging down T (q (native soil S. of TS backfill). At 6 bgs, 2125 2145 no free product, continue dumping in "clean" pile. Collect EX-8@~ 5 bys on E. wall of T9. 113 pph field screen. PID 8.5 ppm above T9@7.75 bys, P-2 ppm in breathing zone 2221 2230 At not bgo in T 8, sandy back fill material w/ spicen & some free 2245 Field screen = 160 ppm. Jame with T4. Note sandy backfill is f. to c., no peop and. At 6.5 bigs, out of back fill, into native in T4 + T8 no free 2311 product, indicinal sheen = soil gots to "clean" ple collect EX-9 from base of T9, field screen = 69.3 2340 Complete Ten T 4, T8, T9 to 7.75 bgs. 11.Pt. wide 2355 246 Figh TIO (4.5" trench between bay 8 & Storage bay). 2420 At ~ 3'bgs, PID= 2.7 over hole. Only faint odor. 2435 An

8/17/12 EX-11 E. side wall 5'-6 bgs PID= 49.5 0140 EX-12, bottom of TID, PID= 52.8 0157 W. Sole of \$10 @ 5'-6' loga. PID=35.4 0208 EX-13, Done of TIO, to 7.75 bgs. 1220 Break Clean up loose dist around excavations. Start distributing 0320 sound bogs to propup plates Plate all non-strong areas Add ORC: 75168 to T4/8/9, 30 168 to TIO = 3.5 buckets total 0350 0415 Replacement excavator arrives: dole to move 12x8 plates. 187 comment truck ; 530 role truck ; 570 302; 60, 4th; 0620 5th 2430 0500 Courrier pulled up samples. 0625 note: mis-calc. again, only used 45 yd3 (50/6 trucks). Place Ski2 plates over TH/8/9, apply cold patch to all peans. Talk to German re pourdates, all's Thestay. Not seen on 0645 OMO halt of wed. Bill interrupts & infists that cars can drive over tresh pour in 6 hours = mid-after noon theoday. Tell Bill he not has to make this happen (pour @ right?) 0725 MOB. Soil piles covered, equipment finced offi Arr. ongite, discuss schedule of Doll; 1745 # Son night, one ~ 6' tranch (hand clean near binghvolt/, no concrete work, if ant 12 unid night, the pour @ 641 Mon, Start@Fillow, ped apron back, grade, forms. Rept midnight, resume a 5 4th (gue conc. crew sleep time). woodward on site, HES, Det up fences (800) Itart der on MW-2 1830 Has w/ 1 cs (fill & yours Joe): 20:45 PID J. 2 ppm over trench TII (N. side bay 6), & -0.1 breathing zone 2210 Frish leveloping MW-1, 2, 4, 5. 2 drives generated, labeled. Wood ward off site. Left one empty drives for sampling. 2245 2300 Collect EX-14 from E wallof TII (6 by) PID=15.4 2305 Collect EX-15 from bottom of TU. PID= 46.8 Collect EX-16 from Wwall @ 6 6 69. PID=10.3 2310 2312 TIl completed to 7.75 bgs Move more plates, bigmon T12. 2315 2325 PID = 0.4 ppm over Tiz @ 3.5 bgs, & m breathing zone. 2340

8/18/12 Collect EX-17 Ewall of TIZ@ 6 bgs. PID=4.7 collect EX-18 from botto- of TIZ. PID= 17.9 2410 2425 2430 Collect EX-19 from Wwall @ 6 650 . PID= 5.0 2440 TIZ completed to 7.75 bgs sand buy a plate non-sivery areas. Cold patch. Apply orc to TI 4Trz (~4 each = 30 lbs each). 0010 0145 0210 Cove soil pills Geon up di-tolods, -inse development and From concrete. 0230 Greak 0430 Open up fencing, stage area for plaring trucks 1 st in ent truck arr. 2212 2 nd truck arr. Order dearing truck no/ 5 yl" Fund truck arr., 23 yd 3 total. 0530 0620 0770 All plata & cold pitch dome. Sweep. Enclose soil area 025 MOB 8/20/12 A.Jasen 1200 Anne on Site. Meet W/ B.11 Lewis & Jee Ellis w/ ICS. discuss sow & co-dict tolgate neeting 230 Excustion Coxiz 7.5 bys. Dark brown city Right Sheen on Soil. 95.4 ppm on Soil in b-J. Right Sheen on Soil. 95.4 ppm on Soil in b-J. Rip 10000 PID 8.28pm over execution. (Stores are) & Broken Finished execution and wat for story 250 truck. Soil statepile covered. Break Bill and Joe begin moving ORC bags 500 to examinan sweeping / clean wp. Called Gry to norm him about the 550 Sheen observed in sail from execution. 555 Slurry truck arrives (1st truck) Slurry truck arrives (2nd truck) 00 250 040 Started Placing plates / Clean UP / Enclose soil area. 710 MOR

8/20/12 1840 Arrive on Site, Bill Lewis + 3 105 employees and Cal West Concrete cutting (I Employee) ŧ on site. Mt S meeting and discuss scape of work Began remaining cold patent plates for (1900 Į examples. Alicia Sampled Small Sil Stack pile Com 1822 t tour locations - (Comp-2). ł Began Sind cutting 1949 Truck arrives to pick up concrete apron t 1954 Cal West leaves Site. ¢ 2032 Trock leaders, Site wi consider deburs 2136 ¢ Called Jude to intern about broken Bay 6 2138 Į Window during calende apron renaul No plywood used during commencer aprion remaind. ¢ 2225 thisking placing reburn the examination. ¢ Cleminp and sectore site. ICS to stary on 2240 C Site until Concrete poir truck arrivers at 445 am -[8/21/12] -T.Rhodes ¢ 2 Arrive onsite, ics crew onsite (Jorge & crew of 3). 0290 1st concrete truck arr, prep. tools/equip. Begin first pour @ Boy 9. In pour complete, concrete up to mid-way. 0505 0515 pair comflete, concrete up to mid-way bay 8. Smooth-out. 0535 2nd touch and 0222 note: Bill offsite, but will call window repair @ Sam, Echedule for mil-money 0620 200 pour longlete to mid boy 6. Cleanup truck or der ed 3rd freede running late. he was arr. onsite, skilly of window 4 0655 chpair mid-morning, dear willate truck it it pours by 84M. notes joints cut while waiting 0710 3rd truckarr. som complete, truck offsite. Continue surouthing 0740 Smothing / sinting ~ 40% done, of an y wells to tog. 0315 both & count: 8-16 w/HCL, 12 vou co/ HCL, 16'-16 unber 2 amber willy, Jomber, 3000 per well, 2900 Done sincething, dean up note wildow repair to dir. ~ 1000 Surveyors (MCE) orr. ansite will pluget MW-1=, 4,5, cit-water 1000 superations, NOR SW cerners of bldg- & a pron

Crew dept, concrete dance & toped off. Jorge stays to oversee 1140 window repair. Window repaired, ICS offsite. MW-J left to sample dean up, label drume (n 2.5 full), loule pooto patty, 1330 1520 note: I day turn on hot soll= \$ -10 days to varable uste: platis se 8/22 by noon, 1540 For form Cree has of schedule. 1550 MOB to test annen 1625 Mot from test amer. 00 - Joil hand late?

Field Report

Field Office:	Date:	121/14							
Field Office: Los Gabos	Job No.:		Task No.:						
	Project:	Project:							
Prepared By: Note Daylor	Location	": 3430 Castro	Valler plud						
To:	Weather	3400 Lastro	Temp.						
10.	Client:								
	Contrac	tor:							
Attn:									
Page 0	3								
0840 leave LG; drive to P	ne in Haywa	nd							
0950 amre @ Pine, aik	up equipm	ent							
1100 arrive on site, scope	of wolk = san	pleing mut	5 (20 G-nell, 2")						
and mu)-4/15 fr	ece 7 1")								
1130 tag both nells mw-	Simw-4	for DTWID	TB; lee field data sheets.						
must drive back to	pine to pick	up]" pump	+ bailor						
1230 - 1300 Wench	•	1 . 1 1							
1300 - begin purge and mu	2-5:								
and anappeop	000 - tubing	clanp nit	21 - couple hert						
from Bottom do ne	QQ. J		3						
Fronthogh denie u	ged to collec	f field pura	reteps; connect						
read out depus to fin	nothingon c	mult offe	from simpto						
60.2 the source (000 (made suce no	to as comple	tely schened on coruse						
kulartape))-		<u>N</u>							
inflaw tube on both	n-ontilla)	tube on top							
Equipment Used:	int wolf								
Contractor Hours:	Staff Hours:		MNeage:						
Copies To:		Project Manager:							
		Reviewed By:							

Field Report

Page 2	of 3
but 1	op tube into profe bruket-
prog	~ flow battery connection automatically turns on;
d.	in dial dark to NOM & Volts
1	up water level meter in hole as to not draw water level
	on to much
d	plue batting into pump; automaticallesta As.
	allect parameter from frist draw.
(ake sure water is not drawing down; pump vate dependson
m	ake sure water is not availing action, prange rate aparticles
h	as efficients, the formethor recharges
	ISTOF Instruments needed: (2" nell, 15th depth)
	· DIW meter
	· prikets
	· 12 V monsoon pump (varies depending on well drameter / recharge rate)
	(low-flow pump) comes in convector to car bittery
	· now may cell (to collect field parametiks)
	· YSI meter (to connect to flaw to the cell)
	" tubing (total depth of vell + ~ 5-10 A extra to connect topump/
	having (place acting beer 5 to in close to the first
	to so into picket) . for limited access area ; you need a battery (if no con batterif)
	s to minute access that I good and have g at the areas of
col	lect field parameters @ each page velume.; or more if
	· D
1400 5	ample collected MW-5; 3 40-VOAS + 311 ambers.
uu.	

File: Field Report.doc

Rev. 4/2001, tw

Field Report

Field Office: Los Gatos.	Date:	5/21/14	
	Job No		Task No.:
	Projec	t: Former 6000	year
Prepared By: Kista Myers	Locati	on: 3430 Cash	valley Blvd Temp.
To:		GUGINIU	Temp.
	Client	Goodyean	
	Contra	actor: 0	
Attn:			
Page 3			
01420 purge mid-	1 (1" drame	ter, 15' deer	2)
Perry (penst	alt i) pump		
thick inner d	umeti tubi	of noes insu	de of pring (geopring)
(Kind & shins	up water;	Not good for	voce ble it volatalizes them
connect batter	to car butter	up ciparette 1	gitie or to provided
battern F	ay attention	to unich wa	y ne pump is curving_
-determines w	nich way fl	tow is got to	bl.
connect minn	els bitter his	mp inside of	the loft their inner
diameter to	pine. put	divencing dea	imp on tubing 00
it does not	so down th	e hole	J
· piemy pump d	oes not have	the built in	instrument for field
puaniters;	= using m	yran BP	
adjust chal a	n pump for	pump rate	- typnet to induce
too much draw			* *
Equipment Used:			0.850
Contractor Hours:	Staff Hours:		Mileage:
Copies To:		Project Manager:	Gary messerotes
×		Reviewed By:	v

STANTEC CONSULTING GROUNDWATER SAMPLE FIELD DATA SHEET

GRO	UNDWATER SAMPLE F	TIELD DATA SHEET	
Project No. Client Name: Fremer Good Location: 3430 Cash	year Sampled By: Devor	What QA Samples?:	
Date Purged: $5/21/10$ Date Sampled: $5/21/19$		US · End (2400hr): _	5 5
Casing Diameter: Casing Volume: (gallons per foot)	2" 3" 4" (0.17) (0.38) (0.67)	5" 6" 8" (1.02) (1.50) (2.60)	Other $\underline{1}^{\prime\prime}$ ($\overset{\sim}{\checkmark}$) 0,0654
Total depth (feet) = Depth to water (feet) = Water column height (feet) =	- <u>7.92</u> Calc	sing Volume (gal) = 0.48 sulated Purge (gal) = 1.43 Actual Purge (gal) = 1.5	
	FIELD MEASURE	MENTS	
Time Volume Date Volume 5/21/14 1240 5/21/14 1445 5/21/14 1445 0.5 0.5 1505 1.5 <td>(degrees C) (umhos/cm) MS $- 19.95 21.77 561.3 21.4 550 21.1 551.3 21.4 550.0 - 21$</td> <td>pH Color (visual)</td> <td>DTW (\hat{f}) ORP (\hat{f}) (\hat{f}) 0.0 0.0 0.0 0.0 0.0 0.0 180 190 197 0.0 194 0.0 194 0.0 197 197 197 197 197 197 197 197</td>	(degrees C) (umhos/cm) MS $- 19.95 21.77 561.3 21.4 550 21.1 551.3 21.4 550.0 - 21$	pH Color (visual)	DTW (\hat{f}) ORP (\hat{f}) (\hat{f}) 0.0 0.0 0.0 0.0 0.0 0.0 180 190 197 0.0 194 0.0 194 0.0 197 197 197 197 197 197 197 197
Submersible Pump Peristaltic Pump Other:	Bailer (Stainless Steel) Dedicated	Submersible Pump Peristaltic Pump Other:	Bailer (Stainless Steel) Dedicated:
Analyses Sample Vessel / Preservative	: 	Qdor:	
the second second second second second second second second second second second second second second second se	mell box - well cap up for purging - 1"	submerged ; u bailer for samp	
Signature:	· · · · · · · · · · · · · · · · · · ·	- V	Page 1 of

STANTEC CONSULTING GROUNDWATER SAMPLE FIELD DATA SHEET

4

GROUNDWATER SAMPLE FIELD DATA SHEET	-
Project No Purged By: <u>Deven Ovens / K myer</u> Well I.D.: <u>Mw-5</u> Client Name: <u>Former Goodyear</u> Sampled By: <u>Deven Ovens / K myer</u> Sample I.D.: <u>Mw-5</u> Location: <u>3430 Castro Valley Blvd</u> What QA Samples?:	- (*)
Date Purged: \$\frac{5/21}{14}\$ Start (2400hr): 1330 End (2400hr): 1410 Date Sampled: \$\frac{5}{21} 14\$ Sample Time (2400hr): 1400 1400	_
Casing Diameter: 2" 2" 2" 3" 4" 5" 6" 8" 0ther Casing Volume: (gallons per foot) (0.17) (0.38) (0.67) (1.02) (1.50) (2.60) ()	
Total depth (feet) = 20.03 Casing Volume (gal) = $2.3b$ Depth to water (feet) = $b.15$ Calculated Purge (gal) = 7.08 (3 casing vols.)Water column height (feet) = 13.88 Actual Purge (gal) = $7.0677.55$ (4 construction of the second	
FIELD MEASUREMENTS	Emv
IEED MEASUREMENTS Time (2400hr) Volume (ga) Conductivity pH Color DTW DO SI21/14 13330 O 20.99 0.503 ONE to prove the pro	ÓRI
Analyses: 100 Svoc Sample Vessel / Preservative: HCI (40-10A) Odor: 1000	
Well Integrity: <u>good</u> Remarks: <u>used YSI 556 w/ Flow Wough COOL</u>	
Signature: Page 1 of	_

SOPs

1.0 PURPOSE & APPLICABILITY

The purpose of this document is to define the standard operating procedure (SOP) for collecting soil samples when drilling with hollow-stem augers, direct push, and hand auger methods. The ultimate goal of the sampling program is to obtain samples that meet acceptable standards of accuracy, precision, comparability, representativeness, and completeness. All steps that could affect tracking, documentation, or integrity of samples have been explained in sufficient detail to allow different sampling personnel to collect samples that are equally reliable and consistent.

This procedure provides descriptions of equipment, field procedures, sample containers, decontamination, documentation, decontamination, storage, holding times, and field quality assurance (QA) and quality control (QC) procedures necessary to collect soil samples.

While the Project Quality Assurance Project Plan (QAPP) is intended to be strictly followed, it must be recognized that field conditions may force some modifications to the SOP. Any modification to the procedure shall be approved by the Project Manager or Task Leader in advance. Where SOP modification is planned sufficiently in advance, regulatory agency concurrence will be sought prior to conducting the specific activity. When direct contact with regulatory agency staff is not possible, or unscheduled delays will result, such as during field activities, regulatory agency will be notified of deviations from the SOPs, in writing, as soon as possible after the occurrence.

2.0 **DEFINITIONS**

HASP	Health and Safety Plan
OSHA	Occupational Safety and Health Administration
PID	Photoionization Detector
PPE	Personal Protective Equipment
PVC	Polyvinyl Chloride
QA	Quality Assurance
QC	Quality Control
QAPP	Quality Assurance Project Plan
SAP	Sampling and Analysis Plan
SOP	Standard Operating Procedure
USCS	Unified Soil Classification System
VOA	Volatile Organic Analysis
VOCs	Volatile Organic Compounds

3.0 HEALTH AND SAFETY CONSIDERATIONS

Refer to the site-specific Health and Safety Plan (HASP) for health and safety considerations applicable to soil sampling.

Many hazards should be considered during the soil sampling activities, careful consideration of these hazards by the project team is essential. Some of the hazards include the following:

- Proper utility clearance must be performed in accordance with the Pre-Drilling/Excavation Checklist and Utility Clearance Log. There must be a minimum clearance of five (5) feet in addition to the diameter of the drilling augers. Clientspecific requirements may be more restrictive.
- Traffic control may be required depending on the proximity of soil sampling activities to the roadway. Traffic control plans should be carefully evaluated to adequately delineate the work zone and provide the necessary safety factors.
- Personal protective equipment (PPE) including hard hats, high visibility traffic vest, gloves, hip boots or chest waders and other appropriate clothing;
- Heat and cold stress;
- Biological hazards such as insects and spiders. Appropriate clothing is required such as long-sleeved shirts and long pants.
- Bloodborne pathogens. Some of our sites may have syringes and other drug paraphernalia that must be carefully avoided.
- Chemical exposure on sites with open contamination. Respiratory protection may be necessary. Proper selection of respiratory protection is essential and an understanding of its limitation (i.e., negative pressure respiratory protection does not supply oxygen in an oxygen-deficient atmosphere). Staff should familiarize themselves with exposure limits for contaminants of concern.
- Use of air monitoring instrumentation will likely be necessary. We must be careful to
 make sure that our instrumentation is appropriate for the airborne contaminants of
 interest and that our staff understands the limitations of the instrumentation. Staff
 must also understand and perform calibration including zeroing with zero gas
 cylinders and appropriate other calibration gases.
- Decontamination of equipment and personnel must be properly designed and constructed to be sure that contamination is kept within the boundaries of the exclusion zone;
- Noise and proper use of hearing protection devices such as ear plugs and muffs.
- Emergency action plan must be carefully coordinated in advance between Stantec, our subcontractors, the client, and emergency responders.

All of these risks and others must be discussed with our subcontractors and clients to be sure they are properly addressed. Once the issues have been addressed at a project management level, they must be communicated to the staff that will actually perform the work. Details of procedures, instrument measurements and calibration, and other activities must be recorded in the field log and/or on data collection forms.

4.0 QUALITY ASSURANCE PLANNING CONSIDERATIONS

Soil sampling shall be done by personnel familiar with the common sources of random and systematic error so appropriate decisions can be made in the field. Some of the common phenomena which may degrade the sample quality collected from the well point are listed below.

- Volatilization. Volatilization occurs when the sample is in contact with air for an extended time. Typically volatilization occurs if the sample undergoes excessive disturbance during sampling or if air pockets exist at the top of the container. Limiting disturbance during sampling, filling sample containers in order of volatility, and tight capping of bottles immediately after filling will minimize these errors.
- Adsorption/desorption. This is the gain or loss of chemicals through exchange across surfaces. Adsorption may occur when the sample comes in contact with large surface areas such as the sampling container. Thorough decontamination of sample collection containers/monitoring equipment probes along with expedient transfer from the sample container to the labrotory container minimizes sorption effects.
- **Chemical reaction.** Dissolved chemical constituents may change due to reactions such as oxidation, hydrolysis, precipitation, etc. Proper preservation and adherence to holding times minimize these reactions.
- **Sample contamination.** Sample contamination is the most common source of errors and can result from several factors, including incomplete decontamination, contact with other samples, and contact with the atmosphere. Careful attention to decontamination, handling, and container sealing minimizes sample contamination.

5.0 **RESPONSIBILITIES**

The Project Manager or Task Leader will be responsible for assigning project staff to complete soil sampling activities. The Task Leader will also be responsible for assuring that this and any other appropriate procedures are followed by all project personnel.

The project staff assigned to the well point installation and sediment pore water sampling will be responsible for completing their tasks according to this and other appropriate procedures. All staff will be responsible for reporting deviations from the procedure or nonconformance to the Task Leader, Project Manager or Project QA/QC Officer.

6.0 TRAINING AND QUALIFICATIONS

Only qualified personnel shall be allowed to perform this procedure. At a minimum, Stantec employees qualified to perform soil sampling will be required to have:

• Read this SOP.

- Read project-specific QAPP.
- Indicated to the Task Leader that all procedures contained in this SOP are understood.
- Completed the Occupational Safety and Health Administration (OSHA) 40-hour training course, and/or annual 8-hour refresher course, as appropriate.
- Coordinated any proposed sampling activites with the laboratory to ensure proper sampling procedures.
- Previously performed soil sampling activities generally consistent with those described in this SOP.

Stantec employees who do not have previous experience with soil sampling will be trained on site by a qualified Stantec employee, and will be supervised directly by that employee until they have demonstrated an ability to perform the procedures.

7.0 REQUIRED MATERIALS

The following is a typical list of equipment that may be needed to perform soil sampling:

- Auger rig or direct-push unit with appropriate equipment for sampling, or hand auger.
- Continuous soil sampler (2-1/2-inch x 18-inch or 2-foot split-spoon sample tube) or direct-push clear acetate or polyvinyl chloride PVC tube (typically 4-foot long).
- Photoionization detector (PID) or other air monitoring instrumentation as required by the HASP.
- 4-mil-thick plastic sheeting or aluminum foil.
- Tape measure.
- Unified Soil Classification System (USCS) based on the Visual-Manual Procedures in ASTM Standards D 2487-00 and D 2488-00.
- 5035 sample containers with lids.
- Terra-cores[™] or similar coring sampling device, if required.
- Sample labels.
- Stainless steel trowels, putty knives or similar soil working tool.
- Penetrometer (if available).
- Waterproof marking pens, such as the Staedtler Lumocolor.
- Coolers (with ice) for sample storage and shipment.

- Sample data forms/clip board.
- Decontamination supplies (Alconox[™] [or similar detergent], brush, bucket).
- Nitrile gloves, or other specified chemical resistant gloves.
- Work gloves.
- Camera and film or disks.
- Blank soil borehole logs or a field-logging PDA.
- Personal safety gear (hard hat, steel-toed boots, ear plugs, safety glasses, etc.).

8.0 METHODS

8.1 Hollow-Stem Auger/Direct Push Sampling

Make sure that all equipment and meters have been calibrated to the equipment specifications and the results have been recorded in the field log.

The top five (5) feet of the boreholes will be cleared via air knife, vacuum excavation, ground penetrating radar, hand auger, tile probe or some combination of these methods.

Shallow soil boreholes are typically drilled with hollow-stem augers or geoprobe and sampled at the intervals specified in the work plans. Sampling shall be done in advance of the lead auger to minimize cross-contamination. Samples for laboratory analysis shall be taken with a continuous soil sampler. Standard blow counts shall be recorded for driving the sampler 6 and 12 inches (ASTM Method D 1586-99) if sampler is hammer driven.

Upon retrieval of the sample, the sample will placed on a clean surface (or lined with disposable aluminum foil or plastic sheeting) and will be screened with a PID for locating potential elevated PID readings. If applicable, a representative grab sample will be collected along with a headspace sample and placed into the appropriately labeled sample container. The sample containers shall be placed in self-sealing plastic or bubble bags in a cooler with ice or frozen ice packs for storage until they are delivered to the analytical laboratory.

The following method is to be used for headspace screening:

- The portion (for headspace screening) should be placed into an appropriately sized re-sealable Ziploc[®] or equivalent bag;
- Seal and label the bag with the borehole identification and the depth of the sample;
- Allow the bag to equilibrate for approximately ten (10) minutes; and
- Insert the probe tip of the PID into the bag. Obtain a measurement using the PID.

The remainder of the sample shall be logged in accordance with the USCS and recorded on the boring logs according to the following procedure:

- 1. As much information as possible is to be shown in the heading of each log. This includes, but is not limited to:
 - Project name and project identification number;
 - Identification of borehole;
 - Name of drilling company;
 - Make, model, type, and size of drilling and sampling equipment used;
 - Date and time of start and end of drilling
 - Name of geologist(s) logging boring;
 - End of boring depth; and,
 - Depth to water (if encountered).
- 2. Each log is to begin with a description of the surface, (i.e., native, paved with asphalt, paved with concrete, and such). If any concrete is cut to open the hole, the thickness will be noted.
- 3. Every foot will be accounted for, with no gaps. If an interval is not sampled it will be noted. If an attempt is made to sample an interval, but there is no recovery, it will be noted.
- 4. Complete construction details are to be detailed for each well on a standard well construction form. Construction details should include:
 - A description of the type and length of casing i.e., 20' of 2" inner diameter (ID) Schedule 40 PVC casing;
 - Length and depths of the top and bottom of the screened interval;
 - Screen slot size;
 - Depths of the top and bottom of the filter pack;
 - Filter pack materials and sand size;
 - Depths and types of bentonite seals;
 - Detail of the use of grout; and,
 - Detail of the surface completion (i.e., stick up, flush-mounted).
- 5. The number of bags of sand, bentonite, and grout used will be counted. These numbers will be compared daily with the driller's daily report.

Soil cuttings will be stockpiled on 4-mil thick plastic sheeting or drummed. The cuttings and other investigation-derived waste will be managed in accordance with the work plan or client-specific directives.

When sampling for volatile organic compounds (VOCs), use USEPA Method 5035. Method 5035 requires ample preservation in the field at the point of collection. The preservative used for the low concentration soil method (0.5 to 200 μ g/kg) is sodium bisulfate and the preservative used for the medium/high concentration soil method (>200 μ g/kg) is methanol. This field collection and preservation procedure is intended to

prevent loss of VOCs during sample transport, handling, and analysis. The holding time for VOC analysis is 14 days.

- 1. Use the lab provided plunger style sampler (T-handle, syringe with tool, or terracore[™] sampler) to collect a 5g soil sample.
- 2. Unscrew the lid of the lab provided pre-preserved sodium bisulfate volatile organic analysis (VOA) vials and inject the 5g soil sample.
- 3. Tightly seal the VOA vial.
- 4. Repeat this step with the second sodium bisulfate VOA vial.
- 5. Then, repeat with the methanol preserved VOA vial.
- 6. Collect a soil sample in the 4-ounce wide mouth glass jar provided by the lab.
- 7. Make sure sample containers are labeled and bagged in plastic or bubble bags.
- 8. Ice the samples.

8.2 Hand Auger Sampling

Shallow soil boreholes less than five (5) feet in depth can be collected using a hand auger. The auger will be advanced until the desired sampling depth is reached. The auger will be removed from the boring, the sample will be extracted from the hand auger and field screened (as appropriate), and representative grab samples will be collected and placed into the appropriate labeled sample container. Decontamination of the auger and extensions will occur after each sample.

Boreholes will be abandoned by backfilling with bentonite chips and hydrating with potable water.

8.3 Excavation

Excavations and test pits will be excavated using a backhoe provided by the subcontractor. The dimensions of individual excavations will vary depending on the strength and stability of the trench walls and the specific purpose of the trench. Excavations greater than four (4) feet deep will not be entered by any personnel unless shoring is performed or the sides are stepped back to the proper angle per OSHA requirements.

When starting an excavation, the backhoe operator will first remove the topsoil or cover (if any) and place it in a discrete mound at least five (5) feet from the edge of the excavation. The excavation will be continued in approximately 6-inch cuts with the backhoe using a horizontal scraping motion rather than a vertical scooping motion. If a visibly-stained or otherwise chemically-affected soil interval is encountered, the affected excavated soils will be placed on 4-mil thick plastic sheeting.

Samples will be collected from the backhoe bucket using a stainless steel trowel or similar. The top layer of soil will be removed prior to collecting the sample. The soil will then be placed in the appropriately labeled sample container and placed inside a chilled cooler.

8.3.2 Excavation Backfilling

The soils will be replaced in the excavation at their original depths to the extent practicable so that the soil from the bottom of the trench will be placed on the bottom, and the topsoil will be replaced on the top. The backhoe will be used to backfill and compact the excavation.

Upon completion and subsequent backfilling of each excavation, four corners will be marked with a wooden stake for surveying. If appropriate, a fifth stake will be placed above the location where a soil sample was collected. The points may be surveyed, as needed.

8.4 Decontamination Methods

8.4.1 Sampling Equipment Decontamination

The following steps will be used to decontaminate sampling equipment:

- Ensure that the decontamination process has been carefully designed to be sure that the solutions used are appropriate for the chemicals of interest.
- Ensure that the decontamination area is properly constructed to keep contamination within the contamination reduction and exclusion zones.
- Ensure that the decontamination area is properly constructed to contain the rinse solutions and solids.
- Personnel will dress in suitable safety equipment to reduce personal exposure.
- Smaller equipment that will not be damaged by water will be placed in a wash bucket containing an Alconox[™] (or equivalent) solution and scrubbed with a brush or clean cloth. Smaller equipment will be rinsed in water. Change rinse and detergent waters between boreholes, as needed.
- For larger drilling equipment the soil and/or other material will be scraped off with a flat-bladed scraper, and placed within a deconcontamination (decon) pad. The decon pad will be constructed in a predetermined location, and equipment shall be cleaned with a pressure washer using potable water. Care will be taken to adequately clean the insides of the hollow-stem augers, and cutter heads.
- Equipment that may be damaged by water will be carefully wiped clean using a

sponge and detergent water and rinsed in or wiped down with distilled water. Care will be taken to prevent any equipment damage.

Following decontamination, equipment will be placed in a clean area or on clean plastic sheeting to prevent contact with potentially contaminated soil.

Following decontamination, drilling equipment will be placed on the clean drill rig and moved to a clean area. If the equipment is not used immediately, it will be stored in the designated secure, clean area.

8.4.2 Excavation Decontamination

Decontamination protocols must be carefully designed and constructed to deal with the chemicals of interest and ensure that the rinse solutions and solids are contained within the contamination reduction zone.

The backhoe bucket will be decontaminated prior to excavating each excavation. The entire backhoe, bucket, and tires will be decontaminated at the conclusion of the trenching operation. Decontamination will involve using a steam cleaner with an Alconox[™] solution or pressure washer and rinsing using a steam cleaner or pressure washer with potable water. Backhoe decontamination will take place at the decontamination area located adjacent to the maintenance building or at another appropriate location.

The sampling equipment will be decontaminated prior to collecting each sample. Decontamination will consist of washing the equipment with a scrub brush in a bucket with an Alconox[™] solution (or equivalent) and rinsing the equipment in a bucket filled with tap water. The date and time of decontamination of the backhoe and sampling equipment will be recorded in the field book and/or data collection forms.

8.5 Sample Containers, Storage, and Holding Times

Refer to the Project Sampling and Analysis Plan (SAP) for project specific instructions on proper containers, storage of samples and allowable holding times.

9.0 QUALITY CONTROL CHECKS AND ACCEPTANCE CRITERIA

Refer to the QAPP and SAP for specific quality control checks and acceptance criteria.

10.0 DOCUMENTATION

A borehole log will be completed for each hollow-stem auger or direct-push borehole. The field notebook and/or data collection forms will contain the following information:

- Project name and number.
- Drilling company's name.
- Date drilling started and finished.
- Type of auger and size (ID & OD).

- Type of equipment for air monitoring (PID or FID).
- Air monitoring calibration and measurements.
- Well completion and graphic log.
- Driller's name.
- Geologist's or engineer's name.
- Type of drill rig.
- Borehole number.
- Surface elevation (if available).
- Stratigraphic description with depth.
- Classification of the soils according to the USCS.
- Water levels and light non-aqueous phase liquid levels, if applicable.
- Drilling observations.
- Map of borehole or monitoring well location.

In addition, proper documentation will include observance of the chain of custody procedures as described in the Project QAPP and SAP.

Additional information regarding field documentation for borehole logging for fine- and coarse-grained soils and rocks are provided in Stantec checklists ERPA-603 through ERPA-605.

ACCEPTANCE

Author/Originator

Peer Reviewer

Senior Reviewer

Environment Practice QA/QC Manager

1.0 PURPOSE & APPLICABILITY

The purpose of this document is to define the standard operating procedure (SOP) for the sampling of monitoring wells. The ultimate goal of the sampling program is to obtain samples that meet acceptable standards of accuracy, precision, comparability, representativeness and completeness. All steps that could affect tracking, documentation, or integrity of samples have been explained in sufficient detail to allow different sampling personnel to collect samples that are equally reliable and consistent.

This procedure provides descriptions of equipment, field procedures, sample containers, decontamination, documentation, storage, holding times, and field quality assurance/quality control (QA/QC) procedures necessary to collect water samples from groundwater monitoring wells.

This procedure may apply to all groundwater sampling of monitoring wells by Stantec personnel or their subcontractors.

While the QAPP is intended to be strictly followed, it must be recognized that field conditions may force some modifications to the SOP. Any modification to the procedure shall be approved by the Project Manager or Task Leader in advance. Where SOP modification is planned sufficiently in advance, regulatory agency concurrence will be sought prior to conducting the specific activity. When direct contact with regulatory agency staff is not possible, or unscheduled delays will result, such as during field activities, regulatory agency will be notified of deviations from the SOPs, in writing, as soon as possible after the occurrence.

2.0 **DEFINITIONS**

HASP	Health and Safety Plan
------	------------------------

- HCL Hydrochloric Acid
- OSHA Occupational Safety and Health Administration
- PID Photoionization Detector
- PPE Personal Protective Equipment
- PVC Polyvinyl Chloride
- QA/QC Quality Assurance/Quality Control
- QAPP Quality Assurance Project Plan
- SOP Standard Operating Procedure
- VOC Volatile Organic Compound

3.0 HEALTH AND SAFETY CONSIDERATIONS

Refer to the site-specific HASP for health and safety considerations applicable to groundwater sampling.

Consideration of Health and Safety risks prior to performing this work is paramount. This risk review can be performed by making our generic Job Safety Analysis site specific in our site-specific Health and Safety Plan. Of course, there are many items that need to be considered. The following is just a short list of the items. Careful consideration of these items by the project team is essential, and the ultimate responsibility of the project manager.

- Traffic guidance and control. Even plans developed by outside traffic control contractors need to be carefully evaluated to make sure they are protective of our staff and contractors.
- Personal protective equipment (PPE) including high visibility traffic vest, gloves, appropriate clothing.
- Heat and cold stress.
- Biological hazards such as insects and spiders. Therefore appropriate clothing is required such as long-sleeved shirts and long pants.
- Bloodborne pathogens. Some of our sites may have syringes and other drug paraphernalia that must be avoided.
- Chemical exposure on sites with open contamination. Proper selection of respiratory protection is essential and an understanding of its limitation (i.e., negative pressure respiratory protection does not supply oxygen in an oxygen-deficient atmosphere). Staff should familiarize themselves with exposure limits for contaminants of concern.
- Use of air monitoring instrumentation will not likely be necessary. We must be careful to make sure that our instrumentation is appropriate for the airborne contaminants of interest and that our staff understands the limitations of the instrumentation. Staff must also understand and perform calibration including zeroing with zero gas cylinders and appropriate other calibration gases.
- Decontamination of equipment and personnel must be properly designed and constructed to be sure that contamination is kept within the boundaries of the exclusion zone.
- Noise and proper use of hearing protection devices such as ear plugs and/or muffs.
- Emergency action plan must be carefully coordinated in advance between Stantec, our subcontractors, the client and emergency responders.
- Ergonomics should be considered when setting up equipment. Ensure that staff does not lift more than 50 lbs. alone.

All of these risks and others must be discussed with our subcontractors, if applicable, and clients to be sure they are properly addressed. Once the issues have been addressed at a project management level, they must be communicated to the staff actually performing the work. Details of procedures, instrument measurements, and other activities must be recorded in the field log and/or on data collection forms.

4.0 QUALITY ASSURANCE PLANNING CONSIDERATIONS

Sampling shall be done by personnel familiar with the common sources of random and systematic error so intelligent decisions can be made in the field. Some of the common phenomena which may degrade sample quality are listed below:

- Volatilization. This occurs when the sample is in contact with air for an extended time. It is typically a problem when water is either sitting in the well or when air pockets exist at the top of the water container. Prompt sampling after well evacuation, proper sampling order (i.e., fill VOC sample containers first), and tight capping of bottles immediately after filling will minimize these errors.
- Adsorption/desorption. This is the gain or loss of chemicals through exchange across surfaces. It may occur when the sample comes in contact with large surface areas such as bailers or tubing. Thorough decontamination of bailers and/or tubing, or using disposible bailers and/or tubing and probes along with expedient sampling after well purging minimizes sorption effects.
- **Chemical reaction.** Dissolved chemical constituents may change due to reactions such as oxidation, hydrolysis, precipitation, etc. Proper preservation and adherence to holding times minimize these reactions.
- **Biodegradation.** Virtually all groundwater contains bacteria, some of which may be capable of altering the composition of contaminants. Proper preservation and adherence to holding time will reduce this effect.
- **Sample contamination.** This is the most common source of errors and can result from several factors, including incomplete decontamination, contact with other samples, and contact with the atmosphere. Careful attention to decontamination, handling, and container sealing minimizes sample contamination.

5.0 **RESPONSIBILITIES**

Stantec

The Project Manager or Task Leader will be responsible for assigning project staff to complete water sampling activities. The Task Leader will also be responsible for assuring that this and any other appropriate procedures are followed by all project personnel.

The project staff assigned to the water sampling task will be responsible for completing their tasks according to this and other appropriate procedures. All staff will be responsible for reporting deviations from the procedure or nonconformance to the Task Leader, Project Manager, or Project QA/QC Officer.

6.0 TRAINING/QUALIFICATIONS

Only qualified personnel shall be allowed to perform water sampling. At a minimum, Stantec employees qualified to perform water sampling will be required to have:

- Read this SOP.
- Indicated to the Task Leader that all procedures contained in this SOP are understood.
- Completed the OSHA 40-hour training course and/or 8-hour refresher course, as appropriate.

• Previously performed water sampling in a manner generally consistent with the procedures described in this SOP.

Stantec employees who do not have previous experience sampling ground water will be trained on site by a qualified Stantec employee and supervised directly by that employee until they have demonstrated an ability to perform the procedures.

The Project Manager shall document personnel qualifications related to this procedure in the project QA files.

7.0 REQUIRED MATERIALS

Dedicated evacuation/sampling equipment will be used whenever possible and stored at the well or a designated location on site. Sample bottles for volatile and semivolatile organic compounds, general mineral, and metals samples will be obtained from the analytical laboratory. Extra sample containers will be obtained in case of breakage or other problems. Trip blanks will also be obtained from the analytical laboratory.

A typical well evacuation equipment list:

- Water level probe or fiberglass tape.
- Bailers:

2-inch-diameter well

- -- 1.66-inch O.D. x 3-foot PVC bailer, or
- -- 1.66-inch O.D. x 5-foot PVC bailer, or
- -- 1.66-inch O.D. x 3-foot disposable polyethylene bailer.
- Pumps:
 - -- Grundfos, bladder, or peristaltic type submersible pump.
- Teflon-coated bailing wire rope or disposable polyethylene cord.
- Electric generator.
- YSI meter.
- Personal protective equipment, including nitrile (or other material depending upon the nature of the chemicals encountered) or powderless surgical gloves and safety glasses. Tough work gloves may also be required for moving around equipment before or after the sampling itself. Other PPE include traffic vest, steel-toed safety shoes, hearing protection devices, long-sleeved shirt and long pants, and possibly a respirator if there is volatilization of chemicals, etc.
- Groundwater sample collection data forms.
- Photoionization Detector (PID).
- Data recording sheets/electronic storage device (PDA).

• Field notebook.

A typical well sampling equipment list:

- Sampling bailers (double check valve, bottom discharge).
- Teflon-coated bailing wire rope or disposable polypropylene cord.
- Bladder pump Teflon and/or stainless steel construction equipped with Teflon and/or Teflon-lined control and discharge tubing.
- Personal protective equipment, including nitrile (or other material depending upon the nature of the chemicals we expect to encounter) or powderless surgical gloves and safety glasses. Tough work gloves may also be required for moving around equipment before or after the sampling itself. Other PPE include traffic vest, steel-toed safety shoes, hearing protection devices, long-sleeved shirt and long pants, and possibly a respirator if there is volatilization of chemicals, etc.
- Ground Water Sample Collection Data Forms.
- Chain-of-custody forms.
- Labels.
- Cooler.
- Ice or frozen ice packs.
- Field notebook.

Proposed equipment for sample filtration, if filtration is needed:

- Two clean containers, approximately one (1) liter in size
- Organic-free deionized water
- One Peristaltic filtration pump
- In-line plate filter
- Filter membranes--0.45 µ pore size
- A 1:1 nitric acid/purified water solution or 0.1 normal HCL for decontamination of filtering glassware

Equipment used during decontamination:

• Alconox[™] detergent (or equivalent) or other solution that will neutralize the chemicals encountered.

- Organic-free deionized water, or distilled water.
- Containers, brushes, paper towels.
- Personal protective equipment, including nitrile (or other material depending upon the nature of the chemicals we expect to encounter) or powderless surgical gloves and safety glasses. Tough work gloves may also be required for moving around equipment before or after the sampling itself. Other PPE include traffic vest, steel-toed safety shoes, hearing protection devices, long-sleeved shirt and long pants, and possibly a respirator if there is volatilization of chemicals, etc.

8.0 METHODS

This section describes the sequence of events to follow for sample collection in the field.

8.1 Equipment Decontamination Method

The decontamination protocol is essential to the quality of the sampling procedure as well as essential to ensuring that chemicals stay at the project site and are not tracked or carried elsewhere. The decontamination procedure should be designed and constructed to work on the chemicals of interest and contain the rinsate and solids within the contamination reduction zone.

Before sampling begins any non-dedicated or non-disposible equipment, well probes, pumps, and pump hoses shall be decontaminated.

Decontamination will be performed on all non-dedicated sampling equipment that may contact potentially contaminated water, including water level probes, fiberglass tapes, Teflon bailers, and non-dedicated pump hoses. Clean nitrile gloves (or other appropriate material depending upon the chemicals involved) or powderless surgical gloves are to be worn during decontamination.

Each piece of sampling equipment will also be decontaminated between each well. The decontamination procedure for most equipment will be as follows:

- Disassemble equipment (i.e., bladder pump).
- Wash equipment in an Alconox[™] (or equivalent) and water solution using a brush or clean cloth to ensure removal of all contaminants.
- Rinse equipment in fresh tap water. Re-rinse with de-ionized water or distilled water.
- Dry equipment with paper towel and place in clean place, if appropriate.

The effectiveness of these decontamination procedures will be verified by vigorous QA/QC protocols, including blanks, duplicates, and spikes.

The rinsate water will be sufficient to prevent the AlconoxTM solution (or equivalent) from entering the well. If a submersible pump is used to evacuate wells, the pump shall be decontaminated prior to use in each well. The procedure consists of immersing the pump, discharge tubing, and drop wire in an AlconoxTM solution (or equivalent) and circulating the solution through the system. After washing, the circulating procedure will be repeated three (3) times with clean tap water. Samples of the tap water used as rinsate for the jet pump and/or submersible pump will be submitted for analysis. The analyses will be the same test methods used as water samples collected from the wells on site.

In addition to the above procedures for the jet and submersible pumps and other pieces of equipment, each of the decontamination solutions will be replaced with clean solution between each decontamination operation (i.e., between each well).

8.2 Well Evacuation Method

The purpose of well purging is to remove stagnant water from the well and obtain fresh water from the geologic material screened by the well.

Static water levels shall be measured for each well immediately before evacuating the well for sampling. This procedure shall be accomplished with a measuring probe or by the use of a chalked fiberglass tape. Water levels will be measured from the elevation reference point marked on the PVC inner casing. Regardless of the tools used, the measuring process will be repeated until consecutive water level measurements agree to within \pm 0.01 foot. If floating product is historically known to occur in a well or if there is reason to believe there will be floating product in a new well, an interface probe will be used to measure the depth to water and the thickness of the floating material.

For wells that have been sampled previously, the purging method will be determined by the historic yield of the well. For new wells, the purging method will be based on past experience with wells screened in similar geologic materials.

If a pump is used, the type will be dependent upon the depth of the well. Typically, shallow high yield wells will be purged with a jet pump, and deep high yield wells will be purged with a submersible pump.

Purge water will be containerized and labled for approriate disposal.

The following sampling procedure is performed at each well:

- Note well condition, and any unusual conditions of the area immediately surrounding the well.
- Remove well cover and unlock cap.
- If necessary, evacuate any standing water within well box prior to removing inner well caps.
- When inner well caps are removed, perform head space analysis using a PID (as required).

- Measure and record depth to static water level from measuring point on PVC inner well casing. Repeat the measurement process until values agree within ± 0.01 feet. Indicate time of measurement.
- Record total depth of well (measured during water level measurement process) and use this depth to calculate volume of water in well (casing volume) in feet (of water) and gallons.
- When using a pump for evacuation, the pump intake will be initially placed in the center of the well screen.

8.3 Obtaining Water Samples

Groundwater samples shall be collected as soon as the water parameters have stabilized.

Sampling shall be accomplished with either a dedicated PVC bailer, a Teflon sampling bailer, a disposable bailer, or other sampling equipment. Bailers will be lowered into the well using either a Teflon-coated wire rope or disposable (one time use) polypropylene cord. Clean nitrile or powderless surgical gloves shall be worn by sampling personnel and changed often during all sampling procedures. Gloves shall be changed between purging and sampling

The following sampling procedure is to be used at each well:

- Assemble decontaminated sampling equipment.
- Don clean nitrile or powderless surgical gloves immediately before obtaining sample.
- Label sample containers.
- Obtain sample from well using a Teflon bailer, a disposable bailer, a dedicated PVC bailer, or directly from the pump tubing or permanent sampling apparatus. Care will be taken when using a bailer to minimize degassing or contamination of the sample, therefore the bailer will be submerged and withdrawn slowly to avoid splashing. The bailer will not be placed on the ground. The bailer will be lowered to the screened interval before sampling unless a nonaqueous floating layer is present, in which case the bailer will be submerged to just below the water table. Similar procedures apply for the use of a bladder pump.
- Transfer sample water directly into pre-preserved sample bottles provided by the laboratory, maintaining a slow linear flow with as little aeration as possible. The individual sample bottles will be filled and immediately capped in the order given below or as required by the analytical protocol:
 - Volatile organic compounds (VOCs)
 - Semivolatile organic compounds
 - Priority Pollutant Metals
 - General Minerals

- After each sample is collected, place the bottles in self-sealing plastic or bubble bags, seal the bags, and immediately place the bags in a chilled cooler with ice or frozen ice packs.
- Water samples collected with a bladder pump for metal and general mineral analyses will be filtered in the field with an in-line filter attached to the pump discharge hose if needed. These samples can be analyzed for dissolved metal content. Samples collected with a sampling bailer for metal analysis will be analyzed for total metal content. The turbidity of such samples will be recorded in the field notebook and/or data collection form to allow a qualitative evaluation of the degree to which metal concentrations could be associated with suspended matter.
- Record sample number, time of sampling, location, and sampler on the Ground Water Sample Collection Data Form.
- Replace well cap, close well cover, and lock well.
- Complete chain-of-custody form for transportation of samples to lab.
- Hand deliver or ship samples to the lab on the same day they are collected, or as soon afterwards as possible.

8.4 Sample Filtration Method

Stantec

The following filtering procedures shall be used on samples collected for filtered metal and general mineral analyses using a bladder pump. Clean nitrile or powderless surgical gloves will be worn during this procedure.

- Connect in-line filter capsule (0.45 micron pore size) to bladder pump tubing.
- Pre-rinse the filter (2 to 3 gallons for filters with a 750 cm² effective filtration area), with organic-free deionized water.
- Fill sample bottle containing necessary preservatives.
- Store filtered samples in a chilled cooler with ice or frozen ice packs.
- Discard filter.

If, for some reason, filtration of bailer-collected samples is desired or appropriate, the following filtration procedure will be followed. Clean nitrile or powderless surgical gloves will be worn during this procedure.

- Place a new 0.45 filter membrane on the filter plate and assemble the (decontaminated) filter holder.
- Transfer information from sample label on the sample collected in the field (these samples will have been collected in sample bottles without preservatives) to new sample bottle (containing preservative, if appropriate).

- Place filtration tube in the sample bottle containing the unfiltered solution.
- Place new sample bottle (containing necessary preservatives) under filtering unit.
- Turn on pump and filter sample at less than 25 psi.
- Store filtered samples in chilled cooler with ice or frozen ice packs.
- Remove and dispose of used filter membrane.
- Rinse filtration plate and all parts of filtering apparatus that contacted the water sample with deionized water.
- Decontaminate any filtering glassware in an Alconox[™] (or equivalent) solution, followed by rinses with tap water, a 1:1 nitric acid/purified water solution or 0.1 normal HCl, and finally organic-free deionized water.

8.5 Decontamination Methods

The following steps will be used to decontaminate sampling equipment:

- Ensure that the decontamination process has been carefully designed so that the solutions used are appropriate for the chemicals of concern.
- Personnel will don appropriate safety equipment to reduce personal exposure.
- Equipment that will not be damaged by water will be placed in a wash tub containing an Alconox[™] (or equivalent) solution and scrubbed with a brush or clean cloth. Equipment will then be rinsed in a second wash tub.
- Equipment that may be damaged by water will be carefully wiped clean using a sponge and detergent water and wiped with organic-free deionized water. Care will be taken to prevent any equipment damage.

Following decontamination, equipment will be placed in a clean area or on clean plastic sheeting to prevent possible contamination. Single use equipment and consumables will be discarded in an appropriate manner.

8.6 Sample Containers, Storage, and Holding Times

Refer to the Project SAP for project specific instructions on proper containers, storage of samples and allowable holding times.

9.0 QUALITY CONTROL CHECKS AND ACCEPTANCE CRITERIA

Refer to the Quality Assurance Project Plan for specific quality control checks and acceptance criteria.

Outline quality control checking procedures, including frequency requirements and acceptance criteria. Acceptance criteria may take the form of an illustration such as a chart of acceptable results with tolerances, or other appropriate forms.

10.0 DOCUMENTATION

A record will be maintained during the purging procedure that will contain, at a minimum:

- Initial depth to water
- Volume of water removed
- Purging method
- Physical parameters of the purged water
- How purge water was contained (drum, tank, bucket, etc.)

The data shall be recorded on a Ground Water Sample Collection Data Form for each well that is evacuated and sampled.

Sampling information in the field book should contain, at a minimum, the following:

- Sample name, location, time, sampler, analysis
- Blind duplicates shall be noted on field notes (not chain-of-custody)
- Volume of water evacuated
- Time of sample collection
- Number of samples collected
- Sample identification numbers
- Preservation and storage of samples
- Filtration performed, if any
- Record of any QC samples from site
- Any irregularities or problems that may have a bearing on sampling quality
- Type of sampling equipment

In addition, proper documentation will include observance of the chain of custody procedures as described in the Project QAPP and SAP.

ACCEPTANCE

Author/Originator

Peer Reviewer

Senior Reviewer

Environment Practice QA/QC Manager