

October 26, 2007

Mr. Steven Plunkett Hazardous Materials Specialist Alameda County Health Care Services Agency, Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RECEIVED

2:15 pm, Nov 08, 2007

Alameda County Environmental Health

Subject: Well Destruction & Groundwater Sampling Report APL Terminal Yard and Gate Project, Oakland, CA RO#0000470

Dear Mr. Plunkett:

The Port of Oakland ("Port") herein submits the *Well Destruction and Hydropunch Groundwater Sampling Report, American President Lines, Berths 60-63 Yard and Gate Project, Port of Oakland, California* prepared on the behalf of the Port by the team of MSE Group and Shaw Environmental, Inc. The field work reported on includes the destruction of three shallow monitoring wells in advance of imminent construction work and the collection of one shallow groundwater sample.

The collection of the groundwater sample requires some background explanation. Mr. Roger Papler, SFRWQCB, requested the collection of a single grab groundwater sample as a condition of the transfer of the Union Pacific Motor Freight (UPMF) project oversight back to the County. Mr. Papler noted there was a 150-foot wide gap between two shoreline sentry wells (MW-8 and APL-UPW2) that should be explored to ascertain if gasoline and benzene COPC's were possibly escaping to the Bay. Boring B-97 was placed within this perceived gap and a grab groundwater sample was collected and the concentrations were reported as comparable to the two adjacent monitoring well results.

If you have any questions or need additional information, please contact Mr. John Prall at (510) 627-1373 or by email at jprall@portoakland.com.

"I declare, under penalty of perjury, that the information and/or recommendations contained in the attached documentary report is true and correct to the best of my knowledge."

Sincerely, Jeffin & form

Roberta Reinstein Manager, Environmental Programs and Safety Department

530 Water Street Jack London Square P.O. Box 2064 Oakland, California 94604-2064 Telephone: (510) 627-1100 Facsimile: (510) 627-1826 Web Page: www.portofoakland.com

Enclosure Noted

CC: Michele Heffes, Port of Oakland John Prall, Port of Oakland Jeff Jones, Port of Oakland Debra Carey, Shaw Environmental Carl Hackney, MSE Group Deborah Ballati, Farell Braun + Martel Chris Noma, Wendel Rosen Black & Dean

4005 Port Chicago Highway Concord, CA 94520 Phone: 925.288.9898 Fax: 925.288.0888

October 10, 2007

Shaw Project No. 127546.04

Mr. Carl E. Hackney MSE Group 302 Pendleton Way Oakland, CA 94621

Subject: Well Destruction and Hydropunch Groundwater Sampling Report American President Lines Berths 60-63 Yard and Gate Redevelopment Project 1395 Middle Harbor Road, Port of Oakland Oakland, California 94607

Dear Mr. Hackney:

Shaw Environmental, Inc. (Shaw) is pleased to present this *Well Destruction and Hydropunch Groundwater Sampling Report* for the above-referenced site. Included in Attachment A are the Site Vicinity Map (Figure 1) and Site Plan with Hydropunch Sampling Location (Figure 2) prepared by ETIC Engineering. The activities outlined in this report were requested by the Port of Oakland (Port) during a November 2005 meeting discussing the redevelopment plans for Berths 60-63. The areas where the wells are located are under temporary construction regulatory oversight of the Alameda County Health Care Services Agency (ACHCS), with the San Francisco Regional Water Quality Control Board (RWQCB) taking lead agency function at the conclusion of construction and upon completed well destruction. As shown in Figure 2, a total of 12 known wells exist at Berths 60-63 (Yard and Gate Redevelopment Area) of the American President Lines (APL) terminal, consisting of 11 groundwater monitoring wells (wells MW-1 through MW-3, MW-6 through MW-8, MSMW-1 through DSMW-3, APL/UP-W1, and APL/UP-W2) and one former groundwater extraction well (well EW-5).

Shaw was contracted to observe the sampling and destruction of three groundwater monitoring wells (MW-8, APL/UP-W1, and APL/UP-W2) and to log and obtain groundwater samples for laboratory analysis using hydropunch sampling technologies from a soil boring located between MW-8 and APL/UP-W2. Collection of the hydropunch samples is a condition of the temporary ACHCS regulatory oversight.

The well sampling and destruction, and hydropunch sampling activities were conducted at the APL site on June 14, 2007. The work was conducted in general accordance with the procedures outlined in the March 1, 2006 *Well Destruction Workplan*, prepared by ETIC Engineering for the Port (ETIC, 2006a), and the August 9, 2006 *Memorandum – Groundwater Sampling Workplan*, prepared by ETIC for the Port (ETIC, 2006b) and according to Port safety protocols.

BACKGROUND

Groundwater monitoring wells MW-8, APLUP-W1, and APLUP-W2 were historically used to define the downgradient extent of petroleum aromatic hydrocarbons in groundwater originating from the Union Pacific Motor Freight area upgradient of the southwestern corner of the APL terminal. Total petroleum hydrocarbons as gasoline, diesel, and motor oil (TPH-G, TPH-D, and TPH-MO), and volatile organic compounds (VOCs) were not detected above their respective surface water quality criteria in groundwater samples collected from these wells over the last several years (ETIC, 2006b).

In addition, these compounds and TPH as Bunker C (TPH-bunkc) were also not detected above the surface water quality criteria in the groundwater sample collected from a temporary soil boring, B-60, located between MW-8 and APLUP-W2 (ETIC, 2006b). As requested by the ACHCS and the RWQCB, one groundwater sample was collected from the temporary soil boring B-97 to confirm the absence of these compounds above the surface water quality criteria in this area of the APL terminal, thereby confirming the inertness of the landfill backfill material and the absence of current and future threat to the adjacent shoreline.

PRE-FIELD ACTIVITIES

Permit: Well permits were acquired from the Alameda County Department of Public Works (ACDPW) prior to field activities (Attachment B).

Site Health and Safety: A site health and safety plan was prepared and subsequently utilized onsite during field activities.

Underground Utility Identification: Underground Service Alert (USA) was contacted two weeks prior to drilling activities in order to mark underground utilities in the delineated areas using standard color code identifiers. In addition, Cruz Brothers Utility Locators, a private underground utility locating company, was contracted to clear the area on June 12, 2007.

HYDROPUNCH SAMPLING ACTIVITIES

The fieldwork was performed by Environmental Control Associates (ECA), a California licensed drilling contractor. A Shaw field representative, working under the direction of a California Professional Geologist, was present onsite during the drilling of the soil boring and the collection of the groundwater sample on June 14, 2007.

Advancement of Soil Boring B-97: The soil boring for B-97 was advanced using a direct-push drill rig to a total depth of 20 feet below ground surface (bgs). Groundwater was encountered at 11 to 12 feet bgs and an attempt was made to sample groundwater when the boring reached 16 feet bgs. However, the boring did not produce enough water at 16 feet bgs for sampling purposes. As a result, the soil boring was advanced to a depth of 20 feet bgs. The soil boring was continuously logged as the push rods were advanced to the total depth. The soil boring/temporary well log is included in Attachment C.

Groundwater Sampling: Groundwater samples were collected from the soil boring through a temporary casing installed in the coring tool, using hydropunch sampling technologies (a hydropunch sampler) at approximately 20 feet bgs. A temporary well screen (1-inch diameter

PVC with 5 feet of 0.001-inch slotted screen) and casing were inserted into the boring. Protocols from the Work Plan were followed for groundwater sampling (Appendix B).

Groundwater samples were obtained from the temporary well using a peristaltic pump. Following collection, the sample containers provided by the laboratory were labeled, placed in an ice-packed cooler, and transported to the laboratory under chain-of-custody protocol. A copy of the chain-of-custody document is included in Attachment D.

Groundwater Analyses: Entech Analytical Labs, Inc., a California-certified hazardous materials testing laboratory, conducted the analysis of the groundwater samples. The groundwater samples were analyzed for the following:

- TPH-G using modified Environmental Protection Agency (EPA) Method 3050B;
- TPH-D, TPH-MO, and TPH-bunkc with silica gel cleanup by EPA Method 3510C and analyzed using modified EPA Method 8015B(M); and
- VOCs including methyl tertiary butyl ether (MTBE) and benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8260B.

Hydropunch Groundwater Analytical Results: Results of the analysis of the grab samples from B-97 detected benzene at a concentration of 1.9 micrograms per liter (μ g/L). TPH-G, TPH-D, TPH-MO, TPH-bunkc, toluene, ethylbenzene, xylenes, MTBE, and other VOCs were not detected in the sample. A copy of the laboratory analytical report is included in Attachment D, along with a data quality assessment.

Grouting of Soil Boring and Handling of Excess Soil: Following completion of sampling, the boring was sealed to the surface with bentonite cement grout in accordance with ACDPW requirements. Excess soil generated during the drilling was stored in the waste management area located outside the entrance gate of the Berths 60-63 yard.

GROUNDWATER MONITORING WELL SAMPLING AND DESTRUCTION

Monitoring wells APLUP-W1, APLUP-W2, and MW-8 were sampled and then abandoned using the pressure grout method on June 14, 2007. Samples from the three monitoring wells were taken by Blaine Tech Services, Inc., from San Jose, California, and sent to Entech Analytical Labs, Inc. for analysis.

Water Level Measurements: All monitoring wells were opened and allowed to equilibrate prior to collecting depth-to-water measurements. Depth-to-water measurements were collected using an interface probe referenced to designated measuring points at the top of each well casing (See Attachment C for depth-to-water measurements).

Monitoring Well Sampling: A minimum of three well casing volumes were purged from each well, using a new disposable bailer. As the wells were purged, the pH, electrical conductivity, and temperature of the purge water were periodically measured in the field. Purge water was stored in one appropriately labeled 55-gallon drum and transported to the waste management area located outside the entrance gate of the Berths 60-63 yard. Field data sheets are included in Attachment C.

Following purging, groundwater samples were collected from each well on June 14, 2007 using the new polyethylene bailers. The water samples were transferred from the bailers into the appropriate laboratory-supplied containers and sent to a state-certified laboratory under chain of custody documentation.

Groundwater Analysis: The groundwater samples were submitted to Entech Analytical Labs, Inc., and analyzed for the following:

- TPH-G using modified EPA Method 5030B;
- TPH-D, TPH-MO, and TPH-bunkc with silica gel cleanup by EPA Method 3510C and analyzed using modified EPA Method 8015B(M); and
- VOCs including MTBE and BTEX by EPA Method 8260B.

Monitor Well Groundwater Analytical Results: The analysis of samples from the monitoring wells yielded the following results:

- In monitoring well APLUP-W1, TPH-G, benzene, ethylbenzene, xylene, and chlorobenzene were reported at concentrations of 150 μg/L, 14 μg/L, 0.56 μg/L, and 0.72 μg/L, respectively. TPH-D, TPH-MO, TPH-bunkc, toluene, and MTBE were not detected in APLUP-W1;
- No analytes were detected in monitoring well APLUP-W2;
- Results of the analysis for monitoring well MW-8 detected benzene and xylene at concentrations of 2.4 µg/L and 0.54 µg/L, respectively; and TPH-G, TPH-D, TPH-MO, TPH-bunkc, toluene, ethylbenzene, MTBE and other VOCs were not detected in MW-8.

Well Destruction: Once sampling was completed, monitoring wells APLUP-W1, APLUP-W2, and MW-8 were abandoned by the pressure grout method, in accordance with ACDPW requirements. The well casings were filled with neat cement grout followed by pressuring the grout-filled casing to a pressure of 25 pounds per square inch for a minimum of 5 minutes. The existing flush-mounted monitoring well vault boxes were left in-place upon completion of the pressure-grouting activities and will be removed during the forthcoming site redevelopment activities.

Shaw appreciates the opportunity to work with MSE on this project. Please do not hesitate to call us at (925) 288-2328 if you have any questions.

Sincerely,

Shaw Environmental, Inc.

Debra Carey, CEG Project Manager

12 ~. 17

Steven W. Pierce, PG Senior Hydrogeologist

Attachments

Table 1 – Summary of Analytical Results

Attachment A – Figure 1 – Site Vicinity Map and Figure 2 – Site Plan with Hydropunch Sampling Location

Attachment B – Well Permits

Attachment C – Soil Boring/Temporary Well Log for B-97 and Field Data Sheets

Attachment D – Laboratory Report/ Chain-of-Custody Document/Data Quality Assessment

TABLE

ATTACHMENT A

FIGURE 1 – SITE VICINITY MAP FIGURE 2 – SITE PLAN WITH HYDROPUNCH SAMPLING LOCATION

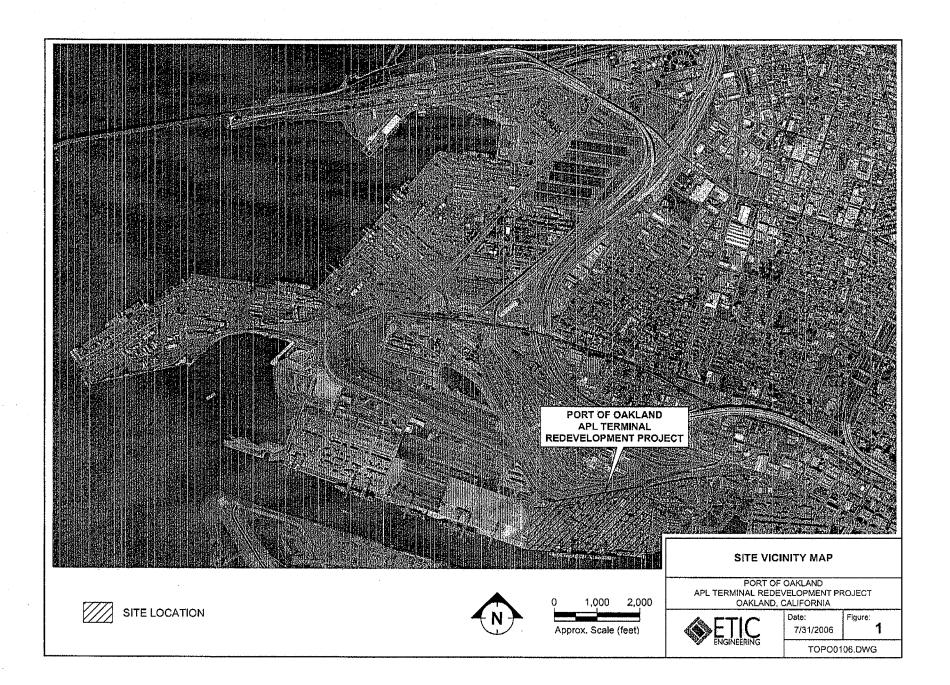
TABLE 1Summary of Analytical ResultsAmerican President Lines1395 Middle Harbor Road, Port of OaklandOakland, California

Sample ID	Date	TPH-G	TPH-D	ТРН-МО	TPH- bunkc	Benzene	Toluene	Ethyl Benzene	Xylenes	MTBE	Other VOCs	
	Collected				All resu	ults reporte	ed in micro	ograms per	· liter (µg/L	_).		
APLUP-W1	06/14/07	150	ND ₅₀	ND ₁₀₀	ND	14	ND _{0.50}	0.56	0.72	ND _{1.0}	Chlorobenzene: 1.7	
APLUP-W2	06/14/07	ND ₂₅	ND ₅₀	ND ₁₀₀	ND	ND _{0.50}	ND _{0.50}	ND _{0.50}	ND _{0.50}	ND _{1.0}	ND _{0.5-50}	
MW-8	06/14/07	ND ₂₅	ND ₅₀	ND ₁₀₀	ND	2.4	ND _{0.50}	ND _{0.50}	0.54	ND _{1.0}	ND _{0.5-50}	
B97	06/14/07	ND ₂₅	ND ₅₀	ND ₁₀₀	ND	1.9	ND _{0.50}	ND _{0.50}	ND _{0.50}	ND _{1.0}	ND _{0.5-50}	

Notes:

TPH-G - total petroleum hydrocarbons as gasoline

TPH-D - total petroleum hydrocarbons as diesel


TPH-MO - total petroleum hydrocarbons as motor oil


TPH-bunc - total petroleum hydrocarbons as bunker C

MTBE - methyl tertiary butyl ether

VOC's -volatile organic compounds

NDx - not reported above "x" detection limit

ATTACHMENT B

WELL PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

Public	399 Elmhurst Street Hayward, CA 94544-139 Telephone: (510)670-6633 Fax:(57	94544-1395				
Application Approved	on: 06/13/2007 By jamesy	Permit Numbers: W2007-0689 to W2 Permits Valid from 06/14/2007 to 0				
Application Id: Site Location:	1181546847253 AMERICAN PRESIDENTIAL LINES	City of Project Site:Oakland				
	BERTHS 57-59 & BERTHS 60-63					
	1395 MIDDLE HARBOR ROAD					
Project Start Date:	OAKLAND, CA 06/14/2007	Completion Date:06/14/2007				
Applicant:	MSE Group Inc Joseph Cotton 302 Pendleton Way, Oakland, CA 94621	Phone: 510-703-5420				
Property Owner:	JOHN PRALL PORT OF OAKLAND_530 WATER STREET, O/	Phone: 510-627-1373 AKLAND, CA 94604				
Client:	** same as Property Owner **					
Contact:	Cotton Joseph	Phone: 510-703-5420 Cell: 510-703-5420				
		Total Due:	\$1100.00			

Receipt Number: WR2007-0262 Total Amount Paid:

Payer Name : JOSEPH A. COTTON Paid By: VISA

6			
Works	Requesting	Permits:	

Borehole(s) for Investigation-Environmental/Monitorinig Study - 1 Boreholes Driller: ENVIRONMENTAL CONTROL ASSOCIATES - Lic #: 695970 - Method: DP

Work Total: \$200.00

\$1100.00

PAID IN FULL

Specifications											
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth						
Number			Boreholes								
W2007-	06/13/2007	09/12/2007	1	2.50 in.	20.00 ft						
0689											

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit

Alameda County Public Works Agency - Water Resources Well Permit

application on site shall result in a fine of \$500.00.

6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Well Des Driller: EX	Work Tot	Nork Total: \$900.00								
Specificati	ons									
Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth	State Well #	Orig. Permit #	DWR #
W2007- 0690	06/13/2007	09/12/2007	APL/UP-W1	8.00 in.	2.00 in.	5.00 ft	22.50 ft			
W2007- 0691	06/13/2007	09/12/2007	APL/UP-W2	8.00 in.	2.00 in.	5.00 ft	17.50 ft			
W2007- 0692	06/13/2007	09/12/2007	MW-8	8.00 in.	2.00 in.	5.50 ft	17.00 ft			

Specific Work Permit Conditions

1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.

2. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no

Alameda County Public Works Agency - Water Resources Well Permit

case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

6. Remove the Christy box or similar structure.

Destroy well by grouting neat cement with a tremie pipe or pressure grouting (25 psi for 5min.) to the bottom of the well and by filling with neat cement to three (3-5) feet below surface grade. Allow the sealing material to spill over the top of the casing to fill any annular space between casing and soil.

After the seal has set, backfill the remaining hole with concrete or compacted material to match existing conditions.

7. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

APPENDIX B

PROTOCOLS FOR GRAB GROUNDWATER SAMPLING

SUBSURFACE CLEARANCE PROCEDURES

Prior to drilling, proposed boring locations are marked with white paint. Underground Service Alert (USA) is contacted two weeks prior to drilling activities and a "ticket" is issued for the particular investigation. USA members mark underground utilities in the delineated areas using standard color code identifiers.

The proposed boring locations are also investigated by a geophysical surveying contractor using electromagnetic induction and magnetic surveys, among other methods. The choice of methods depends on shallow soil types and potential interference from surrounding cultural features.

The borings are cleared by hand auger, shovel, or posthole digger to the full diameter of downhole equipment to at least 4 feet below ground surface. An air knife may also be used in conjunction with the above hand clearing tools.

Downhole equipment, including drive casing, sample barrels, surge blocks and tools, are detergentwashed using Alconox or equivalent, or steam-cleaned prior to and following drilling activities at each boring.

SOIL LOGGING PROCEDURES

Although no soil sampling for laboratory analysis is planned during the proposed investigation, the soil boring, B-97, will be logged in accordance with the following standard protocol.

During direct-push sampling, soil samples are collected using a Geoprobe rig equipped with a macrocore sampler or a dual-wall sampler.

During soil sampling, a 4-foot long sampler, equipped with a plastic liner, is typically driven into the subsurface. Upon completion of the sample run, the sampler is extracted from the boring, the sample liner is removed, and a new liner is placed in the sampler.

During dual-wall sampling using a Geoprobe rig, a hydraulic hammer simultaneously drives smaller diameter inner rods, which are used to obtain and retrieve the 5-foot long soil core barrel, and larger diameter outer rods, which serve as temporary drive casing. As the rods are advanced, soil is driven into the core barrel, which is equipped with sample liners. The outer rods prevents sloughing of the formation and reduce cross-communication.

Soil samples are visually described by a trained geologist or engineer in accordance with the Unified Soil Classification System. The soil properties that are typically noted on boring logs include grain size category, color, density/firmness, plasticity and moisture content. The soil samples will be collected only for lithologic logging purposes. Field measurements for volatile organic compound

concentrations will be measured with a photoinoization detector and recorded by the trained geologist or engineer.

GRAB GROUNDWATER SAMPLING

During direct-push sampling, grab groundwater samples are typically collected using a Hydropunch or an open-hole piezometer. The Hydropunch sampler consists of an expendable drive point, a drive head, a protective sheath, a 3 or 4-foot long inner stainless steel screen (or polyvinyl chloride [PVC]) and an O-ring seal. Once the desired depth is achieved, the rods will be retracted to expose the Hydropunch screen to groundwater. Grab sampling with the open-hole piezometer consists of installing a small-diameter PVC well casing with 5 feet of 0.010-inch slotted well screen in the open boring. This method was typically used for shallow grab water samples. Groundwater samples may then be collected with a bailer, peristaltic pump, or bladder pump.

WATER SAMPLE HANDLING

The samples are decanted into laboratory-provided containers with appropriate preservatives. Samples that will be analyzed for VOCs are collected in 40-milliliter glass volatile organic analysis (VOA) vials with Teflon-lined septum caps. VOA vials are filled so that there are no air bubbles. The sample containers are labeled with the well number, date, location, sampler's initials, and preservative used. The sample containers are placed in a cooler with ice for delivery to the laboratory. Standard chain-of-custody procedures are followed.

BOREHOLE GROUTING

Following completion of sampling, borings are sealed with bentonite-cement grout. The grout is allowed to free-fall in the boring or pumped through a tremie pipe positioned at the bottom of the boring depending on the subsurface conditions and/or the requirements of the local oversight agency. Borings are resurfaced to match the surrounding surface conditions.

INTEGRATED WASTE MANAGEMENT HANDLING

Excess groundwater and soil generated during the soil drilling activities is stored in appropriately labeled 55 gallon Department of Transportation (DOT) drums. These drums are typically stored at a secured location, pending evaluation of disposal options.

Protocols-Grab Sample.doc

ATTACHMENT C

SOIL BORING/TEMPORARY WELL LOGS FOR B-97 AND FIELD DATA SHEETS

O DEPTH IN FEET	SAMPLE NUMBER	RECOVERY	(mqq) OIA		LING REMARKS		NSCS	PROFILE	CHECKED BY APPROVED BY TOTAL DEPTH <u>20 feet</u>	COORDINATES: N. E. DATE BEGAN 6/14/07 DATE FINISHED 6/14/07 SURFACE ELEV. CORE SIZE 2.5 inches DESCRIPTION		
È -			0-2	(Background	PID)	þ	fill sp		Asphalt (4"). SAND; fine, poorly graded (fill	I). (().33).83'	
		80					gp	.	GRAVEL and SILTY SAND; (fill).		
											3.5'	
= =			2			Ē			SAND; poorly graded, fine, lig	ht gray (dry) to medium gray—brown (dam	o).	
- 5 -												
= =		100										
= =			0									
- 10 -		100/ 10							SAND: pooliny graded fine m	edium gray—brown, damp to wet (soil stuck	in	
È 1		10				⊻∣	sp		core barrrel — only able to s	ee top and bottom of sample).		
			0			-						
L _		90							As above: Wet.			
- 15 -												
L'-				Not enough	water production							
				at 16' — pi	ush to 20'.							
									As above: Wet.		18.0'	
		90						• •	GRAVEL with SAND; poorly gr	aded, fine gravel, wet.		
							gp	•••				
-20-									TOTAL DEP	TH OF BORING IS 20.0 FEET		
									Temporary PVC screen (5 fe	et of 0.001 inch slots) and casing installed		
									to 20' through inside of cor boring destroyed with cemen	ing tool. Casing and screen removed and		
										-		
-25-												
E =												
<u> </u>												
- 30 -												
<u> </u>												
E =												
E -												
35												
	DRILLER : Brett Cobb PAGE 1 OF 1 DRILLING CO. : ECA											
					Push/Hydrop	unch						
SAM	IPLIN	IG ME	етно	D :	ikland APL					-		
LOC	ATIC	N : C	Daklaı	nd, CA						\bigwedge		
PRC	DJEC	T NO.	. : 12	27546-04	000000							
DRAWN	BY	SCHAFF	FER I	HECKED BY		1	i			Shaw [•]		
DAT		8/28/		PPROVED BY			DRA	WING	NO. : 127546–A1			

(SP	H or Pur	ge Water	Drum Lo)R	
Client: M≤≤					
Site Address: 1395 mille Hav	backd. Ca	Kland			
STATUS OF DRUM(S) UPON	ARRIVAL				
Date	6/14/07				
Number of drum(s) empty:					
Number of drum(s) 1/4 full:					
Number of drum(s) 1/2 full:					
Number of drum(s) 3/4 full:					
Number of drum(s) full:					
Total drum(s) on site:					
Are the drum(s) properly labeled?					
Drum ID & Contents:	0				
If any drum(s) are partially or totally filled, what is the first use date:					

- If you add any SPH to an empty or partially filled drum, drum must have at least 20 gals. of Purgewater or DI Water.

-If drum contains SPH, the drum MUST be steel AND labeled with the appropriate label.

-All BTS drums MUST be labeled appropriately.

STATUS OF DRUM(S) UPON	DEPARTU	JRE			and the state of t
Date	6/14/07				
Number of drums empty:					
Number of drum(s) 1/4 full:	1				
Number of drum(s) 1/2 full:					
Number of drum(s) 3/4 full:					
Number of drum(s) full:					
Total drum(s) on site:					
Are the drum(s) properly labeled?	Y				
Drum ID & Contents:	Burgewater			<u>– Barta Salah Ardi</u> Baga Barta Arda	ine Bayeria de Barado. Transporte de transmission
LOCATION OF DRUM(S)					

Describe location of drum(s): New Exit. in Equip Yard new soil stockpilles

407				
4				
<u>、</u>				
	4[07 4 	407 4 	407 4 	

TEST EQUIPMENT CALIBRATION LOG

	PROJECT NAM	IE MSE (2) AF	L Cakland		PROJECT NUMBER OF 70614. PC (
- 11		EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP. C*	INITIALS			
ſ	Myron L Mitrameter	600489	6/14/07	4.0 pH 7.0	3.95p11 7.02	7	24.8 25.3	R			
	•			10.0 3900MS	10.01 3901µs		24.8 27.6				
	Hach Tuto: uneter	0 6060C 017103		100 NTH 800	100 NT4 810		~				
				~!ø +	0.3	-	-				
	1		LORP	224.5mV CF	01° - 724m		27.0				
				2 							
						· · · · · · · · · · · · · · · · · · ·					
		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					

WELLHEAD INSPECTION CHECKLIST

Date <u>6/14</u> [07		Client	MSE					
Site Address	139	5 millle k	Tattor Rd	., Oukla	nJ				
Job Number	07	2614.141	· · · · · · · · · · · · · · · · · · ·		. Teo	chnician	P-Corn	i-L	
		Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From	Lock Replaced	Other Action Taken (explain	Well Not Inspected (explain
Well ID					<u> </u>	Wellbox	. 	below)	below)
APL-UP-U	12		NoBo	1+5 - No	+ 1005				
APLUP-W MW-8	<u> </u>		·	- c -	~.				
MUSS			2/2 00	Hs Mise	<u>ng</u>				
				· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·									
		•							
			•						
NOTES:			L	<u></u>			•	<u></u>	·····
					,,,, , _ _,,,,,,,,,,,,,,,,,,,,,				
<u> </u>		<u></u>							
<u> </u>							,	· · · · · · · · · · · · · · · · · · ·	- <u></u>
									<u>.</u>

i (Page ____ of ____

Project # 070614-PC1 Date	6/14/07	Client	mst	
---------------------------	---------	--------	-----	--

Site 1395 midle Habo- Rd. OAugud, CA

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	of Immiscible			Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
APLUP-WI		2					10.39	21.81	100	
<u>APLUP-WI</u> APLUP-WZ		2					9.74	16.98		
mw-8		2					10.90	1661	-	
						1 				
								-		

Project #: •	786			Client: M	اجلا	······································	······································			
Sampler: 🕻				Date: 6	107					
Well I.D.:	APL UP-U	12		Well Diar	neter	: ② 3 4	68			
Total Well			E	Depth to	Depth to Water (DTW): 9.74					
Depth to Fi	ree Produc	t:		Thickness	s of F	ree Product (fe	et):			
Referenced	l to:	Ŵ	Grade	D.O. Meter (if req'd): YSI HACH						
DTW with	80% Rech	arge [(F	leight of Water	r Column x	0.20) + DTW]: <u> </u>	9			
Purge Method:	Bailer CDisposable B Positive Air I Electric Subr	Displaceme	ent Extra Other	Well	Diamete		✓Disposable Bailer Extraction Port Dedicated Tubing : Diameter Multiplier			
L.Z. (I Case Volume	· · · · · · · · · · · · · · · · · · ·	ろ Ified Volun	$= \frac{3.6}{\text{Calculated V}}$	Gals.	[" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163			
Time	Temp (°F orੴ)	рН	Cond. (mS or uS)	Turbidi (NTUs	-	Gals. Removed	(uv) ORP Observations			
0905	21-4	6-27	1977	11.6		initial 1-2	88			
0908	20.9	6-58	1729	17.0		2-4	82			
0912	20.8	6.33	1725	15.0		3.6	59			
0915	20.8	6-60	1717	14.2		1	49			
Did well de			No		tuall	y evacuated: ३	. 6			
Sampling D	Date: 6 14 0	7	Sampling Tim	e: 0920		Depth to Wate	r: 09-80			
Sample I.D	.: APLUP-L	52		Laborator		Kiff CalScience				
Analyzed fo		BTEX	MTBE TPH-D	Oxygenates	(5)	Other: Sal Cor	· · · · · · · · · · · · · · · · · · ·			
EB I.D. (if a	:	@ Time	Duplicate		(if applicable):					
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates	(5)	Other:				
D.O. (if req	e-purge:		^{mg} /L	Pe	ost-purge:	mg/L				
O.R.P. (if re	eq'd): Pr	e-purge:		mV	Pe	ost-purge:	mV			

WL_L MONITORING DATA SHEE.

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

Project #:	070614-86	X		Client	mse			, , , , , , , , , , , , , , , , , , ,		
Sampler:					6/14/0					
Well I.D.:	MW.8				Diameter	~	6	8		
Total Well	•	D):\&.4	ξ(Depth	to Wate	r (DTW):	۲۰۵			
Depth to F			- <u> </u>	Thickness of Free Product (feet):						
Referenced	l to:	Eve	Grade		Aeter (if		YSI	НАСН		
DTW with	80% Rech	arge [(F	leight of Water	r Colum	n x 0.20) + DTW]: 1/2	H			
	Disposable B Positive Air I Electric Subr	Displaceme	Other			Sampling Method Othe <u>r Multiplier Wel</u> 0.04 4" 0.16 6"	AD D	Bailer Disposable Bailer Extraction Port Dedicated Tubing Multiplier 0.65		
1 Case Volume		> fied Volun		Gals. olume	3"	0.37 Oth	۶r 	1.47 radius ² * 0.163		
Time	Temp (°F or O)	рН	Cond. (mS or µS)		oidity ГUs)	Gals. Removed	(ريس Dbservations (م		
947	21.3	770	2712	17.2		initial	da	-Jy -125		
950	19.9	7.18	2830	174		81		-135		
952	203	6.74	2815	313		5		- 7-1		
955	19.7	6.63	2819	450	>	3		-74		
Did well de	water?	Yes (ND	Gallons	s actuall	y evacuated:	3	,		
Sampling D	Date: 6/14/0	7	Sampling Tim	e: 1002	· · · · · · · · · · · · · · · · · · ·	Depth to Wate	er: 10.	92		
Sample I.D	ц			Labora		Kiff CalScienc		ier Eutech		
Analyzed fo	Dr: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other: <u>≤ee (</u> é				
EB I.D. (if a	applicable)	•	@ Time			if applicable):				
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena		Other:				
D.O. (if req	'd): Pr	e-purge:		^{mg} /L Post-purge:			mg/L			
O.R.P. (if re	eq'd): Pr	e-purge:		mV	Po	ost-purge:		mV		

WL_L MONITORING DATA SHEL.

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

Project #: _e .	70614-100	(Client: MSG					
Sampler: p				Date: 6/14(5	4-				
Well I.D.:	APLUP-1	<u>ا</u> لا		Well Diameter	~	6 8			
Total Well 1				Depth to Wate	r (DTW): [0-3	9			
Depth to Fre					Free Product (fe				
Referenced	to:	wd	Grade	D.O. Meter (if	req'd):	YSI HACH			
DTW with 8	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: į2-	67			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Sampling Method: Bailer Peristaltic Disposable Bailer straction Pump Extraction Port					
L Case Volume	Jals.) X Speci	ろ fied Volum	$= \frac{5.4}{\text{Calculated Vc}}$	Gals. 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163			
Time	Temp (°F or Ô)	' pH	Cond. (mS or µ§)	Turbidity (NTUs)	Gals. Removed	Observations			
1008	21.3	6.64	(9)	455	initial	-87			
1012	20.3	6-64	2006	(95	1.8	-126			
(016	20.1	6-64	2005	29	3-6	-126			
(920	20.3	675	1996	19	5.4	-172			
Did well dev Sampling Di			W Sampling Time	100.	y evacuated:				
Sample I.D.				Laboratory:	Depth to Wate				
Analyzed fo		<u>λι</u> btex	MTBE TPH-D		Kiff CalScience				
EB I.D. (if a			@	Duplicate I.D. (if applicable): DUP-101036					
Analyzed fo		BTEX	Time MTBE TPH-D						
D.O. (if req'		e-purge:		Oxygenates (5) Other: See (OC - on he ^{mg} /L Post-purge:					
O.R.P. (if re		e-purge:		mV Post-purge: mV					

WL_L MONITORING DATA SHEL_

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

ATTACHMENT D

LABORATORY REPORT/ CHAIN-OF-CUSTODY DOCUMENT/ DATA QUALITY ASSESSMENT

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Lab Certificate Number: 55972

Issued: 06/22/2007

Fax: (408) 588-0201

Della Murphy MSE Group 302 Pendleton Way Oakland, CA 94621

Project ID: MSE Group Project Name: APL Project Location: 1359 Middle Harbor Rd.

Certificate of Analysis - Final Report

On June 15, 2007, samples were received under chain of custody for analysis. Entech analyzes samples "as received" unless otherwise noted. The following results are included:

 Matrix
 Test / Comments

 Liquid
 Hold

 TPH-Extractable: EPA 3510C / EPA 8015B(M)

 TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

 VOCs: EPA 5030B / EPA 8260B for Groundwater and Water - EPA 624 for Wastewater

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

C. L. Thom

C. L. Thom Laboratory Director

Environmental Analysis Since 1983

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Certificate of Analysis - Data Report

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Lab #: 55972-001 Sam	ple ID: B97]	Matrix: Liq	uid Sample I	Date: 6/14/2007	7 10:50 AM
VOCs: EPA 5030B / EPA 8260B					2 2 4			
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,1-Trichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,2,2-Tetrachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,2-Trichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,3-Trichlorobenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,3-Trichloropropane	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,4-Trichlorobenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,4-Trimethylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dibromo-3-Chloropropane	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dibromoethane (EDB)	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3,5-Trimethylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,4-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,4-Dioxane	ND	1.0	50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2,2-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Butanone (MEK)	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Chloroethyl-vinyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Chlorotoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Hexanone	ND	1.0	20	. υ μg/L	N/A	N/A	6/21/2007	WM1A070621A
4-Chlorotoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
4-Methyl-2-Pentanone(MIBK)	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acetone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acetonitrile	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acrolein	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acrylonitrile	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Benzene	1.9	1.0	0.50		N/A	N/A	6/21/2007	WM1A070621A
	ND	1.0	5.0	μg/L	N/A N/A	N/A N/A	6/21/2007	
Benzyl Chloride				μg/L				WM1A070621A
Bromobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromochloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromodichloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromoform	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromomethane	ND	1.0	0.50	µg/L	N/A	N/A	6/21/2007	WM1A070621A
Carbon Disulfide	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Carbon Tetrachloride	ND	1.0	0.50	µg/L	N/A	N/A	6/21/2007	WM1A070621A
Chlorobenzene	ND	1.0	0.50	µg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloroform	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A

Detection Limit = Detection Limit for Reporting. D/P-F = Dilution and/or Prep Factor includes sample volume adjustments. ND = Not Detected at or above the Detection Limit. Qual = Data Qualifier

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Certificate of Analysis - Data Report

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Lab #: 55972-001	Sample ID: B97				Matrix: Liquio	d Sample I	Date: 6/14/2007	10:50 AM
VOCs: EPA 5030B / EPA 8								
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
cis-1,3-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Cyclohexanone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Dibromochloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Dibromomethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Dichlorodifluoromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Diisopropyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Ethyl Benzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Freon 113	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Hexachlorobutadiene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Iodomethane	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Isopropanol	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Isopropylbenzene	ND	1.0	1.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Methyl-t-butyl Ether	ND	1.0	1.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Methylene Chloride	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
n-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
n-Propylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Naphthalene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
p-Isopropyltoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Pentachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
sec-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Styrene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
tert-Amyl Methyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
tert-Butanol (TBA)	ND	1.0	10	μg/L	N/A	N/A	6/21/2007	WM1A070621A
tert-Butyl Ethyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
tert-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Tetrachloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Tetrahydrofuran	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Toluene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
trans-1,2-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
trans-1,3-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
trans-1,4-Dichloro-2-butene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Trichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Trichlorofluoromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Vinyl Acetate	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Vinyl Chloride	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Xylenes, Total	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Surrogate	Surrogate Recovery		Limits (%)	~~~	- ··· • •	• • • • •	Analyzed by: XBian	
4-Bromofluorobenzene	109		- 130				Reviewed by: TFult	
Dibromofluoromethane	100		- 130				Keviewed by: 1 full	011
Toluene-d8	104	60						

Detection Limit = Detection Limit for Reporting. D/P-F = Dilution and/or Prep Factor includes sample volume adjustments. ND = Not Detected at or above the Detection Limit. Qual = Data Qualifier

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Phone: (408) 588-0200 Fax: (408) 588-0201

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Certificate of Analysis - Data Report

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Lab #: 55972-001	Sample ID: B97					Matrix: Liq	uid Sample I	Date: 6/14/2007	7 10:50 AM
TPH-Purgeable - GC/MS: Parameter		Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND		1.0	25	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Surrogate	Surrogate Recovery		Control	Limits (%)				Analyzed by: XBia	ın
4-Bromofluorobenzene	98.5		60 -	· 130				Reviewed by: TFu	lton
Dibromofluoromethane	105		60 -	- 130					
Toluene-d8	97.1		60 -	· 130					
TPH-Extractable: EPA 351	OC / EPA 8015B(M)								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		1.0	50	μg/L	6/19/2007	WD070619A	6/20/2007	WD070619A
59 µg/L Hydrocarbon	(C10-C18).								
TPH as Motor Oil	ND		1.0	100	μg/L	6/19/2007	WD070619A	6/20/2007	WD070619A
No Bunker Oil pattern	present.								
Surrogate	Surrogate Recovery		Control]	Limits (%)				Analyzed by: JHsi	ing
n-Hexacosane	78.8		50 -	- 150				Reviewed by: mtra	n

Detection Limit = Detection Limit for Reporting. D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

3334 Victor Court, Santa Clara, CA 95054

MSE Group **302 Pendleton Way** Oakland, CA 94621 Attn: Della Murphy

Certificate of Analysis - Data Report

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Lab #: 55972-002 San	ple ID: APLUP-W	/1			Matrix: Liqu	id Sample I	Date: 6/14/2007	10:26 AM
VOCs: EPA 5030B / EPA 8260B								
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,1-Trichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,2,2-Tetrachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,2-Trichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,3-Trichlorobenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,3-Trichloropropane	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,4-Trichlorobenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,4-Trimethylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dibromo-3-Chloropropane	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dibromoethane (EDB)	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3,5-Trimethylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,4-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,4-Dioxane	ND	1.0	50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2,2-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Butanone (MEK)	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Chloroethyl-vinyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Chlorotoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Hexanone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
4-Chlorotoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
4-Methyl-2-Pentanone(MIBK)	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acetone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acetonitrile	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acrolein	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acrylonitrile	ND	1.0	5.0	μg/L μg/L	N/A N/A	N/A N/A	6/21/2007	WM1A070621A
Benzene	14	1.0	0.50		N/A	N/A N/A	6/21/2007	
Benzyl Chloride	ND	1.0	5.0	μg/L				WM1A070621A
•	ND ND		0.50	µg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromobenzene		1.0		μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromochloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromodichloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromoform	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromomethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Carbon Disulfide	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Carbon Tetrachloride	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chlorobenzene	1.7	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloroform	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A

Detection Limit = Detection Limit for Reporting. D/P-F = Dilution and/or Prep Factor includes sample volume adjustments. ND = Not Detected at or above the Detection Limit. Qual = Data Qualifier

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Certificate of Analysis - Data Report

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Lab #: 55972-002	Sample ID: APLUP-	W1			Matrix: Liqui	d Sample I	Date: 6/14/2007	10:26 AM
VOCs: EPA 5030B / EPA 8 Parameter					Deres D. (D D 1	A	005.1
	Result Qua		Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	1.0	0.50	µg/L	N/A	N/A	6/21/2007	WM1A070621A
cis-1,3-Dichloropropene	ND	1.0	0.50	µg/L	N/A	N/A	6/21/2007	WM1A070621A
Cyclohexanone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Dibromochloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Dibromomethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Dichlorodifluoromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Diisopropyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Ethyl Benzene	0.56	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Freon 113	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Hexachlorobutadiene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Iodomethane	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Isopropanol	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Isopropylbenzene	ND	1.0	1.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Methyl-t-butyl Ether	ND	1.0	1.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Methylene Chloride	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
n-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
n-Propylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Naphthalene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
p-Isopropyltoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Pentachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
sec-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Styrene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
tert-Amyl Methyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
tert-Butanol (TBA)	ND	1.0	10	μg/L	N/A	N/A	6/21/2007	WM1A070621A
tert-Butyl Ethyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
tert-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Tetrachloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Tetrahydrofuran	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Toluene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
trans-1,2-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
trans-1,3-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
trans-1,4-Dichloro-2-butene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Trichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Trichlorofluoromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Vinyl Acetate	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A WM1A070621A
Vinyl Chloride	ND	1.0	0.50	μg/L μg/L	N/A N/A	N/A N/A	6/21/2007	WM1A070621A WM1A070621A
Xylenes, Total	0.72	1.0	0,50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Surrogate	Surrogate Recovery		ontrol Limits (%) Analyzed by: XBian					
4-Bromofluorobenzene	109	60 ·						
Dibromofluoromethane	109	60 -					Reviewed by: TFult	on
Toluene-d8	101	60 -	130					

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Certificate of Analysis - Data Report

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Lab #: 55972-002	Sample ID: APL	UP-V	V1			Matrix: Liq	uid Sample I	Date: 6/14/2007	7 10:26 AM
TPH-Purgeable - GC/MS: Parameter	EPA 5030B / GC/MS Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	150		1.0	25	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Surrogate	Surrogate Recovery	,	Control	Limits (%)				Analyzed by: XBia	n
4-Bromofluorobenzene	98.8		60 -	130				Reviewed by: TFu	lton
Dibromofluoromethane	110		60 -	130					
Toluene-d8	94.1		60 -	130					
TPH-Extractable: EPA 351	0C / EPA 8015B(M)								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		1.0	50	μg/L	6/19/2007	WD070619A	6/20/2007	WD070619A
170 μg/L Hydrocarbor	n (C9-C26).								
TPH as Motor Oil	ND		1.0	100	μg/L	6/19/2007	WD070619A	6/20/2007	WD070619A
No Bunker Oil pattern	present.								
Surrogate	Surrogate Recovery	,	Control)	Limits (%)				Analyzed by: JHsi	ung
n-Hexacosane	88.9		50 -	150				Reviewed by: mtra	n

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Certificate of Analysis - Data Report

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Lab # : 55972-003 San	mple ID: APLUP-V	V2			Matrix: Liquid	d Sample	Date: 6/14/2007	9:20 AM
VOCs: EPA 5030B / EPA 8260E								
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	1.0	0.50	µg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,1-Trichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,2,2-Tetrachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,2-Trichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,3-Trichlorobenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,3-Trichloropropane	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,4-Trichlorobenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,4-Trimethylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dibromo-3-Chloropropane	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dibromoethane (EDB)	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3,5-Trimethylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,4-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,4-Dioxane	ND	1.0	50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2,2-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Butanone (MEK)	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Chloroethyl-vinyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Chlorotoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Hexanone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
4-Chlorotoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
4-Methyl-2-Pentanone(MIBK)	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acetone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acetonitrile	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acrolein	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acrylonitrile	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Benzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Benzyl Chloride	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromochloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromodichloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromoform	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromomethane	ND	1.0	0.50	μg/L μg/L	N/A N/A	N/A	6/21/2007	WM1A070621A
Carbon Disulfide	ND	1.0	0.50		N/A N/A	N/A N/A		
Carbon Tetrachloride	ND	1.0	0.50	μg/L		N/A N/A	6/21/2007	WM1A070621A
				μg/L ug/I	N/A		6/21/2007	WM1A070621A
Chlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloroform	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A

Detection Limit = Detection Limit for Reporting. D/P-F = Dilution and/or Prep Factor includes sample volume adjustments. ND = Not Detected at or above the Detection Limit. A statistical set

Qual = Data Qualifier

6/22/2007 4:43:17 PM - ELing

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Certificate of Analysis - Data Report

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Lab #: 55972-003	Sample ID: APLUP	-W2			Matrix: Liquio	d Sample I	Date: 6/14/2007	9:20 AM
VOCs: EPA 5030B / EPA 8	260B for Groundwater an	d Water -	EPA 624 for Waste	water				
Parameter	Result Qu	al D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
cis-1,3-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Cyclohexanone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Dibromochloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Dibromomethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Dichlorodifluoromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Diisopropyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Ethyl Benzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Freon 113	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Hexachlorobutadiene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Iodomethane	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Isopropanol	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Isopropylbenzene	ND	1.0	1.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Methyl-t-butyl Ether	ND	1.0	1.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Methylene Chloride	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
n-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
n-Propylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Naphthalene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
p-Isopropyltoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Pentachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
sec-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Styrene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
tert-Amyl Methyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
tert-Butanol (TBA)	ND	1.0	10	μg/L	N/A	N/A	6/21/2007	WM1A070621A
tert-Butyl Ethyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
tert-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Tetrachloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Tetrahydrofuran	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Toluene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
trans-1,2-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
trans-1,3-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
trans-1,4-Dichloro-2-butene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Trichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Trichlorofluoromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Vinyl Acetate	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Vinyl Chloride	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Xylenes, Total	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: XBian	ι
4-Bromofluorobenzene	108	60					Reviewed by: TFult	
Dibromofluoromethane	102	60	- 130					
Toluene-d8	106	60 -	- 130					

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Certificate of Analysis - Data Report

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Lab #: 55972-003	Sample ID: APLU	P-W	/2			Matrix: Liq	uid Sample I	Date: 6/14/2007	7 9:20 AM
TPH-Purgeable - GC/MS:] Parameter		Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND		1.0	25	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Surrogate	Surrogate Recovery		Control 3	Limits (%)				Analyzed by: XBia	ın
4-Bromofluorobenzene	98.0		60 -	130				Reviewed by: TFu	lton
Dibromofluoromethane	107		60 -	130					
Toluene-d8	99.3		60 -	130					
TPH-Extractable: EPA 351	OC / EPA 8015B(M)								
Parameter	Result Q)ual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	. ND		1.0	50	μg/L	6/19/2007	WD070619A	6/20/2007	WD070619A
90 µg/L Hydrocarbon	(C9-C38).								
TPH as Motor Oil	ND		1.0	100	μg/L	6/19/2007	WD070619A	6/20/2007	WD070619A
No Bunker Oil pattern	present.								
Surrogate	Surrogate Recovery		Control]	Limits (%)				Analyzed by: JHsia	ang
n-Hexacosane	88.5		50 -	150				Reviewed by: mtra	n

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Certificate of Analysis - Data Report

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Lab # : 55972-004	Sample ID: MW-8				Matrix: Liqui	d Sample l	Date: 6/14/2007	10:02 AM
VOCs: EPA 5030B / EPA 8								
Parameter	Result Qu		Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,1-Trichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,2,2-Tetrachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,2-Trichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,3-Trichlorobenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,3-Trichloropropane	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,4-Trichlorobenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,4-Trimethylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dibromo-3-Chloropropa	ne ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dibromoethane (EDB)	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3,5-Trimethylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,4-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,4-Dioxane	ND	1.0	50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2,2-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Butanone (MEK)	ND	1.0	20	.υ μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Chloroethyl-vinyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Chlorotoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Hexanone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
4-Chlorotoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
4-Methyl-2-Pentanone(MIBI		1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acetone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acetonitrile	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acrolein	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acrylonitrile	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Benzene	2.4	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Benzyl Chloride	ND	1.0	5.0	μg/L μg/L	N/A	N/A N/A	6/21/2007	WM1A070621A
Bromobenzene	ND	1.0	0.50		N/A	N/A N/A	6/21/2007	WM1A070621A
	ND		0.50	μg/L uα/I	N/A N/A			
Bromochloromethane		1.0		μg/L		N/A	6/21/2007	WM1A070621A
Bromodichloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromoform	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromomethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Carbon Disulfide	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Carbon Tetrachloride	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chlorobenzene	ND	1.0	0.50	µg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloroform	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A

Detection Limit = Detection Limit for Reporting. D/P-F = Dilution and/or Prep Factor includes sample volume adjustments. ND = Not Detected at or above the Detection Limit. Qual = Data Qualifier

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Lab #: 55972-004

Phone: (408) 588-0200

Fax: (408) 588-0201

10:02 AM

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Matrix: Liquid Sample Date: 6/14/2007

Certificate of Analysis - Data Report

Sample ID: MW-8

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

LaD #: 33972-004	Sample ID: MW-8				watrix: Liqui	a Sample i	Date: 0/14/2007	10:02 AM
VOCs: EPA 5030B / EPA 82	260B for Groundwater and V	Water -	EPA 624 for Waster	water				
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
cis-1,3-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Cyclohexanone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Dibromochloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Dibromomethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Dichlorodifluoromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Diisopropyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Ethyl Benzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Freon 113	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Hexachlorobutadiene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Iodomethane	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Isopropanol	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Isopropylbenzene	ND	1.0	1.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Methyl-t-butyl Ether	ND	1.0	1.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Methylene Chloride	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
n-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
n-Propylbenzene	ND	1.0	5.0	. υ μg/L	N/A	N/A	6/21/2007	WM1A070621A
Naphthalene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
-Isopropyltoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Pentachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
ec-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Styrene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
ert-Amyl Methyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
ert-Butanol (TBA)	ND	1.0	10	μg/L	N/A	N/A	6/21/2007	WM1A070621A
ert-Butyl Ethyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
ert-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Fetrachloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Fetrahydrofuran	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Foluene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
rans-1,2-Dichloroethene	ND	1.0	0.50	.υ μg/L	N/A	N/A	6/21/2007	WM1A070621A
rans-1,3-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
rans-1,4-Dichloro-2-butene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Frichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Frichlorofluoromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Vinyl Acetate	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Vinyl Chloride	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Xylenes, Total	0.54	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Surrogate	Surrogate Recovery	**	Limits (%)				Analyzed by: XBiar	
4-Bromofluorobenzene	109		- 130				Reviewed by: TFult	
Dibromofluoromethane	103		- 130				Reviewed by: 1 Full	OII
Toluene-d8	101		- 130					

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Certificate of Analysis - Data Report

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Lab #: 55972-004	Sample ID: MW	-8			:	Matrix: Liq	uid Sample I	Date: 6/14/2007	7 10:02 AM
TPH-Purgeable - GC/MS: Parameter	EPA 5030B / GC/MS Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	OC Batch
		Quai				•	•	·	<u> </u>
TPH as Gasoline	ND		1.0	25	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Surrogate	Surrogate Recovery	y	Control 1	Limits (%)				Analyzed by: XBia	n
4-Bromofluorobenzene	98.6		60 -	- 130				Reviewed by: TFu	lton
Dibromofluoromethane	106		60 -	- 130					
Toluene-d8	96.7		60 -	- 130					
TPH-Extractable: EPA 351	IOC / EPA 8015B(M)								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		1.0	50	μg/L	6/19/2007	WD070619A	6/20/2007	WD070619A
130 µg/L Hydrocarbor	n (C9-C32).								
TPH as Motor Oil	ND		1.0	100	μg/L	6/19/2007	WD070619A	6/20/2007	WD070619A
No Bunker Oil pattern	present.								
Surrogate	Surrogate Recovery	y	Control]	Limits (%)				Analyzed by: JHsia	ing
n-Hexacosane	82.0		50 -	- 150				Reviewed by: mtra	n

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Certificate of Analysis - Data Report

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Lab # : 55972-006 San	mple ID: TB1				Matrix: Liq	uid Sample I	Date: 6/14/2007	7
VOCs: EPA 5030B / EPA 8260E								
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,1-Trichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,2,2-Tetrachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1,2-Trichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,1-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,3-Trichlorobenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,3-Trichloropropane	ND	1.0	5.0	µg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,4-Trichlorobenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2,4-Trimethylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dibromo-3-Chloropropane	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dibromoethane (EDB)	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,2-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3,5-Trimethylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,3-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,4-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
1,4-Dioxane	ND	1.0	50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2,2-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Butanone (MEK)	ND	1.0	20	⊷в-– µg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Chloroethyl-vinyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Chlorotoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
2-Hexanone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
4-Chlorotoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
4-Methyl-2-Pentanone(MIBK)	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acetone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acetonitrile	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acrolein	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Acrylonitrile	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Benzene	ND	1.0	0.50		N/A N/A	N/A	6/21/2007	
Benzyl Chloride	ND	1.0	5.0	μg/L α/I	N/A N/A	N/A N/A		WM1A070621A
-	ND			μg/L			6/21/2007	WM1A070621A
Bromobenzene		1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromochloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromodichloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromoform	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Bromomethane	ND	1.0	0.50	µg/L	N/A	N/A	6/21/2007	WM1A070621A
Carbon Disulfide	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Carbon Tetrachloride	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloroform	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Chloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007	WM1A070621A

Detection Limit = Detection Limit for Reporting.

ND = Not Detected at or above the Detection Limit. Qual = Data Qualifier

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Lab #: 55972-006

Tetrachloroethene

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

trans-1,4-Dichloro-2-butene

4-Bromofluorobenzene

Dibromofluoromethane

Tetrahydrofuran

Trichloroethene

Vinyl Acetate

Vinyl Chloride

Xylenes, Total

Surrogate

Toluene-d8

Toluene

Phone: (408) 588-0200

Fax: (408) 588-0201

QC Batch

WM1A070621A

WM1A070621A WM1A070621A

WM1A070621A

WM1A070621A

WM1A070621A

WM1A070621A

WM1A070621A

WM1A070621A

WM1A070621A

WM1A070621A

WM1A070621A

WM1A070621A

WM1A070621A

WM1A070621A

WM1A070621A

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Sample Date: 6/14/2007

Certificate of Analysis - Data Report

Sample ID: TB1

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Matrix: Liquid

				•	Mutrix: Diquit	Sample	Jacc. 0/14/2007
VOCs: EPA 5030B / EPA 8260					D D ./	D D (1	
Parameter	-	ual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date
cis-1,2-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007
cis-1,3-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007
Cyclohexanone	ND	1.0	20	μg/L	N/A	N/A	6/21/2007
Dibromochloromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007
Dibromomethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007
Dichlorodifluoromethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007
Diisopropyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007
Ethyl Benzene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007
Freon 113	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007
Hexachlorobutadiene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007
Iodomethane	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007
Isopropanol	ND	1.0	20	μg/L	N/A	N/A	6/21/2007
Isopropylbenzene	ND	1.0	1.0	μg/L	N/A	N/A	6/21/2007
Methyl-t-butyl Ether	ND	1.0	1.0	μg/L	N/A	N/A	6/21/2007
Methylene Chloride	ND	1.0	20	μg/L	N/A	N/A	6/21/2007
n-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007
n-Propylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007
Naphthalene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007
p-Isopropyltoluene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007
Pentachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007
sec-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007
Styrene	ND	1.0	0.50	μg/L	N/A	N/A	6/21/2007
tert-Amyl Methyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007
tert-Butanol (TBA)	ND	1.0	10	μg/L	N/A	N/A	6/21/2007
tert-Butyl Ethyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007
tert-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	6/21/2007

0.50

20

0.50

0.50

0.50

5.0

0.50

0.50

5.0

0.50

0.50

μg/L

N/A

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

60

60

60

Control Limits (%)

- 130

- 130

- 130

Reviewed by: TFulton

6/21/2007

6/21/2007

6/21/2007

6/21/2007

6/21/2007

6/21/2007

6/21/2007

6/21/2007

6/21/2007

6/21/2007

6/21/2007

Analyzed by: XBian

Detection Limit = Detection Limit for Reporting.

D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

ND

Surrogate Recovery

110

102

104

ND = Not Detected at or above the Detection Limit.

6/22/2007 4:43:18 PM - ELing

3334 Victor Court, Santa Clara, CA 95054

MSE Group 302 Pendleton Way Oakland, CA 94621 Attn: Della Murphy

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: MSE Group

Project Name: APL Project Location: 1359 Middle Harbor Rd.

Samples Received: 06/15/2007 Sample Collected by: Blaine Tech

Lab #: 55972-006	Sample ID: TB1					Matrix: Liq	uid Sample l	Date: 6/14/2007	7
TPH-Purgeable - GC/MS: Parameter		ual D/	P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND]	0.1	25	μg/L	N/A	N/A	6/21/2007	WM1A070621A
Surrogate	Surrogate Recovery	Cor	itrol l	Limits (%)				Analyzed by: XBia	ın
4-Bromofluorobenzene	99.1	6	0 -	130				Reviewed by: TFu	lton
Dibromofluoromethane	106	6	0 -	130				-	
Toluene-d8	97.2	6	0 -	130					

Certificate of Analysis - Data Report

3334 Victor Cou

(408) 588-0200 Fax: (408) 588-0201

Method Blank - Li roundwater and Water - EPA 624 for Wastewater

QC Batch ID: WM1A070621A

QC Batch Analysis Date: 6/21/2007

Parameter	Result	DF	PQLR	Units
1,1,1,2-Tetrachloroethane	ND	1	0.50	µg/L
1,1,1-Trichloroethane	ND	1	0.50	μg/L
1,1,2,2-Tetrachloroethane	ND	1	0.50	μg/L
1,1,2-Trichloroethane	ND	1	0.50	μg/L
1,1-Dichloroethane	ND	1	0.50	μg/L
1,1-Dichloroethene	ND	1	0.50	μg/L
1,1-Dichloropropene	ND	1	0.50	μg/L
1,2,3-Trichlorobenzene	ND	1	5.0	μg/L
1,2,3-Trichloropropane	ND	1	5.0	μg/L
1,2,4-Trichlorobenzene	ND	1	5.0	μg/L
1,2,4-Trimethylbenzene	ND	1	5.0	μg/L
1,2-Dibromo-3-Chloropropane	ND	1	5.0	μg/L
1,2-Dibromoethane (EDB)	ND	1	0.50	μg/L
1,2-Dichlorobenzene	ND	1	0.50	μg/L
1,2-Dichloroethane	ND	1	0.50	μg/L
1,2-Dichloropropane	ND	1	0.50	μg/L
1,3,5-Trimethylbenzene	ND	1	5.0	μg/L
1,3-Dichlorobenzene	ND	1	0.50	μg/L
1,3-Dichloropropane	ND	1	0.50	μg/L
1,4-Dichlorobenzene	ND	1	0.50	μg/L
1,4-Dioxane	ND	1	50	μg/L
2,2-Dichloropropane	ND	1	0.50	μg/L
2-Butanone (MEK)	ND	1	20	μg/L
2-Chloroethyl-vinyl Ether	ND	1	5.0	μg/L
2-Chlorotoluene	ND	1	5.0	μg/L
2-Hexanone	ND	1	20	μg/L
4-Chlorotoluene	ND	1	5.0	
4-Methyl-2-Pentanone(MIBK)	ND	1	20	µg/L
Acetone	ND	1	20	µg/L
Acetonitrile	ND	1	5.0	μg/L
Acrolein	ND	1	5.0	μg/L
Acrylonitrile	ND	1	5.0	μg/L
Benzene	ND	1	0.50	μg/L
Benzyl Chloride	ND	1	5.0	μg/L
Bromobenzene	ND	1	0.50	μg/L
Bromochloromethane	ND	1	0.50	μg/L
Bromodichloromethane	ND	1	0.50	μg/L
Bromoform	ND	1	0.50	µg/L
Bromomethane	ND	1	0.50	μg/L
Carbon Disulfide	ND	1	0.50	μg/L
Carbon Tetrachloride	ND	1	0.50	μg/L
Chlorobenzene	ND	1	0.50	μg/L
Chloroethane	ND	1	0.50	μg/L
Chloroform	ND	1	0.50	µg/L
Chloromethane	ND	1	0.50	µg/L
cis-1,2-Dichloroethene	ND	1	0.50	µg/L
cis-1,3-Dichloropropene	ND	1	0.50	μg/L
Cyclohexanone	ND	1	20	μg/L
Dibromochloromethane	ND	1	0.50	μg/L
Dibromomethane	ND	1	0.50 * 0.51	^{segara} h g∕L ≉i∼ar

Validated by: TFulton - 06/22/07

urt, S	Sai	nta Cla	ara, C	A 950)54	Pho	ne:	(4
.iquid	-	VOCs:	EPA 5	030B /	EPA	8260B	for (Gr

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - VOCs: EPA 5030B / EPA 8260B for Groundwater and Water - EPA 624 for Wastewater

QC Batch ID: WM1A070621A

Validated by: TFulton - 06/22/07

QC Batch Analysis Date: 6/21/2007

Parameter	Result	DF	PQLR	Units
Dichlorodifluoromethane	ND	1	0.50	µg/L
Diisopropyl Ether	ND	1	5.0	μg/L
Ethyl Benzene	ND	1	0.50	µg/L
Freon 113	ND	1	5.0	µg/L
Hexachlorobutadiene	ND	1	5.0	µg/L
Iodomethane	ND	1	5.0	μg/L
Isopropanol	ND	1	20	μg/L
Isopropylbenzene	ND	1	1.0	µg/L
Methylene Chloride	ND	1	20	μg/L
Methyl-t-butyl Ether	ND	1	1.0	μg/L
Naphthalene	ND	1	5.0	μg/L
n-Butylbenzene	ND	1	5.0	µg/L
n-Propylbenzene	ND	1	5.0	μg/L
Pentachloroethane	ND	1	0.50	µg/L
p-lsopropyltoluene	ND	1	5.0	μg/L
sec-Butylbenzene	ND	1	5.0	µg/L
Styrene	ND	1	0.50	μg/L
tert-Amyl Methyl Ether	ND	1	5.0	μg/L
tert-Butanol (TBA)	ND	1	10	µg/L
tert-Butyl Ethyl Ether	ND	1	5.0	μg/L
tert-Butylbenzene	ND	1	5.0	μg/L
Tetrachloroethene	ND	1	0.50	µg/L
Tetrahydrofuran	ND	1	20	μg/L
Toluene	ND	1	0.50	µg/L
trans-1,2-Dichloroethene	ND	1	0.50	µg/L
trans-1,3-Dichloropropene	ND	1	0.50	µg/L
trans-1,4-Dichloro-2-butene	ND	1	5.0	μg/L
Trichloroethene	ND	1	0.50	μg/L
Trichlorofluoromethane	ND	1	0.50	μg/L
Vinyl Acetate	ND	1	5.0	µg/L
Vinyl Chloride	ND	1	0.50	µg/L
Xylenes, Total	ND	1	0.50	µg/L
Surrogate for Blank % Recovery Contr	ol Limits			
4-Bromofluorobenzene 108 60	- 130			
Dibromofluoromethane 99.0 60	- 130			
Toluene-d8 106 60	- 130			

Method Blank - Liquid - TPH-Purgeable - GC/MS: EPA 5030B / GC/MS QC Batch ID: WM1A070621A

QC Batch Analysis Date: 6/21/2007

a Calvered Perio

Parameter			Result	DF	PQLR	Units
TPH as Gasoline			ND	1	25	µg/L
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	97.9	60 - 130				
Dibromofluoromethane	104	60 - 130				
Toluene-d8	98.5	60 - 130				

Validated by: TFulton - 06/22/07

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - VOCs: EPA 5030B / EPA 8260B for Groundwater and Water - EPA 624 for Wastewater

QC Batch ID: WM1A070621A

Reviewed by: TFulton - 06/22/07

QC Batch ID Analysis Date: 6/21/2007

LCS Parameter	Method Bl	ank Spike Amt	SnikeResult	Units	% Recovery			Recovery Limits
1,1-Dichloroethene	<0.50	20	21.7	μg/L	108			70 - 130
Benzene	< 0.50	20	21.5	µg/L	108			70 - 130
Chlorobenzene	<0.50	20	20.2	µg/L	101			70 - 130
Methyl-t-butyl Ether	<1.0	20	22.7	µg/L	114			70 - 130
Toluene	<0.50	20	19.2	μg/L	96.0			70 - 130
Trichloroethene	<0.50	20	19.8	μg/L	99.0			70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	117	60 - 130						
Dibromofluoromethane	109	60 - 130						
Toluene-d8	99.6	60 - 130						
LCSD						- 2 ⁰	1.1155	
Parameter	Method Bla	ank Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<0.50	20	21.5	µg/L	108	0.926	25.0	70 - 130
Benzene	<0.50	20	22.2	µg/L	111	3.20	25.0	70 - 130
Chlorobenzene	<0.50	20	21.4	µg/L	107	5.77	25.0	70 - 130
Methyl-t-butyl Ether	<1.0	20	23.5	µg/L	118	3.46	25.0	70 - 130
Toluene	<0.50	20	20.5	µg/L	102	6.55	25.0	70 - 130
Trichloroethene	<0.50	20	21.0	µg/L	105	5.88	25.0	70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	109	60 - 130						
Dibromofluoromethane	106	60 - 130						
Toluene-d8	99.9	60 - 130						

LCS / LCSD - Liquid - TPH-Purgeable - GC/MS: EPA 5030B / GC/MS QC Batch ID: WM1A070621A

Reviewed by: TFulton - 06/22/07

QC Batch ID Analysis Date: 6/21/2007

LCS Parameter	Method E	Blank Spike Amt	SpikeResult	Units	% Recovery		Recovery Limits
TPH as Gasoline	<25	125	136	µg/L	109		65 - 135
Surrogate	% Recovery	Control Limits					
4-Bromofluorobenzene	101	60 - 130					
Dibromofluoromethane	104	60 - 130					
Toluene-d8	95.2	60 - 130					
LCSD Parameter	Method B	llank Snike Amt	SpikePesult	Unite	% Pacavan	PPD PPD Limite	Pasavan/Limita

Parameter	Method B	lank Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits	
TPH as Gasoline	<25	125	131	µg/L	105	3.74	25.0	65 - 135	
Surrogate	% Recovery	Control Limits							
4-Bromofluorobenzene	95.6	60 - 130							
Dibromofluoromethane	102	60 - 130							
Toluene-d8	96.0	60 - 130							

3334 Victor Co	ourt , Santa Clara, C	A 95054	Phone	: (408) 58	B-020	0 Fax:	(408) 588-0201	
Method Blank - L QC/Prep Batch ID QC/Prep Date: 6/		able: EPA 351	0C / EPA	8015B(M)			Validated by: mtran - 06/22/0	7
Parameter		Result	ום	= PG	LR	Units		
TPH as Diesel		ND	1	5	0	µg/L		
TPH as Motor Oil		ND	1	10	00	μg/L		
Surrogate for Blank n-Hexacosane	% Recovery Control Limits 88.1 50 - 150	1						
LCS / LCSD - Liq QC Batch ID: WD QC/Prep Date: 6/'		le: EPA 3510C	; / EPA 80)15B(M)		Reviewe	ed by: mtran - 06/22/07	
LCS								
Parameter	Method Blank Spike	•		% Recovery			Recovery Limits	
TPH as Diesel	<50 100		µg/L	115			45 - 140	
TPH as Motor Oil	<100 100	0 1140	µg/L	114			45 - 140	
Surrogate	% Recovery Control Li	mits						
n-Hexacosane	81.8 50 - 1:	50		45 J		1. 1. 1971 13	1 (s. A	
LCSD Parameter TPH as Diesel TPH as Motor Oil	Method Blank Spike <50 100 <100 100	0 1180	t Units μg/L μg/L	% Recovery 118 122	RPD 3.12 6.89	RPD Limits 25.0 25.0	Recovery Limits 45 - 140 45 - 140	
Surrogate n-Hexacosane	% Recovery Control Line 80.1 50 - 12							

					1680 ROO	GERS AVI	INUE		[CON	DUCT	ANAL	YSIS	TO DE	TECT		ILAB	E	intech 55	5972	DHS#
BLAI TECH SER			s/	AN JOSE,		NIA 95112 (408) 573 (408) 573	7771			ပ							MUST MEET SPECIFICATIONS I EPA LIA			RWQCB RE	
CHAIN OF CUS	TODY	BT	S#,	0706	14-PC(······			/ TPH-Bunker											
CLIENT	MSE	Grou						CONTAINERS		H.							SPECIAL INSTRUC	TION	IS		
SITE	APL							NTA	(8260)								Invoice and Repo	ort to:	MSE Group		
		Midd	le H	arbor	Rd.	*		ALLCC	0	or Oil							Attn: Joseph Cot		•		
	Oaki	and, C	A				•	ITEA	NOC.	/ Motor							Project # : Conta		E Group for i	nformation.	
SAMPLE I.D.	DAT	E	NE	Natrix s = Soil W = H2O	CON	ITAINERS	Aub	c = compos	TPH-G /	TPH-D/I							ADD'L INFORMATI	ON	STATUS	CONDITION	LAB SAMPLE #
B97	BIH	07 10	50	W	5		1		K	1	-0	0/									
APLUP-W		_ 10	26		5				Ł	1	0	02									
APLUP-WZ	<u> </u>	0	120		5		<u> </u>	L	k	x	~(203					· · · · · · · · · · · · · · · · · · ·				
MW8			02		5				k	1	20	фÝ		<u> </u>							
Dup		<u></u>	36		5	4		ļ	×	K	T	<u>Þ5</u>]	ļ			2	24	Samp	1e II	Dup.1
TB1	- 1		~	1	<u> </u>	1×40	Jul Vo	_	ĸ		<u>c</u>	<u>p6</u>	<u> </u>								•
			**		1				ļ				1					_			•
																	a lit f	tmb	ers each	NIP	<u> </u>
	<u> </u>								1					-			3 NOA	e	ach (HCI	2	· · · · · · · · · · · · · · · · · · ·
SAMPLING COMPLETED	DAT GIH	•	NE OC	SAMPLI		· Corrit	sh	, ٤,	Keld						4.,	-	RESULTS NEEDED NO LATER THAN)	Standard	· · ·	
RELEASED BY								DAT ¢	e liyla			050			IVED E	- M	Ĵ.			DATE UI(46	7 (65
RELEASED BY		Ż						DAT	[15]	67	TIME	50			IVED 5		\mathbf{X}	/		DATE	7 450
RELEASED BY)						1510	17		5	12		IVED E	×,	think	[•	DATE 61507	1тіме 1519
SHIPPED VIA			, (\subset)			DĂŤ	E SEN	IT [.]	TIME	SENT	•	000	.ER #					• ··· ·	

5490-C54670-D

From:	William Jones
То:	dtheesen@entechlabs.com;
CC:	
Subject:	COC Revision
Date:	Monday, June 18, 2007 9:17:15 AM
Attachments:	COCmseAPLrev2q07.pdf

Hi Diane,

Please note the revision to the attached COC. The sample labeled "DUP" is to be on HOLD. MSE will notify you if sample is to be analyzed. Contact me if you have any questions.

Thanks,

William Jones Regional Manager Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112 Ph. 408-573-0555 x200 Fax 408-573-7771

No virus found in this outgoing message. Checked by AVG Free Edition. Version: 7.5.472 / Virus Database: 269.9.0/852 - Release Date: 6/17/2007 8:23 AM

BLAI		e/							CON	IDUCT	ANALY	'SIS T	O DET	ECT	LAB	Entech	**** * <u></u>	DHS #
			IN JUAE,		08) 573-3	7771			U						MUST MEET SPECIFICATIONS		<u></u>	
TECH SER	/ICES, INC	l Iv		PHONE (40	08) 5 73-1	0555			Те Г						EPA	C	RWQCB RE	GION
CHAIN OF CUST	TODY	BTS#		1.1.Pr (/ TPH-Bunker									
CLIENT	MSE Gr		21001	7.101	AINERS ZxIL		IERS		H H						SPECIAL INSTRUC	IONS		Net Market States and a second state of the second s
SITE	APL				<u></u>		VTAIN	260	1 T									
	1359 Mi						õ	3 (8	Öİ						Invoice and Repor	•)	
				Ka.			EALI	ÖÖ	ofor						Attn: Joseph Cotto			
	Oakland		MATRIX	CONT	AINERS		OSIT	Ž	/ Motor			1			Project # : Contact	MSE Group for	information.	
		1	1		ZxIL	Hub	MO	Ϋ́										·
SAMPLE I.D.	DATE	TIME	S = Soil W = H2O	TOTAL	Thial	Woatt		TPH-G / VOCs (8260)	D-H-T						ADD'L INFORMATIO	N STATUS	CONDITION	LAB SAMPLE #
B97	6/14/07	1050	ω	5				K	1									
PPLUP-WI		4501	$\left[\right]$	5		\Box		R	1									
HPLUP-WZ	<u> </u>	0920		5				k	x									
MWS		1002		5	\Box			k	٨									
Dup		1036		5	1			ĸ	K						ON How	0 B6	Kelon	
TBI	<u> </u>	~	1	1	1×40	2nu i Voc		K										
SAMPLING COMPLETED	DATE	TIME	SAMPLIN	NG RMED BYP. 6		:h	5	.Kal						<u></u>	RESULTS NEEDED NO LATER THAN	Standard		- 1975
			I	<u>````````````````````````````````</u>	<u>y</u>	<u> </u>	IUA I			TIME	τu		RECE	IVED BY		otandaru	DATE WILLO	TIME 7 (45
POH M RELEASED BY	میں								, <u>,</u>		050	. 🆷		VED BY		~ ⁻		and the state of the
L				The local data and the local dat				[[5]	67		150		NEUL		\mathbf{X}		61510	1 TIME
RELEASED BY.							DAT	E		TIME			RECE	IVED BY			DATE	TIME
SHIPPED VIA	_					P	DAT	TE SEN	IT	TIME	SENT	·	COOL	ER #				
							1											

Data Quality Assessment

A total of five groundwater samples and one trip blank were collected on June 14, 2007. All samples were shipped to Entech Analytical Labs, Inc. located in Santa Clara, California for analyses. The groundwater samples were analyzed for VOCs/gasoline and diesel by EPA Method 8260B and EPA Method 8015; respectively. The trip blank was analyzed for VOCs and gasoline only. Sample DUP was collected during the same sampling event, and put on hold as a backup. The laboratory is currently certified for the National Environmental Accreditation Program by the State of California Department of Health Services to perform the required analyses.

A Level III data review was performed on all analytical results obtained from the June sampling event. The review was performed in accordance with the guidelines and control criteria specified in the following documents:

- USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, (USEPA, 1999); and
- USEPA Test Methods for Evaluating Solid Waste, SW-846 Physical/Chemical Methods (1996).

The following quality control (QC) elements were included in the Level III data review:

- Laboratory method blanks;
- Sample holding times;
- Surrogate recovery;
- Laboratory control sample/laboratory control sample duplicate recoveries (LCS/LCSD);
- Matrix spike/matrix spike duplicate recoveries (MS/MSD);
- Relative percent differences (RPD); and
- Trip blanks

Laboratory Method Blanks: All field sample results were evaluated with respect to the laboratory method blank prepared and analyzed for each analytical batch. For the June sampling event, one laboratory method blank was prepared for VOC/gasoline analysis; and another blank was prepared for diesel analysis. Both blanks were free of any target analytes.

Sample Holding Times: Sample holding times were evaluated by comparing the sample collection dates to the sample extraction and analysis dates. Analysis holding times were reviewed for all samples to determine the validity of analytical results. Based on the review, all samples from the June sampling event met the extraction and analysis holding time requirements.

Surrogate Recovery: Surrogate standards are organic compounds added to field and laboratory QC samples for organic analysis to evaluate matrix effect and method performance on an individual sample basis. Based on the review, surrogate recoveries for all samples were acceptable for the June sampling event.

Laboratory Control Sample/Laboratory Control Sample Duplicate: The LCS is an aliquot of analyte-free matrix spiked with target analytes and is prepared with each batch. The recovery of target analytes from the LCS analysis is a measurement of method performance in an interference-free sample matrix. The review indicated that LCS and LCSD recoveries, and RPDs between LCS and LCSD recoveries met the established accuracy and precision requirements.

Matrix Spike/Matrix Spike Duplicates: The MS and MSD samples are a portion of a field sample spiked with target analytes, and are prepared with each analytical batch. The MS/MSD results are used to evaluate any bias introduced to the method due to matrix interference, and to measure accuracy and precision for each analytical batch. No MS/MSD samples were collected for the June sampling event.

Trip Blank: Trip blanks are prepared by the laboratory and stored along with all groundwater samples for VOC and gasoline analyses. Samples for VOC and gasoline analyses are maintained in as few coolers as possible to minimize the number of required trip blanks. For the June sampling event, one trip blank was shipped with the samples. No target analytes were detected in the trip blank. The trip blank results indicated good sample storage and shipping procedures.

Based on the above Level III data review, no significant, systematic problems were identified with the performance of the EPA Method 8260B and EPA Method 8015. No data qualification was applied to any analytical results obtained from the June sampling event. All data are usable and available for project decisions. Overall, the data are of good technical quality and usable to meet project objectives.

Chemical Analytical Data Review/Validation Form

Report Type: { } Preliminary {X} Final

Project Number: 127564

Project Name: MSE Group, APL, Oakland

Analysis/Method: VOC

Evaluated By:

Laboratory: Entech

SDG # not specified,

Date Evaluated: 8/29/2007

Sample Number(s): B97, APLUP-W1, APLUP-W2, MW8, DUP, TB1

Shuang

REVIEW QUESTIONS	YES	NO	COMMENTS
1. Were holding times met?	X		Sampled on 6/14 and analyzed on 6/21/07
2. Were sample preservation requirements met? (Sample condition, preservation, containers, temperature, etc.)			Temp not documented sample preserved with HCL
3. Were QAPP specified PQLs achieved?	X		
4. Were measurement results for all QAPP- specific target analytes reported?	X		
5. Was a method blank prepared and analyzed with each batch?	X		
6. Were target analytes reported in the method blank above the PQL?		Х	All ND in the batch
7. Was an equipment blank collected and analyzed at the required frequency stated in the site-specific FSP?		X	
8. Were target analytes reported in field blank analyses (trip or equipment) above the PQL?		Х	TB1 all ND
9. Was a field duplicate analyzed? Were RPDs within QAPP specifications?		X	
10. Surrogate Recoveries – Were all samples spiked prior to purging or preparation?	X		
11. Were surrogate recoveries within QAPP specifications?	X		Within 60-130 percent
12. Was an LCD/LCSD pair prepared and analyzed with each batch?	X		
13. Were LCS/LCSD RPDs within recoveries within QAPP specifications?	X		Within 70-130%, 25% RSD
14. Was a MS/MSD pair prepared with each batch?		X	

DUP collected, but put on hold

REVIEW QUESTIONS	YES	NO .	COMMENTS
15. Is the MS/MSD parent sample a project sample?		X	
16. Were initial calibration standards analyzed at the QAPP-specific frequency for each instrument?			Not provided
17. Were these results within project specifications?			NA
18. Were continuing calibration standards analyzed at the QAPP-specific frequency for each instrument?			Not provided
19. Were these results within project specifications?			NA
20. Were laboratory-generated Quality Control Exception Reports (i.e., QCERs) issued? If yes, summarize contents.			
21. Were lab comments included in the report? If yes, summarize contents			

/

Chemical Analytical Data Review/Validation Form

Report Type: { } Preliminary {X} FinalProject Number: 127564Project Name: MSE Group, APL, OaklandAnalysis/Method: GasolineLaboratory: EntechSDG # not specified,

Evaluated By:

Shuang

Date Evaluated: 8/29/2007

Sample Number(s): B97, APLUP-W1, APLUP-W2, MW8, DUP, TB1

REVIEW QUESTIONS	YES.	NÖ	COMMENTS
1. Were holding times met?	X		Sampled on 6/14 and analyzed on 6/21/07
2. Were sample preservation requirements met? (Sample condition, preservation, containers, temperature, etc.)			Temp not documented sample preserved with HCL
3. Were QAPP specified PQLs achieved?	X		
4. Were measurement results for all QAPP- specific target analytes reported?	X		
5. Was a method blank prepared and analyzed with each batch?	X		
6. Were target analytes reported in the method blank above the PQL?		X	All ND in the batch
7. Was an equipment blank collected and analyzed at the required frequency stated in the site-specific FSP?		Х	
8. Were target analytes reported in field blank analyses (trip or equipment) above the PQL?		Х	TB1 all ND
9. Was a field duplicate analyzed? Were RPDs within QAPP specifications?		X	
10. Surrogate Recoveries – Were all samples spiked prior to purging or preparation?	X		
11. Were surrogate recoveries within QAPP specifications?	X		Within 60-130 percent
12. Was an LCD/LCSD pair prepared and analyzed with each batch?	X		
13. Were LCS/LCSD RPDs within recoveries within QAPP specifications?	X		Within 65-1350%, 25% RSD
14. Was a MS/MSD pair prepared with each batch?		X	

DUP collected, but put on hold

REVIEW QUESTIONS	YES	NO	COMMENTS
15. Is the MS/MSD parent sample a project sample?		X	
16. Were initial calibration standards analyzed at the QAPP-specific frequency for each instrument?			Not provided
17. Were these results within project specifications?			NA
18. Were continuing calibration standards analyzed at the QAPP-specific frequency for each instrument?			Not provided
19. Were these results within project specifications?			NA
20. Were laboratory-generated Quality Control Exception Reports (i.e., QCERs) issued? If yes, summarize contents.			
21. Were lab comments included in the report? If yes, summarize contents			

,

Chemical Analytical Data Review/Validation Form

Report Type: { } Preliminary {X} FinalProject Number: 127564Project Name: MSE Group, APL, OaklandAnalysis/Method: DieselLaboratory: EntechSDG # not specified,

Evaluated By:

Shuang

Date Evaluated: 8/29/2007

Sample Number(s): B97, APLUP-W1, APLUP-W2, MW8, DUP

REVIEW QUESTIONS	YES	NO	COMMENTS
1. Were holding times met?	X		Sampled on 6/14, extracted on 6/19 and analyzed on 6/20/07
2. Were sample preservation requirements met? (Sample condition, preservation, containers, temperature, etc.)			Temp not documented sample preserved with HCL
3. Were QAPP specified PQLs achieved?	X		
4. Were measurement results for all QAPP- specific target analytes reported?	X		
5. Was a method blank prepared and analyzed with each batch?	X		
6. Were target analytes reported in the method blank above the PQL?		X	All ND in the batch
7. Was an equipment blank collected and analyzed at the required frequency stated in the site-specific FSP?		X	
8. Were target analytes reported in field blank analyses (trip or equipment) above the PQL?		NA	
9. Was a field duplicate analyzed? Were RPDs within QAPP specifications?		X	
10. Surrogate Recoveries – Were all samples spiked prior to purging or preparation?	X		
11. Were surrogate recoveries within QAPP specifications?	X		Within 50-150 percent
12. Was an LCD/LCSD pair prepared and analyzed with each batch?	x		
13. Were LCS/LCSD RPDs within recoveries within QAPP specifications?	X		Within 45-140%, 25% RSD
14. Was a MS/MSD pair prepared with each batch?		X	

DUP collected, but put on hold

REVIEW QUESTIONS	YES:	NO	COMMENTS
15. Is the MS/MSD parent sample a project sample?		X	
16. Were initial calibration standards analyzed at the QAPP-specific frequency for each instrument?			Not provided
17. Were these results within project specifications?			NA
18. Were continuing calibration standards analyzed at the QAPP-specific frequency for each instrument?			Not provided
19. Were these results within project specifications?			NA
20. Were laboratory-generated Quality Control Exception Reports (i.e., QCERs) issued? If yes, summarize contents.			
21. Were lab comments included in the report? If yes, summarize contents			

, :